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Wireless Sensor Networks (WSNs) are a popular class of distributed collaborative 

networks finding suitability from medical to military applications. However, their 

vulnerability to capture, their “open” wireless interfaces, limited battery life, all result 

in potential vulnerabilities. WSN-based services inherit these vulnerabilities. We 

focus on tactical environments where sensor nodes play complex roles in data 

sensing, aggregation and decision making. Services in such environments demand a 

high level of reliability and robustness.   

The first problem we studied is robust target localization. Location 

information is important for surveillance, monitoring, secure routing, intrusion 

detection, on-demand services etc. Target localization means tracing the path of 

moving entities through some known surveillance area. In a tactical environment, an 

adversary can often capture nodes and supply incorrect surveillance data to the 

system. In this thesis we create a target localization protocol that is robust against 

large amounts of such falsified data. Location estimates are generated by a Bayesian 

  



maximum-likelihood estimator. In order to achieve improved results with respect to 

fraudulent data attacks, we introduce various protection mechanisms. Further, our 

novel approach of employing watchdog nodes improves our ability to detect 

anomalies reducing the impact of an adversarial attack and limiting the amount of 

falsified data that gets accepted into the system. By concealing and altering the 

location where data is aggregated, we restrict the adversary to making probabilistic 

“guess” attacks at best, and increase robustness further. By formulating the problem 

of robust node localization under adversarial settings and casting it as a multivariate 

optimization problem, we solve for the system design parameters that correspond to 

the optimal solution. Together this results in a highly robust protocol design.  

In order for any collaboration to succeed, collaborating entities must have the 

same relative sense of time. This ensures that any measurements, surveillance data, 

mission commands, etc will be processed in the same epoch they are intended to 

serve. In most cases, data disseminated in a WSN is transient in nature, and applies 

for a short period of time. New data routinely replaces old data. It is imperative that 

data be placed in its correct time context; therefore, as a secondary problem, we 

studied time synchronization in WSNs. We designed a single hop time 

synchronization protocol, and then extended it to cover multi-hop scenarios. Our use 

of hash chains, a simple cryptographic mechanism, enabled the creation of a 

lightweight protocol that is resilient to various attacks. We also identified certain 

attack cases that our protocol is not robust against, and indicated possible means for 

securing against these attacks. We also showed that our protocol is efficient in 

computation and storage requirements.  
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Chapter 1 Introduction 

 
Distributed and Collaborative systems have become pervasive in many environments 

today due to their modularity, scalability, redundancy, fault tolerance, ease of repair 

without loss of functionality, etc.  Some examples of distributed systems that have 

become all-pervasive are peer-to-peer file sharing networks, shared server clusters like 

Storage Area Networks (SANs), coalition networks, mobile agents and Wireless Sensor 

Networks (WSNs). Usually, in these systems, there exists some form of coalition to share 

data and resources, or to make decisions collaboratively. While these systems are 

immensely popular, their flexibility, collaborative and dynamic nature has opened up 

many security problems. For example, WSNs are susceptible to eavesdropping, jamming, 

insertion as well as masquerading attacks. A distributed network that is collaborative in 

nature (shares data or resources between components of the network) is particularly 

susceptible to the individual components being compromised or the communication 

between individual components becoming unreliable. An intelligent adversary can disrupt 

communication between various components that together provide a service. In order to 

provide truly reliable functionality and dependability, these systems must be protected 

from malicious attacks, and their security becomes a very important issue for successful 

and secure deployment of distributed collaborative networks. Distributed collaborative 

networks usually run one or more collaborative services. 

Collaborative services entail the use of shared resources, create and rely on joint 

infrastructures, are involved in taking global measurements to provide a global view, or 
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to make joint decisions based on available information. In a distributed system, 

collaborative services are targets for malicious attackers who wish to foil the global 

measurement or the decision making process. A WSN is an example of a highly 

collaborative system that exhibits properties like using shared resources, forming joint 

infrastructures, taking global measurements, and sometimes making joint decisions. 

WSNs have gained tremendous popularity due to their fast and efficient deployment 

and self-organization in a wide variety of scenarios where a fixed networking 

infrastructure is not possible. They can be viewed as a completely distributed system with 

collaborating entities. The primary goal of a WSN is to provide collaborative services in 

a distributed (decentralized) manner, for example, sensing, monitoring, information 

aggregation, data communication and routing. However, compared to other distributed 

networks they have additional constraints. They are subject to power consumption 

restrictions (due to limited battery life), have limited communication bandwidth, limited 

and unsecured storage which is subject to capture, lower computation ability, and 

openness associated with wireless interfaces. This nature of a WSN makes it vulnerable 

to protocol attacks like capture, eavesdropping, fabrication, service disruption, etc. 

Furthermore, there are various points in the network where an adversary can insert bogus 

data, alter data, or capture nodes and use them to send fictitious data resulting in a 

substantially different outcome. It is interesting to see how one can build secure 

collaborative services for such vulnerable environments that can withstand highly 

malicious behavior, tolerate false data and at the same time are easy to setup and 

configure in remote locations. In this thesis, we design two robust collaborative services 

for WSNs that are lightweight in terms of the computation and communication involved, 
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provide the desired service in a robust manner by tolerating a substantially large amount 

of false misleading data. These two services are Robust Target Localization and Robust 

Time Synchronization. Our approach is built on the following principles:  

- Practical assumptions,  

- Light weight algorithms to provide desired service 

- Improved robustness of the service by leveraging intelligence from the existing 

network to keep adversarial behavior in check,  

- Use of cryptography to protect confidentiality of data, and message authenticity as 

necessary, to protect communication and improve resilience of the protocol.  

 

1.1 Problem Introduction 

Our work is primarily focused on military and tactical environments where sensor 

nodes play complex roles in data sensing as well as aggregation in a reliable and robust 

manner. The applications WSNs are being used for in such a tactical environment 

demand a high level of reliability and robustness.    

The first robust service we would like to build is a Target Localization Service, which 

is essentially a location tracking service. Location information is important for various 

critical and non-critical services like mitigating Sybil1 attacks, secure routing, sensing 

and tracking, surveillance, monitoring, intrusion detection, value-added services and on-

demand services to name a few. Lately, various government programs like LOCO [53], 

                                                 
1 A Sybil attack is one where a single physical entity assumes multiple identities. Each identity is used to 
siphon shared resources resulting in the Sybil node receiving a disproportionate share of resources. A Sybil 
can use its disproportionate resources to launch other attacks on the network. Cloning or replication 
involves assigning the same identity to multiple physical nodes, often after capture. We follow the 
approach of [46] and consider cloning attacks to be orthogonal to Sybil attacks.  
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APWN [9] and WAND [84] have shown great interest in robust WSN node localization 

and tracking in tactical environments. If the WSN provides other add-on services that 

depend on location information for disambiguation or implicit authentication, then the 

reliability and security of the localization and tracking service is vital to the success of 

the rest of the network. If target position is being estimated in a distributed manner, i.e., 

using multiple sensor nodes, then these nodes require loose single-hop synchronization 

among themselves. This is not impossible to achieve in practice and ensures that 

measurements taken during the same epoch will be collected and processed in the same 

iteration.  

Target Localization or tracking deals with tracing the path of (usually moving) entities 

through some surveillance area where tracking devices may be deployed. The salient 

difference between tracking and most localization schemes in the broad sense is that in 

the localization schemes, nodes compute their own location in the field using various 

schemes thereby localizing themselves, whereas in location tracking schemes the 

surrounding nodes compute the location of the target using various schemes thereby 

tracking the target. Smart applications that use such topological and real-time tracking 

information are: traceback schemes [52], disaster relief, on-demand services, patient 

monitoring, surveillance, tactical applications, traffic monitoring, military and homeland 

security applications like military vehicle, detecting self healing land mines, monitoring, 

intrusion detection and intrusion prevention, etc to name a few. The lack of robust 

tracking schemes that hold up well in adversarial settings has motivated us to pursue this 

problem.  
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As a secondary problem, we examine time synchronization as a collaborative service 

that we would like to secure against tactical adversarial behavior. In a distributed 

collaborating environment, time is a critically important element. In order for any 

collaboration to succeed, all collaborating entities must have the same relative sense of 

time. This ensures that any measurements, surveillance data, mission commands, etc will 

be processed in the same epoch they are intended to serve. In most cases, data 

disseminated in a WSN is transient in nature, and applies only for a short period of time. 

New data routinely replaces old data. Therefore, it is imperative that data always be 

placed in its correct time context. A protocol for a distributed system maybe highly 

secure with the provably strongest cryptosystems one can bring to bear. Instead of 

attacking the cryptosystem, an intelligent adversary can simply desynchronize the 

collaborating entities or change timestamps associated with messages to cause the 

application (and the system) to function erroneously or even breakdown. Therefore, time 

is a critical element that must be protected, especially in a distributed network. In the 

second part of this thesis, we show that our proposed secure and resilient time 

synchronization algorithm can ensure a well bounded real-time maximum 

synchronization error within the network even in the face of various attacks.  

 

1.2 Our Contributions 

In the first part of this thesis, we formulate and solve the problem of robust target 

localization, and in the second part we address the problem of robust time 

synchronization. To achieve robust target localization: 
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a) We examined the necessary and sufficient security requirements for target 

localization and its participants to communicate securely (since the protocol is 

distributed) and applied appropriate protection mechanisms to the various 

components. (Section 3.3) 

b) At the heart of the protocol is a particle filtering algorithm, which is a Bayesian 

maximum likelihood multi-step estimator. The particle filtering algorithm accepts 

samples (inputs) from various nodes surrounding a target, and attaches 

probabilistic weights to each of them. These weights are approximations to the 

relative posterior probabilities of the sample measurement representing the target 

and sum up to 1. The next step involves resampling the measurements to replacing 

older degrading measurements with newer updated measurements thereby 

improving upon the earlier estimate and creating a trajectory, tracing the path of 

the target through the deployment. By nature, particle filters are complex, 

expensive and have a certain degree of error associated with the measurements. 

They, however, have excellent tracking capabilities as they generate new estimates 

incrementally over older ones. By making the particle filtering algorithm 

distributed, the complexity and operational cost to the network is distributed across 

multiple nodes. Some nodes perform sensing and data relay operations while 

others perform the actual aggregation (estimation). In order to achieve improved 

results (with respect to fraudulent data) attacks, we applied data integrity and 

privacy protection mechanisms at the sensing nodes to enable secure and reliable 

communication. Additionally, the privacy mechanism shields the measurement 

data from an adversary who can now, in its best attempt, only probabilistically 
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guess and insert malicious data if it possesses an authentic key. Message 

authenticity ensures that a message cannot be altered in transit in an undetectable 

manner. Additionally, we establish a general bound on the validity of 

measurements with loose time synchronization, whereby replay attacks are 

mitigated. Therefore, we are able to reduce adversarial impact significantly.   

c) Our novel approach of employing watchdog nodes that provide sanity checks in 

terms of distance bounds, frequency of message input and anomalous behavior 

both in the presence and absence of activity, enables detection of certain 

inconsistencies and elimination of anomalous data and behavior at the aggregator. 

(Section 2.3.4) This further reduces the impact of an adversarial attack, and 

narrows the amount of falsified data that gets accepted into the aggregator. 

d) At the aggregator side where data is fused to provide a meaningful interpretation 

(target estimate), aggregator failure or compromise can result in a point of failure. 

We increase the robustness of the protocol to single point of failures by shifting 

the aggregation function from one leader node to another in real time as the target 

moves through the sensing field. At most, this results in a temporary failure if an 

aggregator malfunctions. Target estimation resumes as soon as the target moves 

into the vicinity of the next leader node.  Furthermore, without any additional 

overhead, moving the aggregator function across the network improves the 

resilience of the protocol to powerful attacks like adaptive node capture. Earlier, if 

an adversary had to capture a majority of nodes in a neighborhood to cause the 

outcome to degrade, it now has the extremely hard and impractical task of first 

guessing the next leader who will bear the aggregation function, and then 
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compromise a majority of nodes in that neighborhood within the short amount of 

time that the aggregation function is resident on that leader. This provides a 

substantial amount of resilience to the protocol.  

e) We formulated the problem of robust node localization under adversarial settings 

and cast it as a multivariate optimization problem allowing us to solve for the 

system design parameters that correspond to the optimal solution. (Section 3.2) 

Our novel use of the Simultaneous Perturbation Stochastic Approximation (SPSA) 

technique to cast adversarial behavior as perturbation resulted in solving the multi-

variate optimization problem with only 2 measurements of the objective function 

per iteration (irrespective of the dimensions of the optimization problem). This 

resulted in a significantly lightweight solution compared to regular particle 

filtering that is also real-time efficient and facilitates online target location 

estimation. (Section 3.2)  

f) For the problem cast above, we have also shown how the solution is δ-robust (see 

section 3.2 for definition) under maximum undetectable contamination of the 

input, data and loss of a bounded number of honest, functional players to an 

adversary. 

g) We derived a lower bound on the number of particles that must be active in the 

particle filter in order to ensure that the solution is always δ-robust. 

h) We examined the dependencies associated with this solution and their effects on 

the outcome. (Section 3.4) 
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i) Finally, our decision to design the network  as a heterogeneous WSN (using nodes 

with varying capabilities) helps achieve lower hardware cost and extends mission 

life. 

As a secondary problem, we examined and designed a robust time synchronization 

service. We primarily designed a single hop time synchronization protocol to provide this 

service and then extended the same to cover multi-hop scenarios. 

a) We addressed the problem of robust time synchronization and identify the various 

properties that are necessary to assure the same.  

b) We designed a robust single hop time synchronization protocol using a simple 

cryptographic mechanism called hash chains. Using this mechanism we have been 

able to create a light weight protocol that provides resilience to various attacks like 

replay, redirection, etc. (Section 4.3)  

c) We showed that our protocol is robust against various adversarial attacks. (Section 

5.1) We also identified certain attack cases that our protocol is not robust against, 

and indicated possible means for securing against these attacks.  

d) We also showed that our protocol is efficient in computation and storage 

requirements for wireless sensor networks. 

Being closely coupled, these two services (Robust Target Localization and Robust 

Time Synchronization) together form a secure foundation for many WSN applications 

like geographic routing, pervasive computing, monitoring, surveillance, etc  

1.3 Thesis Organization 

The organization of this thesis is as follows. In Chapter 2, we first provide an overview 

of existing work done in the area of sensor network localization (Section 2.1). In Section 
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2.2.1 we present the system model and in Section 2.2.2., we formally define the 

capabilities of the adversary and the performance bounds of an intelligent adversary. We 

then give an outline of our Robust Target Localization Protocol in (Section 2.2.3) and the 

protocol specification in Section 2.2.4. Finally, in section 2.3 we elaborate upon the novel 

features of the proposed protocol. Chapter 3 deals with the analysis of our protocol’s 

security and robustness under the influence of tactical adversaries. We formulate the 

attack model of the adversary, and in separate sections analyze the security, and 

robustness of the protocol under attack. We also list the various dependencies associated 

with the protocol and what their influence on the protocol outcome is, if any. Chapters 4 

and 5 deal with Robust Time Synchronization. In chapter 4, we first describe the current 

body of work in the area of both time synchronization as well as secure time 

synchronization (Section 4.1.1 and 4.1.2). We then enumerate the properties of a Robust 

Time Synchronization Protocol that are essential to a distributed collaborative network 

(Section 4.2). We describe the various components of our scheme in Section 4.3 and our 

proposed scheme in Section 4.4. Specifically, we formulate and discuss our adversary 

model in Section 4.4.1 and the protocol specification for both single and multi-hop 

synchronization in 4.4.3. In Chapter 5, we analyze the security of our protocol to show 

that it satisfies the properties specified in Section 4.2 sufficiently (Section 5.1). Finally, 

we conclude in Chapter 6 with a summary of our results and a glimpse of our proposed 

future directions.   
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Chapter 2 Robust Target Localization 

In this chapter we first provide an overview of existing work done in the area of 

sensor network localization. We then present the system model and formally define 

the capabilities of the adversary. We then give an outline of our Robust Target 

Localization Protocol and the environment of operation. Next, we provide the 

protocol specification. Finally, we elaborate upon the novel features of the proposed 

protocol. 

 

2.1 Current Research in Secure and Robust Localization 

There are three main branches of localization namely, node localization, target 

localization and location service. Most contemporary research has been focused on 

node localization, with most researchers having proposed a number of location 

determining schemes for sensor networks in non-adversarial settings [8][34][64][65] 

[66][70]. Recently, few researchers have provided unique solutions for node 

localization in adversarial settings [21][50][51][63][71][73]. Though these techniques 

solve a multitude of problems, some of them use self-positioned verifiers, pre-shared 

secret keys, some perform only verification requiring the claimant to initiate, and 

some others rely on simplified assumptions that do not hold in practice. Since we are 

interested in a highly tactical deployment environment these schemes are unsuitable 

for our environment. Furthermore, some of these schemes rely on an inherent 

assumption that the self-positioned verifiers cannot become malicious or be 
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compromised. Since we are expecting to deal with Byzantine behavior, practically 

speaking, every node is susceptible and we cannot rely on such schemes.  

Location determination schemes can be broadly classified into range dependent and 

range-independent schemes. The former schemes rely on time, angle, received signal 

strength, power measurements or measurement of quantities that are a direct measure 

of the distance traveled by the signal. Range independent schemes do not utilize such 

techniques. For example, using wireless beacon messages, one hop connectivity 

information, etc. Another useful classification is centralized computation vs. de-

centralized computation of location, depending on where and how the location 

computation process takes place. For example, some nodes hand off their position 

estimates to a central node to compute target location while others each compute 

location themselves after gathering required information from their neighbors and the 

environment. Yet another useful classification is infrastructure-based and 

infrastructure-less schemes. The former are based on GPS and other external 

unchanging infrastructures, while the latter are independent of these. Our scheme falls 

under the range-independent, de-centralized and infrastructure-less schemes. Range 

dependent schemes based on Time of Arrival (TOA)[72][10], Time Difference of 

Arrival (TDOA) [4][64], Angle of Arrival (AOA)[22], and Received Signal Strength 

Indicator (RSSI)[66] to name a few, are meant for non-adversarial scenarios and are 

easily susceptible to failure in the presence of adversaries. Similarly, range-

independent schemes like [62] are also susceptible to various attacks like Sybil 

attacks, wormhole attacks etc. Two secure localization protocols proposed by 

researchers recently viz., SeRLoc [50] and Secure Positioning [71] were also 
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analyzed. These protocols have been created for adversarial scenarios and are secure 

against many attacks. However, they have heavy dependencies on trusted locators or 

verifiers, directional antennas (expensive hardware), GPS based static infrastructure, 

and have computational and storage overheads. Particularly, few drawbacks of 

SeRLoc include dependency on GPS-based locators, hardware requirement of special 

spatial/sectored antennas, high power transmission requirement for the locators, pre-

deployment knowledge and pre-loaded cryptographic quantities (keys, hash tables). 

Moreover, they assume locators are trustworthy and cannot be compromised by an 

adversary, DoS attacks are not considered since they are MAC level attacks, jamming 

is not considered since it can be easily eliminated by Spread Spectrum and coding 

techniques, locator communication range R must be known apriori by sensors, and the 

scheme has a high computational overhead as sensor nodes perform heavy 

computation to determine location based on beacon information. Further, this solution 

trades computational expense for resolution in that the centre of gravity (CoG) is 

computed using a grid system to improve computational expense due to which 

resolution is diminished. To further refine position, grid resolution must be increased, 

causing increased computation and processing time. From a security perspective, the 

use of a shared symmetric key only prevents external adversarial attacks but is still 

prone to insider and node compromise attacks. To their credit SeRLoc is, however, 

robust and accurate in the presence of Sybil, select wormhole and various other 

attacks compared to most other solutions in this area. Rope [51], a successor to 

SeRLoc, which provides all the benefits associated with SeRLoc’s sectored antennas, 

as well as some new properties like distance bounding fares well, but still carries 
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most deficiencies associated with SeRLoc like expensive hardware requirements, 

high computational cost, etc. Secure Positioning [71], another secure localization 

solution is based on trilateration using static infrastructure. Here, verifiers of the 

boundary triangle are part of the infrastructure and are assumed to be trustworthy and 

never compromised. This protocol is vulnerable to a wormhole attack. Further, it uses 

least median square method to dampen error due to contamination of distance 

estimates. This method, as a result, suffers from high degradation even at one-third 

contamination.  

In conclusion, most secure and non-secure protocols are based on assumptions that 

are sometimes impractical, and at other times too rigid to facilitate truly ubiquitous 

and mobile applications. We are therefore motivated to build a secure target 

localization protocol that does not have a fixed infrastructure, can localize moving 

targets, is light-weight and efficient in computation as well as communication, and is 

robust and secure to the desired degree against false data in highly adversarial 

scenarios. 

 

2.2 Our Approach to Robust Target Localization 

2.2.1 System Model & Assumptions 

2.2.1.1 Sensor Model 

Our design incorporates heterogeneous capability devices. We mainly have two 

types of sensor nodes, type A and B. Type A sensor nodes are long range, low power, 
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high battery life high end sensor nodes that are used for data aggregation, transmitting 

long distances, and memory intensive operations. They are also known as 

aggregators or leader nodes. Computation costs, memory usage and storage are 

normally not a concern to these types of nodes. These nodes are typically capture 

resistant or very hard to capture. Type B nodes have a substantially short range of 

operation, and have lesser resources. These are mainly used only as 1-hop sensing 

and relay elements, and can be captured by a reasonably strong adversary. 

As with any captured sensor node, all data, keys (if any) and resources of the 

captured sensor node are available to the attacker. All nodes obey protocols unless 

they malfunction or are malicious. All sensor node antenna types are known and 

calibrated. Sensor nodes need not always be stationary, but in our work, we assume 

stationary nodes to reduce uncertainties in the final outcome. These uncertainties can 

be modeled if the motion model of the sensors is defined. 

2.2.1.2 Trust Model 

Since all sensor nodes operate in an ad-hoc manner, no sensor node directly trusts 

another node. Type A sensor nodes, which compute the aggregated estimate of the 

position of the target, are assumed to function as per the algorithm unless 

malfunctioning, compromised or turned malicious. In other words, we trust all 

computations of good nodes, while communication between any nodes need not be 

trusted or reliable. All good Type B nodes obey protocol unless they are 

malfunctioning, compromised or turn malicious. The locations of the nodes in a 

neighborhood (cluster) are relatively known to the leader of the neighborhood. We 
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will show later on, that these location values need not be trusted by an aggregator as 

such discrepancies can be identified by neighborhood watchdogs. 

