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This dissertation is concerned with the properties of self-organizing network systems, where a 

large number of distributed sensor nodes with limited sensing, processing and communication 

capability organize themselves into a cooperative network without any centralized control or 

management. Due to the distributed nature of the management and lack of global information 

for in-node decision making, sensor management in such networks is a complicated task. The 

dynamics of such networks are characterized by constraints and uncertainty, and the presence 

of disturbances that significantly affect aggregate system behavior. In this dissertation we 

examine several important topics in the management of self-organizing wireless sensor 

networks. 

 

The first topic is a statistical analysis to determine the minimum requirements for the 

deployment phase of a random sensor network to achieve a desired degree of coverage and 

connectivity.  

 



  

The second topic focuses on the development of a viable online sensor management 

methodology in the absence of global information.  We consider consensus based sensor data 

fusion as a motivating problem to demonstrate the capability of the sensor management 

algorithms. The approach that has been widely investigated in the literature for this problem 

is the fusion of information from all the sensors. It does not involve active control of the 

sensors as part of the algorithm. Our approach is to control the operations of the nodes 

involved in the consensus process by associating costs with each node to emphasize those 

with highest payoff. This approach provides a practical, low complexity algorithm that allows 

the nodes to optimize their operations despite the lack of global information.  

  

In the third topic we have studied sensor networks that include “leaders,” “followers,” and 

“disrupters.” The diffusion of information in a network where there are conflicting strategies 

is investigated through simulations. These results can be used to develop algorithms to 

manage the roles in the network in order to optimize the diffusion of information as well as 

protect the network against disruption.  
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Chapter 1: General Introduction 

“We may be very busy, we may be very efficient, but we will also be truly effective 
only when we begin with the end in mind” 

- Stephen R. Covey 

1.1 Introduction 

Sensor networks have received significant attention in recent years due to the 

attractive solutions they provide for data acquisition and monitoring applications. 

These networks usually consist of a large number of nodes, sometimes called agents. 

Typically, each node is a small processing unit with the capability of sensing physical 

quantities of its surrounding environment, for example temperature, radiation, etc., 

and communicating the (processed) data to  other nodes for a collective decision 

about features of the environment (detection, estimation, tracking, classification, etc.).  

 

In traditional single sensor systems the data acquisition, analysis, and decision 

processeses were performed within the processing unit of the sensor. The decision 

algorithm was part of the sensor software or firmware, where it processed the low 

dimensional signals generated by the sensor. In a multi-sensor system, each sensor is 

a contributor to an aggregate decision process. Available data may vary in quality as a 

function of location and state. Proactive decisions to use additional sensors at some 

cost (increased process interaction, power, computational, communication 

requirements, etc.) require algorithms to select the best configuration to achieve the 

objective.   
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A class of wireless sensor networks that have received recent attention are self-

organizing networks, where a large number of distributed sensor nodes with limited 

sensing, processing and communication capability organize themselves into a cooperative 

network without any centralized control or management. Such a network is usually 

deployed to perform a processing mission over a period of time. In order to survive 

this network should be robust to node and link failures and it should be self-healing.  

 

In most applications, energy should be efficiently used in a (self-organizing) wireless 

sensor network; otherwise the network will not be able to perform its required 

mission over time. In this dissertation we assume that each node gets its energy for 

sensing, processing, and communication from a source, such as a battery with a fixed 

amount of energy. Therefore the total energy that has been distributed over the 

network is limited. If nodes overuse their energy they will die before the mission time 

is over. Therefore, an efficient sensor management protocol is critical for the 

operations of this type of energy-limited wireless sensor networks.  

 

Self-organizing sensor management is complicated because of the distributed nature 

of the management and lack of global information for in-node decision making. 

Decentralized control of communicating-agent systems has emerged as a challenging 

research area in recent years. Applications in which effective distributed control 

algorithms are critical to the success of the application are increasingly common. 

Typically, the dynamics of such large scale systems are characterized by constraints 

and uncertainty, and by the presence of disturbances that significantly affect system 

behavior. Traditional off-line control design techniques may prove inadequate for 
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such applications. Hence there is a need to develop efficient distributed control 

schemes. This work is aimed at the development of a practically viable on-line sensor 

management methodology for distributed self-organizing networks.  

 

To focus the development, we consider a surveillance application where the goal is to 

detect events in a region as they happen and then estimate a parameter related to each 

event. This is a general class of problems that can model many different applications. 

We assume that the network is going to operate for an extended period of time and 

that a minimum detection and estimation performance is required from the network. 

We shall show that a sensor management task for such an application can be 

decomposed into temporal and spatial control parts.  

 

Temporal sensor management and control is the distribution of the energy in time. In 

order to detect events, nodes need to sense the environment. But a node will fail 

quickly if it is active and sensing all the time. Therefore nodes should take turns 

sensing the environment. A node that is not sensing powers down in some specific 

way to save energy. We will say that the node “goes into sleep.” Event occurrences 

may have a pattern in space and/or time that can be “learned” and modeled by the 

network, and used to adjust the scheduling times. For example, in instances or 

locations where an event occurrence is improbable, it would be wise to turn off most 

of the nodes. A sensor temporal control algorithm involves modeling event 

occurrence and assignment of energy use in time.  
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Spatial sensor management and control involves the selection, based on quantitative 

performance measures (and costs), of a configuration of sensors to collect data for 

sensor data fusion. Sensor data fusion as widely investigated in the literature is the 

aggregation of information from all sensors. Generally, it does not involve the active 

“control’’ of the sensor elements as part of a fusion algorithm. A node may be 

activated either by the detection of a surveillance event, or by a message from a 

neighbor. The technical objective for this part of the project is the development and 

evaluation of algorithms for the management of sensor networks containing many 

sensor nodes. This is critical technology in a sensor network application where there 

could be tens, hundreds, or thousands of individual sensor elements. The aggregate 

signal processing should “multiplex” the individual sensor signals, emphasizing those 

with the “highest payoff” (for example, those sensors processing the signals with the 

greatest uncertainty).  

 

For this part of the work we use the consensus problem as a motivating problem to 

demonstrate the capability of our algorithms. One very common problem that arises 

in different computations in sensor networks is that of agreement, or consensus 

between the nodes regarded as active “agents.” Typically, agents must achieve 

consensus with respect to a certain state variable of interest. Applications involving 

multi-agent networked systems solving consensus problems arise in different 

disciplines, including distributed computing, flocking and alignment problems, 

synchronization of coupled oscillators, and cooperative control.  
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Research on the consensus problem started in the field of computer science where 

distributed agreement, synchronization problems, and load balancing in parallel 

computers have been considered [Xu 1997]. Olfati and Murray [Olfati 2003] studied 

agreement problems in networks with dynamic agents and showed how simple 

nearest neighbor rules in networks of integrator agents will result in all nodes 

reaching a consensus over time. Other research has concentrated on developing fast 

converging algorithms, and proof of convergence of the consensus algorithms under 

certain conditions [Xiao 2004]. For the most part these studies concentrate on 

reaching consensus among all the nodes. They do not address the use of active control 

in a consensus protocol.  

 

Our goal in developing practical distributed wireless sensor management schemes is 

to address three major challenges: Lack of global information, distributed 

computation and communications, and randomness.  

 

(1) Lack of global information: A node should have enough global information to 

be able to make good decisions and tune its operation parameters. Our approach is to 

associate “weights” with each sensor that include sufficient global information for 

reasonable management decisions. Then the sensor systems operations management 

problem can be expressed in terms of feedback control laws that take local 

information and modify the network operation according to the information’s global 

weight to optimize the computation. The weights are potentially capable of 

incorporating in them global information about the relative position of the node in the 
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communication graph, the link quality, the residual energy, the cost of operation, and 

quality of information. This solution is very attractive where it provides a practical 

low complexity algorithm that provides the nodes some sufficient global information 

to optimize their operations.  

 

 

(2) Distributed computation and communications: The computational effort and 

communications volume should not become problematic for large-scale networks. 

The algorithms need to be lightweight and not require huge amounts of computation 

or communication.  

 

(3) Randomness: Although wireless communication provides cost and flexibility 

advantages, it also presents reliability challenges; Communication links are variable 

and unpredictable. A wireless link that is strong today may be weak tomorrow due to 

environmental conditions, new obstacles, and/or unanticipated interferers. Therefore 

the topology of a network is in constant change. This change is generally due to one 

of these three major causes:  

 

(i) RF interference: Sensors may communicate in bands of the electromagnetic 

spectrum devoted to general-purpose wireless communication devices. These bands 

may be crowded with traffic from Wi-Fi networks, cordless telephones, and other 

devices. Because there is no way to predict what interferers will be present in a given 
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location, and time, a reliable network must be able to continually deal with these 

interferers.  

 

(ii) Blocked communication links: When a network is first deployed, wireless paths 

are established between sensor nodes based on the available neighbors. However, 

paths may later be blocked by new equipment, moving vehicles, or very small 

changes in node’s position. Assuring reliability for the life of the network, not just the 

first few weeks after installation, requires continually working around these 

blockages in an automatic fashion.   

 

(iii) Node Loss: A node failure may happen because of hardware malfunction, 

damage, or it may be removed from the network. More importantly a node with no 

residual energy will not be able to operate.   

 

Any of these problems will compromise a wireless link. However, with a network 

protocol designed to protect against these issues, the network can isolate individual 

points of failure and reduce their impact, allowing the network as a whole to function 

effectively in spite of local failures.  

 

The algorithms we propose in this work adapt to changes in the environment, 

allowing long-term operation with zero-touch maintenance. By dynamically adapting 

the associated “weights”, each sensor has access to the updated global information, 

and therefore is capable of handling the randomness and uncertainties in the network. 
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This method is suited best for a network with relatively slow random changes, 

because the weight update process takes some time to converge.  

 

The sensor fusion management protocols for self-organizing networks developed in 

this dissertation provide mechanisms to increase both efficiency and reliability of the 

network and to form a solid foundation for wireless sensor network applications.  

 

1.2 Mission-Oriented Sensor Management 

Beginning with the assumption that the nodes in a network perform a mission over a 

period of time under energy constraints, we develop an algorithm that manages the 

operation to guarantee the desired performance during the mission time.  

 

The network with n  nodes is supposed to perform a mission over a period of time 

],0[ Tt . The mission time T is known in advance and it is the minimum acceptable 

lifetime for the network. This may not be the case for applications where there is no 

such predefined network lifetime and network operates until all the nodes fail. The 

mission of the network is to (1) detect when an event happens in the region being 

monitored, and (2) estimate a parameter of that event. The constraint is that each node 

has a total energy of iE . Thus, the total energy distributed over the field is 



n

i

iEE
1

. 

Therefore, in general it is not possible for all the nodes to participate in all the 

processing activities over the entire interval of interest. For each detection and 

estimation task a group of nodes should be selected to achieve a certain level of 
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performance. The global performance of the network over the mission time is a 

function of the individual node performances. The problem is how to distribute the 

total available energy to gain the maximum global performance. We formulate the 

problem as an optimization problem.   

 

Assume that during the time period T (an integer) the maximum number of event 

occurrences is M. Partition the time axis to M equally distance time instance Mkk ...,,1 , 

where each time slot has length )1/( MT , and TkM  . At each instance k  an event 

may happen with probability )(kP . When an event is detected the network has a time 

equal to )1/( MT to finish the estimation task related to that event. Suppose the 

network assigns a total energy of kx  for each event detection task. Therefore, the total 

detection energy budget for each node is iE .   is the percentage of a node’s total 

energy that is a set aside for detection. The share of node i  from the energy  kx  is i
kx . 

Also, assume that there is a utility function )( kxU  that defines the detection 

performance of the configuration of sensors. Assume that the utility function is 

differentiable and concave. The sensor management problem can be formulated as 

follows: 
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This problem is solved sequentially and when an event happens the algorithm updates 

the energy that can be used by the network for processing the next event.  

