

ABSTRACT

Title of Document: DESIGNING ROBUST COLLABORATIVE

SERVICES IN DISTRIBUTED WIRELESS
NETWORKS.

Anuja Anilkumar Sonalker, Ph.D, 2007

Directed By: Dr. John S. Baras, Electrical & Computer

Engineering Department

Wireless Sensor Networks (WSNs) are a popular class of distributed collaborative

networks finding suitability from medical to military applications. However, their

vulnerability to capture, their “open” wireless interfaces, limited battery life, all result

in potential vulnerabilities. WSN-based services inherit these vulnerabilities. We

focus on tactical environments where sensor nodes play complex roles in data

sensing, aggregation and decision making. Services in such environments demand a

high level of reliability and robustness.

The first problem we studied is robust target localization. Location

information is important for surveillance, monitoring, secure routing, intrusion

detection, on-demand services etc. Target localization means tracing the path of

moving entities through some known surveillance area. In a tactical environment, an

adversary can often capture nodes and supply incorrect surveillance data to the

system. In this thesis we create a target localization protocol that is robust against

large amounts of such falsified data. Location estimates are generated by a Bayesian

maximum-likelihood estimator. In order to achieve improved results with respect to

fraudulent data attacks, we introduce various protection mechanisms. Further, our

novel approach of employing watchdog nodes improves our ability to detect

anomalies reducing the impact of an adversarial attack and limiting the amount of

falsified data that gets accepted into the system. By concealing and altering the

location where data is aggregated, we restrict the adversary to making probabilistic

“guess” attacks at best, and increase robustness further. By formulating the problem

of robust node localization under adversarial settings and casting it as a multivariate

optimization problem, we solve for the system design parameters that correspond to

the optimal solution. Together this results in a highly robust protocol design.

In order for any collaboration to succeed, collaborating entities must have the

same relative sense of time. This ensures that any measurements, surveillance data,

mission commands, etc will be processed in the same epoch they are intended to

serve. In most cases, data disseminated in a WSN is transient in nature, and applies

for a short period of time. New data routinely replaces old data. It is imperative that

data be placed in its correct time context; therefore, as a secondary problem, we

studied time synchronization in WSNs. We designed a single hop time

synchronization protocol, and then extended it to cover multi-hop scenarios. Our use

of hash chains, a simple cryptographic mechanism, enabled the creation of a

lightweight protocol that is resilient to various attacks. We also identified certain

attack cases that our protocol is not robust against, and indicated possible means for

securing against these attacks. We also showed that our protocol is efficient in

computation and storage requirements.

DESIGNING ROBUST COLLABORATIVE SERVICES FOR DISTRIBUTED

WIRELESS SENSOR NETWORKS.

By

Anuja Anilkumar Sonalker

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor John S. Baras, Chair
Professor Virgil D. Gligor
Professor Lawrence Washington
Professor Gang Qu
Professor Robert W. Newcomb

© Copyright by
Anuja Anilkumar Sonalker

2007

Dedication

To my parents, Anilkumar and Anuprita, my husband Manoj, and my family, the

pillars of support in my life.

 ii

Acknowledgements

This work would not have been possible without the support and guidance of my

advisor Dr John S. Baras, and without the inspiration and critical thinking provided

by Dr. David Safford, IBM Thomas J. Watson Research Labs. I am deeply indebted

to Dr George Moustakides whose brief sojourn at the University of Maryland College

Park was very timely for my research. I would like to thank Dr Virgil D. Gligor and

Dr. Jonathan Agre for their valuable inputs. I am extremely grateful to Erik Metalla

for his guidance, wisdom and knowledge he so generously shared. I would also like

to extend many thanks to my committee for their valuable comments.

I am forever indebted to my parents for their constant encouragement, unconditional

love, and all their sacrifices that have made this day possible for me. They taught me

to dream big, and follow through. I thank my parents for always encouraging my

inquisitiveness, especially my Dad for all his help with those crazy “experiments” I

did as a six year old. I am grateful to my husband, for his unwavering commitment to

my PhD and who never complained even once during the difficult times. I owe a lot

to him. I am thankful to God for the sister who ensured that I set the bar high, and a

brother who thinks his sister strongest. They are the reason I want to be a better

person. I will forever be indebted to my other set of parents, who welcomed me into

their family with open arms, and let many a family occasion take backseat to my

PhD. They are truly a godsend. I am grateful to my brother-in-law for his sacrifices

and loving care that ensured us that everything would always be okay back home. I

will always be indebted to my Dada mama, who helped me take the first successful

step in my career, as a result of which I am here today. Last but definitely not the

 iii

least, I am ever so grateful to Anil Kaka for his selfless help and Pandit Kaka Kaku

for being there for me. I owe my success to you all.

 iv

Table of Contents

Dedication ... ii
Acknowledgements.. iii
Table of Contents.. v
List of Figures ... vii
List of Tables .. vii
Chapter 1 Introduction... 1

1.1 Problem Introduction .. 3
1.2 Our Contributions ... 5
1.3 Thesis Organization .. 9

Chapter 2 Robust Target Localization... 11
2.1 Current Research in Secure and Robust Localization................................. 11
2.2 Our Approach to Robust Target Localization... 14

2.2.1 System Model & Assumptions ... 14
2.2.2 Adversary Model .. 18
2.2.3 Protocol Description ... 19
2.2.4 Protocol Specification... 22

2.3 Salient Features of our Robust Target Localization Scheme...................... 25
2.3.1 Hierarchical Capability-based Heterogeneous network...................... 25
2.3.2 Distributed Aggregation and Moving Leader Design......................... 27
2.3.3 SMC Method for Data Aggregation ... 30
2.3.4 Watchdogs: Additional Data Sources ... 33

Chapter 3 Analysis of Robust Target Localization ... 40
3.1 Attack Model .. 42
3.2 Robustness Analysis ... 47
3.3 Security Properties of our Scheme.. 67
3.4 Factors affecting performance, reliability and accuracy............................. 77

3.4.1 Topological Dependence .. 77
3.4.2 Effect of topology on Robustness ... 81
3.4.3 Particle Density Profile ... 83
3.4.4 Seed Infrastructure .. 85
3.4.5 Mobility... 87

Chapter 4 Secure Time Synchronization ... 89
4.1 Current Research in Time Synchronization.. 92

4.1.1 Review of existing Time Synchronization Protocols.......................... 92
4.1.2 Review of existing Secure Time Synchronization Protocols.............. 97

4.2 Properties of a Robust Time Synchronization Scheme............................. 108
4.3 Components of our Secure Time Synchronization Scheme 108

4.3.1 One way Key Chains and Authenticated Broadcasts........................ 108
4.3.2 Basic Pair-wise Time Synchronization... 111

4.4 Our Secure Time Synchronization Scheme .. 113
4.4.1 Adversary Model .. 113

 v

4.4.2 Assumptions.. 113
4.4.3 Protocol Specification... 114

Chapter 5 Analysis of Secure Time Synchronization.. 123
5.1 Attacks against Time Synchronization ... 123

5.1.1 Replay and Redirect Attacks... 125
5.1.2 Masquerade Attack ... 127
5.1.3 Man-in-the-middle (MITM) and message capture attacks 128
5.1.4 Simple Collusion... 131
5.1.5 Wormhole attack... 132
5.1.6 Compromised node exhibiting Byzantine Behavior 134
5.1.7 False timing data insertion Attack .. 138
5.1.8 Rushing Attack.. 138
5.1.9 Forging Messages ... 138

5.2 Communication Overhead .. 139
5.2.1 Communication Overhead over a time period T 139
5.2.2 Communication Overhead during synchronization in tree 140
5.2.3 Storage Overhead.. 141

Chapter 6 Conclusion .. 143
References... 147

 vi

List of Figures

Figure 1: A typical tracking scenario with Moving leader hand-off. 20
Figure 2: A Typical Sensing Cell in two configurations .. 26
Figure 3: Moving Leader Approach ... 28
Figure 4: Disambiguation using Node-to-Node data. ... 35
Figure 5: Inferring from Non-observed data... 36
Figure 6: No. of dishonest nodes tolerated (DP) vs. Probability of detection (PΛd) & fail
rate (γ) ... 46
Figure 7: Secure and Robust Location Determination Protocol 49
Figure 8 Sequence of average MSE estimates over time.. 61
Figure 9: Basic Topologies ... 77
Figure 10: Effect of various topological configurations on loss probability. 78
Figure 11: Effect of Topology on Convergence ... 79
Figure 12: Clusters with Cliques... 84
Figure 13: Collocated neighbor nodes (orange) using different reference node chains .. 86
Figure 14: Timestamp Synchronization (TSS) ... 93
Figure 15: Reference Broadcast Synchronization (RBS) ... 94
Figure 16: Synchronization Example.. 102
Figure 17: Revised Secure Pair-wise Synchronization in TinySeRSync........................ 105
Figure 18: Basic Pair-wise Time Synchronization ... 112
Figure 19: (a) Single hop (b) multi-hop.. 116
Figure 20: Node C masquerading as the source B.. 127
Figure 21: Man-in-the-middle attacks .. 130
Figure 22: Simple collusion between C and D ... 131
Figure 23: Wormhole between nodes G and D... 132
Figure 24: Arbitrary Byzantine behavior.. 135
Figure 25: Tree structure... 140

List of Tables

Table 1: Offset values at each node at the end of Step 2 .. 103

Chapter 1 Introduction

Distributed and Collaborative systems have become pervasive in many environments

today due to their modularity, scalability, redundancy, fault tolerance, ease of repair

without loss of functionality, etc. Some examples of distributed systems that have

become all-pervasive are peer-to-peer file sharing networks, shared server clusters like

Storage Area Networks (SANs), coalition networks, mobile agents and Wireless Sensor

Networks (WSNs). Usually, in these systems, there exists some form of coalition to share

data and resources, or to make decisions collaboratively. While these systems are

immensely popular, their flexibility, collaborative and dynamic nature has opened up

many security problems. For example, WSNs are susceptible to eavesdropping, jamming,

insertion as well as masquerading attacks. A distributed network that is collaborative in

nature (shares data or resources between components of the network) is particularly

susceptible to the individual components being compromised or the communication

between individual components becoming unreliable. An intelligent adversary can disrupt

communication between various components that together provide a service. In order to

provide truly reliable functionality and dependability, these systems must be protected

from malicious attacks, and their security becomes a very important issue for successful

and secure deployment of distributed collaborative networks. Distributed collaborative

networks usually run one or more collaborative services.

Collaborative services entail the use of shared resources, create and rely on joint

infrastructures, are involved in taking global measurements to provide a global view, or

 1

to make joint decisions based on available information. In a distributed system,

collaborative services are targets for malicious attackers who wish to foil the global

measurement or the decision making process. A WSN is an example of a highly

collaborative system that exhibits properties like using shared resources, forming joint

infrastructures, taking global measurements, and sometimes making joint decisions.

WSNs have gained tremendous popularity due to their fast and efficient deployment

and self-organization in a wide variety of scenarios where a fixed networking

infrastructure is not possible. They can be viewed as a completely distributed system with

collaborating entities. The primary goal of a WSN is to provide collaborative services in

a distributed (decentralized) manner, for example, sensing, monitoring, information

aggregation, data communication and routing. However, compared to other distributed

networks they have additional constraints. They are subject to power consumption

restrictions (due to limited battery life), have limited communication bandwidth, limited

and unsecured storage which is subject to capture, lower computation ability, and

openness associated with wireless interfaces. This nature of a WSN makes it vulnerable

to protocol attacks like capture, eavesdropping, fabrication, service disruption, etc.

Furthermore, there are various points in the network where an adversary can insert bogus

data, alter data, or capture nodes and use them to send fictitious data resulting in a

substantially different outcome. It is interesting to see how one can build secure

collaborative services for such vulnerable environments that can withstand highly

malicious behavior, tolerate false data and at the same time are easy to setup and

configure in remote locations. In this thesis, we design two robust collaborative services

for WSNs that are lightweight in terms of the computation and communication involved,

 2

provide the desired service in a robust manner by tolerating a substantially large amount

of false misleading data. These two services are Robust Target Localization and Robust

Time Synchronization. Our approach is built on the following principles:

- Practical assumptions,

- Light weight algorithms to provide desired service

- Improved robustness of the service by leveraging intelligence from the existing

network to keep adversarial behavior in check,

- Use of cryptography to protect confidentiality of data, and message authenticity as

necessary, to protect communication and improve resilience of the protocol.

1.1 Problem Introduction

Our work is primarily focused on military and tactical environments where sensor

nodes play complex roles in data sensing as well as aggregation in a reliable and robust

manner. The applications WSNs are being used for in such a tactical environment

demand a high level of reliability and robustness.

The first robust service we would like to build is a Target Localization Service, which

is essentially a location tracking service. Location information is important for various

critical and non-critical services like mitigating Sybil1 attacks, secure routing, sensing

and tracking, surveillance, monitoring, intrusion detection, value-added services and on-

demand services to name a few. Lately, various government programs like LOCO [53],

1 A Sybil attack is one where a single physical entity assumes multiple identities. Each identity is used to
siphon shared resources resulting in the Sybil node receiving a disproportionate share of resources. A Sybil
can use its disproportionate resources to launch other attacks on the network. Cloning or replication
involves assigning the same identity to multiple physical nodes, often after capture. We follow the
approach of [46] and consider cloning attacks to be orthogonal to Sybil attacks.

 3

APWN [9] and WAND [84] have shown great interest in robust WSN node localization

and tracking in tactical environments. If the WSN provides other add-on services that

depend on location information for disambiguation or implicit authentication, then the

reliability and security of the localization and tracking service is vital to the success of

the rest of the network. If target position is being estimated in a distributed manner, i.e.,

using multiple sensor nodes, then these nodes require loose single-hop synchronization

among themselves. This is not impossible to achieve in practice and ensures that

measurements taken during the same epoch will be collected and processed in the same

iteration.

Target Localization or tracking deals with tracing the path of (usually moving) entities

through some surveillance area where tracking devices may be deployed. The salient

difference between tracking and most localization schemes in the broad sense is that in

the localization schemes, nodes compute their own location in the field using various

schemes thereby localizing themselves, whereas in location tracking schemes the

surrounding nodes compute the location of the target using various schemes thereby

tracking the target. Smart applications that use such topological and real-time tracking

information are: traceback schemes [52], disaster relief, on-demand services, patient

monitoring, surveillance, tactical applications, traffic monitoring, military and homeland

security applications like military vehicle, detecting self healing land mines, monitoring,

intrusion detection and intrusion prevention, etc to name a few. The lack of robust

tracking schemes that hold up well in adversarial settings has motivated us to pursue this

problem.

 4

As a secondary problem, we examine time synchronization as a collaborative service

that we would like to secure against tactical adversarial behavior. In a distributed

collaborating environment, time is a critically important element. In order for any

collaboration to succeed, all collaborating entities must have the same relative sense of

time. This ensures that any measurements, surveillance data, mission commands, etc will

be processed in the same epoch they are intended to serve. In most cases, data

disseminated in a WSN is transient in nature, and applies only for a short period of time.

New data routinely replaces old data. Therefore, it is imperative that data always be

placed in its correct time context. A protocol for a distributed system maybe highly

secure with the provably strongest cryptosystems one can bring to bear. Instead of

attacking the cryptosystem, an intelligent adversary can simply desynchronize the

collaborating entities or change timestamps associated with messages to cause the

application (and the system) to function erroneously or even breakdown. Therefore, time

is a critical element that must be protected, especially in a distributed network. In the

second part of this thesis, we show that our proposed secure and resilient time

synchronization algorithm can ensure a well bounded real-time maximum

synchronization error within the network even in the face of various attacks.

1.2 Our Contributions

In the first part of this thesis, we formulate and solve the problem of robust target

localization, and in the second part we address the problem of robust time

synchronization. To achieve robust target localization:

 5

a) We examined the necessary and sufficient security requirements for target

localization and its participants to communicate securely (since the protocol is

distributed) and applied appropriate protection mechanisms to the various

components. (Section 3.3)

b) At the heart of the protocol is a particle filtering algorithm, which is a Bayesian

maximum likelihood multi-step estimator. The particle filtering algorithm accepts

samples (inputs) from various nodes surrounding a target, and attaches

probabilistic weights to each of them. These weights are approximations to the

relative posterior probabilities of the sample measurement representing the target

and sum up to 1. The next step involves resampling the measurements to replacing

older degrading measurements with newer updated measurements thereby

improving upon the earlier estimate and creating a trajectory, tracing the path of

the target through the deployment. By nature, particle filters are complex,

expensive and have a certain degree of error associated with the measurements.

They, however, have excellent tracking capabilities as they generate new estimates

incrementally over older ones. By making the particle filtering algorithm

distributed, the complexity and operational cost to the network is distributed across

multiple nodes. Some nodes perform sensing and data relay operations while

others perform the actual aggregation (estimation). In order to achieve improved

results (with respect to fraudulent data) attacks, we applied data integrity and

privacy protection mechanisms at the sensing nodes to enable secure and reliable

communication. Additionally, the privacy mechanism shields the measurement

data from an adversary who can now, in its best attempt, only probabilistically

 6

guess and insert malicious data if it possesses an authentic key. Message

authenticity ensures that a message cannot be altered in transit in an undetectable

manner. Additionally, we establish a general bound on the validity of

measurements with loose time synchronization, whereby replay attacks are

mitigated. Therefore, we are able to reduce adversarial impact significantly.

c) Our novel approach of employing watchdog nodes that provide sanity checks in

terms of distance bounds, frequency of message input and anomalous behavior

both in the presence and absence of activity, enables detection of certain

inconsistencies and elimination of anomalous data and behavior at the aggregator.

(Section 2.3.4) This further reduces the impact of an adversarial attack, and

narrows the amount of falsified data that gets accepted into the aggregator.

d) At the aggregator side where data is fused to provide a meaningful interpretation

(target estimate), aggregator failure or compromise can result in a point of failure.

We increase the robustness of the protocol to single point of failures by shifting

the aggregation function from one leader node to another in real time as the target

moves through the sensing field. At most, this results in a temporary failure if an

aggregator malfunctions. Target estimation resumes as soon as the target moves

into the vicinity of the next leader node. Furthermore, without any additional

overhead, moving the aggregator function across the network improves the

resilience of the protocol to powerful attacks like adaptive node capture. Earlier, if

an adversary had to capture a majority of nodes in a neighborhood to cause the

outcome to degrade, it now has the extremely hard and impractical task of first

guessing the next leader who will bear the aggregation function, and then

 7

compromise a majority of nodes in that neighborhood within the short amount of

time that the aggregation function is resident on that leader. This provides a

substantial amount of resilience to the protocol.

e) We formulated the problem of robust node localization under adversarial settings

and cast it as a multivariate optimization problem allowing us to solve for the

system design parameters that correspond to the optimal solution. (Section 3.2)

Our novel use of the Simultaneous Perturbation Stochastic Approximation (SPSA)

technique to cast adversarial behavior as perturbation resulted in solving the multi-

variate optimization problem with only 2 measurements of the objective function

per iteration (irrespective of the dimensions of the optimization problem). This

resulted in a significantly lightweight solution compared to regular particle

filtering that is also real-time efficient and facilitates online target location

estimation. (Section 3.2)

f) For the problem cast above, we have also shown how the solution is δ-robust (see

section 3.2 for definition) under maximum undetectable contamination of the

input, data and loss of a bounded number of honest, functional players to an

adversary.

g) We derived a lower bound on the number of particles that must be active in the

particle filter in order to ensure that the solution is always δ-robust.

h) We examined the dependencies associated with this solution and their effects on

the outcome. (Section 3.4)

 8

i) Finally, our decision to design the network as a heterogeneous WSN (using nodes

with varying capabilities) helps achieve lower hardware cost and extends mission

life.

As a secondary problem, we examined and designed a robust time synchronization

service. We primarily designed a single hop time synchronization protocol to provide this

service and then extended the same to cover multi-hop scenarios.

a) We addressed the problem of robust time synchronization and identify the various

properties that are necessary to assure the same.

b) We designed a robust single hop time synchronization protocol using a simple

cryptographic mechanism called hash chains. Using this mechanism we have been

able to create a light weight protocol that provides resilience to various attacks like

replay, redirection, etc. (Section 4.3)

c) We showed that our protocol is robust against various adversarial attacks. (Section

5.1) We also identified certain attack cases that our protocol is not robust against,

and indicated possible means for securing against these attacks.

d) We also showed that our protocol is efficient in computation and storage

requirements for wireless sensor networks.

Being closely coupled, these two services (Robust Target Localization and Robust

Time Synchronization) together form a secure foundation for many WSN applications

like geographic routing, pervasive computing, monitoring, surveillance, etc

1.3 Thesis Organization

The organization of this thesis is as follows. In Chapter 2, we first provide an overview

of existing work done in the area of sensor network localization (Section 2.1). In Section

 9

2.2.1 we present the system model and in Section 2.2.2., we formally define the

capabilities of the adversary and the performance bounds of an intelligent adversary. We

then give an outline of our Robust Target Localization Protocol in (Section 2.2.3) and the

protocol specification in Section 2.2.4. Finally, in section 2.3 we elaborate upon the novel

features of the proposed protocol. Chapter 3 deals with the analysis of our protocol’s

security and robustness under the influence of tactical adversaries. We formulate the

attack model of the adversary, and in separate sections analyze the security, and

robustness of the protocol under attack. We also list the various dependencies associated

with the protocol and what their influence on the protocol outcome is, if any. Chapters 4

and 5 deal with Robust Time Synchronization. In chapter 4, we first describe the current

body of work in the area of both time synchronization as well as secure time

synchronization (Section 4.1.1 and 4.1.2). We then enumerate the properties of a Robust

Time Synchronization Protocol that are essential to a distributed collaborative network

(Section 4.2). We describe the various components of our scheme in Section 4.3 and our

proposed scheme in Section 4.4. Specifically, we formulate and discuss our adversary

model in Section 4.4.1 and the protocol specification for both single and multi-hop

synchronization in 4.4.3. In Chapter 5, we analyze the security of our protocol to show

that it satisfies the properties specified in Section 4.2 sufficiently (Section 5.1). Finally,

we conclude in Chapter 6 with a summary of our results and a glimpse of our proposed

future directions.

 10

Chapter 2 Robust Target Localization

In this chapter we first provide an overview of existing work done in the area of

sensor network localization. We then present the system model and formally define

the capabilities of the adversary. We then give an outline of our Robust Target

Localization Protocol and the environment of operation. Next, we provide the

protocol specification. Finally, we elaborate upon the novel features of the proposed

protocol.

2.1 Current Research in Secure and Robust Localization

There are three main branches of localization namely, node localization, target

localization and location service. Most contemporary research has been focused on

node localization, with most researchers having proposed a number of location

determining schemes for sensor networks in non-adversarial settings [8][34][64][65]

[66][70]. Recently, few researchers have provided unique solutions for node

localization in adversarial settings [21][50][51][63][71][73]. Though these techniques

solve a multitude of problems, some of them use self-positioned verifiers, pre-shared

secret keys, some perform only verification requiring the claimant to initiate, and

some others rely on simplified assumptions that do not hold in practice. Since we are

interested in a highly tactical deployment environment these schemes are unsuitable

for our environment. Furthermore, some of these schemes rely on an inherent

assumption that the self-positioned verifiers cannot become malicious or be

 11

compromised. Since we are expecting to deal with Byzantine behavior, practically

speaking, every node is susceptible and we cannot rely on such schemes.

Location determination schemes can be broadly classified into range dependent and

range-independent schemes. The former schemes rely on time, angle, received signal

strength, power measurements or measurement of quantities that are a direct measure

of the distance traveled by the signal. Range independent schemes do not utilize such

techniques. For example, using wireless beacon messages, one hop connectivity

information, etc. Another useful classification is centralized computation vs. de-

centralized computation of location, depending on where and how the location

computation process takes place. For example, some nodes hand off their position

estimates to a central node to compute target location while others each compute

location themselves after gathering required information from their neighbors and the

environment. Yet another useful classification is infrastructure-based and

infrastructure-less schemes. The former are based on GPS and other external

unchanging infrastructures, while the latter are independent of these. Our scheme falls

under the range-independent, de-centralized and infrastructure-less schemes. Range

dependent schemes based on Time of Arrival (TOA)[72][10], Time Difference of

Arrival (TDOA) [4][64], Angle of Arrival (AOA)[22], and Received Signal Strength

Indicator (RSSI)[66] to name a few, are meant for non-adversarial scenarios and are

easily susceptible to failure in the presence of adversaries. Similarly, range-

independent schemes like [62] are also susceptible to various attacks like Sybil

attacks, wormhole attacks etc. Two secure localization protocols proposed by

researchers recently viz., SeRLoc [50] and Secure Positioning [71] were also

 12

analyzed. These protocols have been created for adversarial scenarios and are secure

against many attacks. However, they have heavy dependencies on trusted locators or

verifiers, directional antennas (expensive hardware), GPS based static infrastructure,

and have computational and storage overheads. Particularly, few drawbacks of

SeRLoc include dependency on GPS-based locators, hardware requirement of special

spatial/sectored antennas, high power transmission requirement for the locators, pre-

deployment knowledge and pre-loaded cryptographic quantities (keys, hash tables).

