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Many neutrino experiments in the last few years have shown concrete evi-

dence for neutrino mass and leptonic mixing; an indication of new physics beyond

the standard model. In this thesis, we systematically study the flavor symmetry

indicated by the low scale neutrino experiment data with the assumption that the

seesaw mechanism is the reason for the light neutrino masses.

In the flavor basis, the testable exchange symmetry between muon neutrino

and tau neutrino (µ − τ) is introduced to explain the near maximal atmospheric

mixing angle and vanishing reactor mixing angle. This symmetry can reduce the

seesaw parameters naturally and make it possible to connect the baryon asymmetry

of our universe to the low scale neutrino data if leptogenesis causes the baryon

asymmetry. We also show this leptonic symmetry can be extended to the quark

sector and present a realistic supersymmetry SU(5) grand unification model.

Motivated by solar mixing angle sin2 θsolar ' 1/3, we embed the µ − τ sym-

metry in an S3 permutation symmetry and obtain a so-called tri-bimaximal mixing



pattern. We study the stability of the texture under radiative corrections. This S3

model is so constrained that the CP-violating phases of the low scale mixing are

those generating the baryon asymmetry within leptongesis. Attempting to unify

three families of fermions within the grand unification theories, we treat three fam-

ilies of fermions as the three dimensional irreducible representation of S4 and build

a realistic model based on SO(10) gauge group. This model predicts degenerate a

right-handed neutrino mass spectrum.

In this thesis, we also address the issue of the natural realization of the seesaw

mechanism in the supersymmetric minimal SO(10) model. We realize the type II

seesaw dominance by invoking a warped extra dimension, while keeping predictivity

of the model.
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Chapter 1

Introduction

1.1 Flavor Mixing in the Standard Model

In the past thirty years, the standard model (SM) of elementary particle

physics has been tested in various experiments. This model provides a successful

framework to describe fundamental interactions of matter (except gravity). The SM

is based on the three gauge groups SU(3)c×SU(2)L×U(1)Y . The SU(2)L×U(1)Y

unifies electromagnetism and the weak interaction as the electroweak interaction [1],

and SU(3)c describes the strong interaction between quarks [2]. The SM is a chiral

theory because only left-handed fields carry SU(2)L quantum number.

In the SM, SU(2)L × U(1)Y is spontaneously broken to U(1)em by the Higgs

mechanism [3], and SU(3)c remains unbroken. To break electroweak symmetry, we

use a scalar doublet of SU(2)L:

H =




H+

H0


 (1.1)

with the Higgs potential given by

V (φ) = −µ2H†H + λ(H†H)2. (1.2)

For µ2 > 0, the minimum of V (H) occurs at

〈H0〉 =

√
µ2

2λ
≡ v√

2
. (1.3)

1



In the Lagrangian, the kinematic term of H is given by

L ⊃ |DµH|2. (1.4)

The covariant derivative Dµ is defined as Dµ ≡ ∂µ − igAa
µτ

a − i1
2
g′Bµ, where Aa

µ

and Bµ are the SU(2)L and U(1)Y gauge bosons respectively. SU(2)L and U(1)Y

commute each other, so they can have different coupling constants g and g′; τa =

σa/2, where σa are the Pauli matrices.

When this spontaneous symmetry breaking occurs, three gauge bosons ac-

quire mass due to the term in Eq. (1.4). They are two charged gauge bosons,

W±
µ = 1√

2
(A1

µ ∓ iA2
µ) with mass mW = 1

2
gv, and one neutral gauge bosons Z0

µ =

1√
g2+g′2

(gA3
µ − g′Bµ) with mass mZ =

√
g2 + g′2 v

2
. The fourth vector field remains

massless: Aµ = 1√
g2+g′2

(g′A3
µ + gBµ) with mass mA = 0.

One crucial question about this model is its renormalizability. In 1971, t’Hooft

and Velteman proved that all spontaneously broken gauge theories only including

interactions with mass dimension four or less are renormalizable [4].

As for the matter fields, there are known to be three generations (families) of

quarks and leptons. There are three SU(2)L doublets of left-handed quarks:

Qi
L =




ui

di




L

(1.5)

where ui
L = (uL, cL, tL) and di

L = (dL, sL, bL) with hypercharge Y = +1/6. There

are six right-handed quarks, three with Y = 2/3 and three with Y = −1/3:

ui
R = (uR, cR, tR), di

R = dR, sR, bR. (1.6)

2



Each quark carries color quantum number and it transforms as the fundamental

representation under SU(3)c.

