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We present two contributions to human movement analysis: (a) a ballistic

dynamical model for recognizing movements, and (b) a model for coupling edge

continuity with contour matching.

We describe a Bayesian approach for visual analysis of ballistic hand move-

ments, namely reaches and strikes. These movements are most commonly used for

interacting with objects and the environment. One of the key challenges to recog-

nizing them is the variability of the target-location of the hand - people can reach

above their heads, for something on the floor, etc. Our approach recognizes them in-

dependent of the movement’s target-location and direction by modelling the ballistic

dynamics. A video sequence is automatically segmented into ballistic subsequences

without tracking the hands. The segments are then classified into strike and reach

movements based on low-level motion features. Each ballistic segment is further

analyzed to compute qualitative labels for the movement’s target-location and di-

rection. Tests are presented with a set of reach and strike movement sequences.



We present an approach for whole-body pose contour matching. Contour

matching in natural images in the absence of foreground-background segmentation

is difficult. Usually an asymmetric approach is adopted, where a contour is said

to match well if it aligns with a subset of the image’s gradients. This leads to

problems as the contour can match with a portion of an object’s outline and ignore

the remainder. We present a model for using edge-continuity to address this issue.

Pairs of edge elements in the image are linked with affinities if they are likely to

belong to the same object. A contour that matches with a set of image gradients is

constrained to also match with other gradients having high affinities with the chosen

ones. A Markov Random Field framework is employed to couple edge continuity

and contour matching into a joint optimization process. The approach is illustrated

with applications to pose estimation and human detection.
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Chapter 1

Introduction

Automated visual recognition of human movements is a principal enabling

technology for video-based activity analysis and human computer interaction sys-

tems. The applications are wide-ranging, from medical diagnosis and monitoring

the well-being of the aged, to multimedia content analysis and surveillance systems.

We present contributions to pose-estimation and dynamical modelling for movement

recognition systems.

Human pose-estimation addresses the problem of identifying the pose of hu-

mans in images. For example, a traffic hand-signal recognition system would esti-

mate the position of the arms of the person directing traffic to recognize gestures

such as “turn left” and “turn right”. A popular approach for estimating the pose is

to collect example silhouettes of humans in different poses, and compare them with

the test image. Typically, the body’s outline is represented with a contour which

is compared with the image edges. However, edge clutter present in natural images

complicates this task. We explore the utility of edge continuity for improving the

estimation accuracy. In doing so, we build upon more than three decades of research

in perceptual organization and edge continuity. An edge affinity model is presented

that combines edge continuity with color statistics. This is combined with an exten-

sion to the Chamfer matching approach into a unified pose-estimation algorithm.
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We show the efficacy of the model by applying it to human pose estimation and as

part of a gesture recognition system. This concept is further developed to couple

edge affinity and contour matching in a joint optimization problem using Markov

Random Fields (MRFs). It is illustrated with a human detection task.

Tracking human poses is one of the principal challenges in movement recog-

nition [53]. The reasons include ambiguity in pose estimation due to noisy edges

and pose singularities, and errors in the dynamics. A number of recent studies have

addressed this issue by relying on low-level image and motion features that avoid

tracking. The emphasis is on applying machine learning techniques to model the

statistics of these features. However, most such approaches perform recognition

on relatively distinct action classes such as kneeling, sitting, standing, kicking, etc.

We present an approach that attempts to take a middle-ground between explicit

pose-tracking and employing solely low-level features. Psychological studies of hu-

man movements propose that common human movements are ballistic in nature.

When humans become adept at executing an action, the movement speed increases,

resulting in impulsive propulsion. This, in turn, results in a simplified trajectory

of the hand and other body parts. The high movement speeds that make pose-

tracking hard also provide characteristic signatures to the motion features that can

be modelled with machine learning schemes. We develop a Bayesian model for bal-

listic movements to perform recognition without pose-tracking. Continuous videos

are automatically segmented into individual ballistic movements, each of which are

recognized based upon the dynamics of low-level cues, and the starting and ending

pose of the person.
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Chapter 2 reviews psycho-kinesiological studies on ballistic movements and

describes the key observations used in our work. One of its secondary aims is to

present the findings to the computer vision community from an action recognition

perspective for future research. Chapter 3 presents the Bayesian model for ballistic

movements and illustrates it with experiments on motion capture data. The prob-

abilistic framework provides robustness and allows the approach to be potentially

combined with parallel research in movement recognition. These ideas are further

developed into a video-based movement recognition system, described in Chapter 4.

The edge affinity model for pose matching is presented in Chapter 5, and the MRF-

based framework is described in Chapter 6.
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Chapter 2

Ballistic Hand Movements

The objective of visual analysis of human activity is to automatically under-

stand the intentions guiding human actions observed in video and to identify stylistic

attributes. It has numerous applications, such as analyzing customer behavior in

retail stores, monitoring the well-being of senior citizens, assigning semantic labels

to videos, and surveillance. Interactions with objects and the environment forms a

key component of human activities. Consider an everyday scenario, such as a person

boiling water for tea in a kitchen. This activity may be considered to consist of a

sequence of actions such as opening a cupboard, reaching for the pot kept inside,

putting the pot on a burner and so on. Analyzing a video recording of the activity

of “brewing tea” would involve recognizing these individual movements - this is the

focus of our study. This chapter presents motivations and challenges to the auto-

matic recognition of human movements, and the limitations of state-of-the-art vision

approaches. It then describes certain observations reported in psycho-kinesiological

studies of human movements, and how these can be used as leverage for automatic

recognition. These ideas are further developed in Chapters 3 and 4 into a video-

based movement recognition system.

Continuing with our illustrative activity of brewing tea, a typical adult who is

familiar with the kitchen’s layout would execute the actions efficiently, with rapid

4



and coordinated body movements. In terms of dynamics, such movements have two

characteristics:

1. They involve impulsive propulsion with rapid acceleration and deceleration [79,

51].

2. Human adults are capable of accurately (and unconsciously) planning the ex-

ecution of reach movements before the commencement of motion. A large

majority of such movements are completed with little or no mid-course correc-

tion. For instance, a number of models proposed in the psychology literature

hypothesize that the dynamics of the hand remain fixed for the course of the

movement, e.g. [28, 85, 80].

Due to their impulsive nature, these movements are referred to as “Ballistic” in

psycho-kinesiology. Ballistic movements form a large portion of human interactive

actions, evidenced by the extensive studies in psychology e.g., [79, 51, 28, 85, 37,

80, 60, 35, 27, 6, 21]. These movements include:

(a) Reach actions: e.g., reach-to-grasp, pointing gestures, placing objects.

(b) Strike actions: e.g., punching and throwing.

A system capable of recognizing individual reaches and strikes would enable

the analysis of activities as a sequence of such movements. This forms the principal

motivation of our study. For the design objectives, the following constraints are

imposed on the system:

5



1. Use single camera video data. Do not assume the availability of the body’s

pose information.

2. The movements should be recognized independent of the hand’s target loca-

tion. E.g., the person could reach for something on the floor, above the head,

to the left, etc. All of these instances should be recognized as reach move-

ments and then additional labels must be computed to describe their target’s

location. Similarly, the strike movements must be recognized irrespective of

where and in which direction the person punches or throws.

3. The movements may be executed as part of a continuous activity.

4. The person’s pose with respect to the camera may vary between different

instances of the movements.

These constraints are illustrated in the movement sequence shown in Figure 2.1 in

which a person picks up an object from the floor and places it at another location

on the floor. This action consists of 4 movements: bend down to grasp the object,

pick it up, step to the other location and bend to place the object on the floor.

The movements have different targets but have reach-dynamics as the common

denominator. Predictably, change in the movement’s target results in change in

the trajectory followed by the hand and other body-parts. The two bend-and-reach

movements have different body orientations w.r.t. the camera, resulting in variations

in the poses’ appearance. Figure 2.1 also shows the labels computed by our system.
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2.1 Current Approaches to Visual Recognition of Human Movements

We identify two broad categories of human movement recognition approaches:

• Approaches that either track the body-parts, maintain a state for the poses, or

assume availability of body trajectories. These include control-theoretic sys-

tems, such as those based on Hidden Markov Models (HMMs) [64], Switching

Linear Dynamical Systems (SLDSs) [68]. There are also algebraic approaches

that analyze segments of body-part trajectories. For example, Sheikh et al.

model actions as sub-spaces of body trajectories [77].

• Recently, a number of studies have addressed action recognition by modelling

the statistics of low-level motion features, e.g., [94, 89, 76]. These approaches

do not track individual body parts.

Human movement analysis by tracking body poses may be viewed as a process

of iterating over two steps:

1. Estimate the pose at time t based on observations from the video frame.

2. Predict the pose at time t + 1 using the current pose estimate and a model

of the dynamics. This prediction is combined with the observations from the

video frame at time t + 1 to estimate the pose at t + 1.

Precise pose estimation would enable accurate computation of the movement dynam-

ics, enabling correct recognition. However, human pose estimation has proven to be

one of the hardest problems in vision, and remains the principal stumbling block in

movement analysis [31, 53]. Reasons for the problem’s complexity include the large
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number of degrees of freedom of the human body, singularities in pose-appearance

from single-camera view and edge clutter from clothing. A popular approach to

address this issue is to formulate movements as stochastic processes and perform

probabilistic recognition. For example, in Hidden Markov Model (HMM) based ap-

proaches [64], poses are considered to be the states of a hidden random variable

which is observed stochastically through image features. The dynamics constitute

the transitions over these states. Here, prior information about the dynamics re-

duces uncertainty in pose estimation. HMMs and their variants have been shown

to be effective for gesture recognition [91, 24], gait analysis [68], etc.

Pose Estimation

Estimated pose
at time t

Observations from
frame at time t+1

Estimated pose
at time t+1

Dynamics−based
Pose Prediction

Observations from
frame at time t

Pose Estimation

Figure 2.2: Schematic of the movement analysis process. Observations made from
the video frame at time t are analyzed to estimate the pose at t. The dynamical
model of the movement, and the pose observations at t + 1 determine the pose at
time t + 1.

Sub-space methods model actions by computing algebraic invariants with re-

spect to variation in camera viewpoint, style and speed. Suppose x1(t) and x2(t)

were the hand’s trajectories during two instances of some action. Then the action is

modelled as the sub-space, F , such that Fx1(t) = Fx2(t). This has been employed

for computing view-invariants [95], as well as style-invariants [77].
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Several studies have sought to bypass explicit pose estimation by directly mod-

elling actions using low-level image intensity and motion features. Here, the empha-

sis is on applying machine learning techniques to learn the statistics of the features

for the actions of interest. These techniques have been shown to be robust to im-

age noise, small variations in illumination, view and movement style. Shechtman

and Irani propose to model behavior with statistics of image intensity gradients in

spatio-temporal volumes [76]. Yilmaz et al. extract contours of humans and con-

struct 3D volumetric shapes by stacking them over time [94]. The shapes’ forms

model the underlying actions. Related to this, Bobick and Davis construct tem-

poral templates of silhouettes and match them for recognition [11]. Weinland et

al. employ 3D reconstructions of the body in a similar manner [89]. The features

employed in these studies are highly dependent upon the viewpoint and trajectory

of the movement. For instance, it is not clear if they would be able to generalize

between reach movements towards different targets - reaching for something on the

floor versus at shoulder level.

To summarize, approaches based on dynamical models and pose-tracking suffer

from the ambiguities in pose-estimation. However, the dynamical models provide

the ability to generalize over variations in viewpoint and movement targets. In

contrast, approaches relying on low-level intensity and motion features are robust

as they do not require pose estimation. However, it is not clear if they can generalize

over movement targets.

We propose to exploit the ballistic nature of reach and strike movements to

recognize them. The poses are not tracked explicitly. Instead, low-level motion

10



features are employed to represent the movement dynamics. Pose-estimation is

performed at the start and end of the movement to compute labels. This can be

viewed as a combination of pose and low-level feature analysis.

The next section reviews observations made in psycho-kinesiological studies

regarding the following questions:

1. What are the body-parts that should be tracked to analyze reach and strike

movements? To what level of detail must the poses be estimated? Do the

joint-angles of the arms have to be estimated? A system requiring only a

coarse pose-estimate would be more robust and practical.

2. What is the reference frame in which the dynamics should be analyzed? E.g.,

should the reference be body-centric or world-centric?

3. What structure of the dynamical model is suitable for analyzing reach and

strike movements?

2.2 Psycho-kinesiological Studies of Ballistic Movements

Psychologists have proposed two models for limb propulsion [79]: ballistic

movements and mass-spring movements, which form two ends of a spectrum of

human movements. Ballistic movements involve impulsive propulsion of the limbs.

There is an initial impulse accelerating the hand/foot towards the target, followed

by a decelerating impulse to stop the movement. There is no mid-course correction.

Reaching, striking and kicking are characteristically ballistic movements [79, 51].

In the mass-spring model, the limb is modelled as a mass connected to springs
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(the muscles). The actuating force is applied over a period of time rather than

impulsively [79, 8]. Steady pushing, pulling, and many communicative gestures fall

into this category.

Rapid, practiced movements usually follow the ballistic model - the majority

of the movements observed in everyday activity are ballistic. Slower, smoother

movements are modelled well as a mass-spring system [43]. When a subject becomes

confident about movements, the speed is usually high. High speeds tend to have

impulsive propulsion, making mid-course corrections difficult.

For movements following the mass-spring model, the limb is in dynamic equi-

librium during the movement. Therefore, the trajectories can be altered at any

time - enabling them to be more complex than ballistic movements.

There are two differences between ballistic and mass-spring models of move-

ments that are relevant for recognizing human actions:

1. Ballistic movements have a simpler structure. Often, the starting and ending

positions of the limbs are sufficient to specify the trajectory of a ballistic move-

ment. In contrast, the mass-spring model allows for complicated trajectories.

For example, drawing a figure ‘8’ with the hand, moving the hand in a circle

to signal “start engine”, etc.

2. Reaching, striking, waving, kicking, etc., which are predominantly ballistic, are

common actions encountered during surveillance. These have highly variable

target locations. Mass-spring movements, especially communicative gestures,

have higher spatial consistency.
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Due to the relatively simple structure of force actuation - acceleration followed

by deceleration - ballistic movements have a characteristic “bell”-shaped velocity

profile [79]. Figure 2.3 shows velocity profiles of some mass-spring and ballistic hand

movements. Plots of different movement instances are shown in different colors for

discernibility. The mass-spring movements were observed when the subjects moved

as if directing traffic. The hand was moving in smooth circles - in case (1) the circles

were big, in case(2) they were smaller. The velocity remains low and constant during

mass-spring movements, going to 0 only at the end of the movement. The other two

plots show velocity profiles of movements during reaching and striking. The ballistic

movements have a characteristic “bell” shaped profile. The secondary bells occurring

in the case of reaching correspond to the retraction phase of the movement. As there

is higher acceleration and deceleration during striking compared to reaching, the

bells in the profiles in the case of striking are more convex than those for reaching.
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Figure 2.3: Examples of velocity profiles for mass-spring and ballistic movements.

The nature of a ballistic movement is determined by the dynamics. For ex-
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ample, reach movements have low acceleration and deceleration, strike and throw

movements have high acceleration and deceleration. There is also the possibility of

yanking - this has high acceleration, the deceleration may vary. Figure 2.4 illustrates

this with a schematic.
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Reach

Strike

0

Throw
Yank

Mag. of decelerating force

Figure 2.4: Varying the parameters of the ballistic movement model produces dif-
ferent types of movements: low acceleration and deceleration for reach, high accel-
eration and deceleration for throws and strikes, and high acceleration for yanking.

