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Proteins are versatile biological macromolecules that perform numerous functions in

a living organism. For example, proteins catalyze chemical reactions, store and transport

various small molecules, and are involved in transmitting nerve signals. As the number

of completely sequenced genomes grows, we are faced with the important but daunting

task of assigning function to proteins encoded by newly sequenced genomes. In this thesis

we contribute to this effort by developing computational methods for which one use is to

facilitate protein function assignment.

Functional annotation of a newly discovered protein can often be transferred from

that of evolutionarily related proteins of known function. However, distantly related pro-

teins can still only be detected by the most accurate protein structure alignment methods.

As these methods are computationally expensive, they are combined with less accurate

but fast methods to allow large-scale comparative studies. In this thesis we propose a

general framework to define a family of protein structure comparison methods that reduce

protein structure comparison to distance computation between high-dimensional vectors



and therefore are extremely fast.

Interactions among proteins can be detected through the use of several mature

experimental techniques. These interactions are routinely represented by a graph, called a

protein interaction network, with nodes representing the proteins and edges representing

the interactions between the proteins. In this thesis we present two computational studies

that explore the connection between the topology of protein interaction networks and

protein biological function.

Unfortunately, protein interaction networks do not explicitly capture an important

aspect of protein interactions, their dynamic nature. In this thesis, we present an auto-

matic method that relies on graph theoretic tools for chordal and cograph graph families

to extract dynamic properties of protein interactions from the network topology.

An intriguing question in the analysis of biological networks is whether biological

characteristics of a protein, such as essentiality, can be explained by its placement in

the network. In this thesis we analyze protein interaction networks for Saccharomyces

cerevisiae to identify the main topological determinant of essentiality and to provide a

biological explanation for the connection between the network topology and essentiality.
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Chapter 1

Introduction

Proteins are versatile biological macromolecules that perform numerous functions in

a living organism. For example, proteins catalyze chemical reactions, store and transport

various small molecules, and are involved in transmitting nerve signals [55].

It is common to distinguish between molecular function and cellular function of a

protein. The molecular function denotes protein chemical/physical activity at the molecu-

lar level. Cellular function, on the other hand, denotes protein activity at the cellular level

such as involvement in a particular signaling or metabolic pathway. For example, at the

molecular level the enzyme DNA polymerase creates a copy of DNA during cell division.

At the cellular level the enzyme is involved with many other proteins in a complex process

of duplicating the cell’s genome during every cell division [12].

As the number of completely sequenced genomes grows (there are nearly 600 com-

pletely sequenced genomes available at the NCBI website) we are faced with the important

but daunting task of assigning function to proteins encoded by newly sequenced genomes.

In this thesis we contribute to this effort by developing computational methods for which

one use is to facilitate protein function assignment at the molecular and cellular levels.

Homologous proteins are proteins that descend from a common ancestor. It is widely

believed that homologous proteins perform similar functions in different organisms. In

fact, one of the oldest and most powerful approaches to infer protein function of newly

discovered proteins relies on using homology relationships to assign function. During
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evolution, protein structure is more conserved than protein sequence, so the homology

relationship between distantly related proteins can only be detected by protein structure

alignment methods.

Over the years, many reliable protein structure alignment methods were proposed [94,

95, 65, 50, 48, 111], but due to the inherent difficulty of the protein structure alignment

problem these methods are computationally expensive and therefore cannot be used in

large-scale comparative studies of protein structure. To overcome this deficiency, a reli-

able method is usually combined with a less accurate but fast protein structure comparison

method. In this thesis we propose a general framework, the structural footprinting frame-

work, that defines a family of fast protein structure comparison methods. The framework

can be used to design a variety of methods that allow extremely fast and simple pro-

tein structure comparison. We present an extensive experimental evaluation to assess the

potential of our framework in designing fast protein structure comparison methods.

The complexity in biological systems arises not only from various individual pro-

tein molecules but also from their organization into systems with numerous interacting

partners. Over the past decade several high-throughput experimental techniques to detect

protein interactions were developed [38, 102, 112]. These experimentally-determined in-

teractions are routinely represented by a graph, a protein interaction network, with nodes

representing the proteins and edges representing the interactions between the proteins.

The study of the topological properties of these networks has become an important tool

in studying protein function at the cellular level and formulating hypotheses about the

general organization principles of biological systems. In this thesis we present two com-

putational studies to explore the connection between the topology of protein interaction

networks and protein biological function.
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Some cellular processes proceed through an orderly formation of multi-protein com-

plexes. An example of such cellular process is the eukaryotic ribosome assembly path-

way [35], which involves in addition to four RNAs and around 80 ribosomal proteins

nearly 200 auxiliary proteins that are not part of the mature ribosomes. The ribosome

assembly is believed to proceed in a highly coordinated manner, where the participating

proteins join and leave the pathway in a fixed order and this order is critical for the proper

ribosome assembly. Even though the major components of the pathway and their interac-

tions are known, there is little knowledge about the dynamical properties of the pathway,

in particular about the order in which the multi-protein complexes are formed. In this

thesis we present an automatic method that elucidates the temporal order of complex

formation during a cellular process from the topology of the protein interaction network

spanning the process components.

A systematic gene deletion screen in the yeast Saccharomyces cerevisiae revealed

that about 18% of the genes are essential for growth on rich glucose medium [49], meaning

cells lacking any one of these genes are not viable. An intriguing question in the analysis

of biological networks is whether biological characteristics of a protein, such as essentiality,

can be explained by its placement in the network, i.e., whether topological prominence

implies biological importance. One of the first connections between the two in the con-

text of a protein interaction network, the so-called centrality-lethality rule, was observed

by Jeong and colleagues [73] who demonstrated that high-degree nodes or hubs in a pro-

tein interaction network of Saccharomyces cerevisiae contain more essential proteins than

would be expected by chance. Since then the correlation between degree and essential-

ity was confirmed by other studies [120, 58, 9, 121], but until recently [62] there was no

systematic attempt to examine the reasons for this correlation. In particular, what is the
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main topological determinant of essentiality? Is it the number of immediate neighbors or

some other, more global topological property that essential proteins may have in a protein

interaction network?

To identify the main topological determinant of essentiality and to provide a bio-

logical explanation for the connection between the network topology and essentiality, we

perform a rigorous analysis of five genome-wide protein interaction networks for Saccha-

romyces cerevisiae. We demonstrate that the majority of hubs are essential due to their

involvement in essential complex biological modules, a group of densely connected proteins,

with shared biological function, that are enriched in essential proteins. Moreover, we re-

ject two previously proposed explanations for the centrality-lethality rule, one relying on

the assumption that essential hubs maintain the overall network connectivity and another

relying on the recently published essential protein interactions model.

The rest of this chapter gives a high-level description of our contributions.

1.1 Structural Footprinting in Fast Protein Structure Comparison

Among the growing number of different approaches to speed up protein structure

comparison, projection methods offer a promising new solution to the problem by first map-

ping a protein structure to a high-dimensional vector. Once the mapping is done, protein

structural similarity is approximated by the distance between the corresponding vectors.

The projection method’s approach to protein structure comparison is schematically shown

in Figure 1.1.

By reducing structural comparison to distance computation between vectors, projec-

tion methods achieve a considerable speed-up over full-fledged protein structure alignment

methods. (Once vector representations are computed, it takes on average 500 seconds for a
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Figure 1.1: To compare structures A and B, a projection method will first map them to
a vector in a high-dimensional vector space. Thus, structure A is mapped to vector ~xA

and structure B, to vector ~xB . The structure comparison is then reduced to the distance
computation between these vectors; i.e., the structures are similar if distance d(~xA, ~xB) is
small.

projection method to perform all pairwise comparisons among 5, 024 structures. Compare

this to nearly five months it would take DALI [65], a highly accurate protein structure

alignment method, to perform the same number of pairwise comparisons.) Therefore,

projection methods can be combined with more accurate full-fledged methods to allow

high-throughput comparative structure analysis. Protein structure alignment servers are

routinely used to compare a query protein structure against a large database of structures

such as the set of sequence non-redundant protein domains in the CATH database [96],

which currently contains 7, 794 structures. A projection method can be used to rank the

structures in the database, allowing the more computationally expensive residue-based

structure alignment method to be applied only to the highest ranked (small) fraction of

the database. Furthermore, a vector representation of protein structure produced by a pro-

jection approach can be combined with machine learning algorithms to provide powerful

classification schemes, indexing algorithms to provide fast retrieval of similar structures,

clustering and dimension reduction algorithms to provide a compact representation of
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the protein structure universe such as in [68], etc. Therefore, improving the performance

of projection methods and understanding the limits of these techniques is particularly

important.

The central question in the projection method approach to protein structure compar-

ison is how to devise a mapping that is able to capture all the salient features of protein

structure. Currently known projection methods [22, 44, 103, 23] employ very different

approaches to the mapping construction. In particular, the mapping should be able to

tolerate structural variability that is characteristic of distantly related protein structures.

In this thesis we adopt the high-level idea behind the LFF projection method [23]

to define a general framework, which we call the structural footprinting framework, for

designing projection methods. In fact, the same high-level idea is common to diverse

application areas, such as text mining [83] and classification of biological networks [89], in

which a complex object is represented as a high-dimensional vector of counts or footprint

of its small size motifs. In the case of the structural footprinting framework, such motifs

correspond to structural fragments. Since the space of all such fragments is not discrete,

a finite set of representative structural fragments or models is selected. The set of models

can be thought of as a structural alphabet used to describe the protein structure. The

framework does not define the specification and representation of structural fragments.

Thus, any two structural footprinting methods differ in the set of models they use; in fact

a large number of methods can be generated by varying the type of structural fragments

used and the amount of detail in their representation.

The main objective of our study is to explore the potential of structural footprinting

in fast protein structure comparison and to understand the influence of the structural

alphabet used by a structural footprinting method on its performance. To address the
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first point we propose the Secondary Structure Element Footprint (SSEF) method that

uses a structural alphabet derived from regions of the structure that are believed to be

most conserved during evolution. We present an extensive evaluation of the database

retrieval ability of the SSEF method as compared to established protein structure/sequence

alignment methods and other projection methods. The results of our evaluation indicate

that the structural footprinting framework can be used to produce projection methods

that not only outperform other projection methods but also compare favorably with some

full-fledged protein structure alignment methods.

To address the influence of the structural alphabet, we propose another structural

footprinting method, the SEGment Footprint (SEGF) method, that together with the

SSEF and LFF methods samples a variety of structural alphabets. We present a compre-

hensive evaluation of these methods based on their ability to detect structural similarity

characteristic of evolutionarily related structures. Our experiments indicate that no single

method performs the best in all cases. To take advantage of the relative strengths of the

methods we propose strategies to combine the methods to achieve better performance.

1.2 Dynamic Formation of Multiprotein Complexes

Recent proteomic studies characterized interactions among the components of many

cellular processes [6, 19]. Moreover, genome-wide interaction maps exist for several model

organisms [118, 70, 80, 46, 51, 82, 106]. Can the readily available protein interaction data

be used to elucidate the dynamical properties of cellular processes? In particular, can we

infer something about the temporal order of multi-protein complex formation during a

cellular process from the topology of the underlying protein interaction network?

Even though protein interaction networks do no explicitly capture the dynamic na-
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ture of protein interactions, there are graph theoretic tools that under certain assumptions

allow the extraction of this information from the topology of the network. Unfortunately,

research attempts in this direction are very limited. In fact, we are aware of only one

method, the method due to Farach-Colton et al. [34], which takes advantage of interval

graph theory to reason about the order in which auxiliary proteins enter and leave the

ribosome assembly pathway.

In this thesis we develop an automatic method, the Complex Overlap Decomposition

(COD) method, to elucidate the order of multi-protein complex formation during a cellular

process from the topology of the corresponding protein interaction network. Our method

relies heavily on the graph theoretic results for chordal and cograph graph families. Given

a protein interaction network spanning the process components, our method identifies

protein complexes and produces a Tree of Complexes representation. A Tree of Complexes

is a tree whose nodes are protein complexes and whose topology satisfies certain continuity

constraints; namely complexes that share a protein must be connected. In this way, our

representation captures the manner in which proteins enter and leave the complexes and

therefore can be used to hypothesize about the order of their formation. Indeed, once

the root of the tree is fixed, the representation induces a partial order on the complexes,

which in turn can be used to infer temporal relationships.

We apply the COD method to two protein interaction networks underlying well stud-

ied cellular processes in Saccharomyces cerevisiae (bakers yeast): the mating pheromone

signaling pathway and the DNA replication module. Our results show that the COD

method gives insight into the analysis of protein interaction networks.
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1.3 Topological Determinants of Lethality

In their paper, Jeong and colleagues [73] suggested that over-representation of es-

sential proteins among high-degree nodes can be attributed to the central role hubs play

in mediating interactions among numerous, less connected proteins. Indeed, the removal

of hubs disrupts the connectivity of the network, as measured by the network diameter

or the size of the largest connected component, more than the removal of an equivalent

number of random nodes [1, 73]. Therefore, under the assumption that the organism’s

function depends on the connectivity among various parts of its interactome, hubs are

predominantly essential because they play a central role in maintaining this connectivity.

Recently, He and colleagues challenged the hypothesis of essentiality being a function

of a global network structure and proposed that the majority of proteins are essential due

to their involvement in one or more essential protein interactions that are distributed

uniformly at random among the network edges [62]. Under this hypothesis, hubs are

predominantly essential because they are involved in more interactions and thus are more

likely to be involved in one which is essential.

In this thesis we carefully evaluate each of the proposed explanations for the centrality-

lethality rule using five genome-wide protein interaction networks for Saccharomyces cere-

visiae compiled from diverse sources of interaction evidence [29, 101, 10, 25, 72]. In

addition to degree, we consider several other measures of topological prominence, some

of which are influenced more by the global structure of the network, and find that degree

is a better predictor of essentiality than any other measure tested. On the other hand,

we observe that the hypothesis proposed by He and colleagues [62] does not hold in the

tested networks. Most notably, the assignment of essentiality through uniform distribu-

tion of essential protein interactions among the edges of the network fails to reproduce
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basic clustering patterns of essential proteins observed in the real data.

Motivated by our findings, we propose an alternative explanation for the centrality-

lethality rule which is based on the existence of essential complex biological modules. Es-

sential complex biological modules, abbreviated here as ECOBIMs, are biological processes

that are: (i) indispensable for organism’s vitality; (ii) composed of proteins that interact

with each other in a dense pattern of protein interactions. It is reasonable to assume that

members of ECOBIMs are predominantly essential as they are involved in vital biologi-

cal processes and are difficult to substitute for due to complexity of their protein-protein

interactions.

It should be noted that the existence of ECOBIMs is well documented. For example,

the MIPS database of manually curated multi-protein complexes [88] contains several

large multi-protein complexes, such as proteasome or cytoplasmic ribosomal subunits,

whose components are mostly essential. There are also processes that involve several

interacting multi-protein complexes, such as RNA Polymerase II general transcriptional

machinery [59] or ribosome biogenesis and assembly [35, 42]. Moreover, essential proteins

are not distributed evenly among the MIPS complexes; i.e., there are complexes whose

components are mostly essential, and there are complexes whose components are mostly

non-essential. The same phenomenon was recently observed in the set of automatically

identified protein complexes [60].

We hypothesize that in the tested networks the majority of the hubs are members of

ECOBIMs, and since ECOBIMs are enriched in essential proteins, so are the participating

hubs. To test our hypothesis we develop two complementary methods to extract putative

ECOBIMs from a protein interaction network. Both methods use GO annotation [7] and

a set of 192 manually derived biological process GO terms [92] to delineate the boundaries

10



of biological processes. For each tested network, we demonstrate that the set of putative

ECOBIMs identified by our methods explains the enrichment of high-degree nodes in

essential proteins. In particular, the majority of essential hubs belong to one or more

ECOBIMs. Moreover, the fraction of essential proteins among hubs that are not members

of ECOBIMs is significantly lower than the fraction of essential proteins among the nodes

of the network, so that non-ECOBIM hubs are depleted in essential proteins.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we provide relevant

background information on protein structure and protein structure alignment. Chapter 3

describes our contributions to fast protein structure comparison. In Chapter 4 we review

the experimental techniques used to characterize protein interactions and describe the pro-

tein interaction networks used in this thesis. Chapter 5 outlines our methodology on using

the network topology to infer the order of dynamic complex formation during a cellular

process. Our study of the connection between network topology and gene essentiality is

described in Chapter 6. Finally, in Chapter 7 we summarize our contributions and present

directions for future work.
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Chapter 2

Protein Structure Preliminaries

Every naturally occurring protein is able to fold to a specific three-dimensional

shape, which is closely related to the ability of the protein to perform its biological function.

Moreover, it is widely accepted that protein structure is much more conserved during

evolution than protein sequence [24, 105, 109]. Therefore protein structure alignment is

an important tool for understanding principles of protein function and evolution.

The purpose of this chapter is to introduce the reader to relevant background in-

formation on protein structure and protein structure alignment. We start with a brief

description of protein structure in Section 2.1 and protein structure repositories and clas-

sification databases in Section 2.2. We then give a formal definition of the protein structure

alignment problem in Section 2.3.

2.1 Principles of Protein Structure

A protein chain is a sequence of amino acids linked together by peptide bonds (cf.

Figure 2.1). All twenty standard amino acids share a common template structure, which

consists of a central carbon atom (Cα) with an attached hydrogen atom, an amino group,

and a carboxyl group. What distinguishes one amino acid from another is the particular

side chain, called the residue, also attached to the central carbon atom. During protein

synthesis the carboxyl group of one amino acid binds to the amino group of the next

amino acid, forming a peptide bond. When many amino acids are bound together by
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Figure 2.1: Amino acids are the basic building blocks of proteins. (a) Amino acid. A
central carbon atom Cα is attached to an amino group NH2, a carboxyl group COOH,
a hydrogen atom H and a side chain R. (b) Segment of polypeptide chain with three
residues Ri−1, Ri and Ri+1.

peptide bonds they form a polypeptide chain or backbone from which various side chains

project.

The molecular forces between the atoms of a protein and their environment drive

the folding of the polypeptide chain to a unique three-dimensional structure or native

state. A protein’s native state not only maximizes its stability but also places functional

residues at accessible spatial locations, allowing the protein to bind other proteins and

molecules. Thus, there is a close connection between the structure of a protein and its

ability to function.

It is common to distinguish between different levels of protein structure. The amino

acid sequence of the protein’s polypeptide chain is called its primary structure. Certain

segments of the polypeptide chain form regular substructures or secondary structure ele-

ments (SSEs): α-helices and β-strands. The sequence of secondary structure elements is

called the secondary structure. The tertiary structure is the three-dimensional shape of a

protein chain. The protein may contain several chains, forming its quaternary structure.

A protein domain is a segment or several segments of the protein backbone that form a

compact globular substructure, is believed to be an autonomous folding unit, carries a

specific biological function, and recurs as a substructure in different proteins. It is widely
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Figure 2.2: The levels of protein structure are exemplified on the enzyme DNA poly-
merase I from the bacterium Thermophilus aquaticus (PDB code 1bgx). (a) The three-
dimensional shape of the polypeptide backbone. (b) The secondary structure assignment
is shown by coloring the segments of the backbone which correspond to β-strands with
yellow, α-helices with red, and regions in between the secondary structure elements with
green. (c)-(d) The protein domains, six in total, are shown on the three-dimensional
structure in (c) and along the primary sequence in (d).

accepted that a protein domain, rather than a protein chain, is an elementary unit of

protein structure and evolution.