For leptons, we have three generations of SU(2)L doublets with Y = −1/2:

Ei
L =




νi
l

li




L

, (1.7)

where νi = (νe, νµ, ντ ) and li = (eL, µL, τL). There are three right-handed charged

leptons with Y = −1:

ei
R = (eR, µR, τR). (1.8)

Leptons do not carry color quantum number and are therefore singlets under SU(3)c.

Note there is no right-handed neutrino in the SM.

The covariant derivative completely determines the coupling between fermions

and gauge fields, once the quantum of fermion fields is specified.

Lelectroweak = g(W+
µ Jµ

W + W−
µ Jmu−

W + Z0
µJ

µ
Z) + eAµJ

µ
EM (1.9)

where the charged currents are

Jµ+
W =

1√
2

∑
i

(ν0i
L γµe0i

L + u0i
L γµd0i

L ) (1.10)

Jµ−
W =

1√
2

∑
i

(e0i
L γµµ0i

L + d
0i

L γµu0i
L ), (1.11)

and the neutral currents are

Jµ
Z =

1

cos θw

∑
i

[ ν0i
L γµ(

1

2
)ν0i

L + e0i
L γµ(−1

2
+ sin2 θw)e0i

L + e0i
Rγµ(sin2 θw)e0i

R

+ u0i
L γµ(

1

2
− 2

3
sin2 θw)u0i

L + u0i
Rγµ(−2

3
sin2 θw)u0i

R

+ d
0i

L γµ(−1

2
+

1

3
sin2 θw)u0i

L + d
0i

Rγµ(
1

3
sin2 θw)d0i

R ]; (1.12)

3



Jµ
EM =

∑
i

e0iγµ(−1)e0i + u0iγµ(
2

3
u0i) + d

0i
γµ(−1

3
)d0i. (1.13)

The superscript zero on fermions implies that they are not mass eigenstates. The

mass eigenstates are determined only after fermions acquire masses in the process

of spontaneous symmetry breaking.

In the SM, one cannot write the mass term like mΨLΨR in the Lagrangian be-

cause it violates gauge symmetry: the left-handed and right-handed components of

one fermion field are two independent degree of freedom and carry different quantum

numbers. To give masses to quarks and leptons, we must invoke the mechanism of

spontaneous symmetry breaking. The gauge invariant terms involving left-handed

and right-handed components of fermions and Higgs H are

Lm = Y ij
e E

0i
He0j

R + Y ij
d Q

0i

L Hd0j
R + Y ij

u Q
0i

L H̃u0j
R + h.c., (1.14)

where H̃ = iτ2H
∗. Again, the superscript zero implies that fermions are not in the

mass eigenstates. When spontaneous symmetry breaking occurs, fermions acquire

mass due to the Yukawa coupling given in Eq. (1.14):

Lm = e0i
L M ij

e e0j
R + d

0i

L M ij
d d0j

R + uu0i
L M ij

u u0j
R + h.c., (1.15)

where M ij
e = v√

2
Y ij

e , M ij
d = v√

2
Y ij

d , M ij
u = v√

2
Y ij

u . In the SM, there are no right-

handed neutrinos and one cannot write Yukawa couplings for neutrinos, so neutrinos

are massless.

The mass matrices in Eq. (1.15) can be general 3× 3 matrices and not neces-

sarily to be real, symmetric or Hermitian. To find the mass eigenstates, one should

make a chiral rotation on the fermion fields and diagnolize the mass matrices. To

4



diagnolize an arbitrary matrix, one should use a bi-unitary transformation. Taking

Mu as an example, we have

U †
uMuVu = M̂u (1.16)

where M̂u = diag(mu,mc,mt). The unitary matrices Uu and Vu are determined by

U †
uMuM

†
uUu = M̂2

u and V †
u M †

uMuVu = M̂2
u . We then replace Mu in the Lagrangian

Lm by

Mu = UuM̂uV
†
u . (1.17)

Now unitary matrices Uu and Vu appear in Lm, we can rotate them away by

redefining the left-handed and right-handed up-type quark fields as

u0i
L = U ij

u uj
L, u0i

R = V ij
u uj

R. (1.18)

With a similar process, we can eliminate other unitary matrices in Lm by

redefining down-type quark and charged lepton fields as

d0i
L = U ij

d dj
L, d0i

R = V ij
d dj

R

e0i
L = U ij

e uj
L, e0i

R = V ij
e ej

R. (1.19)

For neutrinos, we can have rotation

ν0i = U ij
ν νj. (1.20)

But since neutrinos are massless in the SM, the unitary matrix Uν is not specified

and can be arbitrary.

After the redefinition of fields, we get the fermion mass eigenstates. Recall

that the charged and neutral currents given in Eq. (1.10), Eq. (1.12) and Eq. (1.13)

5



are written in the the electroweak gauge interaction basis, so we need to check the

change of form under the redefinition of fermion fields.