2.3 Empirical Studies of Reach Movements

Studies of reaching movements have shown that the shape of the “bell” varies

considerably depending upon the task requirements [51]. For instance, in reach-to-

grasp movements, when the object is small or fragile, the deceleration phase has a

longer duration. One possible explanation is that this gives more time for precise

homing on to the target. There have been subsequent studies with more detailed

analysis, e.g., reaches with rotating torso movement [60], reaches with single step and

free torso movement [27]. These studies indicate that humans plan reach movements

in an extrinsic (world-centric) reference frame, rather than in a frame fixed to their

torso or head. Some important observations are:

• Given the starting and target position of the hand for a reach movement, and
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in the absence of constraints such as via points and obstructions, the hand

typically follows a near straight-line path with a “bell” shaped velocity profile

in extrinsic coordinates. The “bell” feature is present even in the case of

substantial torso rotation and single-step leg motion.

However, studies of reach movements in which the targets were placed at the

extremes of the arm’s work-space, e.g. [35, 85], etc., indicate that the paths can

also have substantial curvature. These curvatures are reported to be consistent

for repeated movements to the same target.

• The hand’s path in extrinsic coordinates is relatively unaffected by variations

in the movement’s pace.

• Viewed in the joint angle space, the coordination of various joint movements

varies with changes in the pace of the movement. That is, the timing of

shoulder and elbow flexion/extension changes when the overall speed is varied.

• In a trunk-based reference frame, the velocity profiles of the hands are multi-

peaked and exhibit greater variability. This is in contrast to the “bell” shape

of the profiles in extrinsic coordinates.

• When a person is adept at executing a movement, the whole body moves in

synchrony. The various body-parts such as the head, torso and hands start

and stop motion in a coordinated manner. This has been observed even in

case of periodic movements such as walking, e.g., [41].
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There are also studies of human perception of movement, e.g., by Johans-

son [41]. Here, human observers recognize various human gaits even though only

the 2D positions of various joints and extremities of subjects were made observable.

2.4 Dynamical Models of Reach Movements

Here, trajectory refers to both the spatial path and the velocity profile of the

hands during movements. Several models have been proposed for human control of

hand movement for reaching - we concentrate on the computational models. These

can be open-loop - the trajectory is generated given the initial and final position,

velocity and acceleration, e.g. [28, 85, 80]. or closed-loop - the control is continuously

adjusted according to errors in limb propulsion and target perturbation, e.g., [37].

2.4.1 Minimum Jerk Model (MJM)

Flash and Hogan [28] proposed that, as practised movements are smooth,

minimizing the mean-square jerk could be one of the criteria used by humans for

planning trajectories. Using the calculus of variations, they show that for this

minimization, the trajectory in each coordinate should follow a 5th order polynomial.

By setting the initial and final velocity and acceleration to 0, the model was able

to replicate the near straight-line paths and “bell”-shaped velocity profiles observed

for short reach movements in humans. The model is limited as it does not take into

account dynamical factors like gravity, arm lengths, etc. Moreover, several studies

have cited the pronounced curvature of paths followed by hands when reaching in
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certain directions, e.g., [35, 85]. In spite of these inherent limitations, the model has

been shown to predict intermediate trajectories with reasonable accuracy [28].

2.4.2 Minimum Torque Change Model (MTCM)

This was proposed by Uno et al. to address some of the limitations of MJM [85].

Here, the objective is to minimize the change in the torques acting on different joints

of the arm. This model takes into account dynamical factors like mass, moment of

inertia of limbs, gravity, joint viscosity, etc., and the fact that the human arm is

multi-jointed. It is shown to replicate several features of reach movement paths such

as curvatures of the paths for movements in certain directions. The model presented

in [85] is for 2D planar movements and does not include the torso. Moreover, it in-

volves non-linear optimization and knowledge of the subject’s initial and final joint

(elbow) configuration. The advantage is that in addition to the hand, the model

also predicts the elbow’s trajectory.

2.4.3 Minimum Peak Energy Model (MPEM)

Donder’s Law states that for every gaze direction, there is a unique orientation

of the eyes w.r.t. the head [80]. Applied to arm movement, the analogy would be

that for every target position of the hand in the 3D space around the subject, there

exists a unique configuration of the arm at the end of the movement. However,

experimental observations indicate that the terminal arm configuration is not a

unique function of the target hand position but also depends upon the starting
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position [80]. This is in addition to intuitively obvious factors such as the required

final wrist orientation, physical constraints like limb-lengths, etc. Grounded on

these experiments, a model for hand movement based on the minimization of peak

energy expended during motion is proposed in [80]. The arm is allowed to move in

3D, but the torso is assumed to be immobile. The model predicts the arm’s final

configuration given the initial arm configuration and the final position of the hand.

The results match well with experimental observations. However, it is not clear if

the hand’s predicted path would be similar to that of actual movements. The reason

is that MPEM assumes that all joints will reach peak velocities at the same time;

whereas it has been observed that joint movement coordination varies with change

of pace and load characteristics.

2.4.4 Minimum Jerk Model with Feedback

Hoff and Arbib extended MJM with feedback control to accommodate errors in

the hand’s propulsion, noisy observations, target perturbation in mid-flight, etc. [37].

The predicted results match well with experimental observations. The authors state

that for well-practised movements, and in the absence of target perturbation, the

propulsion speeds are usually so high that a large part of the spatial path is covered

with little or no feedback; the control is more akin to open-loop predictive systems.
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2.5 Summary of Psycho-kinesiological Observations

Empirical studies suggest that detecting and tracking just the hands and feet

of subjects might be adequate for recognizing human movements such as reach,

strike, walking etc. Moreover, the velocities of the hands have high correlation with

velocities of other body-parts such the arm, head, torso, etc. This is advantageous

from an image processing perspective as we can avoid the complex task of estimating

the complete configurations of a subject’s joints. Low-level motion features com-

puted from the whole figure of the subject may be used to implicitly represent the

hand’s velocity. This will be described in detail in the chapter on video-based anal-

ysis. In addition, for ballistic movements, when the hands are observed in extrinsic

coordinates, the spatial paths and velocity profiles have simple structure. This is

also advantageous because analysis in a world-centric reference frame is simpler as it

can be fixed to the static camera. In contrast, a torso-centric reference frame would

require accurate tracking of the torso orientation, which is a complex task.

Although the Minimum Jerk Model (MJM) ignores several important dynami-

cal properties, it still has some advantages over the other models for visual movement

analysis:

• It does not require estimation of the subject’s joints - a hard problem for

computer vision systems [31, 53].

• Although the other models include elbow and shoulder information, they still

ignore torso and whole body (stepping) movements. These are important

components of movements observed in everyday life. Hence, it is not clear
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how much of a practical advantage the other models would have over MJM.

• MJM uses a 5th order polynomial for predicting the trajectory. In contrast,

MTCM involves non-linear optimization. MPEM, claimed to be computation-

ally simpler than MTCM, does not predict the hand’s actual trajectory. The

Hoff-Arbib model might be unnecessarily complex for the practised movements

considered in the present study.
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Chapter 3

A Bayesian Model for Recognizing Ballistic Movements

Visual recognition is complex due to the presence of noise and ambiguity in

the extracted features such as edges, depth, texture, pose, motion in terms of optical

flow, etc. Bayesian probabilistic inference provides a principled framework for han-

dling uncertainty in recognition. Consequently, it has been extensively employed

in computer vision. This chapter presents a Bayesian framework for recognizing

ballistic movements that incorporates the psychological observations described in

Chapter 2. The approach is illustrated with experiments on human motion capture

data - which has the advantage of low noise. Chapter 4 introduces a video-based

recognition system employing this framework.

3.1 A Bayesian Model for Ballistic Movements

Human activity may be modelled as a sequence of movements executed to

interact with objects and the environment. To make recognition tractable, vision

approaches assume the conditional independence of movements. I.e. each movement

is considered to be independent of past and future movements given the context

provided by the activity, and the states of the subject at the start and end of the

movement. Ballistic movements such as reaches and strikes are atomic by nature.

Once started, they run their course to the end of the movement. Thus, the inde-
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pendence assumption is well suited for recognizing them. The equivalent Bayes net

is shown in Layer I of the model shown in Figure 3.1. Layer II of the model consists

of the dynamics, Bi, that control the trajectory of the hand during a movement.

Layer III consists of observations of image features for pose and motion estimation.

The present study focuses on recognizing individual movements, i.e. Layers II and

III.
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Figure 3.1: Bayes net for modelling ballistic movements. This is similar to the
structure proposed by Bregler [16].

3.1.1 Model for the Hand’s Trajectory

The Minimum Jerk Model (MJM) minimizes the rate of change of force applied

to the hand - the intuition being that efficient movements are smooth [28]. Let

z(t) = [z1(t) z2(t) z3(t)]
T be the hand’s coordinates in 3D world coordinates. Then,
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the trajectory minimizes

J =
1

3

∫ te

ts

((
d3z1

dt3

)2

+

(
d3z2

dt3

)2

+

(
d3z3

dt3

)2
)

dt (3.1)

It can be shown using Calculus of Variations that minimizing the functional

J(.) is equivalent to constraining z1, z2 and z3 to be 5th order polynomials in time

t. Even though the hand’s trajectory is a high order polynomial, the path followed

by the hand during ballistic movements is relatively simple - closely corresponding

to straight lines. The higher order terms in the function are “taken up” in the high

acceleration and deceleration involved in the movements. Let �τ(t) denote a column

vector such that �τ(t) = [1 t . . . t5]T. Let the duration of the ith movement be [tis, t
i
e].

Its trajectory is given by

z(t) = Âi�τ(t − tis) where t ∈ [tis, t
i
e] (3.2)

Differentiating both sides w.r.t. time gives the velocity

ż(t) = B̂i�τ(t − tis) where t ∈ [tis, t
i
e] (3.3)

Here B̂i�τ(t) = Âi
d
dt

�τ(t). The dynamics of the ith movement in 3D world coordinates

is represented by B̂i.

Projective Transformation: Let z̃(t) denote the hand’s position in homoge-

nous coordinates - z̃(t) = [z1(t) z2(t) z3(t) 1]T. Let Ãi correspond to the homogenous

version of Âi, i.e.

Ãi =


 Âi

1 0T


 .

23



Therefore, for the ith movement, we have

z̃(t) = Ãi�τ(t − tis) (3.4)

Let P denote the projection matrix for the camera. Let the projected trajectory in

homogenous coordinates be ỹ(t) = [ỹ1(t) ỹ2(t) w(t)]T. It is given by

ỹ(t) = P z̃(t) = PÃi�τ(t − tis)

Thus, the hand’s trajectory remains a 5th order polynomial under projection in

homogenous coordinates.

Let y(t) denote the hand’s position in image coordinates. If the change in the

hand’s depth w.r.t. the camera is small compared to its distance from the camera,

then w(t) can be assumed to be constant for the duration of a movement. This

results in

y(t) ≈ λdepth[ỹ1(t) ỹ2(t)]
T (3.5)

Thus, the projection of the trajectory on the image plane can be closely approx-

imated by a 5th order polynomial in time. Under similar assumptions, it can be

shown that the projections of the hand’s velocities on the image plane are 4th order

polynomials in time. Let ẏ(t) denote the projected velocity

ẏ(t) = Bi�τ(t − tis) (3.6)

Bi determines the dynamics of the ith movement on the image plane. Due to the

assumption of ballistic dynamics, Bi is constant for the duration of the ith movement.

Therefore, the velocities, ẏ(t), are mutually independent given Bi. Layer II in
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Figure 3.1 shows the equivalent Bayes net structure. Bi models only the hand’s

velocities which may be estimated using low-level motion features such as optical

flow. This enables recognition without explicit tracking of the poses. As y(t) and

ẏ(t) are the position and velocities at time t, they are implicitly linked by time

(shown with dashed lines).

3.1.2 Observation of the Hand’s Position and Velocity

Accurately tracking the subject’s body during movements is perhaps the most

challenging aspect of action recognition [53]. Capitalizing on the ballistic nature

of reach and strike movements enables recognition without explicitly tracking the

poses.

Hand’s position vs. its velocity: Psychological studies provide two useful

observations:

1. Studies of reaches involving torso movement and stepping, e.g., [60, 27], indi-

cate that the whole body moves in synchrony with the hands during ballistic

movements. The start and stop of the hand’s motion, and its velocity are

reflected in the velocities of other body-parts.

2. The hand usually follows a simple path during ballistic movements, closely

resembling straight lines and low curvature 3D circular arcs [79, 28, 85].

As a result, low-level motion features such as optical flow and silhouette deforma-

tion computed over the whole figure of the subject have high correlations with the

hand’s velocity. Figure 3.2 illustrates this for optical flow. Thus, the hand’s ve-
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locity is approximated without tracking the pose. Moreover, the high movement

speeds, while making position estimation difficult, give distinctive signatures to the

motion features. Thus, position information is reliable during the start and end of

movement, and velocity observations are more robust during mid-flight.

Figure 3.2: Every third of a sequence of 41 frames is shown depicting two movements.
The optical flow vectors computed computed on the person’s figure during each
movement segment are below it (all vectors have been translated to the origin). A
majority of the flow vectors point in the direction of movement. (Best viewed in
color.)

Observation Model: For video-based analysis, the position observations,

Op, represent the subject’s pose. The velocity observations, Ov, consist of optical

flow, silhouette deformation and frame differences. This is described in Chapter 4.

We make the standard conditional independence assumptions for the observations

given the position and velocity, i.e.

p(Op|y) =

tie∏
t=tis

p(Op(t)|y(t))

p(Ov|ẏ) =

tie∏
t=tis

p(Ov(t)|ẏ(t)) (3.7)
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The Bayes net structure is shown in Layer III of Figure 3.1.

3.1.3 Overview of Recognition: Label Inference

Continuous sequences are segmented into individual ballistic movements by

employing the property that the dynamics in terms of Bi remains constant for the

duration of a ballistic segment. This is performed using weighted least squares

estimation and dynamic programming (c.f. Section 3.3). Reach/Strike labels are

inferred by modelling the statistics of the dynamics (c.f. Section 3.4). Qualitative

labels of the movement’s direction and target location are computed using the start-

ing pose as the reference frame (c.f. Section 3.5). The nodes corresponding to the

labels are shown in the dashed rectangle in Figure 3.1.

3.2 Related Work

There have been a large number of studies on action recognition - see [53, 31]

for comprehensive surveys.

Bregler presented an approach for recognizing complex actions as a sequence

of simpler actions [16]. At the lowest level, actions are considered to be atomic,

called “movemes”. It is interesting to note that actions having ballistic movement

are atomic by nature. Our work can be considered as an approach for representing

and recognizing movemes that are ballistic. Closely related, there are studies using

Switching Linear Dynamical Systems (SLDSs) for characterizing human movement

e.g., [68]. In addition, many approaches use the dependencies between the move-
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ments of different body-parts, e.g., [7].

Wilson and Bobick proposed Parametric Hidden Markov Models (P-HMMs)

to handle variability in gestures [91]. P-HMMs would need a sufficient variety of

training examples to generalize over all possible target locations. However, as they

model the trajectory of movement, their approach can be used for recognizing differ-

ent mass-spring movements like communicative gestures. In this respect, our work

and P-HMMs complement each other.