Figure 2.2 exemplifies the concepts discussed above on the structure of the enzyme

DNA polymerase I, from the bacterium Thermophilus aquaticus, that is part of a large

molecular machinery that performs DNA replication. The enzyme is a big protein made up

of 828 aminino acids (the polypeptide chain is shown in Figure 2.2(a)), 11 β-strands and

42 α-helices (the secondary structure assignment is shown in Figure 2.2(b) with strands

colored yellow, helices colored red, and regions of the backbone in between the secondary

structure elements colored green). The enzyme is made of 6 domains, 1bgxT01-1bgxT06,

whose position along the primary sequence is schematically shown in Figure 2.2(d) and

on the three-dimensional structure is shown in Figure 2.2(c).

It has been established that some elements of protein structure are more conserved

during evolution than others. In particular, secondary structure elements that are impor-

tant factors in stabilizing the protein’s three-dimensional structure are more conserved
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than loop regions, regions of the backbone in between the secondary structure elements.

2.2 Protein Structure Repositories and Classification Databases

The Protein Data Bank (PDB) [14] is the most comprehensive repository of struc-

ture data for biological macromolecules. Among other things, this repository contains

primary structure information, secondary structure information, and atomic coordinates

of a protein structure.

As of July 2007, PDB contains structure data for 41,095 proteins. On average,

proteins have between 100 and 300 residues. There are big proteins that contain 1000 or

more residues and small proteins that contain at most 30 residues. The number of SSEs

is on average between 3 and 20. Once again there is a large variation; there are structures

that have 50 or more SSEs and structures that do not have SSEs at all.

The extensive growth of protein sequence and structure information has resulted in

the creation of numerous classification resources for organizing proteins [100]. Two main

structure-based classification databases, SCOP [91] and CATH [96], combine sequence,

structural and functional information to provide a hierarchical classification of known

protein domains in the PDB.

In the CATH database, for example, protein domains are organized into a four-level

hierarchy [98]: class, architecture, topology and homologous superfamily.

• Homologous superfamily. Members of the same homologous superfamily

group share a clear common evolutionary origin supported either by significant se-

quence similarity or significant structural and functional similarity.

• Topology. The homologous superfamilies are grouped into topologies, where mem-

bers of the same topology group share significant structural similarity but are not
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required to share sequence or functional similarity necessary to infer a common evo-

lutionary origin.

• Architecture. The architecture level groups proteins based on coarse topological

organization of secondary structure elements.

• Class. Finally the class level groups proteins according to secondary structure

element content: mainly α, mainly β, mixed α and β, or small structures.

As evolutionary changes accumulate, the protein’s sequence and its three-dimensional

structure change. It is common to quantify the amount of sequence divergence between

two proteins by the fraction of identical residues in their sequence alignment. For example,

20% sequence identity means that 20% of the residues of the smallest protein are aligned

to identical residues in the larger protein. It is well known that conventional protein se-

quence alignment methods such as BLAST [4] fail to compute correct alignments when

protein sequence identity drops below 40%− 30% [31]. Both CATH and SCOP classifica-

tion databases provide a set of sequence non-redundant proteins domains in the database;

the CATH database uses a 35% identity threshold to produce this data set, whereas the

SCOP database uses a 40% sequence identity threshold.

2.3 Protein Structure Alignment Problem

As with sequence alignment, structural alignment involves detection of a set of

equivalent residues that optimize a given similarity score. The similarity score measures

the amount of similarity between two protein structures and is usually a function of two

interdependent factors: the number of aligned residues and how well the aligned residues

can be superimposed by a rigid body transformation.
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We will now give a more formal definition of an optimization problem involved in

protein structural alignment. For the purpose of the alignment, a residue is represented

by a point in 3D, usually the atomic coordinate of its Cα atom. A protein structure is

represented by an ordered set of points, q = {q1, ..., qn}, which corresponds to its residues.

An alignment between two structures, q and p, is a one-to-one mapping between a subset

q̂ of residues in q and a subset p̂ of residues in p, where the mapping is defined by a one-

to-one function φ : q̂ → p̂. An optimal alignment is one that maximizes a similarity score

objective function S(q̂, φ(q̂)). Different methods optimize different objective functions. For

example, the widely used DALI method [65] seeks to minimize a variant of the following

objective function:

S(q̂, φ(q̂)) =
∑

qi∈q̂

∑

qj∈q̂

A− |d(qi, qj)− d(φ(qi), φ(qj))|

where d(qi, qj) denotes the Euclidean distance between points qi and qj. The balance

between two interdependent factors mentioned above is realized through the terms A and

|d(qi, qj)− d(φ(qi), φ(qj))|. Each aligned pair of residues contributes a constant factor, A,

to the similarity score, which is penalized by the amount of structural deviation in the

pair’s spatial orientation, |d(qi, qj)− d(φ(qi), φ(qj))|.

Structural alignment is a difficult problem and the majority of optimization prob-

lems involved are either NP-hard or high degree polynomial [78]. Moreover, even heuristics

employed by structural alignment methods become prohibitively expensive when an ex-

tensive comparison of a query structure to a large database of structures, such as the

PDB, needs to be carried out.
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Chapter 3

Fast Protein Structure Comparison with Structural Footprinting 1

Protein structure comparison is an important tool that helps biologists understand

various aspects of protein function and evolution. Unfortunately, protein structure align-

ment is a difficult problem and highly accurate protein structure alignment methods are

computationally expensive. In fact, the execution time of these methods becomes pro-

hibitively expensive for large-scale comparative structure analysis, such as when a query

protein structure needs to be compared to a large database on a regular basis. (For exam-

ple, it would take the DALI program, one of the most accurate protein structure alignment

methods, nearly five months to perform all pair-wise comparisons of 5, 024 domains.)

Over the years, numerous methods for speeding up protein structure alignment were

developed [66, 2, 84, 22, 44, 104, 23]. One of the recently pursued approaches is the so-

called projection approach, where a protein structure is mapped to a high-dimensional

vector and structural similarity is approximated by distance between the corresponding

vectors. Methods that employ this approach include PRIDE [22, 44], SGM [103], and

LFF [23]. In PRIDE [22, 44], Carugo et al. compute all pairwise distances between the

central carbon atoms k residues apart (k ranging between three and thirty), and use the

1This chapter is derived from “Secondary structure spatial conformation footprint: A novel method for

fast protein structure comparison” by E. Zotenko, D. P. O’Leary and T. M. Przytycka, BMC Structural

Biology, 6:12, 2006, and “Structural footprinting in protein structure comparison: The impact of structural

fragments” by E. Zotenko, R. Islamaj Dogan, W. J. Wilbur, D. P. O’Leary, and T. M. Przytycka, BMC

Structural Biology, 7:53, 2007.

18



distance distributions as a descriptor of protein structure. In SGM [103], Rogen et al.

map a protein backbone into R30 using geometric invariants borrowed from Knot Theory.

In LFF [23], Choi et al. apply an idea common to diverse application areas, including

text mining [83] and classification of biological networks [89], in which a complex object is

represented as a high dimensional vector of counts or footprint of its small size motifs. In

the case of protein structure, such motifs correspond to structural fragments. Choi et al.

use pairs of backbone segments of size ten as structural fragments. Since the space of all

such fragments is not discrete, a finite set of representative structural fragments or models

is selected. Given a protein structure, its structural footprint is computed by making each

structural fragment in the structure contribute a count of one to the closest (most similar)

model.

In this thesis we adopted the idea behind the LFF method to define a framework,

which we call structural footprinting framework, for designing projection methods. The

framework predetermines certain steps taken to create a vector representation of a protein

structure. Thus, any structural footprinting method first selects a representative set of

structural fragments or models. The set of models can be thought of as a structural

alphabet used by the method to describe protein structure. Once the models are selected,

the method maps a protein structure to a vector in which each dimension corresponds to

a particular model and “counts” the number of times the model appears in the structure.

However, the framework leaves the specification and representation of structural fragments

to the structural footprinting method at hand. Thus, any two structural footprinting

methods differ in the set of models they use; in fact a large number of methods can

be generated by varying the type of structural fragments used and the amount of detail

in their representation. The structural footprinting framework is described in detail in
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Section 3.1.1.

The main objective of our study was to explore the potential of the structural

footprinting framework as applied to fast protein structure comparison. Toward this

end, we developed two novel structural footprinting methods, the Secondary Structure

Element Footprint (SSEF) and SEGment Footprint (SEGF) methods, that together with

the LFF method sample a variety of structural alphabets. The SSEF and SEGF methods

are described in Sections 3.1.2 and 3.1.3 respectively. We then performed an extensive

experimental evaluation to assess the performance of structural footprinting methods as

compared to: (i) well established protein structure and sequence alignment methods,

described in Section 3.2.2, and (ii) other projection methods, described in Section 3.2.3.

We also explored how the performance of a structural footprinting method depends on the

structural alphabet used by the method and whether the SSEF, SEGF, and LFF methods

can be combined to achieve a better performance. The proposed strategies to combine

these methods and the results of experimental evaluation are described in Section 3.2.4.

3.1 Two Novel Structural Footprinting Methods

3.1.1 General Algorithmic Framework

Structural footprinting methods are a family of projection methods that use the same

general algorithmic framework to produce a vector representation of protein structure: (i)

select a representative set of structural fragments or models, (ii) map a protein structure

to a vector in which each each dimension corresponds to a particular model and “counts”

the number of times the model appears in the structure. While the model selection step

is performed only once, the second step is performed every time a protein structure needs

to be mapped to the structural footprint.

20



The framework leaves the specification of structural fragments and their representa-

tion to the structural footprinting method at hand. Therefore, every structural footprint-

ing method has to support two operations: (i) extract all the structural fragments present

in a given protein structure and (ii) measure the similarity between a pair of structural

fragments.

The models should provide an adequate coverage of structural fragments present

in the protein structure universe, i.e., every structural fragment should be close enough

to at least one model. To achieve this goal, structural fragments are extracted from a

representative set of protein structures and then clustered using the k-means clustering

algorithm [71]. The resulting cluster centers are output as models.

Let us denote byM = {m1, ...,mp} the set of models selected in the model selection

step. The footprint of a structure Q is a vector in Rp, denoted by ~fQ, where each dimension

corresponds to a specific model and its value is equal to the score accumulated by the

model over all structural fragments in Q. We allow a structural fragment to contribute to

several models, where the amount of contribution is inversely proportional to the distance

between the fragment and the model; the contributions are normalized to sum up to one.

A footprint ~fQ is formally defined as follows.
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~fQ = (fQ
1 , ..., fQ

p )

fQ
i =

∑

s:d(s,mi)<γ

c(s,mi)

c(s,mi) =
exp(−d(s,mi)

2/a)
∑

mj
exp(−d(s,mj)2/a)

s is a structural fragment of Q

c(s,mi) is a contribution of s to model mi

d(s,mi) is the distance between s and a model mi

a is a scale factor

γ is a threshold

A structural fragment s contributes to a model m only if they are similar enough, i.e., the

distance d(s,m) is below a certain threshold γ. The value of this threshold and the scale

factor a are determined from the distribution of distances of structural fragments to the

closest model observed in the protein structure universe.

Once footprints are computed, the structural similarity between two protein domains

is measured by the Pearson correlation coefficient of their footprints ~fQ and ~fP :

∑p
i=1 (fQ

i − µQ)(fP
i − µP )

√

∑p
i=1 (fQ

i − µQ)2
√

∑p
i=1 (fP

i − µP )2

where µQ and µP are the means of ~fQ and ~fP , respectively.

3.1.2 The SSEF Method

The SSEF method uses a triplet of secondary structure elements (SSEs) as a struc-

tural fragment. The secondary structure assignment is computed by the DSSP program

22



[75] and each secondary structure element is approximated by a positional vector in 3D

or an SSE vector.

Since the relative orientation of distant pairs of secondary structure elements is less

stable, we restrict our consideration to triplets that are close in space, requiring each of the

three pairwise distances between the midpoints of SSE vectors to be less than a certain

threshold. The adoption of “local” SSE triplets as a structural fragment also reduces

the effect of an occasional SSE insertion/deletion on footprints of related domains. For

example, consider a pair of related domains, one having n SSEs and the other having n+1

SSEs. Without any restrictions the additional SSE may generate up to n2 SSE triplets

that will register in the footprint of one structure but not the other. By considering only

local SSE triplets the impact of such insertions/deletions is considerably reduced. The

particular value of 30Å that we have adopted reflects a trade-off between noise and the

ability to map every structure to an SSE footprint. Smaller threshold values result in

a large number of structures with three or more SSEs but no valid SSE triplets. Larger

threshold values result in a worse performance as the spatial orientation of triplets becomes

less stable and the effect of SSE insertion/deletion grows.

The spatial conformation of an SSE triplet is represented by all pairwise angles and

all pairwise distances between the midpoints of the corresponding SSE vectors. Since

angles and distances are measured in different units, a standard normalization procedure

is applied, normalizing a quantity x by x−meanx
stdevx

. The mean and the standard deviation are

computed from the distribution of angle and distance values in triplets of the SSE vectors

corresponding to structural fragments extracted from the SCOP fold dataset. Given a

pair of structural fragments, their distance is then measured by the Euclidean norm of the

difference between corresponding points.

23



The SSEs are either α-helices or β-strands, so in addition to the positional informa-

tion given by a triplet of vectors in 3D, each structural fragment is assigned a type: ααα,

ααβ, αβα, αββ, βαα, βαβ, ββα or βββ, according to the type of secondary structure

elements that it contains. From the point of view of protein structure a triplet of α-helices

is quite different from a triplet of β-strands even if their spatial conformation is similar.

Therefore, a structural footprint generated by the SSEF method is a concatenation of

eight structural footprints, one for each SSE triplet type.

The SSEF method selects 1, 500 models to provide an adequate representation of

SSE triplets present in the protein structure universe. Since triplets of secondary structure

elements with a majority of β-strands are more abundant than other triplets, the method

allocates 225 models each to footprints for αββ, βαβ, ββα, and βββ triplet types and 150

models each to footprints for ααα, ααβ, αβα, and βαα triplet types.

3.1.3 The SEGF Method

The SEGF method uses a contiguous segment (thirty-two residues long) of protein

backbone as a structural fragment. The protein backbone is viewed as a polygonal line

passing through the Cα atoms whose conformation is captured by a set of fourteen shape

descriptors, a subset of the thirty shape descriptors originally used by Rogen et al. [104,

103]. The shape descriptors are various combinations of an average crossing number, a

geometric invariant that captures the relative orientation of two oriented line segments. In

what follows we first describe the average crossing number invariant and then show how

the fourteen shape descriptors are constructed using this invariant as a building block.

Given an oriented line segment u, we will denote by usp the coordinates of u’s start

point and by uep the coordinates of u’s end point. When a pair of segments, u and v, is
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Figure 3.1: When projection of a pair of oriented line segments results in an overcrossing,
its value is determined by the right-hand rule involving the projection direction and di-
rections of projected line segments. Here the projection direction is from the page to the
reader. (a) The value of this overcrossing is +1 because the bottom line segment (u) is
in the counterclockwise direction from the upper line segment (v). (b) The value of this
overcrossing is −1 because the bottom line segment (u) is in the clockwise direction from
the upper line segment (v).

projected on a plane it produces either zero or one overcrossing. When one overcrossing

is produced, it is assigned a value of +1 or −1 as shown in Figure 3.1. Thus with every

projection direction we can associate a value of either +1 , −1, or 0 (no overcrossing). The

average crossing number between two oriented line segments is the above value averaged

over all possible projection directions, projection directions being points on the unit sphere

S2. The value of an overcrossing, +1 or −1, is the same for all projection directions that

result in an overcrossing. Moreover, projection directions that result in one overcrossing

are exactly those that are parallel to vectors of the form tv − tu, where tu is a point on

u and tv is a point on v. The above two facts allow us to express the average crossing

number as the signed area of a certain parallelogram projected on S2 and normalized by

half of the area of S2 (half since there is an equivalent parallelogram of directions that

correspond to vectors parallel to vectors of the form tu − tv) as shown in Figure 3.2. The

sign of the average crossing number is equal to the sign of (vsp − usp)T (v × u). Note that

the range of this invariant is the closed interval [−1, 1].

Let us denote by Wr(u, v) the average crossing number between two oriented line

segments u and v. Given a polygonal line consisting of r (in our case r = 31) oriented line
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Figure 3.2: (a) Projection directions that result in one overcrossing are parallel to vectors
of the form tv−tu, where tu is on u and tv on v. (b) Those directions trace a parallelogram
P = P1P2P3P4, where P1 = vsp − usp, P2 = vep − usp, P3 = vsp − uep and P4 = vep − uep.
The average crossing number equals the signed area of P projected on S2 and normalized
by half of the area of S2, which can be computed using tools of Spherical Geometry [37].

segments {u1, ..., ur} the fourteen shape descriptors are constructed in the following way:

I(1,2) =
∑

0≤i1<i2≤r

Wr(ui1, ui2)

I|1,2| =
∑

0≤i1<i2≤r

|Wr(ui1, ui2)|

I(1,2)(3,4) =
∑

0≤i1<i2<i3<i4≤r

Wr(ui1, ui2) Wr(ui3, ui4)

I|1,2|(3,4) =
∑

0≤i1<i2<i3<i4≤r

|Wr(ui1, ui2)|Wr(ui3, ui4)

I(1,2)|3,4| =
∑

0≤i1<i2<i3<i4≤r

Wr(ui1, ui2) |Wr(ui3, ui4)|

I|1,2||3,4| =
∑

0≤i1<i2<i3<i4≤r

|Wr(ui1, ui2)| |Wr(ui3, ui4)|

I(1,3)(2,4) =
∑

0≤i1<i2<i3<i4≤r

Wr(ui1, ui3) Wr(ui2, ui4)

I|1,3|(2,4) =
∑

0≤i1<i2<i3<i4≤r

|Wr(ui1, ui3)|Wr(ui2, ui4)

I(1,3)|2,4| =
∑

0≤i1<i2<i3<i4≤r

Wr(ui1, ui3) |Wr(ui2, ui4)|

I|1,3||2,4| =
∑

0≤i1<i2<i3<i4≤r

|Wr(ui1, ui3)| |Wr(ui2, ui4)|

I(1,4)(2,3) =
∑

0≤i1<i2<i3<i4≤r

Wr(ui1, ui4) Wr(ui2, ui3)
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I|1,4|(2,3) =
∑

0≤i1<i2<i3<i4≤r

|Wr(ui1, ui4)|Wr(ui2, ui3)

I(1,4)|2,3| =
∑

0≤i1<i2<i3<i4≤r

Wr(ui1, ui4) |Wr(ui2, ui3)|

I|1,4||2,3| =
∑

0≤i1<i2<i3<i4≤r

|Wr(ui1, ui4)| |Wr(ui2, ui3)|

The distance between a pair of structural fragments is given by Euclidean distance

between their representations. The SEGF method selects 300 models to provide an ade-

quate representation of structural fragments in the protein structure universe.

3.2 Experimental Results

3.2.1 Evaluation Procedures

Protein structure comparison methods are commonly benchmarked against two ma-

jor protein structure classification databases, the CATH [96] and SCOP [91] databases. In

this thesis we adopt the CATH classification database as a gold standard for the definition

of structurally similar protein domains or true relationships. We use the CATH Homolo-

gous Superfamily (superfamily) level to measure the method’s ability to detect structural

similarity between closely related protein domains or homologs and the CATH Topol-

ogy (fold) level to measure the method’s ability to detect structural similarity between

distantly related protein domains or topologs.

In each performance evaluation experiment a protein structure comparison method

is used to compare a set of query protein domains to a large database of structures.