 

We solve this problem by decomposing it into two problems. The first problem is the 

temporal control problem that finds the total energy allocated for detecting each 

event.  

iEx

kPxUE

N

i

i
M

k
k

M

k
kxk
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(1-2) 

 

The second problem is the spatial control problem. At each time instant k  the energy 

allocated for the current event is distributed between nodes as follows, 
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(1-3) 

 

The objective is to maximize the performance while keeping the total energy 

consumption over the participating nodes under a limit. Also we have a constraint to 

enforce nodes to consume energy at the same rate, so that all the nodes fail at the 

same time at the end of the mission and not before that. There are applications that all 

the nodes do not need to consume energy at the same rate and therefore this algorithm 
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does not address them. However the ideas presented here may be leveraged to apply 

for those types of applications.   

 

The above problem deals with efficient distribution of the energy. However one other 

important issue in a sensor management scheme is role management. Role management is 

about assigning different roles and responsibilities to sensors in the network for more 

efficient processing as well as protecting against possible conflicts.  

 

In this dissertation we investigate different issues related to the energy management 

problem as well as the role management. In Chapter Two we look into the achievable 

expected detection performance with a given total energy using statistical methods. In 

Chapter Three we study the spatial control and the distributed methods to solve that 

problem. And finally in Chapter Four, we look into the role management in a network 

that includes leaders, followers and disrupters. 

1.3 Related Work 

In general, wireless sensor network management is used for topology control and 

sensing mode selection [Perillo 2004]. Topology control is used when sensors are 

deployed with densities high enough so that not all sensors are needed to route data to 

the sink. The goal of a topology control is to ensure that enough nodes are active to 

provide a connected network so all the sensors that have data to send can get their 

data to the base station while turning off any unnecessary sensors to save energy. 

Sensor mode selection is needed when sensors are deployed with densities high 

enough so that activating every sensor in the network provides little more quality of 
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service for the application. The goal of the sensor selection is to have only certain 

sensors gather data so that there is no unnecessary redundancy, network congestion, 

and energy waste and the cumulative sensor data quality is sufficient to meet the 

application’s goal.  

 

Topology control algorithms include GAF (Geographic Adaptive Fidelity) [Xu 2001], 

SPAN [Chen 2000], ASCENT (Adaptive Self-Configuring sEnsor Networks 

Topologies) [Cerpa 2002], and STEM (Sparse Topology and Energy Management) 

[Schurgers 2002]. The idea in GAF is to form a virtual grid throughout the network 

and to allow only one node in a cell to be active at any given time. In SPAN a 

connected routing backbone is formed and other nodes that are not involved go to 

sleep for extended periods of time. The set of the nodes forming the backbone 

changes to ensure a balance in energy consumption among the nodes in the network. 

In ASCENT certain nodes are chosen to be active while others go into the sleep mode 

to conserve energy. The active nodes are chosen to provide connectivity and 

reliability based on the observed data loss rates among the neighbors. STEM is 

different from other protocols in that it activates nodes reactively rather than 

proactively. When data packets are generated, the sensor generating the traffic uses a 

paging channel to awaken its downstream neighbors.  

 

Sensor mode selection protocols include PEAS (Probing Environment and Adaptive 

Sensing) [Ye 2003], NSSS (Node Self-Scheduling Scheme) [Tian 2003], and CCP 

(Coverage Configuration Protocol) [Wang 2003]. In PEAS nodes provide a consistent 
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coverage that is robust to node failures by periodically entering into probing state to 

check for the active nodes in the probing range. If there are no active nodes in the 

probing range, the node becomes active. In NSSS, a node measures its neighborhood 

redundancy as the union of the sectors covered by neighboring sensors in the node’s 

sensing range and decides to turn off or not.  In CCP a node finds all intersection 

points between the borders of its neighbors sensing radii and edges in the desired 

coverage area, and then deactivates itself if these intersection points are K-covered 

covered by at least K other sensor nodes).  

 

The IDSQ [Zhao 2002] algorithm considers the information contribution of sensors 

against the cost of communicating with them. In this algorithm a central node 

calculates a probability distribution function that shows the target presence 

probability for each point of the field. Moreover this node improves the accuracy of 

this function by selecting one node (the highest payoff) at a time and incorporating 

the probability distribution function calculated by those nodes. 

 

Algorithms such as these are simple in nature and focus mostly on sleep scheduling 

for coverage problems and the aggregation of information from sensors for estimation 

tasks. Specifically they do not usually include active control techniques. Most of the 

applications considered are centralized, where a central node receives the information 

from the rest of the network and decides on the best configuration of the nodes. 

Moreover, energy management over the mission period of the sensor network has not 

been addressed. This dissertation is an effort to address these issues and to study 
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different components of a general management methodology for wireless sensor 

networks.    
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Chapter 2: Minimum Requirements in Perimeter Surveillance 
 

“Quality starts in the boardroom” 

-W. Edwards Deming 

2.1 Introduction 

Surveillance missions defined an important class of applications for wireless sensor 

networks [Huang 2003]. Often surveillance networks are deployed in areas like 

battlefields where it is hard to position individual nodes precisely. So the nodes 

maybe relatively or highly randomly distributed in the region of interest. Achieving a 

desired target detection performance in the presence of randomness can be a 

considerable challenge. In designing an application the characteristics of the network 

should be known beforehand to be able to achieve a certain level of quality of service. 

Because of the uncertainty of the network topology, analysis for fixed networks can 

not be directly applied for random wireless sensor networks. 

 

An important problem in these applications addressed in the literature is the sensor 

coverage problem. The extent of coverage is a measure of the quality of service of the 

sensing function. It is subject to a wide range of interpretations due to a large variety 

of sensors and applications [Meguerdichian 2001]. There are many different coverage 

measures including the area coverage and node coverage. For intrusion detection 

applications, the measure of coverage is the capability of the network to detect targets 

that move into or through a region of interest. In [Meguerdichian 2001], the paths in a 

network which are least likely to be detected by the sensors are found. 
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In wireless sensor networks energy efficiency is an important issue, because of the 

limited battery sources. Mechanisms that conserve energy resources are highly 

desirable, since they have a direct impact on network lifetime. Several protocols have 

been proposed to reduce the energy consumption by turning off the redundant sensors 

while maintaining the coverage at a desired level [Tian2002], [Ye 2003], [Clouqueur 

2002]. Most of these protocols and algorithms are for a fixed network. In this work 

we will study the coverage problem as a design problem. Specifically, we shall 

investigate the fundamental coverage properties of a wireless sensor network which 

are governed by basic network parameters such as the number of the sensors 

deployed in the region. A well designed network will provide a protocol or algorithm 

the opportunity to perform at its best. 

 

The surveillance scenario we are interested in this chapter is to detect intruders when 

they move into or out of a region of interest. In other words, we are monitoring the 

boundary of the region. The sensors are randomly scattered on the boundary and they 

report trespassing to a central node in the network. For the simplicity we will assume 

that the boundary is a circle. However all the results in here are valid for any shape of 

closed boundary. We will characterize the coverage properties on a circular boundary. 

Consequently, the requirements of the number of sensors or sensor density to achieve 

a target area coverage will be derived. We assume a Boolean sensing model where 

each sensor has a fixed sensing range. Moreover, we will introduce detection 

percentage as a measure of coverage for a boundary coverage problem.  One other 
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issue that we will address is to predict the lifetime of the network by exploring the 

redundancy. Also we will explore the difference between the case where the number 

of sensors is fixed and the case where it is a random variable. In this regard, we 

consider two type of random networks, uniform and Poisson. In the uniform 

distribution a finite and fixed number of sensors are placed uniformly and 

independently around a circle. In the second case sensors are distributed according to 

a stationary Poison process with a fixed density. 

 

In the first part of this chapter we are not concerned about the connectivity of the 

sensors and the communication and networking aspects of the network and we 

assume that all sensors are capable of communicating to a central point. In the second 

part we will investigate coverage and connectivity together. 

 

2.2 Problem Formulation 

Suppose n sensors are distributed independently and uniformly over circle with radius 

R . These sensors are located at points n ,,, 21  , with each sensor covering an arc 

of fixed length 2a. Let's denote these random arcs by n21 ,,,   defined as follows: 

 axRx ii   :  (2-1) 

 

These arcs may overlap. We denote the Lebesgue measure on the circle by   and the 

set-theoretical sum of the arcs by X . A point on the circle is said to be covered if it is 

contained in at least one of the arcs n21 ,,,   . 

We define the coverage as follows 
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  )(/1),( RC i
n
ian     (2-2) 

 

),( anC  is the random proportion of the circumference that is contained in some arc. We 

define the vacancy to be  

  a)(n,1),( C1)(/   RD c
i

n
ian    (2-3) 

 

where c
i  denotes the complement of i  in R . ),( anC and ),( anD  are random variables 

taking values in ]1),(/2[ Ra  and )](/21,0[ Ra  . The moments of ),( anC  about zero 

are called moments of coverage. Those of ),( anD  are called moments of vacancy. 

 

Figure 2-1.  Perimeter Surveillance Problem. Each sensor node covers and arc of 

length a and the curve crossing the circle is the path of a moving target.  

 a 
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We are interested in characterizing the capability of this network to detect targets as 

they cross the circle at random locations as a function of the number of sensors and 

the sensing range. Also, we examine the lifetime of such a network and the 

effectiveness of sensor scheduling. 

 

2.3 Minimum Number of Sensors 

Sensors are uniformly distributed over the circle, so the probability density function 

for the center of the i th arc will be one in the interval )](,0[ R . The probability that a 

point on the circle is not covered by the sensors is equal to the probability that in an 

arc of length 2a centered around the point there are no sensors. So the probability that 

a point is covered is 

n

R
ax )

)(
21(1)Pr(


X  
(2-4) 

 

It follows that the expected coverage is 

n
an R

adxxPCE )
)(

21(1)(][
1

0
),( 

   
(2-5) 

 

For a non-random regular network where the neighboring sensors have equal distance 

from each other the covered part of the circle increases linearly as the number of 

sensors increase, until the full coverage is achieved. For such a network 

  a)(n,1),( C1)(/   RD c
i

n
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This suggests the following theorem. 

 

Theorem 2-1- The factor increase in the minimum number of sensors to achieve a 

desired average coverage of C  over a circle with a uniform random network 

compared to a non-random regular network is 
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)(
21
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(2-7) 

 

This is the price we have to pay for the randomness of the network. What we will 

earn in return is redundancy, which is examined in the next section. 

 

2.4 Lifetime Extension 

As we showed in the previous section, in a random network with sensors positioned 

according to a uniform distribution, we have to deploy more sensors to achieve the 

same coverage compared to a non-random regular network. However, these extra 

sensors introduce redundancy to the network. In such a network some of the sensors 

can be turned off without affecting the whole coverage. In this section we will 

compute this redundancy as another measure of the network performance that shows 

how much we can extend the lifetime of the network. 
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A sensor is a redundant if the arc it is covering is already covered by other sensors. 

Equivalently a sensor is redundant if the distance between its immediate left and right 

neighbors is smaller than a2 ; that is,  
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(2-8) 

 

In wireless sensor network applications it is desirable to schedule the operation of 

sensor nodes by turning them ON and OFF in order to extend the lifetime of the 

network, while achieving the same level of performance. For this reason we are going 

to investigate the possibility of dividing the sensors into separate disjoint sets, with 

each set having a guarantied coverage level. Each set can be scheduled to be 

operational during a different time instance. This capability will give the network 

flexibility in increasing the lifetime, redundancy and fault tolerance. 