2.2.1.3 Assumptions 

This scheme relies on loose time synchronization within the sensing cell as well as 

between adjacent leader nodes. Since all synchronization events are single-hop, this is 

a very realistic assumption. Over time, internal clocks of different sensor nodes may 

drift apart, so resynchronization after some time maybe required. Most time 

synchronization schemes incorporate resynchronization techniques. In practice, this 

assumption is not hard to achieve and has been demonstrated successfully with very 

good results in similar distributed network architectures.  

The particle filtering algorithm which is used by type A nodes to compute an 

aggregate estimate of a target’s location cannot be altered in any way, shape or form. 

To an adversary it appears as a black box. If an aggregator node is compromised, an 

adversary can only supply malicious or malformed data to the particle filtering 

algorithm to influence the output. It cannot cause the algorithm to behave in a manner 

inconsistent with its nature. We assume all nodes in our setup to be stationary.  

2.2.1.4 Target State Model 

Since we do not stress on any particular technology to determine target 

measurements, we need a model describing the relationship between the states, 

velocity and other parameters of the moving object. This helps to relate incoming 

measurements to the target location based on known values like the previously known 

position of the target, its motion model (foot, car, military tank, etc), and new 
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incoming beliefs about the targets location. Typically measurements about a target 

can be signal strength measurements signifying range, ultra sound delay 

measurements, directional measurements, x-y coordinates and velocity information, 

etc. In our model, we use the x-y states and velocity information which is trivial to 

gather. Usually, for a particular deployment, one knows what it is tracking. For 

example, a foot soldier, or a battle tank will have a distinguishably different travel 

velocities.  

We represent the state transition model of the target as follows: 

1 ,   1,....,k k kx x u k−= Φ + Ψ = K

⎤⎦

 describes the sensor node at time k, where 

is the state space representation of the properties that uniquely 

determine

, , ,
k k

T

k k x k yx X V Y V⎡= ⎣

kx  with a period of observation θ  seconds, and is the 

incorporated sensor noise model. Specifically, 

,
k k

T

k x yu u u⎡= ⎣ ⎤⎦

,k kX Y are the co-ordinates of the node, 

and are the x and y velocity components. are the x and y 

noise components.  

,   
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k

0
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, and  are the coefficient matrices. The values of 

have been empirically determined for the given deployment. These values can 

alternatively be determined as a function of target velocity, environment 

characteristics like attenuation, etc. For a contiguous measurement tracking system 

like ours 
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Ψ
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2.2.2 Adversary Model 

An adversary can compromise any type A or B sensor node though by design, it is 

harder for an adversary to compromise a type A than a type B. The adversary does not 

have to adhere to protocol. An adversary may be internal i.e., it may be part of the 

sensing network, or external, i.e., it may be an outsider to the sensing network. 

Characteristics of our adversary include:  

Adversary Motivation: To completely disrupt the secure position estimating 

process, motion tracking process or, to throw the estimate way off track.  

Access: The adversary has access to the wireless sensor network in a way that it can 

eavesdrop on communication occurring within its range, has access to schedules and 

secrets (if any) maintained on a compromised node. An adversary has knowledge of 

the particle filtering algorithm employed as well as all parameters stored on a 

compromised node.  

Skills and Resources: The adversary may be as skilled as the Type A sensor nodes 

deployed. An insider adversary has access to all network resources as well as its own 

additional resources. If an adversary captures a node, its capabilities then include full 

control over resources, data, and secrets of the captured node. In other words, if 

captured, a node can be used as a collaborating adversarial node. 

Tactics: The adversary can be active/passive, can insert, modify, replay, redirect 

messages and assume identities of other nodes (masquerade). It, however, cannot 

fabricate messages that decrypt correctly on behalf of a node that it has not 

compromised. In other words, an adversary cannot circumvent the cryptosystem. 

Though deliberately jamming communication (partially) is possible in any wireless 
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network, we believe mitigating this attack is outside our current scope. Existing work 

using Spread Spectrum [69] or other coding techniques [78] is known to mitigate 

jamming attacks. Also, the presence of watchdogs also is a deterrent to selective 

jamming. We are, however, interested in those tactics of the adversary that result in 

malicious or malformed input being accepted by the system, and proving the robust 

working of our proposed algorithm in the presence of such malicious data.   

We will show later how an adversary can use these tactics to launch various attacks 

on our proposed protocol.  

2.2.3 Protocol Description 

We begin with a setup of randomly distributed type A and type B sensor nodes as 

shown in Figure 1. Sensing cells and leaders have been established using leader 

election algorithms. (We discuss this feature in detail in Section 2.3.1) Each sensing 

cell has a single type A leader. Leaders of adjacent sensing cells can communicate 

with each other. 
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Figure 1: A typical tracking scenario with Moving leader hand-off. 

When a target comes into sensing range of one of the sensing cells, two things 

happen: the leader of the sensing cell broadcasts an alert signal to all neighboring 

leaders and, a small subset of the type B sensor nodes take measurements i
kx  at time 

k, where i is the ith sensor and send it to the type A leader of their cell. (If the sensor 

scheme additionally employs energy conservation schemes like sleep scheduling 

[58][26], then the leader sends an awake signal to its sensing cell members one step 

ahead of time. This is a knee-jerk action, i.e., when a leader node receives an alert 

signal from its neighboring leader node, it automatically issues a wake-up signal to its 

sensing cell members.) The leader node has the apriori belief state from previous 

measurements till time  i.e., 1k −

Target 

Sensing Cell Range 

Next Leader  
Hand-off

Ai

b

Leader sensor  
(Type A) 

Type B sensor 

A1 

A3

A4

A6

b

b

b
b

bb

b
b

b

b

b

b

b

b

b

b

b

A2

A5
b

b

b

b

( )1: 1|k kp x z −  which is an estimate of the previous 

position of the target (at time 1k − ).  
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Using the new measurements received from the type B nodes, and the prior belief 

state , the leader computes the maximum likelihood of the target’s 

location. This estimate is computed using a particle filter and Sequential Monte Carlo 

(SMC) approximation, where the measurements

( )

i

1: 1|k kp x z −

kx are the particle filter inputs. Based 

on this estimate, the leader chooses the next leader for data aggregation and sends its 

estimate to the next leader. This estimate now becomes the prior belief state of the 

next leader. The process repeats until the target leaves the sensing field. This 

repetition gives us a contiguous estimate of the target’s path i.e., its trajectory. For 

example, in Figure 1 above, the target (shown by a red oval) enters the sensing field 

near A1’s cell. As soon as the target enters A1’s sensing cell range, A1 sends an alert 

signal to all neighboring leaders (A2 and A3 in our case).  At the same time the type B 

sensor nodes in A1’s cell take and send measurements pertaining to the observed 

target to A1. As soon as A2 and A3 receive an alert signal, they alert/awake their type 

B sensor nodes and these cells are ready for measurement. Since A1 is the first node in 

the sensing field to compute this target’s location, it does not posses an apriori belief 

state. Therefore, it randomly draws the initial apriori belief state from the sample 

space. A1 now computes an estimate for the target’s position using measurements it 

received from the type B nodes in its cluster and the initial apriori estimate. A1 

computes the target’s position for each time window that measurements come in. It 

makes the estimate available to the neighbor in the estimated direction, namely to A3 

in our example. As the target moves into the cell of A3’s leadership, A3 repeats the 

process above. This process continues with handoffs of the prior estimate to 
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subsequent leaders (A1  A3  A4  A6 in our case) until the target moves out of 

range of the sensing field.  

2.2.4 Protocol Specification 

2.2.4.1 Notations and Definitions: 

1. We define all participating principals based on the two types of sensor nodes 

A and B as set  where P is the set of all sensor nodes deployed in the 

field belonging to the same organization. Further, Let X be the target 

traversing the deployment field. 

PBA ∈,

2. We denote a sensing cell by index i and the leader of that sensing cell as . 

Similarly, all type B sensor nodes in a sensing cell i are denoted as where i 

denotes the cell affiliation and j denotes the individual type B sensor node. 

iA

ijB

3. , denotes a message M sent from principal Ai  to principal Bij , in 

sensing cell i and reads “Leader node A sent message M to Bj,  

MBA iji :→

4. n is the number of leader cells A and mi is the number of type B sensor nodes 

in the ith sensing cell. mi’s can be different for different cells, but for 

simplicity we assume all cells to have the same number of type B nodes.  

5. * is used as the short hand for all in the nodes related to the position that the 

symbol appears in. For example, Bi* stands for all type B nodes in sensing cell 

i. Similarly, A* stands for all leader nodes Ai for i=1 to n. 

6. PKAi  is the public key of Ai 

7. TTP is the trusted third party that generates verifiable ID-binding key pairs for 

the leader nodes, PKi and SKi are the public and private keys generated by the 
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TTP’s key generator PKGen. sigTTP is the signature of the TTP. Every node 

recognizes this signature. 

8. <p.f.i>j is the particle filter input from each reporting node j. For simplicity, 

we omit the notation i when we are talking of a single cell. An apriori estimate 

from a leader node adjacent to Ai is denoted by <p.e>i-1. 

9. is the SMC particle filtering function that returns the final output after 

performing the three internal operations (Initialization, importance and 

resampling), ,

Γ

2ε ξ  and are the minimum location estimation error in a 

benign environment, location estimation error observed and maximum 

tolerable estimation error respectively. They are further elaborated upon and 

quantified in the next section. 

2
maxξ

10. θ  is the time interval of observations considered in this round (measurement 

window). 

11. A simple Verifiable ID-binding Key generation is used by a Trusted Third 

Party to generate public-private key pairs for all Type A nodes. Type B nodes 

are installed with the public keys of those type A nodes whose range they will 

fall approximately within during deployment. Type A nodes are only installed 

with their respective secret keys, and the public keys of other type A nodes.  

Key Generation Method: 

( )
( ){ } ,,:

,:

TTPTTPi

iii

sigsigPKiiTTP
SKPKIDPKGenTTP

→
→
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2.2.4.2 Specification   

 

Phase 1: Aggregation and Position Estimation Phase at Ai 

 For every type B sensor that senses an active target in cell i: 

(1)  ( )* : : . . , , , ,{ . . , , , }
ij ii i j k ij i j k ij i B AB A p f i t B A p f i t B A SK PK→ < > < >M  

 

(2)   :iA j∀ . . jcheck p f i< >  such that AND  2
max

2 ξξε ≤≤ ( )  is trueMV

        If true, 
1

: . . Target_Location
m

i j i
j

A p f i θ
=

< > =Γ  

(3) Process repeats from (1) for next time interval θ  

 

Phase 2: Hand off Phase at A 

(1)  { }*: , , Target_Location
ii i k i AA A t SKθ→  

(2)  : If 1+iA { }, , Target_Location
ii k Ai

A t Sθ K is true, 

( 1) 1. Target_Locationi i
p e θ+ −< > =  

 

Verification Function   ( )MV

Input: Message  M

If [ ] ( )( )ˆ ˆ, & TS & (sig_val) & 2 _l up p N N flagν ν ν∈ − + =M 0  

Output (1);  (Message verification PASS) 

Else  Output (0); (Message verification FAIL) 
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Verification function ( )MV  is used by aggregators to verify whether the 

frequency of incoming messages is within allowable limits, a message is fresh, 

whether it has a valid signature, etc. It outputs true or false based on the result of 

verification process. The following is verified using this function: 

a. The frequency of input is bounded within [ ]ˆ ˆ,lp p uν ν− +  where is 

the baseline frequency, and 

p̂

and l uν ν are the allowable lower and 

upper deviations in frequency.   

b. Timestamp is fresh 

c. Signature verification (sender, recipient, integrity of <p.f.i>) 

d. No anomaly reported by neighboring nodes in cell. (For details see 

lemma 1 and 2  in Section 2.3.4)  

 

2.3 Salient Features of our Robust Target Localization 

Scheme 

The following features of our protocol help make it robust against falsified data, 

secure against various attacks, scalable, achieve consensus regarding measurements, 

and detect inconsistencies in neighborhoods.  

2.3.1 Hierarchical Capability-based Heterogeneous network 

This design feature helps improve mission life, promotes optimal power 

management and makes for a cost effective design. 
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In any deployed sensor network, power and bandwidth are of prime concern. 

Inefficient algorithms and inefficient allocation of roles to participating entities can 

lead to exhaustion, starvation and early termination of the life of a deployed network. 

Processing power, capabilities and life of a sensor node are directly related to its cost. 

In order to be cost-effective, we need to have an intelligent mix of the use of 

relatively inexpensive, less sophisticated workhorse type sensor nodes and the more 

expensive mini-computer type sensor nodes. We, therefore, segregated tasks in the 

deployed sensor network on the basis of function and invest in hardware accordingly. 

We chose to deploy a heterogeneous network comprising of two types of sensor 

nodes, sensor type A and type B as described in [25].  

 

 
 

Figure 2: A Typical Sensing Cell in two configurations 

 

Type A sensor nodes are long range, low power, high battery life sensor nodes that 

are used for data aggregation, capable of transmitting long distances, and performing 

memory intensive operations. Computation costs, memory usage and storage are 

normally not a concern to these types of nodes. Type B nodes have a substantially 

shorter range of operation, and have lesser resources. These nodes are mainly used 

only as 1-hop sensing and relay elements. Their task is to simply sense and transmit 
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the information locally over relatively short distances. Here, we introduce the notion 

of a sensing cell (Figure 2) which is the region of administration of a single leader. 

The entire sensing field can be comprised of multiple sensing cells. Every type A 

sensor tries to establish a sensing cell, which is the area of its leadership. We also 

refer to a sensing cell as a cluster. Within a single sensing cell, there is only one type 

A leader and multiple type B sensor nodes. Since sensor deployment in certain areas 

and applications is random, there may exist multiple type A sensor nodes in a single 

sensing cell. In such cases, they resolve the contention and elect a single leader for 

the cell. The choice of election algorithms for this distributed system is purely an 

implementation choice. There are many traditional leader election algorithms in 

distributed systems [7]; any algorithm that can be implemented over these sensor 

nodes is acceptable. Since this is not hard to achieve in practice, we assume that 

leader election is completed without conflict. It is worth noting here that 

establishment of a sensing cell is crucial to this scheme, yet no assumption is made 

about the integrity of the leader who is elected, and no pre-installed secrets are 

required to complete this phase. Since we believe that position estimation algorithms 

should precede routing and authentication algorithms so that the latter can use 

position-related information to their advantage, we do not assume any routing 

capabilities in the network. As a result, only those sensor measurements are received 

at the leader that are within one-hop range from the leader node. 

2.3.2 Distributed Aggregation and Moving Leader Design 

This design feature helps improve fault tolerance, optimizes energy and bandwidth 

consumption, reduces chances of battery depletion attacks, and improves real time 
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estimation by reducing unnecessary processing delays in the network. Most 

applications including tracking and sensing applications require data from multiple 

sources to be cooperatively aggregated together. In centralized approaches, as shown 

in Figure 3, all sensed data is relayed to a central base station for aggregation. This 

results in a lot of communication from the sensing locality to the locality of the base 

station. The nodes closer to the base station end up simply becoming relays for the 

rest of the network and quickly get exhausted and die. If the motion of the target is in 

a direction away from the base station, the situation becomes worse. From a security 

standpoint, relaying measurements from the sensing node to the base station through 

multiple hops opens up multiple points for intermediary nodes to corrupt data. Battery 

exhaustion is another valid attack adversarial nodes can launch upon nodes closer to 

the base station. If successful, it can result in the base station getting cut off from the 

rest of the network. Elaborate schemes for routing and path integrity maintenance will 

be required to mitigate these problems.  For these  

 

 

Figure 3: Moving Leader Approach 

reasons, we discard the use of centralized processing schemes and adapt a distributed 

approach. The distributed aggregation approach provides intrusion tolerance to the 

protocol by moving the aggregation function as close to where the information is 
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gathered as possible. This also helps minimize delays in computing the aggregate 

from the time the measurements are taken.  

As the target moves through the sensing field and further away from the initial 

aggregator node, once again the sensor nodes start relaying information from the new 

locality of the target to the old locality where the aggregator resides. A lot of useful 

bandwidth is again wasted in this relaying process. It has been shown through 

experimentation that each bit transmitted consumes as much power as 800-1000 

instructions executed [13] and hence is not an insignificant measure that can be 

overlooked. From a security perspective too, computing the aggregate at a single 

location becomes a single-point of failure if the only aggregating node fails, is 

compromised or the nodes closest to it are deliberately exhausted.   

Therefore, the single aggregator is a high profile target for any attacker, and must 

be made fault tolerant. We adopt a moving leader approach, as shown in Figure 3 

where the aggregating node is always moved to be within the sensing locality of the 

target. This is done by executing the aggregation function at the leader of the cluster 

in which the target is present at a given time. The leader performs the aggregation and 

hands off the target position it has estimated to the next leader in the predicted 

direction of the target’s motion. Due to the hierarchical cluster arrangement of nodes 

in our protocol, the moving leader approach can be effortlessly implemented without 

any additional overhead. Clusters and their leaders have already been established, 

type B sensor nodes have been configured to send their measurements to their 

respective leaders. Therefore, the only change we need to make is that a leader has to 

send its position estimate to another leader. Since the particle filtering algorithm that 
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does the aggregation has an apriori estimate component, this hand off becomes very 

useful. By incorporating a moving leader, we combine the goodness of data 

aggregation in the sensing locality with processing it within the sensing locality itself 

to provide intrusion tolerance, reduce delay and decrease load on sensor nodes.  

2.3.3 SMC Method for Data Aggregation 

This design feature helps improve real-time online target position estimation, 

accurate positioning and trajectory tracing. It also provides for low storage, 

communication, and computational costs as compact representation allows the storage 

and exchange of very little data without diminishing accuracy.  

At the core of our protocol lies an algorithm that belongs to the class of sequential 

Monte Carlo methods (SMC), also known as particle filters because they maintain a 

set of state trajectories (or particles) that are candid representations of the system 

state. They have been information theoretically proven to be good filters for 

dynamical systems. We use one such particle filter to process input parameters 

otherwise known as particles obtained from multiple affiliated sources and aggregate 

them in a Bayesian manner that preserves previous information as well as incorporate 

the current to provide a trajectory of the target.   

The first component of the particle filtering algorithm <p.f.i>j is the particle filter 

input from each reporting node j. For simplicity, we omit the notation i when we are 

talking of a single cell. An apriori estimate from a leader node adjacent to Ai is 

denoted by <p.e>i-1. The second component is Γ the SMC particle filtering function 

that returns the final output after performing the three internal operations 
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(Initialization, importance and resampling).  We describe these internal operations 

further in this sub section.   

Sequential learning and inference methods are important in many applications 

involving real-time signal processing, where data arrival is inherently sequential. In 

our application, furthermore, due to the possible motion of the target, a sequential 

processing approach would be necessary to deal with non-stationary signals. This 

way, information from the recent past is given greater weightage than information 

from the distant past. From a logic perspective this makes more sense in our 

environment, as the last known location of a target is of more value than its previous 

locations for the purpose of computing its next possible location. To perform this type 

of computation using other conventional collaborative processing techniques would 

imply the storage and exchange of large amounts of state information, which defeats 

the purpose of using the distributed architecture and moving leader approach to keep 

communication overhead at a minimum. The particle filter also has a very compact 

representation, and very little data has to be comparatively exchanged to derive a true 

estimate of the target’s position without diminishing accuracy. Thus computational 

simplicity in the form of not having to store all the data also constitutes an additional 

motivating factor for applying sequential methods.  

Monte Carlo methods are very flexible in that they do not require any assumptions 

about the probability distributions of the data. Moreover, experimental evidence 

suggests that these methods lead to improved results [76]. From a Bayesian 

perspective, Sequential Monte Carlo methods allow one to compute the posterior 

probability distributions of interest on-line. Yet, the methods can also be applied 
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within a maximum likelihood context. Though there are various implementations of 

particle filters, we describe the common approach and the generic steps involved: 

Multiple copies (particles) of the variable of interest are used, each one associated 

with a weight that signifies the quality of that specific particle. An estimate of the 

variable of interest is obtained by the weighted sum of all particles. The particle filter 

algorithm is recursive in nature and operates in two phases: prediction and update. 

After each action, each particle is modified according to the existing model 

(prediction stage), including the addition of random noise in order to simulate the 

effect of noise on the variable of interest. This step is also called the Importance 

Sampling Step. Then, each particle’s weight is re-evaluated based on the latest 

sensory information available (update stage). At times the particles with 

(infinitesimally) small weights are eliminated. This process is called resampling.  

 

Step I: Initialization Step/ Sample Step (S): 

In this step, the M particles, denoted by { }( )

1

Mm
n m

x
=

 i.e., for m = 1….M are initialized 

by drawing samples from the initial distribution: ( )1| m
k k kp x x x −=  for every time 

instant k. 1
m
kx − denotes the previous observation. Every importance weight is initialized 

to ( )
0

1mw M= . 

 

Step II: Importance Step (I): 

In this step, we draw from an importance density function ( )( )
1 1:| ,m

k k kx x zπ −  and create 

a trajectory proposal as shown below: 
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Particle weights can be recursively computed as: 
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Step III: Resampling Step (R): 

Since weights degrade, we resample so that trajectories with smaller weights can be 

neglected and those with higher weights can become more prominent. For a 

comprehensive understanding of SMC methods, additional resources are available at 

[54] [30]. 

 

In summary, we use the available indirect measurements (also called observations) 

from time 1 through k ( ) and the most recent estimate of position (1:kz 1kx − ) to 

compute the maximum likelihood of the next location using Bayesian inference.  

 

2.3.4 Watchdogs: Additional Data Sources 

This design feature helps disambiguate potential confusions, identify possibly 

malicious or malfunctioning nodes in a neighborhood, provides upper bounds on 

distance estimates without increasing the complexity of the protocol.  
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Here, we leverage the inherent property of a distributed wireless sensor network 

that all communication is seemingly open, spatially and temporally correlated and 

that both the observance and absence of data is a rich source of information. . We 

design watchdogs that observe and make inferences based on (1) communication 

between nodes and (2) the presence and absence of data. Watchdogs are uniformly 

distributed across the deployment network.  