To focus evaluation on cases where protein sequence comparison methods fail, and thus

protein structure comparison methods are of greatest practical value, the database is a

set of protein domains where no two domains have sequence identity greater than 35%.
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Normally, queries would represent well-populated superfamilies or folds in the database,

but different experiments use different sets of query proteins; these are described in detail

in Section 3.2.1.1.

Once a query protein domain is compared to every domain in the database, the

results of the comparisons can be used to rank the database domains based on their

structural similarity to the query. Ideally, database domains related to the query would

appear at the top of the list, followed by unrelated domains. We use a number of well-

known techniques, which are described in Section 3.2.1.2, to quantify and visualize how

far from the ideal ranking the actual ranking is.

3.2.1.1 Data Sets

In this thesis we used the CATH database (version 2.6 released in April 2005) for

benchmarking purposes. To create a set of database domains, we downloaded a list of

non-redundant domains filtered at 35% sequence identity from the CATH classification

database website. We excluded from the list domains for which a valid footprint could

not be produced by one or more methods. This resulted in a dataset with 5, 588 domains.

The set of database domains contains members from 1, 416 superfamilies.

To compare the SSEF method with well-established protein sequence and structure

alignment methods using the data from the study of Sierk et al. [113], we closely followed

the query set selection procedure described in that study. In particular, we chose the

longest domain from each superfamily with at least six members in the set of database

domains. There are 196 such superfamilies which resulted in a set of 196 query domains.

For other experiments we first identified a set of well-populated superfamilies. A

superfamily is well-populated is it satisfies the following constraints: (i) the superfamily
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has at least five members in the set of database domains and (ii) the superfamily is not the

only superfamily in its fold. There are 133 superfamilies that satisfy the above constraints.

We then set the query set to contain all the members of these well populated superfamilies,

which resulted in a set of 2, 348 queries.

3.2.1.2 Measuring Retrieval Accuracy

We used Coverage versus Error plots [113] to summarize a method’s performance at

a given classification level. Given a protein structure comparison method and a database

of protein domains, each query protein domain defines a Coverage versus Error curve. The

curve is computed by first ordering the database domains by their structural similarity to

the query domain. This list is examined from the most similar to the least similar domain;

for each false positive result (an unrelated domain) the number of errors is incremented and

the coverage level (the fraction of related domains retrieved so far) is recorded. The curve

shows the coverage obtained at each error level. To obtain one curve per method we either

took the median coverage values (as in Figure 3.3) or took the average coverage values,

first across different queries in the same classification group and then across different

classification groups (as in Figure 3.4).

To quantify the method’s ability to retrieve other members of a superfamily given

one member as a query we used ROC300 scores [56]. Briefly, the ROCn score measures

to what extent the related domains precede the unrelated domains among the n highest

ranked database domains. We use this measure to compare a methods’s performance

across individual superfamilies in Figure 3.5; again one value per superfamily was obtained

by averaging the scores across different queries in the same superfamily.
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3.2.2 Comparison to Common Protein Structure and Sequence Alignment Methods

To compare the SSEF method to established sequence and structure alignment

methods, we used data from the study of Sierk et al. [113], where five full-fledged protein

structure alignment methods (DALI [65], STRUCTAL [48], CE [111], VAST [50], and

MATRAS [76]), two projection methods (SGM [103] and PRIDE [22]), and two sequence

alignment methods (SSEARCH [99] and PSI-PLAST [5]), were evaluated based on their

ability to detect relationships at the CATH homologous superfamily and topology levels.

We combined the data for the SSEF method with the data reported in [113] to pro-

duce the Coverage versus Error plots in Figure 3.3. (Since the performance of PRIDE was

worse than that of SGM, Sierk et al. did not include the data for PRIDE in their paper.)

To simplify the plots, the outcomes for the five protein structure alignment methods are

combined into two curves showing the worst and the best performance. Similarly, the

outcomes for the two sequence alignment methods are combined into one curve showing

the best performance. It should be noted that the performance of the SSEF method

was evaluated with the newer version, version 2.6, of the CATH classification database,

whereas the original study of Sierk et al. was performed with version 2.3. As the number

of non-redundant structures almost doubled from 2, 771 (used in the original evaluation)

to 5, 588 (used in evaluation of the SSEF method), we expect the relative performance of

the SSEF method to be better than what is shown on the plots.

At the CATH topology level, shown in Figure 3.3(b), the SSEF method has a

better coverage than the SGM and sequence alignment methods at all error levels (except

error=1). At the CATH homologous superfamily level, as shown in Figure 3.3(a), the

coverage achieved by our method at low error levels is significantly worse than that of

sequence alignment methods, which are extremely accurate in identifying close homologs.
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(a)

(b)

Figure 3.3: Coverage versus Error plots for the SSEF method, SGM, the lower and the
upper bounds on the five protein structure alignment methods (struct. aln. lower and
struct. aln. upper) and the upper bound on the two sequence comparison methods (seq.
upper). The shaded areas highlight the performance boundaries for sequence (blue) and
structure (pink) comparison methods. The coverage displayed is the median coverage
among the selected queries. Thus, for example in (a), the best structural alignment
method retrieves at least 83% of true positive pairs for half of the queries, when the first
false positive pair is encountered. (a) Pairs in the same CATH homologous superfamily
group are true positives; pairs in different CATH homologous superfamily groups are false
positives. (b) Pairs in the same CATH topology group are true positive; pairs in different
CATH topology groups are false positives.
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Moreover, while all three projection methods (PRIDE, SGM, and SSEF) are far from

achieving the performance of the best protein structure alignment method, the SSEF

method performs surprisingly well at high error levels at both the CATH homologous

superfamily and topology levels. In particular, at the CATH topology level and error

≥ 30, our method has a comparable performance to that of some of the full-fledged protein

structure alignment methods.

3.2.3 Comparison to Other Projection Methods

We use Coverage versus Error plots to compare the methods’ ability to detect rela-

tionships at the CATH superfamily and fold levels. The plots are shown in Figures 3.4(a)-

(b). As expected, structural similarity between distantly related domains is more difficult

to detect than structural similarity between close homologs for all four methods. Thus,

at the superfamily level, the three best methods achieve 70%− 80% coverage at the 300th

false positive and only 58% − 72% at the fold level. While the SSEF method has better

performance at all classification levels, the difference is most profound at the fold level.

To compare the efficiency of the projection methods evaluated in this study we

analyze for each method the running time needed to perform all-against-all structure

comparison of 5, 345 domains in the SCOP 40%-id dataset. All programs were run on a

Linux machine with an Intel Xeon CPU 3.20GHz. The results are shown in Table 3.1.

For any projection method, the all-against-all structure comparison involves two

steps. The first step is the pre-processing step where the structures are projected into

vectors, and the second step is the pairwise distance computation between the set of

vectors. If there are n structures in the dataset then the total running time is n× prep +

n(n−1)
2 × eval, where prep is the average pre-processing time per structure and eval is
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(a)

(b)

Figure 3.4: Coverage versus Error plots for the SSEF, LFF, and SGM. Data for the
PRIDE2 method is not shown as the program supplied by the authors was crashing on
the CATH dataset. The performance of the PRIDE2 method on the SCOP dataset, not
shown here, is worse than that of the other three methods. (a) Pairs in the same CATH
superfamily group are true positives; pairs in different CATH homologous superfamily
groups are false positives. (b) Pairs in the same CATH fold group are true positive; pairs
in different CATH fold groups are false positives.
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running time in seconds
ssef lff sgm pride

pre-processing 3, 067 490, 449 4, 397 not available
distance computations 1, 054 169 136 not available
total 4, 121 490, 618 4, 533 13, 200

Table 3.1: The running time (in seconds) to perform all pairwise comparisons of 5, 345
domains for the SSEF, LFF, SGM, and PRIDE2 methods. The running time is broken
into running times spent on the pre-processing step and the distance computation step.
The pre-processing step includes all the computation necessary to compute projections
for 5, 345 domains. The distance computation step includes all pairwise distance compu-
tations between 5, 345 projections computed in the pre-processing step. As the detailed
information is not available for the PRIDE2 method, only the total time is shown for this
method.

the average time to compare a pair of structures. It should be noted that we use the

pre-processing to denote the mapping of each structure into a vector; i.e., no pairwise

computations are done during this step.

For applications of screening and classifications, we can assume that the pre-processing

step is done once for the database proteins and therefore the running time spent on in

this step is amortized as the number of queries against the database grows.

The running time spent on distance computations is mainly affected by the dimen-

sion of the projection, which we denote by p. Our method uses p = 1, 500 and takes about

10 times longer to compute the distances than the LFF (p = 100) and SGM (p = 30)

methods. But even the 1, 054 seconds to perform 5, 345 ∗ (5, 345 − 1)/2 = 14, 281, 840

protein structure comparisons is almost negligible compared to the time it would take

DALI [65] to perform the same number of comparisons. We have used the DaliLite pro-

gram [67] and estimated that one query against the same database of 5, 345 domains takes

on average 4, 800 seconds or 1.3 hours. Therefore, unless a screening method is applied,the

entire all-against-all comparison would take about 3, 474 hours or nearly five months to

compute.
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3.2.4 The Impact of the Structural Fragments on Performance

3.2.4.1 Detecting Structural Similarity at the CATH Homologous Superfamily Level

Even though the SSEF method has the best performance on average (see Table 3.3),

no method performs consistently the best over all superfamilies. Figure 3.5 shows the

ROC300 scores as a scatter plot; there is one plot per pair of methods; each superfamily

is a point on the plot with the coordinates being the ROC300 scores of the corresponding

methods. The performance of the methods is poorly correlated, especially that of the

SSEF and SEGF methods. The poor correlation can be attributed to the fact that the

methods capture different aspects of protein structure in their footprints. Thus structural

differences between the members of a superfamily may “confuse” some methods more than

others and the amount of confusion depends on how these structural differences affect the

structural footprint produced by the method.

To illustrate this point, let us consider two outliers in Figure 3.5, superfamilies

for which the performance of one method is quite different from that of another, the

1.20.58.60 (Cytoskeleton), and 3.30.300.20 (Rna Binding Protein) superfamilies.

The poor performance of the SSEF method on the 1.20.58.60 superfamily can

be partially attributed to variability in secondary structure assignment as shown in Fig-

ure 3.6(a). Since the second helix in the 1quuA2 domain is split into two helices, the

1quuA2 domain has four SSE triplets that participate in the footprint construction, while

the 1cunA1 domain has only one such triplet. In this case, the structural change that pro-

duced an additional SSE is small and therefore both the SEGF and LFF methods perform

well since they do not use secondary structure information. In general, the SSEF method

is most sensitive to structural changes that affect the number and/or relative orientation
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Figure 3.5: There is one scatter plot per pair of methods: SSEF and SEGF (a), SSEF and LFF (b),
and SEGF and LFF (c). Each superfamily is a point on the plot with the coordinates being the ROC300

scores of the corresponding methods. For every pair of methods, six superfamilies that deviate the most
from the diagonal are listed in the table adjacent to the plot. The superfamilies are colored according to
the minimum SSAP score for a pair of domains in the superfamily as reported by the DHS database [21]:
blue for scores in (0.0, 53.44], green for scores in (53.44, 63.32], orange for scores in (63.32, 73.48], and red
for scores in (73.48, 100.00]. The SSAP score measures the structural similarity on a scale from 100.0 (the
most similar) to 0.0 (the least similar). Our chosen threshold values, 53.44, 63.32, and 73.48, correspond
to the 25th, 50th, and 75th percentile respectively. The superfamilies for which the SSAP scores are not
available are colored black. The correlation between the performance of every pair of methods is captured
by Pearson correlation coefficient which is shown in upper left corner of the corresponding plots.
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Figure 3.6: (a) The 1.20.58.60 (Cytoskeleton) superfamily. In the table to the right,
for each database domain related to the query 1cunA1, we show the number of errors
encountered before the domain is retrieved. Both the SEGF and LFF methods retrieve
all seven related domains before the 300th error. (In this case, any domain in a fold
group other than 1.20.58 is counted as an error.) In contrast, the SSEF method re-
trieves only 1cunA2, 1hciA4, and 1quuA1. The structure of the query domain 1cunA1

and two related domains are shown on the left, colored according to secondary structure
assignments and also schematically represented by diagrams adjacent to the structures.
The secondary structure assignment was computed using the DSSP (Dictionary of Protein
Secondary Structure) program [75]. (b) The 3.30.300.20 (Rna Binding Protein) super-
family. Given the 1fjgC1 Domain as a query, the SSEF method retrieves all nine related
domains before the 300th error. On the other hand, the SEGF and LFF method retrieve
only five related domains. The ranking of the related domains is summarized in the table
to the right. The structure of the query domain 1fjgC1 and two related domains are shown
on the left, colored according to secondary structure assignments and also schematically
represented by diagrams adjacent to the structures. The protein structures were rendered
using PyMOL [30].
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of SSEs.

In contrast, the structural variability exhibited by the members of the 3.30.300.20

superfamily does not affect the performance of the SSEF method, but it does affect the

other two methods. As shown in Figure 3.6)(b), the members of this superfamily have

approximately the same number of SSEs, and they are oriented in roughly the same way.

It is reasonable to assume that for structurally conserved superfamilies all three

methods would perform well. To check this hypothesis we color coded the points in the

scatter plots of Figure 3.5 according to the structural diversity of the corresponding su-

perfamilies, where red denotes the most structurally conserved superfamilies and blue the

least structurally conserved superfamilies. Even though the concentration of the red points

in the upper-right corner is clearly visible on all three plots, there are structurally con-

served superfamilies for which one or more methods do not perform well. This can happen

when a small structural change triggers a big change in the structural footprint produced

by the method; consider for example performance of the SSEF method on the 1.20.58.60

superfamily discussed above. Another reason for poor performance of a method on a struc-

turally conserved superfamily is its inability to distinguish between the members of the

superfamily and members of other superfamilies that are composed of similar structural

fragments but have different overall structure.

3.2.4.2 Combining Structural Footprinting Methods

Can we take advantage of variation in performance of the methods across different

superfamilies, i.e., can the output of the methods be combined in such a way as to lever-

age their relative strengths? To answer this question we have studied two combination

strategies: voting and linear combination of similarity scores.
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wSSEF wSEGF wLFF w0

SSEF+SEGF+LFF 6.08 3.16 2.85 8.57
SSEF+SEGF 7.28 3.72 N/A 7.26
SSEF+LFF 7.48 N/A 4.18 8.56
SEGF+LFF N/A 6.34 6.38 9.76

Table 3.2: Coefficient values learned with SVM for the four combinations:
SSEF+SEGF+LFF, SSEF+SEGF, SSEF+LFF, and SEGF+LFF.

In voting, each method’s similarity scores are first used to rank the database do-

mains. The new score of a database domain is determined by averaging the domain’s

positions in the three original rankings, with ties being resolved arbitrarily.

In linear combination, a new structural similarity score between the query and a

database domain is defined as a linear combination of the original similarity scores:

simCOMB = wSSEF simSSEF + wSEGF simSEGF + wLFF simLFF − w0.

The coefficients (wSSEF , wSEGF , and wLFF ) are learned using the Support Vector Machine

(SVM) learning algorithm [28] from a set of positive and negative examples. For each

well-populated superfamily we selected uniformly at random 10 pairs of domains where

both domains are from the superfamily to form the set of positive examples, and 10

pairs of domains where one domain is from the superfamily and another domain is from

a different fold to form the set of negative examples. Therefore each set contains 1330

domain pairs, 10 pairs for each of the 133 well-populated superfamilies. We used the

SVMLight implementation [74] of the SVM learning algorithm with default parameters.

The set of coefficients learned is summarized in Table 3.2.

As shown in Table 3.3, the average ROC300 scores increase from 0.750 (the SSEF

method), to 0.774 (using the voting combination strategy), and to 0.814 (using the linear

combination strategy). Even with the simple voting strategy we obtain an improvement of

0.024 over the best (on average) method; the introduction of weights (in linear combination
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SSEF SEGF LFF voting

0.750 0.581 0.665 0.774

linear combination
SSEF+SEGF+LFF SSEF+SEGF SEGF+LFF SEGF+LFF

0.814 0.798 0.789 0.677

Table 3.3: The average ROC300 scores obtained over a range of combination strategies:
the original methods, voting with all three methods, and linear combination of similarity
scores.

strategy) further improves the performance by 0.040. We used the binomial sign test for

two dependent samples [110] to evaluate the statistical significance of improvements due to

combination. This test can be applied to evaluate whether a number of superfamilies on

which one method outperforms the other differs significantly from what would be expected

by chance. We found that both combination strategies significantly improve over the SSEF

method: the improvement due to voting has a p-value of 3.35e-02 and improvement due

to linear combination has a p-value of 1.43e-15.

The success of a combination strategy largely depends on how consistent are the

methods in their ranking of false positives. The combination is most effective when the

methods disagree on their ranking of false positive domains, i.e., false positive domains

ranked near the top by one method are ranked near the bottom by other methods. Thus

the success of a combination strategy is a function of the methods being combined. To

find out which pair of methods are the most complementary, i.e., their combination gives

the best results, we repeated the linear combination experiments for all pairs of methods.

The outcomes of these experiments (see Table 3.3 under SSEF+SEGF, SSEF+LFF, and

SEGF+LFF) indicate that combination of the SSEF and SEGF methods gives the best

results. This outcome demonstrates that the stand-alone performance is of lesser impor-

tance for combination purposes. Indeed, while the SEGF method is the weakest among
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the three methods, its performance is the least correlated with that of the SSEF method

(see the performance correlation values in Figure 3.5).

3.3 Summary

Projection methods are a class of fast protein structure comparison methods that

achieve a considerable speed-up over full-fledged protein structure alignment methods by

mapping a protein structure to a high-dimensional vector. Once the mapping is done the

structural similarity is approximated by a distance computation between the corresponding

vectors. In the process of mapping some structural information is lost. Thus, the central

issue in designing a good projection method is how to define a mapping that is able to

capture all the salient features of protein structure.

In this thesis we systematically addressed this issue by introducing the structural

footprinting framework. Our framework defines a family of projection methods that differ

in the “structural alphabet” used by the method to describe protein structure. In fact,

a large variety of methods can be generated that emphasize different aspects of protein

structure.

We demonstrated that structural footprinting is a useful approach for designing fast

protein structure comparison methods. We also explored how the retrieval accuracy of a

structural footprinting method depends on the structural alphabet used. We found that

a method whose structural alphabet incorporates secondary structure information and

completely ignores less conserved loop regions has the best performance on average in

retrieving evolutionarily related protein pairs. We also found that combining structural

footprinting methods that use complementary structural alphabets significantly improves

performance and allows the combined method to better tolerate various types of structural
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variability exhibited by groups of evolutionarily related proteins.

42



Chapter 4

Protein-Protein Interactions Preliminaries

The purpose of this chapter is to provide the reader with relevant background infor-

mation on protein interactions and protein interaction networks. Over the years several

experimental techniques were developed that allow the inference of protein interactions.

These techniques are reviewed in Section 4.1 along with databases where currently known

protein interactions are deposited.

Protein interactions are usually represented by a graph, a protein interaction net-

work, where nodes are proteins and edges are interactions between the proteins. Due

to high error rates in experimentally determined protein interactions [90, 119, 29, 115],

the transition from experimental data to a reliable protein interaction network is not

straightforward. Protein interaction networks used in this thesis and the computational

approaches used to derive them are described in Section 4.2.

4.1 Experimental Techniques for Determining Protein Interactions

Two currently known experimental techniques that can be used to determine protein

interactions on a large scale are yeast two-hybrid (Y2H) [38] and complex purification [102].

The yeast two-hybrid is targeted at detecting physical or binary protein interactions.