The neutral currents involve fermion fields of the form Ψ
i

LγµΨi
L and Ψ

i

RγµΨi
R,

so unitary rotations of fermion fields on the family space do not change the form of

the neutral currents. Therefore, after we redefine fermion fields as in Eq. (1.18),

Eq. (1.19) and Eq. (1.20), the form of Jµ
Z and Jµ

EM defined in Eq. (1.12) and

Eq. (1.13) does not change and we just need to remove the superscript zero from

the expressions (because now we are in the mass eigenstates of fermions).

However, for the charged weak currents which couple to W±
µ , the situation is

different

Jµ+
W =

1√
2

∑
i

(ν0i
L γµe0i

L + u0i
L γµd0i

L )

=
1√
2

∑
i,j

(νi
Lγµ(U †

νUe)
ijej

L + ui
Lγµ(U †

uUd)
ijdj

L) (1.21)

For the leptonic sector, because Uν can be arbitrary unitary matrix, we can

take Uν = Ue such that U †
νUe = I3×3, where I3×3 is 3 × 3 identity matrix. This is

similar with the neutral currents case. However in quark sector, Uu and Ud are not

arbitrary, so in general U †
uUd is not the identity matrix. The matrix

Vckm = U †
uUd (1.22)

is known as Cabibbo-Kobayashi-Maskawa(CKM) mixing matrix [5].

VCKM is a general, unitary 3 × 3 matrix which has 9 parameters including 3

rotation angles and 6 phases. However we can remove 5 phases by making phase

rotations of the quark fields. The final VCKM contains 3 angles and one phase. We

6



parameterize VCKM by using θq12, θq23, θq13 and a phase θq13

VCKM =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13




(1.23)

where cij = cos θqij and sij = sin θqij. The current best fit value for the mixing

angles are sin θq12 = 0.2272, sin θ13 = 0.00382, sin θ23 = 0.04178 and δq = π/3 [6].

In practice, it is convenient to use the Wolfenstein approximation [7]

VCKM '




1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ2(1− ρ− iη) −Aλ2 1




, (1.24)

where λ = sin θq12. A, ρ and η are order unity real numbers.

1.2 Neutrino Oscillations and Lepton Flavor Mixing

Neutrinos are color and electrically neutral, so they only can feel the weak

interaction. The electron (νe), muon (νµ) and tau (ντ ) neutrinos are produced in

association with definite charged leptons i.e. e, µ and τ by weak interaction. νe, νµ

and ντ are called flavor neutrinos.

Lepton flavor mixing means that the flavor neutrinos να ,α = e, µ, τ , are not

coinciding with the neutrinos of definite mass νi (i = 1, 2, 3) if neutrinos are massive.

Flavor neutrinos are suppositions of mass eigenstates:


νe

νµ

ντ




=




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







ν1

ν2

ν3




(1.25)

7



This mixing matrix Uαi is known as Pontecorvo-Maki-Nakagawa-Sakata matrix [8].

U can parameterized as

U =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13




.K (1.26)

where cij = cos θij, sij = sin θij, and K as defined as

K ≡




e−ϕ1/2 0 0

0 e−ϕ2/2 0

0 0 1




. (1.27)

If neutrinos are Majorana particles, one has the two Majorana phases ϕ1 and ϕ2.

As we discussed in the the previous section, the lepton part of the charged

current in the mass basis should be written as

∑
i,j

ei
Lγµ(U †

l Uν)ν
j
L. (1.28)

Compare Eq. (1.25) and Eq. (1.28), we have

U = U †
l Uν . (1.29)

If neutrinos are massive, Uν is no longer arbitrary and U is not the unit matrix in

general. Therefore, search for lepton flavor mixing can be used to study the mass

of neutrinos. On the other hand, the lepton flavor mixing can cause neutrino flavor

oscillations.

Neutrinos produced by weak interaction are flavor neutrinos which are the

suppositions of the mass eigenstates. When neutrinos propagate in the vacuum,

8



they are in mass states which are eigenstates of Hamiltonian in vacuum

|νi(t)〉 = e−i(Eit−piL)|νi(0)〉. (1.30)

In practice, neutrinos are extremely relativistic, so we can have the approximation

e−i(Eit−piL) ≈ e−i(m2
i /2E)L.

Imagine a neutrino να with definite flavor α is produced at the beginning.