Node-to-Node (N2N) data Watchdogs: One of the advantages of having a 

distributed estimation system is that there is a lot of data around us that we can use to 

make our current estimates better and smarter. For example, due to the nature of the 

communicating medium, when sensor nodes within the same cell send messages to 

the leader, they can hear each other’s messages as well. This is a very important 

source of information, which can be used to identify potentially misbehaving nodes. 

For example, if a node is sending data inconsistently with respect to its neighbors 

(e.g., when there is no target sighted), the neighbors will be able to observe this 

inconsistency and report it to the leader. An important effect of this observation is 

that if a malicious node increases the frequency of sending false data (which is 

acceptable to the system till some extent), the watchdog nodes can observe and report 

this fact to the leader. This can prevent potentially large amounts of false data to be 

inserted into the target estimate. 
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Figure 4: Disambiguation using Node-to-Node data. 

 

Another example would be the alteration of the signal strength by the transmitting 

target or the adversary. If any entity changed its transmitting signal strength, it would 

seem to be closer or farther away from its neighbors than it actually is. If its 

neighbors form a closed polygon, as shown in Figure 4, the entity cannot appear to be 

closer to ALL or farther away from ALL its neighbors at the same time. If it appears 

closer than it is to a few neighbors, it must appear farther than it is to other neighbors 

and vice-versa. When neighbors relay information regarding this entity to the leader, 

they can hear each other’s messages, detect any inconsistency and notify the leader. If 

the leader receives sufficient number of inconsistency reports for a node, it can 

choose to ignore the inputs received from the inconsistent node. 

We formulate and prove succinctly how node to node data can be used to detect 

anomalies in node behavior and discard malformed input coming from such nodes 

using lemmas 1 and 2.  

Lemma 1:  In a given neighborhood Ni , repeated observations from any node q that 

deviate from the observations of a simple majority of q’s neighbors  in the same 

interval for the same target, indicate Byzantine behavior, malicious behavior, or play 
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of contrasting environmental characteristic and such observations should not be 

included in aggregated estimates.  

Proof: In a benign environment, there is bound to be some deviation in measurement 

among nodes within a locality due to contrasting environmental factors like uneven 

terrain, shadows, presence of signal attenuators like trees nearer to some nodes than 

others, etc. Once measured and accounted for, this becomes the base line deviation 

for the deployment. Beyond this deviation, any observed deviation must be due to 

malfunction or due to node behavior under malicious influence. Repeated behavior 

can cause a deviant node to be reported and subsequently ignored. We call this 

threshold the observation threshold, crossing which results in a node being reported. 

It can be set depending upon the expected capabilities of adversaries and the baseline 

deviation. Existing vote based algorithms can be incorporated here to avoid innocent 

nodes being reported and ignored. However, it is not necessary to do so as long as 

larger-than-majority collusion does not occur within the neighborhood. If a node is 

reported for any reason including possible environmental factors by a number of 

watchdogs, it is best to ignore the inputs coming from this node as these inputs will 

result in dilution of the accuracy of the position estimate. 

2R

R

Node p

R

Node p

Node q

Node q Node s

 

Figure 5: Inferring from Non-observed data  
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Non-observed data Watchdogs: This data comes, actually, from no data. In other 

words, just as the observance of data indicates something, in location determination 

and disambiguation, the non-observance of data is equally informative. For example, 

as shown in figure 5, if node p can hear node q, it would indicate that node q is within 

a radius of R of node p, R being the communication range of the nodes. Similarly, if 

node p does not hear node q, but knows that one of its neighbors s (who is within R of 

p) can hear node q, it would indicate to p that node q is within [R, 2R] of it. Similar 

information from few other nodes would help place node q or any other target more 

accurately. 

Lemma 2:  If R denotes node communication range, and p q and s are three nodes 

deployed in the field under consideration, and p qd d− being the absolute distance 

between p and q then the following statements are true: 

a) If p hears q, they must be at most R apart, i.e., p qd d R− ≤  

b) If s hears both p and q, they must be at most 2R apart i.e., 2p qd d R− ≤  

c) If p hears s, p does not hear q, but s hears q, then q must lie within ( ], 2R R  of 

p. i.e., 2p qR d d R< − ≤  

Proof a): We refer to figure 5 to prove this intuitive lemma. If the communication 

range of each node is R, then by virtue of this argument, any honest node that p can 

hear, must be within the range R. Therefore, 

                 q.e.dp qd d R− ≤  (1.1) 

 

Proof b): We use Lemma 2 a) to help us here. We start with Eq. (1.1) 
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  p sd d R− ≤  (1.2) 

  s qd d R− ≤  (1.3) 

 

Adding (1.2) and (1.3) we get 

p s s qd d d d R R− + − ≤ +  

 2p qd d R⇒ − ≤  (1.4) 

 
Proof c): p hears s, p does not hear q, but s hears p can be rephrased as s hears both 

p and q, but p does not hear q (and vice versa is assumed).  

From Lemma 2 a) we have 

 p sd d R− ≤ , and  s qd d R− ≤  

From  p sd d R− ≤  we have 

 p q s q

p q s q

p q

d d d d R

d d d d

d d R R

− − + ≤

⇒ − − − ≤

⇒ − − ≤

R  

 2p qd d R⇒ − ≤  (1.5) 

 
And from p does not hear q, we have  

 p qd d R− >  (1.6) 

 Combining results (1.5) and (1.6), we have the mixed interval 
 

 2p qR d d R< − ≤  (1.7) 
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In summary, by using the observance and non observance of data from certain nodes, 

we can put an upper bound (and in some cases a lower bound too) on the distance 

estimates to a particular node, with negligible overhead. In the case of localizing a 

target, this information can be very useful to quickly bound a target to an upper and 

lower limit and then fine tune the estimate. These bounds also serve to disambiguate 

and reject impractical values quickly and easily without incurring much additional 

overhead. One important point to note is the distribution and density of watchdogs. If 

they are not uniformly distributed, then an adversary can take advantage of 

neighborhoods where watchdog nodes are sparse. If they are either too large or too 

small in number, they will not be very effective. A very large number of watchdogs is 

counterproductive since these nodes will add to the cost. On the other hand, having 

less number of watchdogs will fall short of serving the purpose. We leave this study 

of tradeoffs between their deployment density and distribution for the future.  

 39



 

 
 

Chapter 3 Analysis of Robust Target Localization  

 In this chapter, we analyze the resistance of our protocol against false data attacks 

from a robustness perspective. In other words, we examine how the protocol reacts to 

malicious behavior that is not detectable, i.e., that which has been crafted to look like 

noise, systemic variation, or environmental influence or cleverly crafted fraudulent 

data sand not specifically adversarial behavior. We quantify the maximum adversarial 

behavior the system can tolerate, and derive an expression for the least upper bound 

expected error under such circumstances. We then cast this as a multivariate 

optimization problem and solve it for the degree of robustness achieved by the 

protocol. We derive a lower bound on the number of particles that must be active in 

the particle filter in order to ensure that the solution is always δ-robust. Additionally, 

we examine the dependencies associated with this solution and their effects on the 

outcome. We then examine the various security properties of the system and showed 

that they are not violated in any run (malicious or non malicious) of the protocol.  

WSNs are data centric networks, the prime objective being collection and 

processing of data say, for example, for strategic or military decision making. An 

intelligent adversary need not attempt sophisticated attacks to dislodge the network. It 

can intelligently craft bogus data acceptable to the system and negatively influence 

the outcome of the system or protocol. This in turn will negatively influence strategic 

decisions themselves. When data itself is falsified, strong cryptographic protocols 

cannot provide any resilience. Integrity check mechanisms will also fail because they 
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only check for in-transit message corruption. They cannot prevent against falsified 

data in a legitimately created perfectly valid message. Source authentication also does 

not help as corrupt insider sources will be able to authenticate themselves 

successfully. Broadly, there are only two ways to resist the objective of such false 

data attacks. One is to be able to detect that the data is false and discard it, or second, 

to be robust against false data. In practice, it is hard to design perfectly robust 

protocols. We evaluate our protocol under worst case attack and show that it achieves 

δ-degree of robustness. 

Recall our notion that the objective of an attack on a data centric network is to 

cause the network to either report incorrect or no data, or in the case of intelligence 

(inferential) operations, arrive at an incorrect or inconclusive outcome. In the case of 

the WSN under our consideration, an attacker’s objective could be to adversely 

influence the resulting target estimate or result in no estimate of the target’s position 

at all. This can be achieved through a variety of ways, directly or indirectly.  We 

attempt to briefly classify these attacks. We refer to attacks like signal degradation, 

deliberately jamming a node’s signal or withholding a measurement as physical 

attacks and attacks on the protocol like spoofing a leader’s or aggregator’s identity, 

lying about other nodes, misrepresenting one’s location, falsely accusing honest 

nodes of malicious behavior, replay attacks,  etc as protocol attacks. We refer to a 

third class of attacks as data centric attacks which includes attacks where a node 

sends incorrect belief values to a neighboring aggregator node, incorrect 

measurement values to the aggregator node, adversary increasing the frequency of its 

inputs to drown out the target estimate at the aggregator, or simply skew it towards a 
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false outcome. Different classes of attacks warrant different treatments. While we do 

not consider physical attacks at this time, our protocol is capable, in some situations, 

of identifying if a direct physical attack is under way in some subsections of the 

deployment (using watchdogs, for example).  We perform a security analysis of 

common protocol attacks that our protocol is susceptible too, and a robustness 

analysis to evaluate the effect of data centric attacks.  

Undesirable behavior can be classified into malfunctioning, malicious and 

compromised nodes. They primarily differ in their intent, and hence have different 

detection probabilities in our model. We refer to a node as malfunctioning when the 

node disobeys protocol or supplies arbitrary measurements, without intent to harm the 

outcome or the working of the protocol. Selfish nodes come under this category too 

though they technically are not malfunctioning. We refer to a node as simply being 

malicious if it is not part of the sensing model, and is working with bad intent towards 

deliberately degrading and throwing the estimate off track. Finally, we refer to a node 

as being compromised if it is an authenticated party in the network and working with 

bad intent towards degrading the estimate.  

Few threats and attacks that can cause an incorrect estimation of the target’s 

position are enumerated below. We also discuss how these attacks are currently 

countered by our scheme. 

3.1 Attack Model 

We represent an honest principal by HP_bi, and a dishonest one by DP_bi, such that 

 , is the set of all interacting type B principals in a cluster ( _ _i i
i m

HP b DP b P
∈

∪∪ ) B∈
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i.  DP_bi, includes all malicious and compromised nodes and HP_bi includes all non 

malicious nodes. If Ci represents the cluster i after a successful run of the cluster 

formation algorithm, then we simply state the following lemma without proof.   

 

Lemma 3:  The precondition to a data centric attack, is satisfied if at the end of a 

successful run of the cluster formation algorithm, _ i iDP b C∈   

  _ ,  and .i BDP b P i n∀ ∈ ∀ ∈

Proof: Initially, all nodes are assumed to be benign. Under this assumption, no 

dishonest node will be part of the protocol, and hence no data centric attacks can be 

launched. This is because our protocol only accepts data from sources that posses 

valid cryptographic keys required to sign message (1) in Phase 1 and message (1) in 

Phase 2 (Refer to protocol specification in Section 2.2.4.2). Therefore, it follows that 

if a dishonest node (malicious or compromised) is able to successfully penetrate the 

cluster formation process, then a necessary precondition to launch a data centric 

attack has been met.  

 

We represent the actions of a malicious node that is a part of the cluster, within a 

single set of adversarial actions Λ. This includes disruptive actions such as non-

forwarding, dropping, modifying data content, replaying, flooding, delay time-

sensitive data packets selectively or inject bogus packets into the particle stream.  

We further define Λd as the subset of actions in Λ which result in an identifiable 

unsuccessful run, i.e., those actions that have effects that hold in the next transition 

state, and which may or may not result in a successful termination of the protocol. . 
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A successful attack action Λ∈a requires that the preconditions of a  hold at the 

start of the attack in say, state s1 and the effects of a hold in a subsequent state s2. 

Sα,is one such precondition. If da ∈ Λ ∈Λ then, the attack can be detected with non-

negligible probability . If 
d

pΛ \ da ∈ Λ Λ then, our protocol should result in a 

successful run with the target location output being within the tolerable MSE range, 

i.e.,  with probability 1222
MAXξξε ≤≤

d
pΛ−    

  

Lemma 4:  In a scenario with multiple independent acting adversaries, the number of 

Byzantine nodes that can be tolerated depends upon the detection threshold , and 

the failure rate γ, and is given by 

d
pΛ

( )
( )( )
1 3 1 1

_
3 1 1

i d

d

B

i

P p
DP b

p

γ

γ
Λ

Λ

⎡ ⎤− − −⎣ ⎦≤
− −

 

Here, clearly, Λ∈a . In the worst case scenario, all dishonest principals DP_bi and 

some percentage of honest principals that are malfunctioning will be part of the 

adversary set. If the fail rate of the devices being employed is γ then, γHP_bi are the 

honest parties that contribute to the adversary set.  

We start with the classic Byzantine two-thirds majority2 result that in order for the 

non-malicious result to prevail, the following equation must hold: 

 
1

_ _
3
iB

i i

P
HP b DP bγ

−
+ ≤  (3.1) 

 

                                                 
2 The Byzantine simple majority result cannot be applied in our case since in order for the simple 
majority result to prevail, there needs to be an infrastructure that allows signed messages from each 
node Bij to prove not just message integrity but also authentication (source authentication)., for 
example like in a public key infrastructure. Since this is not the case in our scheme, we cannot use the 
simple majority result.   
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Factoring in the probability  that a malicious data is detected if 
d

pΛ
2 2 2

MAXε ξ ξ≤ ≤  

thereby resulting in the removing out of band data, implies that ibHP _γ can be 

detected with non negligible probability if their estimates deviate more than 
d

pΛ

2
MAXξ , say. Therefore, ( )

d
pbHP i Λ−1_γ  honest nodes are not detected and eliminated 

from the algorithms computation process. 

Similarly for dishonest principals, we have ( )
d

pbDP i Λ−1_  as the number of 

participating dishonest nodes in a single cluster i. 

Therefore, the equation from above effectively becomes 

( )
d

i

p
P

bDPbHP B
ii

Λ−

−
≤+

13
1

__γ  

which gives us  

( )
( )( )
1 3 1 1

_
3 1 1

i d

d

B

i

P p
DP b

p

γ

γ
Λ

Λ

⎡ ⎤− − −⎣ ⎦≤
− −

  (3.2) 

  

Clearly, as the detection probability  increases the right hand side of Eq.(3.2) 

increases showing that the ability of the algorithm to withstand Byzantine behavior 

improves. In other words, we can tolerate more dishonest nodes and as a result 

become more resilient to false data as detection probability increases.  

d
pΛ
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Figure 6 below shows the effect of varying on the number of dishonest nodes 

tolerated (DP) for different values of 

d
pΛ

γ . (γ is varied from 0.01 to 0.5, =100 nodes, 

and is varied from 0 to 0.6) 

BP

d
pΛ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
gamma = 0.1          
gamma = 0.2          
gamma = 0.3          
gamma = 0.4          
gamma = 0.5          

 

N
o.

 o
f d

is
ho

ne
st

 n
od

es
 to

le
ra

te
d 

(D
P)

 
 

Probability of detection (
d

pΛ ) 

 

Figure 6: No. of dishonest nodes tolerated (DP) vs. Probability of detection (PΛd) & fail rate (γ) 
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Here we observe that as detection ability increases, the system can tolerate 

more number of malicious entities. Detection ability depends on the data 

validation mechanism employed as well on the particle filters ability to track and 

filter mis-data as noise. This directly translates to the particle filter threshold when it 

tracks performance vs. collective disturbances. The threshold can be modulated by 

modifying the time period of observations, reducing the update period, and increasing 

number of particles collected per time window by modulating the sleep awake 

distribution criteria of each cluster. Effects of these characteristics on the threshold 

and hence performance are discussed in a later section.  

d
pΛ

d
pΛ

3.2 Robustness Analysis 

To prove robustness we model the behavior of the protocol, its assumptions and 

dependencies as well as other sources of uncertainty. We then assess if the uncertain 

system satisfies a desirable property P for every admissible value of the uncertainty.  

In our case, we define a robustness parameter δ, which is measured against location 

error as the desired property P. We model the uncertainties and observe their effect on 

the location error for all admissible values of the uncertainties in the constraint space. 

We examine the output for the worst-case malice from adversary within the given 

time window and given neighborhood. At this point, we would like to point out that 

the adversary is limited to the immediate neighborhood.  

Input to tracking system is vector x X∈  
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Vector x is a set of observations from various entities in the neighborhood. 

Therefore, input is a continuous stream of input vectors { }[1], [2],.., [ ]X x x x N= the 

collection of which at t+T (time window) results in the output position estimate Z[t+T].  

If  is within δ of the true position [t TZ + ] ]
*
[t TZ + , then the tracking estimate is useful. 

We say that  is δ-robust if ]  is δ within ]  for all  for worst 

case malicious input. 

[t nTZ + ] t nTZ + t nTZ +[
*
[ ,t n R∈
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Phase 1: Aggregation and Position Estimation Phase at Ai 
 
 For every type B sensor that senses an active target in cell i: 
 
(1)  ( )* : : . . , , , ,{ . . , , , }

ij ii i j k ij i j k ij i B AB A p f i t B A p f i t B A SK PK→ < > < >M  

 
(2)  :iA j∀  . . jcheck p f i< >  such that AND 2

max
2 ξξε ≤≤ ( )  is trueMV  

 
        If true, 

1
: . . arg _

m

i j i
j

A p f i T et Location θ
=

< > =Γ  

(3) Process repeats from (1) for next time interval θ  
 
 
Phase 2: Hand off Phase at A 
(1)  { }*: , , arg _

ii i k i
A A t T et Location SKθ→ A

 

 
(2)  : If 1+iA { }, , arg _

ii k Ai
A t T et Location SKθ is true, 

 
( 1) 1. arg _ip e T et Location θ+ −< > =  

 
Verification Function ( )MV  

Input: Message  M
If [ ] ( )( )ˆ ˆ, & & _l up p TS (sig_val) & N2N flagν ν ν 0∈ − + =M  

Output (1); (Message verification PASS) 

         Else        Output (0); (Message verification FAIL) 

 
Figure 7: Secure and Robust Location Determination Protocol 

 

 

Let us assume adversary can craft malicious input (attack feature) ˆ[ ]x i . If the 

adversary’s rate of sending attack particles is , probability p̂ pα  of setting its attack 

particles at rate [ ]ˆ ˆ,lp p uν ν ν= − +  where lν and uν are the lower and upper bounds on 

the allowable rate of particle inputs without raising suspicion and being detected, and 
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probability pβ  that the attack particles are set within the allowable error range, so as 

to not trigger outlier detection and rejection. 

 

Adversary algorithm ( ),p pα βF  

  Select [ ]ˆ ˆ, ,l up p pα ν ν ν∈ − +  

  Select 2 2
max0,  such that ,

d xp pβ ξ ε ξΛ⎡ ⎤ ⎡ ⎤∈ ∈ ⎣ ⎦⎣ ⎦  

   Select 2 2
max,xξ ε ξ⎡ ⎤∈ ⎣ ⎦  

  ( )|
ˆ . . , xj x
x p f c ξ←E  

  Output ( )x̂  

 

 dIf a ∈ Λ ∈ Λ , attack detected with non negligible probability  
d

pΛ

 \ dIf a ∈ Λ Λ ⇒ protocol run successful with  2
max

2 ξξε ≤≤

Adversary outputs ( )ˆ ,x p pα β← F  

 

Definition 3-1: At the end of a successful run, if adversary output ( )ˆ ,x p pα β← F  

produces no more than  δ deviation from the estimate of the true position, then we say 

that the system is δ-robust. 

Let us calculate the effect of a single adversary injecting intelligently crafted 

malicious input to the tracking system at A. If the adversary does not exceed the rate 
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of injection of particles [ ]ˆ ˆ,lp p uν ν ν= − +  then all its inputs { }ˆ ˆ ˆ ˆ[1], [2],.., [..]X x x x=  

will be accepted with probability 1
d

pΛ− . 

Therefore, at the end of the three stages, we calculate the derived position estimate 

 as: [
ˆ

t nTZ + ]

After Initialization /Sample Step the M particles, denoted by { }( )

1

Mm
n m

x
=

 i.e., for m = 

1….M are initialized by drawing samples from the initial 

distribution:  for every time instant n. ( 1| m
n n np x x x −= ) 1

m
nx −  is the previous 

observation. Every importance weight is initialized to ( )
0

1mw M= . 

With probability pβ  malicious input { } .( )

1
ˆ

Tm
n m

x
ν

=
with rate ν =[ ]ˆ ˆ,lp p uν ν− + and MSE 

2
maxξ ξ≤ adversary can causes ˆ ˆ.N Tν=  particles within the time window T to be 

accepted by the system. In the worst case scenario, ˆN N= in which case, the output 

will be maximally deviated from the true estimate, and is not of concern to us. On the 

basis of the Byzantine result derived in the earlier sub-section, we can expect the 

worst case as a set of particles drawn with 50% malicious input.  

In the second step, the proposed trajectory becomes 

( ) ( ) (1: 1 1 1: 1 1:
1

ˆ ˆ ˆ ˆ| |
n

k k
k

),k kx x z x x zπ π π −
=

= ∏  

And finally, after the resampling step, error propagation calculations show that the 

cumulative error in the estimate is as follows. Since we know the uncertainties 

parametrically from when they were introduced, we can estimate the uncertainties 

associated with the estimate as well. 
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1
2 2

1 1

.
n

i i ix z
π ππ

= −

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟∆ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∑  

At each stage of the algorithm, the approximation admits a mean square error on the 

order of the number of particles.  

Finally estimate  becomes ]  [t nTZ + ]
ˆ ˆ

t nT t nT t nTZ Z Z+ + += + ∆[ ] [ ] [

 

From here, we need to answer two questions. Firstly, what is the effect of this error 

on the output? If the error is not greater than the allowed tolerance δ, then the system 

is δ-robust as per Definition 3-1. Secondly, what is the upper bound on the frequency 

of crafted observations to cause the error to still be 2
maxξ ξ≤ and [ ]

ˆ
t nTZ δ+∆ < , if any? 