A pair of proteins physically interact if they directly bind each other. Figure 4.1(a) shows

the structure of the human exosome complex, the molecular machine responsible for RNA

destruction. This complex has nine protein subunits, but not every pair of subunits come
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Mtr3 Rrp41 Rrp4

Rrp46 Rrp40 Ccl4 Rrp42

Rrp43 Rrp45

(a) (b)

Figure 4.1: (a) A schematic representation of the crystal structure of the human exosome
complex (PDB code 2nn6). The complex contains nine protein subunits shown in different
colors. (b) Physical interactions between the subunits of the complex are schematically
represented by a graph, where there is an edge between a pair of subunits if and only if
they physically interact.

into close contact with each other; for example, there no physical interaction between

the Rrp45 and Rrp40 subunits. Physical interactions among the subunits of the exosome

complex are shown in Figure 4.1(b).

The original yeast two-hybrid technique takes advantage of the GAL transcription

activator in Saccharomyces cerevisiae, which is required for expression of genes encoding

enzymes of galactose utilization. The GAL4 protein has two functionally essential domains:

the binding domain is responsible for binding the promoter sequence and the activation

domain is required for transcription activation. To determine whether proteins X and Y

are able to directly bind each other, protein X is fused to the binding domain and protein

Y is fused to the activation domain. Physical interaction between X and Y brings the

domains of the GAL4 protein in proximity, which results in transcription of the regulated

genes. The expression level of these genes is monitored and serves as a measure of physical

interaction between proteins X and Y . The yeast two-hybrid technique is applied in small-
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scale experiments to detect physical interactions between specific pairs of proteins [81].

Several recent studies have applied the technique on a genome-wide scale to map protein

interactions in Saccharomyces cerevisiae [118, 70].

The complex purification technique, on the other hand, is targeted at detecting

components of multi-protein complexes. To characterize proteins that are in the same

complex/complexes with a bait protein, the bait coding gene is tagged (fused) with a

DNA sequence which permits easy purification. The tag is used later on to pull out the

bait protein together with all its associated proteins or preys using techniques such as co-

immunoprecipitation or tandem affinity purification. The preys are subsequently identified

by mass spectrometry. The complex purification technique was applied on a genome-wide

scale to characterize protein complexes in Saccharomyces cerevisiae [64, 45, 80, 46].

There are numerous databases that store experimentally determined protein inter-

actions [88, 107, 77, 116]. For example, as of December 2005, the Database of Interacting

Proteins (DIP) [107] catalogs 18,224 interactions among 4,936 proteins in Saccharomyces

cerevisiae, which were obtained in 22,340 experiments.

4.2 Protein Interaction Networks

Several independent assessments of protein interaction data derived from high-

throughput experiments found that these interactions contain a large number of false

positives [90, 119, 29, 115]. For example, Deane et al. estimated that interactions re-

ported in several genome-wide yeast-two-hybrid screens in Saccharomyces cerevisiae [40,

41, 118, 69, 70] contain as much as 50% false positive interactions.

To circumvent high error rates in protein interaction data, computational methods

have been proposed to construct reliable protein interaction networks that rely on other
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sources of interaction evidence [29, 72, 10, 46, 80, 25]. These methods resulted in several

reliable genome-wide protein interaction networks for Saccharomyces cerevisiae, five of

which are used in Chapter 5 and Chapter 6 of this thesis and therefore are briefly described

here.

In addition to estimating the fraction of false positive interactions in the yeast-

two-hybrid high-throughput screens, Deane et al. proposed a computational method that

combines protein interaction data with sequence information to derive a subset of reliable

protein interactions [29]. The method builds upon an observation that if two proteins,

P1 and P2, interact, then so do their paralogs, proteins in the same organism having high

sequence similarity to P1 and P2. Consequently, the method assigns a confidence score to

the interaction between P1 and P2 based on the number of observed interactions between

two protein families, one family being the proteins similar to P1 and another, proteins

similar to P2. The method is applied on a regular basis to interactions deposited into the

DIP database [107] to derive a subset of high-confidence interactions. In later sections we

refer to this high-confidence subset of interactions as the DIP CORE network.

Jansen et al. proposed a computational method that uses Bayesian Networks to

predict which pairs of proteins interact [72]. The method trains a Bayesian network

that combines a variety of genomic features such as mRNA co-expression, co-localization,

etc., to derive interaction confidence scores for protein pairs. The authors used protein

interactions derived from a set of manually-curated protein complexes [88] as the set of

positive training examples and pairs of proteins localized to different cellular compartments

as the set of negative training examples. In later sections we refer to this network as the

BAYESIAN network.

Recently, Reguly et al. [101] manually curated an impressive number of over 31, 000
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abstracts and online publications to compile a comprehensive set of protein interactions

that were reported in small-scale experiments. This network is believed to consist of

biologically relevant protein interactions since interactions reported in small-scale exper-

iments are usually validated by a variety of methods. In later sections we refer to this

network as the LC network (Literature Curated network).

Since an interaction detected using different experimental techniques is deemed to

be reliable, one can filter out potential false positives by intersecting several experimental

datasets. This approach was taken by Batada et al. [10] who compiled a protein interaction

network from protein interactions reported by at least two independent experiments. In

later sections we refer to this network as the HC network (High Confidence network).

Collins et al. [25] derived a protein interaction network from raw purification data

reported in two recent genome-wide complex purification experiments [46, 80]. The general

idea is to assign to each experimentally identified interaction a confidence score, which

takes into account the number of direct (one protein pulls the other) and indirect (both

proteins are pulled by a third protein) co-purifications. In later sections we refer to this

network as the TAP-MS network.
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Chapter 5

Dynamic Formation of Multiprotein Complexes 2

In 1999, Hartwell et al. [61] introduced the notion of a functional module, a group

of cellular components and their interactions that can be attributed a specific cellular

function. Some modules are formed from stable associations, such as the ribosome, which

consists of more than 80 ribosomal proteins and four RNA molecules. Other modules

involve transient associations, where a protein may associate with different partners at

different stages of a cellular process. In addition, there are functional modules that involve

a coordinated formation of multi-protein complexes and whose function critically depends

on the order in which the interactions occur.

As described in Section 4.1, mature experimental techniques exist that allow the

inference of protein interactions, and recent proteomic studies used these and other tech-

nologies to characterize protein interactions among the components of many cellular pro-

cesses [6, 19]. Even though the protein interaction networks for many cellular processes

are available, we have little knowledge of the dynamical properties of protein interactions

involved in these processes. The main objective of the research effort described in this

chapter was directed at bridging this gap by developing a computational approach to ex-

tract the dynamical properties of protein interactions from the inherently static topology

of a protein interaction network.

2This chapter is derived from “Decomposition of overlapping protein complexes: A graph theoretical

approach for analyzing static and dynamic protein associations” by E. Zotenko, K. S. Guimaraes, R. Jothi,

and T. M. Przytycka, Algorithms for Molecular Biology, 1(1):7, 2006.
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Even though protein interaction networks do not explicitly capture the dynamic na-

ture of protein interactions, there are graph theoretic tools that under certain assumptions

allow the extraction of this information from the network. In particular, there are graph

families whose members have alternative representations that can be used to reason about

the dynamics of corresponding protein interactions. Unfortunately, research attempts in

this direction are very limited. In fact, we are aware of only one method, due to Farach-

Colton et al. [34], that uses interval graphs to reason about the order in which proteins

join the ribosome maturation pathway [35]. Interval graphs are a family of graphs whose

members have an interval representation. An interval representation of a graph is a set of

closed intervals on a real line such that there is a one-to-one mapping between the nodes

of the graph and the intervals in the set, and a pair of nodes are adjacent if and only if

the corresponding intervals intersect.

In their paper, Farach-Colton and colleagues proposed an interval model to rep-

resent the assembly pathway of the 60S ribosomal particle. In this model an auxiliary

protein “enters” the pathway at some point and “leaves” the pathway at a later point,

never to enter the pathway again. The model further assumes that a protein participates

in the pathway through binding to other proteins currently in the pathway; therefore the

assembly line can be thought of as an evolution of one protein complex to which proteins

bind as they enter the pathway and from which proteins dissociate as they leave the path-

way. Under this model the protein interaction network that spans the auxiliary proteins

involved in the pathway is an interval graph. Indeed, each auxiliary protein corresponds

to an interval and two proteins interact if and only if their intervals overlap. Therefore,

the protein interaction network can be used to reconstruct the order in which the auxiliary

proteins join the pathway.
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In this thesis we developed a method, the Complex Overlap Decomposition (COD)

method, that considerably generalizes the approach taken by Farach-Colton and col-

leagues. Our method relies heavily on important results from graph theory. More specif-

ically, it uses chordal graphs and their corresponding clique tree representation to model

complex formation during a given cellular process and uses cographs and their correspond-

ing modular decomposition to model protein complexes and their variants. The relevant

graph theoretic tools for these graph families are described in Section 5.1, and the COD

method is described in Section 5.2.

We applied the COD method to two protein interaction networks underlying well

studied cellular processes in Saccharomyces cerevisiae (bakers yeast): the mating pheromone

signaling pathway and the DNA replication module. The description of the cellular pro-

cesses and their corresponding representations produced by our method are described in

Section 5.3.1 and Section 5.3.2 respectively.

5.1 Graph Theoretic Tools

In general, graphs are not required to have any type of regularity. This makes

them very flexible combinatorial objects, which are able to represent complex and diverse

relationships. In practice, however, graphs that model real world phenomena often have a

special structure, which can be revealed through alternative graph representation and/or

graph decomposition techniques. Our method builds on two such techniques, a clique tree

representation for chordal graphs and modular decomposition for cographs. In this section

we briefly review relevant graph-theoretical results for these two graph families. Our review

of chordal graphs and their clique tree representation is based on the book by McKee

and McMorris [85]; there are several other texts that provide thorough treatment of the
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Figure 5.1: The intersection graph of the family of subsets F =
{{a, b}, {a, c, d}, {d, e}, {b, c, e, f, g}, {f}, {g}}.

subject, such as the classical treatment by Golumbic [53] and a chapter “An introduction

to chordal graphs and clique trees” by Blair and Peyton in [16]. Our treatment of cographs

and modular decomposition follows the seminal paper by Corneil et al. [26].

We assume that all graphs are undirected and connected. We denote by G = (V,E)

an undirected graph with nodes specified by V and edges specified by E, and by GS =

(S,ES) an induced subgraph of G, where S ⊆ V and ES = {(v,w) ∈ E | v,w ∈ S}.

For a node v ∈ V , we use N (v) to denote the set of v’s neighbors in G, i.e., N (v) =

{u | (v, u) ∈ E}. We extend this notation to an arbitrary set of nodes V ′ ⊂ V by letting

N (V ′) = (∪v∈V ′N (v)) \ V ′.

5.1.1 Chordal Graphs and Clique Tree Representation

Let F = {R1, ..., Rn} be a family of subsets of some set R. The intersection graph

of F is a graph G = (V,E) where V = F and E = {(Ri, Rj) | Ri ∩ Rj 6= ∅}; i.e.,

the nodes of the graph are the subsets in F and there is an edge between two nodes

(subsets) if their intersection is not empty. For example, the intersection graph of F =

{{a, b}, {a, c, d}, {d, e}, {b, c, e, f, g}, {f}, {g}} is shown in Figure 5.1.

It can be shown that any graph is isomorphic to the intersection graph of some
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family of subsets; the family of subsets can be thought as an alternative representation of

the graph and is called a set representation of the graph. A variety of well known graph

classes can be characterized by putting restrictions on set representations of graphs in the

class. For example, an interval graph is isomorphic to the intersection graph of a family

of closed intervals on the real line, a chordal graph is isomorphic to the intersection graph

of a family of subtrees of a tree, and a disk graph is isomorphic to the intersection graph

of a family of disks on the plane.

In a cycle, a chord is any edge that connects two non-consecutive nodes of the cycle.

A chordal graph is a graph that does not contain chordless cycles of length greater than

three. Even though the study of chordal graphs goes back to 1958, the characterization

in terms of allowable set representations was given only in 1974 by Gavril [47]. In his

seminal paper Gavril established that a graph is chordal if and only if it is isomorphic

to the intersection graph of a family of subtrees of a tree; the tree and the family of

subtrees are called a tree representation of the chordal graph. Figure 5.2(b) shows a tree

representation of a chordal graph in Figure 5.2(a).

A maximal clique in a graph is a subset of nodes that form a maximal complete

induced subgraph. Given a graph G = (V,E), we will use Q(G) to denote the set of all

maximal cliques in G and K(G) to denote the clique graph of G. The clique graph of G is

the intersection graph of Q(G), i.e., nodes of K(G) are maximal cliques in G and there is

an edge between a pair of nodes (maximal cliques) if their intersection is not empty. Let

us illustrate these definitions for the graph G = (V,E) in Figure 5.2(a). This graph has

four maximal cliques, which are shown in Figure 5.2(c). The clique graph K(G) is shown

in Figure 5.2(d); it has four nodes Q1, Q2, Q3, and Q4, and is complete since every pair of

nodes (maximal cliques) has a non-empty intersection. (In this case all maximal cliques
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Figure 5.2: (a) A chordal graph G = (V,E). (b) A tree representation of G: the tree is
on the left and the family of subtrees is on the right. Every Ri is schematically shown on
the tree by putting a colored circle next to its nodes. For example, R2 is shown by green
circles. (c) The set of maximal cliques in G. There are four maximal cliques in the graph,
Q1, Q2, Q3, and Q4. (d) The clique graph of G. The clique graph is the intersection
graph of {Q1, Q2, Q3, Q4}. (e) A clique tree representation of G: the clique tree is on the
left and the family of subtrees is on the right.
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contain node v4 ∈ V of the original graph G.)

The above definitions lead us to another result established by Gavril in [47]; every

chordal graph G = (V,E) has a special tree representation, the so called clique tree

representation, in which the tree is a spanning tree of K(G) and the family of subtrees

F = {T1, ..., T|V |} is defined by setting each Ti to the set of maximal cliques that contain

a node vi ∈ V . For example, Figure 5.2(e) shows a clique tree representation for a chordal

graph in Figure 5.2(a).

In what follows we show how one can enumerate all possible clique tree represen-

tations for a given chordal graph G = (V,E). Let us denote by Q(v) a set of maximal

cliques in the graph that contain a node v ∈ V , i.e., Q(v) = {Q ∈ Q(G) | v ∈ Q}. In any

clique tree representation of G, the family of subtrees is completely determined by the set

{Q(v) | v ∈ V }, and therefore is unique. What distinguishes one clique tree representation

of the graph from another is the spanning tree of K(G) used in the representation; we

call this tree a clique tree. As every Q(v) has to be a connected subgraph of a clique tree,

the set {Q(v) | v ∈ V } can be thought as a set of constraints that have to be satisfied

by any clique tree; i.e., a clique tree is a spanning tree of K(G) for which every Q(v) is

connected. The power of these constraints depends on the structure of the graph, so there

are graphs with a unique clique tree and there are graphs for which almost any spanning

tree of K(G) is a valid clique tree. It was shown [15] that clique trees are exactly maxi-

mum weight spanning trees of K(G), where the weight function on the edges of K(G) is

defined as the amount of overlap between two maximal cliques, i.e., w(Q,Q′) = |Q ∩Q′|.

Although the above relation gives an immediate algorithm to enumerate all the clique trees

for a chordal graph, we use an approach by Ho and Lee [63] that builds on a connection

between edges of a clique tree and the set of minimal vertex separators in the graph, since
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it provides a better insight into the source of non-uniqueness.

Given a graph G = (V,E) and a subset of nodes S ⊂ V , S is an xy-separator for

nodes x and y if the removal of S from the graph disconnects x and y, i.e., x and y are

in two different connected components of GV \S . We say that S is a minimal xy-separator

if it is an xy-separator and no proper subset of S disconnects x and y. Finally, S is a

minimal vertex separator if it is a minimal xy-separator for some x and y in the graph.

We denote by ∆(G) the set of all minimal vertex separators in G. For example, ∆(G)

for the graph in Figure 5.3(a) contains two minimal vertex separators, S1 = {v3, v4} and

S2 = {v4}. The separator S1 is a minimal separator for nodes v1 and v2 but not for nodes

v5 and v6 since the removal of S2 ⊂ S1 from the graph also disconnects v5 and v6.

Let S be a minimal vertex separator in a graph G = (V,E). The removal of S from

the graph creates several connected components. Each such connected component C has

no neighbors outside of S, i.e., N (C) ⊆ S. A connected component that is adjacent to

every element of S (N (C) = S) is a full connected component of S. We denote by C(S)

the set of all full connected components of S. For a full connected component C ∈ C(S)

we denote by K(C) the set of all maximal cliques in the graph that are contained in

C ∪ S and contain S, i.e., K(C) = {Q ∈ Q(G) | Q ⊂ C ∪ S and S ⊂ Q}. For example,

Figure 5.3(e) shows full connected components for separator S2 = {v4}; in this case

C(S2) = {C1, C2, C3}, K(C1) = {Q1, Q2}, K(C2) = {Q3}, and K(C3) = {Q4}.

Ho and Lee [63] establish the following connection between the edges of a clique tree

of a chordal graph and the set of minimal vertex separators in the graph: (i) for every edge

(Q,Q′) of the clique tree there is a minimal vertex separator S such that S = Q∩Q′; (ii)

for every minimal vertex separator S there is an edge (Q,Q′) in the clique tree such that

S = Q ∩Q′. Moreover, the number of times any given minimal vertex separator appears
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Figure 5.3: (a) A chordal graph G = (V,E). (b) The set of maximal cliques in G. (c) A
clique tree of G. (d) A set of minimal vertex separators of G. (d) The minimal vertex
separator S2 has three full connected components: C1, C2, and C3. (f) The graph G has 8
different clique tree representations. In this case, all variations in the corresponding clique
trees are due to the minimal vertex separator S2 and are shown here. For each spanning
tree of C(S2), all possible realizations are shown. Thus, spanning tree that connects C1 to
C2, and C2 to C3 has two different realizations.
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in the multi-set {Q ∩Q′ | (Q,Q′) is an edge of the clique tree}, is equal to the number of

its full components minus one. For example, consider the chordal graph in Figure 5.3(a),

the set of its minimal vertex separators in Figure 5.3(d), and one of its clique trees in

Figure 5.3(c). The minimal vertex separator S2 has three full connected components and

therefore corresponds to two edges of the clique tree: (Q1, Q3) and (Q3, Q4).

Ho and Lee use the above connection to devise an algorithm, Algorithm 1, that

given a chordal graph G = (V,E) can generate any clique tree of the graph. The algorithm

grows a clique tree by adding a set of |C(S)|−1 edges to the tree for every minimal vertex

separator S of the graph. To choose this set of edges, the algorithm first selects the

interconnection pattern between full connected components of S in line 3 (by constructing

a spanning tree on C(S)) and then “realizes” this interconnection pattern by choosing a

set of edges to be added to the clique tree in line 5. In their paper, Ho and Lee prove that

the algorithm not only produces a valid clique tree but is also able to generate any clique

tree for the graph through appropriate choices in lines 3 and 5. The graph in Figure 5.3(a)

has eight clique tree representations. In this case all clique trees are due to the minimal

vertex separator S2. Figure 5.3(f) shows how each clique tree is obtained, by showing

each spanning tree on C(S2) to the left and all its possible realizations to the right. For

example, the first row of Figure 5.3(f) shows a spanning tree that connects C1 to C2 and

C2 to C3. This spanning tree can be realized in two different ways, by connecting Q3 to

either Q1 or Q2 and connecting Q3 to Q4.