 

The probability of a random uniform network to be divisable into k  disjoint sets is 

equal to the probability that each point on the circle is covered by at least k  sensors; 

this is often referred to as k-node coverage. The value k is sometimes called the 

degree of coverage. Higher node coverage helps to reduce the false alarms in the 

network. We will characterize the relationship between the number of sensors, the 

number of possible disjoint sets, and the degree of coverage. On the other hand the 

probability of a random uniform network to be divisable into k  disjoint sets gives us 

the possibility of extending the lifetime of the network by a factor of k  compared to a 
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network with all operating sensor nodes. We assume that each sensor node has a fixed 

initial energy and its energy consumption is only a function of its operating time. 

 

Assume that the network has a mission time missionT , which is the duration of time it is 

going to perform a surveillance task, and the time each sensor node can be 

operational is only sensorT  where missionsensor TT  . We would like to increase the lifetime 

of the network by a factor of 









sensor

mission
life T

T
k , where  .  is the integer part. Moreover, 

we want to have node coverage of nodek . We are looking for the optimal number of 

sensors to be scattered on the circle to achieve the above goals. 

 

Theorem 2-2- Suppose n  sensors are uniformly distributed on a circle R . The 

probability of extending the lifetime of the network by a factor of lifek  by dividing the 

network into disjoint sets, with each set having a node coverage of nodek  is 
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(2-9) 

 

We assume that each set of sensors is connected, and they can communicate to a 

central node. The above formula combined with (1-5) gives us the average coverage 

achieved with n  sensors to have at least k disjoint sets. This is plotted in figure (1-2) 
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for 05.0
)(


R
a


. For example, this figure suggests that 15 sensors can achieve 

coverage of 80 per cent if they all operate all the time, and the life time of this 

network can be extended by a factor of 3 if 28 sensors are used and by a factor of 5 if 

55 sensors are used. These help a network designer to find the optimal number of 

sensor nodes for deployment. 

 

 

Figure 2-2.  Probability of dividing the sensors into at least one (red), three (green), five 

(blue) and seven (black) disjoint sets versus the number of sensors. 

  

There is an important question that how we should find the desired average coverage. 

In the following section we introduce detection percentage as a measure of coverage 
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that gives more insight into the quality of monitoring. The desired detection 

percentage can be translated into the average coverage, the measure we have used 

thus far. 

 

2.5 Detection Percentage 

In the previous section we calculated some coverage measures that are often used for 

showing the surveillance performance in detecting targets, e.g., coverage and node 

coverage. In this section we propose and calculate a different coverage measure: 

detection percentage. This measure is defined as the average percentage of targets 

detected crossing the circle. Each target crosses the circle in two points, and a target 

is detected if either of the crossing points is covered by the sensors. 

 

We would like to calculate the probability that l targets cross the circle and exactly m 

of them are detected. For that reason we need the following theorem. 

 

Theorem 2-3- If we randomly select m  points on a circle with unit circumference 

monitored by a uniform network with n  sensors with fixed sensing range of a , the 

probability that all these points fall into the covered part of the circle is the m  th 

moment of the coverage ][ ),(
m

anCE . 
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Proof- Let X  be the covered part of the circle for a given set of sensors. We 

randomly choose m  points on the circle mxxx ,,, 21  . Then for every point on the 

circle we define 
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It is clear that 

)(),( XX  dxxg
R

 (2-11) 

 

Thus, 
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For the last step we have used the following property 
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Theorem 2-4- If we randomly select m  points on a circle monitored by n  sensors 

uniformly distributed over the circle, the probability that all these points fall into the 

uncovered part of the circle is the m th moment of vacancy ][ ),(
m

anDE . 

 

The proof is similar to the proof of Theorem 3. 

 

The m  th moment of vacancy for n  random arcs of length a2  on the circle R  are 

given by [Siegel 1978] 
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Also the moments of vacancy for n  random arcs of length a2  on the circle R  are 

given by [Siegel1978] 
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We combine the these theorems and results to prove the following theorem. 

 

Theorem 2-5- Suppose we have a uniformly distributed network of sensors on a 

circle with n  sensors. The probability that l  targets cross the circle and exactly m of 

them are detected is 
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Proof- The probability we are looking for can be stated as follows 

Pr( , ) Pr( targets cross and all are detected )

Pr( targets are not detected)

l
l m m

m
l m
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Each target represents two crossings, and a target is detected if one of the crossing 

points intersects with the covered part of the circle. We say a double detection 

happens if both crossing points of a target are detected. 
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Combining together the above equations will give ),Pr( ml .■ 

 

This probability function is concave. We call its expected value normalized to the 

number of targets the detection percentage. This measure is plotted in figure (1-3) as 

the number of sensors increases for 005.0
)(


R
a


 and for 20l  targets. On the 

same plot we can also see the coverage of the network. This figure suggests that to 

achieve a high percentage of crossing detection the network does not need to cover a 

large area of the circle. For example, 80 percent of the targets will be detected with 
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only 55 percent coverage of the circle. For a desired detection percentage, figure (1-3) 

helps us to find the corresponding coverage we need and thus the number of sensors 

we need to scatter on the circle. 

 

 

Figure 2-3.  A high detection percentage can be achieved with a low coverage. 

 
 

2.6 Poisson Network 

Next we study the asymptotic behavior of the coverage of the network as the network 

gets larger. Suppose the circumference of the circle R  and the number of sensors on 
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the circle, n , increases such that 



)(R

n  where 0 . If S  is an arbitrary arc 

in R , then the probability that there are k  sensors in S  equals 
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So, as R  and n  increase, the number of points in S  converges to a Poisson 

distribution with mean )(S , where   is the density of sensors per unit length. 

Moreover, the numbers of sensors in disjoint arcs are independent. These are the two 

properties of a stationary Poisson process with mean . Such a sensor network is 

called a Poisson network. In this section we briefly review the behavior of a Poisson 

network, which are asymptotically derived from the results of the uniformly 

distributed network (UDN). 

  

2.6.1 Minimum Number of Sensors 

We should note that the total number of the sensors in a UDN is a fixed finite 

number; however it is a random number for a Poisson network. In a Poisson network 

the probability that a point on the circle is not covered by a sensor is equal to the 

probability that there are no sensors with a proximity of a  around that point. Thus, 

the probability that a point is covered by the sensors is 

aeXxP 21)(   (2-20) 



 

 30 
 

 

And the average coverage is 

a
a edxxPCE 2
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(2-21) 

 

The minimum sensor density to achieve a desired average coverage of C  is  

aC 2/)1ln(*   (2-22) 

 

  

2.6.2 Redundancy 

A sensor is redundant if the arc it is covering is already covered by other sensors or 

equivalently if the distance between its immediate left and right neighbors is smaller 

than a2 . This probability for a Poisson network is 
aa eaeredundancy   22 21)Pr(    (2-23) 

 
2.6.3 Lifetime Extension 

The probability of extending the lifetime of a Poisson network by a factor of lifek  by 

dividing the network into disjoint sets, with each set having a node coverage of nodek is 
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2.7 Connectivity 

The average coverage of a network is highly affected by the connectivity of the 

nodes. In this section we related this to the perimeter coverage problem. We use a 

probabilistic approach to find the relationship between the density of the sensors and 

the covered part of the boundary and the probability that a node is connected to the 

central node. Our analysis is both for homogenous and inhomogeneous networks and 

it helps in designing a network with a required performance. Different protocols have 

been designed to schedule the node operation in such a way that the communication 

graph is always connected. In [Wang 2005] the problem of coverage and connectivity 

is considered together. 

 

In this section we offer a different perspective on the connectivity and coverage 

problem. We will formulate the quality of service in covering an area while 

maintaining the connectivity of the nodes in a probabilistic framework as a function 

of network parameters. The network parameters include the density of nodes and the 

communication and sensing ranges. 

 

The surveillance scenario we are interested in here is to detect intruders when they 

move into or out of a region of interest. In other words, we are just monitoring the 

boundary of the region. The sensors are randomly scattered on that boundary and they 

report intrusion to a central node on the boundary. For the simplicity we will assume 
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that the boundary is a circle. However all the results are valid for any closed 

boundary.  

 

Here, we study coverage and connectivity for both homogenous and inhomogeneous 

one-dimensional networks.  

  

2.7.1 Connectivity problem Formulation 

Suppose n  nodes are distributed independently and uniformly over circle R . For 

simplicity we assume that the circumference of the circle is 1. The number of nodes 

n  may be fixed or a random variable. 

 

Nodes send their messages directly or by relaying through the nodes to a central node. 

Without loss of generality we assume that the distance on the circle is measured 

counterclockwise from the central node. The distance between two nodes is the length 

of the shortest arc on the circle connecting those nodes. We assume that nodes have a 

limited and fixed communication range r , where 1r . Thus, two nodes can 

communicate if and only if the distance between them is less than r . The neighbor 

nodes that can communicate with each other form clusters. The number and the 

length of the clusters are related to the number of sensors and their communication 

range. Those clusters that do not contain the central node are isolated and cannot 

communicate their messages to the central node. There is only one cluster that is 

connected to the central node. We refer to the members of that cluster as connected 

nodes. We would like to know the number of sensors that we need to scatter over the 

circle to achieve a desired coverage by the connected nodes. We will investigate the 
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minimum coverage provided by the connected nodes, and will find the design 

parameters of the network to achieve the minimum required coverage. We consider 

design parameters such as the number of sensors or sensor density, communication 

range and sensing range. 

 

We also consider an inhomogeneous network where there are two types of sensors: 

regular and master nodes. The regular nodes transmit their messages to the nearest 

master node. The master nodes are capable of transmitting a longer distance than 

regular nodes. Thus, a message is relayed through a master nodes to the central node. 

A master node is isolated if it cannot communicate to other master nodes. A regular 

node is isolated if it cannot communicate with a master node. 

 

In both homogenous and inhomogeneous networks, we will find lower bounds on the 

probability that a regular node is connected to the central node. And from there we 

will find the minimum achievable coverage. 

 
2.7.2 Homogenous Network 

In this section we consider a homogenous network with nodes randomly distributed 

on the circle according to a Poisson distribution with density  . The total number of 

nodes is not fixed in this setting. A node at location x can send its message to the 

central node, if rx   or if the interval between that node and the origin is completely 

occupied by other nodes that are not distant more than r from each other. A node can 

be connected to the central node from its left or its right or both. We denote by )(xPc  
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the probability that an arbitrary node at location x  is connected to the central node 

from one side. Then the probability that the node is connected to the central node 

)(xPco  is: 

)1()()1()()( xPxPxPxPxP ccccco   (2-25) 

 

The lower bound on )(xPco  is [Dousse 2002]: 

r
co exP  22)2/1(1)(   (2-26) 

 

It is clear that the closer the node is to the central node the more likely it is connected. 

The nodes that can communication with each other make clusters. Evidently, clusters 

are isolated and only the cluster that contains the central node is capable of sending 

out its messages. We refer to this cluster as the connected cluster. Coverage of the 

circle (which includes communication to the central node) is only provided by the 

connected cluster. In the next theorem we find a lower bound on the coverage. 

 

Theorem 2-6 -The lower bound on the expected coverage provided by the connected 

cluster is: 

 rsogeneous
s eeCE   222hom
)( )2/1(1)1(][    (2-27) 

)(sC is the coverage provided by nodes that each cover an arc of length s2 . 
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Proof- The average length of the connected cluster X  is the average of the 

connection probability of a node to the central node 
1

0

)( dxxPco . The lower bound on 

X  is: 
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(2-28) 

 

The probability that an arbitrary point x  on the circle is covered by a node is: 

sexP 21)(   (2-29) 

 

Therefore, the average coverage by the connected cluster is 

dxxPCE
X

ogeneous
s 

0

hom
)( )(][  

(2-30) 

 

This is lower bounded by: 

 rsogeneous
s eeCE   222hom
)( )2/1(1)1(][    (2-31) 

■ 

This inequality gives the minimum density to achieve a desired coverage level for a 

given communication range.  
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2.7.3 Inhomogeneous Network 

Random distributions of nodes result in isolated clusters of nodes, and only the cluster 

that contains the central node is able to report its messages. We will be able to 

connect isolated clusters to the central node if we add nodes that are capable of 

communicating over a larger distance. We will refer to these nodes as master nodes. 