 

The probability distributions of the random variables and mean square error for the 

given system are known to converge. We therefore begin with the result that: 

 and again, at each stage of the algorithm, as the approximation 

admits a mean square error on the order of the number of particles, we can calculate 

an upper bound on the approximate mean square error introduced since the number of 

malicious particles is bound by the rate of delivery of the particles as determined by 

the adversary. In a given attempt, in the worst case an adversary can input atmost 

lim ( . )N
t tN

a sπ π
→∞

=

ˆ.Tν malicious particles provided the input is within the tolerable error limit (to avoid 

being dropped). Thus the bounded error is a function of the input rate, the time 

window of operation and the probability of undetectability. 
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Lemma 5:  If the probability that particles pass undetected through the Byzantine 

detection and agreement algorithm is pχ , and pβ  is the probability that the attack 

particles are set within the allowable error range, then the maximum likelihood of 

undetectability becomes 

 1

1 2
( )ud

p p
p

2
p p p p

χ β

β χ χ χ
Λ =

− +
   

 
Proof: We can easily derive the result above using Bayes conditional theory as  

1

1 2
(1 )ud

p p
p

p p p p
χ β

χ β χ β
Λ =

+ −
 

Rearranging, we get   1

1 2
( )ud

p p
p

2
p p p p

χ β

β χ χ χ
Λ =

− +
  (3.3) 

 

 

We have already defined our condition for robustness assessment in Definition 

3-1. We have also seen briefly that the position estimate as well as the location error 

is dependent upon a few parameters like number of particles, node density, frequency 

of incoming particles, the time window of the filter etc. For now, all these parameters 

are variable in our setup. Solving this problem, therefore, becomes a multivariate 

optimization problem.  

We can solve this problem in a few different ways. Commonly used optimization 

techniques are game theory/ decision theory approach, and parametric optimization 

approach. The parametric approach is better suited to our problem. One way to solve 
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this problem parametrically is by combining all the parameters into a single parameter 

and optimizing the utility function (location error) in our case against it. We begin 

optimization by breaking the problem down into independent components each of 

which can be singularly optimized. The additive property of optimal solutions for 

independent events implies that the summation of these components will provide the 

optimal solution to the problem. 

 

Lemma 6:  Given an initial estimate of location, initial parameters , 
ud

pΛ pΛ and a 

derivable constant , the least upper bound |t tc δ such that the expected error of the 

system is δ –robust is given by  [ ] [ ] [ ]1 1inf ( ) ( )E e p E e p E eδ ′≥ + − 3 which is the 

difference of the MSE with and without the presence of malice. 

Proof: 

We start with the definition of δ . 

By definition, δ  is the deviation in location error observed due to the introduction 

of malice in the tracking system, and is given by 

Expected error Expected error Probability of 
Probability of 

 with maximum  with no malicious  no malicious 
malicious input

malicious input input input
δ

⎡ ⎤ ⎡ ⎤ ⎛
⎛ ⎞ ⎜ ⎟⎢ ⎥ ⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝

⎞

⎠

 

 

i.e.   *
1 1(1 )f p f pδ Λ Λ= − −  (3.4) 

 
Where is the expected error with malicious input, given by *

1 f

[ ] [ ]*
1 .1 2 f  E e  .p+E e p′=  where [ ]1E e  is the expected error with undetectable 
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malicious input, [ ]2E e  is the expected error with detectable malicious input and p is 

the associated probability. We will show shortly that *
1f is actually the optimum value 

of the expected error with malicious input.  

Similarly,  is the expected error without malicious input, given by 1 f

[ ]1 1. |3 f  E e p ==  where [ ]3E e  is the expected error without any malicious input, and 

p=1. 

 

Thus, we have  

 [ ] [ ]*
1 .(1 )

ud ud1 2f  E e  .p +E e pΛ= Λ−  (3.5) 

 
Since is the expected error without malice, it follows that1 f [ ] 2

1 3 f  E e ε= = , a 

predefined semi-variant constraint which is the baseline error, and may be dictated by 

the sensitivity and requirements of the tracking system application. 

E[e2] being the expected error with detectable malicious input, it is inversely  

proportional to the number of particles N, and can be calculated as: 

[ ]
2

|2 t
CE e C+ c

NN t

ϕ
= ≤  

for any bounded function ϕ  and constants C, and (at time t.) The remaining 

term in  (Eq. (3.5)) i.e. the

|t tc

*
1 f [ ]1E e  term is an optimization problem in itself, where 

we require the minimum [ ]1E e for maximum malice in order for δ -robustness to be 

true. We now try to solve for this value. To get an intuitive idea, we present [ ]1E e  in 

a min max setting: 
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[ ] ( )
[ ]

2 2
max

ˆ, ,
1ˆˆ ˆ[ , ] , , ,

min max i

l u ud

p p p N

p p p p p N
  E eα β χ

α βξ ε ξ ν ν ν Λ

∗

∈ = − + ,F   

Frequencyν , as we have seen before, is already bounded by the system to 

[ ]ˆ ˆ,lp p uν ν ν= − +  which provides the range of error fluctuation. From this relation 

we can see that if the number of non malicious particles is increased, not through the 

rate but through increased number of participants (particle density) we can further 

reduce the impact of the malicious input. Intuitively moving a step further, if the 

particle density is increased in a non uniform manner (skewed towards cliques) the 

same nodes can help multiple clusters and disambiguate mis-data without increasing 

node participation. This is an important result. We can use frequency limitation, 

particle density and number of particles to narrow the constraint space and further 

eliminate solutions of the min max function above that fall outside of this space. This 

gives us a smaller solution space and reduces complexity by an order. 

We will use Simultaneous Perturbation Stochastic Approximation (SPSA) method 

introduced by [37] to solve for [ ]1E e  where the gradient is approximated using a 

randomized finite difference method. Compared to the standard finite difference 

method, SPSA is advantageous in that we only need to compute 2 estimates of the 

objective function per iteration, irrespective of p- the dimension of θ , instead of 2p 

estimates. Also, under general conditions, SPSA and standard finite difference 

stochastic approximation methods achieve the same level of statistical accuracy for a 

given number of iterations even though SPSA requires 1/p times the measurements. 

SPSA converges to the optimal solution within a given level of accuracy (in our case 

δ) with p times fewer measurements of the objective function and is ideally suited to 
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low computational cost, speed dependent real-time applications where both time and 

accuracy are important, and where all uncertainties and non-linearities cannot be 

accurately modeled.  

The use of the SPSA technique results in an elegant optimization algorithm for 

SMC methods. For simplicity and clarity, we will follow the notations used in 

standard SPSA literature [37][38][39].  

Assume (general assumption) the SMC algorithm is parameterized smoothly by a 

parameter θ ∈Θ where is an open subset of . Under stability assumptions on 

the dynamic model of interest, the particles, their corresponding weights, the true 

state and the observation of the system form a homogenous and ergodic Markov 

chain. Performance measure can thus be defined as the expectation of a cost function 

with respect to the invariant distribution of this Markov chain parameterized by 

Θ mR

θ . 

We now define the time average cost function ( )J θ for our system as the expected 

error with undetectable malicious input E[e1], and represented as: 

( ) ( ) 1, , , [J E f Z X X W Eθθ ⎡ ⎤= =⎣ ⎦
� � ]e

)

 

where the expectation is with respect to the invariant distribution of the Markov 

chain ( , , ,Z X X W� �  corresponding to the set of observations, true and estimated 

states, and estimated weights of the system. We are interested in estimating 

( )arg min Jθ θ∗ =  which will give us the desired minimum value of E[e1]. Here, it is 

worth noting that the cost function is independent of the observations since the 

observation process is being integrated out. One important practical consequence of 
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this is that the SMC algorithm can be alternately optimized off-line by simulating the 

data and then use the resulting optimized algorithm on real data.  

The mean square error represented in the SPSA format is   

MSE   (3.6) ( )
2

, ,
1

, , ,
N

n n n n n n k n k
k

f Z X X W X X W
=

⎛= −⎜
⎝ ⎠

∑� � � � ⎞
⎟

We are interested in estimating ( )arg min Jθ θ∗ = .Using SPSA, the problem of 

minimizing a differentiable cost function ( )J θ , where effectively 

translates into finding the zeros of the gradient 

mθ ∈Θ ⊆R

( )J θ∇ . Recursively, we can estimate 

θ ∗ such that  as follows: ( ) 0J θ∇ =

1
ˆ

n n n Jθ θ γ− n= − ∇    (3.7) 

Where is the noise corrupted estimate of gradient ˆ
nJ∇ ( )J θ∇  estimated at the point 

1nθ −  and [ ]nγ  denotes a sequence of positive scalars such that 0nγ →  and 

. Under appropriate conditions, the iteration in (3.7) will almost sure (a.s) 

converge to 

1
n

n

γ
∞

=

→ ∞∑

θ ∗ .  

In order to solve (3.7) we need to obtain the gradient estimate . In SPSA the 

gradient approximation is done via finite difference using the estimates of the cost 

function. Briefly, all elements of 

ˆ
nJ∇

1nθ − will be varied randomly simultaneously (hence 

the name simultaneous perturbation) to obtain two estimates of the cost function 

. Only two estimates are required regardless of the dimension ( 1nJ perturbationθ − ± )

 58



 

p of the parameter. For a two-sided gradient approximation, the gradient estimate 

is given by  ( ),1 ,2 ,
ˆ ˆ ˆ ˆ, ,.....,

T

n n n n pJ J J J∇ = ∇ ∇ ∇

1 1
,

,

ˆ ˆ( ) (ˆ
2

n n n n n n
n i

n n i

J c J cJ
c

θ θ− − )+ ∆ − − ∆
∇ =

∆
 

Where  denotes a sequence of positive scalars such that  and 

 is an p-dimensional random perturbation vector. Algorithm 

parameters 

{ }nc 0nc →

( ,1 ,2 ,, ,....,n n n n∆ = ∆ ∆ ∆ )p

, , and n n ncγ ∆  require careful selection to ensure convergence. 

The and n cnγ sequence generally take the form of =
( )n

a
A n αγ

+
and 

n
cc

nβ= respectively with non-negative coefficients a, c, A, α and β . 

We find that 0.602α =  and 0.101β =  (recommended values) are practically 

effective in our case too. is a symmetric Bernoulli n∆ 1±  distribution. We set a and c 

low initially (recommended for high noise settings) and our final stable values used 

were a= 0.16,  c= 1, A=100, α = 0.602 and β =0.101 .  

 

We now incorporate the two-sided SPSA optimization algorithm into our SMC 

framework. Recall the steps involved in the filtering algorithm from Section 2.3.3 

 

Step 1: Sequential importance sampling with SPSA 

For n=1 to N, sample ( ), 1 1, , ,n k n n k nX q X Zθ − − •� �∼  is the perturbed observation function.  

We then compute the normalized importance weights with perturbation as  
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( ) ( )
( )

, ,
, 1,

1 1, ,

| |

, ,
n n k n k n k

n k n k
n n k n n k

g Z X f X X
W W

q X Z Xθ
−

−
− −

∝
� � �

� �
� �

1,

)

 

We now evaluate the cost function.  

First, we generate an p-dimensional simultaneous perturbation vector and compute n∆

1 1( ) and (n n n n n nc cθ θ− −− ∆ + ∆  

For k=1 to N, sample . ( ), 1 1, , ,n k n n n n k nX q c X Zθ+
− −+ ∆ •� �∼  

Compute the normalized importance weights as 

( ) (
( )

), ,
, 1,

1 1,

| |

, ,
n n k n k n k

n k n k
n n n n k n n k

g Z X f X X
W W

q c X Z Xθ

+ +
−+

− +
− −

∝
+ ∆

� � �
� �

� �
1,

,

 

Again, for k=1 to N, sample . ( ), 1 1, , ,n k n n n n k nX q c X Zθ−
− −− ∆ •� �∼  

and compute the normalized importance weights as 

( ) (
( )

), ,
, 1,

1 1,

| |

, ,
n n k n k n k

n k n k
n n n n k n n k

g Z X f X X
W W

q c X Z Xθ

− −
−−

− −
− −

∝
− ∆

� � �
� �

� �
1,

,

 

We evaluate the cost function 1 1( ) and ( )n n n n n nJ c J cθ θ− −+ ∆ − ∆ from 

{ } { }, ,X W and X W+ + − −� � � � respectively. 

Step 3: Gradient approximation 

For i=1 to p, we evaluate the gradient components as 

1 1
,

,

ˆ ˆ( ) (ˆ
2

n n n n n n
n i

n n i

J c J cJ
c

θ θ− −+ ∆ − − ∆
∇ =

∆
)  

Step 4: Parameter update 

Update nθ to the new value 1
ˆ

n n n Jθ θ γ− n= − ∇  
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Step 5: Sampling 

Multiply (Discard) particles nX� with respect to high/low importance weights to 

obtain N particle 

nW�

nX� . 

 

It is possible to improve the algorithm in many ways, for example, by using 

common random number or other numerical approximates like iterates averaging to 

reduce the variance of the gradient estimate. The idea behind it being to introduce 

strong correlation between our estimates of  1 1( ) and ( )n n n n n nJ c J cθ θ− −− ∆ + ∆ so as to 

reduce the variance. For further details and improvements upon SPSA we refer the 

reader to [39]. 

 

 

Figure 8 Sequence of average MSE estimates over time 
 

The results obtained for this simulation are plotted above in Figure 8. for a= 0.16,  

c= 1, A=100, α = 0.602 , β =0.101  and for N = 100. Clearly, one can see that the 

MSE with maximum undetectable malicious input almost mimics the response of the 
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original system, that is, there is no non-linear loss observed. Further, the difference in 

the error is almost constant, except for a few minor exceptions. If we set this finite 

difference in the error as r.δ where r is a safety factor 0.4 0.8r< < , then the system is 

guaranteed to be δ-robust as long as all the uncertainties modeled above do not violate 

their physical constraints. 

 

We now try to answer the second question we asked earlier, what is the upper 

bound on the frequency of crafted observations to cause the error to still 

be 2
maxξ ξ≤ and [ ]

ˆ
t nTZ δ+∆ < , if any? This answer can be analytically derived. We 

formulate and prove it as a lemma thus: 

 

Lemma 7: For a given filter with known mean and variances for the importance 

function generating samples, the supremum value of frequency of crafted 

observations that can limit the maximum error in the approximation to under 2
maxξ and 

[ ]
ˆ

t nTZ δ+∆ <  is given by min[ , ]threshold uν ν ν+  where IS
threshold

N N
T

ν −
≤ and  is the 

number of samples coming from the importance function. 

ISN

 

Proof: We make use of KL distance sampling (Kullback-Leibler distance)[18] 

method from statistical theory that can be used to adaptively estimate the number of 

particles to represent the target posterior distribution without increasing the overhead 

to the normal operation of the filter.  
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KL distance sampling is used to adaptively estimate the number of samples needed 

to put an upper bound on the error of the particle filter. The error is measured by the 

KL distance between the true posterior distribution and the empirical distribution, 

which is a well known nonparametric maximum likelihood estimate. It is a standard 

measure of the difference between two probability distributions. It can never be 

negative, but a zero value is indicative of identical distributions. 

The likelihood ratio converges to a chi-square distribution, and the bound for the 

number of particles N represented as: 

 

2
1,1

1
2 k

KL

N δε − −> x    (3.8) 

where KLε is the upper bound for the error given by the KL distance, and 1 δ− is the 

quartile of the  distribution with k-1 degrees of freedom. Equation 3.7 can be 

further expanded using the Wilson Hilferty transformation [24] but for our proof 

purpose, the form of equation 3.7 above will suffice.  

2x

A slight drawback of using KL distance sampling is the underlying assumption that 

the samples always come from a true distribution which we assume to be free of 

malicious input. Recall that our particle filter samples are drawn from an importance 

function π . In an adversarial scenario, some of these samples can be corrupt and 

misleading. Therefore, in statistical terms, the quality of the match (or rather, 

mismatch) between this function and the true distribution determines the accuracy of 

the filter in the presence of malicious samples, and in turn, the suitable number of 

particles required to uphold the correct estimates. The bound given by KL distance 
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sampling only uses information about the complexity of the true posterior, but it 

ignores any mismatch between the true and the proposal distribution. 

KL distance sampling, thus, does not provide the answer to our question directly, 

but provides an excellent start. We now need to quantify the degradation in the 

estimation using samples from the importance function instead of a uniform empirical 

distribution. This will give us the bounds we are interested in. We are interested in 

accurately finding an equivalent number of samples from the (possibly flawed) 

importance density function as that from the true density function that captures the 

same amount of information. Relative numerical efficiency (RNE) helps us derive 

such an accurate bound and adjust the KL distance sampling estimate by relating the 

two samples.  

RNE in the context of Monte Carlo (MC) integration, introduced by Geweke [33], 

provides an index to quantify the influence of sampling from an importance function. 

RNE allows us to compare the relative accuracy of solving an integral using samples 

coming from both the true and the proposal density. This gives us the effect of 

sampling from an importance function as opposed to a true distribution. We follow 

the approach of [5] to equate the variance of the estimator estimated using KL 

distance sampling and RNE as follows:   

Using Sequential Monte Carlo (SMC) integration to estimate the mean value of the 

state ( ( )MCE x ), the variance of the estimator given by [1] becomes: 

( )
( )N

MC

Var x
Var E x

N
ρ⎡ ⎤ =⎣ ⎦   (3.9)  
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where N is the number of samples coming from the true distribution ( )xρ with no 

malicious input samples.  

When the samples come from an importance function π , the variance of the 

estimator actually corresponds to the variance of Importance Sampling (IS). This is 

given by [33] : 

( )( ) ( )( )2 2
2

( )
p

N IS
IS

IS IS

E x E x w x
Var E x

N N
π σ−

⎡ ⎤ = =⎣ ⎦  (3.10) 

where is the number of samples coming from the importance function 

containing both malicious and non malicious input samples, and w is the associated 

weight attached to the incoming particles.  

ISN

Equating the variance of both estimators allows us to achieve similar levels of 

accuracy. This in turn allows us to find a relation that quantifies the equivalence 

between samples from the true and the proposal density. Equating both variances (i.e., 

equations 3.8 and 3.9), we get  

2

( )IS

IS

N Var x
N ρ

σ
=    (3.11)  

Replacing (3.11) in (3.8) allows us to obtain the correct bound given by KL 

distance sampling when the samples do not come from the true distribution but from 

an importance function. Therefore, we get 

2
2

1,1
1

( ) 2
IS

IS k
KL

N
Var x δ

ρ

σ
ε − −> x    (3.12) 

( )Var xρ and 2
ISσ can be estimated in the standard manner as: 
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( ) ( ) ( )
2

2 22 1

1

( )

N

i i
i

p p pN

i
i

x w
Var x E x E x E x

w
ρ

=

=

= − ≈ −
∑

∑
  (3.13) 

and 

( ) ( )22 2 2 2

2 1 1 1

1 1 1

2

N N N

i i i i p i p
i i i

IS N N N

i i
i i i

i

x w x w E x w E

w w
σ = = =

= = =

≈ − +
∑ ∑ ∑

∑ ∑ ∑

x

w
  (3.14) 

respectively, with ( ) 1

1

N

i i
i

p N

i
i

x w
E x

w

=

=

=
∑

∑
 

Note from the above equation that the order of complexity of the filter is always 

maintained at O(N) making this a low complexity and lightweight approximation 

inline with our theme. 

Equation (3.12) gives us the bound for the number of particles that can keep the 

error under bound 2
maxξ (as a function of quartile values). As long as NIS is greater than 

the right hand side of equation (3.12), maximum error 2
maxξ will be bound by the 

quartile value 1 δ− . Further, the minimum number of particles that can limit the 

maximum allowable error in the approximation will be 
minISN 1ISN + .  

Since the total number of incoming particles in a time window T is .Tν , it further 

implies that the above result holds as long as the total number of malicious particles 

ˆ. IST N Nν ≤ − . This becomes our critical threshold frequency thresholdν  and 
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IS
threshold

N N
T

ν −
≤  reduces the allowable range ofν to  [ , min[ , ]]l threshold uν ν ν ν ν− +  

q.e.d 

 

3.3 Security Properties of our Scheme 

 
To build a secure protocol, we must understand what it means to be secure. Security 

means different things to different people. Therefore, we first define what we 

consider are security properties for our protocol. Security properties essentially are 

characteristics that applications, protocols or programs must satisfy in order to be 

valid for all reasonable and unreasonable inputs. The violation of a security property 

for any input implies a vulnerability. Conscious application of this input by someone 

possessing this knowledge constitutes a legitimate attack on the system.  

In this section, we will specify various security properties of the protocol, ascertain 

that they are preserved in the face of an attack and understand boundary conditions 

and dependencies that exist, if any, for each of the security properties under 

consideration.   

 

For any protocol or system under design, security properties fall under the 

following broad categories: freshness, authenticity, secrecy, non-intrusion and 

resilience.  

1. Freshness: freshness means that messages sent and received in a session are 

generated and used in the same session. An attacker cannot use messages from 

previous (or future) sessions in the current session without being detected.  

 67



 

Our target tracking protocol takes, as input, individual measurements coming 

from various nodes in the present neighborhood of the target, assimilates them 

and produces a Bayesian likelihood type estimate of the current target 

position. Targets may be moving. From this it is obvious that measurements 

must be time sensitive. Only measurements that are close to each other in time 

can be aggregated in the same iteration. The duration for which measurements 

are considered to be part of the same iteration is known as the time window. 

Only measurements received during the same time window can be used to 

estimate target location corresponding to that time window. For online 

processing, measurements are generated and aggregated closely in time 

whereas for offline or passive processing, measurements still need to be 

aggregated per window, but there may be a gap between the time 

measurements are taken and when they are aggregated. In this work, we 

consider the former case. The latter case is only a slight modification of the 

former and can be easily derived from the former.  

Therefore, the freshness security property for our protocol states that a 

message containing a measurement regarding a target should only be 

acceptable if it is valid in the current time window. Since we assume that the 

nodes of the distributed system are loosely synchronized over single hop, the 

freshness property results in that time stamps associated with measurement 

messages should not be alterable without detection i.e., the time stamp must 

be integrity protected along with the rest of the message during transit. 

Messages should not be recorded and replayed later in a manner that is 
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undetectable. Also within a time window messages need not be ordered since 

their ordering within the window is not relevant to the estimator. The size of 

the window of validity is tightly coupled with the synchronization degree (or 

rather tolerable synchronization error σ). If the window is smaller, the nodes 

need to synchronize more often, and more tightly (smaller allowable σ). If the 

window is larger, the nodes can synchronize less often and may have slightly 

larger values of tolerable synchronization error σ. This indirectly influences 

cost as well as storage since longer time windows result in larger storage 

requirement. We leave this as a future study goal.  