Rao et al. proposed a scheme for segmenting human movement sequences

based on the spatio-temporal curvatures of the hands’ trajectories [67]. Weinland

et al. segment continuous movement sequences using Motion History Volumes com-

puted using 3D reconstruction[89]. The temporal segmentation in our approach uses

single camera-view video and does not require tracking the hands.

State-of-the-art sub-space methods, e.g., [94, 77], have been developed to per-

form recognition robust to camera viewpoint and stylistic variation. Even for a sta-

tionary camera, two reach movements can have very different body-part trajectories

if their target locations differ. Therefore, recognizing them involves generalizing

over the dynamics in addition to the viewpoint. Our approach contributes in this

direction. A possible area of future study would to be to employ approaches such

as [77] to explore the variation of matrix Bi w.r.t. subtle movement styles.

It is possible to extend the approach by including object interaction [59] - this

would help differentiate between actions such as “picking up” and “putting down”.

The proposed approach analyzes each ballistic movement independent of past and

future movements. It is possible to link the dynamics of ballistic movements with
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HMMs, generative grammars, etc. See [53] for a survey. In addition, spatial context

and geometry of the scene have been used to aid object recognition, e.g., [83]. This

study focuses only on the recognition of individual ballistic movements - linking it

with temporal, object and scene-geometry context is an area of future research.

3.3 Segmenting Movements

A continuous movement sequence is segmented such that the dynamics, Bi,

within each subsequence is constant. The Bi’s are estimated using weighted least

squares, and Dynamic Programming is used to efficiently compute the optimal seg-

mentation. Let the sequence be of time duration [0, T ]. Let χ denote a partitioning

of the sequence into n segments, χ = 〈χ0 = 0, χ1, . . . , χn = T 〉 . The start of the

ith movement is tis = χi−1, and end is tie = χi. The likelihood of the segmentation

given the velocity observations, p(χ|Ov) is modelled as p(χ|Ov) = p(B∗
1 . . . B∗

n|Ov),

where B∗
i is the optimal dynamics for the ith partition given the observations. By

the conditional independence assumption

p(B1 . . . Bn|Ov) =
n∏
i

p
(
Bi

∣∣Ov(t
i
s) . . . Ov(t

i
e)
)

= k

n∏
i

p(Ov(t
i
s) . . . Ov(t

i
e)|Bi) p(Bi) (3.8)

Here, k is a constant independent of the partitioning, and p(Bi) is the prior on

the dynamics. The prior enforces constraints such as starting and ending velocity

magnitudes should be close to 0. p(Ov(t
i
s) . . . Ov(t

i
e)|Bi) is the conditional probability

of the velocity observations given the dynamics. Given its segment boundaries [tis, t
i
e],

the goodness of the ith segment is independent of the rest of the segmentation.
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Due to this Markovian property, the optimal partitioning, χ∗, can be efficiently

computed using Dynamic Programming. Figures 2.1, 3.2, 4.5 and 4.6 show examples

of obtained segmentations. Details of p(Ov(t
i
s) . . . Ov(t

i
e)|Bi), the DP algorithm and

quantitative results are described in Chapter 4.

3.4 Classifying Movements based on Dynamics

The nature of a ballistic movement is determined by the dynamics. For ex-

ample, reach movements have low acceleration and deceleration, strike and throw

movements have high acceleration and deceleration. There is also the possibility of

yanking - this has high acceleration, the deceleration may vary. Figure 2.4 illustrates

this with a schematic. The reach vs. strike labels are computed by modelling the

statistics of Ov. We use a boosting framework to get the MAP label estimate [1].

Chapter 4 presents details of the features employed for video-based recognition and

the experimental results.

3.5 Computing Labels for Movement’s Direction and Target Loca-

tion

After classifying a ballistic segment into reach or strike, the target’s location

and the direction of movement are described using qualitative labels. To be mutu-

ally consistent, the labels of different movements must be computed in appropriate

reference frames. The reason is that the reference frame is the principal factor deter-

mining invariants during recognition. For example, when recognizing arm gestures,
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the movements must be recognized with respect to the person’s body. In contrast,

pointing gestures (indicating the direction to proceed) should be recognized in a

world centric reference frame. In general, there are at least three possibilities for

the reference frame [79, 60]:

1. World-centric.

2. Body-centric: e.g., the frame could be fixed to the torso, the hand, or the

head’s gaze-direction.

3. Fixed to the object being manipulated in a movement.

In our approach, the reference frame for a movement is fixed to the person’s

pose at the start of the movement. This provides two advantages:

• As the frame is fixed to the person’s pose, the movement’s labels are computed

with respect to the person’s perspective at the start of the movement. Thus

the labels are mutually consistent regardless of the person’s position relative

to the camera.

• Because the frame is constant for the duration of a movement, it is iner-

tial. Psychological studies indicate that the velocities of the body-parts have

greater consistency when viewed in an external fixed reference frame [60]. This

provides robustness during recognition.

The label, l, for each movement is a 3-tuple 〈la, le, ld〉:

1. la is the azimuthal location of the target. la ∈ La ={front, back, left, right

and center}.

31



2. le is the elevation location of the target. le ∈ Le ={ankle-level, knee-level,

waist-level, chest-level and above-shoulder}.
3. ld is the direction of movement. ld ∈ Ld ={forward, backward, leftward,

rightward, upward and downward}.

See Figure 3.3 for an illustration.

Right

Feet

(1) Side View (2) Top View

Knees

Waist

Shoulder

Head

Left

FrontBehind

Figure 3.3: Spatial quantization of the space around the person for computing
movement labels.

Target Location: For reach movements, the target is located at the end of

the reach. For strikes, the target is located at the position of highest velocity of

the hand. Let ytarget denote the location of the target in the image. If a ballistic

segment with time-interval [ts, te], has been classified as a reach then ytarget = y(te).

If the ballistic segment has been classified as a strike then

ytarget = y(tmax) where tmax = arg
te

max
t=ts

h(Ov(t))

where h(.) is the reach/strike classifier’s confidence function.

Spatial Context for Labelling: The subject’s pose at the start of the

movement is represented by the subject’s silhouette and the head’s gaze-direction
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at the start of the movement - Op, c.f. Chapter 4. It is used to provide context to

the target’s location and the direction of movement. The label for the movement

is computed based on this context. Consider a ballistic segment with time-interval

[ts, te]. Let the subject’s starting pose be Op(ts), and the hand’s target position in

the image be ytarget. The label for the target’s position depends upon the location

of ytarget relative to Op(ts).

Bayesian inference is employed to compute the label for each movement. Let

pa(la|ytarget, Op(ts)) denote the likelihood of label la for the azimuthal position, given

ytarget and Op(ts). Noise present in the video causes ambiguity in the estimation of

the pose and the hand’s target position. Therefore, the probability of la is computed

by marginalizing over them:

p(la) =
∑

Op(ts)

∑
y

pa(la|y, Op(ts))p(y is target |Op(ts))p(Op(ts)) (3.9)

P (Op(ts)) denotes the probability of the pose observations. P (y is target|Op(ts)) is

the probability of the target of the movement to be located at point y in the image,

given the starting pose.

The probabilities for the elevation labels are formulated similar to Eq.(3.9).

p(le) =
∑

Op(ts)

∑
y

pe(le|y, Op(ts))p(y is target |Op(ts))p(Op(ts)) (3.10)

For computing direction labels, the target’s location is replaced by Bi.

p(ld) =
∑

Op(ts)

∑
y

pd(ld|Bi, Op(ts))p(Bi|Op(ts))p(Op(ts)) (3.11)

The final label for each ballistic segment is computed as the maximum a posteriori

probability estimate. Figures 2.1 4.6 and 4.5 show some examples of computed
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labels.

Chapter 4 describes the image and motion features used for computing the

pose and velocity observations, the training, and the inference algorithm employed

for recognition. Quantitative results on video analysis are also presented.

The next section illustrates the Bayesian framework with experiments on mo-

tion capture data. Here, the position and velocity of the hands and other body-parts

are directly observable with relatively low noise. Therefore, these experiments are

intended as a “sanity check” of the framework.

3.6 Analysis of Motion Capture Data

We analyze marker-based motion capture data from the CMU MoCap database [4].

Results of this work were published in [63]. In motion capture, special markers are

attached to different parts of the subject’s body such as the head, hand, elbow, etc.,

and tracked with high performance cameras. The pose estimation is very accurate

with relatively low noise in the markers’ localization. Although ideal for illustrative

purposes, this methodology is intrusive and not practical for applications such as

surveillance. Each motion capture sequence consists of a sequence of 3D locations

of various markers, available at 60Hz to 120Hz. To emulate typical video recording

frame rates, the sequences were down-sampled to 15Hz before analysis in the exper-

iments. Figure 3.4 shows skeleton-plots of the markers for two segments of strike

movements, and the corresponding labels computed by the approach.
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Figure 3.4: Two instances of striking: (a) slapping someone’s back, (b) banging on
a table with both hands. In both cases, the subjects first draw back their hands
before striking. Skeletons at different time instants are plotted - older ones have
faded colors. Red diamonds correspond to the right hand and leg; blue asterisks are
for the left hand and leg. The blue stubs placed along the axes mark front/back,
left/right, and height reference points for the subjects. The labels generated by the
proposed system are listed alongside in the order generated.

3.6.1 Model for Ballistic Force Actuation

Consider the following simple model for force actuation during a ballistic move-

ment. Let m be the mass of the body part, f+ the accelerating force and f− be the

decelerating force. Starting at time t = 0, f+ acts on m for time t1. After this, the

body part moves ballistically for time t2. Finally, the deceleration force, f−, acts

on m for time t3. As the body part comes to a near stop at the end of a ballistic

movement like reach, etc., f+ and f− oppose each other. For simplicity, we ignore
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gravitational force. Let T = t1 + t2 + t3 be the total duration of the movement and

D be the total distance. Figure 3.5 shows a schematic of the velocity profile. The

plan for the movement, called the execution plan, would be specified by t1, t2, t3,

f+ and f−. Depending upon the values of f+ and f−, a ballistic movement could

act as a reach, strike, etc.

max

t1 t2 t3

v

Figure 3.5: Schematic of the velocity profile during a ballistic movement.

For each type of movement, the motion parameters are further tuned to suit

the task at hand. For example, during reaching, if the target is small or fragile, t3 is

considerably longer and f− is relatively low. This increases the precision in homing

onto the target and provides more time for adjusting the wrist and finger positions

during the final approach [51].

The movement parameters are not observable from the hand/foot trajectories.

Let v(t) be the velocity magnitude of the hand/foot during a movement. The move-

ment’s dynamics can be described implicitly in terms of the following observable

quantities:

1. The peak velocity reached during the movement - vmax

2. The second derivative of the velocity at the location of the peak - v̈(tp).
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3. The total time duration of the movement, T .

4. The total distance travelled during the movement, D.

3.6.2 Segmentation of sequences into ballistic movements

A continuous motion capture sequence is segmented into individual ballis-

tic movements based on the dynamics of the hands. Ideally, the velocity profile

of each segment would have a monotonically non-decreasing phase followed by a

monotonically non-increasing phase. However, noise in the observations may cause

false extrema in the velocity profile. Instead of explicitly modelling the noise, we

treat this as a problem of classifying local minima that actually demarcate ballistic

subsequences from those caused by noisy observations. Each local minima was char-

acterized by the decelerating impulse preceding it, the time duration of this impulse,

the speed at the minima, the accelerating impulse following it and its duration.

In addition to segments exhibiting motion, there are segments with little or no

motion. These are characterized by their maximum velocities being below a certain

threshold. Given confidence values for each time instant to be a starting, ending

or negligible movement, we compute the most likely segmentation of the capture

sequence using Dynamic Programming.

Let p∗(t) denote the likelihood of segmentation such that the last segment ends

at t. Let αt(ts) be the likelihood for the most likely segmentation whose last segment

starts at ts and ends at t. Let βt(ts) be the likelihood for the most likely segmentation

whose last segment starts at ts and continues beyond t. Let s(t) be the likelihood
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for t to be a start of a ballistic movement, and e(t), for t to be an ending. Let

δt(ts) be the likelihood for the most likely segmentation such that the last segment

has negligible movement, starts at ts and ends at t. A negligible segment must be

preceded by a non-negligible segment. We have the following recursive relations:

βt(ts) =




p∗(t − 1) s(t) ts = t

βt−1(ts)(1 − e(t)) ts < t

;

αt(ts) =




p∗(t − 1) s(t)e(t) ts = t

βt−1(ts)e(t) ts < t

;

v∗
t (ts) =




v(t) ts = t

max
(
v∗

t−1(ts), v(t)
)

ts < t

;

u(t) =
t−1

max
t′=0

αt(t
′);

δt(ts) = u(ts)Ψ (v∗
t (ts)) ;

p∗(t) =
t−1

max
t′=0

(max(αt(t
′), δt(t

′))) (3.12)

Here Ψ(v) = [v ≤ 2] - it maps velocity magnitudes to likelihoods of being

negligible. The recursive functions can be computed with linear time and space

complexity1. For the first step in the computation, i.e. for t = 1, we keep p∗(0) = 1

and v∗(0) = 0. For an optimal segmentation whose last segment starts at ts, let

prev t(ts) point to the segment preceding the last segment.

prev t(ts) =




arg maxt−1
t′=0 (max(αt(t

′), δt(t
′))) ts = t

prev t−1(ts) ts < t

(3.13)

1The time complexity is made linear by assuming that valid segments cannot be greater than

a certain length (2 secs.).
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Let φs(i) and φe(i) denote the start and end of the ith segment in the optimal

segmentation. After the set of relations (3.12) and (3.13) are computed for t =

1 . . . T , the optimal segments are recovered recursively as:

φs(n) =




arg maxT−1
t=0 [αT (t), δT (t)] n = N

prevT (φs(n + 1)) n < N

;

φe(n) =




T n = N

φs(n + 1) n < N

(3.14)

Here N is the number of segments in the optimal segmentation. (This need not

be known a priori and is simply used to describe the computation.) The obtained

segments are post-processed to eliminate irrelevant movements. Only movements in

which the hand moves by a distance greater than the length of the subject’s forearm

are considered relevant. In addition, the spatial quantization described previously

is used to define a volume around the waist of the subject in which the hands are

usually located when at rest. Movements with target locations in this volume are

considered to be irrelevant.

3.6.3 Classification into reaches and strikes

To illustrate the efficacy of the ballistic dynamics parameters, Figure 3.6 shows

scatter-plots of the v̈(tp) vs. T , and v̈(tp) vs. vmax, for the reach and strike segments.

As strike movements have greater acceleration and deceleration, their velocity peaks

are more convex (more -ive). Moreover, they are faster, so their time durations are

small and the maximum velocities are higher than those of reach movements. There

is a significant separation in the distributions of the two types of movements.
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Figure 3.6: Scatter-plot of (a) v̈(tp) vs. T , (b) v̈(tp) vs. vmax.

An SVM was used to distinguish between reaching and striking [2]. For the

experiments 64 samples collected for reaching and 83 for striking were used. Each

sample was represented by a 3D vector consisting of v̈(tp), T and vmax. The ex-

periments consisted of 100 trials, in each trial a portion of the data was randomly

chosen for training and the rest was used for testing. Table 3.1 shows the classifica-

tion results in terms of the mean and variance of the classification accuracies. The

accuracies are high and their variance is low, indicating that the features adequately

characterize the ballistic nature of reaching and striking movements, and that the

distributions are stable.