After the neutrino propagates a distance L and reaches the detector, its state is

|να(L)〉 ≈
∑

i

Uαie
−i(m2

i /2E)L|νi〉 =
∑

β

∑
i

Uαie
−i(m2

i /2E)LU∗
βi|νβ〉. (1.31)

It becomes a superposition of all the flavors, and the probability that it has flavor

β is

Pνα→νβ
= |〈νβ|να(L)〉|2 (1.32)

Pνα→νβ
can be easily calculated as

Pνα→νβ
= δαβ −4

∑
i>j

Re(U∗
βiUβjUαiU

∗
αj) sin2(

L

4E
∆m2

ij)

+ 2
∑
i>j

Im(U∗
βiUβjUαiU

∗
αj) sin(

L

2E
∆m2

ij). (1.33)

To explicitly show the above results, let’s take the two mass eigenstates and

two flavor eigenstates case. The unitary matrix takes the form

U =




cos θ sin θ

− sin θ cos θ


 . (1.34)

The Eq. (1.33) can be simplified as

Pνα→νβ
= δαβ − sin2 2θ sin2[

L

4E
∆m2

ij]. (1.35)
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The concept of neutrino flavor oscillations was first introduced by Pontecorvo

in the 1960s [9]. The observation of such neutrino oscillations was suggested to be

an effective way to search for neutrino masses compared to the usual method of

β decay. Experiments have been conducted over the years searching for neutrino

mass by oscillation experiments. Since the 1960s, two kinds of neutrino oscillation

have been carried out: one with atmospheric neutrinos and the other with solar

neutrinos.

The atmospheric neutrinos are produced in the Earth’s atmosphere by cosmic

rays. The flux of cosmic rays that lead to neutrinos with energies above a few GeV

is isotropic [10], so that these neutrinos are produced at the same rate all around

the Earth. Therefore for the multi-GeV neutrinos with definite flavor, the detector

on the Earth should also observe fluxes isotropically, which implies the downward

and upward fluxes should be equal.

However, the underground Super-Kamiokande (Super-K) detector finds that

for the multi-GeV atmospheric muon neutrinos [11],

Up− Flux(−1.0 < cos θZ < −0.2)

Down− Flux(+2.0 < cos θZ < +0.1))
= 0.54± 0.04, (1.36)

where θZ is the zenith angle. This result strongly disagrees with the equality of up-

ward and downward fluxes. Thus, some mechanism changes the νµ flux as the muon

neutrinos travel to the detector. One candidate of such a mechanism is the neutrino

oscillation i.e. the muon neutrinos from the atmosphere may oscillate to other flavor

neutrinos when they travel. Compared to the downward muon neutrinos, the up-

ward neutrinos have a longer distance to travel to reach the detector, and they have
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more chance to oscillate to other flavor neutrinos, therefore the downward neutrinos

have more νµ than the upward neutrinos. The Super-K atmospheric neutrino data

can be explained by the two-flavor νµ−ντ oscillation with one mass splitting ∆m2
atm

and one mixing angle θatm. At 90%C.L., the ranges are [12]

1.9× 10−3eV2 ≤ ∆m2
atm ≤ 3.0× 10−3eV2 and sin2 2θatm > 0.90. (1.37)

Solar neutrinos are produced in the fusion and decay of particles in core of

sun. The sun neutrino fluxes observed at experiments are lower than the predica-

tion of the standard solar model calculations, and different detectors see different

suppression ratios compared to the standard solar model. This is known as the solar

neutrino puzzle. There are many solutions for this puzzle. After taking into account

the matter effect, the most convincing solution is the so-called Large-Mixing-Angle

(LMA) Mikheyev-Smirnov-Wolfenstein (MSW) effect [13]. When neutrinos travel

through matter, their forward scattering from particles they meet along the way can

significantly change their propagation. In the sun, the number densities of electron,

muon and tau are very different, therefore each flavor neutrino has different prob-

ability to be scattered by a corresponding charged lepton. As a result, the flavor

change probability of neutrinos can be rather different than it is in the vacuum. The

best fit values for solar neutrino oscillation parameters are [14]

sin2 θsolar = 0.29, and ∆m2
solar = 6.0× 10−5eV. (1.38)

There are also oscillation experiments by using other neutrino sources such

as reactor neutrinos (Kamland and CHOOZ), and accelerator neutrinos (K2K and

MINOS). Remarkably, all of these experimental results can be explained by the
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oscillation hypothesis and three-flavor neutrino mixing. The current global fit values

of the oscillation parameters (3σ) are [14]

7.1× 10−5eV2 ≤ ∆m2
21 ≤ 8.9× 10−5eV2,

2.0× 10−3eV2 ≤ ∆m2
31 ≤ 3.2× 10−3eV2,

0.24 ≤ sin2 θ12 ≤ 0.40,

0.34 ≤ sin2 θ23 ≤ 0.68,

sin2 θ13 ≤ 0.040, (1.39)

with the best fit values ∆m2
21 = 7.9 × 10−5eV2, ∆m2

31 = 2.6 × 10−3eV2, sin2 θ12 =

0.30, sin2 θ23 = 0.50 and sin2 θ13 = 0.00. Currently, the CP-violating phases remain

unknown.