Moreover, they assume locators are trustworthy and cannot be compromised by an

adversary, DoS attacks are not considered since they are MAC level attacks, jamming

is not considered since it can be easily eliminated by Spread Spectrum and coding

techniques, locator communication range R must be known apriori by sensors, and the

scheme has a high computational overhead as sensor nodes perform heavy

computation to determine location based on beacon information. Further, this solution

trades computational expense for resolution in that the centre of gravity (CoG) is

computed using a grid system to improve computational expense due to which

resolution is diminished. To further refine position, grid resolution must be increased,

causing increased computation and processing time. From a security perspective, the

use of a shared symmetric key only prevents external adversarial attacks but is still

prone to insider and node compromise attacks. To their credit SeRLoc is, however,

robust and accurate in the presence of Sybil, select wormhole and various other

attacks compared to most other solutions in this area. Rope [51], a successor to

SeRLoc, which provides all the benefits associated with SeRLoc’s sectored antennas,

as well as some new properties like distance bounding fares well, but still carries

 13

most deficiencies associated with SeRLoc like expensive hardware requirements,

high computational cost, etc. Secure Positioning [71], another secure localization

solution is based on trilateration using static infrastructure. Here, verifiers of the

boundary triangle are part of the infrastructure and are assumed to be trustworthy and

never compromised. This protocol is vulnerable to a wormhole attack. Further, it uses

least median square method to dampen error due to contamination of distance

estimates. This method, as a result, suffers from high degradation even at one-third

contamination.

In conclusion, most secure and non-secure protocols are based on assumptions that

are sometimes impractical, and at other times too rigid to facilitate truly ubiquitous

and mobile applications. We are therefore motivated to build a secure target

localization protocol that does not have a fixed infrastructure, can localize moving

targets, is light-weight and efficient in computation as well as communication, and is

robust and secure to the desired degree against false data in highly adversarial

scenarios.

2.2 Our Approach to Robust Target Localization

2.2.1 System Model & Assumptions

2.2.1.1 Sensor Model

Our design incorporates heterogeneous capability devices. We mainly have two

types of sensor nodes, type A and B. Type A sensor nodes are long range, low power,

 14

high battery life high end sensor nodes that are used for data aggregation, transmitting

long distances, and memory intensive operations. They are also known as

aggregators or leader nodes. Computation costs, memory usage and storage are

normally not a concern to these types of nodes. These nodes are typically capture

resistant or very hard to capture. Type B nodes have a substantially short range of

operation, and have lesser resources. These are mainly used only as 1-hop sensing

and relay elements, and can be captured by a reasonably strong adversary.

As with any captured sensor node, all data, keys (if any) and resources of the

captured sensor node are available to the attacker. All nodes obey protocols unless

they malfunction or are malicious. All sensor node antenna types are known and

calibrated. Sensor nodes need not always be stationary, but in our work, we assume

stationary nodes to reduce uncertainties in the final outcome. These uncertainties can

be modeled if the motion model of the sensors is defined.

2.2.1.2 Trust Model

Since all sensor nodes operate in an ad-hoc manner, no sensor node directly trusts

another node. Type A sensor nodes, which compute the aggregated estimate of the

position of the target, are assumed to function as per the algorithm unless

malfunctioning, compromised or turned malicious. In other words, we trust all

computations of good nodes, while communication between any nodes need not be

trusted or reliable. All good Type B nodes obey protocol unless they are

malfunctioning, compromised or turn malicious. The locations of the nodes in a

neighborhood (cluster) are relatively known to the leader of the neighborhood. We

 15

will show later on, that these location values need not be trusted by an aggregator as

such discrepancies can be identified by neighborhood watchdogs.

2.2.1.3 Assumptions

This scheme relies on loose time synchronization within the sensing cell as well as

between adjacent leader nodes. Since all synchronization events are single-hop, this is

a very realistic assumption. Over time, internal clocks of different sensor nodes may

drift apart, so resynchronization after some time maybe required. Most time

synchronization schemes incorporate resynchronization techniques. In practice, this

assumption is not hard to achieve and has been demonstrated successfully with very

good results in similar distributed network architectures.

The particle filtering algorithm which is used by type A nodes to compute an

aggregate estimate of a target’s location cannot be altered in any way, shape or form.

To an adversary it appears as a black box. If an aggregator node is compromised, an

adversary can only supply malicious or malformed data to the particle filtering

algorithm to influence the output. It cannot cause the algorithm to behave in a manner

inconsistent with its nature. We assume all nodes in our setup to be stationary.

2.2.1.4 Target State Model

Since we do not stress on any particular technology to determine target

measurements, we need a model describing the relationship between the states,

velocity and other parameters of the moving object. This helps to relate incoming

measurements to the target location based on known values like the previously known

position of the target, its motion model (foot, car, military tank, etc), and new

 16

incoming beliefs about the targets location. Typically measurements about a target

can be signal strength measurements signifying range, ultra sound delay

measurements, directional measurements, x-y coordinates and velocity information,

etc. In our model, we use the x-y states and velocity information which is trivial to

gather. Usually, for a particular deployment, one knows what it is tracking. For

example, a foot soldier, or a battle tank will have a distinguishably different travel

velocities.

We represent the state transition model of the target as follows:

1 , 1,....,k k kx x u k−= Φ + Ψ = K

⎤⎦

 describes the sensor node at time k, where

is the state space representation of the properties that uniquely

determine

, , ,
k k

T

k k x k yx X V Y V⎡= ⎣

kx with a period of observation θ seconds, and is the

incorporated sensor noise model. Specifically,

,
k k

T

k x yu u u⎡= ⎣ ⎤⎦

,k kX Y are the co-ordinates of the node,

and are the x and y velocity components. are the x and y

noise components.

,
k kx k yV X V Y= �

k= �
k

0

,
kx yu u

1 0
0 1 0 0
0 0 1
0 0 0 1

θ

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟Φ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

, and are the coefficient matrices. The values of

have been empirically determined for the given deployment. These values can

alternatively be determined as a function of target velocity, environment

characteristics like attenuation, etc. For a contiguous measurement tracking system

like ours

0.5 0
1 0

0 0.5
0 1

⎛ ⎞
⎜ ⎟
⎜Ψ =
⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

Ψ

θ =1.

 17

2.2.2 Adversary Model

An adversary can compromise any type A or B sensor node though by design, it is

harder for an adversary to compromise a type A than a type B. The adversary does not

have to adhere to protocol. An adversary may be internal i.e., it may be part of the

sensing network, or external, i.e., it may be an outsider to the sensing network.

Characteristics of our adversary include:

Adversary Motivation: To completely disrupt the secure position estimating

process, motion tracking process or, to throw the estimate way off track.

Access: The adversary has access to the wireless sensor network in a way that it can

eavesdrop on communication occurring within its range, has access to schedules and

secrets (if any) maintained on a compromised node. An adversary has knowledge of

the particle filtering algorithm employed as well as all parameters stored on a

compromised node.

Skills and Resources: The adversary may be as skilled as the Type A sensor nodes

deployed. An insider adversary has access to all network resources as well as its own

additional resources. If an adversary captures a node, its capabilities then include full

control over resources, data, and secrets of the captured node. In other words, if

captured, a node can be used as a collaborating adversarial node.

Tactics: The adversary can be active/passive, can insert, modify, replay, redirect

messages and assume identities of other nodes (masquerade). It, however, cannot

fabricate messages that decrypt correctly on behalf of a node that it has not

compromised. In other words, an adversary cannot circumvent the cryptosystem.

Though deliberately jamming communication (partially) is possible in any wireless

 18

network, we believe mitigating this attack is outside our current scope. Existing work

using Spread Spectrum [69] or other coding techniques [78] is known to mitigate

jamming attacks. Also, the presence of watchdogs also is a deterrent to selective

jamming. We are, however, interested in those tactics of the adversary that result in

malicious or malformed input being accepted by the system, and proving the robust

working of our proposed algorithm in the presence of such malicious data.

We will show later how an adversary can use these tactics to launch various attacks

on our proposed protocol.

2.2.3 Protocol Description

We begin with a setup of randomly distributed type A and type B sensor nodes as

shown in Figure 1. Sensing cells and leaders have been established using leader

election algorithms. (We discuss this feature in detail in Section 2.3.1) Each sensing

cell has a single type A leader. Leaders of adjacent sensing cells can communicate

with each other.

 19

Figure 1: A typical tracking scenario with Moving leader hand-off.

When a target comes into sensing range of one of the sensing cells, two things

happen: the leader of the sensing cell broadcasts an alert signal to all neighboring

leaders and, a small subset of the type B sensor nodes take measurements i
kx at time

k, where i is the ith sensor and send it to the type A leader of their cell. (If the sensor

scheme additionally employs energy conservation schemes like sleep scheduling

[58][26], then the leader sends an awake signal to its sensing cell members one step

ahead of time. This is a knee-jerk action, i.e., when a leader node receives an alert

signal from its neighboring leader node, it automatically issues a wake-up signal to its

sensing cell members.) The leader node has the apriori belief state from previous

measurements till time i.e., 1k −

Target

Sensing Cell Range

Next Leader
Hand-off

Ai

b

Leader sensor
(Type A)

Type B sensor

A1

A3

A4

A6

b

b

b
b

bb

b
b

b

b

b

b

b

b

b

b

b

A2

A5
b

b

b

b

()1: 1|k kp x z − which is an estimate of the previous

position of the target (at time 1k −).

 20

Using the new measurements received from the type B nodes, and the prior belief

state , the leader computes the maximum likelihood of the target’s

location. This estimate is computed using a particle filter and Sequential Monte Carlo

(SMC) approximation, where the measurements

()

i

1: 1|k kp x z −

kx are the particle filter inputs. Based

on this estimate, the leader chooses the next leader for data aggregation and sends its

estimate to the next leader. This estimate now becomes the prior belief state of the

next leader. The process repeats until the target leaves the sensing field. This

repetition gives us a contiguous estimate of the target’s path i.e., its trajectory. For

example, in Figure 1 above, the target (shown by a red oval) enters the sensing field

near A1’s cell. As soon as the target enters A1’s sensing cell range, A1 sends an alert

signal to all neighboring leaders (A2 and A3 in our case). At the same time the type B

sensor nodes in A1’s cell take and send measurements pertaining to the observed

target to A1. As soon as A2 and A3 receive an alert signal, they alert/awake their type

B sensor nodes and these cells are ready for measurement. Since A1 is the first node in

the sensing field to compute this target’s location, it does not posses an apriori belief

state. Therefore, it randomly draws the initial apriori belief state from the sample

space. A1 now computes an estimate for the target’s position using measurements it

received from the type B nodes in its cluster and the initial apriori estimate. A1

computes the target’s position for each time window that measurements come in. It

makes the estimate available to the neighbor in the estimated direction, namely to A3

in our example. As the target moves into the cell of A3’s leadership, A3 repeats the

process above. This process continues with handoffs of the prior estimate to

 21

subsequent leaders (A1 A3 A4 A6 in our case) until the target moves out of

range of the sensing field.

2.2.4 Protocol Specification

2.2.4.1 Notations and Definitions:

1. We define all participating principals based on the two types of sensor nodes

A and B as set where P is the set of all sensor nodes deployed in the

field belonging to the same organization. Further, Let X be the target

traversing the deployment field.

PBA ∈,

2. We denote a sensing cell by index i and the leader of that sensing cell as .

Similarly, all type B sensor nodes in a sensing cell i are denoted as where i

denotes the cell affiliation and j denotes the individual type B sensor node.

iA

ijB

3. , denotes a message M sent from principal Ai to principal Bij , in

sensing cell i and reads “Leader node A sent message M to Bj,

MBA iji :→

4. n is the number of leader cells A and mi is the number of type B sensor nodes

in the ith sensing cell. mi’s can be different for different cells, but for

simplicity we assume all cells to have the same number of type B nodes.

5. * is used as the short hand for all in the nodes related to the position that the

symbol appears in. For example, Bi* stands for all type B nodes in sensing cell

i. Similarly, A* stands for all leader nodes Ai for i=1 to n.

6. PKAi is the public key of Ai

7. TTP is the trusted third party that generates verifiable ID-binding key pairs for

the leader nodes, PKi and SKi are the public and private keys generated by the

 22

TTP’s key generator PKGen. sigTTP is the signature of the TTP. Every node

recognizes this signature.

8. <p.f.i>j is the particle filter input from each reporting node j. For simplicity,

we omit the notation i when we are talking of a single cell. An apriori estimate

from a leader node adjacent to Ai is denoted by <p.e>i-1.

9. is the SMC particle filtering function that returns the final output after

performing the three internal operations (Initialization, importance and

resampling), ,

Γ

2ε ξ and are the minimum location estimation error in a

benign environment, location estimation error observed and maximum

tolerable estimation error respectively. They are further elaborated upon and

quantified in the next section.

2
maxξ

10. θ is the time interval of observations considered in this round (measurement

window).

11. A simple Verifiable ID-binding Key generation is used by a Trusted Third

Party to generate public-private key pairs for all Type A nodes. Type B nodes

are installed with the public keys of those type A nodes whose range they will

fall approximately within during deployment. Type A nodes are only installed

with their respective secret keys, and the public keys of other type A nodes.

Key Generation Method:

()
(){ } ,,:

,:

TTPTTPi

iii

sigsigPKiiTTP
SKPKIDPKGenTTP

→
→

 23

2.2.4.2 Specification

Phase 1: Aggregation and Position Estimation Phase at Ai

 For every type B sensor that senses an active target in cell i:

(1) ()* : : . . , , , ,{ . . , , , }
ij ii i j k ij i j k ij i B AB A p f i t B A p f i t B A SK PK→ < > < >M

(2) :iA j∀ . . jcheck p f i< > such that AND 2
max

2 ξξε ≤≤ () is trueMV

 If true,
1

: . . Target_Location
m

i j i
j

A p f i θ
=

< > =Γ

(3) Process repeats from (1) for next time interval θ

Phase 2: Hand off Phase at A

(1) { }*: , , Target_Location
ii i k i AA A t SKθ→

(2) : If 1+iA { }, , Target_Location
ii k Ai

A t Sθ K is true,

(1) 1. Target_Locationi i
p e θ+ −< > =

Verification Function ()MV

Input: Message M

If [] ()()ˆ ˆ, & TS & (sig_val) & 2 _l up p N N flagν ν ν∈ − + =M 0

Output (1); (Message verification PASS)

Else Output (0); (Message verification FAIL)

 24

Verification function ()MV is used by aggregators to verify whether the

frequency of incoming messages is within allowable limits, a message is fresh,

whether it has a valid signature, etc. It outputs true or false based on the result of

verification process. The following is verified using this function:

a. The frequency of input is bounded within []ˆ ˆ,lp p uν ν− + where is

the baseline frequency, and

p̂

and l uν ν are the allowable lower and

upper deviations in frequency.

b. Timestamp is fresh

c. Signature verification (sender, recipient, integrity of <p.f.i>)

d. No anomaly reported by neighboring nodes in cell. (For details see

lemma 1 and 2 in Section 2.3.4)

2.3 Salient Features of our Robust Target Localization

Scheme

The following features of our protocol help make it robust against falsified data,

secure against various attacks, scalable, achieve consensus regarding measurements,

and detect inconsistencies in neighborhoods.

2.3.1 Hierarchical Capability-based Heterogeneous network

This design feature helps improve mission life, promotes optimal power

management and makes for a cost effective design.

 25

In any deployed sensor network, power and bandwidth are of prime concern.

Inefficient algorithms and inefficient allocation of roles to participating entities can

lead to exhaustion, starvation and early termination of the life of a deployed network.

Processing power, capabilities and life of a sensor node are directly related to its cost.

In order to be cost-effective, we need to have an intelligent mix of the use of

relatively inexpensive, less sophisticated workhorse type sensor nodes and the more

expensive mini-computer type sensor nodes. We, therefore, segregated tasks in the

deployed sensor network on the basis of function and invest in hardware accordingly.

We chose to deploy a heterogeneous network comprising of two types of sensor

nodes, sensor type A and type B as described in [25].

Figure 2: A Typical Sensing Cell in two configurations

Type A sensor nodes are long range, low power, high battery life sensor nodes that

are used for data aggregation, capable of transmitting long distances, and performing

memory intensive operations. Computation costs, memory usage and storage are

normally not a concern to these types of nodes. Type B nodes have a substantially

shorter range of operation, and have lesser resources. These nodes are mainly used

only as 1-hop sensing and relay elements. Their task is to simply sense and transmit

 26

the information locally over relatively short distances. Here, we introduce the notion

of a sensing cell (Figure 2) which is the region of administration of a single leader.

The entire sensing field can be comprised of multiple sensing cells. Every type A

sensor tries to establish a sensing cell, which is the area of its leadership. We also

refer to a sensing cell as a cluster. Within a single sensing cell, there is only one type

A leader and multiple type B sensor nodes. Since sensor deployment in certain areas

and applications is random, there may exist multiple type A sensor nodes in a single

sensing cell. In such cases, they resolve the contention and elect a single leader for

the cell. The choice of election algorithms for this distributed system is purely an

implementation choice. There are many traditional leader election algorithms in

distributed systems [7]; any algorithm that can be implemented over these sensor

nodes is acceptable. Since this is not hard to achieve in practice, we assume that

leader election is completed without conflict. It is worth noting here that

establishment of a sensing cell is crucial to this scheme, yet no assumption is made

about the integrity of the leader who is elected, and no pre-installed secrets are

required to complete this phase. Since we believe that position estimation algorithms

should precede routing and authentication algorithms so that the latter can use

position-related information to their advantage, we do not assume any routing

capabilities in the network. As a result, only those sensor measurements are received

at the leader that are within one-hop range from the leader node.

2.3.2 Distributed Aggregation and Moving Leader Design

This design feature helps improve fault tolerance, optimizes energy and bandwidth

consumption, reduces chances of battery depletion attacks, and improves real time

 27

estimation by reducing unnecessary processing delays in the network. Most

applications including tracking and sensing applications require data from multiple

sources to be cooperatively aggregated together. In centralized approaches, as shown

in Figure 3, all sensed data is relayed to a central base station for aggregation. This

results in a lot of communication from the sensing locality to the locality of the base

station. The nodes closer to the base station end up simply becoming relays for the

rest of the network and quickly get exhausted and die. If the motion of the target is in

a direction away from the base station, the situation becomes worse. From a security

standpoint, relaying measurements from the sensing node to the base station through

multiple hops opens up multiple points for intermediary nodes to corrupt data. Battery

exhaustion is another valid attack adversarial nodes can launch upon nodes closer to

the base station. If successful, it can result in the base station getting cut off from the

rest of the network. Elaborate schemes for routing and path integrity maintenance will

be required to mitigate these problems. For these

Figure 3: Moving Leader Approach

reasons, we discard the use of centralized processing schemes and adapt a distributed

approach. The distributed aggregation approach provides intrusion tolerance to the

protocol by moving the aggregation function as close to where the information is

 28

gathered as possible. This also helps minimize delays in computing the aggregate

from the time the measurements are taken.

As the target moves through the sensing field and further away from the initial

aggregator node, once again the sensor nodes start relaying information from the new

locality of the target to the old locality where the aggregator resides. A lot of useful

bandwidth is again wasted in this relaying process. It has been shown through

experimentation that each bit transmitted consumes as much power as 800-1000

instructions executed [13] and hence is not an insignificant measure that can be

overlooked. From a security perspective too, computing the aggregate at a single

location becomes a single-point of failure if the only aggregating node fails, is

compromised or the nodes closest to it are deliberately exhausted.

Therefore, the single aggregator is a high profile target for any attacker, and must

be made fault tolerant. We adopt a moving leader approach, as shown in Figure 3

where the aggregating node is always moved to be within the sensing locality of the

target. This is done by executing the aggregation function at the leader of the cluster

in which the target is present at a given time. The leader performs the aggregation and

hands off the target position it has estimated to the next leader in the predicted

direction of the target’s motion. Due to the hierarchical cluster arrangement of nodes

in our protocol, the moving leader approach can be effortlessly implemented without

any additional overhead. Clusters and their leaders have already been established,

type B sensor nodes have been configured to send their measurements to their

respective leaders. Therefore, the only change we need to make is that a leader has to

send its position estimate to another leader. Since the particle filtering algorithm that

 29

does the aggregation has an apriori estimate component, this hand off becomes very

useful. By incorporating a moving leader, we combine the goodness of data

aggregation in the sensing locality with processing it within the sensing locality itself

to provide intrusion tolerance, reduce delay and decrease load on sensor nodes.

2.3.3 SMC Method for Data Aggregation

This design feature helps improve real-time online target position estimation,

accurate positioning and trajectory tracing. It also provides for low storage,

communication, and computational costs as compact representation allows the storage

and exchange of very little data without diminishing accuracy.

At the core of our protocol lies an algorithm that belongs to the class of sequential

Monte Carlo methods (SMC), also known as particle filters because they maintain a

set of state trajectories (or particles) that are candid representations of the system

state. They have been information theoretically proven to be good filters for

dynamical systems. We use one such particle filter to process input parameters

otherwise known as particles obtained from multiple affiliated sources and aggregate

them in a Bayesian manner that preserves previous information as well as incorporate

the current to provide a trajectory of the target.

The first component of the particle filtering algorithm <p.f.i>j is the particle filter

input from each reporting node j. For simplicity, we omit the notation i when we are

talking of a single cell. An apriori estimate from a leader node adjacent to Ai is

denoted by <p.e>i-1. The second component is Γ the SMC particle filtering function

that returns the final output after performing the three internal operations

 30

(Initialization, importance and resampling). We describe these internal operations

further in this sub section.

Sequential learning and inference methods are important in many applications

involving real-time signal processing, where data arrival is inherently sequential. In

our application, furthermore, due to the possible motion of the target, a sequential

processing approach would be necessary to deal with non-stationary signals. This

way, information from the recent past is given greater weightage than information

from the distant past. From a logic perspective this makes more sense in our

environment, as the last known location of a target is of more value than its previous

locations for the purpose of computing its next possible location. To perform this type

of computation using other conventional collaborative processing techniques would

imply the storage and exchange of large amounts of state information, which defeats

the purpose of using the distributed architecture and moving leader approach to keep

communication overhead at a minimum. The particle filter also has a very compact

representation, and very little data has to be comparatively exchanged to derive a true

estimate of the target’s position without diminishing accuracy. Thus computational

simplicity in the form of not having to store all the data also constitutes an additional

motivating factor for applying sequential methods.

Monte Carlo methods are very flexible in that they do not require any assumptions

about the probability distributions of the data. Moreover, experimental evidence

suggests that these methods lead to improved results [76]. From a Bayesian

perspective, Sequential Monte Carlo methods allow one to compute the posterior

probability distributions of interest on-line. Yet, the methods can also be applied

 31

within a maximum likelihood context. Though there are various implementations of

particle filters, we describe the common approach and the generic steps involved:

Multiple copies (particles) of the variable of interest are used, each one associated

with a weight that signifies the quality of that specific particle. An estimate of the

variable of interest is obtained by the weighted sum of all particles. The particle filter

algorithm is recursive in nature and operates in two phases: prediction and update.

After each action, each particle is modified according to the existing model

(prediction stage), including the addition of random noise in order to simulate the

effect of noise on the variable of interest. This step is also called the Importance

Sampling Step. Then, each particle’s weight is re-evaluated based on the latest

sensory information available (update stage). At times the particles with

(infinitesimally) small weights are eliminated. This process is called resampling.

Step I: Initialization Step/ Sample Step (S):

In this step, the M particles, denoted by { }()

1

Mm
n m

x
=

 i.e., for m = 1….M are initialized

by drawing samples from the initial distribution: ()1| m
k k kp x x x −= for every time

instant k. 1
m
kx − denotes the previous observation. Every importance weight is initialized

to ()
0

1mw M= .

Step II: Importance Step (I):

In this step, we draw from an importance density function ()()
1 1:| ,m

k k kx x zπ − and create

a trajectory proposal as shown below:

 32

 () () (1: 1 1 1: 1 1:
1

| |
n

n k
k

),k kx x z x x zπ π π −
=

= ∏ .

Particle weights can be recursively computed as:

() (
()

)() () ()
1*() ()

1 () ()
1: 1:

| . |

| ,

m m
n n n nm m

n n m m
n n n

p z x p x x
w w

x x zπ π
−

−=
m

And normalized as:
*()

()
*()

1

m
m n

n M j
nj

ww
w

=

=
∑

Step III: Resampling Step (R):

Since weights degrade, we resample so that trajectories with smaller weights can be

neglected and those with higher weights can become more prominent. For a

comprehensive understanding of SMC methods, additional resources are available at

[54] [30].

In summary, we use the available indirect measurements (also called observations)

from time 1 through k () and the most recent estimate of position (1:kz 1kx −) to

compute the maximum likelihood of the next location using Bayesian inference.

2.3.4 Watchdogs: Additional Data Sources

This design feature helps disambiguate potential confusions, identify possibly

malicious or malfunctioning nodes in a neighborhood, provides upper bounds on

distance estimates without increasing the complexity of the protocol.