They have more initial energy or they expend energy faster and their role is to relay 

messages of a cluster through other master nodes to the central node. Obviously this 

will connect more clusters to the central node and will increase the coverage. In this 

section we want to know how the coverage changes with this enhancement, and we 

want to know the minimum number of master nodes needed to achieve a desired 

performance level. 

 

2.7.4 Uniform Distribution 

Assume that we randomly and uniformly distribute n  master nodes on the circle. A 

master node can communication with other master nodes within a distance less than 

a . A master node can be connected to the central node from its left or its right or 

both. Denote by )(xPm the probability that a master node at location x  is connected 

to the central node through q  other master nodes. This probability is [Foh 2004] 
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The probability that a master node is connected to the central node )(xPcm  is: 

)1()()1()()( xPxPxPxPxP mmmmcm   (2-33) 

 

The lower bound of cmP  happens when the master node is at 5.0x and there are 
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Next we calculate the probability that a regular node is connected to the central node. 

Suppose an arbitrary regular node is located at x  and the closest master nodes on the 

right and left side of his node are located at X and Y . The probability that this 

regular node is connected to the central node is: 
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(2-35) 

 

Theorem 2-7- If L  is such that rL 2  then )(xPcg  the probability that a regular 

node located at x , with rx  , is connected to the central node is lower bounded by: 

  rrUniform
cm

rUniform
cgcg reePeLPxP      112)

2
1(1)( 22  

(2-36) 

 

Proof- The lower bound on this probability is achieved for the worst case 

when 5.0x , 2/LxX   and 2/LxY   for some L . Then, 
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By using Taylor series and some manipulations the above inequality yields. ■ 

 

The spacing between two master nodes L , is a random variable. The collection of n  

master nodes and the central node divides the circle into 1n  spacing. The spacing is 

identically distributed. Their common distribution is given by: 

nllL )1(1)Pr(   (2-38) 

 

with mean value 
1

1][



n

LE . 

Theorem 2-7 gives the minimum spacing between master nodes required to achieve a 

minimum connectivity probability between regular nodes and the central node, and 

equation (2-38) gives a measure of uncertainty on the number of master nodes to 

achieve that minimum spacing. Note that n  also affects Uniform
cg

P  . From another point 

of view Uniform
cg

P   shows the number of connected nodes. This will give an estimate on 

the minimum achievable coverage by the following theorem: 

 

Theorem 2-8-The lower bound on the average coverage provided by the connected 

nodes is: 

Uniform
cg

sUniform
s PeCE 
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  (2-39) 
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where Uniform
cg

P   is derived in theorem 2. 

 

2.7.5 Poisson Distribution 

In this section we consider the case that master nodes are randomly placed with a 

Poisson distribution with density  . A master node can communication with other 

master nodes that are at a distance less than a . We will be able to derive the lower 

bounds on connectivity and coverage as we did in the previous section. Without going 

through the proofs we have the following theorems: 

 

Theorem 2-9- If L  is such that rL 2  then  )(xPcg , the probability that a regular 

node located at x , with rx  , is connected to the central node is lower bounded by: 

)1()2/1(2)
2

1(1)( 2222 rrarPoisson
cgcg reeeeLPxP       

(2-40) 

 

Proof- We used the lower bound at (1-26), for the worst case as we did in the uniform 

case. ■ 

 

For master nodes with Poisson distribution the spacing is exponential and is given by: 

lelL  1)Pr(  (2-41) 

 

with mean value 

1][ LE . 

And for the lower bound of coverage we have: 
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Theorem 2-10- The lower bound on the average coverage provided by the connected 

nodes is: 

Poisson
cg

sPoisson
s PeCE 

 )1(][ 2
)(

  (2-42) 

 

where Poisson
cg

P   is derived at theorem 4.  

 

 

Figure 2-4.  Average coverage achieved by a fully connected network, a homogeneous 

network and an inhomogeneous network with uniformly distributed and Poisson 

distributed master nodes versus the density of regular nodes 
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2.7.6 Analysis 

The lower bounds on average coverage for the homogenous and homogenous 

network that we discussed are plotted in figure (1-5) as   the density of the regular 

nodes increases. For comparison we have also plotted the average coverage in a 

homogenous network with the assumption that there is full connectivity between the 

nodes, which is,  

s
s eCE 2
)( 1][   (2-43) 

 

The node parameters are 03.0r , 2.0a  and 005.0s . The number of master 

nodes n  in the uniformly distributed network and the density of the master nodes   

in Poisson network is selected such that they produce the same performance. The 

lower bound for these two networks are for 40n  and 30 . In both cases the 

average spacing between master nodes is about 0.03, and the probability that the 

distance between two master nodes is less than that is 0.64. With this spacing the 

probability that a master node is connected to the central node is very close to 1. 

Thus, the above choice of parameters results in full connection of master nodes. In the 

lower density of regular nodes the coverage probability is small. As the density gets 

larger the coverage probability goes to 1. Adding master nodes in low densities 

increases the coverage significantly. At lower densities the network is sparse and 

there are many isolated clusters. Adding master nodes connects these isolated clusters 

to the central node. As the density goes beyond a certain value all the networks 
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behave the same. At that density the regular nodes are fully connected and the role of 

master nodes in decreasing isolation becomes negligible. However this density is 

much smaller for the inhomogeneous network. The reason that beyond that density 

the average coverage is still below 1 is because the sensing range is smaller than the 

communication range and the full connectivity does not guarantee full coverage. As 

the density keeps increasing the full coverage is achieved. After full connectivity we 

can approximate the average coverage by (2-43). This gives the minimum density to 

achieve a desired average coverage of C : 

sC 2/)1ln(*   (2-44) 

 

So if the number or density of master nodes is selected in such a way that they are 

almost surely fully connected, then with a low density of regular nodes the full 

connectivity of the network is achieved. In this case the dominant factor in choosing 

the density of regular nodes will become the average coverage that we expect from 

the network. From the other hand if the number or density of master nodes is not 

enough to guarantee full connectivity of master nodes, and if the regular nodes are 

only allowed to communicate their messages through the master nodes as the case in 

our analysis, then increasing the density of regular nodes will not result in full 

connectivity and full coverage will never happen. The asymptotic average coverage 

of the Poisson network will be then,  

 as
s eeCE   222
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as is predicted by Theorem 2-4, and for the Uniform network it is, 
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as is predicted by Theorem 2-3 where   2/1*  nn . 
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Chapter 3: Spatial Management 

 

“It is not enough to do your best; you must know what to do, and then do your best” 

-W. Edwards Deming 

 

3.1 Introduction 

In this chapter we study the spatial management of energy in a wireless sensor 

network. As a motivating application we use a distributed parameter estimation based 

on the consensus among the nodes in the network. First, we investigate the consensus 

problem in wireless sensor networks in general and look into its characteristics. In 

developing consensus protocols the convergence conditions and increasing the 

convergence speed is of particular interest. We will give a summary on this and then 

demonstrate an algorithm for distributed parameter estimation using the consensus 

concept. And we show how the dynamics of the process vary among the nodes in the 

network as a function of the relative position of the node in the communication graph. 

And we show this is closely related to the centrality concept in networks. We then 

leverage a well known eigenvector centrality concept to assign to each node a weight. 

A node will use the weights assigned to its neighbors to control the interactions with 

them. Then we show an algorithm for a constrained localized estimation where the 

total energy budget is limited and the goal is to minimize the uncertainty of the 

parameter estimation. The problem is formulated as a team formation problem, where 

an efficient group of nodes are to be selected to perform the task.  
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3.2 Consensus 

Consider a network of n nodes that collaborate to compute a scalar function of their 

data )(xG  where  

T
nxxx ]...,,,[ 21x  (3-1) 

 

This vector is called the state of the network and ix  is the scalar noisy observation of 

the environment parameter   at the i th sensor node. In this work we consider 

algorithms that generate at each node i  a sequence  nxi  of approximations to )(xG . 

)(xG is an estimate of a function of  . We assume that each node can establish 

bidirectional communication with a subset of the nodes in its neighborhood.  

 

Let’s focus on local interactions modeled by a first order LTI fusion rule 

  ][1 kWk xx     with  ]0[x  (3-2) 

 

This is an iterative algorithm with the objective of asymptotically converging to the 

desired function )(xG , 

0)(][lim 


x1x Gk
k

  

(3-3) 

 

where . is the ordinary Euclidean norm, and 1 is 1n vector of 1’s.  kx  is the vector 

of the approximations and we call it the state of the network at k  
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Let’s review some definitions and results in the consensus problem related literature 

that may be used in this chapter: 

 

Adjacency Matrix of a Network- Matrix ][ ijaA whose ),( ji entry is equal to the 

number of edges originating at the node i  and terminating at node j . Elements on the 

diagonal are zero.  

 

Asymptotically Converging – A rule is asymptotically converging to the desired 

scalar function )(xG , if the sequence ][nx  satisfies,  

0||)()(||lim 


x1x Gn
n

 (3-4) 

 

Geometrically Convergence-  ncGn  ||)()(|| x1x  

Where  is a positive constant smaller than 1 and the smaller the value of  the 

faster the convergence of the algorithm.  

 

Approach: Direct vs. Iterative Methods- There is a variety of methods for solving 

distributed estimation problems. These methods can be classified as direct and 

iterative methods. Direct methods find the exact solution by considering all the 

available data at the same time. Iterative methods do not obtain an exact solution in 

finite time, but they converge to a solution asymptotically. Iterative methods are 

preferred to direct methods when the number of nodes is large or the communication 

graph is sparse (it will require less storage and communication requirements).  
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Linear Iterative Process-Sensor nodes start with an initial state ]0[x and evolve 

iteratively by the rule,  

]1[][  nn xWx  (3-5) 

Or,  

]0[][ xWx nn   (3-6) 

 

We will refer W as the local interaction or local rule matrix.  

 

Convergence Condition- A linear iterative process converges for every initial state 

]0[x  if and only if the eigenvalues of W  distinct from 1 have modulus 1||  , and, if 

1  is an eigenvalue, its eigenspace is of full rank.  

 

Perron's Theorem [Perron 1907, MacCluer 2000]- The eigenvalue of largest 

absolute value of a positive (square) matrix is both simple and positive and belongs to 

a positive eigenvector. All other eigenvalues are smaller in absolute value.  

 

When 0W  (is positive-definite), the iterative process will converge when the 

dominant eigenvalue 1 is less than 1; the process converges to 0 if 11  , and when 

11   to the component of the initial condition in the eigenspace spanned by the 

associated eigenvector 0v . 
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When 0W , it has a nonnegative dominant eigenvalue 1  belonging to a 

nonnegative eigenvector 0v , but there may be other eigenvalues with the same 

modulus. Having multiple eigenvalues with the same modulus complicates 

convergence. If 11   it may produce periodic or even orbits that diverge to infinity.  

 

Average Consensus: The goal is to find a local rule matrix that guarantees 

asymptotic convergence to the average of the sensor readings, 

X
N

x
N

XG T
N

i
i 111)(

1
 



 
(3-7) 

 

A set of sufficient conditions that guarantee asymptotic convergence is [Scherber 

2005],  

Ni
W

WW

i 




2for,1||
1)(1




111
 

(3-8) 

 

The following rule satisfies the above conditions,  

L IW  (3-9) 

 

L is the Laplacian of the communication graph, defined as follows, 






wiseother,0

j~i if,1
ijL  

(3-10) 
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ij

ijii LL  (3-11) 

 

The choice of   determines the rate of convergence of the sequence ][nx  to the 

desired function. The convergence rate is governed by the second largest eigenvalue. 