Besides the data from oscillation experiments, there are bounds from non-

oscillation neutrino experiments and observations from cosmology. These results

are summarized as followed:

mee < 0.1− 0.9eV (neutrinoless double beta decay) [15],

(
∑

i

|Uei|2m2
i )

1/2 < 2.3 (beta decay) [16],

∑
i

mi < 0.62eV (WMAP) [17].

Evidence of νµ−νe oscillation was claimed by LSND collaboration in 1994 [18].

The LSND fit of data requires the mass-squared difference to be ∼ 1eV2, which can

not be simultaneously explained within the framework of only three neutrinos when

combined with atmospheric and solar neutrino data. In March 2007, MiniBooNE

experiment reported no evidence for νµ to νe oscillation in the LSND region [19].
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We do not include the LSND result into our analysis.

1.3 Theory of Massive Neutrinos and Leptogenesis

The massive neutrinos and leptonic mixing provide concrete evidence for the

new physics beyond the SM. To accommodate massive neutrinos in the SM, the

simplest way is to introduce right-handed neutrinos and write the Yukawa coupling

like other charged fermions

YνijLiHNj + h.c.. (1.40)

After the electroweak symmetry breaking occurs, neutrinos get Dirac masses. Within

this simple extension, to generate correct mass scale for neutrinos, one needs ex-

tremely small Yukawa coupling Yνij ∼ 10−13 if one takes the heaviest neutrino mass

∼ 0.1eV.

On the other hand, if we treat the SM as an effective theory, using the light

degree of freedom of the SM fields, we can write a dimension 5 operator as

L5 =
yijLiHLjH

ΛN

. (1.41)

ΛN is the scale where new physics become important. When electroweak

breaking occurs, this operator can generate neutrino mass as

mij =
yij〈H〉

ΛN

. (1.42)

If we take the coupling constant yij ∼ O(1), we need the new physics scale ΛN to

be order of ∼ 1014GeV if the heaviest neutrino mass is around 0.1eV.
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Note the dimension 5 operator given in Eq. (1.41) violates lepton number by

unit 2 i.e. ∆L = 2. The lepton number and baryon number are accidental global

symmetry of the SM, therefore the new physics associated with this operator should

involve some process violating lepton number. Compared to the Yukawa coupling

given by Eq. (1.40), the operator of Eq. (1.41) generates light neutrino mass more

naturally in the sense that the coupling constant yij could be O(1).

There are two ways to realize this 5 dimensional operator in the more UV

complete theory: add heavy Majorana mass terms to the right-handed neutrinos or

add a heavy SU(2)L Higgs triplet (∆).

Right-handed neutrinos are allowed to have Majorana mass because they are

singlets of SM gauge group

MRijN
T
i C−1Nj + h.c., (1.43)

where C is the charge conjugate matrix C = iγ2γ0.

If SU(2)L triplet ∆ exists, νL also can acquire mass from coupling

f∆ijL
T
i Lj∆ + h.c.. (1.44)

The non-zero VEV of ∆ gives mLij = f∆ij〈∆〉.

Therefore the most general mass structure for the neutrino is



mL mT
D

mD MR


 , (1.45)

where mL,mD and MR should be understood as 3× 3 matrices.

If MR À mD and mL, the light Majorana masses are given by

mν = mL −mT
DM−1

R mD. (1.46)
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Figure 1.1: Feynman diagram for type I seesaw.

In the limit where mL = 0, even eigenvalues of mD have the same order of

masses of charged leptons and quarks, if the mass scale of MR is very high, the

smallness of neutrino mass still can be explained naturally. This is the so-called

type I seesaw mechanism [20].

In the case mL dominates the contribution to the light neutrino mass, the

smallness of neutrino mass is explain as follows: in general, the triplet VEV 〈∆〉 is an

induced VEV, which is suppressed by the mass scale of the mass of ∆. For example,

in non-supersymmetric case, the Lagrangian includes a term ΛT HH∆, where ΛT

the coupling constant with mass dimension. When electroweak symmetry breaking

occurs, ∆ gets an induced VEV 〈∆〉 ∼ ΛT 〈H〉2/M2
∆. In the supersymmetric case,

the induced VEV is λT 〈H〉2/M∆, where λT is a dimensionless coupling and taken

to be O(1). Therefore, if M∆ is super heavy, we obtain the small neutrino mass as

similar to the type I seesaw case. This scenario is called type II seesaw [21].