 33

Here, we leverage the inherent property of a distributed wireless sensor network

that all communication is seemingly open, spatially and temporally correlated and

that both the observance and absence of data is a rich source of information. . We

design watchdogs that observe and make inferences based on (1) communication

between nodes and (2) the presence and absence of data. Watchdogs are uniformly

distributed across the deployment network.

Node-to-Node (N2N) data Watchdogs: One of the advantages of having a

distributed estimation system is that there is a lot of data around us that we can use to

make our current estimates better and smarter. For example, due to the nature of the

communicating medium, when sensor nodes within the same cell send messages to

the leader, they can hear each other’s messages as well. This is a very important

source of information, which can be used to identify potentially misbehaving nodes.

For example, if a node is sending data inconsistently with respect to its neighbors

(e.g., when there is no target sighted), the neighbors will be able to observe this

inconsistency and report it to the leader. An important effect of this observation is

that if a malicious node increases the frequency of sending false data (which is

acceptable to the system till some extent), the watchdog nodes can observe and report

this fact to the leader. This can prevent potentially large amounts of false data to be

inserted into the target estimate.

 34

Malicious Node

Verification Polygon

Figure 4: Disambiguation using Node-to-Node data.

Another example would be the alteration of the signal strength by the transmitting

target or the adversary. If any entity changed its transmitting signal strength, it would

seem to be closer or farther away from its neighbors than it actually is. If its

neighbors form a closed polygon, as shown in Figure 4, the entity cannot appear to be

closer to ALL or farther away from ALL its neighbors at the same time. If it appears

closer than it is to a few neighbors, it must appear farther than it is to other neighbors

and vice-versa. When neighbors relay information regarding this entity to the leader,

they can hear each other’s messages, detect any inconsistency and notify the leader. If

the leader receives sufficient number of inconsistency reports for a node, it can

choose to ignore the inputs received from the inconsistent node.

We formulate and prove succinctly how node to node data can be used to detect

anomalies in node behavior and discard malformed input coming from such nodes

using lemmas 1 and 2.

Lemma 1: In a given neighborhood Ni , repeated observations from any node q that

deviate from the observations of a simple majority of q’s neighbors in the same

interval for the same target, indicate Byzantine behavior, malicious behavior, or play

 35

of contrasting environmental characteristic and such observations should not be

included in aggregated estimates.

Proof: In a benign environment, there is bound to be some deviation in measurement

among nodes within a locality due to contrasting environmental factors like uneven

terrain, shadows, presence of signal attenuators like trees nearer to some nodes than

others, etc. Once measured and accounted for, this becomes the base line deviation

for the deployment. Beyond this deviation, any observed deviation must be due to

malfunction or due to node behavior under malicious influence. Repeated behavior

can cause a deviant node to be reported and subsequently ignored. We call this

threshold the observation threshold, crossing which results in a node being reported.

It can be set depending upon the expected capabilities of adversaries and the baseline

deviation. Existing vote based algorithms can be incorporated here to avoid innocent

nodes being reported and ignored. However, it is not necessary to do so as long as

larger-than-majority collusion does not occur within the neighborhood. If a node is

reported for any reason including possible environmental factors by a number of

watchdogs, it is best to ignore the inputs coming from this node as these inputs will

result in dilution of the accuracy of the position estimate.

2R

R

Node p

R

Node p

Node q

Node q Node s

Figure 5: Inferring from Non-observed data

 36

Non-observed data Watchdogs: This data comes, actually, from no data. In other

words, just as the observance of data indicates something, in location determination

and disambiguation, the non-observance of data is equally informative. For example,

as shown in figure 5, if node p can hear node q, it would indicate that node q is within

a radius of R of node p, R being the communication range of the nodes. Similarly, if

node p does not hear node q, but knows that one of its neighbors s (who is within R of

p) can hear node q, it would indicate to p that node q is within [R, 2R] of it. Similar

information from few other nodes would help place node q or any other target more

accurately.

Lemma 2: If R denotes node communication range, and p q and s are three nodes

deployed in the field under consideration, and p qd d− being the absolute distance

between p and q then the following statements are true:

a) If p hears q, they must be at most R apart, i.e., p qd d R− ≤

b) If s hears both p and q, they must be at most 2R apart i.e., 2p qd d R− ≤

c) If p hears s, p does not hear q, but s hears q, then q must lie within (], 2R R of

p. i.e., 2p qR d d R< − ≤

Proof a): We refer to figure 5 to prove this intuitive lemma. If the communication

range of each node is R, then by virtue of this argument, any honest node that p can

hear, must be within the range R. Therefore,

 q.e.dp qd d R− ≤ (1.1)

Proof b): We use Lemma 2 a) to help us here. We start with Eq. (1.1)

 37

 p sd d R− ≤ (1.2)

 s qd d R− ≤ (1.3)

Adding (1.2) and (1.3) we get

p s s qd d d d R R− + − ≤ +

 2p qd d R⇒ − ≤ (1.4)

Proof c): p hears s, p does not hear q, but s hears p can be rephrased as s hears both

p and q, but p does not hear q (and vice versa is assumed).

From Lemma 2 a) we have

 p sd d R− ≤ , and s qd d R− ≤

From p sd d R− ≤ we have

 p q s q

p q s q

p q

d d d d R

d d d d

d d R R

− − + ≤

⇒ − − − ≤

⇒ − − ≤

R

 2p qd d R⇒ − ≤ (1.5)

And from p does not hear q, we have

 p qd d R− > (1.6)

 Combining results (1.5) and (1.6), we have the mixed interval

 2p qR d d R< − ≤ (1.7)

 38

In summary, by using the observance and non observance of data from certain nodes,

we can put an upper bound (and in some cases a lower bound too) on the distance

estimates to a particular node, with negligible overhead. In the case of localizing a

target, this information can be very useful to quickly bound a target to an upper and

lower limit and then fine tune the estimate. These bounds also serve to disambiguate

and reject impractical values quickly and easily without incurring much additional

overhead. One important point to note is the distribution and density of watchdogs. If

they are not uniformly distributed, then an adversary can take advantage of

neighborhoods where watchdog nodes are sparse. If they are either too large or too

small in number, they will not be very effective. A very large number of watchdogs is

counterproductive since these nodes will add to the cost. On the other hand, having

less number of watchdogs will fall short of serving the purpose. We leave this study

of tradeoffs between their deployment density and distribution for the future.

 39

Chapter 3 Analysis of Robust Target Localization

 In this chapter, we analyze the resistance of our protocol against false data attacks

from a robustness perspective. In other words, we examine how the protocol reacts to

malicious behavior that is not detectable, i.e., that which has been crafted to look like

noise, systemic variation, or environmental influence or cleverly crafted fraudulent

data sand not specifically adversarial behavior. We quantify the maximum adversarial

behavior the system can tolerate, and derive an expression for the least upper bound

expected error under such circumstances. We then cast this as a multivariate

optimization problem and solve it for the degree of robustness achieved by the

protocol. We derive a lower bound on the number of particles that must be active in

the particle filter in order to ensure that the solution is always δ-robust. Additionally,

we examine the dependencies associated with this solution and their effects on the

outcome. We then examine the various security properties of the system and showed

that they are not violated in any run (malicious or non malicious) of the protocol.

WSNs are data centric networks, the prime objective being collection and

processing of data say, for example, for strategic or military decision making. An

intelligent adversary need not attempt sophisticated attacks to dislodge the network. It

can intelligently craft bogus data acceptable to the system and negatively influence

the outcome of the system or protocol. This in turn will negatively influence strategic

decisions themselves. When data itself is falsified, strong cryptographic protocols

cannot provide any resilience. Integrity check mechanisms will also fail because they

 40

only check for in-transit message corruption. They cannot prevent against falsified

data in a legitimately created perfectly valid message. Source authentication also does

not help as corrupt insider sources will be able to authenticate themselves

successfully. Broadly, there are only two ways to resist the objective of such false

data attacks. One is to be able to detect that the data is false and discard it, or second,

to be robust against false data. In practice, it is hard to design perfectly robust

protocols. We evaluate our protocol under worst case attack and show that it achieves

δ-degree of robustness.

Recall our notion that the objective of an attack on a data centric network is to

cause the network to either report incorrect or no data, or in the case of intelligence

(inferential) operations, arrive at an incorrect or inconclusive outcome. In the case of

the WSN under our consideration, an attacker’s objective could be to adversely

influence the resulting target estimate or result in no estimate of the target’s position

at all. This can be achieved through a variety of ways, directly or indirectly. We

attempt to briefly classify these attacks. We refer to attacks like signal degradation,

deliberately jamming a node’s signal or withholding a measurement as physical

attacks and attacks on the protocol like spoofing a leader’s or aggregator’s identity,

lying about other nodes, misrepresenting one’s location, falsely accusing honest

nodes of malicious behavior, replay attacks, etc as protocol attacks. We refer to a

third class of attacks as data centric attacks which includes attacks where a node

sends incorrect belief values to a neighboring aggregator node, incorrect

measurement values to the aggregator node, adversary increasing the frequency of its

inputs to drown out the target estimate at the aggregator, or simply skew it towards a

 41

false outcome. Different classes of attacks warrant different treatments. While we do

not consider physical attacks at this time, our protocol is capable, in some situations,

of identifying if a direct physical attack is under way in some subsections of the

deployment (using watchdogs, for example). We perform a security analysis of

common protocol attacks that our protocol is susceptible too, and a robustness

analysis to evaluate the effect of data centric attacks.

Undesirable behavior can be classified into malfunctioning, malicious and

compromised nodes. They primarily differ in their intent, and hence have different

detection probabilities in our model. We refer to a node as malfunctioning when the

node disobeys protocol or supplies arbitrary measurements, without intent to harm the

outcome or the working of the protocol. Selfish nodes come under this category too

though they technically are not malfunctioning. We refer to a node as simply being

malicious if it is not part of the sensing model, and is working with bad intent towards

deliberately degrading and throwing the estimate off track. Finally, we refer to a node

as being compromised if it is an authenticated party in the network and working with

bad intent towards degrading the estimate.

Few threats and attacks that can cause an incorrect estimation of the target’s

position are enumerated below. We also discuss how these attacks are currently

countered by our scheme.

3.1 Attack Model

We represent an honest principal by HP_bi, and a dishonest one by DP_bi, such that

 , is the set of all interacting type B principals in a cluster (_ _i i
i m

HP b DP b P
∈

∪∪) B∈

 42

i. DP_bi, includes all malicious and compromised nodes and HP_bi includes all non

malicious nodes. If Ci represents the cluster i after a successful run of the cluster

formation algorithm, then we simply state the following lemma without proof.

Lemma 3: The precondition to a data centric attack, is satisfied if at the end of a

successful run of the cluster formation algorithm, _ i iDP b C∈

 _ , and .i BDP b P i n∀ ∈ ∀ ∈

Proof: Initially, all nodes are assumed to be benign. Under this assumption, no

dishonest node will be part of the protocol, and hence no data centric attacks can be

launched. This is because our protocol only accepts data from sources that posses

valid cryptographic keys required to sign message (1) in Phase 1 and message (1) in

Phase 2 (Refer to protocol specification in Section 2.2.4.2). Therefore, it follows that

if a dishonest node (malicious or compromised) is able to successfully penetrate the

cluster formation process, then a necessary precondition to launch a data centric

attack has been met.

We represent the actions of a malicious node that is a part of the cluster, within a

single set of adversarial actions Λ. This includes disruptive actions such as non-

forwarding, dropping, modifying data content, replaying, flooding, delay time-

sensitive data packets selectively or inject bogus packets into the particle stream.

We further define Λd as the subset of actions in Λ which result in an identifiable

unsuccessful run, i.e., those actions that have effects that hold in the next transition

state, and which may or may not result in a successful termination of the protocol. .

 43

A successful attack action Λ∈a requires that the preconditions of a hold at the

start of the attack in say, state s1 and the effects of a hold in a subsequent state s2.

Sα,is one such precondition. If da ∈ Λ ∈Λ then, the attack can be detected with non-

negligible probability . If
d

pΛ \ da ∈ Λ Λ then, our protocol should result in a

successful run with the target location output being within the tolerable MSE range,

i.e., with probability 1222
MAXξξε ≤≤

d
pΛ−

Lemma 4: In a scenario with multiple independent acting adversaries, the number of

Byzantine nodes that can be tolerated depends upon the detection threshold , and

the failure rate γ, and is given by

d
pΛ

()
()()
1 3 1 1

_
3 1 1

i d

d

B

i

P p
DP b

p

γ

γ
Λ

Λ

⎡ ⎤− − −⎣ ⎦≤
− −

Here, clearly, Λ∈a . In the worst case scenario, all dishonest principals DP_bi and

some percentage of honest principals that are malfunctioning will be part of the

adversary set. If the fail rate of the devices being employed is γ then, γHP_bi are the

honest parties that contribute to the adversary set.

We start with the classic Byzantine two-thirds majority2 result that in order for the

non-malicious result to prevail, the following equation must hold:

1

_ _
3
iB

i i

P
HP b DP bγ

−
+ ≤ (3.1)

2 The Byzantine simple majority result cannot be applied in our case since in order for the simple
majority result to prevail, there needs to be an infrastructure that allows signed messages from each
node Bij to prove not just message integrity but also authentication (source authentication)., for
example like in a public key infrastructure. Since this is not the case in our scheme, we cannot use the
simple majority result.

 44

Factoring in the probability that a malicious data is detected if
d

pΛ
2 2 2

MAXε ξ ξ≤ ≤

thereby resulting in the removing out of band data, implies that ibHP _γ can be

detected with non negligible probability if their estimates deviate more than
d

pΛ

2
MAXξ , say. Therefore, ()

d
pbHP i Λ−1_γ honest nodes are not detected and eliminated

from the algorithms computation process.

Similarly for dishonest principals, we have ()
d

pbDP i Λ−1_ as the number of

participating dishonest nodes in a single cluster i.

Therefore, the equation from above effectively becomes

()
d

i

p
P

bDPbHP B
ii

Λ−

−
≤+

13
1

__γ

which gives us

()
()()
1 3 1 1

_
3 1 1

i d

d

B

i

P p
DP b

p

γ

γ
Λ

Λ

⎡ ⎤− − −⎣ ⎦≤
− −

 (3.2)

Clearly, as the detection probability increases the right hand side of Eq.(3.2)

increases showing that the ability of the algorithm to withstand Byzantine behavior

improves. In other words, we can tolerate more dishonest nodes and as a result

become more resilient to false data as detection probability increases.

d
pΛ

 45

Figure 6 below shows the effect of varying on the number of dishonest nodes

tolerated (DP) for different values of

d
pΛ

γ . (γ is varied from 0.01 to 0.5, =100 nodes,

and is varied from 0 to 0.6)

BP

d
pΛ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100
gamma = 0.1
gamma = 0.2
gamma = 0.3
gamma = 0.4
gamma = 0.5

N
o.

 o
f d

is
ho

ne
st

 n
od

es
 to

le
ra

te
d

(D
P)

Probability of detection (
d

pΛ)

Figure 6: No. of dishonest nodes tolerated (DP) vs. Probability of detection (PΛd) & fail rate (γ)

 46

Here we observe that as detection ability increases, the system can tolerate

more number of malicious entities. Detection ability depends on the data

validation mechanism employed as well on the particle filters ability to track and

filter mis-data as noise. This directly translates to the particle filter threshold when it

tracks performance vs. collective disturbances. The threshold can be modulated by

modifying the time period of observations, reducing the update period, and increasing

number of particles collected per time window by modulating the sleep awake

distribution criteria of each cluster. Effects of these characteristics on the threshold

and hence performance are discussed in a later section.

d
pΛ

d
pΛ

3.2 Robustness Analysis

To prove robustness we model the behavior of the protocol, its assumptions and

dependencies as well as other sources of uncertainty. We then assess if the uncertain

system satisfies a desirable property P for every admissible value of the uncertainty.

In our case, we define a robustness parameter δ, which is measured against location

error as the desired property P. We model the uncertainties and observe their effect on

the location error for all admissible values of the uncertainties in the constraint space.

We examine the output for the worst-case malice from adversary within the given

time window and given neighborhood. At this point, we would like to point out that

the adversary is limited to the immediate neighborhood.

Input to tracking system is vector x X∈

 47

Vector x is a set of observations from various entities in the neighborhood.

Therefore, input is a continuous stream of input vectors { }[1], [2],.., []X x x x N= the

collection of which at t+T (time window) results in the output position estimate Z[t+T].

If is within δ of the true position [t TZ +]]
*
[t TZ + , then the tracking estimate is useful.

We say that is δ-robust if] is δ within] for all for worst

case malicious input.

[t nTZ +] t nTZ + t nTZ +[
*
[,t n R∈

 48

Phase 1: Aggregation and Position Estimation Phase at Ai

 For every type B sensor that senses an active target in cell i:

(1) ()* : : . . , , , ,{ . . , , , }

ij ii i j k ij i j k ij i B AB A p f i t B A p f i t B A SK PK→ < > < >M

(2) :iA j∀ . . jcheck p f i< > such that AND 2

max
2 ξξε ≤≤ () is trueMV

 If true,

1
: . . arg _

m

i j i
j

A p f i T et Location θ
=

< > =Γ

(3) Process repeats from (1) for next time interval θ

Phase 2: Hand off Phase at A
(1) { }*: , , arg _

ii i k i
A A t T et Location SKθ→ A

(2) : If 1+iA { }, , arg _

ii k Ai
A t T et Location SKθ is true,

(1) 1. arg _ip e T et Location θ+ −< > =

Verification Function ()MV

Input: Message M
If [] ()()ˆ ˆ, & & _l up p TS (sig_val) & N2N flagν ν ν 0∈ − + =M

Output (1); (Message verification PASS)

 Else Output (0); (Message verification FAIL)

Figure 7: Secure and Robust Location Determination Protocol

Let us assume adversary can craft malicious input (attack feature) ˆ[]x i . If the

adversary’s rate of sending attack particles is , probability p̂ pα of setting its attack

particles at rate []ˆ ˆ,lp p uν ν ν= − + where lν and uν are the lower and upper bounds on

the allowable rate of particle inputs without raising suspicion and being detected, and

 49

probability pβ that the attack particles are set within the allowable error range, so as

to not trigger outlier detection and rejection.

Adversary algorithm (),p pα βF

 Select []ˆ ˆ, ,l up p pα ν ν ν∈ − +

 Select 2 2
max0, such that ,

d xp pβ ξ ε ξΛ⎡ ⎤ ⎡ ⎤∈ ∈ ⎣ ⎦⎣ ⎦

 Select 2 2
max,xξ ε ξ⎡ ⎤∈ ⎣ ⎦

 ()|
ˆ . . , xj x
x p f c ξ←E

 Output ()x̂

 dIf a ∈ Λ ∈ Λ , attack detected with non negligible probability
d

pΛ

 \ dIf a ∈ Λ Λ ⇒ protocol run successful with 2
max

2 ξξε ≤≤

Adversary outputs ()ˆ ,x p pα β← F

Definition 3-1: At the end of a successful run, if adversary output ()ˆ ,x p pα β← F

produces no more than δ deviation from the estimate of the true position, then we say

that the system is δ-robust.

Let us calculate the effect of a single adversary injecting intelligently crafted

malicious input to the tracking system at A. If the adversary does not exceed the rate

 50

of injection of particles []ˆ ˆ,lp p uν ν ν= − + then all its inputs { }ˆ ˆ ˆ ˆ[1], [2],.., [..]X x x x=

will be accepted with probability 1
d

pΛ− .

Therefore, at the end of the three stages, we calculate the derived position estimate

 as: [
ˆ

t nTZ +]

After Initialization /Sample Step the M particles, denoted by { }()

1

Mm
n m

x
=

 i.e., for m =

1….M are initialized by drawing samples from the initial

distribution: for every time instant n. (1| m
n n np x x x −=) 1

m
nx − is the previous

observation. Every importance weight is initialized to ()
0

1mw M= .

With probability pβ malicious input { } .()

1
ˆ

Tm
n m

x
ν

=
with rate ν =[]ˆ ˆ,lp p uν ν− + and MSE

2
maxξ ξ≤ adversary can causes ˆ ˆ.N Tν= particles within the time window T to be

accepted by the system. In the worst case scenario, ˆN N= in which case, the output

will be maximally deviated from the true estimate, and is not of concern to us. On the

basis of the Byzantine result derived in the earlier sub-section, we can expect the

worst case as a set of particles drawn with 50% malicious input.

In the second step, the proposed trajectory becomes

() () (1: 1 1 1: 1 1:
1

ˆ ˆ ˆ ˆ| |
n

k k
k

),k kx x z x x zπ π π −
=

= ∏

And finally, after the resampling step, error propagation calculations show that the

cumulative error in the estimate is as follows. Since we know the uncertainties

parametrically from when they were introduced, we can estimate the uncertainties

associated with the estimate as well.

 51

1
2 2

1 1

.
n

i i ix z
π ππ

= −

⎛ ⎞⎛ ⎞∂ ∂⎜ ⎟∆ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∑

At each stage of the algorithm, the approximation admits a mean square error on the

order of the number of particles.

Finally estimate becomes] [t nTZ +]
ˆ ˆ

t nT t nT t nTZ Z Z+ + += + ∆[] [] [

From here, we need to answer two questions. Firstly, what is the effect of this error

on the output? If the error is not greater than the allowed tolerance δ, then the system

is δ-robust as per Definition 3-1. Secondly, what is the upper bound on the frequency

of crafted observations to cause the error to still be 2
maxξ ξ≤ and []

ˆ
t nTZ δ+∆ < , if any?

The probability distributions of the random variables and mean square error for the

given system are known to converge. We therefore begin with the result that:

 and again, at each stage of the algorithm, as the approximation

admits a mean square error on the order of the number of particles, we can calculate

an upper bound on the approximate mean square error introduced since the number of

malicious particles is bound by the rate of delivery of the particles as determined by

the adversary. In a given attempt, in the worst case an adversary can input atmost

lim (.)N
t tN

a sπ π
→∞

=

ˆ.Tν malicious particles provided the input is within the tolerable error limit (to avoid

being dropped). Thus the bounded error is a function of the input rate, the time

window of operation and the probability of undetectability.

 52

Lemma 5: If the probability that particles pass undetected through the Byzantine

detection and agreement algorithm is pχ , and pβ is the probability that the attack

particles are set within the allowable error range, then the maximum likelihood of

undetectability becomes

 1

1 2
()ud

p p
p

2
p p p p

χ β

β χ χ χ
Λ =

− +

Proof: We can easily derive the result above using Bayes conditional theory as

1

1 2
(1)ud

p p
p

p p p p
χ β

χ β χ β
Λ =

+ −

Rearranging, we get 1

1 2
()ud

p p
p

2
p p p p

χ β

β χ χ χ
Λ =

− +
 (3.3)

We have already defined our condition for robustness assessment in Definition

3-1. We have also seen briefly that the position estimate as well as the location error

is dependent upon a few parameters like number of particles, node density, frequency

of incoming particles, the time window of the filter etc. For now, all these parameters

are variable in our setup. Solving this problem, therefore, becomes a multivariate

optimization problem.

We can solve this problem in a few different ways. Commonly used optimization

techniques are game theory/ decision theory approach, and parametric optimization

approach. The parametric approach is better suited to our problem. One way to solve

 53

this problem parametrically is by combining all the parameters into a single parameter

and optimizing the utility function (location error) in our case against it. We begin

optimization by breaking the problem down into independent components each of

which can be singularly optimized. The additive property of optimal solutions for

independent events implies that the summation of these components will provide the

optimal solution to the problem.

Lemma 6: Given an initial estimate of location, initial parameters ,
ud

pΛ pΛ and a

derivable constant , the least upper bound |t tc δ such that the expected error of the

system is δ –robust is given by [] [] []1 1inf () ()E e p E e p E eδ ′≥ + − 3 which is the

difference of the MSE with and without the presence of malice.

Proof:

We start with the definition of δ .

By definition, δ is the deviation in location error observed due to the introduction

of malice in the tracking system, and is given by

Expected error Expected error Probability of
Probability of

 with maximum with no malicious no malicious
malicious input

malicious input input input
δ

⎡ ⎤ ⎡ ⎤ ⎛
⎛ ⎞ ⎜ ⎟⎢ ⎥ ⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝

⎞

⎠

i.e. *
1 1(1)f p f pδ Λ Λ= − − (3.4)

Where is the expected error with malicious input, given by *

1 f

[] []*
1 .1 2 f E e .p+E e p′= where []1E e is the expected error with undetectable

 54

malicious input, []2E e is the expected error with detectable malicious input and p is

the associated probability. We will show shortly that *
1f is actually the optimum value

of the expected error with malicious input.

Similarly, is the expected error without malicious input, given by 1 f

[]1 1. |3 f E e p == where []3E e is the expected error without any malicious input, and

p=1.

Thus, we have

 [] []*
1 .(1)

ud ud1 2f E e .p +E e pΛ= Λ− (3.5)

Since is the expected error without malice, it follows that1 f [] 2

1 3 f E e ε= = , a

predefined semi-variant constraint which is the baseline error, and may be dictated by

the sensitivity and requirements of the tracking system application.