As can be seen from the algorithm, each minimal vertex separator S of the graph

contributes to the total number of clique trees through two quantities: (i) the number of

full connected components of S; (ii) for every full connected component C, the number

of maximal cliques in K(C). Quantity (i) affects the number different interconnection
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Algorithm 1 Generate a clique tree for a chordal graph

Require: A chordal graph G, a set of its maximal cliques, Q(G), and a set of its minimal

separators, ∆(G).

Ensure: T = (Q(G), E) is a clique tree for G.

1: E ← ∅

2: for every S ∈ ∆(G) do

3: Choose an arbitrary spanning tree T ′ on the set of full components of S, C(S)

4: for every edge (C1, C2) in T ′ do

5: Set E ← E ∪{(Q1, Q2)}, where Q1 is an arbitrary maximal clique from K(C1) and

Q2 is an arbitrary maximal clique from K(C2).

6: end for

7: end for

patterns of C(S) and the quantity (ii) affects the number of realizations of each such

pattern. To be more precise, if C(S) = {C1, ..., Ck}, then according to Cayley’s formula

the number spanning trees on C(S) is equal to
∑

d1+...+dk=2k−2,di≥1

( k−2
d1−1,...,dk−1

)

, where

di denotes the degree of Ci in a given spanning tree. The number of different realization

of a spanning tree with degree sequence {d1, ..., dk} is equal to
∏

i |K(Ci)|
di and therefore

the number of clique trees due to S is equal to

∑

d1+...+dk=2k−2,di≥1

(

(

k − 2

d1 − 1, ..., dk − 1

) k
∏

i=1

|K(Ci)|
di

)

.

Ho and Lee use the above to show that the total number of clique trees is equal to

∏

S∈∆(G)











∑

C∈C(S)

|K(C)|





|C(S)|−2
∏

C∈C(S)

|K(C)|






.
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5.1.2 Cographs and Modular Decomposition

Another graph theoretic technique that we use is modular decomposition. Consider

a pair of nodes u and v that have exactly the same set of neighbors, i.e., N (u) \ {v} =

N (v) \ {u}. We call the nodes of a pair strong siblings if they are connected by an edge,

and weak siblings otherwise. The strong siblings relationship is a transitive relationship,

meaning that if u and v are a pair of strong siblings and v and w are also a pair of strong

siblings, then u and w are strong siblings as well. Thus, the strong siblings relationship is

an equivalence relationship and a maximal set of strong siblings is well defined. The same

holds for the weak siblings relationship.

Modular decomposition of a graph is obtained by iteratively contracting maximal

sets of strong and weak siblings in the graph, until no more such sets can be found. At

this point, the graph contains either a single node or an irreducible set of nodes, which

is called a prime module. Thus, modular decomposition results in a tree-like hierarchical

representation of the graph, where the leaf nodes are in one-to-one correspondence with

the nodes of the graph and internal nodes correspond to contracted maximal sets of strong

and weak siblings. Each contracted maximal set of strong siblings is replaced by a series

module and each contracted maximal set of weak siblings is replaced by a parallel module

(cf. Figure 5.4(a)-(e)).

While modular decomposition can be applied to any graph, only graphs that be-

long to a special graph family called cographs can be completely decomposed [26], i.e.,

the decomposition stops with a trivial prime module. When a graph can be completely

decomposed, its modular decomposition tree can be used to derive a Boolean expression

that describes all maximal cliques in the graph. The Boolean expression is constructed by

moving along the tree from the leaves to the root, replacing each series module with an ∧
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Figure 5.4: (a)-(e) Contraction steps taken during modular decomposition of a graph.
(b)First, two maximal sets of weak siblings are contracted to supernodes {1, 2} and
{5, 6} . (c) Then, a maximal set of strong siblings is contracted to a supernode
{{1, 2}, 3}. (d) Then, a maximal set of weak siblings is contracted to a supern-
ode {{{1, 2}, 3}, {5, 6}}. (e) Finally, a maximal set of strong siblings is contracted
to a supernode {{{{1, 2}, 3}, {5, 6}}, 4}. (f) The corresponding modular decomposi-
tion tree. A Boolean expression that describes all the maximal cliques in the graph is
(((1 ∨ 2) ∧ 3) ∨ 5 ∨ 6) ∧ 4.
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operator and every parallel module with an ∨ operator (cf. Figure 5.4(f)). An alternative

characterization of cographs is in terms of forbidden subgraphs. A graph is a cograph if

and only if it does not contain a path of length four (P4), where the length is the number

of nodes, as an induced subgraph. We will refer to this forbidden subgraph as an induced

P4 later in the text.

5.2 The Complex Overlap Decomposition Method

In this work we use graph-theoretic tools to identify pseudo-complexes from protein

interactions within a functional module and to provide an alternative representation of

the functional module. The main idea behind our method, which is depicted in Figure 5.5,

is to provide a representation of a functional module that is analogous to a clique tree

representation for chordal graphs, but in which nodes are cographs (representing pseudo-

complexes) rather than maximal cliques (representing protein complexes). A pseudo-

complex is either a protein complex or a set of alternative variants of such complex.

For example, in the hypothetical protein interaction network in the upper-left corner of

Figure 5.5, cliques {1, 2, 3} and {1, 2, 4} may correspond to two variants of one complex,

where proteins 3 and 4 replace each other.

To systematically capture variants within a pseudo-complex, we use cographs to

model pseudo-complexes. Recall from Section 5.1.2 that all maximal cliques in a cograph

can be compactly represented by a Boolean expression. In the context of our application,

this Boolean expression provides a compact representation of all variants of a protein com-

plex within the corresponding pseudo-complex. Moreover, absence of an induced P4 guar-

antees that the diameter of a connected cograph is at most two. Consequently, connected

cographs are dense and cliquish, consistent with the assumption made by algorithms that
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Figure 5.5: An illustration of the Complex Overlap Decomposition (COD) method. We
add to the graph an edge, (3, 4), connecting a pair of weak siblings. A fill-in edge between
proteins 5 and 8 is added to eliminate all five 4-cycles in the graph: {5, 6, 8, 7}, {1, 5, 7,
8}, {2, 5, 7, 8}, {1, 5, 6, 8}, and {2, 5, 6, 8}. If the modified graph is chordal, all clique
tree representations are computed and each such representation is extended into a Tree
of Complexes representation of the original graph. The Tree of Complexes is constructed
by projecting each maximal clique in the modified graph, G∗, to a pseudo-complex in the
original graph G. For example, a four node maximal clique, {1, 2, 5, 8}, in G∗ is projected
to a four node pseudo-complex in G, by removing a fill-in edge (5, 8). Each pseudo-complex
is represented by a Boolean expression, such as (1 ∧ 2) ∧ (5 ∨ 8), which means that the
pseudo-complex contains two variants of a complex, {1, 2, 5} and {1, 2, 8}.
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delineate protein complexes.

If we knew in advance all pseudo-complexes in the module, then we could simply

connect the proteins within each pseudo-complex to turn it into a clique and, under the

assumption that the resulting graph is chordal, apply a clique tree construction algorithm

to the graph. Since we do not have predefined pseudo-complexes, our algorithm identifies

them by adding edges to the graph in such a way that each added edge connects a pair of

nodes that putatively belong to the same pseudo-complex.

The COD method’s edge addition strategy and its biological motivation build on

the concept of weak siblings. In terms of protein interaction networks, weak siblings are

proteins that interact with the same set of proteins but do not interact with each other.

In particular, proteins that can substitute for each other in a protein interaction network

may have this property. Similarly, weak siblings may correspond to a pair of proteins

that belong to the same complex but are not connected by an edge due to missing data

or an experimental error. In both cases we would like any two such proteins to end up

together in one or more pseudo-complexes. Thus, the COD method takes a first step

towards delineation of pseudo-complexes by connecting every pair of weak siblings by an

edge.

A pair of weak siblings can also be a source of multiple chordless cycles of length four

or squares in the graph, where the length is the number of nodes. For example consider a

pair of weak siblings, u and v. Pairs of non-adjacent nodes in the common neighborhood

of u and v in the network together with u and v form squares. Therefore, connecting

every pair of weak siblings the COD method not only delineates pseudo-complexes but

also eliminates some of the squares in the graph.

If, after connecting all pairs of weak siblings, the resulting graph is not chordal,
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the COD method attempts to transform it to chordal by adding some additional edges.

Consistent with our assumption that we connect only nodes corresponding to proteins that

could be put in the same pseudo-complex, we impose restrictions on this “fill-in” process.

Namely, we require that each introduced edge connects a pair of nodes that are close to

being weak siblings. In such a case the new edge is a diagonal of one or more squares in

the protein interaction network. We emphasize that adding edges between nodes of longer

cycles has no such justification. The edge addition procedure is described in more detail

in Section 5.2.1.

If the modification step succeeds (i.e., the modified graph is chordal) all the clique

tree representations of the modified graph are constructed and then extended to the Tree

of Complexes representations of the original graph. The COD algorithm keeps track of all

the edge additions and uses this information to delineate pseudo-complexes by projecting

each maximal clique onto the original network and removing all introduced edges contained

in the clique. For example, in the modified graph of Figure 5.5 a maximal clique with

four nodes, {1, 2, 5, 8}, is projected to a pseudo-complex by removing an edge connecting

protein 5 and 8. This pseudo-complex contains two variants of a protein complex, {1, 2, 5}

and {1, 2, 8}, which are compactly represented by the Boolean expression (1∧2)∧ (5∨8) .

If, on the other hand, the modified graph is not chordal, the COD method stops without

producing the representation.

5.2.1 Edge Addition Procedure

If after connecting every pair of weak siblings the resulting network is not chordal

then the COD method attempts to eliminate the remaining squares by adding a limited

set of edges that: (i) connect potentially functionally equivalent proteins, as measured by
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the overlap in neighborhoods or distance from being a pair of weak siblings; (ii) ensure

that a subgraph induced by the members of each pseudo-complex is a cograph.

We formulate the problem of finding a set of edges satisfying the above requirements

as an optimization problem. Each set of edges, S = {e1, ..., er}, is assigned a cost:

cost(S) =
∑

i

(1.0 − sim(ei)) ,

where sim(ei) takes values between 1.0 and 0.0, and measures our confidence in adding the

edge to the graph. Since the addition of ei = (ui, vi) implies an interaction or functional

equivalence between proteins ui and vi, we chose sim(ei) to be the amount of overlap

between the neighborhoods of ui and vi, i.e., sim(ei) = |N (ui)∩N (vi)|
|N (ui)∪N (vi)|

, where N (vi) denotes

a set of neighbors of node vi in the graph. Intuitively, sim(ei) measures how close ui and

vi are to being a pair of weak siblings. If ui and vi have the same neighborhoods then

sim(ei) = 1.0; as the overlap between the neighborhoods decreases, sim(ei) goes to 0.0.

As described in Section 5.2.1.1 the COD method uses a reduction to the Minimum

Vertex Cover problem to find all the minimal sets of up to k edges that eliminate all the

squares in the graph, where minimal means that no proper subset of the set eliminates all

the squares in the graph. From these sets it then picks an edge set with the minimum cost

among all the sets that do not form an induced P4 entirely contained in one of the maximal

cliques of the modified graph. As shown in the following lemma the last requirement is

necessary to ensure that a subgraph induced by the members of a pseudo-complex is a

co-graph.

Lemma: For every pseudo-complex, a subgraph of the original graph induced by the

members of the group contains an induced P4 if and only if the set of edges added by our

algorithm contains an induced P4.

Proof: The argument follows from Figure 5.6. Indeed, (v1, v2, v3, v4) is a P4 in the original
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v4

Figure 5.6: A P4 in the subgraph induced by the members of a pseudo-complex corresponds
to a P4 in the set of added edges. Solid lines correspond to the original edges and dashed
lines correspond to the added edges.
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Figure 5.7: A graph and a corresponding “square coverage graph”.

graph if and only if (v3, v1, v4, v2) is a P4 formed by the added edges.

5.2.1.1 Reduction to the Minimum Vertex Cover

A square in a graph can be eliminated by adding one or both of its chords (diagonals)

to the graph. For example, a graph in Figure 5.7 has two squares: (A,B,C,D) and

(A,B,E,D). Note that (B,C,D,E) is not a square as one of its diagonals, (C,E), is

an edge in the graph. The square (A,B,C,D) can be eliminated if either edge (A,C) or

(B,D) is added to the graph, and the diagonal (B,D) eliminates both squares. We are

interested in finding all minimal sets of diagonals of size up to k that eliminate all the

squares in the graph.

We reduce the above problem to the Minimum Vertex Cover problem. The squares

in the original graph become edges and diagonals become nodes in the new graph. Thus

the original graph is transformed to a square coverage graph, which in turn serves as an

input to the Minimum Vertex Cover problem. In the Minimum Vertex Cover problem
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we are given a graph and are asked to find the smallest set of nodes that cover all the

edges in the graph. An edge is covered if at least one of its end points is selected. Coming

back to our example, it can be easily seen that {(B,D)} is the minimum vertex cover

(Figure 5.7). The minimum vertex cover in the square coverage graph will give us the

minimum set of diagonals needed to eliminate all the squares in the original graph.

Although the Minimum Vertex Cover problem is an NP-hard problem, if the size

of the optimum solution is small an efficient algorithm can be obtained. In other words

the Minimum Vertex Cover problem is fixed-parameter tractable. We use an O(2kn)

algorithm [32] to identify all minimal sets of edges of size up to k that eliminate all the

squares in the graph.

5.3 Experimental Results

5.3.1 Mating Pheromone Signaling Pathway

In order to adapt to their environment, cells have to detect and respond to a vast

variety of external stimuli. The detection and translation of these stimuli to a specific

cellular response is achieved through a mechanism called signal transduction pathway or

signaling pathway. The general principles of signal propagation through a pathway are

common to almost all signaling pathways. First, an extracellular stimulus, usually a

chemical ligand, binds to a membrane bound receptor protein. The energy from this

interaction changes the state of the receptor protein, thus activating it. The active receptor

is able to pass the signal to the effector system that generates the cell’s response, for

example through activation of a group of transcription factors and subsequent change in

the expression of corresponding genes.

A variety of proteins carry information between the receptor protein and the effector
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system, the most common being protein kinases. A protein kinase is a special enzyme

that can add a phosphate group to certain residues of certain proteins through a process

called phosphorylation. Phosphorylation changes the protein’s ability to interact with

other proteins, either activating or suppressing it, and therefore is analogous to turning a

protein on or off.

The mating pheromone signaling pathway that we analyze here is one of the best

studied signaling pathways. Our description of this pathway, its organization and compo-

nents is based on a review by Bardwell [8]. There are two mating types of yeast cells. When

a yeast cell is stimulated by a pheromone secreted by a cell of an opposite mating type, it

undergoes a series of physiological changes in preparation for mating, which include signif-

icant changes in gene expression of about 200 genes, oriented growth towards the partner,

and changes in the cell-cycle. Signal propagation through the pathway is achieved through

interaction of the some 20 proteins. These interactions are schematically represented and

described in Figure 5.8.

We have taken protein interactions that span pathway components from the DIP

CORE network, a reliable subset of interaction from the DIP database [107]. The net-

work is shown in Figure 5.9(a). Since proteins STE2/STE3 are disconnected from the rest

of the components, we have removed them from the network in our analysis. The COD

method adds three diagonals, (STE4, BEM1), (FUS3, KSS1), and (GPA1, STE5), to elimi-

nate eleven squares in the network, which results in twelve pseudo-complexes listed in

Figure 5.9 along with the corresponding Boolean expressions. There are twelve Tree of

Complexes representations for this protein interaction network. All the representations

agree on the interconnection pattern between pseudo-complexes, B-E, H, and J-L. The

difference between various tree variants comes from how pseudo-complexes A, F -G, and
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Figure 5.8: A schematic representation of the key components of the pheromone signaling
pathway assembled from information in [8]. A pheromone peptide binds a G-protein cou-
pled receptor or GPCR (STE2/STE3). The activated receptor binds and activates a trimeric
G-protein: Gα subunit (GPA1), Gβ subunit (STE4) and Gγ subunit (STE18). The flow of
information then proceeds via a three-tiered mitogen-activated protein kinase (MAPK)
cascade and results in activation of STE12 transcription factor and subsequent upregula-
tion of about 200 genes. The MAPK cascade also activates the FAR1 protein, which is
hypothesized to trigger a G1 cell-cycle arrest through an interaction with CDC28, a master
regulator of the cell-cycle. The MAPK cascade consists of three protein kinases STE11,
STE7 and either FUS3 or KSS1, which activate each other sequentially through phospho-
rylation. Thus STE11 activates STE7, which in turn activates either FUS3 or KSS1. The
phosphorylation process is enhanced through a presence of a scaffold protein STE5, which
binds and thus co-localizes all three components of the MAPK cascade. Activated FUS3

and KSS1 proteins in turn bind their substrates, DIG1/DIG2/STE12 complex and FAR1 pro-
tein. Another branch of the pathway, which includes proteins FAR1, CDC24, CDC42, and
BEM1, is responsible for triggering a “polarized growth towards the mating partner” or
polarization response.
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I are connected to the rest of the tree: (i) pseudo-complex A can be attached either

through (A,C), or (A,B), or (A, J); (ii) pseudo-complex I through (I,E), or (I,D); (iii)

pseudo-complexes F -G through (F,E) or (F,H).

In what follows we use the Tree of Complexes representation shown in Figure 5.9(b)

but the same argument applies to other representations as well. The activation of the

pathway corresponds to node A in the tree, which contains the Gβ protein. From node

A, the Tree of Complexes splits into two branches. One branch roughly corresponds to

the MAPK cascade activated response, while another branch roughly corresponds to the

morphogenesis response.

The MAPK cascade branch spans four nodes in the tree: I, D, E, and H. The STE50

protein aids in activation of STE11 by STE20, which in our representation comes out nicely

in how I node merges with the rest of the MAPK branch. There is no interaction between

STE11 and STE20 in the DIP network. As a result STE20 is not a part of the MAPK

branch of the tree. The activation of transcription factor complex by FUS3 and KSS1 is in

nodes F and G. The morphogenesis branch spans nodes J , K and L.

Compare the representation in Figure 5.9(b) to the schematic representation of

the pheromone signaling pathway shown in Figure 5.8. Using only protein interaction

information, the COD method was able to recover two branches of the pathway, the

MAPK cascade branch (I, D, E, H) and the polarization branch (J , K, L).

5.3.2 DNA Replication Module

DNA replication is a process by which cells duplicate their genetic material during

cell division. To ensure that each daughter cell receives a complete and accurate copy of

the DNA from the mother cell, each segment of the DNA has to be copied exactly once
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Figure 5.9: (a) The protein interaction network for the components of the pathway. The
network was drawn with Pajek [11]. (b) One of the twelve possible Tree of Complexes
representations for the network. The activation of the pathway corresponds to node A
in the tree which contains the Gβ (STE4) protein. From node A, the Tree of Complexes
splits into two branches. One branch roughly corresponds to the MAPK cascade activated
response, while another branch roughly corresponds to the polarization response. The
MAPK cascade branch spans four nodes in the tree: I, D, E, and H. The activation of
transcription factor complex by FUS3 and KSS1 is in nodes F and G. The polarization
branch spans nodes J , K and L.
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and the copying process has to be completed within a certain time window. To achieve

this coordination, eukaryotic cells use a complex molecular machinery, where key protein

complexes are formed through an ordered series of steps. Our description of these protein

complexes and their components is adapted from an excellent review of eukaryotic DNA

replication by Bell et al. [13].

In yeast, DNA replication starts at several sites (about 400) along the genome,

termed replication origins, and proceeds in a parallel fashion, where each replication ori-

gin recruits molecular machinery needed to copy a segment of DNA to the neighboring

replication origin.