Mean Std. Dev.

Reach 0.9478 0.0449

Strike 0.9690 0.0377

Table 3.1: Means and standard deviations of the classification accuracies for reaching
vs. striking over 100 trials of SVM training and testing.
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3.6.4 Labels for Movement’s Target location and Direction

Computing labels for the hand’s target location and the movement’s direction

is relatively simple due to highly accurate body-part localization in the motion cap-

ture data. The objective is verify whether the labels computed using the approach

are coherent with visual perception of the movements.

3.6.4.1 Reference Frame for Describing Movement

We define the movement’s coordinate system as the subject’s reference frame

at the time the movement commences. As this is the time and location when the

subject planned and began execution, the generated description would be consistent

not only with his/her viewpoint, but also with similar movements executed at other

times and locations. A 3D orthogonal coordinate system is used - the x-axis is along

the front-back direction, the y-axis is along the left-right direction, and the z-axis is

always vertical. The origin is kept on the ground plane. The azimuthal orientation

and the x and y coordinates of the origin are computed using 4 motion-capture

markers fixed to the subject’s waist. See Figure 3.7(a) for an illustration. Let T (t0)

be the 3D translation and R(t0), the rotation, needed for shifting the reference frame

w.r.t. the movement commencing at time t0. T (t0) = −[xo(t0), yo(t0), zo(t0)]
T , where

xo and yo are as shown in Figure 3.7(a), and zo is the height of the toes of the subject

in the world-centric frame. The rotation matrix R(t0) defines an anti-clockwise

rotation by θ (see Figure 3.7(a)).

Let x(t) be the 3D coordinates of a body part as given by motion capture,
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where t ∈ [t0, t1]. These would be in world-centric coordinates. The analysis is done

on the transformed coordinates x̃(t) = R(t0)[x(t) + T (t0)].

3.6.4.2 Location of Target and Direction of Movement

Location: A 3D orthogonal coordinate system is employed for representing

the target’s location. This could simply be the target’s 3D Cartesian coordinates in

the movement’s reference frame. However, comparing the similarity/dissimilarity of

the target locations of the movements would be difficult. Instead, we quantize the

space around the subject in terms of his/her morphology. For example, the dimen-

sion along the height axis is quantized into regions such as “at feet level”, “below

knee level”, “at knee level”, etc. The reasoning is that, in the absence of external

reference points obtained from the environment, humans reference their immediate

neighborhood in terms of their own morphology [79]. The regions overlap and are of

different sizes. Examples of the volumes obtained are: in front of the chest, in front

of the left half of the chest, etc. See Figure 3.7(b) for a schematic of the spatial

quantization.

Direction: Similar to spatial location, the movement direction is also described

using labels. Let d(t) = x̃(t+1)−x̃(t)
‖x̃(t+1)−x̃(t)‖ be the unit direction vector of movement at

time t. The x component of d(t) is divided into forward, negligible and backward

motion, the y component into leftward, negligible and rightward motion, and the z

component into upward, negligible and downward motion. Therefore, each compo-
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(b)
Quantization of of each component
of the unit direction vector into 3
bins. The 3 plots (solid, dashed and
dot−dashed) show the membership
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Figure 3.7: (a) Computing the movement’s reference frame, (b) Spatial Quantiza-
tion, and (c) Direction quantization.

nent of the unit direction vector is quantized into three bins having angular width

of 120◦ - shown in Figure 3.7(c). Let d̂x(t) denote a 3 × 1 vector quantifying the

membership values of the x component of the direction vector in the 3 bins. The

membership values vary continuously from 0 to 1. Similarly, d̂y(t) and d̂z(t) are de-

fined for the y and z components respectively. The complete quantization is denoted

by d̂(t) = [d̂x(t) d̂y(t) d̂z(t)].

3.6.5 Experimental Results

The proposed approach was tested with several capture sequences of reach

and strike movements. These included cases in which a subject assembles and

uses a vacuum-cleaner, moves around objects, climbs a ladder, etc. For the strike
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movements, the subjects pretended as if boxing - they stepped around, dodged and

executed combinations of punches, jabs, hooks, etc. The duration of the sequences

varied from 3 sec. to approximately 40 sec. The data used for training and testing

was obtained from different subjects so as to observe the generalization ability of

the approach. The ground truth for each sequence was manually observed. Out of

55 instances of reach movements, 44 (80%) were detected correctly and there were 2

false detections. Some of the reach movements were missed due insubstantial move-

ment of the hands. There were also cases during the vacuum-cleaner assembly in

which it was not clear if the movements were ballistic - these were still considered

as reaches in the ground truth. Out of 78 instances of strike movements, 71 (91%)

were detected correctly and there were 6 false detections. The 6 false strike detec-

tions were for cases when the subject made rapid hand movement before executing a

“hook”. Figures 3.4 and 3.8 show the labels generated for some instances of striking

and reaching. For Figure 3.8, the movements were: (a) Subject takes a step forward

and reaches out forward with right hand near knee level, (b) Subject turns around

and takes a couple of steps to reach out behind with right hand, and (c) Subject

reaches for the floor and then above the head. As is illustrated in the figures, the

target labels generated by the proposed approach are coherent.

The analysis of motion capture data indicates that the ballistic movement

model enables generalization over the subjects, and accurate recognition of reach

and strike movements when the hand’s location is available. The next section de-

velops this concept into a video-based recognition system. The unavailability of

body-part trajectories, noise present in the video and ambiguity in pose estimation
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Figure 3.8: Examples of the labels generated - shown in the sequence in which they
were output.

make visual recognition challenging. These are addressed by employing state-of-the-

art machine learning techniques for modelling the statistics of low-level image and

motion features for the recognition.
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Chapter 4

Video-Based Analysis of Ballistic Hand Movements

Tracking the hands and the pose is one of the most challenging aspects of

human action recognition. Is it possible to analyze the movement dynamics and

perform recognition without pose-tracking? We explore this question by modelling

the statistics of low-level image and motion features. Section 4.1 describes the

motion and image features used to implicitly represent the hand’s velocity. Next, a

Dynamic Programming algorithm is presented that efficiently computes the optimal

segmentation of a sequence into ballistic movements. The segments are classified as

reaches and strikes based on the statistics of the motion features. Finally, movement

labels are inferred based on the person’s pose at the start and end of movement.

4.1 Representing the Hand’s Velocity

Due to the correlation in the body-parts’ velocities during ballistic movements,

the hand’s velocity can be implicitly represented with low-level motion features

computed over the entire figure of the person. This does not require the hands

and the arms to be isolated/segmented from the rest of the body. The term “low-

level” refers to features that capture the gross motion flow of the movement without

explicitly tracking the body parts. This enables the system to perform recognition

even when the hands and arms cannot be accurately localized due to occlusion, edge
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clutter and rapid movement. In our study, the motion features consist of optical

flow, silhouette deformation and frame differences.

4.1.1 Optical flow

We employ a phase-based optical flow approach proposed by Gautama et

al. [29]. Background subtraction is used to obtain the set of optical flow vectors

located on the subject’s silhouette [73]. Let Ft denote the set of optical flow vectors

obtained at time t. The utility of optical flow is illustrated using two experiments:

(a) Are the flow vectors mutually consistent, i.e. pointing in the same direction?

(b) Do the flow vectors have high correlation on the direction of hand’s movement?

4.1.1.1 Self-consistency of Optical Flow Within a Movement

A video clip consisting of 12 reach movements performed by a subject was

analyzed. Let [tis, t
i
e] denote the time interval of the ith movement. The set of flow

vectors obtained for the ith movement would be
⋃tie

t=tis
Ft. The self-consistency of

the optical flow during a movement is measured by the dot product of the flow

vectors w.r.t. the mean flow vector for the movement. Figure 4.1(a) shows the

histogram of the values of self-consistency obtained for the movements. It indicates

that most of the optical flow vectors point in the same direction as the mean flow

vector, highlighting the self-consistency of the flow. Flow vectors whose dot product

with the mean flow is greater than 0.5 are considered to be relevant for measuring

the movement’s dynamics; they constitute the significant optical flow, Fi for the ith
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movement.

4.1.1.2 Consistency of the Hands’ Direction of Movement with the

Optical Flow

Next, we measure the consistency between the direction of the 2D projective

velocity of the subjects’ hands during reach movements and the optical flow com-

puted over his/her silhouette. A video sequence of several reach movements was

collected and the subject’s hands’ centroids in the image frames were hand-labelled.

Let vt denote the displacement vector of a hand at time t computed using 1st-order

differences. It’s consistency with the optical flow is defined to be it’s normalized

dot-product with 5 Nearest-Neighbor significant optical flow vectors, formulated as

vt �Fi = mean 5NN

({
vt

‖vt‖ · f

‖f‖
∣∣t ∈ [tis, t

i
e] ∧ f ∈ Fi

})

As the hands’ size in the image frame was typically 10 × 10, displacement vectors

with ‖v‖ ≤ 5 were ignored. Figure 4.1(b) shows a histogram of the values of

the consistency measure observed for the movement sequence. It indicates that a

majority of the hands’ displacement vectors have high consistency with the optical

flow.

The flow at time t is represented by the mean vector of Ft, i.e. by f̃t =
∑

f∈Ft
f

|Ft| .

The magnitude of the optical flow vectors is noisy due to the rapidity of the move-

ments and the small visual area occupied by arms and hands. To provide robustness,

the flow magnitude is represented by the min(‖f̃t‖), mean(‖f̃t‖), median(‖f̃t‖) and

max(‖f̃t‖) within small temporal windows. In our experiments, 5 window sizes were
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Figure 4.1: (a) Histogram of the dot product of optical flow vectors with the mean
optical flow vector, (b) Histogram of the dot product of instantaneous displacement
vector of the hand with 5-NN optical flow vectors.

used, of lengths 6 to 10. This results in a 20 dimensional feature vector, Φ̃OptFlow(t),

representing the magnitude of the optical flow at time t. Note that by eliminating

the directional information, the features are designed to be invariant to the direction

of movement.

4.1.2 Silhouette Deformation

The subject’s silhouette in each frame is computed using background subtrac-

tion followed by contour extraction [73]. A Distance transform Dt(x) is computed

on the image plane for the silhouette at each time instant t. The deformation of a sil-

houette at time t is measured by the Chamfer distance of the points on the silhouette

w.r.t. Dt−1(.). Let {pt
1, . . . ,p

t
N} be the points on the silhouette at time t. Let St be

the set of Chamfer distances at these points, St = {Dt−1(p
t
i)}N

i=1. It is summarized

using four measures: min(St), mean(St), median(St) and max(St). These measures

are averaged (mean and median) over various time windows to achieve robustness

to noise. A 20 dimensional feature vector is created for each time instant, denoted
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by Φ̃SilDef(t).

4.1.3 Pixel-wise Frame Differences

Motion-history images and pixel-wise differences have been extensively used

to represent motion [11, 89]. Let It(x) denote the image at time t. The difference

image is defined as δIt(x) = 
(It(x) − It−1(x)) > ∆ID�. The threshold ∆ID depends

upon the noise characteristics of the video and is fixed at 0.1. A distance map Dδ
t (x)

is constructed from δIt(.). Let IDt be the set of Chamfer distances of active pixels

in δIt(.) w.r.t. Dδ
t−1(.). It is defined as IDt = {Dδ

t−1(x)|δIt(x) = 1}. A histogram

is constructed at each time instant from the members of IDt; it is quantized so

as to reduce the effects of noise and outliers. Figure 4.2 shows line-plots of the

histograms obtained during mid-flights of some reach and strike movements. They

indicate that strike movements have higher frequency of large displacements. The

histograms represent the velocity as a 12 dimensional feature vector, Φ̃FrmDiff(t), for

each time instant.
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Figure 4.2: Histograms of IDt computed during mid-flight for (a) reach and (b)
strike movements. The plots indicate that strike movements have higher frequency
of large displacements.
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4.1.4 Summary of Velocity Features

The silhouette deformation and pixel difference features involve statistics of the

displacement magnitudes - Chamfer Distance. Therefore, they are robust to changes

in movement direction. The magnitude of the velocity of the hand is represented by

Φ̃(t) =

〈
Φ̃OptFlow(t), Φ̃SilDef(t), Φ̃FrmDiff(t)

〉
.

The acceleration and deceleration impulses are represented by including past and

future velocity magnitudes to obtain

Φ(t) =

〈
Φ̃(t − 2∆t), Φ̃(t − ∆t), Φ̃(t), Φ̃(t + ∆t), Φ̃(t + 2∆t)

〉

Φ(t) depends only upon the magnitude of the motion, and thus, is robust to variation

in direction of movement and camera-view. By including past and future velocity

information, it implicitly represents statistics of accelerating and decelerating im-

pulses. This enables it to encode the ballistic dynamics of the hand for classification

into reaches and strikes - described in Section 4.3. The velocity observations, Ov(t),

consist of Φ(t) to encode velocity magnitude and f̃(t) to represent the direction of

motion.

4.2 Temporal Segmentation into Ballistic Movements

Recalling from Section 3.3, sequences are segmented into ballistic movements

by fitting the dynamical model to subsequences of motion observations and noting

the segmentation with maximum likelihood. We describe the manner of fitting the

ballistic dynamics to subsequences, and then the Dynamic Programming algorithm
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for efficiently computing the optimal segmentation.

It can be shown that in the MJM model, when initial and final velocity and

acceleration are zero, the hand follows the following trajectory

y(t) =


 y1(ts) + (y1(ts) − y1(te))(15τ 4 − 6τ 5 − 10τ 3)

y2(ts) + (y2(ts) − y2(te))(15τ 4 − 6τ 5 − 10τ 3)


 (4.1)

where y(ts) = [y1(ts), y2(ts)] is the initial position, y(te) = [y1(te), y2(te)] is the

ending position, and τ = t−ts
te−ts

is the time scale. It is easy to see that the trajec-

tory is a straight line. A number of psychological studies have noted this to be

a good approximation of the path followed by the hand during reach movements

e.g., [79, 28, 85], etc. We employ it for approximating the path followed by the

hands during ballistic movements. As will be shown in the experiments, this forms

a good assumption given the high acceleration and deceleration involved, and the

relatively short duration of the movements.