E[e2] being the expected error with detectable malicious input, it is inversely

proportional to the number of particles N, and can be calculated as:

[]
2

|2 t
CE e C+ c

NN t

ϕ
= ≤

for any bounded function ϕ and constants C, and (at time t.) The remaining

term in (Eq. (3.5)) i.e. the

|t tc

*
1 f []1E e term is an optimization problem in itself, where

we require the minimum []1E e for maximum malice in order for δ -robustness to be

true. We now try to solve for this value. To get an intuitive idea, we present []1E e in

a min max setting:

 55

[] ()
[]

2 2
max

ˆ, ,
1ˆˆ ˆ[,] , , ,

min max i

l u ud

p p p N

p p p p p N
 E eα β χ

α βξ ε ξ ν ν ν Λ

∗

∈ = − + ,F

Frequencyν , as we have seen before, is already bounded by the system to

[]ˆ ˆ,lp p uν ν ν= − + which provides the range of error fluctuation. From this relation

we can see that if the number of non malicious particles is increased, not through the

rate but through increased number of participants (particle density) we can further

reduce the impact of the malicious input. Intuitively moving a step further, if the

particle density is increased in a non uniform manner (skewed towards cliques) the

same nodes can help multiple clusters and disambiguate mis-data without increasing

node participation. This is an important result. We can use frequency limitation,

particle density and number of particles to narrow the constraint space and further

eliminate solutions of the min max function above that fall outside of this space. This

gives us a smaller solution space and reduces complexity by an order.

We will use Simultaneous Perturbation Stochastic Approximation (SPSA) method

introduced by [37] to solve for []1E e where the gradient is approximated using a

randomized finite difference method. Compared to the standard finite difference

method, SPSA is advantageous in that we only need to compute 2 estimates of the

objective function per iteration, irrespective of p- the dimension of θ , instead of 2p

estimates. Also, under general conditions, SPSA and standard finite difference

stochastic approximation methods achieve the same level of statistical accuracy for a

given number of iterations even though SPSA requires 1/p times the measurements.

SPSA converges to the optimal solution within a given level of accuracy (in our case

δ) with p times fewer measurements of the objective function and is ideally suited to

 56

low computational cost, speed dependent real-time applications where both time and

accuracy are important, and where all uncertainties and non-linearities cannot be

accurately modeled.

The use of the SPSA technique results in an elegant optimization algorithm for

SMC methods. For simplicity and clarity, we will follow the notations used in

standard SPSA literature [37][38][39].

Assume (general assumption) the SMC algorithm is parameterized smoothly by a

parameter θ ∈Θ where is an open subset of . Under stability assumptions on

the dynamic model of interest, the particles, their corresponding weights, the true

state and the observation of the system form a homogenous and ergodic Markov

chain. Performance measure can thus be defined as the expectation of a cost function

with respect to the invariant distribution of this Markov chain parameterized by

Θ mR

θ .

We now define the time average cost function ()J θ for our system as the expected

error with undetectable malicious input E[e1], and represented as:

() () 1, , , [J E f Z X X W Eθθ ⎡ ⎤= =⎣ ⎦
� �]e

)

where the expectation is with respect to the invariant distribution of the Markov

chain (, , ,Z X X W� � corresponding to the set of observations, true and estimated

states, and estimated weights of the system. We are interested in estimating

()arg min Jθ θ∗ = which will give us the desired minimum value of E[e1]. Here, it is

worth noting that the cost function is independent of the observations since the

observation process is being integrated out. One important practical consequence of

 57

this is that the SMC algorithm can be alternately optimized off-line by simulating the

data and then use the resulting optimized algorithm on real data.

The mean square error represented in the SPSA format is

MSE (3.6) ()
2

, ,
1

, , ,
N

n n n n n n k n k
k

f Z X X W X X W
=

⎛= −⎜
⎝ ⎠

∑� � � � ⎞
⎟

We are interested in estimating ()arg min Jθ θ∗ = .Using SPSA, the problem of

minimizing a differentiable cost function ()J θ , where effectively

translates into finding the zeros of the gradient

mθ ∈Θ ⊆R

()J θ∇ . Recursively, we can estimate

θ ∗ such that as follows: () 0J θ∇ =

1
ˆ

n n n Jθ θ γ− n= − ∇ (3.7)

Where is the noise corrupted estimate of gradient ˆ
nJ∇ ()J θ∇ estimated at the point

1nθ − and []nγ denotes a sequence of positive scalars such that 0nγ → and

. Under appropriate conditions, the iteration in (3.7) will almost sure (a.s)

converge to

1
n

n

γ
∞

=

→ ∞∑

θ ∗ .

In order to solve (3.7) we need to obtain the gradient estimate . In SPSA the

gradient approximation is done via finite difference using the estimates of the cost

function. Briefly, all elements of

ˆ
nJ∇

1nθ − will be varied randomly simultaneously (hence

the name simultaneous perturbation) to obtain two estimates of the cost function

. Only two estimates are required regardless of the dimension (1nJ perturbationθ − ±)

 58

p of the parameter. For a two-sided gradient approximation, the gradient estimate

is given by (),1 ,2 ,
ˆ ˆ ˆ ˆ, ,.....,

T

n n n n pJ J J J∇ = ∇ ∇ ∇

1 1
,

,

ˆ ˆ() (ˆ
2

n n n n n n
n i

n n i

J c J cJ
c

θ θ− −)+ ∆ − − ∆
∇ =

∆

Where denotes a sequence of positive scalars such that and

 is an p-dimensional random perturbation vector. Algorithm

parameters

{ }nc 0nc →

(,1 ,2 ,, ,....,n n n n∆ = ∆ ∆ ∆)p

, , and n n ncγ ∆ require careful selection to ensure convergence.

The and n cnγ sequence generally take the form of =
()n

a
A n αγ

+
and

n
cc

nβ= respectively with non-negative coefficients a, c, A, α and β .

We find that 0.602α = and 0.101β = (recommended values) are practically

effective in our case too. is a symmetric Bernoulli n∆ 1± distribution. We set a and c

low initially (recommended for high noise settings) and our final stable values used

were a= 0.16, c= 1, A=100, α = 0.602 and β =0.101 .

We now incorporate the two-sided SPSA optimization algorithm into our SMC

framework. Recall the steps involved in the filtering algorithm from Section 2.3.3

Step 1: Sequential importance sampling with SPSA

For n=1 to N, sample (), 1 1, , ,n k n n k nX q X Zθ − − •� �∼ is the perturbed observation function.

We then compute the normalized importance weights with perturbation as

 59

() ()
()

, ,
, 1,

1 1, ,

| |

, ,
n n k n k n k

n k n k
n n k n n k

g Z X f X X
W W

q X Z Xθ
−

−
− −

∝
� � �

� �
� �

1,

)

We now evaluate the cost function.

First, we generate an p-dimensional simultaneous perturbation vector and compute n∆

1 1() and (n n n n n nc cθ θ− −− ∆ + ∆

For k=1 to N, sample . (), 1 1, , ,n k n n n n k nX q c X Zθ+
− −+ ∆ •� �∼

Compute the normalized importance weights as

() (
()

), ,
, 1,

1 1,

| |

, ,
n n k n k n k

n k n k
n n n n k n n k

g Z X f X X
W W

q c X Z Xθ

+ +
−+

− +
− −

∝
+ ∆

� � �
� �

� �
1,

,

Again, for k=1 to N, sample . (), 1 1, , ,n k n n n n k nX q c X Zθ−
− −− ∆ •� �∼

and compute the normalized importance weights as

() (
()

), ,
, 1,

1 1,

| |

, ,
n n k n k n k

n k n k
n n n n k n n k

g Z X f X X
W W

q c X Z Xθ

− −
−−

− −
− −

∝
− ∆

� � �
� �

� �
1,

,

We evaluate the cost function 1 1() and ()n n n n n nJ c J cθ θ− −+ ∆ − ∆ from

{ } { }, ,X W and X W+ + − −� � � � respectively.

Step 3: Gradient approximation

For i=1 to p, we evaluate the gradient components as

1 1
,

,

ˆ ˆ() (ˆ
2

n n n n n n
n i

n n i

J c J cJ
c

θ θ− −+ ∆ − − ∆
∇ =

∆
)

Step 4: Parameter update

Update nθ to the new value 1
ˆ

n n n Jθ θ γ− n= − ∇

 60

Step 5: Sampling

Multiply (Discard) particles nX� with respect to high/low importance weights to

obtain N particle

nW�

nX� .

It is possible to improve the algorithm in many ways, for example, by using

common random number or other numerical approximates like iterates averaging to

reduce the variance of the gradient estimate. The idea behind it being to introduce

strong correlation between our estimates of 1 1() and ()n n n n n nJ c J cθ θ− −− ∆ + ∆ so as to

reduce the variance. For further details and improvements upon SPSA we refer the

reader to [39].

Figure 8 Sequence of average MSE estimates over time

The results obtained for this simulation are plotted above in Figure 8. for a= 0.16,

c= 1, A=100, α = 0.602 , β =0.101 and for N = 100. Clearly, one can see that the

MSE with maximum undetectable malicious input almost mimics the response of the

 61

original system, that is, there is no non-linear loss observed. Further, the difference in

the error is almost constant, except for a few minor exceptions. If we set this finite

difference in the error as r.δ where r is a safety factor 0.4 0.8r< < , then the system is

guaranteed to be δ-robust as long as all the uncertainties modeled above do not violate

their physical constraints.

We now try to answer the second question we asked earlier, what is the upper

bound on the frequency of crafted observations to cause the error to still

be 2
maxξ ξ≤ and []

ˆ
t nTZ δ+∆ < , if any? This answer can be analytically derived. We

formulate and prove it as a lemma thus:

Lemma 7: For a given filter with known mean and variances for the importance

function generating samples, the supremum value of frequency of crafted

observations that can limit the maximum error in the approximation to under 2
maxξ and

[]
ˆ

t nTZ δ+∆ < is given by min[,]threshold uν ν ν+ where IS
threshold

N N
T

ν −
≤ and is the

number of samples coming from the importance function.

ISN

Proof: We make use of KL distance sampling (Kullback-Leibler distance)[18]

method from statistical theory that can be used to adaptively estimate the number of

particles to represent the target posterior distribution without increasing the overhead

to the normal operation of the filter.

 62

KL distance sampling is used to adaptively estimate the number of samples needed

to put an upper bound on the error of the particle filter. The error is measured by the

KL distance between the true posterior distribution and the empirical distribution,

which is a well known nonparametric maximum likelihood estimate. It is a standard

measure of the difference between two probability distributions. It can never be

negative, but a zero value is indicative of identical distributions.

The likelihood ratio converges to a chi-square distribution, and the bound for the

number of particles N represented as:

2
1,1

1
2 k

KL

N δε − −> x (3.8)

where KLε is the upper bound for the error given by the KL distance, and 1 δ− is the

quartile of the distribution with k-1 degrees of freedom. Equation 3.7 can be

further expanded using the Wilson Hilferty transformation [24] but for our proof

purpose, the form of equation 3.7 above will suffice.

2x

A slight drawback of using KL distance sampling is the underlying assumption that

the samples always come from a true distribution which we assume to be free of

malicious input. Recall that our particle filter samples are drawn from an importance

function π . In an adversarial scenario, some of these samples can be corrupt and

misleading. Therefore, in statistical terms, the quality of the match (or rather,

mismatch) between this function and the true distribution determines the accuracy of

the filter in the presence of malicious samples, and in turn, the suitable number of

particles required to uphold the correct estimates. The bound given by KL distance

 63

sampling only uses information about the complexity of the true posterior, but it

ignores any mismatch between the true and the proposal distribution.

KL distance sampling, thus, does not provide the answer to our question directly,

but provides an excellent start. We now need to quantify the degradation in the

estimation using samples from the importance function instead of a uniform empirical

distribution. This will give us the bounds we are interested in. We are interested in

accurately finding an equivalent number of samples from the (possibly flawed)

importance density function as that from the true density function that captures the

same amount of information. Relative numerical efficiency (RNE) helps us derive

such an accurate bound and adjust the KL distance sampling estimate by relating the

two samples.

RNE in the context of Monte Carlo (MC) integration, introduced by Geweke [33],

provides an index to quantify the influence of sampling from an importance function.

RNE allows us to compare the relative accuracy of solving an integral using samples

coming from both the true and the proposal density. This gives us the effect of

sampling from an importance function as opposed to a true distribution. We follow

the approach of [5] to equate the variance of the estimator estimated using KL

distance sampling and RNE as follows:

Using Sequential Monte Carlo (SMC) integration to estimate the mean value of the

state (()MCE x), the variance of the estimator given by [1] becomes:

()
()N

MC

Var x
Var E x

N
ρ⎡ ⎤ =⎣ ⎦ (3.9)

 64

where N is the number of samples coming from the true distribution ()xρ with no

malicious input samples.

When the samples come from an importance function π , the variance of the

estimator actually corresponds to the variance of Importance Sampling (IS). This is

given by [33] :

()() ()()2 2
2

()
p

N IS
IS

IS IS

E x E x w x
Var E x

N N
π σ−

⎡ ⎤ = =⎣ ⎦ (3.10)

where is the number of samples coming from the importance function

containing both malicious and non malicious input samples, and w is the associated

weight attached to the incoming particles.

ISN

Equating the variance of both estimators allows us to achieve similar levels of

accuracy. This in turn allows us to find a relation that quantifies the equivalence

between samples from the true and the proposal density. Equating both variances (i.e.,

equations 3.8 and 3.9), we get

2

()IS

IS

N Var x
N ρ

σ
= (3.11)

Replacing (3.11) in (3.8) allows us to obtain the correct bound given by KL

distance sampling when the samples do not come from the true distribution but from

an importance function. Therefore, we get

2
2

1,1
1

() 2
IS

IS k
KL

N
Var x δ

ρ

σ
ε − −> x (3.12)

()Var xρ and 2
ISσ can be estimated in the standard manner as:

 65

() () ()
2

2 22 1

1

()

N

i i
i

p p pN

i
i

x w
Var x E x E x E x

w
ρ

=

=

= − ≈ −
∑

∑
 (3.13)

and

() ()22 2 2 2

2 1 1 1

1 1 1

2

N N N

i i i i p i p
i i i

IS N N N

i i
i i i

i

x w x w E x w E

w w
σ = = =

= = =

≈ − +
∑ ∑ ∑

∑ ∑ ∑

x

w
 (3.14)

respectively, with () 1

1

N

i i
i

p N

i
i

x w
E x

w

=

=

=
∑

∑

Note from the above equation that the order of complexity of the filter is always

maintained at O(N) making this a low complexity and lightweight approximation

inline with our theme.

Equation (3.12) gives us the bound for the number of particles that can keep the

error under bound 2
maxξ (as a function of quartile values). As long as NIS is greater than

the right hand side of equation (3.12), maximum error 2
maxξ will be bound by the

quartile value 1 δ− . Further, the minimum number of particles that can limit the

maximum allowable error in the approximation will be
minISN 1ISN + .

Since the total number of incoming particles in a time window T is .Tν , it further

implies that the above result holds as long as the total number of malicious particles

ˆ. IST N Nν ≤ − . This becomes our critical threshold frequency thresholdν and

 66

IS
threshold

N N
T

ν −
≤ reduces the allowable range ofν to [, min[,]]l threshold uν ν ν ν ν− +

q.e.d

3.3 Security Properties of our Scheme

To build a secure protocol, we must understand what it means to be secure. Security

means different things to different people. Therefore, we first define what we

consider are security properties for our protocol. Security properties essentially are

characteristics that applications, protocols or programs must satisfy in order to be

valid for all reasonable and unreasonable inputs. The violation of a security property

for any input implies a vulnerability. Conscious application of this input by someone

possessing this knowledge constitutes a legitimate attack on the system.

In this section, we will specify various security properties of the protocol, ascertain

that they are preserved in the face of an attack and understand boundary conditions

and dependencies that exist, if any, for each of the security properties under

consideration.

For any protocol or system under design, security properties fall under the

following broad categories: freshness, authenticity, secrecy, non-intrusion and

resilience.

1. Freshness: freshness means that messages sent and received in a session are

generated and used in the same session. An attacker cannot use messages from

previous (or future) sessions in the current session without being detected.

 67

Our target tracking protocol takes, as input, individual measurements coming

from various nodes in the present neighborhood of the target, assimilates them

and produces a Bayesian likelihood type estimate of the current target

position. Targets may be moving. From this it is obvious that measurements

must be time sensitive. Only measurements that are close to each other in time

can be aggregated in the same iteration. The duration for which measurements

are considered to be part of the same iteration is known as the time window.

Only measurements received during the same time window can be used to

estimate target location corresponding to that time window. For online

processing, measurements are generated and aggregated closely in time

whereas for offline or passive processing, measurements still need to be

aggregated per window, but there may be a gap between the time

measurements are taken and when they are aggregated. In this work, we

consider the former case. The latter case is only a slight modification of the

former and can be easily derived from the former.

Therefore, the freshness security property for our protocol states that a

message containing a measurement regarding a target should only be

acceptable if it is valid in the current time window. Since we assume that the

nodes of the distributed system are loosely synchronized over single hop, the

freshness property results in that time stamps associated with measurement

messages should not be alterable without detection i.e., the time stamp must

be integrity protected along with the rest of the message during transit.

Messages should not be recorded and replayed later in a manner that is

 68

undetectable. Also within a time window messages need not be ordered since

their ordering within the window is not relevant to the estimator. The size of

the window of validity is tightly coupled with the synchronization degree (or

rather tolerable synchronization error σ). If the window is smaller, the nodes

need to synchronize more often, and more tightly (smaller allowable σ). If the

window is larger, the nodes can synchronize less often and may have slightly

larger values of tolerable synchronization error σ. This indirectly influences

cost as well as storage since longer time windows result in larger storage

requirement. We leave this as a future study goal.

2. Message Authenticity: Measurement messages should not be altered or

corrupted in transit in a manner that is undetectable. Altered and corrupt

messages should not be included in computing the target location estimate.

Further, messages that come from sources that possess valid authentication

material (like shared secrets) are accepted for use in computing the target

location estimate. Non repudiation is not required. Note that based on this

definition, select replays (fairly recent ones) of authentic messages are

accepted by the system.

3. Uniqueness: Each node can take only one measurement at a given time

instant. Alternatively, no node can have two or more measurements for the

same time instant. Note that there is an implied assumption here. Since

transactions are assumed atomic, no node can legitimately generate two

messages for the same time instant.

 69

4. Secrecy: In an honest scenario, contents of a message are kept secret between

the intended participants of the protocol only i.e., they cannot be read by

nodes other than the creator or the intended recipients. (A trusted third party,

if existing, is regarded as the creator, and does not violate the secrecy

property.)

5. δ-Robust computation: Computation of the target location estimate is robust

against malicious input up to degree δ, whereδ is the tolerable location error.

Our Approach

The correctness of the protocol is given in Appendix A, where we show that the

protocol converges to the true result within a finite number of iterations. In other

words, when we have reasonable inputs, the system provides reasonable outputs. We

now examine the security of the protocol. For this we prove how the security

properties identified above are preserved in the face of various attacks.

Our adversary can launch various attacks against the protocol as well as the data

that is carried by the protocol. It can leverage deployment characteristics (for e.g., ad

hoc nature, wireless medium, etc) and try to subvert the protocol. In this section, we

will characterize these attacks and prove one or more of the following: (1) that the

adversary cannot launch these attacks due to sufficient protection mechanisms, (2) the

probability that such attacks can be successful is negligible due to time or

computational infeasibility, (3) that the protocol is robust against certain attacks up to

the desired degree of tolerance.

.

 70

1. Replay, Redirect attacks:

Replay attacks occur when an adversary stores a copy of a message and replays it

at a later time after the original message was intended to be used. We examine the

case where an adversary Trudy records an (encrypted) message (1) sent by Bj to

leader A (Refer Fig 7.). After some time ′t has elapsed, Trudy replays message 1,

which is accepted by A. If the elapsed time ′t (relative to A) is greater than the

window of validity for the measurement, then the freshness verification will fail

and A will discard the request as per protocol. If on the other hand, the elapsed

time is smaller in value than the window in which the original message would

have been accepted, then by virtue of N being a true crypto-quality nonce, A will

detect the replay comparing the nonce with currently stored nonces. The existence

of a match asserts that A has seen this message before. It is worth noting that a

node only needs to store a nonce until the time window of validity of the

measurement. A node need not store a nonce beyond this expiry since a message

can be rejected on the basis that the time stamp is no longer fresh. We can do this

because both the nonce and the time stamp are committed by the sender. Since

timestamps can only advance from the previous message, and nonces are required

to be unique across a large time window, replayed messages cannot be successful.

′t

Thus, the presence of timestamps and nonces in the messages serves as an

adequate countermeasure to this type of attack. The same applies to message (1)

of Phase 2 which can be stored and replayed by an adversary. Thus, we see that

simply replaying an older message is not a successful attack.

 71

A redirect attack occurs when a message is sent to a third entity instead of the

intended participant. It can manifest in two ways, with original message

suppression and without. In the former case, the original message is suppressed

from reaching the receiver and redirect to a different entity, whereas in the latter

case, the message is “replayed” to a different entity and not the originally

intended recipient without having suppressed the original message. We argue that

in a wireless medium only the latter is a valid attack because message suppression

in a wireless medium is difficult to achieve. Subsequently, there are various

physical and mac layer techniques like spread spectrum [69] etc that sufficiently

mitigate these attacks. Therefore, we only consider the former case in our

analysis.

Let us examine the case where adversary Trudy redirects message (1) to a

different node A2. Since the message is encrypted in the public key of A1, A2 will

not be able to successfully decrypt the message and drop it.

2. Insert, Fabricate

An insert is an attack where an adversary inserts a completely new message into

the system (fabrication). Inserting a fabricated message essentially results in the

message being accepted by the algorithm if an adversary possesses any legitimate

signature key. This is because signatures are not tightly coupled with the

identities of the nodes. Hence an adversary can supply any signed message and it

will be accepted. The effect of fabricated messages on t he target estimate is

considered under our robustness analysis.

 72

3. Delay, False timing

This type of attack occurs when nodes behave in a Byzantine manner

(malfunctioning or exhibit arbitrary behavior). A node may send a measurement

with incorrect timing values or send messages after a long delay. Two things

happen here. One, when a node sends a message after a long delay, the watchdog

nodes will flag the node. Second, if the delay is too long, the message may simply

be discarded due to loss of freshness. False timing messages are rejected if the

time is too distant (past or future) from the current processing window. If not,

messages will be accepted and integrated into the target estimate.

4. Masquerade (Impersonation)

A masquerade attack occurs when a user presents itself to the system as another

user, usually a legitimate one. (Note that this attack is different from a

compromise and takeover attack.) This may be done in order to gain unauthorized

access to information or resources, to disseminate (mis)information in another’s

name, or to block or deny a system from operating correctly. [60]

A malicious node Trudy may masquerade as a legitimate leader node to

accumulate input messages or as a B node to insert false messages. In the former

case, since messages are sent encrypted with the public key of the real leader

node, a masquerading leader node can derive no benefit. Similarly, as a

masquerading type B node, an adversary cannot forge the credentials of a

legitimate type b node as it is against the property of the cryptosystem employed.

 73

It can, however, falsely sends a fabricated message to A which is made to appear

as if it came from B. The message will be successfully received at A since the

adversary can generate an arbitrary signature and encrypt the message using A’s

public key. When the fabricated message is received at A, A checks to see if the

data is acceptable. Since all messages in the network are encrypted, an adversary

does not know what an acceptable value is. It can only generate a message and

hope that it is accepted with probability pβ (See Section 3.2) The result is that

fabricated messages are accepted by our system if they are signed using any

legitimate signing key. The impact of accepting fabricated messages is dealt with

in the robustness analysis in the earlier section. (To summarize, we have seen that

the algorithm can survive a large number of dishonest nodes provided the

frequency of input is bounded.)

5. Man in the middle

A man in the middle (MITM) attack is one in which the attacker intercepts

messages in an exchange and then retransmits them, (sometimes substituting its

own crypto primitives in place of the requested one) so that the two original

parties still appear to be communicating with each other. The attack may be used

to intercept, read or alter messages without the knowledge of either transacting

party.

As indicated in the previous attack capture, suppression, selective jamming are

not easy to achieve in a wireless medium. Various techniques at the physical and

mac layer sufficiently reduce the possibility and question the practicality of these

 74

attacks. One seemingly practical way of launching a MITM is if the adversary can

send a message before the original is received at the recipient or to quickly

compute a response and send before legitimate reply reaches the intended

recipient. A multi-hop path is more conducive to this type of attack due to the

practicality of creating a middle man message before the legitimate responder can

create it. Since there is no multi-hop communication in our protocol, the

practicality of this attack comes under question. Assuming that such an attack is

possible, we analyze the effects of such an event occurring. The biggest deterrent

for this type of attack is the use of cryptographic keys. Further, the protocol is

asymmetric in both directions (in both Phase 1 and 2) and MITMs require

symmetric message exchanges.

6. Capture/compromise

A capture attack is whereby an adversary can subvert a legitimate node and take

control of it. Capture and Compromise are used interchangeably. If Trudy

captures a type b node, it can easily generate legitimate messages (with fraudulent

data) using B’s shared keys. This will result in lots of false data passing

undetected through the particle filtering system. When falsified data is accepted

by the system, the robustness analysis comes into play. We have seen as per our

robustness analysis that as long as the frequency of inputs from a B node does not

exceed vmax (the allowable maximum frequency without being detected as an

outlier), the target estimate (output) will be within δ of the true estimate.