The activation of origins occurs in two successive steps. First, a pre-replication

complex (pre-RC) is assembled. The formation of pre-RC marks potential sites for the

initiation of DNA replication and is commonly referred to as the origin licensing step. The

activation of pre-RC complex by cyclin-dependent kinases (CDKs) and Dbf4-dependent

kinases (DDKs) triggers formation of pre-initiation complexes (pre-ICs) around the ori-

gin that recruit molecular machinery necessary to duplicate the DNA. This molecular

machinery includes following elements: DNA helicases are enzymes that separate DNA

strands; ssDNAs proteins bind a single stranded DNA to prevent its entanglement; DNA

polymerases are enzymes that synthesize a polynucleotide chain, selecting between four

different nucleotides at each step according to the instructions of the complementary

strand.

In yeast, pre-RC formation involves an ordered assembly of the following four pro-

teins/protein complexes: ORC (Origin Recognition Complex), CDC6, CDT1, and MCM

(Mini-Chromosome Maintenance) complex. Upon activation, proteins CDC6 and CDT1

leave the origin. The release of CDC6 and CDT1 coincides with the recruitment of CDC45
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and a ssDNA, RPA1 (Replication Protein A). It is believed that CDC45 serves as a bridge

between pre-RC and the proteins involved in DNA duplication: DNA Polymerase α, RFC

(Replication Factor C) complex, PCNA (Proliferating Cell Nuclear Antigen) complex, and

DNA polymerase ǫ.

We applied the COD method to the network assembled by Jansen et al. using a

Bayesian Network approach and multiple sources of interaction evidence [72]. The subnet-

work under consideration, shown in Figure 5.10(a), contains only the proteins identified

from the protein interaction network by Jansen et al. , and not all proteins involved in the

process. The protein interaction network is chordal and does not contain weak siblings.

Therefore no graph modifications are necessary. There are three Tree of Complexes rep-

resentations of the protein interaction network: pseudo-complex A can be attached to the

rest of the tree either through (A,B), or (A,C), or (A,D).

In what follows we use the Tree of Complexes representation shown in Figure 5.10(b)

but the argument holds for the other representations as well. The activation of pre-RC

complex, nodes A and B in the Tree of Complexes, and subsequent recruitment of DNA

polymerases and other molecular machinery involved in DNA copying is clearly visible.

Proteins POL2 and DPB2, which are part of DNA polymerase ǫ, appear in nodes C and D

respectively. DNA polymerase α/primase (proteins POL1, POL12, PRI1, and PRI2), RFC

complex (proteins RFC2 and RFC5), and PCNA (protein POL30) appear later on.

5.4 Summary

Mature experimental techniques exist that allow the inference of protein interactions,

and recent proteomic studies used these and other technologies to characterize protein

interactions among the components of many cellular processes. Even though protein
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Figure 5.10: The DNA replication module. (a) Corresponding protein interaction network
from the study of Jansen et al. [72]. (b) One of the three possible Tree of Complexes
representation for the network.
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interaction networks for many cellular processes are available, we have little knowledge of

the dynamical properties of protein interactions involved in these processes.

To bridge this gap we developed a computational method to extract the dynamical

properties of protein interactions from the inherently static topology of the protein inter-

action network. Given a protein interaction network spanning components of a cellular

process, our method constructs a tree-like representation, called a Tree of Complexes repre-

sentation, of the process. In this representation the nodes correspond to pseudo-complexes

formed during the process. Moreover, the representation satisfies the additional condition

that pseudo-complexes that contain any given protein induce a connected subgraph of the

underlying tree. In this way, the representation captures not only the overlap between

the pseudo-complexes but also the manner in which proteins enter and leave their enclos-

ing pseudo-complexes. If the formation of pseudo-complexes during the process follows a

specific order, our representation can be used to hypothesize about this order. Indeed,

once the root of the tree is fixed, the representation induces a partial order between the

pseudo-complexes in the module, which in turn can be used to infer temporal relationships.

The application of our method to two protein interaction networks underlying well

studied cellular processes in Saccharomyces cerevisiae demonstrated that it is able to

recover known temporal relationships.
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Chapter 6

Topological Determinants of Lethality 3

In their influential paper, Jeong et al. [73] observed that high-degree nodes in the

protein interaction network of Saccharomyces cerevisiae are enriched in essential proteins.

The authors further hypothesized that high-degree nodes tend to be essential due to the

central role they play in maintaining the overall connectivity of the network by mediating

interactions among other less connected proteins. Consequently, high-degree nodes are

also referred to as hubs in the literature. (In this thesis we use the terms “high-degree

nodes” and “hubs” interchangeably.)

The hypothesis of Jeong et al. implies that biological characteristics of a protein,

such as lethality, may be explained by its placement in the network, i.e., topological promi-

nence implies biological importance. If true, the hypothesis has important implications

for the burgeoning field of Systems Biology.

In a recent study, however, He et al. [62] challenged the causal connection between

global network topology and essentiality, and provided an explanation for the centrality-

lethality rule in terms of essential protein interactions. Under the essential protein inter-

actions model the majority of proteins are essential due to their involvement in one or

more essential protein interactions that are distributed uniformly at random among the

network edges. Consequently, hubs are predominantly essential because they are involved

in more interactions and thus are more likely to be involved in one which is essential.

3This chapter is derived from “Essential complex biological modules explain the centrality-lethality

rule” by E. Zotenko, J. Mestre, D. P. O’Leary and T. M. Przytycka, submitted for publication.
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In this chapter we re-examine the connection between the topological prominence

and essentiality. Toward this end, we conduct a rigorous analysis of five protein interac-

tion networks for Saccharomyces cerevisiae compiled from diverse sources of interaction

evidence; the networks used in this study are described in Section 6.4.1. We carefully eval-

uate the previously proposed explanations for the centrality-lethality rule on the tested

networks. The results of this evaluation are described in Section 6.4.2 and Section 6.4.3.

There exist numerous measures of topological prominence, called network centrality

indices; local centrality indices assign centrality values based on the topology of the node’s

local neighborhood whereas betweenness centrality indices assign centrality values based

on the node’s role in maintaining the connectivity between pairs of other nodes in the

network. Even though by definition degree centrality is a local measure, depending on

the structure of the network, hubs may play an important role in maintaining the overall

connectivity of the network. To clarify the role of essential proteins in general and essential

hubs in particular in maintaining the overall network connectivity, we compare degree

centrality to other local and betweenness centrality indices. The centrality indices used in

this study are described in Section 6.1.

If high-degree nodes play an important role in maintaining the overall network con-

nectivity, then their removal should disrupt the connectivity between pairs of other nodes

in the network as much as the removal of nodes having high betweenness centrality values.

One common way to measure the impact of nodes’ removal on the network connectivity

is by monitoring the decrease in the size of the largest connected component. While the

removal of a set of nodes may not disconnect various parts of the network, it may im-

pair significantly the “quality of communication” between them. Therefore we introduce

two additional measures, which we call network integrity measures, to capture various as-
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pects of the effect of nodes’ removal on the ability of other nodes to communicate. These

measures are described in Section 6.2.

The results of our experiments indicate that the previously proposed explanations for

the centrality-lethality rule do not hold in the tested networks. Therefore, we put forward

an alternative explanation in terms of essential complex biological modules, abbreviated

here as ECOBIMs. Essential complex biological processes are biological processes that

are: (i) essential for an organism’s vitality as measured by the large fraction of essential

proteins and (ii) composed of proteins that interact extensively with each other. We

hypothesize that the majority of hubs are essential due to their involvement in one or

more ECOBIMs. To test our hypothesis we develop two complementary methods to

extract putative ECOBIMs from a protein interaction network, described in Section 6.3.

In Section 6.4.4 we demonstrate that membership in putative ECOBIMs accounts for the

centrality-lethality rule in the tested networks.

6.1 Network Centrality Indices

A network centrality index assigns a centrality value to each node in the network and

quantifies its topological prominence. Topological prominence can be defined in a number

of ways, and over the years many centrality indices were introduced emphasizing different

aspects of network topology [79]. In a local centrality index, the node’s centrality value

is mainly influenced by the topology of its local neighborhood. A well-known example of

a local centrality index is degree centrality, where the node’s centrality value is equal to

the number of its immediate neighbors. Betweenness indices, on the other hand, assign

centrality values based on the node’s role in maintaining the connectivity between pairs

of other nodes in the network. A well known example of a betweenness centrality index is
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shortest-path betweenness centrality where the node’s centrality value is proportional to

the fraction of shortest paths that pass through it.

In this work we compare the degree centrality (DC) measure to two other local

measures: eigenvector centrality (EC) [18] and subgraph centrality (SC) [33], and to two

betweenness measures: shortest-path betweenness centrality (SPBC) [39], and current-flow

betweenness centrality (CFBC) [93].

We give the precise definition of these measures in Sections 6.1.1-6.1.4 and we illus-

trate the differences among the five centrality measures on a toy network in Figure 6.1(a).

In this network two cliques K50 and K10 are interconnected by an edge (A1, B1) and

through a node D. The nodes of K50 are labeled A1 . . . A50 and the nodes of K10 are

labeled B1 . . . B10. The additional node C attaches to K50 through A2. Figure 6.1(b)

shows the ranking of network nodes based on the centrality values assigned by the five

centrality measures.

In the description of the centrality indices below we use n to denote the number

of nodes, m the number of edges, and A the adjacency matrix of the protein interaction

network under consideration. As the networks we deal with are undirected and unweighted,

the adjacency matrix is a symmetric n-by-n 0-1 matrix such that aij = 1 if and only if

the nodes i and j are adjacent.

Both the eigenvector and subgraph centrality indices rely on the eigenvalue decom-

position of the adjacency matrix [117]: A = UΛUT , where U = [~u1, ..., ~un] is an orthogonal

matrix whose columns contain the right eigenvectors of A and Λ = diag(λ1, ..., λn) is a

diagonal matrix of the eigenvalues of A; thus, we have A~ui = λi~ui. We will further assume

that λ1 ≥ λ2 ≥ ... ≥ λn.
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Figure 6.1: The difference between centrality measures demonstrated on a toy network.
(a) The toy network consists of two cliques K50 with nodes A1 . . . A50 and K10 with
nodes B1 . . . B10. The two cliques are interconnected by an edge (A1, B1) and through an
additional node D. Additional node C attaches to the network through A2. (b) Ranking
of network nodes according to centrality values produced by the five measures.

6.1.1 Eigenvector Centrality

The eigenvector centrality index assigns centrality values based on the eigenvector

that corresponds to the largest eigenvalue of the adjacency matrix of the network. The

derivation of the eigenvector centrality values can be cast in a form of an iterative process:

(i) start with an initial vector of centrality scores ~c0 = (c0
1 . . . c0

n), (ii) in iteration k + 1

update the centrality score of a node i using the scores of its neighbors from the previous

iteration: ck+1
i =

∑

j is a neighbor of i ck
j , and then normalize the scores ~ck+1 =

~ck+1

||~ck||2
. In

matrix form this is expressed as ~ck+1 = A~ck
||~ck||2

.

It can be shown that the above iterative process converges to the eigenvector that

corresponds to the largest eigenvalue of the adjacency matrix of the network. In fact,

this procedure is equivalent to the widely used power method for computing the largest

eigenvalue of a matrix and its corresponding eigenvector [97]. Thus, the centrality values
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are the entries in the vector ~u1.

6.1.2 Subgraph Centrality

The subgraph centrality value of a node is proportional to the number of closed

walks that start and terminate at the node. The number of walks of length k that start

and terminate at a given node is given by the diagonal entries of Ak and the number of

closed walks of any length by the diagonal entries of
∑∞

k=0 Ak. To ensure finite centrality

values, the number of closed walks of length k is weighted by 1
k! ; i.e., the centrality values

are equal to the diagonal elements of
∑∞

k=0
Ak

k! .

The centrality values can be efficiently computed using the eigenvalue decompo-

sition of A. Indeed, if Ak = UΛkUT then
∑∞

k=0
Ak

k! is equal to U(
∑∞

k=1
Λk

k! )U
T or

Udiag(eλ1 , ..., eλn )UT .

6.1.3 Shortest-Path Betweenness Centrality

Under the shortest-path betweeness index, the node’s centrality value is equal to

the average fraction of shortest paths that pass through the node. Let us denote by σs,t

the number of shortest paths between nodes s and t, and by σs,t(i) the number of shortest

paths between s and t that pass through a third node i. Then the centrality value of the

node i is equal to
∑

s,t
σs,t(i)
σs,t

.

The straightforward computation of shortest-path betweenness values requires Θ(n3)

time and Θ(n2) space. In this thesis we use the algorithm due to Brandes [20] that allows

computation of the centrality values in O(nm + n2 log n) time and O(n + m) space.
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6.1.4 Current-Flow Betweenness Centrality

The current-flow centrality measure extends the shortest-path centrality measure

by taking into account other paths in addition to shortest paths. This is achieved using a

current flow paradigm, where the network is viewed as an electrical current network with

each edge having a unit resistance. When a unit of current is introduced at a source node,

s, and is removed at a sink node, t, current flows along the paths from s to t with shorter

paths getting bigger amounts of flow. The current-flow centrality value of a node is equal

to the total amount of current that passes through the node summed over all possible

pairs of source and sink nodes.

Given a pair of source and sink nodes, s and t, computing the amount of current

that passes through other nodes of the graph involves solving for voltage values, ~vs,t =

{vs,t
1 , ..., vs,t

n }, that satisfy the Kirchhoff’s potential (voltage) law :

for each i,
∑

j is adjacent to i

vs,t
i − vs,t

j = bs,t
i =































0 : i 6= s and i 6= t

+1 : i = s

−1 : i = t

,

where |vs,t
i − vs,t

j | is the amount of current that flows between i and j. If vs,t
i − vs,t

j > 0

then the current flows from i to j, and if vs,t
i − vs,t

j < 0 then the current flows from j to i.

The above constraints form a system of linear equations: (D − A)~vs,t = ~bs,t. The

matrix (D − A) is the Laplacian of the graph, one of several special matrices associated

with graphs. It is well known that the Laplacian corresponding to a connected graph

with n nodes has rank (n− 1); thus the above system has an infinite number of solutions.

Indeed, if ~vs,t is a solution then so is ~ws,t = ~vs,t + a~1 for any scalar a. Therefore, in [93]

a unique solution ~vs,t is obtained by additionally requiring that ~vs,t
r = 0 for an arbitrary
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node r; for simplicity let r = n.

Let W denote a matrix obtained from (Dn − An)−1 by adding a zero last column

and row:

W =









(Dn −An)−1 0(n−1)×1

01×(n−1) 0









,

where Dn and An denote matrices obtained from D and A by deleting the nth row and

column. Pre-computing W allows for efficient computation of voltage values for all pairs

of source and sink nodes. Indeed, given a pair of source and sink nodes, s and t, ~vs,t =

W~bs,t = ~ws − ~wt, and thus can be computed in O(n) time.

Given voltage values ~vs,t, the current-flow betweenness centrality value of i is equal

to
∑

s,t

∑

j is adjacent to i |v
s,t
i − vs,t

j |. Computing the current-flow betweenness values takes

O(n2m) time where computing W takes O(n3) and summarizing the voltage values takes

O(n2m) time.

Current-flow betweenness centrality is by far the most computationally expensive in-

dex among the tested indices. Therefore, its implementation had to be fine-tuned to make

computation of centrality values for large networks feasible. As we implemented the cen-

trality indices using the Python programming language, we had to be careful to avoid loop

constructs and to reduce the code to matrix/vector computations that are implemented

efficiently in the Python numerical package numpy. For example, for a network with 2, 316

nodes and 5, 569 edges the computation of W takes 28 seconds, the summarization step

using a straightforward implementation takes over 2 hours, and the summarization step us-

ing the fine-tuned implementation takes 14 minutes. The pseudo-code for straightforward

and fine-tuned implementations is given in Algorithm 2 and Algorithm 3.
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Algorithm 2 Compute current-flow betweenness centrality values

Require: The matrix W .

Ensure: ~c is a vector whose entries are current-flow betweenness values.

1: ~c← ~0

2: for every s in 1...n do

3: for every t in s + 1...n do

4: Set ~v ← ~ws − ~wt.

5: for every edge e = (i, j) do

6: Update ci ← ci + |vi − vj|.

7: Update cj ← cj + |vi − vj |.

8: end for

9: end for

10: end for
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Algorithm 3 Compute current-flow betweenness centrality values

Require: The matrix W .

Ensure: ~c is a vector whose entries are current-flow betweenness values.

1: ~c← ~0

2: for every i in 1...n do

3: Form Ŵdi×n from rows of W that correspond to the neighbors of i.

4: Form Rdi×n such that rj,t = wi,t − ŵj,t.

5: for every s in 1...n do

6: Form Xdi×n such that ~xt = ~rs − ~rt.

7: Update ci ← ci + sum of the absolute values of entries of X. (Correctness follows

from the fact that the value of ci is increased by
∑

t

∑

j is adjacent to i |v
s,t
i − vs,t

j | =

∑

t

∑

j is adjacent to i |(w
s
i − ws

j )− (wt
i − wt

j)|.)

8: end for

9: end for
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6.2 Network Integrity Measures

We introduce two measures, which we call network integrity measures, to capture

various effects of node removal on the ability of other nodes to communicate. An integrity

measure maps a set of nodes S to a value between 0 and 1, with the value of 0 being

assigned when the removal of S completely disrupts the communication and the value of

1 being assigned when it causes no disruption.

In the description of the integrity measures below we use G(V,E) to denote the

protein interaction network under consideration. We use n to denote the number of nodes

and m the number of edges in the network.

6.2.1 Shortest-Path Integrity

Our first measure, shortest-path integrity, quantifies the increase in the length of the

shortest path due to the removal of S and is given by
P

s,t/∈S max(C−dS(s,t),0)
P

s,t/∈S max(C−d(s,t),0) , where d(s, t)

is the length of the shortest path between s and t in the original network, dS(s, t) is the

length of the shortest path between s and t after the removal of S, and C is a constant.

In this work we set the value of C to be twice the diameter of the original network.

6.2.2 Edge-disjoint Paths Integrity

Our second measure, edge-disjoint paths integrity, quantifies the decrease in the

number of edge-disjoint paths and is given by
P

s,t/∈S fS(s,t)
P

s,t/∈S f(s,t) , where fS(s, t) is the number

of edge-disjoint paths between s and t in the modified network and f(s, t) is this value in

the original network.

Computing the number of edge-disjoint paths between two nodes, s and t, amounts

to a max-flow computation. Thus, the naive approach to computing the edge-disjoint
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paths integrity measure takes O(n2 T (n,m)) time, where T (n,m) is the time it takes to

find a maximum flow in an undirected unweighted graph. (The currently-known best value

for T (n,m) is O(min(n3/2,m)m1/2), which is due to Goldberg and Rao [52].) However,

there is a more efficient way to compute the integrity measure using a number of graph

theoretical concepts such as Menger’s Theorem, Gomory-Hu Trees and Min-Weight Tree

Decomposition.

Given a pair of nodes s and t, an s-t cut is a partition of nodes in the network into

two sets X and Y containing s and t respectively. The cost of the cut (X,Y ) is defined

as the number of edges that cross the boundary between X and Y . A minimum s-t cut

is defined as an s-t cut of minimum cost. Clearly the maximum number of edge-disjoint

s-t paths cannot exceed the cost of the minimum s-t cut. Menger’s Theorem [86] states

that these two quantities are, in fact, equal. Thus, we can rewrite our integrity measure

as
P

s,t/∈S cS(s,t)
P

s,t/∈S c(s,t) , where c(s, t) is the cost of a minimum s-t cut in G and cS(s, t) is the

cost of a minimum s-t cut in G[V \ S]. This quantity can be computed with the aid of a

Gomory-Hu Tree. For simplicity we describe how to compute
∑

s,t/∈S c(s, t).