Consider the ith segment of duration [tis, t
i
e]. Let the direction of movement

of the hand be θi - this parameterizes the dynamics Bi. The likelihood of θi’s fit

to Ov(t
i
s) . . . Ov(t

i
e) is defined through potential functions on the weighted difference

between the optical flow vectors and θi direction:

p(Ov(t
i
s) . . . Ov(t

i
e)|Bi) =

tie∏
t=tis

∏
f∈Ft

exp− [‖f‖ − f · n̂(θi)] (4.2)

where n̂(θ) = cos θî + sin θĵ. Taking a logarithm and differentiating with respect to

θi, the optimal value of fit is obtained for

tie∑
t=tis

∑
f∈Ft

(f1 sin θi − f2 cos θi) = 0 (4.3)
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Therefore, the optimal value of p(Ov(t
i
s) . . . Ov(t

i
e)|Bi) is

p(Ov(t
i
s) . . . Ov(t

i
e)|B∗

i ) = exp



∥∥∥∥∥∥

tie∑
t=tis

∑
f∈Ft

f

∥∥∥∥∥∥−
tie∑

t=tis

∑
f∈Ft

‖f‖

 (4.4)

From Eq.(3.8), we have the probability of the segmentation of a sequence into bal-

listic segments B1 . . . Bn as

p(B1 . . . Bn|Ov) = exp


 n∑

i=1

∥∥∥∥∥∥
tie∑

t=tis

∑
f∈Ft

f

∥∥∥∥∥∥−
n∑

i=1

tie∑
t=tis

∑
f∈Ft

‖f‖

 (4.5)

Notice that
∑n

i=1

∑te
t=ts

∑
f∈Ft

‖f‖ is a constant for the sequence, independent of the

segmentation. Therefore, the optimality of the segmentation of a sequence [0, T ]

into partition χ = 〈χ0 = 0, χ1, . . . , χn = T 〉 is given by

n∑
i=1

Ψ(tis, t
i
e)

where

Ψ(tis, t
i
e) =

∥∥∥∥∥∥
tie∑

t=tis

∑
f∈Ft

f

∥∥∥∥∥∥ (4.6)

Let the minimum duration of a ballistic movement be Tmin and the maximum

duration be Tmax. In our experiments, Tmin = 5 frames (0.25 sec.) and Tmax = 30

frames (2 sec.) Algorithm 1 describes an O(n) algorithm for computing the optimal

segmentation. Figures 2.1, 3.2, 4.5 and 4.6 show examples segmentations computed

for reach and strike sequences. Quantitative results are presented in Section 4.5.

4.3 Reach vs. Strike Classification

Ballistic movement segments are classified into reaches and strikes by mod-

elling the statistics of the motion features. A classifier based on boosting was trained
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Algorithm 1 Temporal Segmentation

Procedure

Set Ψ(ti, tj) = 0 ∀ti, tj < 0 /*Boundary condition*/
for ts = 0 . . . T do

f̂(ts, ts) =
∑

f∈Fts
f

χ(ts) =

[ −1 ts = 0

arg maxts−Tmin
t=ts−Tmax

Ψ̂(t, ts) ts > 0

Ψbest(ts) =

[
0 ts = 0

maxts−Tmin
t=ts−Tmax

Ψ̂(t, ts) ts > 0
for te = ts + 1 . . . ts + Tmax do

f̂(ts, te) = f̂(ts, te − 1) +
∑

f∈Fte
f

Ψ(ts, te) = ‖f̂(ts, te)‖
Ψ̂(ts, te) = Ψ(ts, te) + Ψbest(ts)

end for
end for
χ(T ) = arg maxT−Tmin

t=T−Tmax
Ψ̂(t, T )

Ψbest(T ) = maxT−Tmin
t=T−Tmax

Ψ̂(t, T )
χ∗ = T /*Recursively backtrack to get optimal segmentation*/
t = χ(T )
while t = −1 do

χ∗ = t ⊕ χ∗ /*Concatenation operator*/
t = χ(t)

end while
Ψ∗ = Ψbest(T )
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Figure 4.3: Confidence values of strike detection for two reach movement sequences
and two strike sequences. The ground-truth timing of strike movements are marked
with a red impulse function.

to distinguish between instants of reach and strike movements [1]. The data vectors

were constructed from the motion features described in Section 4.1. The training

samples consisted of feature vectors computed at mid-flight during reach and strike
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movements. Let h(.) denote the trained classifier, whose output is 1 for strike move-

ment dynamics and -1 otherwise. The confidence for detection of strike at time

t is defined as h(Φ(t)) - higher the value more the likelihood of strike movement.

Figure 4.3 shows examples of the confidence values as a function of time for two

sequences consisting entirely of reach movements (no striking or throwing), and two

sequences in which people threw objects and punched around. The ground-truth

time of the strike movements are marked as impulses in a red plot overlayed on

them. In the plots of strike sequences, h(.) has peaks corresponding to strike move-

ments, indicating that the classifier is able to distinguish between reach and strike

movement dynamics. Quantitative results are presented in Section 4.5.

4.4 Position Features and Label Inference

The subject’s pose, Op(t), is represented by the subject’s silhouette and the

head’s gaze-direction. Shape-Context, proposed by Belongie et al. [9], is used to

represent the subject’s silhouette. The subject’s gaze-direction w.r.t. the camera is

represented by a 4D vector of confidences in four gaze-directions: left, right, facing

the camera and facing away from the camera. Gaze-detection has been extensively

studied as part of pose-invariant head detection, e.g., [39]. A simple gaze-detector

based on Haar-like features is used to determine the head’s gaze-direction. The

hand’s position is estimated using skin detection and motion features [73]. Figure 4.4

shows some examples of the silhouette, head’s pose, and hand’s target location

detected for some reach and strike movements.
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Figure 4.4: Examples of the person silhouette and gaze-direction computed at the
start of ballistic movements, and the hand’s target location estimated using skin
detection and motion.
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The silhouette and the head’s gaze-direction provide spatial context for la-

belling the hand’s target location. For example, the position of the hand relative

to the principle axis of the silhouette depends upon the height of the hand in world

coordinates. Similarly, the head’s gaze direction determines labels such as front, left,

behind, etc. Figures 2.1, 4.5, 4.6 illustrate the labels computed by the approach.

Quantitative results are presented in the next section.

4.5 Experimental Results

A database of movement sequences was collected to test the approach: 7

reach movement sequences were collected depicting 67 reach instances performed

by 6 subjects. A number of small objects such as pens, clips, etc. were placed on

surfaces of varying heights in the scene. The subjects were asked to pick up and

place the objects on random surfaces of their choice including the floor. They were

asked to confine their movements within an area of 9 × 9 feet. No restriction was

imposed on the manner of movements - the subject stepped around, bent, used either

of their hands, etc. Based on their own volition, subjects performed movements in

rapid succession as well as with pauses. The segmentation of continuous sequences

into ballistic movement segments was performed automatically. Movement instances

in which the hands were occluded were ignored.

In a similar manner, we recorded 10 strike sequences depicting 68 instances of

striking and throwing performed by 4 subjects. The subjects were asked to strike

and throw objects kept at various heights varying from the ground to waist-level. No
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restriction was imposed on the manner of the strikes - subjects punched, slammed

down and slapped (forehand and backhand) the objects. The subjects struck and

threw with all their might - one subject almost broke a garbage bin while slamming

down on it!

The subjects consisted of 5 males and 1 female - the subjects’ morphologies

vary considerably. The video resolution was 320 × 240, at 15 frames per second.

The subjects’ heights in the image-frames were ≈ 180 ± 40 pixel units.

The data-set is challenging as many movements are executed in rapid succes-

sion and at high speeds. The limbs are frequently inside the subject’s silhouette,

making pose-estimation difficult. There is significant motion blur during mid-flight.

Please see supplementary videos. Table 4.1 shows the recognition results for the

reach and strike movements.

Segmentation results are shown in Row 2 of Table 4.1. Very few movements

were missed by the segmentation. The error in the boundary of the segments was

in the range ±3 frames (0.2 sec). A likely reason for this error is that the hand’s

velocity during the first few and last few frames of a movement segment is very low.

Low level motion features are inadequate for such fine differentiation.

Reach vs. strike classification results are shown in Rows 3 and 4 of Ta-

ble 4.1. The accuracy is high, the error rates being approximately 6%. In 2 of the

cases in which strike movements were misclassified as reaches, the strike movement’s

duration was very small (2 to 3 frames). Due to the noise present in images and the

subject’s silhouette, it is difficult to reliably extract motion features for movements

of such short duration.
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Ground truth classes

Reaches Strikes

1. Total number of instances (ground-truth) 67 68

2. Num. correctly segmented 64 68

(percentage) 96% 100%

3. Num. classified as reaches 60 4

(percentage) 90% 6%

4. Num. classified as strikes 4 64

(percentage) 6% 94%

5. Correct reach/strike classifications & labell- 56 59

ing of movement’s direction and target location 84% 87%

Table 4.1: Video-based movement recognition results

Target location & Movement direction results are shown in Row 5 of

Table 4.1. The total number of reach movements that were correctly detected,

classified and qualitatively labelled was 56 (84%). 2 of the target labelling errors

were due to incorrect estimation of the hand’s position at the end of the movement.

The total number of strikes correctly detected, classified and qualitatively

labelled was 59 (87%). There are two reasons for the errors in labelling strikes:

(1) At very high speeds, the hand’s image is blurred. For strike sequences with

pronounced blurring of the hand, the target’s position at the time of highest speed

60



may not be detected, resulting in incorrect labels.

(2) The optical flow computation is unreliable for rapid movements of very short

duration. This resulted in erroneous labels for the direction of movement for some

instances of strikes.
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Chapter 5

Edge Continuity for Contour Matching

5.1 Introduction

Edge continuity has been studied in computer vision to understand the man-

ner in which humans organize and group visual structures. Kanizsa’s experiments

with subjective contours was one of the earliest papers on this subject [42]. Later,

several computational approaches were proposed to model edge continuity, show-

ing interesting resemblance to human perception, e.g., [74, 58, 34, 90]. Parallel to

this, there has been research on human pose estimation and detection using con-

tour matching. Recognition is performed by matching model contours with image

edges. Edge clutter present in natural images is one of the principle challenges faced

during contour matching. We explore edge continuity models for improving recogni-

tion, and apply it to human pose estimation and gesture recognition. This chapter

presents an edge affinity model that extends previous approaches by including color

statistics in the neighborhood of edges. The model is employed for improving pose

estimation. Results of this work were reported in [62]. Chapter 6 presents a Markov

Random Field (MRF) extension, and applies it to human detection.
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5.1.1 Studies on Contour Matching

Contour matching is used extensively in computer vision for human pose de-

tection and recognition tasks. When applied for action or gesture recognition, it is

used to compute pose observation likelihoods, which are then modelled using Hid-

den Markov Models (HMMs) [24], Markov Chain Monte Carlo (MCMC) [47], etc.

Contour matching has also been used for object detection e.g. [30, 54], etc. There

are three stages to contour matching:

1. Edge features of the objects in the images are detected.

2. A pose-contour is imposed on the image for matching.

3. The score for the match is generated by computing distance between the im-

age’s edge features and the imposed pose-contour.

Many studies - including ours - use gradient-based operators such as Canny

edge-detector and Gaussian derivatives for detecting edge features. Reliably detect-

ing object boundaries in general illumination conditions is difficult. Recent research

on boundary detection has focussed on using region segmentation as a pre-processing

step for generating “super-pixels” - relatively small groups of pixels that have ho-

mogenous features and are highly likely to belong to the same object. Boundaries of

the super-pixels are used for matching object boundaries. For example, Mori et.al.

use normalized-cuts (n-cuts) to obtain super-pixels and then analyze their configu-

rations to detect baseball players [56]. Sharon et.al. use a multigrid approach for

obtaining segment boundaries [75].
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The pose-contour to be matched with the test image could either be collected

during training or generated using a model. Whole-body contours have been used for

human pose-matching in [57, 31, 84, 55, 24], etc. Zhang et al. use a Bayes-nets based

articulated model for pedestrian detection [98]. Ronfard et al. follow a bottom-up

part-based approach to detecting people [71]. They train Support Vector Machines

(SVMs) on gradients of limbs obtained from training images. In the present study,

the pose-contours correspond to the whole body of the subject and are collected

during a training phase.

Chamfer distance is a popular method for measuring the goodness of the match

between edge sets. The distance for each contour point from the nearest image edge

is computed. The sum of these distances indicates the goodness of the match -

lower the integral, better the match. Rosin and West presented a continuous form

of chamfer distance which includes the saliency of the edges in the matching [61].

Their method avoids setting threshold on the gradient magnitudes, generally diffi-

cult issue. Butt and Maragos presented an efficient approach for computing chamfer

distance while minimizing errors due to discretization [17]. Toyama and Blake use

sets of exemplar contours and chamfer distance for tracking pedestrians and mouth

movements [84]. Mori and Malik introduced the Shape Context technique for match-

ing human pose contours [55]. Olson and Huttenlocher used the Hausdorff distance

for object recognition [57]. Leibe et.al. present a study comparing contour-based

and appearance-based object recognition in [48].
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5.1.2 Pose Matching in Cluttered Images

Images of people in natural scenes have significant edge clutter present in

the background in addition to the subject’s figure. Ideally, these background edges

should be ignored when matching pose-contours. However, reliable background sup-

pression in natural images in the presence of camera and subject motion is difficult.

There are three general ways of handling this:

5.1.2.1 Asymmetric Approach

Not perform the difficult task of background subtraction but rather compro-

mise with asymmetric matching, which only measures how well a model pose-

contour matches with the image’s gradients. It does not verify whether these

matching gradients form a coherent object. Current contour matching schemes

either follow this asymmetric approach or assume background subtracted images,

e.g. [24, 30, 54, 57, 17, 84, 55, 98]. Predictably, this leads to problems as a contour

can match well with a subset of the edges of an object and ignore the rest of it.

Consider the case shown in Fig. 5.1. Fig.s 5.1(a) and (e) show an image and the

edges of the subject. Fig.s 5.1(c) and (g) show two pose-contours in the database

extracted from training images shown in Fig.s 5.1(b) and (f) respectively. Clearly,

the contour in Fig. 5.1(c) is the correct pose. However, when the poses are matched

with the image (Fig.s 5.1(d) and (h)) using Chamfer matching, the wrong pose ob-

tains a better score. The reason is that it has smaller extent at the arms, which - due

to articulation - are the zones of highest errors in matching. Normalizing the error
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w.r.t. the length of the boundary does not ameliorate the situation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: (a,e) The test image and the subject’s edges. (b,c,d) Training image
showing the correct pose, the pose extracted from it, and the gradient map of the
test image with the pose overlayed. (f-h) Similar to (b-d) but for a wrong pose.

5.1.2.2 Segmentation Followed by Recognition

The second approach uses segmentation as a pre-processing step and then an-

alyzes the segment boundaries for matching.

Edge continuity cues in region segmentation: Typically, the continuity con-

straints are imposed on the segment boundaries - high curvatures are penalized

and straight boundaries are promoted. Leung and Malik proposed a pairwise pixel

affinity which takes into account intervening gradients between them [49]. N-cuts

was used to obtain the final region segmentation. Ren and Malik presented a seg-

mentation scheme in which super-pixels were computed as a pre-processing step for
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segmentation [69]. The continuity of super-pixel edges along a segment’s boundary

were included as part of the segment’s goodness value. Yu and Shi generalized the

n-cuts algorithm to partition both the pixels and edge elements [96]. The graph

nodes corresponding to edge elements are connected by affinities based on continu-

ation. However, obtaining segments that directly correspond to holistic objects is a

challenge. Usually, over-segmentation followed by recognition on groups of segments

is favored e.g. [56], etc.

Jermyn and Ishikawa proposed an energy function for segmentation which

includes both region and boundary cues [40]. The basic idea is to integrate the

function along boundaries of segments and choose the segment with lowest energy.

There has been related work on integrating segments using region and boundary

cues [19, 50].

Part-based Detection: A closely related approach is based on detecting limbs

as components shaped as rectangles and combining them using graphs or trees. The

rectangles are detected using templates with uniform interior color and contrasting

color in the periphery [70, 65, 66]. In [86], the components are combined using a

cascade. It is not clear how these techniques could prevent errors due to asymmet-

ric matching - the case shown in Figure 5.1. These methods can easily ignore the

extended arm in Figure 5.1(a) and confine themselves to the torso - leading to an

erroneous match.
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5.1.2.3 Use Edge Continuity during Recognition

The third approach - the one followed here - is to avoid performing segmen-

tation while still taking into consideration edge continuity constraints. Given an

image and a pose-contour to be matched, we find the set of gradients in the image

that are likely to belong to the subject. If the given pose-contour is correct then

this set must belong to the foreground. However, this “initial” set might be closely

linked with other gradients in the image - which must also belong to the foreground.