2. Message Authenticity: Measurement messages should not be altered or 

corrupted in transit in a manner that is undetectable. Altered and corrupt 

messages should not be included in computing the target location estimate. 

Further, messages that come from sources that possess valid authentication 

material (like shared secrets) are accepted for use in computing the target 

location estimate. Non repudiation is not required. Note that based on this 

definition, select replays (fairly recent ones) of authentic messages are 

accepted by the system. 

3. Uniqueness: Each node can take only one measurement at a given time 

instant.  Alternatively, no node can have two or more measurements for the 

same time instant. Note that there is an implied assumption here. Since 

transactions are assumed atomic, no node can legitimately generate two 

messages for the same time instant.  
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4. Secrecy: In an honest scenario, contents of a message are kept secret between 

the intended participants of the protocol only i.e., they cannot be read by 

nodes other than the creator or the intended recipients. (A trusted third party, 

if existing, is regarded as the creator, and does not violate the secrecy 

property.)  

5. δ-Robust computation: Computation of the target location estimate is robust 

against malicious input up to degree δ, whereδ  is the tolerable location error.  

Our Approach 

The correctness of the protocol is given in Appendix A, where we show that the 

protocol converges to the true result within a finite number of iterations. In other 

words, when we have reasonable inputs, the system provides reasonable outputs. We 

now examine the security of the protocol. For this we prove how the security 

properties identified above are preserved in the face of various attacks.  

Our adversary can launch various attacks against the protocol as well as the data 

that is carried by the protocol. It can leverage deployment characteristics (for e.g., ad 

hoc nature, wireless medium, etc) and try to subvert the protocol. In this section, we 

will characterize these attacks and prove one or more of the following: (1) that the 

adversary cannot launch these attacks due to sufficient protection mechanisms, (2) the 

probability that such attacks can be successful is negligible due to time or 

computational infeasibility, (3) that the protocol is robust against certain attacks up to 

the desired degree of tolerance.  

.  
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1. Replay, Redirect attacks: 

Replay attacks occur when an adversary stores a copy of a message and replays it 

at a later time after the original message was intended to be used. We examine the 

case where an adversary Trudy records an (encrypted) message (1) sent by Bj to 

leader A (Refer Fig 7.). After some time ′t  has elapsed, Trudy replays message 1, 

which is accepted by A. If the elapsed time ′t  (relative to A) is greater than the 

window of validity for the measurement, then the freshness verification will fail 

and A will discard the request as per protocol. If on the other hand, the elapsed 

time  is smaller in value than the window in which the original message would 

have been accepted, then by virtue of N being a true crypto-quality nonce, A will 

detect the replay comparing the nonce with currently stored nonces. The existence 

of a match asserts that A has seen this message before. It is worth noting that a 

node only needs to store a nonce until the time window of validity of the 

measurement. A node need not store a nonce beyond this expiry since a message 

can be rejected on the basis that the time stamp is no longer fresh. We can do this 

because both the nonce and the time stamp are committed by the sender. Since 

timestamps can only advance from the previous message, and nonces are required 

to be unique across a large time window, replayed messages cannot be successful. 

′t

Thus, the presence of timestamps and nonces in the messages serves as an 

adequate countermeasure to this type of attack. The same applies to message (1) 

of Phase 2 which can be stored and replayed by an adversary. Thus, we see that 

simply replaying an older message is not a successful attack.  
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A redirect attack occurs when a message is sent to a third entity instead of the 

intended participant. It can manifest in two ways, with original message 

suppression and without. In the former case, the original message is suppressed 

from reaching the receiver and redirect to a different entity, whereas in the latter 

case, the message is “replayed” to a different entity and not the originally 

intended recipient without having suppressed the original message. We argue that 

in a wireless medium only the latter is a valid attack because message suppression 

in a wireless medium is difficult to achieve. Subsequently, there are various 

physical and mac layer techniques like spread spectrum [69] etc that sufficiently 

mitigate these attacks. Therefore, we only consider the former case in our 

analysis.  

Let us examine the case where adversary Trudy redirects message (1) to a 

different node A2. Since the message is encrypted in the public key of A1, A2 will 

not be able to successfully decrypt the message and drop it.  

 

2. Insert, Fabricate 

An insert is an attack where an adversary inserts a completely new message into 

the system (fabrication). Inserting a fabricated message essentially results in the 

message being accepted by the algorithm if an adversary possesses any legitimate 

signature key.  This is because signatures are not tightly coupled with the 

identities of the nodes. Hence an adversary can supply any signed message and it 

will be accepted. The effect of fabricated messages on t he target estimate is 

considered under our robustness analysis.  
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3. Delay, False timing 

This type of attack occurs when nodes behave in a Byzantine manner 

(malfunctioning or exhibit arbitrary behavior). A node may send a measurement 

with incorrect timing values or send messages after a long delay. Two things 

happen here. One, when a node sends a message after a long delay, the watchdog 

nodes will flag the node. Second, if the delay is too long, the message may simply 

be discarded due to loss of freshness. False timing messages are rejected if the 

time is too distant (past or future) from the current processing window. If not, 

messages will be accepted and integrated into the target estimate.  

 

4. Masquerade (Impersonation) 

A masquerade attack occurs when a user presents itself to the system as another 

user, usually a legitimate one. (Note that this attack is different from a 

compromise and takeover attack.) This may be done in order to gain unauthorized 

access to information or resources, to disseminate (mis)information in another’s 

name, or to block or deny a system from operating correctly. [60]  

A malicious node Trudy may masquerade as a legitimate leader node to 

accumulate input messages or as a B node to insert false messages. In the former 

case, since messages are sent encrypted with the public key of the real leader 

node, a masquerading leader node can derive no benefit. Similarly, as a 

masquerading type B node, an adversary cannot forge the credentials of a 

legitimate type b node as it is against the property of the cryptosystem employed. 
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It can, however, falsely sends a fabricated message to A which is made to appear 

as if it came from B. The message will be successfully received at A since the 

adversary can generate an arbitrary signature and encrypt the message using A’s 

public key. When the fabricated message is received at A, A checks to see if the 

data is acceptable. Since all messages in the network are encrypted, an adversary 

does not know what an acceptable value is. It can only generate a message and 

hope that it is accepted with probability pβ (See Section 3.2) The result is that 

fabricated messages are accepted by our system if they are signed using any 

legitimate signing key. The impact of accepting fabricated messages is dealt with 

in the robustness analysis in the earlier section. (To summarize, we have seen that 

the algorithm can survive a large number of dishonest nodes provided the 

frequency of input is bounded.)  

 

5. Man in the middle 

A man in the middle (MITM) attack is one in which the attacker intercepts 

messages in an exchange and then retransmits them, (sometimes substituting its 

own crypto primitives in place of the requested one) so that the two original 

parties still appear to be communicating with each other. The attack may be used 

to intercept, read or alter messages without the knowledge of either transacting 

party. 

As indicated in the previous attack capture, suppression, selective jamming are 

not easy to achieve in a wireless medium. Various techniques at the physical and 

mac layer sufficiently reduce the possibility and question the practicality of these 
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attacks. One seemingly practical way of launching a MITM is if the adversary can 

send a message before the original is received at the recipient or to quickly 

compute a response and send before legitimate reply reaches the intended 

recipient. A multi-hop path is more conducive to this type of attack due to the 

practicality of creating a middle man message before the legitimate responder can 

create it. Since there is no multi-hop communication in our protocol, the 

practicality of this attack comes under question. Assuming that such an attack is 

possible, we analyze the effects of such an event occurring. The biggest deterrent 

for this type of attack is the use of cryptographic keys. Further, the protocol is 

asymmetric in both directions (in both Phase 1 and 2) and MITMs require 

symmetric message exchanges.  

 

6. Capture/compromise 

A capture attack is whereby an adversary can subvert a legitimate node and take 

control of it. Capture and Compromise are used interchangeably. If Trudy 

captures a type b node, it can easily generate legitimate messages (with fraudulent 

data) using B’s shared keys. This will result in lots of false data passing 

undetected through the particle filtering system. When falsified data is accepted 

by the system, the robustness analysis comes into play. We have seen as per our 

robustness analysis that as long as the frequency of inputs from a B node does not 

exceed vmax (the allowable maximum frequency without being detected as an 

outlier), the target estimate (output) will be within δ of the true estimate.  
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Capture multiple nodes: We have seen from our robustness analysis that if an 

adversary wants to disrupt the target estimate, then it has to compromise a very 

large number of nodes in a single neighborhood. Since our algorithm incorporates 

a moving leader approach whereby the aggregator function moves from leader to 

leader as the target moves through the sensing field, at any given time only those 

leaders and type B nodes are active which are in the neighborhood of a target. 

Therefore, in order to disrupt the target estimate an adversary has to undertake the 

Herculean task of guessing correctly which leader node (and cluster) will be 

active next (alternatively guess the pattern) and then compromise that cluster 

within the short amount of time that the target remains in the vicinity and the 

aggregation function is resident on that leader node. This is very difficult to 

achieve in practice even for an extremely capable adversary (due to the small time 

duration in which such a massive attack needs to be completed). Therefore, such 

an attack is not practically possible (unless there exist a large number of colluding 

adversaries).  

7. Lying nodes, anomalous behavior: If a node behaves in a manner inconsistent 

with the nature of the neighborhood (for example, if none of the nodes in the 

neighborhood report spotting a target but only one node does) then watchdog 

nodes will make a note of this anomaly. Repeated anomalous behavior can result 

in flagging the node, and rejection of the data sent by it.  
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3.4 Factors affecting performance, reliability and accuracy  

3.4.1 Topological Dependence 
 

Figure 9 depicts common sensor network topologies like the star, cluster, tree and 

hierarchical arrangement of sensor nodes.  

 

 

Figure 9: Basic Topologies 

 

Few additional derivatives of these structures are binary tree structure, fan outs, 

linear, mesh, and ring. While the ring arrangement is the most uncommon form for a 

sensor network, it provides multiple (at least two) distinct paths to a destination with 

roughly the same cost and is used in some sensor network algorithms like CHORD. 

Full mesh and star topologies have higher overheads than tree based or hierarchical, 

but provide a rich assortment of data which is very helpful for particle filtering based 

techniques. Also this arrangement is least affected by mobility. Star topologies are 

great for broadcasts to percolate quickly through the network. Clusters are the most 

ClusterStar

Tree Hierarchy
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popular topological arrangements as they are more ‘hybrid’ and well adapted. They 

form a semi hierarchical, semi star/mesh arrangement, where members of a 

cluster/cell have a unique arrangement with each other (star or mesh) and each cluster 

has a connection with neighboring clusters to form an overlay that eventually 

connects and brings together the entire topology of the network. Based on our 

convergence results and error analysis we find that linear and tree type topologies are 

weaker than cluster or star/fan out arrangements. The former converge slower, the 

effective loss probability is higher, and error propagation causes the results to be 

more pronouncedly inaccurate than a cluster based approach that is well grounded 

due to its hybrid nature.  

Effect of Topology on Loss Probability
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Figure 10: Effect of various topological configurations on loss probability. 
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Effect of Topology on Convergence
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Figure 11: Effect of Topology on Convergence 

 

The expected MSE for our distributed particle filter is of the form 

( )
N

cE
t

N

t

2
2

,,
ϕ

ϕϕ ππ ≤⎥⎦
⎤

⎢⎣
⎡ −  where c is a constant,  π is the posterior 

distribution importance function at time t from which particles are drawn, ϕ  is the 

transition kernel of the filter, and N is the number of particles per target in the given 

computation window. From this equation, we can see that at each approximation, the 

MSE is inversely proportional to the number of particles N. As the number of 

particles increase, the expected MSE tends to decrease. This tendency which is the 

convergence of the filtering algorithm thus is also proportional to the number of 

particles N. As the number of contributing nodes increases, N increases. A direct 

result of this is observable in Figure 11, where we see the trend of convergence of the 

particle filter for various topologies.  

The cluster based topology has the closest coupling between the leader of the 

cluster and the sensing nodes (all single hop). Therefore, the time taken for each 
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particle to reach the leader node for aggregation into the filter is minimal in this 

topology. Further, the single hop close knit structure also ensures that collisions and 

retransmission errors also will not be pronounced. For a cluster topology, the 

localized effect is that the density of particles will result in a proportional increase in 

the rate of convergence of the particle filter. 

One could argue that the while the number of particles in a binary tree topology 

cannot be increased, it can be increased in a star as well as a hierarchical network so 

as to provide better convergence rates. We argue that in a localized context the star 

topology can create the dense particle effect similar to a cluster arrangement and 

produce equally good convergence rates, but on a larger scale, the star topology 

advantage will be subdued by the increased transmission delays due to relaying data 

to a far-away base station for aggregation, whereas this problem is absent in the 

cluster arrangement due to single hop aggregation. For a hierarchical network, 

transmission delays from the sensing element to the aggregator will become 

pronounced, as the data gets relayed further and further away from the sensing area. 

The cluster arrangement has an advantage in this regard, that it can not only create 

clusters of single hop neighbors but also form them closer to the sensing area, thereby 

minimizing transmission delays. From a global view point, a cluster arrangement can 

be viewed as a hierarchical formation of star arrangements, where each cluster has a 

star arrangement, and the aggregated information from each cluster is transferred to a 

decision making location through the leader nodes of the cluster.  

Periodic Selection: A final remark is that periodic selections are very efficient and 

have a specific interpretation in nonlinear filtering settings. We have seen in other 
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literature that in this situation the fitness functions are related to the observation 

process. Roughly speaking the selection transition evaluates the population structure 

and allocates reproductive opportunities in such a way that these particles which 

better match with the current observation are given more chance to reproduce. This 

stabilizes the particles around certain values of the real signal in accordance with its 

noisy observations. It often appears that a single observation data is not really 

sufficient to distinguish in a clear manner the relative fitness of individuals. For 

instance this may occur in high noise environments. In this sense the particle filtering 

system with periodic selections allows particles to learn the observation process 

between the selection dates in order to produce more effective selections 

 

3.4.2 Effect of topology on Robustness 

We have shown earlier that our tracking solution is δ-robust to maximum malice 

caused by an adversary local to the neighborhood.  We can further reduce this 

problem to show its dependence on the topological configuration of the 

neighborhood. Essentially, δ-robustness for  comes from the continuous stream 

of input observation vectors that create the robust estimate 

[t nTZ + ]

][t TZ +  at any time window 

[t+T]. The stream of input observations is dependent on the connectivity graph i.e., 

topological configuration (node degree) and the probability of receiving the 

observation vectors from the nodes in the neighborhood. Thus, the robustness of 

 becomes a simple problem dependent on the physical node degree and the [t TZ + ]
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probability of receiving observations from a minimum threshold number of honest 

nodes within the neighborhood.  

 

Mathematically,  

If : Probability that a sensor node a has connectivity with node b within a 

single logical hop in sensor a’s information range. 

( 1nP i = )

)( 1|nP i A= � : Probability that a sensor node a has connectivity with node b within a 

single logical hop in both sensor a and b’s information range.  

pD is the average physical node degree. 

Therefore, we can calculate ( )1nP i =  as follows: 
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We can also calculate the minimum guaranteed degree that must be maintained in 

order for the above observation [t TZ +  to be δ-robust as: 
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From the above equation, we can see that minimum degree requirement is 

dependent on the each node’s information range, as well as the intersection of their 

connection ranges as denoted by ( )|nP i A� .  

From here it follows that, in general, topological configurations with higher 

 i.e., dense connectivity areas also known as cliques, will show greater 

robustness to malicious input observations. Cliques are areas of common connectivity 

between neighborhoods. Among the configurations we have studied, cliques are not 

commonly observable in tree and linear configurations, are rarely observed in star 

configurations and most commonly observed in cluster arrangements. Hierarchical 

clustering topology is therefore a special case of clustering with maximal cliques. 

This is consistent with our observation in Section 3.4.1 where we examined the 

relationship between particle density profile and ambiguity resolution as well as our 

topology simulations.  

( |nP i A� )

 

3.4.3 Particle Density Profile 
 

We have seen how topology models changes in the convergence and robustness of 

the particle filtering based algorithm. A closer look at topology also revealed that the 

internal configuration with respect to the topology also directly relates to the 

precision with which the algorithm tracks the target, resolves ambiguities and the 

resilience of the algorithm from being misdirected by malicious entities. A particle 

density profile is the distribution of particle channels across a topological entity like a 
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cluster, representing a transition of particle systems. For a discrete particle system, 

the particle density profile can be represented as { ;  where  0}
n

N
t nη ≥

1

1
in tn

N
N
t

iN ξ
η δ

=

= ∑  

Where 
nt

ξ is the particle at tn. 

For a cluster with uniformly distributed nodes and uniformly distributed anchor 

nodes, with density nρ  the particle density profile can be represented as 1
n

N
t

n
η ρ=  

The figure below denotes two clusters set up in a wsn. Each cluster has a leader and 

multiple sensing nodes.  

Leader 2

Cluster 2

Type B Clique nodes
Associated with both Cluster 1 & 2

Leader 1

Cluster 1

Type B sensor nodes 
associated with Cluster 1 Type B sensor nodes 

associated with Cluster 2

 

Figure 12: Clusters with Cliques 

 

As is obvious from the figure, a slightly skewed node distribution will lead to more 

precisely tracking a moving object than a uniformly distribution of nodes in the 

cluster. If every cluster maintains a minimum density minρ below which the low 

density will cause gaps in measurement and insufficient no. of particles to localize on 
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a target location in the presence of noise, then a node distribution that is lightly 

skewed to have higher representation in areas common to multiple clusters will 

consistently produce results close to the true value of the target’s position. By nature 

of being in the communication range of multiple clusters and their leaders, these 

clique nodes can observe and validate data that is being sent by its neighbors in both 

clusters, thereby resolving ambiguities, eliminating false and outlier data, as well as 

counteract malicious nodes. Their exact position with respect to malicious colluding 

nodes can possibly help detect collusions.  

3.4.4 Seed Infrastructure 
 

In many applications, sensor networks have to be deployed in remote, unexplored, 

or hostile regions. Often in such deployments, there may not be an existing 

infrastructure for the nodes to rely on. A similar story exists for ad hoc deployments. 

In the absence of GPS type absolute positioning systems, nodes must rely on other 

nodes to determine their whereabouts. Nodes that are aware of their own positions 

using some external means (often GPS) are known as seed or anchor nodes. These 

seed nodes help other nodes locate themselves. As a condition of accurate 

localization, seed nodes must be localized with a great deal of precision to ensure that 

nodes that are based off of these seed nodes will have a certain degree of precision in 

their location co-ordinates. As nodes localize themselves through seed nodes, some 

error creeps into their measurements. This error in turn propagates through to the 

tracking measurements a fully localized deployment takes. The greater the number of 

reference seed nodes present in a deployment, more accurate is the localization of the 
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remaining nodes in the deployment. On the other hand, increasing the number of seed 

nodes results in a significant amount of overhead as more number of nodes are being 

localized through an external means. For example, GPS requires additional hardware 

receivers. More the number of sensor nodes localized through the GPS system, more 

the expensive hardware requirement, and hence more the cost to deploy. In order to 

keep costs practical, a definite balance between the density of seed nodes to regular 

nodes needs to be determined. In such a case, few nodes can be used as seed nodes. 

Nodes can be localized with respect to these seed nodes in a tier-like fashion. In the 

first round few nodes can localize themselves with seed nodes. Other nodes can 

localize themselves with respect to the secondary seeded nodes, and so on. In such a 

case, however, all errors in measurements made by the deployment must take note of 

this factor too, as error propagation results in slight decrease in precision of 

subsequently localized nodes.   

 

Figure 13:  Collocated neighbor nodes (orange) using different reference node chains 

 

Along with their numbers, location and distribution of anchor nodes is also critical. 

Distribution of anchor nodes must be such as to create an unambiguous coordinate 

system. For example, using three anchor points for multi-lateration results in two 
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possible solutions for a node’s position, whereas adding a fourth node results in 

successfully disambiguating it down to one (within acceptable error bounds). 

Therefore, the distribution of anchor nodes is also as vital as their density. 

Sometimes, as seen in the figure below, having anchor nodes in a particular 

configuration results in a large error creeping into the measurement associated with a 

node due to using a different reference path for localization.  

 

 

3.4.5 Mobility 
 

Mobility models are used to formally describe the pattern of motion of mobile 

sensor nodes. They are useful for various reasons like predicting the next location of 

an entity based on its movement pattern if an earlier location is verifiably known, or 

for disambiguation purposes like ruling out a location. Mobility models thus improve 

precision. For a stationary deployment, the node mobility model is static. Node 

positions never change arbitrarily. Dynamic mobility models, on the other hand, can 

have many interesting representations, and vary from constrained path to random 

walk models.  Essentially, in a constrained path model, a moving entity can follow 

select paths to get from point A to point B (for example a road, walkway, etc). All 

other areas that do not fall on this path are designated as non-traversable, and ruled 

out as possible locations for an entity to exist at. Constrained path models take into 

account location geography and obstacles and are a good representation of a practical 

deployment environment. In the random walk model, on the other hand, an entity can 
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travel in any haphazard manner across the deployment field. This type of model is 

most common for flat, unvarying deployment environments like deserts, water 

surface, etc. Mobility models are entity specific since they contain information about 

not only the pattern of movement but also movement characteristics like speed, 

acceleration, etc and can be used to even differentiate  various types of entities on the 

basis of this information (for example, a battle tank and a foot soldier will have 

different speeds and acceleration restrictions). 
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Chapter 4 Secure Time Synchronization 

 

Synchronization among the collaborating entities is of paramount importance to a 

distributed system. Synchronization is essential to put measurements into context, for 

general ordering of events, for tracking, tracing a trajectory, for building a historical 

perspective, for replay detection, and much more. For example, in a wireless sensor 

network, synchronization is important to achieve a global view using measurements 

made within a single time frame. Measurements need to be aggregated within the 

same time window in order to be a meaningful representation of the network at a 

given point in time. An isolated event will be noticed by multiple sensor nodes within 

quick succession. This phenomenon needs to be represented in a single window of 

time. At times, an agreement needs to be reached regarding the ordering of sensed 

events, and at other times, a rough time of occurrence needs to be established.  