 75

Capture multiple nodes: We have seen from our robustness analysis that if an

adversary wants to disrupt the target estimate, then it has to compromise a very

large number of nodes in a single neighborhood. Since our algorithm incorporates

a moving leader approach whereby the aggregator function moves from leader to

leader as the target moves through the sensing field, at any given time only those

leaders and type B nodes are active which are in the neighborhood of a target.

Therefore, in order to disrupt the target estimate an adversary has to undertake the

Herculean task of guessing correctly which leader node (and cluster) will be

active next (alternatively guess the pattern) and then compromise that cluster

within the short amount of time that the target remains in the vicinity and the

aggregation function is resident on that leader node. This is very difficult to

achieve in practice even for an extremely capable adversary (due to the small time

duration in which such a massive attack needs to be completed). Therefore, such

an attack is not practically possible (unless there exist a large number of colluding

adversaries).

7. Lying nodes, anomalous behavior: If a node behaves in a manner inconsistent

with the nature of the neighborhood (for example, if none of the nodes in the

neighborhood report spotting a target but only one node does) then watchdog

nodes will make a note of this anomaly. Repeated anomalous behavior can result

in flagging the node, and rejection of the data sent by it.

 76

3.4 Factors affecting performance, reliability and accuracy

3.4.1 Topological Dependence

Figure 9 depicts common sensor network topologies like the star, cluster, tree and

hierarchical arrangement of sensor nodes.

Figure 9: Basic Topologies

Few additional derivatives of these structures are binary tree structure, fan outs,

linear, mesh, and ring. While the ring arrangement is the most uncommon form for a

sensor network, it provides multiple (at least two) distinct paths to a destination with

roughly the same cost and is used in some sensor network algorithms like CHORD.

Full mesh and star topologies have higher overheads than tree based or hierarchical,

but provide a rich assortment of data which is very helpful for particle filtering based

techniques. Also this arrangement is least affected by mobility. Star topologies are

great for broadcasts to percolate quickly through the network. Clusters are the most

ClusterStar

Tree Hierarchy

 77

popular topological arrangements as they are more ‘hybrid’ and well adapted. They

form a semi hierarchical, semi star/mesh arrangement, where members of a

cluster/cell have a unique arrangement with each other (star or mesh) and each cluster

has a connection with neighboring clusters to form an overlay that eventually

connects and brings together the entire topology of the network. Based on our

convergence results and error analysis we find that linear and tree type topologies are

weaker than cluster or star/fan out arrangements. The former converge slower, the

effective loss probability is higher, and error propagation causes the results to be

more pronouncedly inaccurate than a cluster based approach that is well grounded

due to its hybrid nature.

Effect of Topology on Loss Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120
Number of nodes in multicast tree

Ef
fe

ct
iv

e
Lo

ss
 P

ro
ba

bi
lit

y

Linear
Binary Tree
Star
Cluster

Figure 10: Effect of various topological configurations on loss probability.

 78

Effect of Topology on Convergence

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120
Number of nodes

C
on

ve
rg

en
ce

Linear
Binary Tree
Star
Cluster

Figure 11: Effect of Topology on Convergence

The expected MSE for our distributed particle filter is of the form

()
N

cE
t

N

t

2
2

,,
ϕ

ϕϕ ππ ≤⎥⎦
⎤

⎢⎣
⎡ − where c is a constant, π is the posterior

distribution importance function at time t from which particles are drawn, ϕ is the

transition kernel of the filter, and N is the number of particles per target in the given

computation window. From this equation, we can see that at each approximation, the

MSE is inversely proportional to the number of particles N. As the number of

particles increase, the expected MSE tends to decrease. This tendency which is the

convergence of the filtering algorithm thus is also proportional to the number of

particles N. As the number of contributing nodes increases, N increases. A direct

result of this is observable in Figure 11, where we see the trend of convergence of the

particle filter for various topologies.

The cluster based topology has the closest coupling between the leader of the

cluster and the sensing nodes (all single hop). Therefore, the time taken for each

 79

particle to reach the leader node for aggregation into the filter is minimal in this

topology. Further, the single hop close knit structure also ensures that collisions and

retransmission errors also will not be pronounced. For a cluster topology, the

localized effect is that the density of particles will result in a proportional increase in

the rate of convergence of the particle filter.

One could argue that the while the number of particles in a binary tree topology

cannot be increased, it can be increased in a star as well as a hierarchical network so

as to provide better convergence rates. We argue that in a localized context the star

topology can create the dense particle effect similar to a cluster arrangement and

produce equally good convergence rates, but on a larger scale, the star topology

advantage will be subdued by the increased transmission delays due to relaying data

to a far-away base station for aggregation, whereas this problem is absent in the

cluster arrangement due to single hop aggregation. For a hierarchical network,

transmission delays from the sensing element to the aggregator will become

pronounced, as the data gets relayed further and further away from the sensing area.

The cluster arrangement has an advantage in this regard, that it can not only create

clusters of single hop neighbors but also form them closer to the sensing area, thereby

minimizing transmission delays. From a global view point, a cluster arrangement can

be viewed as a hierarchical formation of star arrangements, where each cluster has a

star arrangement, and the aggregated information from each cluster is transferred to a

decision making location through the leader nodes of the cluster.

Periodic Selection: A final remark is that periodic selections are very efficient and

have a specific interpretation in nonlinear filtering settings. We have seen in other

 80

literature that in this situation the fitness functions are related to the observation

process. Roughly speaking the selection transition evaluates the population structure

and allocates reproductive opportunities in such a way that these particles which

better match with the current observation are given more chance to reproduce. This

stabilizes the particles around certain values of the real signal in accordance with its

noisy observations. It often appears that a single observation data is not really

sufficient to distinguish in a clear manner the relative fitness of individuals. For

instance this may occur in high noise environments. In this sense the particle filtering

system with periodic selections allows particles to learn the observation process

between the selection dates in order to produce more effective selections

3.4.2 Effect of topology on Robustness

We have shown earlier that our tracking solution is δ-robust to maximum malice

caused by an adversary local to the neighborhood. We can further reduce this

problem to show its dependence on the topological configuration of the

neighborhood. Essentially, δ-robustness for comes from the continuous stream

of input observation vectors that create the robust estimate

[t nTZ +]

][t TZ + at any time window

[t+T]. The stream of input observations is dependent on the connectivity graph i.e.,

topological configuration (node degree) and the probability of receiving the

observation vectors from the nodes in the neighborhood. Thus, the robustness of

 becomes a simple problem dependent on the physical node degree and the [t TZ +]

 81

probability of receiving observations from a minimum threshold number of honest

nodes within the neighborhood.

Mathematically,

If : Probability that a sensor node a has connectivity with node b within a

single logical hop in sensor a’s information range.

(1nP i =)

)(1|nP i A= � : Probability that a sensor node a has connectivity with node b within a

single logical hop in both sensor a and b’s information range.

pD is the average physical node degree.

Therefore, we can calculate ()1nP i = as follows:

() () () () ()()1 1

1

1
1

1 1

1
1 1 (1) . (1) 1 (1) . 1 1 (1)

p
p

D
n D np

n n n n n
n

D
P i P P P P

n

−
− −

=

⎛ ⎞−⎛ ⎞
= = − − − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ 1n

]

We can also calculate the minimum guaranteed degree that must be maintained in

order for the above observation [t TZ + to be δ-robust as:

()
() ()

()
1 1

min
1

1

1 |
1 1

1 |

n n
i i

p n
i

n
i

P i P i A
D D P i

P i A

∞ ∞

∞
= =

∞
=

=

⎡ ⎤⎛ ⎞⎛ ⎞
− −⎢ ⎥⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎢ ⎥⎜ ⎟= − −⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎝ ⎠ −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑
∑

∑

�

�

 82

From the above equation, we can see that minimum degree requirement is

dependent on the each node’s information range, as well as the intersection of their

connection ranges as denoted by ()|nP i A� .

From here it follows that, in general, topological configurations with higher

 i.e., dense connectivity areas also known as cliques, will show greater

robustness to malicious input observations. Cliques are areas of common connectivity

between neighborhoods. Among the configurations we have studied, cliques are not

commonly observable in tree and linear configurations, are rarely observed in star

configurations and most commonly observed in cluster arrangements. Hierarchical

clustering topology is therefore a special case of clustering with maximal cliques.

This is consistent with our observation in Section 3.4.1 where we examined the

relationship between particle density profile and ambiguity resolution as well as our

topology simulations.

(|nP i A�)

3.4.3 Particle Density Profile

We have seen how topology models changes in the convergence and robustness of

the particle filtering based algorithm. A closer look at topology also revealed that the

internal configuration with respect to the topology also directly relates to the

precision with which the algorithm tracks the target, resolves ambiguities and the

resilience of the algorithm from being misdirected by malicious entities. A particle

density profile is the distribution of particle channels across a topological entity like a

 83

cluster, representing a transition of particle systems. For a discrete particle system,

the particle density profile can be represented as { ; where 0}
n

N
t nη ≥

1

1
in tn

N
N
t

iN ξ
η δ

=

= ∑

Where
nt

ξ is the particle at tn.

For a cluster with uniformly distributed nodes and uniformly distributed anchor

nodes, with density nρ the particle density profile can be represented as 1
n

N
t

n
η ρ=

The figure below denotes two clusters set up in a wsn. Each cluster has a leader and

multiple sensing nodes.

Leader 2

Cluster 2

Type B Clique nodes
Associated with both Cluster 1 & 2

Leader 1

Cluster 1

Type B sensor nodes
associated with Cluster 1 Type B sensor nodes

associated with Cluster 2

Figure 12: Clusters with Cliques

As is obvious from the figure, a slightly skewed node distribution will lead to more

precisely tracking a moving object than a uniformly distribution of nodes in the

cluster. If every cluster maintains a minimum density minρ below which the low

density will cause gaps in measurement and insufficient no. of particles to localize on

 84

a target location in the presence of noise, then a node distribution that is lightly

skewed to have higher representation in areas common to multiple clusters will

consistently produce results close to the true value of the target’s position. By nature

of being in the communication range of multiple clusters and their leaders, these

clique nodes can observe and validate data that is being sent by its neighbors in both

clusters, thereby resolving ambiguities, eliminating false and outlier data, as well as

counteract malicious nodes. Their exact position with respect to malicious colluding

nodes can possibly help detect collusions.

3.4.4 Seed Infrastructure

In many applications, sensor networks have to be deployed in remote, unexplored,

or hostile regions. Often in such deployments, there may not be an existing

infrastructure for the nodes to rely on. A similar story exists for ad hoc deployments.

In the absence of GPS type absolute positioning systems, nodes must rely on other

nodes to determine their whereabouts. Nodes that are aware of their own positions

using some external means (often GPS) are known as seed or anchor nodes. These

seed nodes help other nodes locate themselves. As a condition of accurate

localization, seed nodes must be localized with a great deal of precision to ensure that

nodes that are based off of these seed nodes will have a certain degree of precision in

their location co-ordinates. As nodes localize themselves through seed nodes, some

error creeps into their measurements. This error in turn propagates through to the

tracking measurements a fully localized deployment takes. The greater the number of

reference seed nodes present in a deployment, more accurate is the localization of the

 85

remaining nodes in the deployment. On the other hand, increasing the number of seed

nodes results in a significant amount of overhead as more number of nodes are being

localized through an external means. For example, GPS requires additional hardware

receivers. More the number of sensor nodes localized through the GPS system, more

the expensive hardware requirement, and hence more the cost to deploy. In order to

keep costs practical, a definite balance between the density of seed nodes to regular

nodes needs to be determined. In such a case, few nodes can be used as seed nodes.

Nodes can be localized with respect to these seed nodes in a tier-like fashion. In the

first round few nodes can localize themselves with seed nodes. Other nodes can

localize themselves with respect to the secondary seeded nodes, and so on. In such a

case, however, all errors in measurements made by the deployment must take note of

this factor too, as error propagation results in slight decrease in precision of

subsequently localized nodes.

Figure 13: Collocated neighbor nodes (orange) using different reference node chains

Along with their numbers, location and distribution of anchor nodes is also critical.

Distribution of anchor nodes must be such as to create an unambiguous coordinate

system. For example, using three anchor points for multi-lateration results in two

 86

possible solutions for a node’s position, whereas adding a fourth node results in

successfully disambiguating it down to one (within acceptable error bounds).

Therefore, the distribution of anchor nodes is also as vital as their density.

Sometimes, as seen in the figure below, having anchor nodes in a particular

configuration results in a large error creeping into the measurement associated with a

node due to using a different reference path for localization.

3.4.5 Mobility

Mobility models are used to formally describe the pattern of motion of mobile

sensor nodes. They are useful for various reasons like predicting the next location of

an entity based on its movement pattern if an earlier location is verifiably known, or

for disambiguation purposes like ruling out a location. Mobility models thus improve

precision. For a stationary deployment, the node mobility model is static. Node

positions never change arbitrarily. Dynamic mobility models, on the other hand, can

have many interesting representations, and vary from constrained path to random

walk models. Essentially, in a constrained path model, a moving entity can follow

select paths to get from point A to point B (for example a road, walkway, etc). All

other areas that do not fall on this path are designated as non-traversable, and ruled

out as possible locations for an entity to exist at. Constrained path models take into

account location geography and obstacles and are a good representation of a practical

deployment environment. In the random walk model, on the other hand, an entity can

 87

travel in any haphazard manner across the deployment field. This type of model is

most common for flat, unvarying deployment environments like deserts, water

surface, etc. Mobility models are entity specific since they contain information about

not only the pattern of movement but also movement characteristics like speed,

acceleration, etc and can be used to even differentiate various types of entities on the

basis of this information (for example, a battle tank and a foot soldier will have

different speeds and acceleration restrictions).

 88

Chapter 4 Secure Time Synchronization

Synchronization among the collaborating entities is of paramount importance to a

distributed system. Synchronization is essential to put measurements into context, for

general ordering of events, for tracking, tracing a trajectory, for building a historical

perspective, for replay detection, and much more. For example, in a wireless sensor

network, synchronization is important to achieve a global view using measurements

made within a single time frame. Measurements need to be aggregated within the

same time window in order to be a meaningful representation of the network at a

given point in time. An isolated event will be noticed by multiple sensor nodes within

quick succession. This phenomenon needs to be represented in a single window of

time. At times, an agreement needs to be reached regarding the ordering of sensed

events, and at other times, a rough time of occurrence needs to be established.

Different types of synchronization are required based on the need of the system. In

general, synchronization is done in two ways: Logical clock ordering and actual time

synchronization. When events need to be placed in real-time context, synchronization

based on actual time is required, whereas, when only the relative ordering of events

matters rather than absolute time, logical clock ordering is used. Time

synchronization can also be achieved locally or globally. Individual distributed

entities can maintain coherent time with respect to each other using GPS-enabled

receivers. These GPS receivers allow each entity to individually synchronize with a

coherent source. Such approaches, however, are very expensive as each node requires

 89

a GPS receiver, increasing per node cost (and battery life). This makes it an

unsuitable solution for low cost or cost-conscious networks. NTP is another popular

protocol which is used in wired networks as well as over the internet, but is neither

secure nor applicable to wireless sensor networks. The adversarial model, system

model and the assumptions secure-NTP is based on is not applicable to wireless

sensor networks and is hence not adequate for our purpose. Further, optimization for

energy and bandwidth consumption was not in mind when secure-NTP was designed.

Other protocols designed specifically for distributed and collaborating networks

have been summarized below. These protocols were not built with security

applications in mind [28][32][40][41][42]Error! Reference source not

found.[56][67][74][83]. For example, in RBS and TPSN type networks a hierarchy is

created where a downstream node must synchronize through its upstream neighbor.

Therefore, if an upstream node were to send malicious timestamps to its downstream

node, the latter would fail to synchronize correctly. Similarly, all subsequent

downstream nodes would fail to synchronize correctly. A node can claim to be closer

to a downstream node and cause disruption as well as failure. Lack of cryptographic

mechanisms can facilitate nodes to relay synchronization messages to its downstream

neighbors even without actually receiving it, causing the downstream nodes to fall out

of sync. A further aggravated version of this attack could cause wide-spread battery

depletion among the downstream nodes due to repeated mis-synchronization. Further,

these protocols are not very efficient under stringent energy constraints. Few

protocols have been built with security in mind [43][44][45][55][75]. Some of these

protocols, for example [75] require pre-shared keys to exist among multi-hop

 90

neighbors, which in an impractical and potentially insecure assumption. Further, they

are not light-weight in terms of computation and energy consumption. [55] states

various possible alternatives for securing commonly used time synchronization

protocols. In [75] some sub-schemes are resilient to only external attackers, while

others are resilient to only internal attackers. The group synchronization schemes are

computationally not light weight. The authors use the notion of lightweight

synchronization towards usage of less number of messages. We argue that for a

deployed sensor network running a on finite energy supply, protocols with less

number of messages but very high computational requirement are not as feasible as

running a real lightweight protocol in terms of resource consumption and mission life

sustenance. Since the ultimate aim of the sensor network is not just time

synchronization, but utilization of the time synchronization mechanism to facilitate

other services provided by the network, it would be wise to invest in a low energy

consuming scheme. The authors have also stressed, time and again, on power saving

schemes to offset the high-energy cost of their protocol. However, they do not

address the eventuality that an adversary can take advantage of the sleep

scheduling/power saving schemes and disrupt the time synchronization protocol.

[45][43][44][45] are good solutions but for their hardware dependency. For example,

[45] is dependent on very specific hardware modules for timestamping. [43] is a

cluster based approach which is very promising, but is not resilient to wormhole

attacks, and also requires time synchronization as a dependency. We have briefly

summarized current work in the area in Section 4.1.

 91

In section 5.1 we have investigated various attacks against synchronization schemes.

While there has been a lot of research in the area of time synchronization for wireless

sensor networks, most solutions either have practical limitations that restrict their

widespread use, or have hardware dependencies that inhibit large scale deployment.

Our approach is to create a time synchronization protocol that is robust against most

practical in-field attacks, does not have practical limitations, expensive hardware

dependencies and is lightweight enough to be a backbone service. Not requiring

apriori knowledge of the network deployment, and not having too many trust

dependencies would be an added plus. We now examine, in detail, various time

synchronization protocols for wireless sensor networks and their characteristics.

4.1 Current Research in Time Synchronization

4.1.1 Review of existing Time Synchronization Protocols

In the following subsections, we discuss few synchronization algorithms from

current literature that have impacted our work. We have categorized our literature

review in the area of time synchronization into two types: review of time

synchronization protocols, and review of secure time synchronization protocols. Due

to the body of work in the time synchronization area, we attempt to summarize the

security pitfalls and shortcomings of the secure time synchronization schemes only.

Time synchronization protocols built for non adversarial environments suffer from all

of the attacks listed in section 5.1.

 92

4.1.1.1 Timestamp Synchronization (TSS)

TSS [42] is a local internal synchronization service where timestamps are received

and converted into the local timescale of the receiver.

Synchronization is achieved by calculating the age of each timestamp from its

creation to its arrival at each sensor node, which includes the time the message is

resident at a node, and the time taken to propagate the timestamp message from one

node to another. For multi-hop synchronization, the time taken to propagate the last

message gets added to the total hold time of the previous node. Figure 14 is a simple

representation of TSS.

M2′

M1′

M2

d2

M1
ReceiverSender

d1

Figure 14: Timestamp Synchronization (TSS)

4.1.1.2 Reference Broadcast Synchronization (RBS)

RBS [32] provides synchronization for a multiple nodes at a time. The time source

node sends a reference broadcast to a set of client nodes in its one-hop neighborhood.

The client nodes exchange their receipt times of the broadcast messages and compute

relative offsets and rate differences with respect to each other. This way, they are able

to relate their local time clocks to the clocks of their neighbors and reduce their

 93
Peer 2

offsets with each other. In the end, a cluster of nodes is relatively synchronized with

each other with respect to the broadcast source.

Reference
Broadcast

Timestamp
Exchange

Peer 1

Figure 15: Reference Broadcast Synchronization (RBS)

4.1.1.3 Lightweight Time Synchronization (LTS)

LTS [40] is a time synchronization scheme that was designed to provide a light

weight, scalable means of synchronizing nodes in a network. The on-demand version

which is the more lightweight of the two, provides synchronization selectively to

those that require frequent resynchronization than other nodes in the network. The

broadcast synchronization which synchronizes all nodes proactively is the other type.

Both schemes are built to exploit a spanning tree structure, where the root of the tree

is synchronized through an out-of-band technique. In the proactive approach, the root

floods all the nodes with a broadcast, and all child nodes synchronize with their

parents. In the on-demand approach, child nodes request synchronization, and

synchronize with the root node through the reverse path (reply messages) using round

trip times. Synchronization messages can be further reduced by piggybacking with

neighbors who have pending synchronization messages. In such cases, nodes simply

synchronize laterally with their neighbors.

 94

4.1.1.4 TimingSync Protocol for Sensor Networks (TPSN)

TPSN [74] is similar to LTS. A leader node is elected and a spanning tree is

dynamically created with the leader as its node. The root node now floods the

network with a broadcast message following which all nodes synchronize with their

parents using round trip measurements. Message-delay uncertainties are reduced by

time-stamping at the MAC layer. However, in case of node failures and topology

changes, the entire process from root node election and tree construction must be

repeated.

4.1.1.5 TSync

TSync [28] is an external time synchronization technique that uses independent

radio channels for synchronization. It does so in order to avoid packet collisions and

any inaccuracies resulting from the same. TSync comprises of two protocols for

external synchronization: the Hierarchy Referencing Time Synchronization Protocol

(HRTS) which is a proactive synchronization scheme, and the Individual-Based Time

Request Protocol (ITR) which is an on-demand synchronization scheme. Nodes

synchronize with a root node that has access to global time, in a spanning tree

structure.

4.1.1.6 Interval Based Synchronization (IBS)

IBS [41] uses finite time intervals to set bounds on the current time. Nodes that

wish to synchronize maintain upper and lower bounds on the current time. They each

exchange their bounds and determine a new reduced interval than their previous

 95

interval by choosing the lower of the two exchanged upper bounds and the higher of

the two exchanged lower bounds. They also keep track of the elapsed time and update

their bounds for the next round accordingly.

4.1.1.7 Flooding Time Synchronization Protocol (FTSP)

FTSP [56] achieves time synchronization by a combination of agreement and

regression. First, a node is selected as the leader based on its ID. (Lowest ID becomes

the leader). The leader periodically sends synchronization messages to the nodes in

the network. All nodes update their timestamps and relay the message to their

neighbors. Each neighbor collects and compares eight pairs of messages and

computes its new offset using linear regression. This scheme suffers from heavy

message exchange and additional time loss. In order to minimize some of this loss,

timestamping is done at the MAC layer.

4.1.1.8 Asynchronous Diffusion (AD)

AD [67] is a simple time synchronization scheme that essentially averages the

offsets among neighborhoods. Each node periodically sends a broadcast to its

neighbors, which reply with a message containing their current time. The receiver

then averages all received timestamps, and broadcasts its average to its neighbors

who adopt the newly sent timestamp. In order to avoid random synchronizations, the

nodes follow a predetermined synchronization order.

 96

4.1.2 Review of existing Secure Time Synchronization Protocols

4.1.2.1 Secure Time Synchronization Protocols SOM, SDM, STM, L-

SGS

In [75] the authors create four sub-protocols for secure time synchronization. Their

main goal is to create a secure time synchronization protocol that is resilient to insider

attacks, with minimal overhead in terms of messages exchanged as well as energy

consumed. They provide three secure time synchronization protocols to satisfy their

goals. They also provide a secure group time synchronization protocol that is resilient

to attacks from external attacker as well as to attacks from a subset of compromised

group nodes. While these protocols are not fully resilient to some insider attacks, they

can detect malicious attacks on the time synchronization mechanism.

Ganeriwal et al Secure Time Synchronization Scheme #1: Secure Opportunistic

Multihop (SOM)

Secure Opportunistic Multihop (SOM) assumes a shared secret key KAB between

two nodes say, A and B that are several hops away, and wish to synchronize. This

assumption is not very practical due to the nature of deployment of sensor networks

in that one can never guarantee the existence of a shared key between nodes that are

multi hops away or in different neighborhoods (i.e., out-of-radio range of each other).

 97

At best, one can only say that nodes A and B several hops away, can probabilistically

share a secret key. Hence the practicality of this scheme is weak.

Ganeriwal et al Secure Time Synchronization Scheme #2: Secure Direct

Multihop (SDM)

Both the SDM and STM (which follows) have additional trust assumptions

associated with intermediary forwarding nodes. They assume that these nodes are

trustworthy and hence are susceptible to insider, colluding and compromised nodes.