Within the seesaw frame, the lepton number violation can be understood as

follows: in the type I case, because right-handed neutrinos carry lepton number, the

Majorana mass term of the right-handed neutrinos break lepton number by unit 2;

in the type II case, lepton number is broken by the VEV of the SU(2)L triplet ∆.
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νν

∆

HH

Figure 1.2: Feynman diagram for type II seesaw.

If the seesaw mechanism is the reason why neutrinos are light, the massive

neutrino clearly implies the existence of a new physics scale ΛN (∼ 1014− 1015GeV)

beyond the electroweak scale ∼ 100GeV where N and ∆ play important role on the

physics above scale ΛN . However, the above extension of the SM by introducing N

and ∆ is given by hand with the only purpose being to generate the 5 dimensional

operator. N is a singlet under the SM, there is no gauge symmetry breaking asso-

ciated with its Majorana mass scale, so its scale could be arbitrary-even as big as

the Planck scale. For the ∆, although it is charged under the SM gauge group, its

mass scale is also arbitrary and not necessarily to be the ∼ 1014GeV as required

by seesaw mechanism to generate light neutrino masses. One hopes that the UV

complete theory should include right-handed neutrinos or triplet as necessary in-

gredients and reproduce the SM at the low energy scale. On the other hand, in

the minimal supersymmetric standard model (MSSM), the three coupling constants

meet at 2×1016GeV which is close to the ΛN which is indicated by the seesaw mech-
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anism. This suggests that the UV theory which gives rise to the seesaw mechanism

will probably be some kind of Grand Unified Theory (GUT).

The SM gauge structure involves the products of three individual groups which

have total rank 4. Thus the GUT group should at least have rank 4 and include

the representations of the SM fields. It turns out the smallest rank 4 simple group

which contains the SM group as a subgroup is SU(5) [22]. The SM group also can

be embedded into a larger group which contains SU(5) as a subgroup for example

SO(10) [23] or E6 [24]. SO(10) has some advantages: (i) the 16 dimensional spinor

representation of SO(10) includes the SM singlet right-handed neutrino, which is a

singlet under SU(5); (ii) U(1)B−L is a gauged subgroup of SO(10), thus the heavy

right-handed neutrino Majorana mass directly corresponds to the breaking of local

UB−L; (iii) it contains the left-right symmetric model SU(3)c×SU(2)L×SU(2)R×

U(1)B−L [25] which provide a natural way to explain parity breaking at the low

energy scale.

Besides light neutrino masses, the seesaw scenario also provides a solution to

one of the biggest mysteries of our universe i.e. why matter dominates our universe

instead of anti-matter. To generate baryon asymmetry of our universe by dynamical

process. In the early 1960s, Sakharov concluded that three conditions have to be

satisfied [26]:

(i).Baryon number is violated;

(ii).Combined charge conjugate and parity symmetry (CP) is violated;

(iii).Non-thermal equilibrium of universe.

Among the many suggestions, leptogenesis [27] is particularly interesting given
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Figure 1.3: Leptogenesis.

the recent discovery of neutrino masses and mixing. We can see how the three

Sakharov conditions can be satisfied in the seesaw scenario. First, the Majoana

mass term of right-handed neutrinos violates lepton number conservation. The no-

perturbative Spherelon process can convert lepton number asymmetry to baryon

asymmetry while keeping B − L conserved. Second, CP can be easily violated by

the complex Yukawa coupling. Third, if the decay rate of the right-handed neutrinos

is smaller than the Hubble expansion rate of universe, the non-equilibrium condition

can be satisfied. The process is the following: The out-of-equilibrium decay of heavy

right-handed Majorana neutrinos via Yukawa couplings can produce both leptons

and anti-leptons due to their Majorana feature. The CP-violating phases in the

Yukawa couplings can cause the asymmetry between lepton number and anti-lepton

number. Once the primordial lepton asymmetry is produced, the Spherelon [28]

converts it to the baryon asymmetry.

1.4 Flavor Symmetry and Grand Unification Theories

In general, the seesaw mechanism can explain the smallness of light neutrino

masses, but can not explain the mixing pattern. Compared with quark mixing

matrix VCKM which is near unit matrix, the leptonic mixing pattern is quite special.
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The θ23 is near maximal, θ12 is large but not maximal and θ13 almost vanishes. To

understand this particular mixing pattern in the lepton sector, there are two main

approaches in the literature: flavor (family) symmetry in the lepton sector; (ii) A

class of SO(10) grand unification models.