Thus, for the fastest convergence   should be selected such that minimizes the 

following objective function [Scherber 2005],  

||max
2 iNi




 (3-12) 

 

This yields N 2 and is given by,  

N





2
maxmin

2  
(3-13) 

 

This requires global knowledge of the network. Instead, a good selection of   that 

requires only local knowledge can be, 

||max
1

max
iii

con d
  

(3-14) 

 

This calculation just requires the nodes to find the maximum of || iid , which is the 

number of connections (degree) of the i th node, via voting. The justification for this 

choice is the following inequality,  

||max2||1||max iiiNiii
dd    (3-15) 
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And assuming that W has the above mentioned properties, the unity vector is an 

eigenvector of ][kW  associated eigenvalue of 1. The objective is to select ][kh  so 

that the rest of the resulting eigenvalues are as small as possible in the magnitude. 

 

Continuous Consensus Problem: The average consensus problem explained above 

can be studied from a different point of view. That algorithm can be looked at as the 

discrete version of this continuous problem: starting from an initial state )0(x , the 

dynamic of the nodes is defined by 

)()( tLxtx 


 
(3-16) 

 

With the goal of reaching to average initial state 





n

i
i

t
x

n
tX

1
]0[1)(lim  

(3-17) 

 

We define the following quadratic function, which is the Lyapunov function in the 

convergence (stability) analysis,  

Lxtxxf T)(
2
1)(  (t) 

(3-18) 

 

Where L is the Laplacian and is always positive semi-definite ( 0,  ii  ). This 

quadratic function is shaped like an elliptic paraboloid bowl and its minimum is a line 

that runs through the bottom of the valley. The Laplacian matrix is usually 

symmetric. With symmetry assumption the gradient of the quadratic function is 
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)()(' tLxxf   (3-19) 

 

The consensus point belongs to the intersection of two spaces: 

(1) The space where all the nodes have the same value which is in the minimum of 

the quadratic function 

}...|{ 211 n
n xxxRxs   (3-20) 

 

The minimum of the quadratic function is where its gradient is zero 

0)(' xf  (3-21) 

 

(2) The space where the average of the states is the same as the average of the initial 

state 

})0(,...|{
1

212 



n

i
in

n xccxxxRxs  
(3-22) 

 

The consensus point is the point that belongs to the intersection of these two spaces.  

 

3.3 Distributed Estimation 

In this section we examine a distributed parameter estimation problem based on the 

consensus among the nodes [Xiao 2005]. We assume that all nodes make a noisy 

measurement of a parameter.  We denote by ix  the measurement of the i th sensor 

node.   
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nivax iii ,...,1,    (3-23) 

 

Here IRxi  , ia is a known coefficient that relates the unknown parameter to the i th 

sensor measurement, and iv is the noise of measurement with Gaussian distribution 

with zero mean and variance i . We assume that the measurement noises are 

independent.  

 

To get insight into the process, suppose that all the sensor nodes have the same 

measurement noise variance  . Each sensor can estimate the mean based on its own 

data.  

ii x


  
(3-24) 

 

This estimate has an error variance ])[( 2 


iE  of  . A node can improve its 

estimate by taking more measurements. After taking m measurements the error 

variance will decay to m/ . However, a better and faster estimate with error 

variance )/(nm  can be obtained if n  sensor nodes exchanged their estimates and 

computed the average of the estimates. Suppose each sensor node has only one 

measurement and they exchange it to make an estimate with final error variance of 

n/ . 
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Now consider the original problem. A central node with access to all the 

measurements will make parameter estimation based on the following aggregation 

vax    (3-25) 

 

Where  
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The covariance matrix of v is ),,,( 21 ndiag   .The maximum likelihood (ML) 

estimate of   is a weighted least-squares approximate solution 
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(3-26) 

 

This estimation is unbiased with an error covariance 

  112 ])[( 


 AAEQ T
ML   

(3-27) 

 

If the noises are not Gaussian, but are independent with zero mean, this estimation is 

the linear minimum-variance unbiased estimation given the measurement. How can 

this estimation be performed in a distributed fashion where only local exchange of 

information is possible? Two possible options are: 
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(1) Flooding: Each sensor broadcasts its data into the network through multi-hop 

communications until all the nodes have access to all the data. This method requires a 

large amount of communication and may not be practical in a wireless sensor network 

with limited resources (energy and bandwidth) 

 

(2) Iterative method: It is possible to develop iterative estimation algorithms that 

compute for each sensor an estimate of the unknown parameter that eventually 

converge to the estimate achieved by the central estimation. This is based on simple 

average consensus. In this scheme each node iteratively updates its data by a linear 

weighted average of its neighbors’ data until all the data is diffused in the network 

and a global ML estimate of the parameter is achieved.  

 

The following algorithm computes the ML estimate of the unknown parameter. Each 

node maintains local composite information )(tPi and a local composite information 

state )(tqi , initialized at 0t as 

iiii

iii

xaq
aP

1

12

)0(

)0(











 

(3-28) 

Then the node computes the average consensus for )(tPi and )(tqi  

)()()()1(

)()()()1(
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(3-29) 

In the limit 
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(3-30) 

Each node makes the following estimate at each time 

nitqtPt iii ,...,2,1),()()( 1  


  
(3-31) 

In the limit this estimate convergences to  
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(3-32) 

This limit is the ML estimate.  

 

Now, let’s study the properties of the intermediate estimates )(ti


 . There exist scalar 

coefficients )(tij , that we call a diffusion function, such that  
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(3-33) 

The coefficients )(tij depend on the underlying local rule algorithm and the 

topology of the network. )(tij is the ij th entry of the matrix tWt  )( . In the limit 

)(t converges to Tn 11)/1( and all the entries converge to n/1  (if the algorithm 

converges). 

They have the following properties, 

(1) tjitij ,,,1)(0    
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(2) If the local rules are convergent, then the coefficients )(tij converge 

geometrically as t goes to infinity. We denote this limit by )(ti . 

(3)  e
tt

t

t

t

t

ij 









 00 !!
)(

, where  is the second largest eigenvalue of W . 

(4) 1)(
1




n

j
ij t  

 

All the intermediate estimates are unbiased 

niE i ,...,1,][ 


  
(3-34) 

 

And the error covariance matrix at each node converges to that of global ML solution 

  niAAE T
i

t
,...,1,])[(lim 112 





  

(3-35) 

 

However at time t the intermediate covariance matrix is 




















n

j
jji

ii

attP

EtQ

ij
1

1222

2

)()(

])[()(




 

(3-36) 

As t increases the coefficients )(tij all converge to n/1  and the error covariance 

)(tQi converges to its limit.  

 

As we see the quality of the intermediate estimates varies among the nodes, just 

because of the relative position of a node in the communication graph. Next we find 
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out which nodes are faster in converging to the final estimate (nodes with faster 

dynamics).  

 

Let ),( EVG  be the connected undirected communication graph of the network. Let 

W be the matrix of local interactions. Let nvvv ,,, 21  be the eigenvectors of 

W associated with eigenvalues n ,,, 21  . Let i
jv denote the i th component of jv .  

 

Lemma 3-1- The projection of the unit vector ie on jv is 

j
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jj
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ij vvv
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e  2

,
)(Pr  

(3-37) 

 

Lemma 3-2- The diffusion function )(tij and )(ti can be expressed as follows 
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(3-38) 

Proof- We use lemma (3-1) for calculating the element (i,j) of the matrix tW  
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We define the centrality of node i as 

2

1
)(),( i

l

n

l

t
l vtic 



   
(3-39) 

Centrality has the following property, 

1),( tic , since   1
2

1




n

j

i
jv  

 

(3-40) 

In the limit as time goes to infinity the centrality of all nodes converges to the same 

value 

n
tic

t

1),(lim 


 
(3-41) 

 

Lemma 3-3- The upper bound on the diffusion function is 

),()( tictij   

),()( ticnti   

(3-42) 

 

Theorem 3-1 –The intermediate estimate at node i  has an upper bound that can be 

expressed as the centrality of that node.  

2

1

122 ),()()( ticatPtQ
n

j
jjii 







 



   
(3-43) 

Proof- Just using Lemma (3-3)  to change the equality in (?) will result in the above 

inequality. ■ 
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Centrality is a measure that shows after t iterations how much the data of a node 

diffuses in the network. Centrality is a general concept in network theory that ranks 

nodes in a network according to different network metrics. Metrics may be local or 

may be global. The centrality measure introduced here shows the local effects of the 

diffusion at the beginning of the consensus and as consensus progress it incorporates 

the global effects as well.  

 

These are some examples where the centrality concept comes into the picture: 

(1) In an ecological study of food webs, a centrality measure might identify the most 

important organisms in an environment.  

(2) In social networks a study of friendship networks might use a centrality measure 

to determine the most popular person.  

(3) Centrality could be applied to traffic patterns to identify how well-used roads are, 

and perhaps identify where to spend maintenance funds.  

 

The common centrality measures are as follows,  

 

(1) Degree centrality: purely local measure, measure immediate influence. For 

example in a disease transmission network, if a node is infected those directly 

connected to that node will also be infected.  

 

(2) Clustering coefficient: measures how close the neighborhood of each vertex 

comes on average to being a complete clique. This measure is local.  
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Clique: In graph theory, a clique in an undirected graph G is a set of vertices V such 

that for every two vertices in V, there exists an edge connecting the two. The size of a 

clique is the number of vertices it contains. Finding whether there is a clique of a 

given size in a graph (the clique problem) is NP-complete. There is significant 

correlation between centrality measures. However in specific cases they may differ 

significantly. Therefore, we distinguish between local effects from organizational 

effects.  

 

(3) Average path length: this is a global measure and is the average number of steps 

along the shortest paths for all possible pairs of network nodes.  

 

(4) Betweenness centrality: how influential a node is in communicating between node 

pairs. In other words, it measures the number of times that a shortest path between 

nodes i and j travels through a node k whose centrality is being measured.  

 

(5) Closeness centrality: reciprocal of the sum of the lengths of geodesics to every 

other node. Closeness can be regarded as a measure of how long it will take 

information to spread from a given vertex to others in the network. 

 

(6) eigenvector centrality: this centrality is proportional to the sum of the degree 

centralities of the node’ neighbors. Therefore a node has high eigenvector centrality if 
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is connected to many other nodes or if it is connected to others that themselves have 

high degree.  

 

(7) Subgraph centrality: The fourth measure we use within this study is the subgraph 

centrality, which is based on the idea that the importance of a node should depend on 

its participation in local closed walks where the contribution gets smaller the longer 

the closed walk is. The number of closed walks of length k starting and ending on 

node i in the network is given by the local spectral moments of the networks 

adjacency matrix A. 

 

Assume all the sensor node measurements have the same noise variance  and the 

measurement gain is unity ( 1ia ).  The intermediate estimation variance is then 
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(3-44) 

 

And from (3-42) 

),(1)( 2 ticntQi 
  

(3-45) 
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And in the limit  

 n
ticntQit

1),(1)(lim 2 


 
(3-46) 

 

Although all the nodes will asymptotically have the same estimation variance, they 

have different variance dynamics in the network.  Some sensor nodes converge faster 

than others.  

 

This representation of centrality in (3-39) is very similar to the Discrete Fourier 

Transform of a discrete signal with sequence N
lll vvv ,,, 21  , as both are sum of 

complex exponentials. The sequence of N numbers 110 ,,, Nxxx   is transformed into 

the sequence of N complex numbers 110 ,,, NXXX   by the DFT according to the 

formula: 
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(3-61) 

 

In the definition of centrality the eigenvalues are the exponentials and the set of 

complex numbers are 2)( i
lv . However the Fourier representation is based on a fixed 

set of basis functions. But the exponential in the centrality representation are 

adjustable by tuning  l to the desired values with changing the local rules; this 

adjustment is an essential property in designing optimal local algorithms. In this sense 

designing algorithms with a desired response requires investigating the relationship 

between the local rules, the eigenvalues and the eigenvectors.  
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Therefore the centrality of a node ),( tic for Tt ,,1,0  can be seen as the filter 

response of that node, and the bandwidth of that determines the dynamics of the node. 