(already acknowledged by authors)

Further, end-to-end delay between A and B is calculated as the cumulative end-to-

end delay between each intermediary hop. For example, if A-> C ->D -> B then

 98

dAB = dAC + dCD + dDB is the (minimal) end-to-end delay incurred. Also, as per the

assumptions, the expected message delay d is pre-calculated and known for any given

path traversal. Since d which is determined on the entire route, is a function of per

hop expected delay plus an additional factor for inter hop delays due to mac layer

scheduling, channel disruption, etc, an intelligent adversary can cause enough delay at

each hop, that is only slightly lesser than the per hop expected delay for that hop,

allowing the pulse delay attack to go undetected for the single hop, and cause the

cumulative end-to-end delay to be higher than the expected and possibly discarded at

the end.

Ganeriwal et al Secure Time Synchronization Scheme #3: Secure Transitive

Multihop (STM)

In this scheme, multi-hop synchronization is achieved by transitively synchronizing

each pair of nodes along the path from the source to the destination. Since only pair-

 99

wise delay is being considered, a practical attack would be to cause delays on each

link such that the delay would be lesser than the maximum expected delay associated

with that link, but the cumulative end-to-end delay for the entire path would too high

to admit successful synchronization. Further, since each node synchronizes pair-wise

with its down-stream neighbor, by the time the synchronization process propagates to

the initiator, there is already a considerable drift between the clocks of the first and

pen-ultimate node. For example, if the synchronization request was sent along A->C-

>D->B, D synchs with B, then C synchs with D, and when A synchs with C, there

will already be a small skew and/or a small drift from the clock of the source B. This

skew and possible drift must be accounted for in order for the synchronization error to

remain bounded and practical.

Ganeriwal et al Secure Time Synchronization Scheme #4: Lightweight Secure

Group Synchronization (L-SGS)

This protocol is not resilient to internal attacks if G1 is malicious. (acknowledged by

authors). An implied assumption in this scheme is that every node must trust every

 100

other node in the cluster. Thus, it is very easy for an attacker that can capture a single

node within the cluster.

This protocol, requires, at a minimum, the computation and transmission of N-1

MACs for a single synchronization request and hence is impractical for energy

constrained deployments. The modification of replacing this requirement with a

single MAC signed by a secret key created for the entire cluster is highly insecure.

Now, the system has a single point of failure if even a single node is compromised.

Also, due to the use of a symmetric key for the entire group, the MAC cannot be

verified as having come from G1 (the synchronization source) hence reliability can be

further decreased.

Ganeriwal et al Secure Time Synchronization Scheme #4: Secure Group

Synchronization (SGS)

In this protocol, 2(N-1) MACs are required to be computed and transmitted per

synchronization transaction. Hence this protocol also energy-inefficient for the

 101

purposes of deployment in an environment where energy consumption should be

optimal. Further, though the authors claim that this protocol is resilient to insider

attacks, we can show that this protocol is susceptible to the classic Byzantine

Agreement Attack [49]

Using the same example of nodes i,j,k enumerated by the authors, we can carry out

the attack as follows:

Nodes i,j,k form a closed triangle where each node has calculated the offset

between itself and its paired node. Thus each node only lacks the offset value

calculated between the other two nodes. For the closed triangle, the sum of the offsets

in a cycle in one direction yields zero if no node is malicious. Practically, the offset

may not always be zero, due to inherent drift and skew error (as per the authors).

Attack formulation: We formulate an attack with the offset values set as represented

in Figure 16.

Node i (3:05pm)

-5/-6-5/-5

Node j
(3:00pm)

Node k
 (3:10pm) +10/+10

Figure 16: Synchronization Example

At the end of Step 2, each node possesses the following Offset set Oi:

 102

Table 1: Offset values at each node at the end of Step 2

 i ↔ j , j ↔ k , k ↔ i

i: { -5 , ? , -6 } i.e., {i->j, j ↔k , k->i}

j: { -5 , +10 , ? } i.e., {i->j, j ↔k , k->i}

k: { ? , +10 , -6 } i.e., {i->j, j ↔k , k->i}

Each node depends on Step 3 to receive the missing element of its set Oi (which is

represented as a ? for simplicity) from its neighboring nodes.

At the end of Step 3, malicious node k sends the following message in place of its

original message:

k: { ? , +12 , -6 } i.e., {i->j, j ↔k , k->i}

Since the sum of the offsets is not zero, nodes i, j will only detect that there is a

malfunction in the synchronization mechanism. It fails to identify the malicious node,

and there will not be an agreement. On the other hand, if instead of a closed triangle,

a closed quadrilateral was enforced, then a single malicious node can be easily

identified. In general, the order of the polygon determines the maximum number of

malicious nodes that can be identified. The number of malicious nodes must be less

than a third of the degree of the polygon formed, in order to detect the malicious

node.

 103

4.1.2.2 TinySeRSync: Secure and Resilient Time Synchronization

In this paper [45], the authors develop a two phase secure and resilient time

synchronization scheme called TinySeRSync for wireless sensor networks. They use

hardware assisted source authentication to authenticate source, content and timeliness

in the single pair-wise synchronization in the first phase and µ-TESLA based

rebroadcast authentication to ensure timeliness and authenticity to achieve global

synchronization in the second phase. The single pair-wise time synchronization is

achieved using hardware assisted, authenticated medium access control (MAC) layer

timestamps. Global time synchronization is achieved using µ-TESLA for local

authenticated broadcasts. The 2t+1 distinct paths between the sender and receiver

ensure resilience against compromised nodes and Byzantine behavior.

Though this scheme is significantly better than others, it has some practical

limitations, scalability issues and high overhead that limits its large scale deployment.

For example, it may not always be practically possible for a node to have 2t+1

distinct paths to it from the source or an upstream parent node for synchronization.

By following a 2t+1 approach, the onus of correctly synchronizing rests on the

comparison a node makes with atleast t other pair-wise synchronization attempts.

This can be very wasteful if the phenomenon manifests on a large scale in the

network. In this scheme, a potential way of mitigating DoS attacks is by decreasing

the synchronization intervals to a short time interval, thereby reducing the window

available to an adversary to launch such an attack before the timestamps on the

messages become obsolete and are discarded. The authors also point out that this

approach comes with significant cost, both in terms of energy spent for synchronizing

 104

at such short intervals as well as storage requirements due to the fairly long key chain

generated in the short interval.

Further, authenticated MAC layer timestamping requires secret keys be exchanged

between communicating parties, which is a problem in itself, and a dual problem

because reliable timestamps may be required to create and share keys post

deployment. Further, µ-TESLA also requires certain parameters be exchanged apriori

that has not been handled here.

Finally, this scheme does not mitigate rushing attacks or wormholes that advance

messages.

Figure 17: Revised Secure Pair-wise Synchronization in TinySeRSync

Figure shows the revised SPS protocol, in which all messages are timestamped and

authenticated with the key KAB shared by nodes A and B. Node A initiates the

synchronization by sending message M1. The message contains M1’s sending time t1.

Node B receives the message at t2. After verifying the message, at time t3, node B

sends a message M2 that includes t2, t3 to node A. When node A receives the message

at t4, it can calculate the clock difference δA,B = (t2−t1)−(t4−t3)/2 , and the estimated

one-way transmission delay dA = t2−t1+t4−t3. Since all messages are authenticated,

 105

any modification to any message will be detected. To prevent the pulse-delay attacks

[75] and wormhole attacks [85] , node A verifies that the one-way transmission delay

is less than the maximum expected delay. In fact, this approach can detect any attack

that attempts to mislead single-hop pairwise time synchronization by introducing

significant extra message delays. Thus, sender A can easily detect attempts to affect

the timeliness of the synchronization messages.

While this approach is significantly better than most approaches, their hardware

dependency, 2t+1 independent path requirement, and high overhead limit their

widespread use.

4.1.2.3 Fault-Tolerant Cluster-Wise Clock Synchronization for

Wireless Sensor Networks

In [43] the authors propose a synchronization scheme for nodes based in clusters.

Nodes within a cluster communicate through authenticated broadcasts and only one

synchronization message per cluster is sent. In each round, one node serves as the

synchronizer and sends the broadcast. All nodes synchronize with this node if it is

rightfully the turn of that node to be the synchronizer, and the clock difference

between the synchronizer is not more than the clock difference between any two non

faulty nodes. Fault tolerance is achieved through rotation of cluster heads and

synchronizers. However, if colluding nodes in a cluster take turns to become

synchronizers, they can in each round, cause nodes to synchronize to values very

close to the extremal values of the acceptable range (say, close to upper bound k∆).

 106

Consecutive rounds of synchronization with malicious synchronizers can cause the

clock difference to cross this acceptable range.

4.1.2.4 Secure and Resilient Clock Synchronization in Wireless

Sensor Networks

In [44], time synchronization is achieved through two means: the difference in

clock measurements between nodes and their parents across hierarchical levels, and

through diffusion through the network. In both cases, the authors claim that they can

tolerate upto t malicious colluding nodes as well as upto s colluding source nodes.

However, the approach dwells on the availability of 2t+1 independent paths from a

single source to any node in order to successfully synchronize to correct values. Each

node needs to compute 2t+1 clock differences before it can determine which clock

difference values are acceptable. The message overhead is O(|E|) which for a

network with 2t+1 independent paths to each node becomes quite significant. The

total number of messages in one round is n1+ (|V|- n1-1)(3t+1) where n1 is the number

of nodes at each level which for certain topologies could be disastrous to scale.

Clearly, this method not only has a heavy overhead, but also time taken to complete

a single synchronization round is large enough for significant clock skew to creep in

before synchronization completes. For this reason and more, the authors indicate that

they require a high precision pair-wise synchronization scheme for their scheme to

work, which becomes a catch 22 situation. Finally, to tolerate s colluding sources, the

nodes must have access to 2s+1 clock differences from s different source nodes. This

makes it highly impractical to deploy.

 107

4.2 Properties of a Robust Time Synchronization Scheme

Properties of a synchronization system that make it robust and dependable are:

(P 1) Must be robust to single point failure (except reference source)

(P 2) Must be robust to node failures

(P 3) Must always complete in the absence of active adversaries and

communication errors and in the presence of honest participants who are

compliant with the scheme.

(P 4) Must be resilient to active adversaries in that an active adversary cannot

cause the protocol to deviate from the final outcome by more than the

tolerable upper limit.

(P 5) Must allow for selective synchronization in the interest of efficiency for

nodes that send time-sensitive data.

(P 6) .Freshness property: This property states that a message must be

acceptable only while it is fresh. A message is considered fresh if the

commitment associated with the message is not disclosed yet.

4.3 Components of our Secure Time Synchronization

Scheme

4.3.1 One way Key Chains and Authenticated Broadcasts

One-way Key chains: A one way hash is a cryptographic primitive that is, simply

put, a series of consecutive hashes created from a random seed. The notion behind a

one way hash chain is that it is easy to compute up till the end value in one direction

 108

if either a seed or an intermediate value in the chain is known but computationally

infeasible to compute in the reverse direction. This property of a one way hash chain

makes it a very popular primitive in applications that are resource conscious, and

where parties at each end (producer and verifier) can compute the chain in the same

(efficient) direction. In other words, this primitive is easy to create and easy to verify.

If the initial value of the chain that is disclosed can be uniquely and non-repudiably

attributed to an entity then we can achieve source authentication as well. Many secure

protocols for resource conscious applications like mobile devices and sensor networks

employ one-way hash chains as core primitives. These chains can be computed within

few milliseconds as opposed to tens of seconds to generate and verify signatures.

Recently, researchers also proposed a variety of improvements to one-way hash

chains to make storage and access more efficient O(log n) [14][88][87], or to make

setup and verification more efficient O(n) and O(log2n) respectively [19][86].

In our time synchronization protocol, we use one way hash chain to provide an

efficient means of providing message integrity and source authentication. The

security of the technique vests in (1) the computational infeasibility of an adversary to

compute a hash in the reverse direction and, (2) the infeasibility of an adversary to

find a message m′≠m such that H(m) =H(m′).

Usage: We assume a secure weak collision resistant one-way function F (to derive

the one-way chain), and a secure one-way function H (to produce commitments). The

generator then generates a one-way chain VN,……,V0, where Vi = F (Vi+1) at times

 109

TN,….., T0 respectively. We assume that the generator and verifiers are at least loosely

time synchronized, with a maximum synchronization error of T∆. The generator

creates and specifies a disclosure schedule for the one-way chain by selecting and

specifying T0 and Td , where T0 is the time of disclosure of end value V0 and Td is the

time delay between the disclosure of two consecutive values. As per the disclosure

schedule, the generator will disclose value Vi at time Ti = T0 + i * Td, To authenticate a

value r as being unaltered in transit, the generator publishes r' = H (Vj || r), where Vj

is a value that will be disclosed in the future. When a verifier gets r, r', j at time t, it

verifies that the generator did not yet disclose Vj by checking that current time t + T∆

< Tj (disclosure time of Vj). If this condition holds, the verifier accepts r' and waits for

the disclosure of Vj to authenticate r'. The verifier first verifies the authenticity of Vj,

by following the one-way chain to the last authentic value. If Vj is authentic then r' is

authentic if r′ = H (Vj || r). r can be any value that needs to be authenticated or

verified. In our scheme, r is the time-stamp being sent by each node. Additionally, if

Vj is uniquely and non-repudiable associated with an entity A (usually the generator)

then the hash chain also provides source authentication i.e., provides the assertion that

A is the generator of the one way hash chain (and hence the message that is tied to the

hash chain).

 110

The optimum values of T∆, and Td are dependent on the specific requirements for an

application as well as the deployment topology as we will show in our analysis later.

Also, special attention to the security properties is required during the

synchronization error marginal interval (Tm + T∆) from the time of disclosure of key

Km. We leave this as a future exercise.

Authenticated broadcast: If source authentication is desired hen a node generates

its own hash chain, the first element of the hash chain to be disclosed i.e., K0 should

be authenticated. Thus, the initial element K0 gets coupled with the identity of the

node generating this commitment. Since hash chains are self-committing, (every

element disclosed is committed to all subsequently disclosed values) every

subsequently disclosed element is also authenticated and tied to the generating node’s

identity.

Thus, authenticated broadcast is only required for the first disclosed element of the

hash chain. After that, each element of the hash chain subsequently disclosed is also

authenticated due to the initially disclosed key being committed to all future keys.

K0 ← K1 ← K2 ← Km-2 ← Km-1 ← Km

| | ………… ………… ………… |

1st 2nd mth (last)

to be to be to be

disclosed disclosed disclosed

4.3.2 Basic Pair-wise Time Synchronization

 111

()
2

3412 TTTT −−−
=∆

Figure 18: Basic Pair-wise Time Synchronization

This is a simple synchronization technique using Christian’s algorithm [6] for node

A to synchronize itself with node B. Two messages are required for this

synchronization (three if B also wishes to synchronize with A). If A desires to

synchronize with B, it sends a synchronization request message to B at time T1 and

records the time (T1). B receives the message at, say time T2. B records the time and

sends A a synchronization reply message at time T3 which A receives at time T4. The

process of synchronization shown in Figure 18 is achieved by the sender A

calculating its clock drift ()2 1 4 3

2
T T T T− − −

∆ = and propagation

delay
()2 1 4 3

2
T T T T

d
− + −

= with respect to the receiver using the time values

exchanged.

For a network wishing to synchronize its nodes with a global time, the nodes will

synchronize with the node(s) that have access to a global time reference. Throughout

our work, we assume node B has access to global time and the other nodes, namely A,

C, E, D and F synchronize with B (Figure 19).

() ()2 1 4 3

2
d T T T T− + −

=Propagation Delay

Clock Drift T1 T4

 Node B

Node

T3T2

 112

4.4 Our Secure Time Synchronization Scheme

4.4.1 Adversary Model

In the case of an internal adversary, we assume that the adversary can be only as

powerful as the most powerful node in the network, for e.g., in the case of a

heterogeneous network, the adversary maybe as powerful as the highly capable nodes

in the network as opposed to the low-end dust-type sensor nodes. While considering

an external adversary, we do not put a bound on the capabilities of the adversary since

an external adversary could have the latest and greatest resources at its disposal.

However, we can restrict the possible attacks that an external adversary can launch

from outside the network since it does not have the obvious advantage that an insider

may have (for e.g., shared secret keys if any, passive eavesdropping on a secured

channel, etc) Finally, if an (external) attacker is able to compromise existing nodes,

its capabilities of injecting and extracting information from within the network is

limited by the capability of the compromised node(s). Besides these, the adversary

can record, alter, reuse, insert, masquerade, replay, rush, fabricate messages, and

collude with other adversaries. An adversary, however, cannot redirect, jam, capture,

stop and delete messages that have been transmitted into the medium.

4.4.2 Assumptions

We start with a few practical and simple assumptions. Firstly, at least one node has

access to a global time reference. All nodes will synchronize with this source

 113

eventually. If there are multiple root/leader nodes, they should all have access to an

external unalterable coherent time reference. Nodes that have access to global time

references are always stationary. Global time kept by any node is always orders of

magnitude more accurate than the accuracy achieved by single-hop synchronization.

We require no trust assumptions, except the obvious one, where the node that has

access to a global time reference is trustworthy. Nodes must store nonces for as long

as the average key disclosure times. Average key disclosure times and

synchronization interval together affect storage cost. Shorter synchronization

intervals result in more nonces being stored while key are pending disclosure. The

tradeoff is simply determined based on application specific requirements.

4.4.3 Protocol Specification

4.4.3.1 Notations and Definitions

1. We define all participating principals { } ∈ A, B, C, D, E P where P is the set of

all principals desiring to synchronize. Further, P comprises of all honest (H)

as well as all corrupt (C) principals inside the network. No principals share

secrets apriori.

2. The initial authentication element that allows each node to authenticate any

commitment it generates is established prior to time synchronization and is

not dependent on it.

3. Principals are aware of their upstream and downstream neighbors as well as

the source they synchronize with.

 114

4. It is highly desirable but not necessary for a node to know its distance from

the source it synchronizes with.

5. denotes a message M sent from principal A to

principal B , and reads “At node A sent message

{: ,→
1 2T T 1A B A,B }T

1T { }, 1A,B T to B, which was

received at B at local time . In general, Node X (send time at sender) (receive time at

receiver) Node Y: {Contents of message} represents a single synchronization

message.

2T

6. n is the known maximum depth of the tree and m is the # hops to a target node

if known. If not known sender assumes m=n.

7. Nx is the crypto-quality nonce from principal X.

8. Kj is the key disclosed at time j.

9. H is the secure one-way function used to derive verifiable time commitments.

10. F is a secure weak collision resistant one-way function to derive one-way key

chains.

11. represents the local time of node at instance i, and TCAB which represents a

time commitment between A and B is the collision free hash that contains a

temporary secret and a time value that the sender commits itself to upfront.

iT

12. is a non alterable path component created by the time source (B in

our case).

)(A.B.C.D....

 115

4.4.3.2 Our Secure Time Synchronization Protocol

B

B
3.

4.
D F

A
2. 5.

C

6.1.

A E

Figure 19: (a) Single hop (b) multi-hop

Protocol Description

Case 1: Single hop synchronization

Figure 19 (a) represents the single hop time synchronization scenario. If B is the

source of global time for a subset of the network (as shown), then A synchronizes

with B. As per the basic description earlier, A sends a synchronization request

message to B. Through this message A additionally commits its current time value T1

publicly by creating a time commitment TCAB which locks in the value of A’s time

apriori. Specifically, the commitment contains the identities of the sender and

receiver (in our example A and B), the synchronization request time T1, the depth of

the tree from source B to A (which for a single hop is 1), a crypto quality nonce NA,

and a one way hash chain value Km which serves as the temporary secret. When B

receives the synchronization request, it checks to see if the hashed commitment is

 116

stale i.e., if the hash chain value Km has already been disclosed, and that the time

remaining till exposure of the secret is not too large. This ensures that the message is

not a replay, not too old to process, not too early that it amounts to futile storage cost

for B, and also to avoid clocks to fall out of synch if the interval is too large. If the

message is acceptable, then B waits for the key to be disclosed. At a suitable time as

per the disclosure schedule, A discloses a value from the hash chain Kj at time Tj. On

disclosure, B can verify that the time commitment was indeed produced legitimately

by the generator of the secret key by following the hash chain to the end. If it verifies

correctly, B sends the synchronization reply message which includes B’s timestamps

T2 (message receipt time), T3 and (response message send time). Similar to A, B also

authenticates its time values by including a commitment of its receive time T2 and

send time T3 in the synchronization reply message. The steps are shown below:

Case 1: Single Hop →A B

At A:

Compute time commitment [A-B] TCAB:

TCAB = { H (Km | T1 | NA |P) } ; m<n, P=(A| B| m)

(1) { }: , ,→
1 2T T 1 A ABA B A, B T N ,TC ,m, (m)H

At B:

If hash chain key has not been exposed, and time interval is not too much in

the future or in the past, process the request:

 117

(2) { }: , , , ′→
3 4T T 2 3 A B BAB A B A, T T N , N ,m ,TC

Verify Time on key disclosure. If true 1T

Synchronize A.

Else, discard request.

At A:

 Calculate offset and delay (Synchronize with B)

If bi-directional,

 Repeat procedure at B.

Case 2: Multi hop synchronization

Figure 19 (b) represents the multi hop time synchronization scenario. If B is the

source of global time for a subset of the network (as shown), then A attempts to

synchronize with B through C, D. Similar to the single hop case, each node on route to

the source will perform time commitments (MACs) over the previous node’s

commitment. Thus there will be a nested series of commitments that serve to not only

authenticate the time values of each node along the path but also to assert and verify

the path and set a temporal order amongst node along the same path to the source. We

show subsequently how these play an important part in mitigation some special

attacks.

In the multi hop case, A now sends a synchronization request message for B to C.

As before, through this message A commits its current time value T1 publicly by

 118

creating a time commitment TCAB which locks in the value of A’s time apriori. The

commitment contains the identities of the sender and receiver (in our example A and

B), the synchronization request time T1, the depth of the tree from source B to A if

known to A, a crypto quality nonce NA, and a one way hash chain value which

serves as the temporary secret. If A does not know the number of hops to the source,

it can assume m to be equal to the maximum depth of the tree n. When C receives the

synchronization request, it checks to see if the hashed commitment is stale i.e., if the

hash chain value has already been disclosed, and that the time remaining till

exposure of the secret is not too large. If the message is acceptable, then C computes

the next message and adds its own nested commitment to the message

as shown below. This process continues for all nodes along the path

until the synchronization message reaches B. B waits for the keys to be disclosed. At a

suitable time as per their disclosure schedules, D, C and A disclose a value from their

respective hash chains at times

A
mK

A
mK

(AB C
TC C, TC)

, ,D C A
j k lK K K , ,D C A

j k lT T T . On disclosure, B can verify

that the time commitment was indeed produced legitimately by the generator of the

message by following the hash chain to the end. If it verifies correctly, B sends the

synchronization reply message which includes B’s timestamps T6 (message receipt

time), T7 and (response message send time). The downstream messages follow the

same pattern as the upstream messages. If all nodes along the path are honest, this

technique allows not only A, but also all nodes along the path to B to correctly

synchronize with the source B in the same iteration. The steps are shown below:

 119

Case 2: Multi-Hop → → →A C D B

At A:

Compute time commitment [A-B TCAB]:

 If # hops to B known, select m=# hops

Else, m= n

Time Commitment [A-B] TCAB = { H(Km | T1 | NA | P) };m<n, P=(A| B| m)

(1) { }: , , , ()m→ H
1 2T T 1 A ABA C A, B T N ,m,TC

At C:

If hash chain key has not been exposed, and time interval is not too much in the

future, or in the past, process the request:

(2) (){ }: , , , , ,→
3 4T T 2 3 1 A C AB C

C D A,B C T T T N ,N , m,TC C, TC

Else, discard request.

At D:

If hash chain key has not been exposed, and time interval is not too much in

the future, or in the past process the request:

(3)
()()

, , , , , , ,
:

⎧ ⎫⎪ ⎪→ ⎨ ⎬
⎪ ⎪⎩ ⎭

5 6

4 5 2 3 1 A C D

T T
AB C D

A,B C D T T ,T T T N ,N ,N ,
D B

m, TC D,TC C, TC

Else, discard request.

At B:

If hash chain key has not been exposed, accept message and wait for disclosure.

On disclosure, first verify key by following hash chain.

 120

If hash verifies correctly, process the request:

 Time-stamp is authentic if ()|=AB m 1 ATC K |T |N PH and so on

 Observed Propagation time/Transit time = True Transit time if all hashes

verify correctly.

Else, discard request.

(4) { }: , , , ′→
7 8T T 6 7 A B C D BAB D (A.C.D.B), B A, T T N , N , N , N , m ,TC

Synchronize with A in the reverse order.

At D:

If hash chain key has not been exposed, accept message and wait for disclosure.

On disclosure, first verify key by following hash chain.

If hash verifies correctly, process the request:

 Time-stamp is authentic if ()=AB m 1 ATC K |T |N |PH and so on

 Observed Propagation time/Transit time = True Transit time if all hashes

verify correctly. Synchronize with B

Else, discard request.

(5)
()

, , , , ,
:

⎧ ⎫⎪ ⎪→ ⎨ ⎬′⎪ ⎪⎩ ⎭
9 10

6 7 8 9 A

T T
B C D BA D

(A.C.D.B), B D,C, T T T T N ,
D C

 N , N , N ,m ,TC D.TC

At C:

If hash chain key has not been exposed, accept message and wait for disclosure.