The low energy scale leptonic mixing pattern exhibits strong evidence for the

possible flavor symmetry in the lepton sector. The µ−τ symmetry [30] is one of the

candidates for such a symmetry. This symmetry requires the light neutrino mass

matrix to be invariant under the exchange of mu neutrino and tau neutrino in the

basis where charged lepton mass matrix is diagonal. One can write the operator of

the µ− τ symmetry in the matrix form

P =




1 0 0

0 0 1

0 1 0




. (1.47)

If the light neutrino mass matrix is invariant under the operation of P i.e. Mν =

PMνP , the Mν has the form

Mν =




a b b

b c d

b d c




. (1.48)

Diagonalization of this mass matrix leads to θ23 = π/2 and θ13 = 0 which

agree with the best fit values of the oscillation data. Note µ− τ does not give any

bounds on the size of θ12 because it only acts on νµ and ντ . This symmetry is also

testable by precise measurements of mixing angles and the correlation between the

nonzero value of θ13 and the deviation of θ23 from π/4.
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Flavor symmetry also makes it possible to connect low scale neutrino data to

the seesaw parameters. Many attempts have been made on the derivation of see-

saw parameters from the low scale data. This is particularly interesting because the

baryon asymmetry of universe may be expressed as a function of neutrino oscillation

data (if leptogenesis is the mechanism to cause the baryon asymmetry). One fasci-

nating example is the possible connection between CP-violating phases generating

the baryon asymmetry in the early universe and those which can be measured in

the low energy experiments. But in general such derivation is impossible without

additional assumptions, because the number of free parameters contained in seesaw

framework is much more than the measurable quantities at low scale. Take the type

I seesaw as an example: in the basis where right-handed neutrino mass matrix and

charged lepton mass matrix are diagonal, all mixing and CP-violating phases are

contained in the Yukawa coupling Yν which is a complex 3 × 3 matrix. Three of 9

phases in Yν can be rotated away by simultaneously rephasing charged lepton and

neutrinos, so one is left with 6 CP-violating phases. Together with 3 right-handed

neutrino masses and 15 parameters in neutrino Yukawa coupling, there are 18 total

parameters. However there are only 9 parameters contained in the low scale data

i.e. 3 light neutrino masses, 3 mixing angles, and three CP-violating phases. To

establish such a connection, one has to reduce the seesaw parameters. Most of the

work on this direction is based on the assumption of special texture of the Yukawa

coupling with zero entries and two right-handed neutrinos seesaw scenario. However

this approach is ad hoc. Actually the low scale mixing and masses of neutrinos cor-

respond to an infinite set of textures. On the other hand, with the flavor symmetry,
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the texture of the Yukawa coupling and the mass matrix of right-handed neutrinos

are constrained by the flavor symmetry, which provides a natural way to reduce the

seesaw parameters.

Phenomenologically the flavor symmetry may work well to understand the

neutrino oscillation data, however there is no guarantee such a symmetry can be

extended to the more general family symmetry in the interaction basis where the

forms of both charged lepton and neutrino mass matrices are determined by the

family symmetry in the Lagrangian. Furthermore, this kind of extension faces more

challenges when considering grand unification theories, because unlike in standard

model where quarks and leptons have no intrinsic connection, in the grand unifica-

tion theories, leptons and quarks are unified together. For example, in SU(5) model,

the anti-fundamental representation 5 includes SU(2)L lepton doublet and SU(2)L

singlet right-handed down-type quarks, and 10 includes SU(2)L quark doublets,

SU(2)L singlet right-handed up-type quarks and right-handed charged leptons. In

the SO(10) model, the connection between quarks and leptons is even tighter: the

spinor representation 16 includes one family of all fermions, and the large discrep-

ancy between quark mixing and lepton mixing has to be overcome. In general, the

family symmetry extracted from the lepton mixing may not be the symmetry in the

quark sector.

Even if the flavor symmetry extracted from the low scale data can be extended

to the more general family symmetry, quantum effects may break it if the light

neutrino masses are generated by the high scale seesaw. This is because of the energy

gap between the seesaw scale (∼ 1014GeV), where we integrate out the heavy degree
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of freedom, and the low scale (a few GeV), where we make measurements: one should

run the parameters of lepton mixing and neutrino masses from the seesaw scale to

the electroweak scale by using renormalization group equations (RGEs). Although

we start from the Lagrangian which is invariant under both gauge symmetry and

family symmetry, and the light neutrino mixing matrix has the particular pattern

right below the seesaw scale, the quantum corrections may distort the initial mixing

pattern at the low scale. These RGE effects highly depend on the property of the

family symmetry and mass spectrum of neutrinos.