Edge continuity is used to expand the initial set to include other linked gradients.

For the given pose-contour to be a good match to the image, it should match with

the expanded set of gradients. The matching is performed using a modified form of

chamfer distance. This framework provides a large measure of resistance to spurious

matches in the case of highly textured scenes, and to incorrect matches when some

poses match only partially with the subject but obtain a high score by avoiding

integrating errors in articulated parts of the body (as illustrated in Figure 5.1).

A closely related approach for detecting lakes in satellite imagery was proposed

by Elder et.al. [23]. Here, edge continuity constraints are included in a probabilistic

model to detect closed contours in edge maps. The authors also describe a method

for learning the edge continuity priors in the context of detecting lakes. In our

problem, the goal is to match a given set of contours with an image - this is different

from the detection problem addressed in [23].

Thayananthan et.al. [82] proposed an improvement to the Shape Context tech-

nique by enforcing neighborhood constraints on the matchings between point sets.
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They require that neighboring points on the pose-contour be mapped to neighboring

points on the image. However, it is not clear whether this would guarantee that the

mapped gradients also form a holistic object.

Region-based Segmentation and Recognition: Additionally, there have

been many recent studies on linking segmentation and object recognition. Cremers

et.al. introduced a variational framework for combining segmentation and recogni-

tion [20]. Yu et.al. introduced a generalized version of the normalized-cuts algorithm

in which the graph affinities include body-part configuration constraints along with

spatial continuity criteria [97]. Borenstein et.al. extended the multiscale segmen-

tation algorithm to enable object recognition by using the segments’ saliency as

constraints [13, 12]. These approaches employ region-based segmentation and ap-

pearance modelling. We complement them by introducing a model for combining

edge grouping with contour matching.

5.1.3 Overview of Present Work

Our model for matching a pose-contour to an image combines two measures:

1. The first one measures how well the pose-contour aligns with the gradients

in the image. This is computed using an extended form of chamfer matching

applied to a continuous gradient magnitude field instead of a discrete edge

map. We refer to this as cp→i.

2. The second measures how well the subject’s gradients in the image align with

the pose-contour. It verifies whether the image gradients underlying the test
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pose-contour form a holistic object, or are part of a larger object. This measure

is computed from the expanded set of gradients obtained from edge continuity.

It is referred to as ci→p.

We propose an edge-affinity model for grouping edge elements in natural im-

ages depending upon whether they could belong to the same object. A pair of

edge elements have high affinity if their orientations have good continuity and their

neighborhoods have similar color statistics. Given an image and a pose-contour to

be matched, an initial set of edge elements matching with the pose-contour is ob-

tained. An iterative process is then used to expand this set to include other edge

elements having high affinity with its members. The measure, ci→p, is computed

from the degree of mismatch between the estimated outline of the subject and the

pose-contour being considered.

The pose contours used in the present study were collected as part of a gesture

recognition system. The training database consists of 14 gestures performed by 5

subjects (c.f. Section 5.5). The subjects stand upright and the arms are the principal

modes of gesticulation. The proposed pose-matching system is tested both with still

images and in a gesture recognition application.

We first review work on edge continuity and then describe the edge affinity

model. Section 5.3 describes the algorithm for using the edge affinities to compute

ci→p. The extended form of Chamfer matching is described in section 5.4.
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5.2 Edge Affinity

Two edge elements in a given image are said to have high affinity if they are

likely to be part of an object’s boundary. This depends upon:

1. The “goodness” of the contour that could pass between them, with the con-

tour’s orientation constrained by the orientation of the edge elements.

2. The color statistics in their neighborhoods.

The proposed edge affinity model is presented in stages. First the dependence on

the curvature of the contour connecting the two edge elements is described (c.f.

eq. (5.2)). Next, the orientation of the edge elements w.r.t. this contour is in-

cluded (c.f. eq. (5.3)). Finally, color statistics in the neighborhood of the edge

elements are factored in (c.f. eq. (5.4)).

5.2.1 Edge Continuity

Given two edge elements, edge continuity criteria measure how likely it is

that they are connected. This has been extensively studied in computer vision for

detecting salient figures in images and for forming subjective contours [42]. Sha’

Ashua and Ullman computed the saliency of edges by building a network of edge

elements and use curvature and curvature variations to formulate a measure of

saliency [74]. Parent and Zucker used the concept of an osculating circle for edge

continuity [58]. Guy and Medioni combined this with tensor voting to obtain saliency

maps for the edges in an image [34]. Williams et.al. proposed a stochastic completion
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model to compute the probability that a contour connecting one point to another

would pass through a given intermediate point. The obtained probability fields show

interesting resemblance to subjective contours [90]. Although edge-continuity has

been studied in the context of perceptual grouping, we are not aware of any work

in linking it with recognition. We use the model proposed by Parent and Zucker for

our edge affinity model.

5.2.1.1 Osculating Circles

z
r

2θ

θ
y

Figure 5.2: Osculating circle given two points y and z lying on it and the tangent
to the curve at y.

Edge-continuity constraints typically assume that curves with low curvature

are more likely to occur. In the case of [58], given two points and the orientation of

the contour at one of them, the most likely contour to pass through them is assumed

to be a circle. The reasoning being, for closed contours with fixed lengths, a circle

will have minimum curvature. The circle so defined is called an osculating circle.

This is illustrated in Figure 5.2 - y and z are the two given points on the image

plane and the orientation of the contour at y is fixed. It can be shown that the
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radius of the circle - denoted by r(y, z) - is given by:

r(y, z) =
‖y − z‖
2 sin θ

(5.1)

where θ is as shown in Figure 5.2(a). The curvature of a circle is the reciprocal of its

radius. The smaller the curvature, the better connected are the two edge elements

at y and z.

Let ey denote the edge element at y on the image plane. We denote the affinity

between two edge elements ey and ez by a(ey, ez). It’s variation w.r.t. r(y, z) would

depend upon the statistics of the curvature of the contours of humans. The com-

puted statistics are local in nature and depend upon the curves typically observed

on outlines of cloths. We analyzed the pose-contours of 5 human subjects while per-

forming the “Turn Left” gesture (Figure 5.11). See Appendix A for details. Based

on this analysis, the affinity a(.) is formulated as a sigmoidal function of r(y, z)

a(ey, ez) =
1

1 + exp(− r(y,z)−6
.9

)
(5.2)

Figure 5.3 shows a plot of its variation w.r.t. the radius. The subjects’ heights in

the images in our application varied from 170 to 200 pixel units - the parameters

of the function were kept constant for all experiments. For applications with pose-

contours of a substantially different scale: (a) The r(y, z)’s can be scaled linearly

w.r.t. the subjects’ scales, or (b) statistics of the new contour set can be collected

and the constraints on a(.) adjusted according to them.

Until now we have ignored the orientation of ez when computing a(ey, ez). Let

n̂(z) denote the unit vector tangent to the osculating circle at z. If ez is orthogonal

to n̂(z) then the affinity should be 0. On the other hand, the affinity should be
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Figure 5.3: Variation of the induced affinity for different radii of the osculating
circles.

maximal when ez is tangential to the osculating circle at z. In general, the affinity

is proportional to the magnitude of the normalized projection of ez onto n̂(z). Let

∆I(z) denote the gradient vector at z - it would be perpendicular to ez. Including

the orientation factor into the affinity yields

a(ey, ez) =
1

1 + exp(− r(y,z)−6
.9

)

∥∥∥∥n̂(z) × ∆I(z)

‖∆I(z)‖
∥∥∥∥ (5.3)

5.2.2 Including Color Statistics

The large amount of edge clutter present in natural images makes edge conti-

nuity alone unreliable for determining edge affinities. Color statistics in the neigh-

borhoods of the edges form an important low level cue for grouping. In the case of

edges bordering an object, only one side of the edge (the foreground side) should

have similar colors. The other side, belonging to the background, can have arbitrary

colors. Therefore, we collect statistics on both sides of the edges but constrain only

the side indicated by a candidate contour to be the foreground. The color statistics

are collected by averaging the color in 5 × 5 windows on either side of the edge

elements - see Figure 5.4(a).
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We label the sides adjacent to an edge as +ive and −ive depending upon the

orientation of ∆I at that point. Accordingly, the color statistics at an edge element

ey are denoted by c+(ey) and c−(ey). Now consider two edge elements ey and ez,

and, without loss of generality, suppose that the +ive side of ey belongs to the

foreground. When extending the contour from y to z, the side of the osculating

circle corresponding to the +ive side of ey will be the foreground and hence should

exhibit color constancy - see Figure 5.4(b). Depending upon the angle made by

∆I(z) with the tangent to the osculating circle (n̂(z)), one of c+(ez) and c−(ez) is

chosen for comparison with c+(ey); in the shown example c−(ez) would be chosen.

For computing the orientation of ∆I(z) w.r.t. n̂(z), we compute the cross-product

∆I(z) × n̂(z), which is perpendicular to the image plane. Let cs(y) be chosen as

foreground. There are two cases:

1. ∆I(z)× n̂(z) points upwards: in this case cs(z) should be used for comparison.

2. The cross-product points downwards: in this case c−s(z) should be used for

comparison.

In other words, if cs(y) is chosen as foreground then cs′(z) is chosen for comparison,

with s′ = s sgn((∆I(z) × ˆn(z)) · (k̂)). Here k̂ is a unit vector perpendicular to the

image plane, pointing upwards.

Let the color statistics chosen at y and z be denoted by cy and cz respectively.

We allow for additive Gaussian noise in the color statistics, and correspondingly
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Figure 5.4: (a) Collecting color statistics in 5 × 5 windows on either side of edge
elements. (b) As c−(z) lies on the foreground side of the osculating circle, it is
chosen for comparison with c+(y).

extend the edge affinity model as:

ã(ey, ez) =
1

1 + exp(− r(y,z)−6
.9

)

∥∥∥∥n̂(z) × ∆I(z)

‖∆I(z)‖
∥∥∥∥ exp

(
−‖cy − cz‖2

σ2
c

)
(5.4)

σc was kept at 0.003. The affinity so defined is asymmetric. It is made symmetric

by taking the maximum:

a(ey, ez) = max (ã(ey, ez)ã(ey, ez)) (5.5)

5.2.3 Using Edge Affinities to Propagate Edges

When a contour is placed on an image, the gradients in the image lying under-

neath the contour are said to match with it. These are called the activated gradients.

It is possible that the activated gradients are actually part of a larger object in the

image. In this case, they would have high affinities with other gradients not acti-

vated by the pose. Let us call these the propagated gradients. The activated and

propagated gradients together constitute the net saliency induced by the pose on

the image. The term salient gradients is used to indicate the union of activated and

propagated gradients. They would highlight the outline of the object whose edges
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were activated by the contour under consideration.

An iterative approach is followed for obtaining the salient gradients, where

the previous stage’s salient gradients propagate to other gradients through the edge

affinities. Let A0(ey) denote the activation field defined on the image plane - it

quantifies the degree of activation of the various edge elements in an image by a

contour. This would form the initial saliency field in the iterative process. A(.)

ranges over [0, 1]. At each iteration, the salient gradients in the neighborhood of an

edge element induce saliency to it - the higher the affinity, the greater the saliency

induced. For simplicity, we consider only pairwise interactions and use the max

operator to combine the saliency induced by the different neighbors of a point. The

saliency field at the tth iteration (t = 0 . . . Γ) is denoted by At(ez), and is computed

as

At(ez) = E(ez) max
y∈N(z)

[
a(ey, ez)Ψ(At−1(ey))

]
(5.6)

E(ez) ∈ [0, 1] quantifies the confidence of edge element ez to belong to the fore-

ground. In the absence of additional information, e.g. foreground color statistics,

E(ez) is simply the gradient magnitude of ez. N(.) defines an 11× 11 neighborhood

around a point in the image plane. Ψ(.) is in general a nondecreasing function with

range [0, 1]. In our implementation it was a step function:

Ψ(q) =




1 q ≥ δ

0 otherwise

(5.7)

The threshold helps in reducing computational complexity as points with very low

activation can be ignored. In all our experiments, δ was kept constant at 0.005.
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For the purposes of illustrating the functionality of the edge affinities, consider

the image and its gradient magnitude map shown in Figures 5.5(a) and (b) respec-

tively. We activate a point on the edge of the torso of the subject and extend its

edge using the edge affinities. The activated point’s coord.s are (128, 105) and it is

marked with a circle in Figures 5.5(a) and (b). Thus, the initial saliency field, A0(.)

is as follows:

A0(ey) =




1 y = (128, 105)

0 otherwise

(5.8)

Figure 5.5(c) shows the saliency field obtained after 4 iterations, i.e. A4(.), when

the torso side of the initiating edge is made the foreground. Figure 5.5(d) shows the

salient points in A4(.) marked with dots. Figure 5.5(e) shows A4(.) when the wrong

side, i.e. the one on the brick wall, is made the foreground. Figure 5.5(f) shows

the salient points in this case. Depending upon the choice of foreground, either the

subject or the wall’s edges are propagated. Figure 5.6 shows propagation at interme-

diate stages when the subject’s torso is chosen as foreground. Figure 5.7 shows more

examples of images and propagations obtained from a single seed edge (marked with

a circle) - for these cases the foreground is always chosen to be inside the subject.

The edge affinity model is effective in confining the saliency propagations to the

subject’s edges and prevents the background edges from being highlighted. In the

third case, the saliency “jumps” across the subject’s sleeve as the edges of the sleeve

are parallel and obey constraints on color statistics. Note that we do not expect the

whole figure of the subject to be highlighted by just one seed edge. The examples

are used to illustrate how the edge affinities characterize the grouping among the
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edges.

(a) (c) (e)

(b) (d) (f)

Figure 5.5: (a) Image and (b) its gradient magnitude map with the seed edge element
marked with a circle. (c) Saliency field obtained when the side inside the subject is
considered foreground - the subject’s edges are made salient, (d) to clearly highlight
the propagation, points with saliency greater than 0.1 are marked with dots. (e) The
case when the side on the brick wall is considered foreground so the wall’s gradients
are made salient, (f) points with saliency greater than 0.1 marked with dots.

Iteration (1) (2) (3) (4)

Figure 5.6: Propagation of saliency at different iterations for the image in Fig. 5.5(a)
with subject’s torso as foreground. Points with saliency greater than 0.1 are marked
with dots.

5.3 Computing ci→p

Obtaining the Activation Fields: In most pose tracking and gesture recog-

nition applications, a bootstrap subject-detection phase is used to locate the subject

in the field of view. This provides the approximate location and scale of the subject
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(1) (2) (3) (4)

Figure 5.7: Images with the initial seed edge element marked with a circle, and the
corresponding salient gradients (A4(.)) obtained when the side inside the subject is
chosen to be foreground (activated points marked with white dots). Best viewed on
color monitor.

for pose matching. However, when a pose-contour is placed on an image, it will

not coincide exactly with the subject’s gradients in the image. This could be due

to variation in subject morphology, apparel, gesticulation style, etc. We allow for

Gaussian additive noise in the location of the points on the pose-contours. Each

pose pk is specified as a set of points {xk
i } outlining the subject’s figure in the train-

ing data. The Gaussian noise kernel for each xk
i follows a multi-variate distribution,

with Σk
i as the covariance matrix. Let A0

k(ey) denote the activation field induced

by pose pk on the image plane. The degree of activation induced by a pose at a

point on the image plane is the maximum over the activation induced by individual

points of the pose-contour.