On disclosure, first verify key by following hash chain.

If hash verifies correctly, process the request:

 Time-stamp is authentic if ()| | |AB m 1 ATC = K T N PH and so on

 Observed Propagation time/Transit time = True Transit time if all hashes

 121

verify correctly. Synchronize with B

Else, discard request.

(6)
()()

, , , , , ,
:

⎧ ⎫⎪ ⎪→ ⎨ ⎬′⎪ ⎪⎩ ⎭
11 12

6 7 8 9 10 11 A

T T
B C D BA D C

(A.C.D.B), B D,C, AT T T T T T , N ,
C A

N , N , N ,m ,TC C.TC D.TC

At A:

If hash chain key has not been exposed, accept message and wait for disclosure.

On disclosure, first verify key by following hash chain.

If hash verifies correctly, process the request:

()| | |AB m 1 ATC = K T N PH

Extract values T1 through T12 and synchronize with B.

Of the potential attacks listed in section 5.1 this scheme mitigates attack M1 (False

timing data/Insertion Attack) by the use of hash chains. M3 (Replay attacks) are

mitigated by the use of nonces and timestamps. The use of nonces and verifiable

hashes require a node to wait for the original message from its upstream nodes and in

the case of a reply, a node needs to wait for the original reply from the downstream

nodes. Hence M4 (rushing attacks) can be averted. Since this scheme is not dependent

on shared secrets, compromised nodes do not provide any adversarial advantages and

hence M5 (Compromised nodes) is avoided. A more thorough analysis would be

required to comment on attacks M8 (colluding node attack) and M9 (Power save

mode attacks). The analysis is described in detail in the following chapter.

 122

Chapter 5 Analysis of Secure Time Synchronization

In this section, we will analyze the working of the protocol under special attack

scenarios. We show that in the face of each of the attacks mentioned below, the

properties of the designed time synchronization scheme are satisfied and that the protocol

does not terminate at an undesirable state.

5.1 Attacks against Time Synchronization

The schemes discussed above in Section 4.1.1 are meant for non-adversarial scenarios

due to which simple attacks by malicious nodes to foil the synchronization process will

be successful. Few schemes discussed in Section 4.1.2 which are intended for adversarial

environments are also susceptible to various attacks. In this section, we summarize some

of the common attacks that can be launched against time synchronization schemes. These

are:

(M 1) Malicious Nodes send false timing data/Insertion Attack: In RBS & TPSN

type of schemes where hierarchical synchronization is done, if a non root

node at the upper level sends malicious timestamps to the nodes below it, all

the downstream nodes will fail to synchronize correctly. For e.g., if n2

synchronizes through n1, then if n1 sends malicious data to n2, n2 will end up

synchronizing to the incorrectly inserted value. Thus the entire

synchronization process can be disrupted.

(M 2) Malicious nodes jam data &/or delay messages: Sometimes, a malicious node

does not have to alter a timing message before forwarding. It can simply

 123

jam/block the message from being received by a node under attack. Another

attack would be simply delaying the message instead of jamming it.

(M 3) Malicious nodes replay older messages: An older message maybe replayed to

trick the downstream nodes into synchronizing with an incorrect timestamp.

(M 4) Malicious receiver can send next message before receiving the request: A

malicious receiving node, can forward a time-stamped request to its

downstream node without receiving a legitimate request from its upstream

node. Another variation would be when a malicious receiver sends a reply

message back to the upstream node before receiving a message back from its

downstream nodes.

(M 5) Compromised node: If a legitimate node gets compromised, all secrets in

possession of the node can be used by the attacker to carry out new attacks.

These include sending legitimate requests, fabricating or masquerading as a

legitimate user, etc A clever adversary can very easily use this to its

advantage and foil the synchronization procedure. A worse scenario would be

if the adversary is able to deplete the battery of other nodes in the otherwise

secured network by tricking the nodes into legitimately synchronizing with

itself repeatedly.

(M 6) Colluding nodes: Any number of colluding nodes can cause worm holes or

collectively fabricate data in the network causing time synchronization

protocols based on propagation delay and neighbor time values to fail.

(M 7) Power Save Mode Attacks: These types of attacks are possible in power-

conscious networks where some power-saving schemes are being used for

 124

optimizing and prolonging battery life of the nodes. An adversary that has

knowledge of the power-saving / sleep scheduling schemes used in a network

can optimize its own behavior to take advantage of it and foil the

synchronization procedure. Thus, if such schemes are being employed, we

stress that an analysis under such conditions is equally important.

In this work, we do not consider the attacks on the hash chaining method itself, (for

example, reusing hash key indices, reusing older hash keys, etc), which are well

documented and protected against in works like [3].

5.1.1 Replay and Redirect Attacks

Replay attacks occur when an adversary stores a copy of a message and replays it at a

later time after the original message was intended to be used. We examine the single hop

case where T is an adversary that records message 1 sent by A to B (Refer section

4.4.3.2). After some time has elapsed, T decides to replay message 1 to B. Since the

message is neither signed nor encrypted B has no way of knowing that the message

originally came from A. As a result, B accepts the message initially. If the elapsed time

is greater than the disclosure time, and the hash chain commitment (key Km) has been

disclosed already, the freshness verification will fail and B will discard the request as per

protocol. If on the other hand, the elapsed time

′t

′t

′t is lesser than the time left for disclosure

(i.e., key disclosure corresponding to this message has not occurred yet) then if N is a true

crypto-quality nonce, B will detect the replay comparing the nonce with currently stored

nonces. The existence of a match makes the assertion to B that it has seen this message

before. It is worth noting here that a node only needs to store a nonce until a little longer

 125

than the time window of validity of the nonce. A nonce expires when the commitment

key associated with a message (and hence with the nonce) is disclosed. A node need not

store a nonce beyond this expiry since a message can be rejected on the basis that the

time stamp is no longer fresh. We can do this because both the nonce and the time stamp

are committed by the sender. Since timestamps can only advance from the previous

message, and nonces are required to be unique across a large time window, replayed

messages cannot be successful.

Thus, the presence of timestamps and nonces in the messages serves as an adequate

countermeasure to this type of attack. The multi-hop case is similar to the single hop case

and no new additional information is made available to the adversary. In both the single

hop as well as the multi-hop case, we see that simply replaying an older message is not a

successful attack.

A redirect attack occurs when a message is sent to a third entity instead of the intended

participant. It can manifest in two ways, with original message suppression and without.

In the former case, the original message is suppressed from reaching the receiver and

redirect to a different entity, whereas in the latter case, the message is “replayed” to a

different entity and not the originally intended recipient without having suppressed the

original message. We argue that in a wireless medium only the latter is a valid attack

because message suppression in a wireless medium is difficult to achieve. Subsequently,

there are various physical and mac layer techniques like spread spectrum [69] etc that

sufficiently mitigate selective suppression attacks. Therefore, we only consider the latter

case in our analysis.

 126

Let us examine the case where adversary T redirects message (1) to a different node D.

D will initially accept the message and wait for key disclosure to validate the message.

Since the key commitment TC contains the identities of both the original sender and

intended recipient, on key disclosure D will find that the message is not intended for itself

and discard it.

5.1.2 Masquerade Attack

B
3.

4.
D F

2.

Time Synch request
Time Synch reply

Malicious Node
Regular Node
Source Node 5.

C

1. 2'

A E

Figure 20: Node C masquerading as the source B

A masquerade attack occurs when a user presents itself to the system as another user,

usually a legitimate one. This may be done in order to gain unauthorized access to

information or resources, to disseminate (mis)information in another’s name, or to block

or deny a system from operating correctly. [60]

A malicious node may masquerade as a legitimate upstream or downstream node or as

the source of global time itself in order to mislead other (mainly downstream) nodes. In

our example, C is the malicious node that is trying to masquerade as the source of global

time B to A. (Refer Figure 20) If A wants to resynchronize its time after a finite and pre-

configured interval, it sends out a synchronization request message as per protocol by

 127

creating its Time Commitment for A B and creating the synchronization message as per

the protocol description in the earlier section. To masquerade as B, C cannot simply

replay part of B’s earlier message (as shown above in section 6.1). The only way for C to

trick A into falsely believing it is communicating with B is by sending a fabricated

synchronization reply message to A which is made to appear as if it came from B. Since

disclosed keys cannot be reused [3], and H is a strong pre-image resistant one-way

function, while key Km is undisclosed, we argue that as per the birthday paradox,

adversary C cannot find a suitable , X such that'
mK ()' | XH mK = TC BA - the true reply

commitment without a significantly large number of tries. Also, the adversary has to

attempt this before a disclosure is made by B, otherwise A will discover that the message

it holds is not from B. (Note that if an adversary instead of trying to generate an authentic

time commitment simply replaces with an arbitrarily computed time commitment, the

message will still be discarded. We discuss this premise in the MITM attack below.)

5.1.3 Man-in-the-middle (MITM) and message capture attacks

A man in the middle (MITM) attack is one in which the attacker intercepts messages in

an exchange and then retransmits them, (sometimes substituting his own crypto

primitives for the requested one) so that the two original parties still appear to be

communicating with each other. The attack may be used to intercept, read or alter

messages without the knowledge of either transacting party.

As indicated in the earlier section, message capture, suppression, selective jamming are

not easy to achieve in a wireless medium. Various techniques at the physical and mac

 128

layer sufficiently reduce the possibility and question the practicality of these attacks. One

seemingly practical way of launching a MITM is if the adversary can send a message

before the original is received at the recipient or to quickly compute a response and send

before legitimate reply reaches the intended recipient. A multi-hop path is more

conducive to this type of attack due to the practicality of creating a middle man message

before the legitimate responder can create it. Additionally, in a multi-hop, the

intermediary node can easily make the end nodes believe that they are communicating

with each other via a single hop by making itself invisible if the end nodes are not aware

of the overall topology. We examine the single and multi-hop cases for this attack as

follows:

Single hop case: Figure 21 shows a single and multi hop MITM. Nodes B and F are

involved in the single hop case. F sends a synchronization request i to B

{ }: , ,→
1 2T T 1 F FBF B F, B T N ,m,TC , X1 alters the message by altering the time commitment

TCFB to ()ˆˆ ˆ ˆ | | |K=FB m 1 FTC T N P H , where ():P F|B|m and sends

{ }ˆ
ˆ ˆˆ ˆ: , ,→

21
T 1 FT

i : F B F, B T N ,m,TC FB
to B before F’s message reaches B. (In practice this is

a very hard thing to achieve). B receives the altered synchronization request message

instead of i and initially accepts it. When X1 finally discloses the commitment key that

can validate , B finds that the hash key validates the hash commitment but fails

the authenticity test. i.e., it is not tied to F’s identity. Since B does not need to

synchronize itself with F, (since B is the source), in the interest of speeding up

communication, it can simply go ahead and send the synchronization response ii to X1

î

K̂m

ˆ
FBTC K̂m

 129

whom B believes to be F. { }4ˆ
ˆ: , , ,→

3T 2 3 F BT
B X B F, T T N , N ,m,TC BF

. Again, X1 intercepts

this message and replaces it with { }4ˆ
ˆ ˆ: , , ,→

3T 2 3 F BT BF: B X B F, T T N , N ,m,TCii ii'. As in

the former case, F initially accepts the message, but later discards it without

synchronization since the hash chain broadcast will render the message invalid. TCAB =

{ H (Km | T1 | NA |P) } ; m<n, P=(A| B| m).

(Alternately, as we have seen in the earlier case, adversary can attempt 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

No. of TC bits

2 to

look for a collision in the time commitment to be substituted, for the message to pass the

authenticity test, but this is even harder and resource intensive on the adversary for a

single time synchronization operation. An operation that repeats very often.)

ii'
i.

X1

X2

F

E

C

D

B

7.

6.

5.
3
4

3.

2.

A

2'

G

1.

Source Node
Regular Node
Malicious Node

Time Synch request
Time Synch reply

G

Figure 21: Man-in-the-middle attacks

Multi-hop: Again with reference to Figure 21, when G sends a synchronization request

to A, adversary X2 replies to G before A does (similar to single hop case, but much more

 130

practical). As in the first case, X2 cannot create legitimate hash chain commitments (in a

timely manner) matching A or B’s identity and the attack fails.

5.1.4 Simple Collusion

Collusion occurs when multiple entities, usually with malicious intent, work in tandem

to achieve more prominent results than when each acting alone.

Figure 22: Simple collusion between C and D

In our example Figure 22, C and D collude to give the illusion of a shorter path depth

and thereby ‘advance’ a message as follows. During the initial synchronization request

phase, A sends a synchronization request message to C. To give the impression of a

shorter path, and hence incorrect synchronization values, C simply forwards the message

to D without adding its own time commitment or following the format of the protocol.

Now, D appends its time commitment to the message directly after A’s and forwards the

message to B. From B’s point of view, the path from the leaf node A now looks like A

D B. B builds the response message accordingly and send it to D. Now, to maintain hop

count, and number of time commitments, D forwards the message as is (without

Time Synch request
Time Synch reply

Malicious Node
Regular Node
Source Node

F

E A

C

D

B

6.

5.

4.
3.

2.

1.

 131

appending its commitment) to its colluding partner C. C appends its commitment to the

original message from B and sends to A. To A the view of the network from the source

would look like B C A.

The presence of the path information component (A, D, B) that is included by the source

B

5.1.5 Wormhole attack

Figure 23: Wormhole between nodes G and D

A wormhole is a tunnel in a network, which allows signals from nodes to travel faster

than normal, or sometimes, gives the impression that messages are traveling through the

in the synchronization response message in our protocol mitigates this attack. A

downstream node cannot alter this component without invalidating the integrity check of

the message. It is worth noting here that if there are three or more colluding nodes along

the same path, for example if there exists another compromised node between C and D,

they can effectively mask the presence of this intermediary node along the path and

advance the synchronization message. This form of attack is a type of wormhole attack

and hence is discussed in the next sub section.

Source Node
Regular Node
Malicious Node

Time Synch request
Time Synch reply

A

2.

3.
4.

5.

.

B

6

D

C

G E

F

1.

 132

sh

 channel or due to the compromise of all the nodes

ex

ortest path (lesser hop count) than actual. Malicious nodes frequently use this

technique to cause a large number of messages to be directed through them without

actually deviating from protocol.

Consider the case when two nodes significantly apart tunnel messages between

themselves, either through a side

isting between them to give the impression that they are next hop from each other. This

will result in the synchronization path appearing smaller than actuality. In our example

(Figure 23) G and D collude resulting in a wormhole in the network. Thus, if A sends a

synchronization message to G, G tunnels it to D bypassing C. D sends the shorter (faster)

message to B and on receiving a response from B sends it back through the tunnel to G.

Since B sees a legitimate view of the network, it sends a response that reflects the same

path in the path component, viz., B D G A back. The message will pass all

validation checks and will be accepted at A if A is unaware of m the no. of hops between

itself and its source B. If A is aware of the no. of hops between itself and B then it can

calculate the maximum expected message delay (since it is a function of the send time,

propagation time, and computation time at each intermediate node). If the total

transmission time is greater than the maximum delay, then the timeliness of the message

is under question, and an anomalous behavior may be suspected. Therefore, in the current

state of the protocol, a wormhole attack is possible if a node does not know the distance

(in number of hops) between itself and its source. (Recall that our protocol specification

dictates that either a node knows the no. of hops m, or then assumes m=n and generates a

hash chain of appropriate length.) If the condition m=n is exercised, then a wormhole

attack may be successful.

 133

The attack can be mitigated by the following two ways: As indicated, if A had

additional topological information, for example, if the degree m was known to A, it may

d

5.1.6 Compromised node exhibiting Byzantine Behavior

 the

ompromised node, all data stored on it, as well as legitimate use of the identity of the

co

etect the anomaly in degree using message delay characteristics. Additionally, if either A

or B have topological/deployment knowledge like the existence of C between G and D, the

wormhole fails with high probability. With knowledge of system delays, processing

times, etc and by comparing the actual time taken by a message to traverse the said route,

an intelligent wormhole detection algorithm can detect a wormhole if one exists (within

limits of its false detection rate). Employing watchdogs in the deployment that can

observe multiple

Once a node is compromised, an adversary has access to all information available to

c

mpromised node. In this sub section, we try to examine the effect of such behavior on

the functioning of the secure time synchronization protocol.

In the example shown in Figure 24, C is the compromised node that shows Byzantine

behavior.

 134

E G

A

8. 1.

C

D

B

7.

6.

5.
4.

3.

2.

F

Source Node
Regular Node
Malicious Node

Time Synch request
Time Synch reply

Figure 24: Arbitrary Byzantine behavior

Consider the following case: A sends a synchronization request message to G who

appends its own commitment and forwards the message to C. As per protocol, C appends

its own commitment to the message and forwards it upstream to D. The message is

constructed in a legitimate manner with a legitimate commitment, however, with

incorrect timing values. In this case, the messages will validate correctly, and timing data

will be successfully accepted by all the nodes in this transaction if the timing value is

intelligently fabricated to be within error limits for this deployment. However, due to the

nature of the scheme, the damage done by this attack is minimal to zero, depending on

the location of the Byzantine node in the tree. Nodes upstream from the Byzantine node

will not be affected as they synchronize with the source through their upstream

neighbors. All downstream nodes will be impacted, but the effect is more pronounced

closer to the Byzantine node and reduces as we traverse deeper into the tree away from

the Byzantine node. The deviation in the synchronization error from the average error

will be bounded on the upper side by the maximum synchronization error. It is also worth

reiterating here, that a Byzantine node can not advance timing values, only delay them,

 135

that too by a limited range. Thus, in this example, node D synchronizes with source B

directly and hence does not get affected by the fabricated timing values from C. C itself,

synchronizes with B through D and does not benefit from causing itself to synchronize

incorrectly. Nodes downstream from C will be marginally affected. If the fabricated data

is within band (timing values cannot be reduced, only increased, due to the presence of

previous node commitments) i.e., σ < σmax, relative synchronization error between G and

C will increase compared to the average synchronization error in the absence of an

adversary. However, the delta synchronization error between G and A will reduce slightly

due to G’s committed time values prior to the faulty synchronization. Thus in the figure

shown, we recreate the messages from A to G to C.

(1) { }: , ,→
1 2T T 1 A ABA G A, B T N ,m,TC

(2) (){ }: , , , , ,→
3 4T T 2 3 1 A G AB G

G C A,B G T T T N ,N , m,TC G, TC

(3)
()()

, , , , , , ,
:

⎧ ⎫
⎪ ⎪→ ⎨ ⎬
⎪ ⎪⎩ ⎭

5 6

4 5 2 3 1 A C G

T T
AB G C

A,B G C T T ,T T T N ,N ,N ,
C D

m, TC C,TC G, TC

If C is dishonest, it can change the timing value T4, T5, (synch request) and T12, and T13

(on the return route). All other time values are already committed, and any alteration

will result in detection and the message being discarded. Also, these values can only be

changed within a small limit (lower bounded by the previous commitment and upper

bounded by the allowable synchronization error), as D may not accept the message if the

time value is too far out compared to its own clock. Similarly on the return route, C can

lie about the true values of T12 and T13 within a small limit only. The result of this is that

every node between C and the source B will synchronize correctly irrespective of the

 136

downstream values. C knowing its own true time values will also synchronize correctly

(since it has no motive to desynchronize itself). Node G will synchronize with B using

time values T3 through and T14. As a result, the false values of C will cause some effect

but will get averaged out due to the presence of time values from other nodes in the path.

Similarly, A synchronizes with B through values T1 through T16 and the effect of C’s

false values is further drowned out. In other words, as the path length increases, the

effect of bounded false timing values on the entire multi-hop synchronization decreases

provided the false values are not in majority along the path. Note that, there is a trade off

here. As the path length increases, the uncertainties associated with each node’s

individual processing time adds up and creates a non-negligible amount of uncertainty

over the entire path. We would like to study this trade off as a future goal.

Multiple Byzantine adversaries

While the presence of a single Byzantine adversary does not significantly impact the

security of the time synchronization protocol, this may not hold true in the presence of

multiple Byzantine adversaries. Traditionally, Byzantine behavior is tackled using

redundancy and thresholding techniques. Common approaches include multi-path

multiple message approaches, randomizing and splitting data into chunks that travel

through disjoint paths and are assembled at the recipient node to circumvent multiple

Byzantine adversaries. Also, impossibility arguments render this problem unsolvable

unless the activity of Byzantine adversaries is limited to the simultaneous corruption of a

small number of nodes within a certain time window. We leave the study of multiple

Byzantine adversaries as a future study goal.

 137

5.1.7 False timing data insertion Attack

Simpler false timing data/insertion attacks are thwarted due to the usage of hash chains.

As each node computes a committed time value that is corroborated using its

authenticated hash value, any other node cannot insert or replace legitimate values with

false data as doing this will simply result in the hash values not verifying correctly.

Alternatively, in order for a node to generate a correct hash value it needs to attempt a

large number of hash computation operations (birthday problem) for a single

synchronization operation.

5.1.8 Rushing Attack

The use of nonces and verifiable hashes require a node to wait for the original message

from its upstream nodes and in the case of a reply, a node needs to wait for the original

reply from the downstream nodes. Hence (rushing attacks) can be averted.

5.1.9 Forging Messages

Again, message forgery is mitigated due to the usage of one way authenticated hash

chains. While a forged message can get accepted by a recipient for not failing any

integrity checks or lack of obvious anomalies like incorrect nonces, time reversal etc,

forged messages will fail the authenticated hash chain broadcasts and will be discarded

without using the forged values.

 138

5.2 Communication Overhead

We calculate the overall communication overhead in terms of messages sent for each

synchronization transaction to complete. As per the protocol description in Section 4.4.3,

n is the known maximum depth of the tree and m is the number of hops to a target node if

known. Since for every synchronization transaction, each intermediate node sends three

messages, the first is the synchronization response upstream, the second, the

synchronization response downstream and the third being the authenticated broadcast.

Also, each leaf node sends only message, the synchronization request, and a source sends

two messages, the synchronization response and the authenticated broadcast.

Thus, for a given transaction, the number of message required per path = 3n.

Maximum number of messages (for max depth m) per path = 3m.

5.2.1 Communication Overhead over a time period T

Since sensor network deployments run on finite power, it would be worthwhile to

assess what the communication overhead looks like over a long period of time T.

Therefore, if the Synchronization interval is set to be Tint, then in a given finite time

interval T, the number of messages would be

int

3
T
Tn with a maximum of

int

3
T
Tm .

 139

Additionally, there is one more broadcast downstream, (final synchronization source

time disclosure) which makes the total number of messages in the above equation to 4

and respectively.

n

4m

5.2.2 Communication Overhead during synchronization in tree

In the interest of optimal time synchronization, we can make use of the tree topology so

as to reduce redundant downstream between a node and all its children. In this case, when

a node at level i sends its synchronization request, all sibling nodes that can hear its

request will cache it and compare their own timestamps with their sibling. When the

response is received from the parent node, and verification is complete, If an upstream

node synchronizes with more than one downstream node, then the number of messages

required is as follows:

E A

C

D

B

6.

5.

4.
3.

2.

1.

F

Figure 25: Tree structure

Let Ni be the number of nodes at each level i, and Ei be the total edges between nodes

at level i and the level above (i-1) Therefore, the total number of messages per transaction

 140

can be calculated as: for total number of upstream messages plus total

number of downstream messages.

∑∑
−

==

+
1

01
2

n

i
i

n

i
i NE

Total # messages = (5.1)
1

1 0

2
n n

i
i i

E
−

= =

+∑ ∑ iN

If every node has uniform in-degree per level i, then iiINi NE ._θ= where iIN _θ

represents the degree of each node at level i.

∑∑
−

=

−

=

+++=
1

1
0_

1

1
_ 22..

n

i
iniIN

n

i
iiIN NNNN θθ

()iIN

n

i
iniIN NNN _

1

1
_0 2.2 θθ +++= ∑

−

=

 (5.2)

Adding the broadcast requests from upstream nodes, we have

Total # messages ()
1 1

0 _ _
1 1

2 . 2
n n

IN i n i IN i i n
i i

N N N Nθ θ
− −

= =

= + + + + +∑ ∑ N

)_θ (5.3) () (
1

0 _
1

2 1 3
n

n IN i i IN i
i

N N Nθ
−

=

= + + + +∑

For our example shown, this becomes 4n messages.

5.2.3 Storage Overhead

From [14], we have seen that computation and communication cost with hash chains is

O(log m) and O(log m) where m is the length of the hash chain. We now calculate the

remaining storage cost associated with the protocol. Recall that for every transaction, a

node has to store values of all nonces occurring within a certain time period T. If T is

large, then synchronization interval is large and as a result undisclosed nonces will have

 141

to be stored for a longer time. Also, until a key is disclosed, entire packets (message

contents) of time synchronization messages must be stored as well at each node that

performs verification). Recall that our synchronization message is very lightweight in

comparison with most other schemes. Each message only contains a single hash value in

spite of traversing a long multi-hop path. At each hop in the path, the nested hash chain

commitment replaces the previous commitment with an aggregated commitment for the

entire path. Therefore, storage costs associated with each run of the protocol is of the

order of no. of messages stored at each node, which is constant at O(1) for each run.