Different types of synchronization are required based on the need of the system. In 

general, synchronization is done in two ways: Logical clock ordering and actual time 

synchronization. When events need to be placed in real-time context, synchronization 

based on actual time is required, whereas, when only the relative ordering of events 

matters rather than absolute time, logical clock ordering is used. Time 

synchronization can also be achieved locally or globally. Individual distributed 

entities can maintain coherent time with respect to each other using GPS-enabled 

receivers. These GPS receivers allow each entity to individually synchronize with a 

coherent source. Such approaches, however, are very expensive as each node requires 
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a GPS receiver, increasing per node cost (and battery life). This makes it an 

unsuitable solution for low cost or cost-conscious networks. NTP is another popular 

protocol which is used in wired networks as well as over the internet, but is neither 

secure nor applicable to wireless sensor networks. The adversarial model, system 

model and the assumptions secure-NTP is based on is not applicable to wireless 

sensor networks and is hence not adequate for our purpose. Further, optimization for 

energy and bandwidth consumption was not in mind when secure-NTP was designed.  

Other protocols designed specifically for distributed and collaborating networks 

have been summarized below. These protocols were not built with security 

applications in mind [28][32][40][41][42]Error! Reference source not 

found.[56][67][74][83]. For example, in RBS and TPSN type networks a hierarchy is 

created where a downstream node must synchronize through its upstream neighbor. 

Therefore, if an upstream node were to send malicious timestamps to its downstream 

node, the latter would fail to synchronize correctly. Similarly, all subsequent 

downstream nodes would fail to synchronize correctly. A node can claim to be closer 

to a downstream node and cause disruption as well as failure. Lack of cryptographic 

mechanisms can facilitate nodes to relay synchronization messages to its downstream 

neighbors even without actually receiving it, causing the downstream nodes to fall out 

of sync. A further aggravated version of this attack could cause wide-spread battery 

depletion among the downstream nodes due to repeated mis-synchronization. Further, 

these protocols are not very efficient under stringent energy constraints. Few 

protocols have been built with security in mind [43][44][45][55][75]. Some of these 

protocols, for example [75] require pre-shared keys to exist among multi-hop 

 90



 

neighbors, which in an impractical and potentially insecure assumption. Further, they 

are not light-weight in terms of computation and energy consumption. [55] states 

various possible alternatives for securing commonly used time synchronization 

protocols. In [75] some sub-schemes are resilient to only external attackers, while 

others are resilient to only internal attackers. The group synchronization schemes are 

computationally not light weight. The authors use the notion of lightweight 

synchronization towards usage of less number of messages. We argue that for a 

deployed sensor network running a on finite energy supply, protocols with less 

number of messages but very high computational requirement are not as feasible as 

running a real lightweight protocol in terms of resource consumption and mission life 

sustenance. Since the ultimate aim of the sensor network is not just time 

synchronization, but utilization of the time synchronization mechanism to facilitate 

other services provided by the network, it would be wise to invest in a low energy 

consuming scheme. The authors have also stressed, time and again, on power saving 

schemes to offset the high-energy cost of their protocol. However, they do not 

address the eventuality that an adversary can take advantage of the sleep 

scheduling/power saving schemes and disrupt the time synchronization protocol. 

[45][43][44][45] are good solutions but for their hardware dependency. For example, 

[45] is dependent on very specific hardware modules for timestamping. [43] is a 

cluster based approach which is very promising, but is not resilient to wormhole 

attacks, and also requires time synchronization as a dependency. We have briefly 

summarized current work in the area in Section 4.1. 
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In section 5.1 we have investigated various attacks against synchronization schemes. 

While there has been a lot of research in the area of time synchronization for wireless 

sensor networks, most solutions either have practical limitations that restrict their 

widespread use, or have hardware dependencies that inhibit large scale deployment. 

Our approach is to create a time synchronization protocol that is robust against most 

practical in-field attacks, does not have practical limitations, expensive hardware 

dependencies and is lightweight enough to be a backbone service. Not requiring 

apriori knowledge of the network deployment, and not having too many trust 

dependencies would be an added plus. We now examine, in detail, various time 

synchronization protocols for wireless sensor networks and their characteristics. 

4.1 Current Research in Time Synchronization 

4.1.1 Review of existing Time Synchronization Protocols 

In the following subsections, we discuss few synchronization algorithms from 

current literature that have impacted our work. We have categorized our literature 

review in the area of time synchronization into two types: review of time 

synchronization protocols, and review of secure time synchronization protocols. Due 

to the body of work in the time synchronization area, we attempt to summarize the 

security pitfalls and shortcomings of the secure time synchronization schemes only. 

Time synchronization protocols built for non adversarial environments suffer from all 

of the attacks listed in section 5.1.  
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4.1.1.1 Timestamp Synchronization (TSS) 

TSS [42] is a local internal synchronization service where timestamps are received 

and converted into the local timescale of the receiver.  

Synchronization is achieved by calculating the age of each timestamp from its 

creation to its arrival at each sensor node, which includes the time the message is 

resident at a node, and the time taken to propagate the timestamp message from one 

node to another. For multi-hop synchronization, the time taken to propagate the last 

message gets added to the total hold time of the previous node.  Figure 14 is a simple 

representation of TSS.   

M2′ 

M1′ 

M2 

d2 

M1 
ReceiverSender

d1 

 

Figure 14: Timestamp Synchronization (TSS) 

 

4.1.1.2 Reference Broadcast Synchronization (RBS) 

RBS [32] provides synchronization for a multiple nodes at a time. The time source 

node sends a reference broadcast to a set of client nodes in its one-hop neighborhood. 

The client nodes exchange their receipt times of the broadcast messages and compute 

relative offsets and rate differences with respect to each other. This way, they are able 

to relate their local time clocks to the clocks of their neighbors and reduce their 
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offsets with each other. In the end, a cluster of nodes is relatively synchronized with 

each other with respect to the broadcast source.  

Reference 
Broadcast 

Timestamp 
Exchange 

Peer 1

 

Figure 15: Reference Broadcast Synchronization (RBS) 

 

4.1.1.3 Lightweight Time Synchronization (LTS) 

LTS [40] is a time synchronization scheme that was designed to provide a light 

weight, scalable means of synchronizing nodes in a network. The on-demand version 

which is the more lightweight of the two, provides synchronization selectively to 

those that require frequent resynchronization than other nodes in the network. The 

broadcast synchronization which synchronizes all nodes proactively is the other type. 

Both schemes are built to exploit a spanning tree structure, where the root of the tree 

is synchronized through an out-of-band technique.  In the proactive approach, the root 

floods all the nodes with a broadcast, and all child nodes synchronize with their 

parents. In the on-demand approach, child nodes request synchronization, and 

synchronize with the root node through the reverse path (reply messages) using round 

trip times.  Synchronization messages can be further reduced by piggybacking with 

neighbors who have pending synchronization messages. In such cases, nodes simply 

synchronize laterally with their neighbors.  
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4.1.1.4 TimingSync Protocol for Sensor Networks (TPSN) 

TPSN [74] is similar to LTS. A leader node is elected and a spanning tree is 

dynamically created with the leader as its node. The root node now floods the 

network with a broadcast message following which all nodes synchronize with their 

parents using round trip measurements. Message-delay uncertainties are reduced by 

time-stamping at the MAC layer. However, in case of node failures and topology 

changes, the entire process from root node election and tree construction must be 

repeated. 

 

4.1.1.5 TSync 

TSync [28] is an external time synchronization technique that uses independent 

radio channels for synchronization. It does so in order to avoid packet collisions and 

any inaccuracies resulting from the same. TSync comprises of two protocols for 

external synchronization: the Hierarchy Referencing Time Synchronization Protocol 

(HRTS) which is a proactive synchronization scheme, and the Individual-Based Time 

Request Protocol (ITR) which is an on-demand synchronization scheme. Nodes 

synchronize with a root node that has access to global time, in a spanning tree 

structure.   

 

4.1.1.6 Interval Based Synchronization (IBS) 

IBS [41] uses finite time intervals to set bounds on the current time. Nodes that 

wish to synchronize maintain upper and lower bounds on the current time. They each 

exchange their bounds and determine a new reduced interval than their previous 
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interval by choosing the lower of the two exchanged upper bounds and the higher of 

the two exchanged lower bounds. They also keep track of the elapsed time and update 

their bounds for the next round accordingly.  

 

4.1.1.7 Flooding Time Synchronization Protocol (FTSP) 

FTSP [56] achieves time synchronization by a combination of agreement and 

regression. First, a node is selected as the leader based on its ID. (Lowest ID becomes 

the leader). The leader periodically sends synchronization messages to the nodes in 

the network. All nodes update their timestamps and relay the message to their 

neighbors. Each neighbor collects and compares eight pairs of messages and 

computes its new offset using linear regression. This scheme suffers from heavy 

message exchange and additional time loss. In order to minimize some of this loss, 

timestamping is done at the MAC layer.  

 

4.1.1.8 Asynchronous Diffusion (AD) 

AD [67] is a simple time synchronization scheme that essentially averages the 

offsets among neighborhoods. Each node periodically sends a broadcast to its 

neighbors, which reply with a message containing their current time. The receiver 

then averages all received timestamps, and broadcasts its average to its neighbors 

who adopt the newly sent timestamp. In order to avoid random synchronizations, the 

nodes follow a predetermined synchronization order.  

 

 96



 

4.1.2 Review of existing Secure Time Synchronization Protocols 

4.1.2.1 Secure Time Synchronization Protocols SOM, SDM, STM, L-

SGS 

In [75] the authors create four sub-protocols for secure time synchronization. Their 

main goal is to create a secure time synchronization protocol that is resilient to insider 

attacks, with minimal overhead in terms of messages exchanged as well as energy 

consumed. They provide three secure time synchronization protocols to satisfy their 

goals. They also provide a secure group time synchronization protocol that is resilient 

to attacks from external attacker as well as to attacks from a subset of compromised 

group nodes. While these protocols are not fully resilient to some insider attacks, they 

can detect malicious attacks on the time synchronization mechanism.  

 

Ganeriwal et al Secure Time Synchronization Scheme #1: Secure Opportunistic 

Multihop (SOM) 

 

 

Secure Opportunistic Multihop (SOM) assumes a shared secret key KAB between 

two nodes say, A and B that are several hops away, and wish to synchronize. This 

assumption is not very practical due to the nature of deployment of sensor networks 

in that one can never guarantee the existence of a shared key between nodes that are 

multi hops away or in different neighborhoods (i.e., out-of-radio range of each other). 
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At best, one can only say that nodes A and B several hops away, can probabilistically 

share a secret key. Hence the practicality of this scheme is weak. 

Ganeriwal et al Secure Time Synchronization Scheme #2: Secure Direct 

Multihop (SDM) 

 

 

 

Both the SDM and STM (which follows) have additional trust assumptions 

associated with intermediary forwarding nodes. They assume that these nodes are 

trustworthy and hence are susceptible to insider, colluding and compromised nodes. 

(already acknowledged by authors) 

Further, end-to-end delay between A and B is calculated as the cumulative end-to-

end delay between each intermediary hop. For example, if A-> C ->D -> B then   
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dAB = dAC + dCD + dDB is the (minimal) end-to-end delay incurred. Also, as per the 

assumptions, the expected message delay d is pre-calculated and known for any given 

path traversal. Since d which is determined on the entire route, is a function of per 

hop expected delay plus an additional factor for inter hop delays due to mac layer 

scheduling, channel disruption, etc, an intelligent adversary can cause enough delay at 

each hop, that is only slightly lesser than the per hop expected delay for that hop, 

allowing the pulse delay attack to go undetected for the single hop, and cause the 

cumulative end-to-end delay to be higher than the expected and possibly discarded at 

the end. 

 

Ganeriwal et al Secure Time Synchronization Scheme #3: Secure Transitive 

Multihop (STM) 

 

 

 

In this scheme, multi-hop synchronization is achieved by transitively synchronizing 

each pair of nodes along the path from the source to the destination. Since only pair-
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wise delay is being considered, a practical attack would be to cause delays on each 

link such that the delay would be lesser than the maximum expected delay associated 

with that link, but the cumulative end-to-end delay for the entire path would too high 

to admit successful synchronization. Further, since each node synchronizes pair-wise 

with its down-stream neighbor, by the time the synchronization process propagates to 

the initiator, there is already a considerable drift between the clocks of the first and 

pen-ultimate node. For example, if the synchronization request was sent along A->C-

>D->B, D synchs with B, then C synchs with D, and when A synchs with C, there 

will already be a small skew and/or a small drift from the clock of the source B. This 

skew and possible drift must be accounted for in order for the synchronization error to 

remain bounded and practical. 

 

Ganeriwal et al Secure Time Synchronization Scheme #4: Lightweight Secure 

Group Synchronization (L-SGS) 

 

 

 

This protocol is not resilient to internal attacks if G1 is malicious. (acknowledged by 

authors). An implied assumption in this scheme is that every node must trust every 
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other node in the cluster. Thus, it is very easy for an attacker that can capture a single 

node within the cluster. 

This protocol, requires, at a minimum, the computation and transmission of  N-1 

MACs for a single synchronization request and hence is impractical for energy 

constrained deployments.  The modification of replacing this requirement with a 

single MAC signed by a secret key created for the entire cluster is highly insecure. 

Now, the system has a single point of failure if even a single node is compromised. 

Also, due to the use of a symmetric key for the entire group, the MAC cannot be 

verified as having come from G1 (the synchronization source) hence reliability can be 

further decreased.  

Ganeriwal et al Secure Time Synchronization Scheme #4: Secure Group 

Synchronization (SGS) 

 

 

 

In this protocol, 2(N-1) MACs are required to be computed and transmitted per 

synchronization transaction. Hence this protocol also energy-inefficient for the 
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purposes of deployment in an environment where energy consumption should be 

optimal. Further, though the authors claim that this protocol is resilient to insider 

attacks, we can show that this protocol is susceptible to the classic Byzantine 

Agreement Attack [49] 

Using the same example of nodes i,j,k enumerated by the authors, we can carry out 

the attack as follows: 

Nodes i,j,k form a closed triangle where each node has calculated the offset 

between itself and its paired node. Thus each node only lacks the offset value 

calculated between the other two nodes. For the closed triangle, the sum of the offsets 

in a cycle in one direction yields zero if no node is malicious. Practically, the offset 

may not always be zero, due to inherent drift and skew error (as per the authors). 

Attack formulation: We formulate an attack with the offset values set as represented 

in Figure 16. 

 

Node i  (3:05pm) 

-5/-6-5/-5

Node j  
(3:00pm) 

Node k 
 (3:10pm) +10/+10

 

Figure 16: Synchronization Example 

 

At the end of Step 2, each node possesses the following Offset set Oi: 
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Table 1: Offset values at each node at the end of Step 2 

 

 
     i ↔ j ,    j ↔ k ,    k ↔ i 
 
i: {  -5      ,      ?      ,       -6   } i.e., {i->j, j ↔k , k->i} 
 
j: {  -5      ,    +10    ,       ?  } i.e., {i->j, j  ↔k , k->i} 
 
k: {   ?       ,   +10    ,      -6   } i.e., {i->j, j  ↔k , k->i} 

 

Each node depends on Step 3 to receive the missing element of its set Oi (which is 

represented as a ? for simplicity) from its neighboring nodes.  

At the end of Step 3, malicious node k sends the following message in place of its 

original message: 

k: {   ?       ,   +12    ,      -6   } i.e., {i->j, j  ↔k , k->i} 

Since the sum of the offsets is not zero, nodes i, j will only detect that there is a 

malfunction in the synchronization mechanism. It fails to identify the malicious node, 

and there will not be an agreement. On the other hand, if instead of a closed triangle, 

a closed quadrilateral was enforced, then a single malicious node can be easily 

identified. In general, the order of the polygon determines the maximum number of 

malicious nodes that can be identified. The number of malicious nodes must be less 

than a third of the degree of the polygon formed, in order to detect the malicious 

node. 

 

 103



 

4.1.2.2 TinySeRSync: Secure and Resilient Time Synchronization 

In this paper [45], the authors develop a two phase secure and resilient time 

synchronization scheme called TinySeRSync for wireless sensor networks. They use 

hardware assisted source authentication to authenticate source, content and timeliness 

in the single pair-wise synchronization in the first phase and µ-TESLA based 

rebroadcast authentication to ensure timeliness and authenticity to achieve global 

synchronization in the second phase. The single pair-wise time synchronization is 

achieved using hardware assisted, authenticated medium access control (MAC) layer 

timestamps. Global time synchronization is achieved using µ-TESLA for local 

authenticated broadcasts. The 2t+1 distinct paths between the sender and receiver 

ensure resilience against compromised nodes and Byzantine behavior.  

Though this scheme is significantly better than others, it has some practical 

limitations, scalability issues and high overhead that limits its large scale deployment. 

For example, it may not always be practically possible for a node to have 2t+1 

distinct paths to it from the source or an upstream parent node for synchronization. 

By following a 2t+1 approach, the onus of correctly synchronizing rests on the 

comparison a node makes with atleast t other pair-wise synchronization attempts. 

This can be very wasteful if the phenomenon manifests on a large scale in the 

network. In this scheme, a potential way of mitigating DoS attacks is by decreasing 

the synchronization intervals to a short time interval, thereby reducing the window 

available to an adversary to launch such an attack before the timestamps on the 

messages become obsolete and are discarded. The authors also point out that this 

approach comes with significant cost, both in terms of energy spent for synchronizing 
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at such short intervals as well as storage requirements due to the fairly long key chain 

generated in the short interval.  

Further, authenticated MAC layer timestamping requires secret keys be exchanged 

between communicating parties, which is a problem in itself, and a dual problem 

because reliable timestamps may be required to create and share keys post 

deployment. Further, µ-TESLA also requires certain parameters be exchanged apriori 

that has not been handled here.  

Finally, this scheme does not mitigate rushing attacks or wormholes that advance 

messages.  

 

Figure 17: Revised Secure Pair-wise Synchronization in TinySeRSync 

 

Figure shows the revised SPS protocol, in which all messages are timestamped and 

authenticated with the key KAB shared by nodes A and B. Node A initiates the 

synchronization by sending message M1. The message contains M1’s sending time t1. 

Node B receives the message at t2. After verifying the message, at time t3, node B 

sends a message M2 that includes t2, t3 to node A. When node A receives the message 

at t4, it can calculate the clock difference δA,B = (t2−t1)−(t4−t3)/2 , and the estimated 

one-way transmission delay dA = t2−t1+t4−t3. Since all messages are authenticated, 
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any modification to any message will be detected. To prevent the pulse-delay attacks 

[75] and wormhole attacks [85] , node A verifies that the one-way transmission delay 

is less than the maximum expected delay. In fact, this approach can detect any attack 

that attempts to mislead single-hop pairwise time synchronization by introducing 

significant extra message delays. Thus, sender A can easily detect attempts to affect 

the timeliness of the synchronization messages.  

While this approach is significantly better than most approaches, their hardware 

dependency, 2t+1 independent path requirement, and high overhead limit their 

widespread use. 

 

4.1.2.3 Fault-Tolerant Cluster-Wise Clock Synchronization for 

Wireless Sensor Networks 

In [43] the authors propose a synchronization scheme for nodes based in clusters. 

Nodes within a cluster communicate through authenticated broadcasts and only one 

synchronization message per cluster is sent. In each round, one node serves as the 

synchronizer and sends the broadcast. All nodes synchronize with this node if it is 

rightfully the turn of that node to be the synchronizer, and the clock difference 

between the synchronizer is not more than the clock difference between any two non 

faulty nodes.  Fault tolerance is achieved through rotation of cluster heads and 

synchronizers. However, if colluding nodes in a cluster take turns to become 

synchronizers, they can in each round, cause nodes to synchronize to values very 

close to the extremal values of the acceptable range (say, close to upper bound k∆). 
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Consecutive rounds of synchronization with malicious synchronizers can cause the 

clock difference to cross this acceptable range. 

 
4.1.2.4 Secure and Resilient Clock Synchronization in Wireless 

Sensor Networks 

In [44], time synchronization is achieved through two means: the difference in 

clock measurements between nodes and their parents across hierarchical levels, and 

through diffusion through the network. In both cases, the authors claim that they can 

tolerate upto t malicious colluding nodes as well as upto s colluding source nodes. 

However, the approach dwells on the availability of 2t+1 independent paths from a 

single source to any node in order to successfully synchronize to correct values. Each 

node needs to compute 2t+1 clock differences before it can determine which clock 

difference values are acceptable. The message overhead is O(|E|)  which for a 

network with 2t+1 independent paths to each node becomes quite significant. The 

total number of messages in one round is n1+ (|V|- n1-1)(3t+1) where n1 is the number 

of nodes at each level which for certain topologies could be disastrous to scale.  

Clearly, this method not only has a heavy overhead, but also time taken to complete 

a single synchronization round is large enough for significant clock skew to creep in 

before synchronization completes. For this reason and more, the authors indicate that 

they require a high precision pair-wise synchronization scheme for their scheme to 

work, which becomes a catch 22 situation. Finally, to tolerate s colluding sources, the 

nodes must have access to 2s+1 clock differences from s different source nodes. This 

makes it highly impractical to deploy. 
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4.2 Properties of a Robust Time Synchronization Scheme 

Properties of a synchronization system that make it robust and dependable are: 

(P 1) Must be robust to single point failure (except reference source) 

(P 2) Must be robust to node failures 

(P 3) Must always complete in the absence of active adversaries and 

communication errors and in the presence of honest participants who are 

compliant with the scheme. 

(P 4) Must be resilient to active adversaries in that an active adversary cannot 

cause the protocol to deviate from the final outcome by more than the 

tolerable upper limit.  

(P 5) Must allow for selective synchronization in the interest of efficiency for 

nodes that send time-sensitive data. 

(P 6) .Freshness property: This property states that a message must be 

acceptable only while it is fresh. A message is considered fresh if the 

commitment associated with the message is not disclosed yet.  

 

4.3 Components of our Secure Time Synchronization 

Scheme 

4.3.1 One way Key Chains and Authenticated Broadcasts 

One-way Key chains: A one way hash is a cryptographic primitive that is, simply 

put, a series of consecutive hashes created from a random seed. The notion behind a  

one way hash chain is that it is easy to compute up till the end value in one direction 
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if either a seed  or an intermediate value in the chain is known  but computationally 

infeasible to compute in the reverse direction. This property of a one way hash chain 

makes it a very popular primitive in applications that are resource conscious, and 

where parties at each end (producer and verifier) can compute the chain in the same 

(efficient) direction. In other words, this primitive is easy to create and easy to verify. 