A local rule algorithm converges if the filter responses are low pass. The node with a 

filter response that damps the higher frequency components converges faster than the 

other nodes. The filter responses can be reshaped. One way to do this is to change the 

eigenvalues of the process. Assume that we want to reshape the filter introduced by 

the local interaction matrix W . If we change the local interactions matrix to )(Wf  a 

polynomial function of W , 

)()()1( tXWftX   (3-62) 

 

Then the eigenvectors nvvv ,,, 21  will be the same but the eigenvalues will 

be )(...,),(),( 21 nfff  . We can choose a function f  so that the eigenvalues have 

specific features, for example we may want to have a low pass filter so that,  
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(3-63) 

 

The following FIR filter does this: 
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(3-64) 
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3.4 Influence 

Suppose we define the uncertainty of a node as the estimation error,  





n

j
ttiu

ij
1

2 )(),(  
(3-65) 

 

This quantity has the following properties: 

(1) Before starting the interaction the uncertainty is at its highest level 1)0,( iu  

(2) Asymptotically ),( tiu converges to a limit that depends on the number of nodes 

involved in the process,  

n
tiu

t

1),(lim 


 
(3-66) 

 

(3) The uncertainty after the first interaction )1,(iu  is a function of the degree of that 

node,  

22)1()1,(  ii ddiu   (3-67) 

 

Where id is the degree of the node.  

Example- let’s consider a network with 100 nodes plotted in figure (3-1). The 

uncertainty for 5 of the nodes is plotted in figure (3-2). 
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Figure 3-1.  An example network with 100 nodes.  
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Figure 3-2.  Utility function for the network in figure 3-1. 

 

As this example shows, the uncertainty in some nodes decreases a lot slower than the 

uncertainty of other nodes. In the above example node 5 is the slowest node and node 

1 is the fastest. The time it takes for node 5 to get close enough to the limit is almost 

10 times larger than the time for node 1. The uncertainty in a node decreases as a 

node incorporates more information from other nodes. We define the influence of a 

node as follows, 





 n

j
t

ti

ij
1

2 )(

1),(  
(3-68) 

 

Influence is a real number and varies between 1 and n the number of nodes.  
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(1) 1)0,( i  means that the node only has its own information  

(2) when the cooperative estimation process has converged a node has information 

from all the nodes in the network therefore, 

nti
t




),(lim   (3-69) 

 

This quantity is a measure of the estimation quality in a node as a function of time. 

The dynamics of influence depends on the relative position of a node in the 

communication graph of the network. A node with faster dynamics is capable of a 

faster injection (or absorption) of information in the network; therefore it has more 

influence in the network than others. Also it is more central in the operations of the 

network and is more important than the others in this sense.  

 

Lemma 3-4- The influence of a node has the following relationship with the local 

rule matrix W  

2)(
1),( t
iiw

ti   
(3-70) 

 

Where t
iiw is the ),( ii element of tW . 

Proof- Let’s suppose the initial state vector is ]'00100[]0[  ieX  (impulse 

signal) with all elements zero except for its ith element. The state changes according 

to ][]1[ kWXkX   and after t interactions we have: 

)(][ ttx ijj   (3-71) 
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And therefore, 
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(3-72) 

 

On the other hand 

22222 )(']0[]'0[]0[][ t
iii

t
i

tt weWeXWXXWtX   (3-73) 

■ 

 

It is possible for a node to adjust its operations based on the knowledge of its 

influence to save energy. A node can save energy by interacting less with its 

neighbors when this does not affect the entire performance of the network.  

 

Let’s restate the consensus protocol here. After a node interacts with its neighbors it 

updates its state as a weighted average of its own and its neighbors’ states. Here by 

neighbors we mean the active neighbors or the neighbors that are interacting in that 

time instant.  





)(
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tNj

jiii
i

kxkxdkx   (3-74) 

 

First of all if a node stops interacting for some time steps the algorithm will still 

converge as long as the graphs produced as the result of this switching are jointly 

connected [Jadbabaie 2003]. 
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Secondly, the following lemma guarantees that if a node stops interacting for one 

time step it does not change the asymptotic consensus value.  

 

Lemma – In the consensus protocol ][]1[ kWXkX   that is convergent if a node 

does not interact for one time step it does not change the consensus value and the 

state will remain in }...|{ 21 n
n xxxRxs  space.  

 

Proof – Consider the immediate influence of the nodes on each other. Suppose that 

sensor node i and sensor node j communicate with each other. The change in the state 

of sensor node i as the result of this interaction is 

i
k

j
kk xxjix   )(  

And the change in the state of the sensor node j is 

j
k

i
kk xxijx   )(  

It is clear that these changes have the same value but different signs 

0)()(  iixijx kk  

Therefore the change in the states of sensor nodes is such that the sum of all the 

changes in the network is zero. This implies that if two nodes do not interact for one 

time step the total sum of the states and as a result the average of the states does not 

change.  

■ 
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3.5 Computing the centrality 

Centrality is a concept used often in the study of networks. It refers to a class of 

measures that are intended to capture the relative structural importance of a node or 

edge in a network. There are different ways to capture the concept of centrality. 

However, each of the measures attempts to quantify some sense of a node’s or edge’s 

overall importance in the network. Which one to use depends on the nature of  

“importance” underlying the relationships in the graph.  

 

3.5.1 Modified Eigenvector Centrality 

Eigenvector centrality ranks the node based on their importance in the network.  We 

leverage the eigenvector centrality for our controlled consensus and use an iterative 

algorithm for distributed computation. After a couple of iterations the network 

converges to the optimal value and stays in the stable point unless a change happens 

in the network to which it will adjust itself. These changes include node failures and 

link and topology change.  

 

The eigenvector centrality is based on the idea that an important node is connected to 

many other important nodes. Therefore if we represent the importance of node i by 

ic then,  
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iNj

jii cNc  (3-75) 

 

)(iN is the set of the neighbors of i . This equation can be written as  
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j

jijii caNc /1  (3-76) 

 

Where ija is the component ),( ji of the adjacency matrix. In the matrix form 

cHc   (3-77) 

 

Matrix H has components ijh defined as follows, 
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(3-78) 

 

The maximum eigenvalue of matrix H is 1. Also note that 

T
Ncccc ],,,[ 21   (3-79) 

 

The largest eigenvalue results in an eigenvector with all positive elements; this is 

acceptable since the centrality of a node is a real number in ]1,0[ . The i th component 

of this eigenvector gives the centrality score of the i th sensor node. This 

automatically gives us a distributed method for the computation of the centrality 

measure. We start from an initial centrality vector with all components equal to 

N/1 and go through the following iteration 

kk cHc 1  (3-80) 

 

kc the centrality measure vector at iteration k  will converge to the desired centrality 

measure. A network just needs to go through this convergence only one time. The 
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network and the above algorithm will reach to the new stable point if any change 

happens in the network and this is an attractive feature of using this centrality 

measure.  

 

It is possible to leverage the above centrality measure by generalizing the node 

importance concept. The components of adjacency matrix A to belong to set }1,0{ . If 

we define matrix B with the same structure of A  but with components  ijb  in the real 

number set ]1,0[ , then we have a matrix that can include other important factors in the 

centrality measure.  

ij
i

iiji
ij a

C
ILE

b


  
(3-81) 

Here iE  is a metric representing the residual energy of node i . ijL is a metric showing 

the quality of the communication link between node i and j . iI is a metric showing 

the quality of the information in sensor node i . And finally iC is a metric showing the 

cost of operations at node i .  

 

Centrality measures computed from matrix B show the important nodes as far as 

energy, communication quality, information quality and cost of operations are the 

concerns. But how should we define these metrics? This remains as a future problem 

to be investigated.  
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3.6 Controlled Consensus 

In a connected network all sensor nodes can, in principle, participate in maintaining a 

common operational picture of the field. Any sensor node may be able to provide 

valuable information. However, due to energy and bandwidth constraints it may be 

impossible for all nodes to participate fully. The responsibility of a distributed fusion 

management system is to select a subset of the large volume of sensor data that are 

potentially available, in a way where bandwidth and power constraints and 

operational fusion needs are simultaneously respected. In this kind of controlled 

consensus it is presumed that only a subset of nodes close to the event of interest have 

relevant measurements for fusion. This subset may be time varying.  In this method 

we adaptively select this subset of nodes with the highest payoff. This is very 

attractive in the context of tracking and surveillance, as only a subset of the whole set 

of nodes in the network (those close to the source) have information-bearing 

measurements. Selecting the appropriate nodes can be a challenging task in an 

inhomogeneous network consisting of nodes with different sensing accuracy, link 

quality and energy consumption. Our objective is to develop methods to guarantee the 

desired global performance under the given constraints. We will refer to this type of 

reaching agreement as “controlled consensus”.  

 

A data fusion rule for consensus that has been widely investigated in the literature is 

the fusion of information from all the sensors. It does not involve the active control of 

the sensors as part of the algorithm. Our approach is to control the operations of the 
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nodes involved in the consensus process by associating weights with each node to 

emphasize those with highest payoff. These weights carry global information 

necessary for a node to control its operations and decisions to be part of the 

consensus.  

 

A network with N nodes is monitoring an area. The first node that detects an event 

starts an algorithm to estimate a parameter related to that event. We will refer to this 

node as the leader. The leader wants to achieve the highest certainty possible about 

that parameter with the maximum allowable energy allocated for that estimation task. 

As described in the introduction, this maximum energy is determined by the temporal 

control layer.  

 

We first introduce utility and cost models of sensors and then techniques that find 

optimal or nearly optimal assignments. A utility function assigns a scalar value to 

each sensor configuration that is  

RKIU :  (3-82) 

 

Where },,2,1{ NI   is the set of sensor indices and K is the discrete time interval. 

A sensor configuration is a subset V such that IV  . Each sensor configuration V  

also has a cost. The cost of sensing is )(VC s , the communication cost is )(VCc , and 

the computation cost is )(VC p . To simplify the analysis we assume that the 

computation cost is negligible and there is no loss in the communication links, also 

the communication cost is due to transmission and not reception.  
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The sensor selection problem may be stated as follows: 

Determine the set of configurations )(kV that maximize the utility over a period of 

time 




T

kkV
kVU

1)}({
))((max  

(3-83) 

 

Subject to the following constraints, 

1. Energy constraint 

total
k

c
k

s CkVCkVC  ))(())((  
(3-84) 

 

2. The connectivity constraint: the sensor nodes in a configuration should be 

connected to each other as well as to the leader node.  

 

The utility function of a configuration depends on the underlying communication 

structure in the configuration.  

 

The main idea is to base sensor selection decisions on information content while 

respecting the constraints on energy and connectivity. Sensors can use the 

information utility they have received already to optimize the utility of future actions, 

and therefore efficiently manage the resources. We assume that for each event a fixed 

leader node is selected that is going to incorporate the measurements of other nearby 

sensors. The task here is to select an optimal subset of nodes in order to increase the 
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certainty in the leader node. The decision that a node belongs to an optimal 

configuration depends only on the characteristics of that node and prediction of its 

contribution.   

 

In the surveillance application we consider here the certainty of information 

aggregated from two sensors is the aggregation of their certainty. For example if a 

node has certainty 1
1
  and the other sensor has certainty 1

2
  then the aggregation of 

the information from these two sensors has certainty 1
2

1
1

  . This is based on the 

assumption that uncertainties are statistically independent.  