 142

Chapter 6 Conclusion

In this dissertation, we addressed the issue of creating robust services for infrastructure-

less distributed networks, the objective being to create robust infrastructure base over

which other services can be provided. We selected a wireless sensor network as our

distributed network of choice. We chose to create a robust target localization service that

is primarily robust against large amounts of falsified data. Most protocol based attacks

were thwarted using cryptographic protection techniques like encryption, integrity

protection using signatures, etc. However, we have shown that not all attacks can be

mitigated using cryptographic protection techniques. Falsified data attacks are certainly

immune to cryptographic techniques, and are a real threat to any data centric network.

Our approach in this thesis has been to minimize the effect of falsified data on the

outcome of the protocol.

We showed that by using a particle filtering algorithm at the core of the protocol we

were able to create a model for an adversarial environment that tackles adversarial

behavior as noise. By modeling data falsification attacks as statistical variances, and

limiting undetectable adversarial behavior to within certain bounds, we reduce the

amount of malicious data that can be inserted into the target estimating algorithm. We

then showed how our target estimating algorithm is robust against the amount of

malicious data that is inserted into the algorithm without detection. Our experiments yield

that the algorithm is highly robust against large amounts of malicious data. We were able

to provide a bound on the minimum number of particles required to be active in the filter

 143

for the resilient behavior to prevail. While particle filters have excellent tracking

capabilities they are very complex to implement and computationally intensive. We

reduced the implementation complexity and computational intensity per node by

distributing the particle filter into two components, viz., the measurement sampling

component and the aggregation component. Through a novel use of various additional

elements like watchdog nodes and randomization features like moving the aggregation

from one leader node to another resulted in a significant increase in complexity for an

adversary to launch a successful attack without actually increasing the complexity or the

cost to the system. This is directly in line with our philosophy of hardening the service by

leveraging existing aspects of the distributed network. Watchdog nodes provided sanity

checks in terms of distance bounds, frequency of messages, and anomalous behavior in a

neighborhood to help eliminate data from such sources at the aggregator. Moving the

aggregator function across various nodes in an unpredictable manner also increased the

complexity for an adversary to launch attacks since now an adversary has to first guess

where the aggregator function will move and then compromise a large subset in the

vicinity of that leader node. This also improves the robustness of the algorithm to

temporary failures as target estimation resumes as soon as the target moves into the

vicinity of the next leader node. Further, using SPSA to cast adversarial behavior as

perturbation resulted in solving the multi-variate optimization problem with only two

measurements of the objective function per iteration (irrespective of the dimensions of

the optimization problem). This resulted in a significantly lightweight solution compared

to regular particle filtering that is also real-time efficient and facilitates online target

location estimation.

 144

As a secondary problem, we studied time synchronization since it is an important

service for a distributed data centric network. While we did not follow a similar approach

as with the first problem with a robustness study for time synchronization, we addressed

the problem of what it implies to be a robust time synchronization service and how to

create one that is lightweight and reliable for other services to rely on. We used a simple

cryptographic mechanism called hash chain that helps prevent many attacks like replay,

redirection, man-in-the-middle etc and is computationally lightweight (O(log N)). We

also identified attacks that our time synchronization protocol is not robust against and

will continue to work on hardening it as a future goal.

Through this thesis, we have developed an interesting paradigm of leveraging strong

cross disciplinary technologies as the foundation of a robust service and tightly coupling

it with cryptographic protection mechanisms. We have understood what it means to

create robust protocols, that are communication and computationally feasible to

implement in a power conscious environment. The tight coupling of cryptographic

mechanisms was complimentary to the target estimation algorithm, and together they

provide the protocol with stronger properties than what they can individually.

As a future goal, we would like to address some of the tangential issues that were

identified throughout this thesis. Understanding how watchdog distribution and their

density of deployment affects the accuracy of the scheme and how an adversary can take

advantage of this knowledge is an interesting study. Further, we claimed that the size of

the window of validity of target position measurements was tightly coupled with the

tolerable synchronization error, and affects storage and cost. As another study we would

like to quantify this relationship. Currently, we consider all nodes except the target to be

 145

static. We would like to explore the effect of introducing select mobility models,

particularly constrained path model, on the target localization protocol and its robustness.

As concerns time synchronization, hash chains have a pattern of disclosure and a

predetermined schedule of disclosure. We would like to study the tactics an adversary can

use and the attacks it can launch if it has knowledge of this schedule. The selection of

values for T∆ and Td (synchronization error and disclosure time interval) is also

interesting as an improper selection can provide appropriate windows of opportunity to

an artful adversary. Finally, we would like to understand how Byzantine behavior affects

time synchronization and what lightweight protection mechanisms can provide resilience

to the service against such an attack.

 146

References

[1] A. Doucet., N. de Freitas, N. Gordon, eds.: Sequential Monte Carlo Methods in

Practice. Series: Statistics for Engineering and Information Science. Springer-

Verlag, New York (2001).

[2] A. Mainwaring, J. Polastre, R. Szewcyzk, D. Culler, and J. Anderson, “Wireless

Sensor Networks for Habitat Monitoring”, In Proc of Wireless Sensor Networks

and Applications (WSNA'02)”, September 2002.

[3] A. Perrig, D. Song, R. Canetti, J. D. Tygar, and B. Briscoe, “Timed Efficient

Stream Loss-Tolerant Authentication (TESLA): Multicast Source Authentication

Transform Introduction”, IETF RFC 4082, June 2005.

[4] A. Savvides, C. Han and M. Srivastava, “Dynamic Fine-Grained Localization in

Ad-Hoc Networks of Sensors”, In Proc of MOBICOM 2001, Rome, Italy, July

2001.

[5] A. Soto, “Self Adaptive Particle Filter”, In the Proceedings of the nineteenth

International Conference on Artificial Intelligence (ICAI), Scotland, August

2005.

[6] A. Tanenbaum, M. V. Steen, “Introduction to Distributed Systems”, Distributed

Systems Principles and Paradigms, Prentice Hall, NJ, 2002.

[7] A. Tanenbaum, M. V. Steen, “Leader Election Algorithms”, pgs 262-271,

Distributed Systems Principles and Paradigms, Prentice Hall, NJ, 2002.

[8] A. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge Location

system,” ACM Transactions on Information Systems, vol. 10, no. 1, pp. 91–102,

1992.

[9] Alternative Paradigms in Wireless Networking, RFI SN07-09 , Jan 18th, 2007

[10] B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins, “Global Positioning

System: Theory and Practice”, Fourth Edition, Springer-Verlag, 1997.

[11] B. Krishnamachari, D. Estrin, and S. B. Wicker, “Modeling Data-Centric

Routing in Wireless Sensor Networks”, Technical Report CENG 02-14, Dept. of

Computer Engineering, USC, 2002.

 147

[12] C. Karlof and D. Wagner, “Secure Routing in Sensor Networks: Attacks and

Countermeasures”, In Proc. of First IEEE International Workshop on Sensor

Network Protocols and Applications, May 2003.

[13] C. Karlof, N. Sastry, D. Wagner, “TinySec: A Link Layer Security Architecture

for Wireless Sensor Networks”, in Proceedings of the 2nd ACM Conference on

Embedded Networked Sensor Systems, p-162-175, Baltimore, 2004

[14] D. Coppersmith and M. Jakobsson, “Almost optimal hash sequence traversal”, In

Proceedings of the Fourth Conference on Financial Cryptography (FC’02),

Lecture Notes in Computer Science, 2002.

[15] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering

for practitioners”, IEEE Transactions on Signal Processing, Vol.50, Issue 3,

pp:736-746, March 2002.

[16] D. Crisan and A. Doucet. “Convergence of sequential Monte Carlo methods,”

Technical Report Cambridge University, CUED/FINFENG/TR381, 2000.

[17] D. Crisan. “Sequential Monte Carlo Methods in Practice”, Chapter 2, pages 17-

41.Springer-Verlag, 2001.

[18] D. Fox, “KLD-Sampling: Adaptive particle filters”, In Advances in Neural

Information Processing Systems (NIPS), Vol. 14, 2001.

[19] D. Liu and P. Ning, “Efficient distribution of key chain commitments for

broadcast authentication in distributed sensor networks”, In Network and

Distributed System Security Symposium, NDSS ’03, pages 263–276, February

2003.

[20] D. Liu, and P. Ning, “Multi level µTESLA: Broadcast authentication for

distributed sensor networks,” ACM Transactions in Embedded Computing

Systems (TECS), Vol.3, no.4, pp 800-836, 2004

[21] D. Liu, P. Ning, and W. Du, “Attack-resistant location estimation in sensor

networks”, in Proc. of the Fourth International Workshop on Information

Processing in Sensor Networks (IPSN), pp: 99-106, 2005.

[22] D. Niculescu and B. Nath, Ad Hoc Positioning System (APS) using AoA, In

Proc. of INFOCOM, San Francisco, CA, USA, March 2003.

 148

[23] E. Jovanov, D. Raskovic, J. Price, A. Moore, J. Chapman, and A.

Krishnamurthy, “Patient Monitoring Using Personal Area Networks of Wireless

Intelligent Sensors”, Biomedical Sciences Instrumentation, Vol. 37, pp373-378,

2001.

[24] E. Wilson, M. Hilferty, “The distribution of chi-square,” In Proceedings of the

National Academy of Sciences of the United States of America, vol. 17, pp 684-

688.

[25] F. Zhao, L. Guibas, “Wireless Sensor Networks, An Information Processing

Approach,” Elsevier Morgan Kaufmann Publishers, San Francisco, 2004.

[26] G. Lu, N. Sadagopan, B. Krishnamachari, A. Goel, “Delay Efficient Sleep

Scheduling in Wireless Sensor Networks”, in Proceedings of the 24th Annual

Joint Conference of the IEEE Computer and Communications Societies,

(Infocom), Vol. 4, pp 2470-2481, March 2005.

[27] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for

sensor networks,” in IEEE Symposium on Security and Privacy, Berkeley,

California, May 11-14, 2003, pp. 197-213

[28] H. Dai and R. Han. “Tsync: A lightweight bidirectional time synchronization

service for wireless sensor networks.” ACM SIGMOBILE Mobile Computing and

Communications Review, Vol. 8/1 pp:125–139, January 2004.

[29] http://wins.rsc.rockwell.com: Sensor Specification

[30] I. Rekleitis, “A particle filtering tutorial for Mobile Robot Localization”,

Technical Report TR-CIM-04-02, Centre for Intelligent Machines, McGill

University, Montreal, Quebec, Canada, 2004.

[31] IEEE Communications, Vol.6, number 9, September 2005 and

http://www.coe.berkeley.edu/labnotes/0805/honicky.html

[32] J. Elson, L. Girod, and D. Estrin. “Fine-grained network time synchronization

using reference broadcasts”, In Fifth Symposium on Operating Systems Design

and Implementation (OSDI 2002), December 2002.

[33] J. Geweke., “Bayesian inference in econometric models using Monte Carlo

integration.” Econometrica, vol. 57, pp.1317–1339, 1989.

 149

http://wins.rsc.rockwell.com/
http://www.coe.berkeley.edu/labnotes/0805/honicky.html

[34] J. Hightower, G. Boriello, and R. Want, “SpotON: An indoor 3D Location

Sensing Technology Based on RF Signal Strength,” Technical Report,

University of Washington 2000-02-02, 2000.

[35] J. Jacod and P. Protter, Probability Essentials. Springer, 2000.

[36] J. Kulik, W. R. Heinzelman, and H. Balakrishnan. “Adaptive Protocols for

Information Dissemination in Wireless Sensor Networks”, In Proc. of Mobicom

'99, Seattle, WA, August 1999.

[37] J. Spall, ‘An overview of the simultaneous perturbation method for efficient

optimisation,” John Hopkins Technical Digest, vol. 19, no. 4, pp. 482-492, 1998.

[38] J. Spall, “Implementation of the Simultaneous Perturbation Algorithm for

Stochastic Optimization,” IEEE Transactions on Aerospace and Electronic

Systems, vol 34, pp 817-823, 1998.

[39] J. Spall, “Multivariate Stochastic Approximation Using a Simultaneous

Perturbation Gradient Approximation,” IEEE Transactions on Automation and

Control, vol 37, pp 332-341, 1992.

[40] J. van Greunen, and J. Rabaey. “Lightweight time synchronization for sensor

networks”, In Second ACM International Workshop on Wireless Sensor

Networks and Applications (WSNA), pages 11–19, September 2003.

[41] K. Marzullo and S. Owicki. “Maintaining the time in a distributed system”, In

Second annual ACM symposium on Principles of distributed computing, pages

295–305. ACM Press, 1983.

[42] K. Rőmer, “Time synchronization in ad hoc networks”, In ACM Symposium on

Mobile Ad-Hoc Networking and Computing, pp 173-182, Long Beach

California, October 2001.

[43] K. Sun, P. Ning, C. Wang, "Fault-Tolerant Cluster-Wise Clock Synchronization

for Wireless Sensor Networks," in IEEE Transactions on Dependable and

Secure Computing (TDSC), Vol. 2, No. 3, pages 177-189, July-September 2005.

[44] K. Sun, P. Ning, C. Wang, "Secure and Resilient Clock Synchronization in

Wireless Sensor Networks," in IEEE Journal on Selected Areas in

Communications (JSAC), Vol. 24, No. 2, February, 2006

 150

[45] K. Sun, P. Ning, C. Wang, A. Liu, Y. Zhou, "TinySeRSync: Secure and Resilient

Time Synchronization in Wireless Sensor Networks,'' In Proceedings of the 13th

ACM Conference on Computer and Communications Security (CCS'06),

Alexandria, VA, November 2006.

[46] K.B. Rasmussen, and S. Capkun, “Implications of Radio Fingerprinting on the

Security of Sensor Networks”, In Proceedings of IEEE SecureComm, 2007

[47] L Eschenauer and V. D. Gligor, “A key-management scheme for distributed

sensor networks,” in Proceedings of the 9th ACM Conference on Computer and

Communications Security, Washington D.C., USA, November 18-22, 2002, pp

41-47.

[48] L. Lamport, “Time, Clocks, and the ordering of events in a distributed system”,

Communications of the ACM, Vol. 21(7), pp 558-565, July 1978.

[49] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Agreement

Problem,” ACM Transactions on Programming Languages and Systems, July

1982, pages 382-401.

[50] L. Lazos, and R. Poovendran, “SeRLoc: Secure Range Independent localization

for wireless sensor networks”, In ACM Workshop on Wireless Security (WiSe)

2004.

[51] L. Lazos, S. Capkun, and R. Poovendran, “Rope: Robust position estimation in

wireless sensor networks”, In International Workshop on Information

Processing in Sensor Networks (IPSN), 2005.

[52] L. Zhang, Y. Guan, “A Topology-aware Single Packet Attack Traceback

Scheme,” In proceedings of Securecomm, 2006.

[53] Location and Connection Aware Content Pushing (LOCO), Proposer

Information Pamphlet (PIP) for Defense Advanced Research Projects Agency

(DARPA) Strategic Technology Office (STO), BAA 07-12, July 20th, 2006,

Reissue: Jan 17th, 2007.

[54] M. Coates, “Distributed Particle Filters for Sensor Networks”, in proceedings of

the third International Symposium on Information Processing in Sensor

Networks (IPSN), pp: 99-107, 2004.

 151

[55] M. Manzo, T. Roosta, S. Sastry, “Time Synchronization Attacks in Sensor

Networks”, In proceedings of the Security of Ad hoc and Sensor Networks, 2005.

[56] M. Maroti, B. Kusy, Gyula Simon, and Akos Ledeczi. “The flooding time

synchronization protocol”, Technical Report ISIS-04-501, Institute for Software

Integrated Systems, Vanderbilt University, Nashville Tennessee, 2004.

[57] M. Miller, N. Vaidya, “Minimizing Energy Consumption in Sensor Networks

Using a Wakeup Radio”, in Proceedings of IEEE Wireless Communications and

Networking Conference, 2004.

[58] M. Miller, N. Vaidya, “Minimizing Energy Consumption in Sensor Networks

Using a Wakeup Radio”, in Proceedings of IEEE Wireless Communications and

Networking Conference, 2004.

[59] M. Valenti. Smart Sensors. “A Technology Assessment Impact (Technical

Insights)”, Technical report, Frost & Sullivan, September 2004

[60] Masquerading web definition ac.bcc.ctc.edu/Policies/definitions.htm

[61] Mica2 Data Sheet:

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datash

eet.pdf

[62] N. Bulusu, J. Heidemann and D. Estrin, “GPS-less Low Cost Outdoor

Localization for Very Small Devices”, In IEEE Personal Communications

Magazine, Vol. 7(5), pp:28-34, October 2000.

[63] N. Sastry, U.Shankar, D. Wagner, “Secure Verification of Location Claims”,

ACM Workshop on Wireless Security, September 2004.

[64] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket location-

support system,” in Proceedings of ACM MobiCom, pp. 32–43, 2000.

[65] P. Castro, P. Chiu, T. Kremenek, and R. Muntz, “A Probabilistic Room

Location Service for Wireless Networked Environments,” in Proceedings of the

Third International Conference Atlanta Ubiquitous Computing (Ubicomp), vol.

2201. Springer-Verlag Heidelberg, September 2001.

[66] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based User

Location and Tracking System,” in Proceedings of IEEE Infocom, vol. 2, 2000,

pp. 775–784.

 152

http://www.google.com/url?sa=X&start=3&oi=define&q=http://ac.bcc.ctc.edu/Policies/definitions.htm&sig=__xwpOjf7OtUkpl73sqPCGtIDUuZ8=

[67] Q. Li and D. Rus. “Global clock synchronization in sensor networks”, In Proc of

the 23rd Annual Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM), Vol. 1,(7), pp 564-574: March 2004.

[68] R. Anderson and M. Kuhn. “Tamper Resistance - a Cautionary Note”, In

Proceedings of the Second Usenix Workshop on Electronic Commerce, pages 1-

11, November 1996.

[69] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of Spread Spectrum

Communications – A tutorial”, In the IEEE Transactions on Communications,

Vol. 30(5), pp855-884, May 1982.

[70] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge Location

system,” ACM Transactions on Information Systems, vol. 10, no. 1, pp. 91–102,

1992.

[71] S. Capkun, J. Hubaux, “Securing position of wireless devices with application to

sensor networks”, In Proc of the 23rd Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM), 2004.

[72] S. Capkun, M. Hamdi and J. Hubaux, GPS-Free Positioning in Mobile Ad-Hoc

Networks, In Proc. of HICCSS 2001,Maui, Hawaii, USA, January 2001.

[73] S. Capkun, M. Srivastava, and M. Cagali, “Securing localization with hidden and

mobile base stations”, Technical Report, NESL-UCLA, 2005.

[74] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor

networks”, In First ACM Conference on Embedded Networked Sensor Systems

(SenSys), November 2003.

[75] S. Ganeriwal, S. Capkun, C. C. Han, M.B. Srivastava, “Secure Time

Synchronization Service for Sensor Networks”, ACM Workshop on Wireless

Security (WiSe), October 2005.

[76] S. K Kim, R. Iltis, “Performance Comparison of Particle and Extended Kalman

Filter Algorithms for GPS C/A Code Tracking and Interference Rejection”, 36th

Annual Conference on Information Sciences and Systems, Princeton, March

2002.

[77] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “TAG: A Tiny

AGgregation Service for Ad-Hoc Sensor Networks,” In Proc. of Fifth

 153

Symposium on Operating Systems Design and Implementation (USENIX - OSDI

'02), December 2002.

[78] S.B. Wicker, and M.D. Bartz, “Type II Hybrid – ARQ Protocols Using

Punctured MDS Codes”, In Proceedings of IEEE Transactions on

Communications, April 1994.

[79] T-H. Lin, H. Sanchez, H. Marcy, and W. Kaiser. “Wireless Integrated Network

Sensor nodes (WINS) for Tactical Information Systems”, In Proc. of the

Government Microcircuit Applications Conference, 1998.

[80] V. Gligor, P. Donescu, “New modes of encryption – A perspective and

proposal”, NIST modes of operation workshop, Baltimore, MD, USA, October

2000.

[81] V. Hingne, A. Joshi, T. Finin, H. Kargupta, and E. Houstis. “Towards a

Pervasive Grid”, To Appear in NSF Next Generation Systems Program

Workshop at International Parallel and Distributed Processing Symposium

(IPDPS' 03), April 2003.

[82] V. Mhatre and C. Rosenberg. “Homogeneous vs. Heterogeneous Sensor

Networks: A Comparative Study”, In Proc. of IEEE International Conference on

Communications, volume 6, pages 3646.3651, June 2004.

[83] W. Su and I. F. Akyildiz. “Time-diffusion synchronization protocol for sensor

networks”, IEEE/ACM Transactions on Networking, 2004.

[84] Wireless Network after Next (WNaN) Adaptive Network Development

(WAND), Broad Agency Announcement for Defense Advanced Research

Projects Agency (DARPA) Strategic Technology Office (STO), BAA 07-07,

February 23rd, 2007.

[85] Y. C. Hu, A. Perrig, and D.B. Johnson. “Packet leashes:A defense against

wormhole attacks in wireless ad hoc networks”, In Proceedings of INFOCOM

2003, April 2003.

[86] Y. Hu, A. Perrig, and D. B. Johnson, “Efficient security mechanisms for routing

protocols”, In Network and Distributed System Security Symposium, NDSS ’03,

pages 57–73, February 2003.

 154

[87] Y. Hu, M. Jakobsson, and A. Perrig, “Efficient Constructions for One-way Hash

Chains”, SCS Technical Report Collection, 2003.

[88] Y. Sella, “On the computation-storage trade-offs of hash chain traversal”, In

Proceedings of Financial Cryptography 2003 (FC 2003), 2003.

[89] Y. Yao and J. E. Gehrke. “The Cougar Approach to In-Network Query

Processing in Sensor Networks”, SIGMOD Record, Vol. 31(3), pp:9-18,

September 2002.

[90] Z. Li, W. Trappe, Y. Zhang and B. Nath, “Robust Statistical Methods for

securing wireless localization in sensor networks”, In the International

Workshop on Information Processing in Sensor Networks (IPSN), 2005.

 155

	Anuja Anilkumar Sonalker, Ph.D, 2007
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Problem Introduction
	Our Contributions
	Thesis Organization

	Robust Target Localization
	Current Research in Secure and Robust Localization
	Our Approach to Robust Target Localization
	System Model & Assumptions
	Sensor Model
	Trust Model
	Assumptions
	Target State Model

	Adversary Model
	Protocol Description
	Protocol Specification
	Notations and Definitions:
	Specification

	Salient Features of our Robust Target Localization Scheme
	Hierarchical Capability-based Heterogeneous network
	Distributed Aggregation and Moving Leader Design
	SMC Method for Data Aggregation
	Watchdogs: Additional Data Sources

	Analysis of Robust Target Localization
	Attack Model
	Robustness Analysis
	Security Properties of our Scheme
	Factors affecting performance, reliability and accuracy
	Topological Dependence
	Effect of topology on Robustness
	Particle Density Profile
	Seed Infrastructure
	Mobility

	Secure Time Synchronization
	Current Research in Time Synchronization
	Review of existing Time Synchronization Protocols
	Timestamp Synchronization (TSS)
	Reference Broadcast Synchronization (RBS)
	Lightweight Time Synchronization (LTS)
	TimingSync Protocol for Sensor Networks (TPSN)
	TSync
	Interval Based Synchronization (IBS)
	Flooding Time Synchronization Protocol (FTSP)
	Asynchronous Diffusion (AD)

	Review of existing Secure Time Synchronization Protocols
	Secure Time Synchronization Protocols SOM, SDM, STM, L-SGS
	Ganeriwal et al Secure Time Synchronization Scheme #1: Secur
	Ganeriwal et al Secure Time Synchronization Scheme #2: Secur
	Ganeriwal et al Secure Time Synchronization Scheme #3: Secur
	Ganeriwal et al Secure Time Synchronization Scheme #4: Light
	Ganeriwal et al Secure Time Synchronization Scheme #4: Secur

	TinySeRSync: Secure and Resilient Time Synchronization
	Fault-Tolerant Cluster-Wise Clock Synchronization for Wirele
	Secure and Resilient Clock Synchronization in Wireless Senso

	Properties of a Robust Time Synchronization Scheme
	Components of our Secure Time Synchronization Scheme
	One way Key Chains and Authenticated Broadcasts
	Basic Pair-wise Time Synchronization

	Our Secure Time Synchronization Scheme
	Adversary Model
	Assumptions
	Protocol Specification
	Notations and Definitions
	Our Secure Time Synchronization Protocol

	Analysis of Secure Time Synchronization
	Attacks against Time Synchronization
	Replay and Redirect Attacks
	Masquerade Attack
	Man-in-the-middle (MITM) and message capture attacks
	Simple Collusion
	Wormhole attack
	Compromised node exhibiting Byzantine Behavior
	False timing data insertion Attack
	Rushing Attack
	Forging Messages

	Communication Overhead
	Communication Overhead over a time period T
	Communication Overhead during synchronization in tree
	Storage Overhead

	Conclusion
	References