In their classical 1961 paper, Gomory and Hu [54] introduced the notion of a cut tree,

also known as Gomory-Hu tree, which succinctly encodes the value c(s, t) for all s, t ∈ V .

A cut tree is a weighted tree T with node set V . For any pair of nodes s, t ∈ V , let m(s, t)

be the minimum weight edge in the unique path connecting s and t in T , and let Xm(s,t)

and Ym(s,t) be the node sets of the two trees obtained by removing m(s, t) from T . For

any s, t ∈ V , a cut tree has the following remarkable properties: (i) the weight of m(s, t)

equals c(s, t); (ii) the cut (Xm(s,t), Ym(s,t)) is a minimum s-t cut. Not only did Gomory

and Hu prove that a cut tree always exists, but they also showed how to compute a cut

tree by performing n − 1 max-flow computations. Although the high level idea behind
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their algorithm is simple, its implementation is rather involved. For our purpose we use

a much simpler algorithm due to Gusfield [57] to compute an equivalent flow tree, which

also runs in O(n T (n,m)) time. An equivalent flow tree only has the first propety of a cut

tree described above, namely, the weight of m(s, t) equals c(s, t) for any s, t ∈ V .

Denote by T the equivalent flow tree of G. The naive way to compute
∑

s,t/∈S c(s, t)

using T takes O(n3) time since finding m(s, t) for s, t /∈ S can take Θ(n) time in the worst

case. A more efficient alternative is to use a min-weight tree decomposition of T . Given

a weighted tree T , its min-weight tree decomposition is a rooted full binary tree D(T )

whose internal nodes are edges of T and leaf nodes are nodes of T . The tree D(T ) is

defined recursively as follows:

• If T has a single node u, then D(T ) consists of the single node u.

• Otherwise, T has at least one edge. Let e be a minimum weight edge of T and let

T1 and T2 be the two trees obtained from T by removing e. Then the root of D(T )

is e and its two children are the roots of D(T1) and D(T2) respectively.

Given an equivalent flow tree T of a graph, it is easy to compute
∑

s,t/∈S c(s, t) in

O(n) time using its min-weight tree decomposition. Indeed, each internal node e in D(T )

contributes to
∑

s,t/∈S c(s, t) its weight times the number of pairs s, t /∈ S such that s is a

leaf in the subtree rooted at the left child of e and t is a leaf in the subtree rooted at the

right child. The computation of D(T ) can be done in O(n2) time by following its recursive

definition, or in expected O(n log n) time using a randomized algorithm [87].
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6.3 Computational Methods for Identifying Essential Complex Biological Modules

We hypothesize that the majority of hubs are essential due to their involvement

in essential complex biological processes (ECOBIMs), biological processes that are in-

dispensable for organism’s vitality and whose components interact extensively with each

other. Therefore, in general, ECOBIMs correspond to highly connected subnetworks of

nodes, with shared biological function, that are enriched in essential proteins. Proteins

are deemed to share biological function if they are annotated with the same GO biological

process term from a set of 192 biological process terms, selected by a group of experts to

represent relevant aspects of molecular biology [92].

To test our hypothesis, we developed two complementary methods for automatic

extraction of putative ECOBIMs from a protein interaction network. Both methods were

applied to subnetworks induced by proteins annotated with the same biological process GO

term, one network at a time. The high-level idea underlying the methods is to start from

highly connected seeds of proteins and iteratively add nodes maintaining high connectivity.

Thus, the methods start with a seed, a k-clique of proteins, and extend it through addition

of proteins that have at least r neighbors already in the seed; the result is the set of putative

ECOBIMs returned by the methods. We should mention that for a given GO subnetwork

all possible seeds are explored, as a result several, possibly overlapping ECOBIMs may be

extracted from the subnetwork.

The main difference between the methods is in the way the enrichment in essential

proteins is achieved. The first method is a one-step procedure where the enrichment and

high connectivity are enforced simultaneously by requiring that: (i) initial seeds are k-

cliques of essential proteins, and (ii) a non-essential protein is considered for addition only

if it is adjacent to at least ress essential proteins already in the seed.
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The second method, on the other hand, is a two-step procedure where the enrichment

in essential proteins is achieved through a filtering step that follows the initial seed selection

step. In the filtering step the minimal number of seeds that cover most of the essential

proteins initially present is greedily selected. Let us denote by S = {S1, ..., Sl} the set of

initial seeds and by E the set of essential proteins present in ∪l
i=1Si. Ideally we would like

to select the cheapest subset of initial seeds that cover a large enough fraction of proteins

in E , where the cost of the seed is equal to the fraction of non-essential proteins that it

contains. This is precisely the Partial Set Cover problem. Define the benefit of a seed

S ∈ S with respect to a given collection C ⊆ S as the number of essential proteins in S that

do not belong to any set in C. Slavik [114] studied a simple heuristic that greedily builds

a solution by picking at each step a seed, minimizing its cost divided by its benefit with

respect to the sets chosen so far, until the coverage requirement is met. He showed that

this algorithm produces a solution with cost at most ln ∆ times the optimum, where ∆ is

the maximum number of essential proteins in any seed. On the negative side, Fiege [36]

showed that for any constant ǫ > 0 there is no polynomial time algorithm that returns

a solution with cost at most (1 − ǫ) ln ∆ times the optimum unless NP problems can be

solved in quasi-polynomial time. Therefore, Slavik’s result is essentially the best possible.

In our application ∆ ≈ 150; thus the heuristic is guaranteed to return a solution no worse

than 5 times the optimum; in practice, however, the solutions found are usually much

better than what the worst case analysis guarantees.
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6.4 Experimental Results

6.4.1 Protein Interaction Networks

Recently several hypotheses that linked structural properties of protein interaction

networks to biological phenomena have come under scrutiny [3, 17, 27, 10, 9], with the

main concern being that the observed properties are due to experimental artifacts and/or

other biases present in the networks and as such lack any biological implication. To limit

the impact of such biases on the results reported in our study, we selected five genome-wide

protein interaction networks for Saccharomyces cerevisiae compiled from diverse sources

of interaction evidence, as described in Section 4.2: a high-confidence network derived

mostly from small-scale experiments (the DIP CORE network) [29], a network derived

solely from small-scale studies reported in the literature (the LC network) [101], a high-

confidence network derived from a variety of interaction sources (the HC network) [10], a

network derived solely from high-throughput affinity purification experiments (the TAP-

MS network) [25], and a network derived solely from interactions predicted in silico using

Bayesian formalism (the BAYESIAN network) [72].

Table 6.1 summarizes structural properties of the tested networks. (Here and

throughout this chapter we work with the largest connected component of each protein in-

teraction network.) The networks differ not only in the number of nodes/edges but also in

number of other structural parameters. For example, TAP-MS and BAYESIAN networks

are much more cliquish than the other networks, judging by the number of cliques present

in the network (data not shown). This is not surprising as the edges in these networks

correspond to membership in multi-protein complexes.
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ess. nodes edges degree distance k-conn. 3-cliques 5-cliques
DIP CORE 0.29 2, 316 5, 569 4.81 5.22 2.16 0.50 0.12
LC 0.27 3, 224 11, 291 7.00 4.22 2.77 0.59 0.24
HC 0.30 2, 752 9, 097 6.61 4.90 2.81 0.60 0.26
TAP-MS 0.32 1, 994 15, 819 15.87 4.82 4.74 0.72 0.51
BAYESIAN 0.22 4, 135 20, 984 10.15 4.33 3.13 0.44 0.22

Table 6.1: Structural properties of the protein interaction networks used in our study:
fraction of essential proteins, number of nodes, number of edges, average degree, average
shortest path, average number of edge disjoint paths, fraction of nodes covered by 3-cliques,
and fraction of nodes covered by 5-cliques.

6.4.2 Lethality and Betweenness

Even though degree centrality is a local centrality index, in some networks hubs may

play an important role in maintaining the overall connectivity of the network. For example,

it was demonstrated that in some scale-free networks the removal of hubs affects the ability

of other nodes to communicate much more than the removal of random nodes [1]. To clarify

the topological role of hubs in the tested networks, we compared degree centrality to two

other local indices (eigenvector centrality (EC) [18] and subgraph centrality (SC) [33]),

and to two betweenness indices (shortest-path betweenness centrality (SPBC) [39], and

current-flow betweenness centrality (CFBC) [93]).

Since betweenness indices rank nodes based on their role in mediating communica-

tion between pairs of other nodes in the network, it is interesting to see whether hubs are

as effective in disconnecting the network as nodes with high betweenness centrality values.

One common way to measure the impact of nodes’ removal on the network con-

nectivity is by monitoring the decrease in the size of the largest connected component.

Figures 6.2(a)-(e) show, for the five protein interaction networks, how the removal of the

most central nodes, random nodes, and essential proteins affects the network connectivity.

As expected, removing nodes with high local centrality values is much less disruptive than

removing those with high betweenness centrality values. Interestingly, degree centrality is
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shortest-path integrity
dc ec sc spbc cfbc rand

DIP CORE 3.31e-03 3.03e-01 2.14e-01 9.39e-03 2.19e-03 7.88e-01±2.85e-02
LC 1.11e-02 3.92e-01 3.87e-01 7.47e-02 3.24e-03 8.43e-01±4.28e-02
HC 1.36e-01 5.67e-01 5.91e-01 6.02e-02 5.23e-03 8.24e-01±3.43e-02
TAP-MS 4.45e-01 6.51e-01 6.51e-01 5.34e-02 3.30e-02 8.07e-01±2.49e-02
BAYESIAN 1.81e-01 6.22e-01 6.05e-01 9.56e-02 5.19e-03 NA

edge-disjoint paths integrity
dc ec sc spbc cfbc rand

DIP CORE 2.23e-03 3.15e-01 2.10e-01 7.08e-03 1.68e-03 6.89e-01±2.54e-02
LC 1.08e-02 3.82e-01 3.75e-01 8.19e-02 2.34e-03 7.43e-01±2.88e-02
HC 1.41e-01 5.33e-01 5.58e-01 6.65e-02 4.03e-03 7.21e-01±2.19e-02
TAP-MS 3.21e-01 5.49e-01 5.49e-01 7.21e-02 5.11e-02 7.39e-01±2.20e-02
BAYESIAN 1.98e-01 5.77e-01 5.67e-01 1.05e-01 1.86e-02 NA

Table 6.2: Two network integrity measures, shortest-path integrity and edge-disjoint paths
integrity, are used to quantify the impact of the removal of the 20% most central nodes on
the network connectivity. An integrity measure maps a set of nodes S to a value between
0 and 1, with the value of 0 being assigned when the removal of S completely disrupts
the communication and the value of 1 being assigned when it causes no disruption. We
also show the impact of node removal in random order. These values for the BAYESIAN
network are not available (shown as NA), as their computation is computationally de-
manding.

as efficient in shattering the network as betweenness in the DIP CORE and LC networks,

is as inefficient as the local indices in the TAP-MS network, and is somewhere in between

the local and betweeness indices in the HC and BAYESIAN networks.

While the removal of a set of nodes may not disconnect various parts of the network,

it may impair significantly the “quality of communication” between them. For example,

there can be an increase in the length of shortest path or decrease in the number of

alternative paths between pairs of nodes in the network. Network integrity measures

capture various aspects of the effect of nodes’ removal on the ability of other nodes to

communicate. (See Section 6.2 for the description of the network integrity measures.)

We find that even when these more sensitive measures are used, the observations made

above about the disruptive power of hubs relative to other most central proteins hold (see

Table 6.2).
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Figure 6.2: (a)-(e) The impact of node removal is quantified by the fraction of nodes in the
largest connected component. There is one curve for each centrality measure that shows
the fraction of nodes in the largest connected component as a function of the fraction of the
most central nodes removed. We also show the impact of node removal in a random order
and the size of the largest connected component when all essential proteins are removed.
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essential random non-essential

DIP CORE 0.519 0.504 ± 0.007
LC 0.578 0.551 ± 0.010
HC 0.521 0.525 ± 0.005
TAP-MS 0.512 0.512 ± 0.011
BAYESIAN 0.685 0.625 ± 0.006

Table 6.3: For each network, we compare the effect of the removal of essential proteins
to the removal of an equivalent number of random non-essential proteins with the same
degree distribution, by looking at the fraction of nodes in the largest connected component.

Next, we examined whether the disruption power of hubs comes mainly from essen-

tial hubs. First, we observe that the removal of all essential genes is less disruptive than

the removal of an equivalent number of most central nodes according to any index (see

Figure 6.2(a)-(e)). Moreover, as shown in Table 6.3, the removal of essential nodes is not

more disruptive than the removal of an equivalent number of random non-essential nodes

that have the same degree distribution. We conclude that even though in some networks,

most notably in the DIP CORE, LC, and HC networks, the removal of hubs is disruptive,

this disruption is not related to the essentiality of hubs. On the contrary, essential genes

are indistinguishable in that respect from the random non-essential genes with the same

degree distribution.

Above we demonstrated that various centrality indices vary considerably in their

ability to measure disruption in the overall connectivity of the network. Next we asked

whether this difference is reflected in the enrichment levels. Figure 6.3 shows the frac-

tion of essential proteins among central proteins, taking the top 20% according to the five

centrality indices. We observe that the local centrality indices have enrichment levels com-

parable to those of betweeness indices and in some cases even higher. But most notably,

degree centrality fares better than any other centrality index in all five networks; the supe-

riority of degree centrality is even more apparent when the Kendall’s tau rank correlation
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Figure 6.3: Fraction of essential proteins among the 20% most central proteins according
to the five centrality measures; under random we show the expected fraction of essential
proteins were the nodes drawn uniformly at random from the network nodes.

coefficient is used to measure correlation between centrality values and essentiality (see

Table 6.4).

As there is considerable correlation between degree centrality and other centrality

indices (see Table 6.4), we used Kendall’s tau partial rank correlation coefficient to see

whether any of the indices is correlated with essentiality beyond their correlation with

degree centrality index. We found that, controlling for the correlation with degree, the

correlation with essentiality is reduced to statistically insignificant values for betweenness

centrality indices and is greatly reduced for local indices (see Table 6.4).

The above observations indicate that the main topological determinant of essen-

tiality is the node’s local neighborhood rather than its role in maintaining the overall

connectivity of the network. In particular, even though betweeness centrality indices are

much more effective in shattering some networks, their correlation with essentiality is

reduced to statistically insignificant levels by subtracting their correlation with degree
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eigenvector subgraph
τdc τess τess.dc τdc τess τess.dc

DIP CORE 0.436 (29.6) 0.151 (8.9) 0.064 (3.8) 0.579 (39.3) 0.173 (10.2) 0.060 (3.5)
LC 0.461 (37.3) 0.225 (15.6) 0.095 (6.6) 0.462 (37.4) 0.225 (15.6) 0.094 (6.5)
HC 0.476 (37.6) 0.239 (15.4) 0.106 (6.8) 0.496 (37.2) 0.240 (15.4) 0.100 (6.4)
TAP-MS 0.516 (33.5) 0.117 (6.4) -0.007 (0.4) 0.516 (33.5) 0.117 (6.4) -0.007 (0.4)
BAYESIAN 0.466 (42.7) 0.165 (13.0) 0.046 (3.6) 0.467 (42.9) 0.170 (13.4) 0.051 (4.0)

shortest-path current-flow
τdc τess τess.dc τdc τess τess.dc

DIP CORE 0.713 (46.2) 0.153 (8.6) -0.002 (0.1) 0.836 (55.2) 0.188 (10.8) 0.013 (0.7)
LC 0.667 (51.7) 0.212 (14.1) 0.002 (0.1) 0.829 (65.4) 0.257 (17.4) -0.008 (0.5)
HC 0.623 (45.0) 0.201 (12.4) 0.005 (0.3) 0.772 (56.7) 0.242 (15.2) -0.006 (0.4)
TAP-MS 0.459 (28.5) 0.124 (6.5) 0.018 (0.9) 0.619 (39.5) 0.160 (8.6) 0.017 (0.9)
BAYESIAN 0.637 (56.5) 0.176 (13.4) 0.005 (0.4) 0.806 (72.1) 0.228 (17.6) 0.018 (1.4)

Table 6.4: We use Kendall’s tau rank correlation coefficient to measure the correlation of
centrality measure with degree centrality (τdc), with essentiality (τess), and with essential-
ity after controlling for correlation with degree centrality (τess.dc). Statistical significance
is assessed using z-scores which are shown in parentheses.

centrality.

6.4.3 Lethality and the Essential Protein Interactions Model

Recently He and colleagues [62] proposed an explanation for the centrality-lethality

rule in terms of essential protein interactions: a protein is essential either due to its

involvement in one or more essential protein interactions or due to other factors. The

authors argue that the determination of protein essentiality in the protein interaction

network can be captured by a simple random process: (i) distribute essential protein

interactions among the edges of the network uniformly at random with probability α; (ii)

distribute essential proteins among the nodes of the network uniformly at random with

probability β. Thus, according to the model, the probability (PE) of a protein with k

neighbors being essential is PE = 1 − (1 − α)k(1 − β), and the natural logarithm of the

fraction of non-essential proteins among proteins of degree k has a linear dependency on

k: log(1− PE) = log(1− α)k + log(1− β).

97



simulation weighted line fitting line fitting
α β α β α β

DIP CORE 0.0649 0.0814 0.0286 0.2106 0.0626 0.0982
LC 0.0512 0.0255 0.0154 0.2097 0.0360 0.1456
HC 0.0662 0.0045 0.0304 0.1737 0.0375 0.1705

Table 6.5: We use three strategies to estimate the parameters, α and β, of the essential
protein interaction model [62]: the network simulation as described in the original paper
(simulation), line fitting to points (log(1− PE), k) for k ≤ k0 (line fitting), and weighted
line fitting to points (log(1− PE), k) for all values of k (weighted line fitting).

To evaluate the model on the tested networks we used three strategies to estimate the

model’s parameters: a network simulation procedure, line fitting to points (log(1−PE), k)

for k ≤ k0, and weighted line fitting to points (log(1 − PE), k) for all values of k. (In

weighted line fitting the contribution of (log(1− PE), k) to the error function is weighted

by the fraction of nodes having degree k.) The first two strategies are described by He et

al. They deem the agreement of parameter values estimated using the network simulation

and line fitting strategies to be one of the strongest indications for the validity of the

model. But in our networks, the parameter values estimated using different strategies

vary considerably (see Table 6.5). Moreover for estimates with high values of α the model

results in a significantly higher fraction of essential proteins among high-degree nodes, as

shown in Table 6.6. (In their paper, He et al. point out that their model may not work in

networks where the edges represent membership in the same protein complex. Thus we

excluded the TAP-MS and BAYESIAN networks from the analysis.)