 

In our algorithm given a current configuration, there is a procedure to determine 

which sensors to add to the current configuration among the remaining sensor nodes. 

This is based on a prediction and selecting the most likely best sensor. The 

information utility measure that we want to maximize is to have the maximum 

certainty in the leader node.  

 

 

The algorithm is as follows: 

1. Initialization: Sensors perform a distributed centrality computation, and a scalar 

number is assigned to each node as the centrality of that node. This number indicates 

the relative importance of a node in the communication graph. A leader is selected 

which is a node that first detects an event. If multiple nodes detect an event the node 

with a higher centrality starts the algorithm. The leader node knows how much energy 
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should be spent on this estimation task. As we explained in Chapter one the temporal 

energy control algorithm assigns the total amount of energy budget for processing 

each event. And this information is passed to all the nodes.  

 

2.  Request: The leader selects a group of its neighbors and requests information 

from them. A request includes the total amount of energy that node can spend in 

collecting information for the leader. The summation of these energy budgets and the 

energy used by the leader for sensing equals the total energy budget. The decision as 

to which neighbors to select and how much energy to allocate them is the leader’s 

control mechanism. The goal of the leader is to maximize its information utility. This 

decision is based on the prediction of the leader about the performance of that 

neighbor, including the amount of increase in the certainty level and the total energy 

consumption for this certainty increase. The leader uses the centrality of the nodes as 

a measure for selecting the most likely best sensors. A neighbor with a higher 

centrality will be assigned more energy. As a metaphor this resembles hiring 

contractors to collect the necessary information.  

 

3. Sensor addition: the neighbors that are already assigned to collect information for 

the leader may not be able to consume all the energy assigned to them to provide 

information. Therefore they request information from their neighbors by selecting a 

group of them and allocating energy to them. This stage is similar to a contractor 

hiring subcontractors to do the job. This node should estimate how much energy it is 

going to use by its own for sensing and communication. In the simulations we have 
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assumed that all the participating nodes make their own measures, which can be 

relaxed in the general case. Again this sensor selection and energy allocation is based 

on the centrality of the nodes. This process will continue and more nodes will be 

added to the current configuration. A node that has been allocated an energy which is 

only enough for its own operations does not request for more additions. As this 

proceeds a directional tree is formed with the leader node as its root.  

 

4. Iteration: Nodes in the current configuration start a consensus algorithm and 

sending information iteratively in their neighborhood. Along their current estimate, 

they also send the certainty of that information as well the energy consumed to 

produce that information.  

 

5. Adaptation: The leader node evaluates the performance of its selected neighbors 

and reconsiders its requests from neighbors. The performance of a node is defined as 

the certainty it has provided divided by the energy it has consumed to provide that 

level of certainty. The neighbor node with the highest performance will be assigned 

more energy 

))()1()(1())()1(()()1( kxkxkxkxkxkx iiijiijij    (3-85) 

 

)(kx ij is the energy allocated by node i to node j at time k and )(kx i  is the total 

energy node i is going to spend to get information from the neighbors.  is a 

coefficient that balances between two extremes: if 0  there is no change in energy 



 

 79 
 

allocations and )()1()()1( kxkxkxkx iiijij  . On the other hand if 1 then 

all the energy is requested only from node j and )1()1(  kxkx iij  

The rest of the nodes will be assigned less energy, so that the total energy assignment 

remains constant and equal to )1( kx i , 

)()1()1( kxkx ijij   (3-86) 

 

The node with the least performance will be replaced with one of the neighbors that 

was not previously participating. 

3.7 Simulation 

We divide the time into periods of consensus and adaptation. The leader divides the 

total energy it is going to consume into M equal parts for M adaptation periods. Also 

in the selection of neighbors a node does not select all of them but only a percentage 

of them. The reason is to give some flexibility to the algorithm so that the operation is 

distributed over a larger area.  The percentage parameter may be controlled by the 

leader node and be adapted in the adaptation process.  
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Figure 3-3.  Two different time scales for adaptation and iteration.  

 

 

As an example we show the result of a controlled consensus for the network shown in 

figure 3-4. There are 20 nodes in the network and the node marked with a star is the 

leader. The first simulation is an example to illustrate the usefulness of incorporating 

a controlled consensus.  

Adaptation Instants 
Initialization Instant 

Iteration Instants 
 

Time 
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Figure 3-4.  Example network with 20 nodes. The leader node is marked with a star.  

 

 



 

 82 
 

 

Figure 3-5.  Energy consumption versus Information gain with and without control 

(or adaptation) 

In the curve without control in figure 3-5 there is no adaptation process. And as we 

can see the certainty remains constant after a number of iterations while the algorithm 

with adaptation changes the nodes involved in the consensus to increase the certainty.  
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Figure 3-6.  Initialization with and without centrality (Both with control). 

In figure 3-6 the effect of the initial selection is illustrated. The initial selection based 

on the centrality measure results in a better information gain compared to an initial 

selection that is random.  
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Figure 3-7.  Eigenvector centrality (approximated centrality) versus the other 

centrality measure. 

As we mentioned we have used the eigenvector centrality rather than the centrality 

measure we defined previously in this chapter. We chose eigenvector centrality 

because it is better suited for distributed computation. In figure 3-7 we can see that 

the performance of both methods is almost the same. However more investigation is 

necessary to proof this in general.  
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Figure 3-8.  Centrality interpolated as a 2D function 

 

Figure 3-8 shows the centrality of the network plotted as a landscape by giving each 

node a height equal to its centrality. The peaks of this landscape are the more central 

nodes. The other points of the landscape are the result of interpolation.  
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Figure 3-9.  Change in centrality due to a node failure 

 

Figure 3-9 shows how landscape changes as the topology of the network changes. In 

this example a node has started to fail and as we can see the centrality of the node has 

changes and the landscape around the failing node is becoming a valley rather than a 

peak.  

 

3.8 Remark 

In a complete management scheme each node controls its operations by considering 

three type of information. In general the control signal of a node will have the 

following form, 
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))(,)(,)(()( krkzkxfku iiii   (3-87) 

 

)(kxi is the self knowledge of the node about the process. 

)(kz i is the local knowledge gained through interaction with neighbors. 

)(kri is the global knowledge that include information about global performance and 

global resource consumption.  

 

It is very important to notice that these three types of knowledge have different 

dynamics. The global knowledge changes very slowly. This is very desirable because 

its calculation is through iteration and involves information pass across the network. 

However it provides the advantages of an open loop control.  On the other hand the 

self and local information have faster dynamics and they work as closed loop 

feedback controls that provide fast reaction to disturbances.  
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Chapter 4: Role Management 

“Leadership appears to be the art of getting others to want to do something you are 
convinced should be done” 

-Vance Packard 

 

4.1 Introduction 

Fusion from multiple sources can happen on three different levels: Data, Feature, and 

Decision. The dimension of the fusion space, and therefore the computation and 

communication requirements, is largest for data fusion and smallest for decision 

fusion. However the fusion becomes less dependent to the type of the sensing data in 

feature and decision fusion and it becomes easier to combine information from 

different type of sensors. Depending on the application the transformation from a 

high dimension data space to a lower dimension decision space may result in some 

information loss. So far we studied methods to increase the certainty in the fusion 

process in networks in which all the nodes have the same strategy when confronted 

with different decisions from other nodes. In this chapter we look at the diffusion of 

decisions in a different type of network where nodes have different strategies when 

confronted with different decisions and where there is conflict of interest among the 

nodes.  

 

The network we consider in this chapter is based on a model that was considered in 

an article by Vicsek [Vicsek 1995]. In the Vicsek model a novel type of dynamics is 
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introduced in order to investigate the emergence of self-ordered motion in systems of 

particles with biologically motivated interaction. In that model particles are driven 

with a constant absolute velocity and at each time step assume the average direction 

of motion of the particles in their neighborhood. Vicsek presents numerical evidence 

that this model results in a continuous kinetic phase transition from no transport (zero 

average velocity) to finite net transport through spontaneous symmetry breaking of 

the rotational symmetry.  

 

The concept of fusion of information is not limited to manmade systems. This 

phenomenon can be seen very often in social network, biology and psychology. 

Below we briefly state some examples.  

 

In psychology there is a phenomenon called social proof or informational social 

influence or crowd psychology. Regardless of one’s background, human behavior in 

groups is influenced by this principle. Simply, social proof means when human 

beings are not sure, and when they are uncertain about what should be done or what 

something means, they look to others to see how they should feel and what to do in 

certain situations [reference]. Individuals make the assumption that if enough people 

believe in something that must be right. This is of course not accurate in many 

situations. There are lots of examples of when a majority of people were used to 

believe that something was right but now we know that it was not. This is the 

behavior of people that are looking for simple solutions that are not necessarily the 

best. The commercial media use this fact to promote ideas or beliefs. This is how 
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beliefs, fashion, and viewpoints propagate in a social network. You are influenced by 

your neighbors in the social network. In fact we need to remember that the more 

important the decision is the more information we need to come up with an effective 

belief or decision. There can be a huge price for going with the flow. However, this 

behavior is part of how we learn by modeling. Therefore, a network performing based 

on this principle can be vulnerable to injection of false beliefs. Therefore, the 

members of the network should realize that there is a tradeoff between the simplicity 

and the accuracy on decisions based on social proof. However this provides simple 

learning methods.  

 

The diffusion of innovations theory studies how new technology and ideas spread 

through cultures.  This theory was formalized by Everett Rogers [Rogers 1962]. He 

says innovations or ideas spread through society in an S curve, as the early adopters 

select the technology, followed by the majority until the technology is common.  This 

S curve is the model achieved when there is no competing technology or idea. He 

categorizes the adopters of any new innovation into five groups (table below) 

Adopter Type % of the 

population 

Characteristics 

Innovators 2.5 multiple information source, risk taker, educated 

Early adopters 13.5 Social leader, popular, educated 

Early majority 34.5 many informal social contacts 

Late majority 34.5 skeptical, traditional, lower socio-economic status 

laggards 16 neighbors and friends are main information source 
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A different decision making phenomenon in societies is known as the wisdom of 

crowds. Rather than the social proof this concerns collections of independently 

deciding individuals. Simply this principle is that a diverse collection of 

independently deciding individuals is likely to be more representative of the universe 

of possible outcomes, thereby producing a better prediction [Surowiecki 2004]. For 

example if a group has to decide between two alternatives, and each member has a 

probability of 0.75 of correctly identifying the better alternative, a decision made by 

one dominant member would be wrong with probability of 0.25. However if an 

equally shared consensus decision is made, with a simple majority voting, the 

probability of choosing the wrong alternative is 0.16 for a group of three members, 

0.10 with five members, 0.07 with seven members, and so on. Not all crowds are 

wise. There are four elements required to form a wise crowd: Diversity of opinion, 

Independence, Decentralization, and Aggregation.  Surowiecki argues that the reason 

that crowds make very bad judgments is that members of the crowd are too conscious 

of the opinion of others and began to emulate each other rather than think 

independently. The success of Google, wikis, and blogging is discussed in this 

context.  

 

Consensus decision making is vital for the survival of certain species of social 

animals. Individual animals face decisions that are crucial to their fitness. In social 

species many of these decisions need to be made jointly with other members [Conradt 

2005]. Scientists study the questions such as: who makes the decisions in an animal 

society? How many decision makers are there? Is this decision communicated locally 
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or globally to others? And what information is communicated? What are the 

underlying mechanisms and what happens if there is conflict if interest between 

animals? Consider, For example, a swarm of bees choosing a new nest site, a flock of 

birds deciding when to leave a foraging patch, a group of migrating insects 

navigating, and a group of cooperative hunters about prey targets. This decisions 

concern synchronization of the group movement direction, travel destination, and 

activity timing.  