A0
k(ey) = E(ey) max

xk
i ∈pk

exp[−(xk
i − y)T (Σk

i )
−1(xk

i − y)] (5.9)

Figure 5.8 shows examples of activation fields induced by two poses. Here, E(ey) = 1

for illustrative purposes. The Σk
i ’s are computed from the displacement of different
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points on the pose-contours in the training images.

Figure 5.8: Examples of activation fields induced by poses.

The net saliency induced by a pose is obtained by propagating the activation

fields in the iterative manner described above. Figure 5.9 shows some examples of

images with the pose-contours overlayed, the initial activation fields A0
k(.)’s, and

the net saliency fields AΓ
k (.)’s. The contours were obtained from the pose database

of the gesture recognition system and were manually imposed on the images for

illustrative purposes. We see that the objective of highlighting the figure of the

subject is achieved. Moreover, in the cases of correct poses, the net saliency fields

lie close to the pose-contours whereas the incorrect poses cannot “explain” the net

saliency fields.

The next step is to measure the quality of the match between each pose pk and

its net saliency field AΓ
k (.). This is achieved using the Chamfer distance approach.

Let Dk(y) denote the distance transform constructed from pose pk. For the kth pose,

ck
i→p is computed as

ck
i→p =

∑
y AΓ

k (y) exp(−Dk(y))∑
y AΓ

k (y)
(5.10)

ci→p will be high when the salient gradients in AΓ
k (.) are located close to the pose-

contour pk - this corresponds well with our intuitive notion of a good match.
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(a) (b) (c)

Figure 5.9: Examples of saliency fields obtained upon propagation: (a) images with
the poses overlayed, (b) initial activation fields (A0

k(.)’s), and (c) net saliency fields
-AΓ

k (.)’s (Γ = 7). In case of correct poses, the propagated gradients are close to
the original pose-contour whereas the incorrect poses fail to account for all the
propagated gradients.
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5.4 Extended Chamfer Matching for Computing cp→i

In classical chamfer matching, an image is first reduced to a map of feature

points and a distance map is constructed from this feature map. The pose-contour

to be matched is placed on the distance map and the distances are integrated along

the contour. If the pose-contour matches well with a subset of features in the image

then this integral would be small. The feature maps could be edge maps generated

by thresholded gradient magnitudes, etc.

The basic form of chamfer matching is limited because:

1. It is difficult to choose a threshold so that only the subject’s edges are present

in the feature map.

2. The method does not incorporate any prior information about the subject’s

appearance. In many applications, the subject’s color profile does not change

during a session. Therefore, color statistics could be used to eliminate some

of the background clutter.

3. The integration of the errors (distances) is unweighted - i.e. the method does

not take into account any prior knowledge about the uncertainty in the location

of different points on the pose-contours. Human arms are the principle modes

of gesticulation, causing the contour points on the arms to have the greatest

errors in location. However, in spite of being difficult to match, the arms are

the key distinguishing features between poses. Therefore, we would like to

give less weight to errors at points on the arms.
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We address the first two of the issues by using an analog form of the feature

map, denoted by E(ey), which quantifies the confidence that the edge element at

a point y on the image plane belongs to the subject. This is computed using the

subject’s color statistics collected at the person-location phase. In the absence of

such information, E(.) is the gradient magnitude field. The issue of weighing the

errors in location is handled using Gaussian kernels on the points of the pose-contour.

The covariance matrix for the Gaussian kernel at point xk
i is Σk

i - the same as the

one used for computing the activation values.

Let sk
i denote the confidence value for point xk

i on pose-contour pk to be present

in a given image. It is computed as a weighted average of the confidence values for

xk
i to be located at different points on the image plane. This is simply:

sk
i =

∑
y

E(ey)
e(−(xk

i −y)T (Σk
i )−1(xk

i −y))

√
2π|Σk

i |
(5.11)

We might also take into account the information provided by the orientation of the

pose-contour, denoted by O(xk
i ). A point xk

i on a pose-contour can correspond to a

point y on the image plane only if the orientation of gradient at y (∆I(y)) is similar

to the orientation of the pose-contour at xk
i . For this, sk

i (R) can be expanded to

include a function φ(∆I(y), O(xk
i )) which quantifies the similarity in orientation.

sk
i =

∑
y

E(ey)φ
(
∆I(y), O(xk

i )
) e(−(xk

i −y)T (Σk
i )−1(xk

i −y))

√
2π|Σk

i |
(5.12)

φ(.) is defined as

φ(v1,v2) =

∣∣∣∣ v1 · v2

‖v1‖‖v2‖
∣∣∣∣ (5.13)

This gives the confidence value for individual points on the pose-contours. The

86



ck
p→i’s are obtained by averaging over the pose-contour’s points.

ck
p→i =

1

Nk

Nk∑
i

sk
i (5.14)

where Nk is the number of points on the pose-contour pk.

Net Confidence for a Pose

The net confidence for a pose is denoted by ck and is computed as

ck = ck
p→i + ck

i→p (5.15)

5.5 Experimental Results

5.5.1 Still Images

We tested the pose matching model with 103 natural images to observe the

improvement due to the edge affinity model and ck
p→i. The test images had cluttered

backgrounds, including brick walls, grass, parking lots, etc. The pose-database

consisted of 1847 poses performed by 5 subjects (a subset of the database is shown

in Figure 5.11). The poses in the database are registered to one another w.r.t. the

heads of the subjects. The test images were generated by 4 subjects, 3 of whom

were not present in the pose-database; the one common subject was wearing different

clothing. The height of the subjects in the images varied from 170 to 200 pixel units.

In pose tracking and gesture recognition applications, the objective of pose-

matching is to generate likelihoods for the poses, which are then used by methods like

Hidden Markov Models (HMMs), etc. to perform the actual tracking or recognition.
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Figure 5.10: (a) Histogram of the relative confidences of the correct poses - the
distribution moves substantially towards 1 upon including edge affinities (ci→p). (b)
Histogram of the ranks of the correct poses - the distribution has a significant shift
towards 1 upon inclusion of ci→p.

Therefore, the following metrics were used for evaluating the pose matching:

1. The relative confidence of the correct pose - given by the ratio of its confidence

value w.r.t. the highest matched (possibly incorrect) pose. This should be as

close to 1 as possible, and would ensure that the correct pose is assigned a

high confidence.

2. Rank of the correct pose based on its confidence value. This would ensure

that the correct pose “stands out” in the pose-database.

For each test image, the confidence values were computed for all poses in the pose-

database. The correct pose in the database was manually selected and its ranking

and relative confidence were noted. In the case of multiple correct poses, the best

match was considered.

Table 5.1 shows the frequency of occurrence of the relative confidences in

several high confidence ranges, with and without the inclusion of edge affinities
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(ck
i→p’s). The frequency counts are boosted by more than 2.5 times when ck

i→p’s

are included. With the inclusion of ck
i→p’s, the correct pose had relative confidence

greater than 0.95 in all but 3 test images. Moreover, the mean of the relative

confidences of the correct poses increased from 0.865 to 0.987 and the standard

deviation decreased from 0.127 to 0.018 - an improvement of an order of magnitude.

Range of rel. conf. ck
p→i ck

p→i + ck
i→p

= 1 16.5% 44.6%

[.975, 1] 23.3% 76.7%

[.95, 1] 32.0% 97.1%

Table 5.1: Frequency of occurrence of relative confidences of correct poses in some
ranges.

Figure 5.10(a) shows the histogram of the relative confidences of the correct

poses for the test images, with and without ck
i→p’s. There is a clear shift in the

distribution towards 1 upon inclusion of edge affinities. In all but 6 cases, there was

an improvement in the relative confidences upon including edge affinities.

Table 5.2 shows the frequency of occurrence of the ranks of the correct poses

in low rank ranges. The frequency counts improve by more than two times upon

including ck
i→p’s. Moreover, with 0.94 probability the correct poses are ranked in the

top 30 matches as opposed to .40 without ck
i→p. Figure 5.10(b) shows the histogram

of the ranks of the correct poses, with and without the inclusion of ck
i→p’s. There is

a significant shift in the distribution towards 1 upon inclusion of edge affinities.
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Range of rank ck
p→i ck

p→i + ck
i→p

= 1 16.5% 44.6%

[1, 10] 32.0% 79.6%

[1, 20] 38.8% 90.3%

[1, 30] 39.8% 94.2%

Table 5.2: Frequency of occurrence of the ranks of correct poses in some ranges.

Thus, the edge affinity model significantly improves the confidences of the

correct poses w.r.t. the rest of the pose-database.

5.5.2 Gesture Recognition Results

The contour matching model was used for the gesture recognition application

described in [24, 78]. We considered 11 of the 14 gestures in the database as the other

3 required motion features for good discrimination. For each gesture we collected 25

sequences, 5 of which were used as exemplars, and 20 for testing. The classification

accuracy was 68.64% when only ck
p→i’s were used. This improved to 79.55% when

edge affinities (ck
i→p’s) were also included1. The confusion matrix for the recognition

of the test sequences, with and without ck
i→p’s, is given in Table 5.3. Inclusion of

edge affinities improves the recognition rates of the gestures.

1In practice we would include motion features to improve the recognition accuracy; the results

presented here are based only on shape.
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Figure 5.11: Shape exemplars for each gesture overlayed over the images

5.6 Summary

We presented a model for combining edge-continuity with contour matching,

and illustrated its utility in the context of human pose matching. The experiments

indicate that the model is able to characterize the inherent grouping of the edges

- e.g. Figures 5.5 and 5.7. The tests show that the use of edge affinities leads

to significant improvements in matching. This demonstrates the importance of

perceptual organization for object recognition.

Appendix A: Dependence of Edge Affinity on Radius of Osculating

Circle

The edge affinity function, a(y, z)’s, variation w.r.t. r(y, z) would depend

upon the statistics of the curvature of the contours of humans. These statistics are

local in nature and depend upon the curves typically observed on outlines of cloths.

We analyzed the pose-contours of 5 human subjects while performing the “Turn

Left” gesture. For this, the radii of the osculating circles connecting pairs of points
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along the pose-contour were computed. The distance between the points in each

pair, i.e. ‖y − z‖, was kept at 2, 3 and 4 pixel units. Figure 5.12(a) shows the

normalized frequency of occurrence of osculating circles of different radii for each

separation distance. The radii values are in pixel units and were capped at 100 units.

There are two modes in the distribution, the first one is formed by radii between

5 and 20 units, and the second mode corresponds to straight segments with radii

greater than 100 units. Figure 5.12(b) shows the cumulative normalized frequency

of the same values.
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Figure 5.12: (a) The normalized frequency of occurrence of osculating circles of
different radii, for pairs of points along contours of whole body. The three plots
correspond to point-pairs separated by 2, 3 and 4 pixel units. (b) The cumulative
normalized frequency of occurrence of osculating circles of different radii, for pairs
of points along contours of whole body. The three plots correspond to point-pairs
separated by 2, 3 and 4 pixel units.

The following observations can be made regarding the dependence of a(ey, ez)

on r(y, z):

• a(.) ∈ [0, 1].

• As curvature increases, a(.) rapidly tends to 0. a(ey, ez) ≈ 0 for r(y, z) ≤ 3.
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• a(ey, ez) → 1 as r(y, z) → ∞. As curvature becomes 0, a(.) asymptotically

approaches 1.

• Nearly 90% of the observed radii were ≥ 10. To ensure that a majority of the

edge elements on the subjects’ outlines are strongly linked, we kept a(ey, ez) ≈

1 for r(y, z) ≥ 10.

• The edge affinity is computed in an 11 × 11 neighborhood around each pixel.

Therefore, the maximum value of ‖y − z‖ is 5.5
√

2. To allow for some joint

articulation, a(ey, ez) was fixed at 0.5 for 90◦ bends, i.e. θ = 45◦. For

‖y − z‖ = 5.5
√

2, this would correspond to an osculating circle with radius

≈ 6 pixel units. To allow for such bends a(ey, ez) = 0.5 for r(y, z) = 6.

The affinity a(.) is formulated as a sigmoidal function of r(y, z) - the values of the

parameters are determined from the mentioned constraints.

a(ey, ez) =
1

1 + exp(− r(y,z)−6
.9

)
(5.16)

Figure 5.3 shows a plot of this function.
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Chapter 6

Edge Continuity for Human Detection

Chapter 5 introduced an edge continuity model and employed it for pose-

matching. This model is extended by coupling edge continuity and contour matching

in a feedback loop, formulated as an energy optimization problem. The approach is

illustrated with a human detection application.

Consider the set of edge elements located on the image plane shown on in

Figure 6.1(a), and a probe contour matching with them. The edge elements are

labelled, ‘1’-matching and ‘0’-not matching, based on their proximity and orientation

relative to the contour. However, the edges have mutual affinities based on the image

structure - Figure 6.1(b). The affinities constrain the labelling. Pairs of edges having

high affinities must be assigned similar labels. The contour has the option of either

matching with a smaller set of edges at a cost - Figure 6.1(c), or violating some of

the edge affinities - Figure 6.1(d). The tradeoff between these two options forms the

basis for the feedback loop, formulated as energy optimization.

6.1 Markov Random Field on Edge Elements

Consider a set of edge elements {ei}N
i=1 on the image plane. A probe contour,

C, placed on the image plane induces saliency on the edges. This may be considered

as assigning label li ∈ {0, 1} to edge ei, where li = 1 if the edge is made salient and

95



0

1

1

0

0
1

1

0

0

0

1
0

0
1

1

0

0

0 1

1
0

0
1

1

0

0

1

(a) (b) (c) (d)

Figure 6.1: Illustration of edge continuity and contour matching. (a) Edge elements
and a probe contour. (b) Edge affinities - strong affinities shown with thick lines.
Constrained by the affinities, the contour can either (c) match with a smaller set of
edges, or (d) violate some of the affinities by assigning unequal labels.

li = 0 otherwise. The labels li are random variables defined on the edges, forming a

field L. The goodness of a contour’s match with the edges is determined by the joint

likelihood function of the labels p(l1, . . . , lN). This consists of two types of factors:

1. Single Variable: A likelihood function, pi(li), is defined for each edge that

determines how likely ei is to be assigned label li. Edges located close to the

contour and oriented parallel to its local tangent have higher likelihood of

being made salient, i.e. pi(li = 1) is high.

2. Pairwise: For each pair of neighboring edge elements, ei and ej, a likelihood

function pij(li, lj) determines the joint likelihood of their labels. If ei and ej

have high affinity, pij(.) constrains them to be assigned similar labels - either

both should be made salient or none.

The likelihood of a label li of an edge ei given the labels of the rest of the

edges is denoted as p(li|L− li), where L is the entire label field l1, . . . , lN . It can be
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shown that p(li|L − li) is solely determined by ei’s neighbors, Ni

p(li|L − li) = pi(li|Ni) (6.1)

This forms the basis for the Markovian property of the field of labels. Due to

Markov-Gibbs equivalence [32], the joint likelihood of the labels can be modelled

as

p(l1, . . . , lN) =
1

Z
exp (−E(l1, . . . , lN)) (6.2)

where E(l1, . . . , lN) is a Gibbsian energy function defined on the labels and Z is the

partition function.