If the initial value of the chain that is disclosed can be uniquely and non-repudiably 

attributed to an entity then we can achieve source authentication as well. Many secure 

protocols for resource conscious applications like mobile devices and sensor networks 

employ one-way hash chains as core primitives. These chains can be computed within 

few milliseconds as opposed to tens of seconds to generate and verify signatures. 

Recently, researchers also proposed a variety of improvements to one-way hash 

chains to make storage and access more efficient O(log n) [14][88][87], or to make 

setup and verification more efficient O(n) and O(log2n) respectively [19][86].  

In our time synchronization protocol, we use one way hash chain to provide an 

efficient means of providing message integrity and source authentication. The 

security of the technique vests in (1) the computational infeasibility of an adversary to 

compute a hash in the reverse direction and, (2) the infeasibility of an adversary to 

find a message m′≠m such that H(m) =H(m′).  

Usage: We assume a secure weak collision resistant one-way function F (to derive 

the one-way chain), and a secure one-way function H (to produce commitments). The 

generator then generates a one-way chain VN,……,V0, where Vi = F (Vi+1) at times 
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TN,….., T0 respectively. We assume that the generator and verifiers are at least loosely 

time synchronized, with a maximum synchronization error of T∆. The generator 

creates and specifies a disclosure schedule for the one-way chain by selecting and 

specifying T0 and Td , where T0 is the time of disclosure of end value V0 and Td is the 

time delay between the disclosure of two consecutive values. As per the disclosure 

schedule, the generator will disclose value Vi at time Ti = T0 + i * Td, To authenticate a 

value r as being unaltered in transit, the generator publishes r' = H (Vj || r ), where Vj 

is a value that will be disclosed in the future. When a verifier gets r, r', j at time t, it 

verifies that the generator did not yet disclose Vj by checking that current time t + T∆ 

< Tj (disclosure time of Vj). If this condition holds, the verifier accepts r' and waits for 

the disclosure of Vj to authenticate r'. The verifier first verifies the authenticity of Vj, 

by following the one-way chain to the last authentic value. If Vj is authentic then r' is 

authentic if r′ = H (Vj || r). r can be any value that needs to be authenticated or 

verified. In our scheme, r is the time-stamp being sent by each node. Additionally, if 

Vj is uniquely and non-repudiable associated with an entity A (usually the generator) 

then the hash chain also provides source authentication i.e., provides the assertion that 

A is the generator of the one way hash chain (and hence the message that is tied to the 

hash chain). 
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The optimum values of T∆, and Td are dependent on the specific requirements for an 

application as well as the deployment topology as we will show in our analysis later. 

Also, special attention to the security properties is required during the 

synchronization error marginal interval (Tm + T∆) from the time of disclosure of key 

Km. We leave this as a future exercise.  

Authenticated broadcast:  If source authentication is desired hen a node generates 

its own hash chain, the first element of the hash chain to be disclosed i.e., K0  should 

be authenticated. Thus, the initial element K0 gets coupled with the identity of the 

node generating this commitment. Since hash chains are self-committing, (every 

element disclosed is committed to all subsequently disclosed values) every 

subsequently disclosed element is also authenticated and tied to the generating node’s 

identity.  

Thus, authenticated broadcast is only required for the first disclosed element of the 

hash chain. After that, each element of the hash chain subsequently disclosed is also 

authenticated due to the initially disclosed key being committed to all future keys. 

K0            ←       K1           ←       K2           ←       Km-2           ←       Km-1           ←       Km  

 

|  |          …………     …………     …………            | 

 

1st  2nd      mth (last) 

to be   to be     to be 

disclosed  disclosed    disclosed 

4.3.2 Basic Pair-wise Time Synchronization 
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Figure 18: Basic Pair-wise Time Synchronization 

 

This is a simple synchronization technique using Christian’s algorithm [6] for node 

A to synchronize itself with node B. Two messages are required for this 

synchronization (three if B also wishes to synchronize with A). If A desires to 

synchronize with B, it sends a synchronization request message to B at time T1 and 

records the time (T1). B receives the message at, say time T2. B records the time and 

sends A a synchronization reply message at time T3 which A receives at time T4. The 

process of synchronization shown in Figure 18 is achieved by the sender A 

calculating its clock drift ( )2 1 4 3

2
T T T T− − −

∆ =   and propagation 

delay
( )2 1 4 3

2
T T T T

d
− + −

=  with respect to the receiver using the time values 

exchanged.  

For a network wishing to synchronize its nodes with a global time, the nodes will 

synchronize with the node(s) that have access to a global time reference. Throughout 

our work, we assume node B has access to global time and the other nodes, namely A, 

C, E, D and F synchronize with B (Figure 19). 

( ) ( )2 1 4 3

2
d T T T T− + −

=Propagation Delay 

Clock Drift T1 T4 

    Node B

Node 

T3T2
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4.4 Our Secure Time Synchronization Scheme 

4.4.1 Adversary Model 

In the case of an internal adversary, we assume that the adversary can be only as 

powerful as the most powerful node in the network, for e.g., in the case of a 

heterogeneous network, the adversary maybe as powerful as the highly capable nodes 

in the network as opposed to the low-end dust-type sensor nodes. While considering 

an external adversary, we do not put a bound on the capabilities of the adversary since 

an external adversary could have the latest and greatest resources at its disposal. 

However, we can restrict the possible attacks that an external adversary can launch 

from outside the network since it does not have the obvious advantage that an insider 

may have (for e.g., shared secret keys if any, passive eavesdropping on a secured 

channel, etc) Finally, if an (external) attacker is able to compromise existing nodes, 

its capabilities of injecting and extracting information from within the network is 

limited by the capability of the compromised node(s). Besides these, the adversary 

can record, alter, reuse, insert, masquerade, replay, rush, fabricate messages, and 

collude with other adversaries. An adversary, however, cannot redirect, jam, capture, 

stop and delete messages that have been transmitted into the medium.  

4.4.2 Assumptions 

We start with a few practical and simple assumptions. Firstly, at least one node has 

access to a global time reference. All nodes will synchronize with this source 
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eventually.  If there are multiple root/leader nodes, they should all have access to an 

external unalterable coherent time reference. Nodes that have access to global time 

references are always stationary. Global time kept by any node is always orders of 

magnitude more accurate than the accuracy achieved by single-hop synchronization. 

We require no trust assumptions, except the obvious one, where the node that has 

access to a global time reference is trustworthy. Nodes must store nonces for as long 

as the average key disclosure times. Average key disclosure times and 

synchronization interval together affect storage cost. Shorter synchronization 

intervals result in more nonces being stored while key are pending disclosure. The 

tradeoff is simply determined based on application specific requirements.  

 

4.4.3 Protocol Specification  

4.4.3.1 Notations and Definitions 

1. We define all participating principals { }  ∈ A, B, C, D, E P where P is the set of 

all principals desiring to synchronize. Further, P comprises of all honest (H) 

as well as all corrupt (C ) principals inside the network. No principals share 

secrets apriori.  

2. The initial authentication element that allows each node to authenticate any 

commitment it generates is established prior to time synchronization and is 

not dependent on it.   

3. Principals are aware of their upstream and downstream neighbors as well as 

the source they synchronize with. 
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4. It is highly desirable but not necessary for a  node to know its distance from 

the source it synchronizes with.  

5. denotes a message M sent from principal A  to 

principal B , and reads “At  node A sent message 

{:  ,→
1 2T T 1A B A,B }T

1T { }, 1A,B T  to B, which was 

received at B at local time . In general, Node X (send time at sender)  (receive time at 

receiver) Node Y: {Contents of message} represents a single synchronization 

message. 

2T

6. n is the known maximum depth of the tree and m is the # hops to a target node 

if known. If not known sender assumes m=n. 

7. Nx is the crypto-quality nonce from principal X. 

8. Kj  is the key disclosed at time j.  

9. H is the secure one-way function used to derive verifiable time commitments. 

10. F is a secure weak collision resistant one-way function to derive one-way key 

chains. 

11.  represents the local time of node at instance i, and  TCAB which represents a 

time commitment between  A  and B is the collision free hash that contains a 

temporary secret and a time value that the sender commits itself to upfront.  

iT

12. is a non alterable path component created by the time source (B in 

our case). 

)(A.B.C.D....
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4.4.3.2 Our Secure Time Synchronization Protocol 

 
 

B 

                 

B 
3.

4.
D F 

A 
2. 5.

C 

6.1.

A E 

 

Figure 19: (a) Single hop (b) multi-hop 

          

Protocol Description 

Case 1: Single hop synchronization 

 
Figure 19 (a) represents the single hop time synchronization scenario. If B is the 

source of global time for a subset of the network (as shown), then A synchronizes 

with B. As per the basic description earlier, A sends a synchronization request 

message to B. Through this message A additionally commits its current time value T1 

publicly by creating a time commitment TCAB which locks in the value of A’s time 

apriori. Specifically, the commitment contains the identities of the sender and 

receiver (in our example A and B), the synchronization request time T1, the depth of 

the tree from source B to A (which for a single hop is 1), a crypto quality nonce NA, 

and a one way hash chain value Km which serves as the temporary secret. When B 

receives the synchronization request, it checks to see if the hashed commitment is 

 116



 

stale i.e., if the hash chain value Km has already been disclosed, and that the time 

remaining till exposure of the secret is not too large. This ensures that the message is 

not a replay, not too old to process, not too early that it amounts to futile storage cost 

for B, and also to avoid clocks to fall out of synch if the interval is too large. If the 

message is acceptable, then B waits for the key to be disclosed. At a suitable time as 

per the disclosure schedule, A discloses a value from the hash chain Kj at time Tj. On 

disclosure, B can verify that the time commitment was indeed produced legitimately 

by the generator of the secret key by following the hash chain to the end. If it verifies 

correctly, B sends the synchronization reply message which includes B’s timestamps 

T2 (message receipt time), T3 and (response message send time). Similar to A, B also 

authenticates its time values by including a commitment of its receive time T2 and 

send time T3 in the synchronization reply message. The steps are shown below: 

 

Case 1: Single Hop →A  B  

At A: 

Compute time commitment [A-B] TCAB: 

TCAB = { H (Km | T1 | NA |P) } ; m<n, P=(A| B| m) 

(1) { }:  , ,→
1 2T T 1 A ABA B A, B T N ,TC ,m, (m)H  

At B:  

If hash chain key has not been exposed, and time interval is not too much in 

the future or in the past, process the request: 
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(2) { }:  , , , ′→
3 4T T 2 3 A B BAB  A B A, T T N , N ,m ,TC  

Verify Time on key disclosure. If true 1T

Synchronize A. 

Else, discard request. 

 

At A: 

 Calculate offset and delay (Synchronize with B) 

If bi-directional, 

 Repeat procedure at B. 

 

Case 2: Multi hop synchronization 

 
Figure 19 (b) represents the multi hop time synchronization scenario. If B is the 

source of global time for a subset of the network (as shown), then A attempts to 

synchronize with B through C, D. Similar to the single hop case, each node on route to 

the source will perform time commitments (MACs) over the previous node’s 

commitment. Thus there will be a nested series of commitments that serve to not only 

authenticate the time values of each node along the path but also to assert and verify 

the path and set a temporal order amongst node along the same path to the source. We 

show subsequently how these play an important part in mitigation some special 

attacks.  

In the multi hop case, A now sends a synchronization request message for B to C.       

As before, through this message A commits its current time value T1 publicly by 
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creating a time commitment TCAB which locks in the value of A’s time apriori. The 

commitment contains the identities of the sender and receiver (in our example A and 

B), the synchronization request time T1, the depth of the tree from source B to A if 

known to A, a crypto quality nonce NA, and a one way hash chain value  which 

serves as the temporary secret. If A does not know the number of hops to the source, 

it can assume m to be equal to the maximum depth of the tree n. When C receives the 

synchronization request, it checks to see if the hashed commitment is stale i.e., if the 

hash chain value has already been disclosed, and that the time remaining till 

exposure of the secret is not too large. If the message is acceptable, then C computes 

the next message and adds its own nested commitment to the message 

as shown below. This process continues for all nodes along the path 

until the synchronization message reaches B. B waits for the keys to be disclosed. At a 

suitable time as per their disclosure schedules, D, C and A disclose a value from their 

respective hash chains  at times

A
mK

A
mK

( AB C
TC C, TC )

, ,D C A
j k lK K K , ,D C A

j k lT T T .  On disclosure, B can verify 

that the time commitment was indeed produced legitimately by the generator of the 

message by following the hash chain to the end. If it verifies correctly, B sends the 

synchronization reply message which includes B’s timestamps T6 (message receipt 

time), T7 and (response message send time). The downstream messages follow the 

same pattern as the upstream messages. If all nodes along the path are honest, this 

technique allows not only A, but also all nodes along the path to B to correctly 

synchronize with the source B in the same iteration.  The steps are shown below: 
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Case  2: Multi-Hop → → →A  C  D B  

At A: 

Compute time commitment [A-B TCAB]: 

 If # hops to B known, select m=# hops 

Else, m= n 

Time Commitment [A-B] TCAB = { H(Km | T1 | NA | P  )  };m<n, P=(A| B| m) 

(1) { }:  , , , ( )m→ H
1 2T T 1 A ABA C A, B T N ,m,TC  

At C: 

If hash chain key has not been exposed, and time interval is not too much in the 

future, or in the past, process the request: 

(2) ( ){ }:  , , , , ,→
3 4T T 2 3 1 A C AB C

C D A,B C T T T N ,N , m,TC C, TC  

Else, discard request. 

At D: 

If hash chain key has not been exposed, and time interval is not too much in 

the future, or in the past process the request: 

(3) 
( )( )

, , , , , , ,
:  

⎧ ⎫⎪ ⎪→ ⎨ ⎬
⎪ ⎪⎩ ⎭

5 6

4 5 2 3 1 A C D

T T
AB C D

A,B C D T T ,T T T N ,N ,N , 
D B

m, TC D,TC C, TC
 

Else, discard request. 

At B: 

If hash chain key has not been exposed, accept message and wait for disclosure.  

On disclosure, first verify key by following hash chain.  

 120



 

If hash verifies correctly, process the request: 

  Time-stamp is authentic if ( )|=AB m 1 ATC K |T |N PH  and so on 

  Observed Propagation time/Transit time = True Transit time if all hashes  

verify correctly. 

Else, discard request. 

(4) { }:  , , , ′→
7 8T T 6 7 A B C D BAB  D (A.C.D.B), B A, T T N , N , N , N , m ,TC          

Synchronize with A in the reverse order. 

At D: 

If hash chain key has not been exposed, accept message and wait for disclosure.  

On disclosure, first verify key by following hash chain.  

If hash verifies correctly, process the request: 

  Time-stamp is authentic if ( )=AB m 1 ATC K |T |N |PH  and so on 

  Observed Propagation time/Transit time = True Transit time if all hashes  

verify correctly. Synchronize with B 

Else, discard request. 

(5)  
( )

, , , , ,
:  

⎧ ⎫⎪ ⎪→ ⎨ ⎬′⎪ ⎪⎩ ⎭
9 10

6 7 8 9 A

T T
B C D BA D

(A.C.D.B), B D,C, T T T T N ,
D  C

 N , N , N ,m ,TC D.TC

At C: 

If hash chain key has not been exposed, accept message and wait for disclosure.  

On disclosure, first verify key by following hash chain.  

If hash verifies correctly, process the request: 

  Time-stamp is authentic if  ( )| | |AB m 1 ATC = K T N PH   and so on 

  Observed Propagation time/Transit time = True Transit time if all hashes  
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verify correctly. Synchronize with B 

Else, discard request. 

(6)          
( )( )

, , , , , ,
:  

⎧ ⎫⎪ ⎪→ ⎨ ⎬′⎪ ⎪⎩ ⎭
11 12

6 7 8 9 10 11 A

T T
B C D BA D C

(A.C.D.B), B D,C, AT T T T T T , N , 
C  A

N , N , N ,m ,TC C.TC D.TC

At A: 

If hash chain key has not been exposed, accept message and wait for disclosure.  

On disclosure, first verify key by following hash chain.  

If hash verifies correctly, process the request: 

( )| | |AB m 1 ATC = K T N PH  

Extract values T1 through T12 and synchronize with B. 

 

Of the potential attacks listed in section 5.1 this scheme mitigates attack M1 (False 

timing data/Insertion Attack) by the use of hash chains. M3 (Replay attacks) are 

mitigated by the use of nonces and timestamps. The use of nonces and verifiable 

hashes require a node to wait for the original message from its upstream nodes and in 

the case of a reply, a node needs to wait for the original reply from the downstream 

nodes. Hence M4 (rushing attacks) can be averted. Since this scheme is not dependent 

on shared secrets, compromised nodes do not provide any adversarial advantages and 

hence M5 (Compromised nodes) is avoided. A more thorough analysis would be 

required to comment on attacks M8 (colluding node attack) and M9 (Power save 

mode attacks). The analysis is described in detail in the following chapter. 
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Chapter 5 Analysis of Secure Time Synchronization 

In this section, we will analyze the working of the protocol under special attack 

scenarios. We show that in the face of each of the attacks mentioned below, the 

properties of the designed time synchronization scheme are satisfied and that the protocol 

does not terminate at an undesirable state.  

5.1 Attacks against Time Synchronization 

The schemes discussed above in Section 4.1.1 are meant for non-adversarial scenarios 

due to which simple attacks by malicious nodes to foil the synchronization process will 

be successful. Few schemes discussed in Section 4.1.2 which are intended for adversarial 

environments are also susceptible to various attacks. In this section, we summarize some 

of the common attacks that can be launched against time synchronization schemes. These 

are: 

(M 1) Malicious Nodes send false timing data/Insertion Attack: In RBS & TPSN 

type of schemes where hierarchical synchronization is done, if a non root 

node at the upper level sends malicious timestamps to the nodes below it, all 

the downstream nodes will fail to synchronize correctly. For e.g., if n2 

synchronizes through n1, then if n1 sends malicious data to n2, n2 will end up 

synchronizing to the incorrectly inserted value. Thus the entire 

synchronization process can be disrupted. 

(M 2) Malicious nodes jam data &/or delay messages: Sometimes, a malicious node 

does not have to alter a timing message before forwarding. It can simply 
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jam/block the message from being received by a node under attack. Another 

attack would be simply delaying the message instead of jamming it.  

(M 3) Malicious nodes replay older messages: An older message maybe replayed to 

trick the downstream nodes into synchronizing with an incorrect timestamp. 

(M 4) Malicious receiver can send next message before receiving the request: A 

malicious receiving node, can forward a time-stamped request to its 

downstream node without receiving a legitimate request from its upstream 

node. Another variation would be when a malicious receiver sends a reply 

message back to the upstream node before receiving a message back from its 

downstream nodes. 

(M 5) Compromised node: If a legitimate node gets compromised, all secrets in 

possession of the node can be used by the attacker to carry out new attacks. 

These include sending legitimate requests, fabricating or masquerading as a 

legitimate user, etc A clever adversary can very easily use this to its 

advantage and foil the synchronization procedure. A worse scenario would be 

if the adversary is able to deplete the battery of other nodes in the otherwise 

secured network by tricking the nodes into legitimately synchronizing with 

itself repeatedly. 

(M 6) Colluding nodes: Any number of colluding nodes can cause worm holes or 

collectively fabricate data in the network causing time synchronization 

protocols based on propagation delay and neighbor time values to fail. 

(M 7) Power Save Mode Attacks: These types of attacks are possible in power-

conscious networks where some power-saving schemes are being used for 

 124



 

optimizing and prolonging battery life of the nodes. An adversary that has 

knowledge of the power-saving / sleep scheduling schemes used in a network 

can optimize its own behavior to take advantage of it and foil the 

synchronization procedure. Thus, if such schemes are being employed, we 

stress that an analysis under such conditions is equally important.  

In this work, we do not consider the attacks on the hash chaining method itself, (for 

example, reusing hash key indices, reusing older hash keys, etc), which are well 

documented and protected against in works like [3]. 

5.1.1 Replay and Redirect Attacks 
 

Replay attacks occur when an adversary stores a copy of a message and replays it at a 

later time after the original message was intended to be used. We examine the single hop 

case where T is an adversary that records message 1 sent by A to B (Refer section 

4.4.3.2). After some time  has elapsed, T decides to replay message 1 to B. Since the 

message is neither signed nor encrypted B has no way of knowing that the message 

originally came from A. As a result, B accepts the message initially. If the elapsed time 

is greater than the disclosure time, and the hash chain commitment (key Km) has been 

disclosed already, the freshness verification will fail and B will discard the request as per 

protocol. If on the other hand, the elapsed time

′t

′t

′t  is lesser than the time left for disclosure 

(i.e., key disclosure corresponding to this message has not occurred yet) then if N is a true 

crypto-quality nonce, B will detect the replay comparing the nonce with currently stored 

nonces. The existence of a match makes the assertion to B that it has seen this message 

before. It is worth noting here that a node only needs to store a nonce until a little longer 
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than the time window of validity of the nonce. A nonce expires when the commitment 

key associated with a message (and hence with the nonce) is disclosed. A node need not 

store a nonce beyond this expiry since a message can be rejected on the basis that the 

time stamp is no longer fresh. We can do this because both the nonce and the time stamp 

are committed by the sender. Since timestamps can only advance from the previous 

message, and nonces are required to be unique across a large time window, replayed 

messages cannot be successful. 

Thus, the presence of timestamps and nonces in the messages serves as an adequate 

countermeasure to this type of attack. The multi-hop case is similar to the single hop case 

and no new additional information is made available to the adversary. In both the single 

hop as well as the multi-hop case, we see that simply replaying an older message is not a 

successful attack.  

A redirect attack occurs when a message is sent to a third entity instead of the intended 

participant. It can manifest in two ways, with original message suppression and without. 

In the former case, the original message is suppressed from reaching the receiver and 

redirect to a different entity, whereas in the latter case, the message is “replayed” to a 

different entity and not the originally intended recipient without having suppressed the 

original message. We argue that in a wireless medium only the latter is a valid attack 

because message suppression in a wireless medium is difficult to achieve. Subsequently, 

there are various physical and mac layer techniques like spread spectrum [69] etc that 

sufficiently mitigate selective suppression attacks. Therefore, we only consider the latter 

case in our analysis.  
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Let us examine the case where adversary T redirects message (1) to a different node D. 

D will initially accept the message and wait for key disclosure to validate the message. 

Since the key commitment TC contains the identities of both the original sender and 

intended recipient, on key disclosure D will find that the message is not intended for itself 

and discard it.   

5.1.2 Masquerade Attack 
 

 

B 
3. 