 

Although these examples look very different from the type of the networks that we 

study here, there are certain fundamental similarities. When nodes try to reach 

consensus at the decision level a common method to reach consensus is through local 

averaging. The reason for choosing an abstract method like decision fusion is its 

simplicity and speed, or because the nodes are learning through this. We should be 

careful that in the decision fusion process nodes are sacrificing accuracy and 

vulnerability to simplification. In this section we look into this tradeoff by studying a 

network of mobile nodes that consists of leaders, followers, and disrupters.  

 

4.2 Model 

In this chapter we study a network of mobile nodes in which each one is modeled as a 

particle moving in the plane at constant speed with their heading dependent on inter-

particle interactions and possibly on prior information about the preferred directions. 

We consider N nodes capable of communicating with neighbors. They are divided 

into three subgroups. Let 1N and 2N be the number of nodes in two different 
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subgroups of informed nodes (with a preferred moving direction) and let 3N be the 

number of naïve (uninformed) nodes such that NNNN  321 .The preferred 

heading direction for the nodes in group one is 1 and for those in group two is 2 . 

These subgroups have the following dynamics: 

 

Leaders dynamics:  111 )()()1( NitntKt irii    

Disrupters dynamics:  222 )()()1( NitntKt irii    

Followers dynamics:  3)()()1( Nitntt irii    

 

where rt  )(  denotes the average direction of motion of the nodes (including node 

i) within a distance r  from the given node, j is a preferred direction for subgroup j , 

)(tn is a Gaussian noise. Informed nodes balance their preferred direction and their 

social interactions with a weighting term iK . Here we assume that there is no 

identification of the type of the nodes and no evaluation of the information of nodes. 

As a measure of consensus, we look at the heading of the centroid of the points in 

each subgroup.  

 

4.3 Observations 

Observation 1. For fixed network size (N fixed) and two subgroups consisting of 

leaders and followers the accuracy of group in following the preferred direction of the 

leaders increases asymptotically as the proportion of the leaders increase. Figure 4-2 
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shows this behavior as the percentage of the leaders increases in the network. 

Accuracy is a measure of how well the centroid of the points follows the preferred 

direction in average, where one means perfect following and zero means that the final 

heading of the centeroid of the points is completely random. This accuracy is a 

function of the weighting term. 

 

Figure 4-1.  An Exmaple network with 100 nodes and 3 leaders and 10 disrupters. 

The change in the heading is plotted for 5 steps 
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Figure 4-2.  Following accuracy.  

 

The accuracy is a function of the weighting term. Increasing the weighting term 

increases the accuracy of the following. However the sensitivity to this term changes 

with the number of leaders. For small and large numbers of leader this term is not 

important as much as in intermediate values. 

 

Observation 2. For the case of followers and leaders as the size of the group 

increases a smaller proportion of leaders are needed to guide the group with given 

accuracy; and this relationship is non-linear. 
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Figure 4-3.  Number of leaders needed to achieve a certain level of accuracy. 

 

Observation 3. Although it looks like we should increase the weighting term as much 

as we can, but there is a trade off between the accuracy of the group dynamics and the 

probability that the group split into disconnected parts. As we can see if the weighting 

term is high, then the leaders will go in their preferred direction before giving other 

nodes a chance to follow them. 
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Figure 4-4.  Weighting term affects the probability of the group split. 

 

 

Observation 4. If there are leaders, followers, and disrupters in the network, and the 

leaders preferred direction is  
21


   and the disrupters preferred direction is 

2
3

2


  , then the network will most probably split into parts and the number of the 

nodes that are disrupted is a function of the relative number of leaders and disrupters. 

To plot figure 4-5, we have taken N1+N2=constant and we have changed N1/ 

(N1+N2). Disrupted nodes are those with heading 
22

3
2





 . 
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Figure 4-5.  Percentage of disrupters to disrupt a network. 
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Chapter 5:  Conclusion  

 

5.1 Concluding Remarks 

The contributions of this dissertation can be summarized as follows: 

 Developing a distributed management algorithm for self-organizing wireless sensor 

networks under energy constraints by formulating the mission of such network as an 

optimal control problem and decomposing it into two temporal and spatial control 

problems.   

 Addressing the temporal control of sensor networks by studying the coverage and 

connectivity in a perimeter surveillance application.  

 Addressing the spatial control of sensor networks by proposing a distributed energy 

management algorithm, where the objective is to form a group of sensors with the 

maximum information gain under a limited energy budget. 

 By utilizing the centrality concept in graphs our algorithm effectively finds the best 

configuration of sensor nodes for a parameter estimation problem, despite the 

randomness in the network and presence of disturbances and node failures.  

 Investigating the characteristic of a network consisting of moving sensor nodes with 

different roles as leader, follower, and disrupter. Using a flocking analogy where 

mobile nodes try to align themselves with other nodes, we demonstrate the fusion of 

information in such a network.  
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5.2 Future Work 

We identified the following directions for future research in this area: 

 Studying the coverage problem and applying the same concepts in higher 

dimensions by charactering the relationship between energy consumption and 

the coverage in those spaces. 

 Applying the management ideas presented in this work to clustered networks 

where there are master nodes as well as regular nodes.   

 Improving the temporal control problem by: 

o Studying the statistical methods to model event occurrence for 

different applications.   

o Developing a distributed database for keeping track of the events.. 

 Improving the spatial control problem by: 

o Applying the ideas presented here to other methods of estimation 

o Applying the algorithm for a time changing parameter.  

o An algorithm that selects new leader as a target moves in the field and 

predicting the direction of the target to activate the nodes in that 

direction before the target gets there.  

o Defining the metrics for energy, link quality, cost and information for 

the leveraged centrality measure.  

 Analysis and backing up the results we learned about roles in a network by 

Applying theories from social network.  
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 Use the centrality concept for the evaluating the best points of attacks in a 

network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 102 
 

Bibliography 
 
[Cerpa 2002] A. Cerpa, D. Estrin, “ASCENT: Adaptive Self-Configuring sEnsor 

Networks Topologies,” Proceedings of the twenty first International Annual Joint 

Conference of the IEEE Computer and Communications Societies (INFOCOM), 

2002. 

 

 [Chen 2000] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, “Span: An Energy-

Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless 

networks,” Processdings of the sixth Annual International Conference on Mobile 

Computing and networking 2000.  

 

[Conradt 2005] L. Conradt, T. J Roper, “Consensus decision making in animals,” 

Trends in Ecology and Evolution, Vol. 20, No. 8, August 2005.  

  

[Clouqueur 2002] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K. K. 

Saluja, "Sensor deployment strategy for target detetction," in First ACM International 

Workshop on Wireless Sensor Networks and Applications, 2002. 

 

[Dousse 2002] O. Dousse, P. Thiran, M. Hasler "Connectivity in ad-hoc and hybrid 

networks," IEEE Infocom, 2002,pp. 1079-1088. 

 

[Foh 2004] C. H. Foh, B. S. Lee "A closed form network connectivity formula for 

one-dimeniosnal MANETs," IEEE ICC, 2004, vol. 6, pp. 3739-3742. 



 

 103 
 

 

[Huang 2003] G. T. Huang, "Casting the wireless sensor network," Technology 

Review, 2003, pp. 50-56.  

 

[Jadbabaie 2003] A. Jadbabaie, J. Lin, and A. S. Morse “Coordination of groups of 

mobile autonomous agents using nearest neighbor rules,” IEEE transactions on 

Automatic. Control, Vol. 48, No. 6, pp 988-1001, June 2003.  

 

[MacCluer 2000] C. R. MacCluer, "The Many Proofs and Applications of Perron's 

Theorem." SIAM Rev. 42, 487-498, 2000. 

 

[Meguerdichian 2001] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. 

Srivastava, "Coverage problems in wireless ad-hoc sensor networks," IEEE Infocom, 

2001, pp. 1380-1387. 

 

[Olfari 2003] Olfati-Saber, RM Murray, “Consensus protocols for networks of 

dynamic agents” Proceedings of the American Control Conference, 2003.  

 

[Perolli 2004] M. Perolli, W. Heinzelman, “Wireless Sensor Networks”, Kluwer 

Academic Publishers, 2004.  

 

[Perron 1907] O. Perron, "Grundlagen für eine Theorie des Jacobischen 

Kettenbruchalgorithmus." Math. Ann. 64, 11-76, 1907. 



 

 104 
 

 

[Rogers 1962] E. M. Rogers, “Diffusion of Innovations,” 1962. 

 

[Siegel 1978] A. F. Siegel, "Random arcs on the circle," Journal of Applied 

Probability, Vol. 15, No. 4, 1978, pp. 774-789. 

  

[Scherber 2005] Scherber, Papadopoulos, “Distributed computation of averages over 

ad hoc networks” IEEE journal on Selected Areas in Communications April 2005. 

 

[Schurgers 2002] C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, “Optimizin 

Sensor Networks in Energy-Latency-Density Design Space,” IEEE transactions on 

Mobile Computing 1(1), pp 70-80, 2002. 

 

[Surowiecki 2004 ] Surowiecki, James (2004). The Wisdom of Crowds: Why the 

Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, 

Economies, Societies and Nations. 

 

[Tian 2002] D. Tian, N. D. Georganas, "A coverage-preseving node scheduling 

scheme for large wireless sensor networks," in First ACM International Workshop on 

Wireless Sensor Networks and Applications, 2002, pp. 32-41. 

 



 

 105 
 

[Tian 2003] D. Tian, N. D. Georganas, “A node scheduling scheme for energy 

conservation in large wireless sensor networks,” Wireless Communications and 

Mobile Computing Journal 3(2), pp 271-290, 2003. 

 

[Vicsek 1995] T. Vicsek, A. Czir, E. Ben-Jacob, I. Cohen, O. Shochet, “Novel Type 

of Phase Transition in a System of Self-Driven Particles,” Physical Review Letter, 

75(6), pp 1226 – 1229, 1995.  

  

[Wang 2003] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, C. Gill, “Integrated 

Coverage and Connectivity Configuration in Wireless Sensor Networks,” In 

Proceedings of Sensys 2003.  

 

[Wang 2005] X. Wang, G. Xing, Y. Zhang*, C. Lu, R. Pless, C. Gill, "Integrated 

Coverage and Connectivity Configuration in Wireless Sensor Networks", ACM 

Transactions on Sensor Networks, August 2005, 1(1), pp. 36-72. 

 

[Xiao 2005] Xiao, Boyd, Lall, “A scheme for robust distributed sensor fusion,” 2005. 

 

[Xiao 2004] L Xiao, S Boyd, “Fast linear iterations for distributed averaging,” 

Systems and Control Letters, 2004. 

 



 

 106 
 

[Xu 1997] Cheng-Zhong Xu, Francis C.M. Lau, Load Balancing in Parallel 

Computers: Theory and Practice, The Springer International Series in Engineering 

and Computer Science, 1997.  

 

[Xu 2001] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed Energy 

Conservation for Ad Hoc Routing,” Proceedings of the ACM/IEEE International 

Conference on Mobile Computing and networking, 2001.  

 

[Ye 2003] F. Ye, G. Zhong, J. Cheng, S. Lu, L. Zhang, “PEAS: A Robust Energy 

Conserving protocol for Long-Lived Sensor Networks,” Proceedings of the Twenty 

Third International Conference on Distributed Computing Systems, 2003.  

 

[Zhao 2002] F. Zhao, J. Shin, J. Reich, “Information-driven dynamic sensor 

collaboration,” IEEE Signal Processing Magazine, 19(2), pp 61-72, 2002.  

 

[Zhong 2003] F. Ye, G. Zhong, S. Lu and L. Zhang, "Peas: a robust energy 

conserving protocol for long-lived sensor networks," In Proceedings of ICDCS, Vol. 

23, 2003,pp. 28-37.  

 