We note that from the assumptions of the essential protein interaction model it

follows that if two proteins do not interact then the essentiality of one protein in such a pair

does not depend on the essentiality of the other protein. Furthermore, this independence

should also be observed when proteins share interaction neighbors. To test whether this

holds in real data, we computed the number of non-adjacent protein pairs with three or
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observed expected
simulations weighted line fitting line fitting

DIP CORE 0.504 0.682 (< 1.0e− 05) 0.513 (4.2e− 01) 0.676 (< 1.0e− 05)
LC 0.579 0.716 (< 1.0e− 05) 0.472 (1.0e− 00) 0.649 (4.5e− 03)
HC 0.619 0.780 (< 1.0e− 05) 0.594 (8.1e− 01) 0.653 (1.4e− 01)

Table 6.6: The difference between fraction of essential proteins among 10% highest degree
nodes in real networks and that predicted by the essential protein interaction model. The
statistical significance of the difference is measured with p-values which are shown in
parenthesis.

total observed expected
simulations weighted line fitting line fitting

DIP CORE 1, 849 1, 135 945.33 (3.6e− 10) 936.22 (5.2e− 11) 944.25 (3.0e− 10)
LC 10, 777 6, 143 5, 690.46 (6.1e− 10) 5, 553.41 (7.9e− 16) 5, 542.31 (2.3e− 16)
HC 5, 907 3, 516 3, 214.04 (2.2e− 08) 2, 969.04 (5.4e− 24) 3, 003.80 (2.6e− 21)

Table 6.7: The number of non-adjacent protein pairs with three or more common neighbors
where both proteins are either essential or non-essential. For each network, we show the
total number of non-adjacent pairs with three or more common neighbors in the network
(total), the number of pairs with both proteins being essential or non-essential in the
network (observed), and the expected number under the model (expected) for three sets
of model parameter values. In parentheses we show the statistical significance of the
difference in observed and expected values estimated using the exact Fischer test.

more neighbors that are either both essential or both non-essential in the tested networks

and compared these numbers to the expected number of such pairs under the model. As

shown in Table 6.7, the model does not capture the correlation in essentiality observed in

the tested networks, as there is a statistically significant difference between the number of

such pairs observed in real data and the number expected under the model. Consequently,

the essential interaction model is rejected with high confidence.

6.4.4 Lethality and Essential Complex Biological Modules

From the argument presented in Section 6.4.3 it follows that the essentiality of pairs

of proteins that share neighbors is correlated. Therefore we hypothesized that densely

connected subnetworks are either enriched or depleted in essential proteins in general
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and in essential hubs in particular. Moreover, it is well known that densely connected

subnetworks are also enriched in proteins that share biological function. In this section

we demonstrate the existence of essential complex biological modules (ECOBIMs), highly

connected subnetworks of nodes with shared biological function, which are enriched in

essential proteins. (In this work proteins are deemed to share biological function if they

are annotated with the same GO biological process term from a set of 192 terms which

were selected by a group of experts to represent relevant aspects of molecular biology [92].)

We show that most essential hubs belong to such ECOBIMs and the fraction of essential

proteins among hubs that are not the members of ECOBIMs is much lower than what

would be expected by chance.

We designed two complementary methods, described in Section 6.3, to extract pu-

tative ECOBIMs from a protein interaction network. For the DIP CORE, LC, and HC

networks the values of parameters are k = 4, r = 3, and ress = 2. For the BAYESIAN and

TAP-MS networks, due to the cliquish nature of these networks, the values of parameters

are k = 5, r = 4, and ress = 3.

Although the methods differ in how the putative ECOBIMs are computed, they

produce ECOBIMs that contain an almost identical set of proteins (see Table 6.8) implying

that the heuristic applied in the second method captures the properties of ECOBIMs

correctly. From now on we limit our analysis to the set of ECOBIMs identified by the

first method, as the largely non-overlapping nature of this set makes the statistics more

transparent.

The putative ECOBIMs identified by our two-step procedure mostly correspond to

large essential multi-protein complexes such as anaphase promoting complex (APC) and

DAM1 protein complex, but not exclusively complexes. For example, the largest ECOBIM
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one-step procedure two-step procedure
num. genes ess. genes enrich. num. genes ess. genes enrich. overlap

DIP CORE 51 315 228 0.72 33 352 252 0.72 0.83
LC 77 790 513 0.65 33 815 516 0.63 0.80
HC 78 687 477 0.69 48 696 498 0.72 0.86
TAP-MS 44 620 375 0.60 31 611 386 0.63 0.87
BAYESIAN 70 764 492 0.64 37 825 513 0.62 0.88

Table 6.8: The putative ECOBIMs produced by the two methods agree on the set of
proteins they contain. For each network we show the number of ECOBIMs identified by
the two methods, and the number of genes and the number of essential genes they contain.
We also show the amount of overlap between the corresponding set of genes, where the
amount of overlap between sets A and B is |A∩B|

|A∪B| .

identified in the LC network contains multi-protein complexes involved in the process of

RNA polymerase 2 transcription [59], such as RNA polymerase 2, general transcription

factors, the mediator complex, etc.

To examine to what extent the membership in ECOBIMs accounts for the centrality-

lethality rule we partitioned the top 20% of the nodes, ordered by degree, into two groups:

those that are members of one or more ECOBIMs (ECOBIM hubs) and those that are

not (non-ECOBIM hubs), and compared their enrichment values. As shown in Figure 6.4,

the enrichment values for non-ECOBIM hubs are not only lower than those for ECOBIM

hubs but are also lower than the background enrichment values.

We next asked whether there is a correlation between degree and lethality for net-

work nodes that are not members of the ECOBIMs. Ideally, if the centrality-lethality

phenomenon is completely accounted for by membership in ECOBIMs there would be no

statistically significant correlation. Unfortunately the set of automatically identified ECO-

BIMs is an approximation only. For example, some proteins may be missing from their

respective ECOBIMs due to incomplete functional annotation of the yeast proteome. As

these proteins will generally have many neighbors among successfully identified ECOBIM

members, we would expect the correlation, if it exists, to be due to edges that connect
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Figure 6.4: Fraction of essential proteins among various types of degree hubs, the 20%
highest-degree nodes in the network: all hubs, hubs that are members of ECOBIMs (ECO-
BIM hubs), hubs that are not members of ECOBIMs (non-ECOBIM hubs). Fraction of
essential proteins among all proteins in the network is also shown (random).

these proteins to the ECOBIMs. To check if this the case, we used the Kendall’s tau rank

correlation coefficient to compute correlation between essentiality and degree, essentiality

and the number of ECOBIM neighbors, and partial correlation between essentiality and

degree, controlling for correlation with the number of ECOBIM neighbors. As shown

in Table 6.9, even though correlation between essentiality and degree for nodes that are

not members of ECOBIMs is much less than that for all network nodes, it is still sta-

tistically significant. However, in all networks except the LC network, this correlation is

reduced to statistically insignificant values after correction for correlation with the number

of ECOBIM neighbors is performed.

6.5 Summary

The enrichment of high-degree nodes in essential proteins, known as the centrality-

lethality rule, suggested that the topological prominence of a protein in a protein inter-

action network may be a good predictor of its biological importance. Even though the

correlation between degree and essentiality was confirmed by many independent studies,
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all nodes non ECOBIM nodes
τdc τdc τecobimdc τdc.ecobimdc

DIP CORE 0.217 (12.0) 0.078 (3.9) 0.169 (7.9) 0.035 (1.8)
LC 0.315 (20.8) 0.097 (5.4) 0.083 (4.4) 0.064 (3.6)
HC 0.318 (19.5) 0.066 (3.4) 0.161 (7.8) 0.001 (0.1)
TAP-MS 0.238 (12.6) 0.035 (1.5) 0.035 (1.4) 0.023 (1.0)
BAYESIAN 0.271 (20.3) 0.041 (2.7) 0.053 (3.3) 0.021 (1.4)

Table 6.9: We use Kendall’s tau rank correlation coefficient to measure correlation be-
tween essentiality and degree (τdc), number of ECOBIM neighbors (τecobimdc), and de-
gree controlled for correlation with the number of ECOBIM neighbors (τdc.ecobimdc). For
comparison we include correlation between essentiality and degree for all network nodes.
Statistical significance of correlation values is given by z-scores which are shown in paren-
theses.

until recently there was no systematic attempt to examine the reasons for this correlation.

To identify the main topological determinant of essentiality and to provide a bio-

logical explanation for the connection between the network topology and essentiality, we

performed a rigorous analysis of five genome-wide protein interaction networks for Sac-

charomyces cerevisiae. We demonstrated that the majority of hubs are essential due to

their involvement in Essential Complex Biological Modules, a group of densely connected

proteins that are annotated to the same biological process GO term, and are enriched

in essential proteins. Moreover, we rejected two previously proposed explanations for

the centrality-lethality rule, one relying on the assumption that essential hubs maintain

the overall network connectivity and another relying on the recently published essential

protein interactions model.
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Chapter 7

Conclusions and Directions for Future Work

As the number of completely sequenced genomes grows we are faced with the im-

portant but daunting task of assigning function to proteins encoded by newly sequenced

genomes. The main focus of this thesis was on developing computational methods which

can be used to facilitate protein function assignment at the molecular and cellular levels.

One of the oldest and most powerful approaches for functional annotation of newly

discovered proteins transfers annotation from evolutionarily related proteins of known

function. Despite advances in protein sequence comparison, distantly related proteins can

still only be detected by the most accurate protein structure alignment methods. Due to

inherent difficulty of the protein structure alignment problem these methods are compu-

tationally expensive and cannot be used in high-throughput studies of protein structure.

To overcome this deficiency, reliable methods are usually combined with less accurate but

fast protein structure comparison methods. In Chapter 3 we described our contribution

in the area of fast protein structure comparison.

Over the past decade several high-throughput experimental techniques to detect

protein interactions were developed. These experimentally-determined interactions are

routinely represented by a graph, a protein interaction network, with nodes representing

the proteins and edges representing the interactions between the proteins. The study of the

topological properties of these networks has become an important tool in studying protein

function at the cellular level and formulating hypotheses about the general organization
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principles of biological systems. In Chapter 5 and Chapter 6 we described our contribution

in exploring the connection between the topology of protein interaction networks and

protein biological function.

Here we summarize our contributions and present directions for future work.

7.1 Fast Protein Structure Comparison with Structural Footprinting

Projection methods are a class of fast protein structure comparison methods that

achieve a considerable speed-up over full-fledged protein structure alignment methods by

mapping a protein structure to a high-dimensional vector. Once the mapping is done

the structural similarity is approximated by the distance computation between the corre-

sponding vectors. In the process of mapping some structural information is lost. Thus,

the central issue in designing a good projection method is how to define a mapping that

is able to capture all the salient features of protein structure.

In Chapter 3 we systematically addressed this issue by introducing the structural

footprinting framework. Our framework defines a family of projection methods that differ

in the “structural alphabet” used by the method to describe protein structure. In fact,

a large variety of methods can be generated that emphasize different aspects of protein

structure.

We demonstrated that structural footprinting is a useful approach for designing fast

protein structure comparison methods. In particular, the SSEF method is more accurate in

detecting homologous protein pairs than other projection methods. Moreover, the results

of our experiments indicate that the SSEF method is well suited to be combined with a

full-fledged protein structure alignment method to allow high-throughput protein structure

comparison. First, the method is extremely fast. Second, when a certain reasonable
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number of errors is permitted, the method achieves coverage not only significantly higher

than that of sequence comparison and other projection methods, but also comparable to

that of some full-fledged protein structure alignment methods. We stress that the coverage

at reasonably high error levels determines the suitability of the method for a screening

application, since a few false positive results, which result in overhead for the method being

sped up, can be tolerated as long as most of the related (similar) domains are retrieved.

We also explored how the retrieval accuracy of a structural footprinting method

depends on the structural alphabet used. Not surprisingly, the SSEF method, whose

structural alphabet incorporates secondary structure information and completely ignores

less conserved loop regions, has the best performance on average in retrieving evolutionar-

ily related protein pairs. However, we also found that no structural footprinting method

performs the best in all cases, which means that some groups of evolutionarily related

proteins exhibit structural variability that is better tolerated by structural alphabets used

by LFF and SEGF methods. To take advantage of the relative strengths of the methods

we proposed strategies to combine the methods. As expected the combined method signif-

icantly outperforms the SSEF method which is the best structural footprinting method.

Moreover, the results of our experiments indicate that combining a pair of methods whose

performance is least correlated results in the biggest improvement. Thus, combining the

SSEF and SEGF methods is more beneficial than combining the SSEF and LFF meth-

ods, even though the LFF method has a significantly better performance than the SEGF

method.

The results of our study point to promising directions for future work. We have

shown the benefit of combining structural footprinting methods that employ comple-

mentary structural alphabets. Therefore, a systematic way of defining complementary
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structural alphabets should be investigated. To expand the space of possible structural

alphabets, inclusion of information based on additional aspects of protein structure should

be investigated. In this thesis, structural alphabets were derived solely from the geome-

try of protein structure (i.e., the atomic coordinates) and no other information was used.

For example, it was recently demonstrated that a structural descriptor of the third hy-

pervariable (V3) loop region of the HIV viral gene coding for the envelope protein gp120,

which combines structural information with physico-chemical properties of the correspond-

ing residues, allows significantly better discrimination between the two co-receptors that

bind the protein [108]. Therefore, evaluating the effect of incorporating residue physico-

chemical properties and other information into the description of structural fragments on

the performance of the structural footprinting method is an interesting direction for future

work.

7.2 Dynamic Formation of Multiprotein Complexes

Mature experimental techniques exist that allow the inference of protein interactions,

and recent proteomic studies used these and other technologies to characterize protein

interactions among the components of many cellular processes. Even though the protein

interaction networks for many cellular processes are available, we have little knowledge of

the dynamical properties of protein interactions involved in these processes.

In Chapter 5 we proposed a tree-like representation, called a Tree of Complexes rep-

resentation, of cellular processes. In our representation the nodes correspond to pseudo-

complexes formed during the process. Moreover, the representation satisfies the additional

condition that pseudo-complexes that contain any given protein induce a connected sub-

graph of the underlying tree. In this way, the representation captures not only the overlap
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between the pseudo-complexes but also the manner in which proteins enter and leave

their enclosing pseudo-complexes. If the formation of pseudo-complexes during the pro-

cess follows a specific order, our representation can be used to hypothesize about this

order. Indeed, once the root of the tree is fixed, the representation induces a partial order

between the pseudo-complexes in the module, which in turn can be used to infer temporal

relationships.

We relied on structural and algorithmic results for two well-studied graph families,

chordal graphs and cographs, to develop an automatic method that extracts pseudo-

complexes from a protein interaction network underlying a cellular process and outputs all

valid Tree of Complexes representations of the process. Even though a Tree of Complexes

representation is not unique, the protein interaction networks that we analyzed admit

very few alternative tree topologies. For example, the pheromone signalling pathway

admits twelve and the replication module three very closely related Tree of Complexes

representations.

Our method generalizes the previous approach, due to Farach-Colton and col-

leagues [34], of extracting temporal information from the topology of a protein interaction

network. As opposed to this previous approach, our method accounts for two phenomena

clearly illustrated in the pheromone signaling pathway described in Section 5.3.1. First,

the dynamic complex formation does not always follow a linear pathway but rather has a

tree structure, where various branches correspond to the activation of different response

systems. Our method allows us to model such processes by utilizing chordal graphs and

their corresponding clique trees, rather than interval graphs, to model the complex for-

mation. Second, many multi-protein complexes have several variants. For example, the

MAPK complex centered at the scaffold protein STE5 includes either KSS1 or FUS3, but not
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both. Our method explicitly accommodates these situations through pseudo-complexes

which are modeled with cographs and their corresponding modular decomposition. It

should be noted that cographs and their modular decomposition were previously used by

Gagneur et al. to expose the hierarchical organization of protein complexes [43].

Although our algorithm is not guaranteed to produce a Tree of Complexes repre-

sentation for every possible protein interaction network, the algorithm will succeed for

a broad family of graphs, which includes chordal graphs (and thus interval graphs) and

cographs. Currently, our method can be applied to protein interaction networks that do

not contain long (longer than four nodes) chordless cycles. We distinguish between two dif-

ferent types of problematic networks for our method. The first type includes networks for

which imposing a temporal order that encompasses all pseudo-complexes in the network

is meaningless. The second type includes networks for which such order is meaningful,

but the assumption that the complex formation has a tree-like structure is not valid. It

would be interesting to investigate the extension of our approach to deal with networks of

the second type by utilizing graph-theoretical tools developed for other specialized graph

families, such as circular-arc graphs.

7.3 Topological Determinants of Lethality

The enrichment of high-degree nodes in essential proteins, known as the centrality-

lethality rule, suggested that the topological prominence of a protein in a protein interac-

tion network may be a good predictor of its biological importance. There exist numerous

measures of topological prominence or network centrality indices; local centrality indices

assign centrality values based on the topology of the node’s local neighborhood whereas

betweenness centrality indices assign centrality values based on the node’s role in main-
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taining the connectivity between pairs of other nodes in the network. Even though by

definition degree centrality is a local measure, depending on the structure of the network

hubs may play an important role in maintaining the overall connectivity of the network.

In this thesis we sought to identify the main topological determinant of essentiality and a

biological explanation for the connection between the network topology and essentiality.

To address this question in Chapter 6 we performed a rigorous analysis of five pro-

tein interaction networks for Saccharomyces cerevisiae compiled from diverse sources of

interaction evidence. To clarify the topological role of essential proteins in general and

essential hubs in particular we compared degree centrality to other local and betweenness

centrality indices. We found that while in some networks high-degree nodes are as impor-

tant in maintaining the overall network connectivity as nodes having high betweenness

centrality values, this property is not due to essential proteins. On the contrary, essential

proteins are indistinguishable in that respect from non-essential proteins having the same

degree distribution. We also found that degree centrality is a better predictor of essen-

tiality than any other measure tested and that correlation of betweenness indices with

essentiality is entirely due to their correlation with degree centrality. Thus, we conclude

that the topological determinant of essentiality is the node’s local neighborhood rather

than its role in maintaining the overall connectivity of the network.

Next we examined whether the essential interactions model, recently proposed to

explain the centrality-lethality rule, is valid in the tested networks. We found that the

model’s central assumption that the majority of proteins are essential due to their in-

volvement in one or more essential protein interactions, which are distributed uniformly

at random among the edges of the network, violates basic clustering patterns of essential

proteins in the networks we examined. The uniform distribution of essential protein inter-
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actions implies that, as long as two proteins do not interact, the essentiality of one protein

in the pair is independent of the essentiality of the other protein. However, in real protein

interaction networks the essentiality of pairs of proteins that share many neighbors is cor-

related and the number of non-adjacent protein pairs that share three or more neighbors

and are either both essential or both non-essential significantly deviates from the expected

number of such pairs under the model. Consequently, we rejected the essential interactions

explanation with high-confidence.

The above observations led us to propose an alternative explanation for the centrality-

lethality rule in terms of ECOBIMs which are biological processes that are: (i) essential

for an organism’s vitality as measured by the large fraction of essential proteins and (ii)

composed of proteins that interact extensively with each other. We developed two com-

plementary methods to extract putative ECOBIMs from a protein interaction network.

Both methods rely on GO biological process annotation and look for densely connected,

essential subnetworks of proteins that are annotated with the same GO biological term.

We demonstrated that the membership in ECOBIMs accounts for the centrality-

lethality rule in the tested networks. In particular we showed that the majority of essential

hubs belong to one or more ECOBIMs, and hubs that are not members of ECOBIMs

are depleted in essential proteins. Furthermore, for proteins that are not members of

ECOBIMs the correlation of degree centrality with essentiality is due to the number of

ECOBIMs neighbors; i.e., high-degree nodes that have few neighbors in ECOBIMs are

not enriched in essential proteins.

The outcome of our experiments results point to an interesting direction for future

investigation. We demonstrated that there are no grounds for a causal relationship between

the topological prominence, as measured by betweenness centrality, and essentiality. Does
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this observation hold if we consider other definitions of biological importance? While

essential proteins are not distinguishable from non-essential proteins in their ability to

disrupt the network, perhaps other biologically important proteins are. As pointed out in

the study by Batada et al. [9], other indications of biological importance include the rate

of evolution, tight control of the abundance and activity as measured by mRNA half-lives,

and the number of phosphorylation sites.
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