4. 
D F 

2. 

Time Synch request 
Time Synch reply 

Malicious Node 
Regular Node 
Source Node 5. 

C 

1. 2'

A E 

Figure 20: Node C masquerading as the source B 

 

A masquerade attack occurs when a user presents itself to the system as another user, 

usually a legitimate one. This may be done in order to gain unauthorized access to 

information or resources, to disseminate (mis)information in another’s name, or to block 

or deny a system from operating correctly. [60]  

A malicious node may masquerade as a legitimate upstream or downstream node or as 

the source of global time itself in order to mislead other (mainly downstream) nodes.  In 

our example, C is the malicious node that is trying to masquerade as the source of global 

time B to A. (Refer Figure 20) If A wants to resynchronize its time after a finite and pre-

configured interval, it sends out a synchronization request message as per protocol by 
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creating its Time Commitment for A B and creating the synchronization message as per 

the protocol description in the earlier section. To masquerade as B, C cannot simply 

replay part of B’s earlier message (as shown above in section 6.1). The only way for C to 

trick A into falsely believing it is communicating with B is by sending a fabricated 

synchronization reply message to A which is made to appear as if it came from B. Since 

disclosed keys cannot be reused [3], and H is a strong pre-image resistant one-way 

function, while key Km is undisclosed, we argue that as per the birthday paradox, 

adversary C cannot find a suitable , X such that'
mK ( )' | XH mK = TC  BA - the true reply 

commitment without a significantly large number of tries. Also, the adversary has to 

attempt this before a disclosure is made by B, otherwise A will discover that the message 

it holds is not from B. (Note that if an adversary instead of trying to generate an authentic 

time commitment simply replaces with an arbitrarily computed time commitment, the 

message will still be discarded. We discuss this premise in the MITM attack below.) 

 

5.1.3 Man-in-the-middle (MITM) and message capture attacks 
 

A man in the middle (MITM) attack is one in which the attacker intercepts messages in 

an exchange and then retransmits them, (sometimes substituting his own crypto 

primitives for the requested one) so that the two original parties still appear to be 

communicating with each other. The attack may be used to intercept, read or alter 

messages without the knowledge of either transacting party. 

As indicated in the earlier section, message capture, suppression, selective jamming are 

not easy to achieve in a wireless medium. Various techniques at the physical and mac 
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layer sufficiently reduce the possibility and question the practicality of these attacks. One 

seemingly practical way of launching a MITM is if the adversary can send a message 

before the original is received at the recipient or to quickly compute a response and send 

before legitimate reply reaches the intended recipient. A multi-hop path is more 

conducive to this type of attack due to the practicality of creating a middle man message 

before the legitimate responder can create it. Additionally, in a multi-hop, the 

intermediary node can easily make the end nodes believe that they are communicating 

with each other via a single hop by making itself invisible if the end nodes are not aware 

of the overall topology.  We examine the single and multi-hop cases for this attack as 

follows: 

 

Single hop case: Figure 21 shows a single and multi hop MITM. Nodes B and F are 

involved in the single hop case. F sends a synchronization request i to B 

{ }:  , ,→
1 2T T 1 F FBF B F, B T N ,m,TC , X1 alters the message by altering the time commitment 

TCFB to ( )ˆˆ ˆ ˆ | | |K=FB m 1 FTC T N P  H , where ( ):P F|B|m  and sends  

{ }ˆ
ˆ ˆˆ ˆ:  , ,→

21
T 1 FT

i : F B F, B T N ,m,TC FB
to B before F’s message reaches B. (In practice this is 

a very hard thing to achieve). B receives the altered synchronization request message  

instead of i and initially accepts it. When X1 finally discloses the commitment key  that 

can validate , B finds that the hash key  validates the hash commitment but fails 

the authenticity test. i.e., it is not tied to F’s identity. Since B does not need to 

synchronize itself with F, (since B is the source), in the interest of speeding up 

communication, it can simply go ahead and send the synchronization response ii to X1 

î

K̂m

ˆ
FBTC K̂m
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whom B believes to be F. { }4ˆ
ˆ:  , , ,→

3T 2 3 F BT
B  X B F, T T N , N ,m,TC BF

. Again, X1 intercepts 

this message and replaces it with { }4ˆ
ˆ ˆ:  , , ,→

3T 2 3 F BT BF:  B  X B F, T T N , N ,m,TCii ii'. As in 

the former case, F initially accepts the message, but later discards it without 

synchronization since the hash chain broadcast will render the message invalid. TCAB = 

{ H (Km | T1 | NA |P) } ; m<n, P=(A| B| m).  

(Alternately, as we have seen in the earlier case, adversary can attempt 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

No. of  TC bits

2 to 

look for a collision in the time commitment to be substituted, for the message to pass the 

authenticity test, but this is even harder and resource intensive on the adversary for a 

single time synchronization operation. An operation that repeats very often.) 
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G 

Figure 21: Man-in-the-middle attacks 

 

Multi-hop: Again with reference to Figure 21, when G sends a synchronization request 

to A, adversary X2  replies to G before A does (similar to single hop case, but much more 
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practical). As in the first case, X2 cannot create legitimate hash chain commitments (in a 

timely manner) matching A or B’s identity and the attack fails.  

5.1.4 Simple Collusion  
 

Collusion occurs when multiple entities, usually with malicious intent, work in tandem 

to achieve more prominent results than when each acting alone.  

 

 

Figure 22: Simple collusion between C and D 

 

In our example Figure 22, C and D collude to give the illusion of a shorter path depth 

and thereby ‘advance’ a message as follows. During the initial synchronization request 

phase, A sends a synchronization request message to C. To give the impression of a 

shorter path, and hence incorrect synchronization values, C simply forwards the message 

to D without adding its own time commitment or following the format of the protocol. 

Now, D appends its time commitment to the message directly after A’s and forwards the 

message to B. From B’s point of view, the path from the leaf node A now looks like A  

D  B. B builds the response message accordingly and send it to D. Now, to maintain hop 

count, and number of time commitments, D forwards the message as is (without 

Time Synch request 
Time Synch reply 
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Regular Node 
Source Node 

F 
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C 

D 

B 

6. 

5. 

4. 
3. 

2. 
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appending its commitment) to its colluding partner C. C appends its commitment to the 

original message from B and sends to A. To A the view of the network from the source 

would look like B  C  A.  

The presence of the path information component (A, D, B) that is included by the source 

B 

5.1.5 Wormhole attack 
 

 

Figure 23: Wormhole between nodes G and D 

A wormhole is a tunnel in a network, which allows signals from nodes to travel faster 

than normal, or sometimes, gives the impression that messages are traveling through the 

in the synchronization response message in our protocol mitigates this attack. A 

downstream node cannot alter this component without invalidating the integrity check of 

the message. It is worth noting here that if there are three or more colluding nodes along 

the same path, for example if there exists another compromised node between C and D, 

they can effectively mask the presence of this intermediary node along the path and 

advance the synchronization message. This form of attack is a type of wormhole attack 

and hence is discussed in the next sub section.   
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sh

 channel or due to the compromise of all the nodes 

ex

ortest path (lesser hop count) than actual. Malicious nodes frequently use this 

technique to cause a large number of messages to be directed through them without 

actually deviating from protocol. 

Consider the case when two nodes significantly apart tunnel messages between 

themselves, either through a side

isting between them to give the impression that they are next hop from each other. This 

will result in the synchronization path appearing smaller than actuality. In our example 

(Figure 23) G and D collude resulting in a wormhole in the network. Thus, if A sends a 

synchronization message to G, G tunnels it to D bypassing C. D sends the shorter (faster) 

message to B and on receiving a response from B sends it back through the tunnel to G. 

Since B sees a legitimate view of the network, it sends a response that reflects the same 

path in the path component, viz., B  D  G  A back. The message will pass all 

validation checks and will be accepted at A if A is unaware of m the no. of hops between 

itself and its source B. If A is aware of the no. of hops between itself and B then it can 

calculate the maximum expected message delay (since it is a function of the send time, 

propagation time, and computation time at each intermediate node). If the total 

transmission time is greater than the maximum delay, then the timeliness of the message 

is under question, and an anomalous behavior may be suspected. Therefore, in the current 

state of the protocol, a wormhole attack is possible if a node does not know the distance 

(in number of hops) between itself and its source.  (Recall that our protocol specification 

dictates that either a node knows the no. of hops m, or then assumes m=n and generates a 

hash chain of appropriate length.) If the condition m=n is exercised, then a wormhole 

attack may be successful.  
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The attack can be mitigated by the following two ways:  As indicated, if A had 

additional topological information, for example, if the degree m was known to A, it may 

d

5.1.6 Compromised node exhibiting Byzantine Behavior 

 the 

ompromised node, all data stored on it, as well as legitimate use of the identity of the 

co

etect the anomaly in degree using message delay characteristics. Additionally, if either A 

or B have topological/deployment knowledge like the existence of C between G and D, the 

wormhole fails with high probability. With knowledge of system delays, processing 

times, etc and by comparing the actual time taken by a message to traverse the said route, 

an intelligent wormhole detection algorithm can detect a wormhole if one exists (within 

limits of its false detection rate).  Employing watchdogs in the deployment that can 

observe multiple  

 

Once a node is compromised, an adversary has access to all information available to

c

mpromised node. In this sub section, we try to examine the effect of such behavior on 

the functioning of the secure time synchronization protocol.  

In the example shown in Figure 24, C is the compromised node that shows Byzantine 

behavior. 

 134



 

E G 

A 

8. 1. 

C 

D 

B 

7. 

6. 

5. 
4. 

3. 

2. 

F 

Source Node
Regular Node
Malicious Node 

Time Synch request 
Time Synch reply 

 

Figure 24: Arbitrary Byzantine behavior 

 

Consider the following case: A sends a synchronization request message to G who 

appends its own commitment and forwards the message to C. As per protocol, C appends 

its own commitment to the message and forwards it upstream to D. The message is 

constructed in a legitimate manner with a legitimate commitment, however, with 

incorrect timing values. In this case, the messages will validate correctly, and timing data 

will be successfully accepted by all the nodes in this transaction if the timing value is 

intelligently fabricated to be within error limits for this deployment. However, due to the 

nature of the scheme, the damage done by this attack is minimal to zero, depending on 

the location of the Byzantine node in the tree. Nodes upstream from the Byzantine node 

will not be affected as they synchronize with the source through their upstream 

neighbors. All downstream nodes will be impacted, but the effect is more pronounced 

closer to the Byzantine node and reduces as we traverse deeper into the tree away from 

the Byzantine node. The deviation in the synchronization error from the average error 

will be bounded on the upper side by the maximum synchronization error. It is also worth 

reiterating here, that a Byzantine node can not advance timing values, only delay them, 
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that too by a limited range. Thus, in this example, node D synchronizes with source B 

directly and hence does not get affected by the fabricated timing values from C. C itself, 

synchronizes with B through D and does not benefit from causing itself to synchronize 

incorrectly. Nodes downstream from C will be marginally affected. If the fabricated data 

is within band (timing values cannot be reduced, only increased, due to the presence of 

previous node commitments) i.e., σ < σmax, relative synchronization error between G and 

C will increase compared to the average synchronization error in the absence of an 

adversary. However, the delta synchronization error between G and A will reduce slightly 

due to G’s committed time values prior to the faulty synchronization. Thus in the figure 

shown, we recreate the messages from A to G to C.  

(1) { }:  , ,→
1 2T T 1 A ABA G A, B T N ,m,TC  

(2) ( ){ }:  , , , , ,→
3 4T T 2 3 1 A G AB G

G C A,B G T T T N ,N , m,TC G, TC  

(3) 
( )( )

, , , , , , ,
:  

⎧ ⎫
⎪ ⎪→ ⎨ ⎬
⎪ ⎪⎩ ⎭

5 6

4 5 2 3 1 A C G

T T
AB G C

A,B G C T T ,T T T N ,N ,N , 
C D

m, TC C,TC G, TC
 

If C is dishonest, it can change the timing value T4, T5, (synch request) and T12, and T13 

(on the return route).   All other time values are already committed, and any alteration 

will result in detection and the message being discarded. Also, these values can only be 

changed within a small limit (lower bounded by the previous commitment and upper 

bounded by the allowable synchronization error), as D may not accept the message if the 

time value is too far out compared to its own clock.  Similarly on the return route, C can 

lie about the true values of T12 and T13 within a small limit only. The result of this is that 

every node between C and the source B will synchronize correctly irrespective of the 

 136



 

downstream values. C knowing its own true time values will also synchronize correctly 

(since it has no motive to desynchronize itself). Node G will synchronize with B using 

time values T3 through and T14. As a result, the false values of C will cause some effect 

but will get averaged out due to the presence of time values from other nodes in the path. 

Similarly, A synchronizes with B through values T1 through T16 and the effect of C’s 

false values is further drowned out.  In other words, as the path length increases, the 

effect of bounded false timing values on the entire multi-hop synchronization decreases 

provided the false values are not in majority along the path. Note that, there is a trade off 

here. As the path length increases, the uncertainties associated with each node’s 

individual processing time adds up and creates a non-negligible amount of uncertainty 

over the entire path. We would like to study this trade off as a future goal.  

 

Multiple Byzantine adversaries 

While the presence of a single Byzantine adversary does not significantly impact the 

security of the time synchronization protocol, this may not hold true in the presence of 

multiple Byzantine adversaries. Traditionally, Byzantine behavior is tackled using 

redundancy and thresholding techniques. Common approaches include multi-path 

multiple message approaches, randomizing and splitting data into chunks that travel 

through disjoint paths and are assembled at the recipient node to circumvent multiple 

Byzantine adversaries. Also, impossibility arguments render this problem unsolvable 

unless the activity of Byzantine adversaries is limited to the simultaneous corruption of a 

small number of nodes within a certain time window. We leave the study of multiple 

Byzantine adversaries as a future study goal. 
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5.1.7 False timing data insertion Attack 
 

Simpler false timing data/insertion attacks are thwarted due to the usage of hash chains. 

As each node computes a committed time value that is corroborated using its 

authenticated hash value, any other node cannot insert or replace legitimate values with 

false data as doing this will simply result in the hash values not verifying correctly. 

Alternatively, in order for a node to generate a correct hash value it needs to attempt a 

large number of hash computation operations (birthday problem) for a single 

synchronization operation. 

5.1.8 Rushing Attack 
 

The use of nonces and verifiable hashes require a node to wait for the original message 

from its upstream nodes and in the case of a reply, a node needs to wait for the original 

reply from the downstream nodes. Hence (rushing attacks) can be averted.  

5.1.9 Forging Messages 
 

Again, message forgery is mitigated due to the usage of one way authenticated hash 

chains. While a forged message can get accepted by a recipient for not failing any 

integrity checks or lack of obvious anomalies like incorrect nonces, time reversal etc, 

forged messages will fail the authenticated hash chain broadcasts and will be discarded 

without using the forged values. 
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5.2 Communication Overhead 

 

We calculate the overall communication overhead in terms of messages sent for each 

synchronization transaction to complete. As per the protocol description in Section 4.4.3, 

n is the known maximum depth of the tree and m is the number of hops to a target node if 

known. Since for every synchronization transaction, each intermediate node sends three 

messages, the first is the synchronization response upstream, the second, the 

synchronization response downstream and the third being the authenticated broadcast. 

Also, each leaf node sends only message, the synchronization request, and a source sends 

two messages, the synchronization response and the authenticated broadcast. 

Thus, for a given transaction, the number of message required per path = 3n. 

Maximum number of messages (for max depth m) per path = 3m. 

 

5.2.1 Communication Overhead over a time period T 
 

Since sensor network deployments run on finite power, it would be worthwhile to 

assess what the communication overhead looks like over a long period of time T. 

Therefore, if the Synchronization interval is set to be Tint, then in a given finite time 

interval T, the number of messages would be 

int

3
T
Tn  with a maximum of 

int

3
T
Tm  . 
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Additionally, there is one more broadcast downstream, (final synchronization source 

time disclosure) which makes the total number of messages in the above equation to 4  

and  respectively. 

n

4m

 

5.2.2 Communication Overhead during synchronization in tree 
 

In the interest of optimal time synchronization, we can make use of the tree topology so 

as to reduce redundant downstream between a node and all its children. In this case, when 

a node at level i sends its synchronization request, all sibling nodes that can hear its 

request will cache it and compare their own timestamps with their sibling. When the 

response is received from the parent node, and verification is complete, If an upstream 

node synchronizes with more than one downstream node, then the number of messages 

required is as follows: 
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Figure 25: Tree structure 

Let Ni be the number of nodes at each level i, and Ei  be the total edges between nodes 

at level i and the level above (i-1) Therefore, the total number of messages per transaction 
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can be calculated as: for total number of upstream messages plus total 

number of downstream messages.  
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Adding the broadcast requests from upstream nodes, we have 
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For our example shown, this becomes 4n messages.  

 

5.2.3 Storage Overhead  
 

From [14], we have seen that computation and communication cost with hash chains is 

O(log m) and O(log m) where m is the length of the hash chain. We now calculate the 

remaining storage cost associated with the protocol. Recall that for every transaction, a 

node has to store values of all nonces occurring within a certain time period T. If T is 

large, then synchronization interval is large and as a result undisclosed nonces will have 
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to be stored for a longer time. Also, until a key is disclosed, entire packets (message 

contents) of time synchronization messages must be stored as well at each node that 

performs verification). Recall that our synchronization message is very lightweight in 

comparison with most other schemes. Each message only contains a single hash value in 

spite of traversing a long multi-hop path. At each hop in the path, the nested hash chain 

commitment replaces the previous commitment with an aggregated commitment for the 

entire path. Therefore, storage costs associated with each run of the protocol is of the 

order of no. of messages stored at each node, which is constant at O(1) for each run.   
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Chapter 6 Conclusion 

 
In this dissertation, we addressed the issue of creating robust services for infrastructure-

less distributed networks, the objective being to create robust infrastructure base over 

which other services can be provided. We selected a wireless sensor network as our 

distributed network of choice. We chose to create a robust target localization service that 

is primarily robust against large amounts of falsified data. Most protocol based attacks 

were thwarted using cryptographic protection techniques like encryption, integrity 

protection using signatures, etc. However, we have shown that not all attacks can be 

mitigated using cryptographic protection techniques. Falsified data attacks are certainly 

immune to cryptographic techniques, and are a real threat to any data centric network. 

Our approach in this thesis has been to minimize the effect of falsified data on the 

outcome of the protocol.  

We showed that by using a particle filtering algorithm at the core of the protocol we 

were able to create a model for an adversarial environment that tackles adversarial 

behavior as noise. By modeling data falsification attacks as statistical variances, and 

limiting undetectable adversarial behavior to within certain bounds, we reduce the 

amount of malicious data that can be inserted into the target estimating algorithm. We 

then showed how our target estimating algorithm is robust against the amount of 

malicious data that is inserted into the algorithm without detection. Our experiments yield 

that the algorithm is highly robust against large amounts of malicious data. We were able 

to provide a bound on the minimum number of particles required to be active in the filter 
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for the resilient behavior to prevail. While particle filters have excellent tracking 

capabilities they are very complex to implement and computationally intensive. We 

reduced the implementation complexity and computational intensity per node by 

distributing the particle filter into two components, viz., the measurement sampling 

component and the aggregation component.  Through a novel use of various additional 

elements like watchdog nodes and randomization features like moving the aggregation 

from one leader node to another resulted in a significant increase in complexity for an 

adversary to launch a successful attack without actually increasing the complexity or the 

cost to the system. This is directly in line with our philosophy of hardening the service by 

leveraging existing aspects of the distributed network. Watchdog nodes provided sanity 

checks in terms of distance bounds, frequency of messages, and anomalous behavior in a 

neighborhood to help eliminate data from such sources at the aggregator. Moving the 

aggregator function across various nodes in an unpredictable manner also increased the 

complexity for an adversary to launch attacks since now an adversary has to first guess 

where the aggregator function will move and then compromise a large subset in the 

vicinity of that leader node. This also improves the robustness of the algorithm to 

temporary failures as target estimation resumes as soon as the target moves into the 

vicinity of the next leader node. Further, using SPSA to cast adversarial behavior as 

perturbation resulted in solving the multi-variate optimization problem with only two 

measurements of the objective function per iteration (irrespective of the dimensions of 

the optimization problem). This resulted in a significantly lightweight solution compared 

to regular particle filtering that is also real-time efficient and facilitates online target 

location estimation.  
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As a secondary problem, we studied time synchronization since it is an important 

service for a distributed data centric network. While we did not follow a similar approach 

as with the first problem with a robustness study for time synchronization, we addressed 

the problem of what it implies to be a robust time synchronization service and how to 

create one that is lightweight and reliable for other services to rely on. We used a simple 

cryptographic mechanism called hash chain that helps prevent many attacks like replay, 

redirection, man-in-the-middle etc and is computationally lightweight (O(log N)). We 

also identified attacks that our time synchronization protocol is not robust against and 

will continue to work on hardening it as a future goal.  

Through this thesis, we have developed an interesting paradigm of leveraging strong 

cross disciplinary technologies as the foundation of a robust service and tightly coupling 

it with cryptographic protection mechanisms. We have understood what it means to 

create robust protocols, that are communication and computationally feasible to 

implement in a power conscious environment. The tight coupling of cryptographic 

mechanisms was complimentary to the target estimation algorithm, and together they 

provide the protocol with stronger properties than what they can individually. 

As a future goal, we would like to address some of the tangential issues that were 

identified throughout this thesis. Understanding how watchdog distribution and their 

density of deployment affects the accuracy of the scheme and how an adversary can take 

advantage of this knowledge is an interesting study.  Further, we claimed that the size of 

the window of validity of target position measurements was tightly coupled with the 

tolerable synchronization error, and affects storage and cost. As another study we would 

like to quantify this relationship. Currently, we consider all nodes except the target to be 
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static. We would like to explore the effect of introducing select mobility models, 

particularly constrained path model, on the target localization protocol and its robustness. 

As concerns time synchronization, hash chains have a pattern of disclosure and a 

predetermined schedule of disclosure. We would like to study the tactics an adversary can 

use and the attacks it can launch if it has knowledge of this schedule. The selection of 

values for T∆ and Td (synchronization error and disclosure time interval) is also 

interesting as an improper selection can provide appropriate windows of opportunity to 

an artful adversary. Finally, we would like to understand how Byzantine behavior affects 

time synchronization and what lightweight protection mechanisms can provide resilience 

to the service against such an attack.  
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