E(l1, . . . , lN) =
N∑

i=1

Ei(li) + ΦEA

∑
i<j

Eij(li, lj) (6.3)

The single variable terms, Ei(li), depend upon the proximity and orientation of

the edges relative to the contour. The pairwise terms, Eij(li, lj), depend upon the

affinities between the edges. The parameter ΦEA determines the relative importance

of single and pairwise energies.

Finding the labelling with maximum likelihood is equivalent to minimizing the

energy function E(.) defined on the labels. Markov-Gibbs equivalence and energy

minimization have been extensively employed in computer vision for image segmen-

tation, texture analysis, denoising, etc. See [32] for a tutorial on MRFs. Next, we

describe the definition of single variable and pairwise energy terms.

6.1.1 Single Variable Terms

For an edge ei, Ei(li = 0) is high if ei is located close to the contour and

oriented parallel to its local tangent; this favors ei to be salient. On the other hand,
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if ei is located far off from the contour then Ei(li = 1) is high, favoring ei to be

not salient. Let δi be the distance of edge ei from the nearest point on the contour,

‖∆I(ei)‖ the gradient magnitude at edge ei, and let φi be the angle of ei w.r.t. the

nearest point on the contour.

Ei(li) =




max(Φd − δi, 0)‖∆I(ei)‖ cos φi : li = 0

max(δi − Φd, 0)‖∆I(ei)‖ : li = 1

(6.4)

where the parameter Φd determines the extent of the “spatial spread” of a contour’s

match with image edges.

6.1.2 Pairwise Terms

Let a(ei, ej) be the affinity between edges ei and ej. The two variable terms

are defined as

Ei,j(li, lj) =




a(ei, ej) : li = lj

0 : li = lj

(6.5)

Higher the affinity, more the energy assigned to dissimilar labelling of neighbors.

6.1.3 Energy Minimization

MRF energy minimization has been studied in computer vision for various

applications [81], including image registration [10], texture modeling [33], image

labelling [18], interactive photo segmentation [72], model-based image segmenta-

tion [46]. The most popular and successful approaches include: Graph Cut [15, 45,

14], Loopy Belief Propagation (LBP) [26], and Tree-Reweighted Message passing

(TRW) [88]. In a comparative study of energy minimization algorithms for low-
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level vision tasks, the Graph Cut algorithm achieves some of the best results and is

very efficient [81, 44]. In particular, Graph Cut is guaranteed to compute a globally

optimum solution for binary labelling problems with regular energy functions [14]

Eij(α, β) + Eij(β, α) ≥ Eij(β, β) + Eij(α, α) (6.6)

where α and β are two labels. There are no constrains on the single variable terms.

It is easy to see that the pairwise function defined in eq. (6.5) is regular. Therefore,

we employ Graph Cut for the optimization.

For a given probe contour, the optimum value of the energy, E∗, would corre-

spond to the goodness of the best possible labelling of the image edges. A high value

of E∗ indicates that the probe contour is matching with only a subset of the edges

of an object in the image. This would imply that the detection corresponding to

the match has low likelihood. Next, we describe the application of edge continuity

MRF for human detection.

6.2 Human Detection

A large number of approaches have been proposed for human detection in

images, see [31] for a survey. We identify three broad categories:

1. Many methods create a database of whole-body contours during training and

match these with image edges for detection, e.g. [25, 31, 84], etc. A number

of approaches use an articulated model to generate outlines of the object to

be detected and then match these with image edges, e.g. [98], etc.
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2. A number of studies detect whole-body figures by characterizing edges within

sub-windows of a given image and analyzing the obtained features. The edges

are represented using Haar-like features e.g. [87], etc., histograms of oriented

gradients e.g. [22, 99], etc. Experimental results indicate that these methods

are both efficient and effective.

3. Some studies advocate a bottom-up part-based approach to address occlusions

and to reduce computational complexity, e.g. edge features are used to char-

acterize parts of the human figure in [54, 52, 71, 92, 93], etc. A closely related

group of approaches use region features, e.g. [66, 70], etc.

Scene-geometry has been used to aid object-recognition in [83, 38], etc. It

is shown to be useful for eliminating false alarms having scales and/or locations

that are incongruous with the scene. This study focuses on using edge grouping in

natural images as a constraint on detection.

We employ the Histograms of Gradients (HoG) algorithm [99] for computing

an initial set of detections, which are analyzed using edge continuity MRF. HoG is

very efficient, enabling a dense scan of the images for instances of humans. It has

been shown to be effective in human detections, with very low false detection rates.

For instance, in our experiments, each image was densely scanned to produce nearly

48000 overlapping windows of varying scales. The false detection rate of the HoG

algorithm was very low - an average of 13 false candidates were observed per image,

giving a rate of 13
48000

≈ 3×10−4. As will be shown in the experiments, edge affinities

further reduced this false detection rate by nearly 50% while still maintaining the

correct detections.
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6.2.1 Histograms of Gradients Detector

The HoG detector takes an image window as input and estimates whether the

window could contain an instance of a human. The features consist of histograms

of gradients computed within patches inside the window. The original detector

proposed by Dalal and Triggs [22] employed Support Vector Machines (SVMs) for

the classification. Zhu et al. extended this by using a boosting-based classifier that

increased the efficiency while maintaining performance [99]. In our experiments, the

HoG detector’s parameters were set so as to ensure very low false rejects. Please

see Appendix A for details of the implementation.

6.2.2 Analysis of HoG Detections

Each detection computed using the HoG algorithm is analyzed with edge con-

tinuity. We employed the hierarchical contour matching approach proposed in [31]

to compute the most likely human contour for each HoG detection. The contours

employed to build the hierarchy were obtained from the MIT pedestrian database.

In [31], the goodness of a contour’s match is measured using Chamfer distance. The

original approach is capable of efficiently searching for humans across scales. For

efficiency, we restricted the scale of the search using the size of the detection window

computed by HoG. Let C∗ be the best matching human contour computed, with

sCham the Chamfer match score. An edge continuity - MRF is constructed for C∗,

with the edge elements located in the neighborhood of the detection window. Let E∗

be the optimal energy obtained after minimization. The final score for the detection
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window is defined as a simple linear summation of the scores

sCham + exp(−E∗)

The higher the score, greater the estimated likelihood of the detection.

6.3 Experiments

The Edge Affinities for Contour Matching (EACM) was tested with a set of

images containing humans in outdoor environments. The data-set consisted of 28

images recorded by a camera mounted on a mobile robot navigating in a wooded

scene, and 25 images downloaded from the Internet. There were a total of 64

instances of humans in the images. The images had substantial edge clutter due

to the presence of trees, shrubs, etc. The subjects’ figures in the images were of

varying scales.

The HoG detector was trained on the INRIA data-set [22] - the details are

described in Appendix A. It was used to scan each image with overlapping windows

of varying scales. The total number of image-windows scanned for each image was

nearly 48000. The HoG detector detected 60 of the human instances present in

the test data-set. In spite of the dense scanning of the images and the presence of

edge-clutter, the detector produced only 441 false alarms - corresponding to a false-

alarm rate of 3× 10−4 per image-window. Upon analyzing the candidate detections

using EACM, 58 human instances were correctly detected with a reduction to 209

false alarms. Thus, the number of false alarms was reduced by 1 − 209
441

≈ 50%

while eliminating only two of the correct detections obtained using HoG. Figure 6.2
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shows the ROC plots for EACM and the case when only Chamfer-distance score,

C, is considered. It indicates that EACM significantly reduces the number of false

alarms. Moreover, the ROC plot for Chamfer-distance score indicates that Chamfer-

distance alone is unable to improve on the results of HoG. Figure 6.3 shows some

test images with the candidate detections obtained using the HoG algorithm and

the result of postprocessing with EACM.
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Figure 6.2: ROC plots for EACM - edge affinity coupled with contour matching (in
solid-red), and Chamfer-distance score alone (in dashed-blue).

We also created a data-set of 51 color images from the CAVIAR video database

which is recorded in an indoor environment [3]. Cases in which the subjects’ heights

were less than 30 pixels were ignored - the image gradients obtained for these cases

were not distinct enough for applying the edge affinity model. The images had

a total of 165 instances of humans. HoG detected all of the human instances,

with 239 false detections. After post-processing with EACM 154 of the humans

were detected(154
165

≈ 93%), with 168 false alarms (reduction of 1 − 168
239

≈ 30%).

Figure 6.4 shows the ROC plots for EACM and the case when only Chamfer-distance

score is considered. The plots indicate that EACM again reduces false alarms.
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(a) (b)

Figure 6.3: (a) Image with candidate detections produced by the HoG algorithm,
(b) detections obtained after post-processing with EACM. Correct detections are
marked in blue and false detections in red. (Best viewed in color.)

Figure 6.5 shows some test images with the candidate detections obtained using the

HoG algorithm and the result of considering edge affinities.
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Figure 6.4: ROC plots for edge affinity coupled with matching (in solid-red), and
Chamfer-distance score alone (in dashed-blue).

(a) (b)

Figure 6.5: (a) Image with candidate detections produced by the HoG algorithm,
(b) detections obtained after combining edge affinities with matching. Correct de-
tections are marked in blue and false detections in red. (Best viewed in color.)
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Chapter 7

Summary and Potential Research Directions

We presented a Bayesian model for recognizing ballistic movements such as

reaches and strikes based on insights provided by psycho-kinesiological studies. Ex-

plicit consideration of the ballistic dynamics enables generalization over target lo-

cations and directions of movement. The test results indicate that the approach is

robust to changes in camera viewpoint, stylistic variations and subject’s morphology

and pose w.r.t. the camera.

The second contribution was a model for combining edge-continuity with con-

tour matching. Its utility was illustrated in the context of human pose matching in

gesture recognition and human detection. The results indicate that edge affinities

result in significantly improved performance.

Next, we describe some potential directions of research.

7.1 Ballistic Movement Model

7.1.1 Temporal Segmentation

The criterion for temporal segmentation of continuous video sequences is that

the dynamics within each movement segment must be constant. In the implemen-

tation tested in the experiments, the dynamics was represented by the direction of

movement, and the segmentation criterion was that the direction of motion within a
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movement segment must be consistent. The formulation in eq.(3.8) is quite general

and it is possible to extend this further.

For example, a strike movement segment may be erroneously merged with

a succeeding reach movement if its duration were very small and the direction of

movement similar to that of the reach movement. Such errors may be avoided if

the segmentation criterion were to constrain that a segment should not have two

markedly different acceleration phases within it. Suppose we were to define the

dynamics as Bi = 〈θi, si〉, where si = 1 if the speed is high - akin to a strike

movement, and si = 0 if the speed is low - akin to reach movements. Let h(t) be

the estimate computed by the reach/strike classifier, h(t) = 1 for strike movements

and h(t) = 0 for reach movements. The ith segment’s goodness may be defined to

depend upon
tie∑

t=tis


si = h(t)�

7.1.2 Action Recognition

An action may be considered as a sequence of movements. For example, the

action “pick up the book” would consist of a reach-to-grasp movement of the hand to

the book, some small movements during grasping, and another movement to move

the book up. It is possible to employ Markov Models (possibly with hidden states)

to recognize such actions, where each state would correspond to one movement. This

is very similar to the SLDSs [68]. While doing so, it is possible to include global

parameters such as speed of the action, and the target of the movements, e.g., the
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book’s location.

7.1.3 Styles of Actions

A number of psychological studies have reported that variations in dynamics

are governed to a large extent by variations in the objective of the movement [51, 80].

For instance, when picking up objects, the arm’s joint angles at the end of the

reach-to-grasp depend upon parameters such as the object’s weight and fragility.

State-of-the-art image processing techniques lack the accuracy for such subtle mea-

surements [53], but it is possible to explore this concept with motion capture data.

This would have applications in

• medical diagnostics: movement styles are symptomatic of the early onset of

certain diseases [79].

• automated or assisted coaching for sports: detailed analysis of movement pat-

terns may assist in improving the efficiency of movements.

Another potential application is to employ video-based movement analysis

along with a marker-based motion capture system. This may reduce the cost of the

motion capture system by lowering the required frame rate and signal to noise ratio

in localization.

The movement style may be observed through:

• The pose of the person towards the end of the movement. This includes gait

as well as the arm’s joint angles.
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• The dynamics, in terms of Bi. Local Taylor coefficients of the MJM polyno-

mials at different points along the trajectory would indicate subtle parameters

such as acceleration and deceleration.

• The inter-joint coordination during the movement. The onset and end of

rotations of different joints depends upon the style of the movement [60]. This

is especially evident when the movement speeds and forces are varied.

7.1.4 Generating Animations

It is possible to employ the dynamical model for the inverse problem of gener-

ating animations of ballistic movements. State-of-the-art generative approaches use

a data-driven paradigm, including [68]. Novel movements are generated by interpo-

lating and extrapolating from specified examples. A better dynamical model would

enable more realistic interpolations between example movements. If the trajectory

of the two hands and the head were given through examples, then novel whole-body

trajectories may be generated by the following general steps:

1. Vary the dynamical parameters of the trajectories to get the hand and head

trajectories for the target movement to be generated.

2. A number of movement analysis approaches employ manifold techniques to

compute correlations between the trajectories of various body-parts [53]. Em-

ploy the manifold and inverse kinematics to compute the whole-body poses

from the hand and head trajectories.
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The parameters of the dynamical models such MJM, MTCM, would enable sys-

tematic variation of the dynamics, which in turn would control the traversal on the

manifold of poses.

7.2 Edge Continuity

7.2.1 Combining Region Segmentation and Edge Continuity

Region segmentation may be coupled with edge continuity for object recog-

nition. The preliminary concept is presented here. Given an image, color cluster-

ing [36] is employed to compute region segmentation - Figure 7.1 shows two images

and the corresponding segmentation obtained. Next, the pose shown in Figure 7.2

is used to obtain segments belonging to the subject -shown in Figure 7.1(c). The

obtained set is expanded to include other segments in the image that might belong

to the subject - shown in Figure 7.1(d). This is done using the proposed edge affinity

model. A lack of correspondence between the estimated silhouette of the person and

the pose indicates a mismatch.

7.2.2 Regularization

The edge affinity model may be employed for gradient-dependent regulariza-

tion. Two possible applications:

1. In active contours or level sets, the edge affinities may be used to apply a

tangential stretching force on the active contour when it covers only a part of

a contiguous curve in the image. See Figure 7.3 for an illustration.
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(a) (b) (c) (d)

Figure 7.1: Segmentation coupled with edge continuity for object recognition. (a)
Images, (b) Segmentation, (c) Segments selected by reference pose, and (d) Ex-
panded set of segments obtained by employing the proposed edge affinity model.

Figure 7.2: Reference pose used to select initial set of segments belonging to the
subject.

2. A foreground-background separation approach proposed in [5] suppresses im-

age gradients estimated to belong to the background. Edge affinities may be

potentially used to regularize the suppression. If two edges have high affinity

then either both or none should be suppressed.
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Figure 7.3: The edge affinities may be employed to exert a tangential stretching
force on active contours to improve their convergence. The red-dashed plot is a
curve on the image and the black-solid line is the active contour. If two pairs of
edges have high affinity then either both or none should be aligned with the active
contour. If only one of a pair of image edges is aligned with the active contour then
it exerts a tangential force on the contour to stretch it onto its neighbor.
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