Alternative to the family symmetry, a class of SO(10) grand unification models

provide a deep insight on the relation between lepton mixing and quark mixing, even

though they look very different. In the supersymmetric minimal SO(10) model, the

almost maximal value of θ23 is due to the b − τ mass unification and the small

θ13 is the result of the quark-lepton unification if the type II seesaw dominates

the contribution to the light neutrino masses. The model is also very predictive,

with 13 parameters as input without CP-violating phases (6 quark masses, 3 CKM

mixing angles and three charged lepton masses), the neutrino sector is completely

determined. Phenomenologically this model is very attractive; however, the type

II seesaw dominance can not be realized when one minimizes the potential within

the minimal Higgs sector because this model is constrained so that one can not

generate the mass difference between the SU(2)L triplet and other submulitplets of

126 multiplet of SO(10) such that the perturbativity of the theory can be kept up

to the GUT scale.

In this thesis, we address these issues systematically.
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We extract the µ − τ flavor symmetry from low scale neutrino oscillation

data. With this µ − τ symmetry, we derive a simple formula relating the lepton

asymmetry and neutrino oscillation observables εl = (a∆m2
solar + b∆m2

atmθ2
13) for

three right-handed neutrinos and a relation of form εl ∝ θ2
13 for the case of two

right-handed neutrinos. We extend µ − τ symmetry successfully to the universal

family symmetry which exchange the second and third generations of all fermions,

and build a realistic supersymmetric SU(5) grand unification model.

The µ− τ symmetry does not act on the first generation which leaves the θ12

free. We study the possible embedding of this S2 symmetry to the more general S3

symmetry which is the permutation symmetry between three families of leptons and

build a model which can generate the so-called tri-bimaximal (TBM) mixing pattern

in the lepton sector if one has both type I and type II seesaws contribution to the

light neutrino masses. We study the RGE effects on lepton mixing at low scale. The

quasi-degenerate mass spectrum is strongly disfavored by the TBM mixing. In this

model, the leptogensis includes contributions from both type I and type II, and the

CP-violating phases in the neutrino mixing are directly responsible for the lepton

asymmetry.

In this thesis, we also study the natural realization of the type II seesaw by

extending the 4 dimensional minimal SO(10) model to 5 dimensional theory with

a warped extra dimension. With this setup, the ability of minimal supersymmetric

SO(10) model to explain the large θ23 and vanishing θ13 is still kept, and the type II

dominance scenario can be realized naturally without adding new Higgs fields and

tuning of the parameters. In the mini-warped minimal SO(10) model, the GUT scale
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is introduced as a 4 dimensional theory cut-off, so the problem of non-perturbativity

beyond GUT scale existing in 4 dimensional model can be avoided.

This thesis is organized as follows:

In Chapter 2, leptonic µ−τ flavor symmetry is introduced to explain the lepton

mixing pattern. We study the implications of this symmetry on the leptogenesis.

In Chapter 3, we extend the leptonic µ− τ flavor symmetry into the universal

family symmetry including the quark sector, and build a supersymmetric grand

unification model based on SU(5) group with type II seesaw mechanism.

In Chapter 4, we embed µ− τ into larger permutation group S3 where µ− τ

symmetry is a S2 subgroup of S3 and obtain tri-bimaximal mixing pattern. We also

study the radiative corrections to the exact TBM limit due to RGE effects.

In Chapter 5, we explore features of CP-violating phases our S3 model model

and study the leptogenesis involving type II seesaw.

In Chapter 6, S4 permutation group is used as family symmetry to study

unification of three families of fermions based on SO(10) GUT. We build a realistic

GUT model based on S4× SO(10) symmetry.

In Chapter 7, we study the natural realization of the type II seesaw of minimal

SO(10) by extending 4 dimensional model to 5 dimension with a warped fifth extra

dimension.

In Chapter 8, we present the summary and conclusion of this thesis.
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Chapter 2

µ− τ Symmetry, Leptogenesis and θ13

2.1 Overview

There may be a deep connection between the origin of matter in the universe

and the observed neutrino oscillations. This speculation is inspired by the idea that

the heavy right-handed Majorana neutrinos that are added to the standard model

for understanding small neutrino masses via the seesaw mechanism [20] can also

explain the origin of matter via their decay. The mechanism goes as follows [27]:

CP violation in the same Yukawa interaction of the right-handed neutrinos, which

go into giving nonzero neutrino masses after electroweak symmetry breaking, lead to

a primordial lepton asymmetry via the out of equilibrium decay N → L+H (where

L are the known leptons and H is the standard model Higgs field). This asymmetry

subsequently gets converted to baryon-anti-baryon asymmetry observed today via

the the electroweak sphaleron interactions [28], above T ≥ vwk (vwk being the weak

scale). Since this mechanism involves no new interactions beyond those needed in

the discussion of neutrino masses, one would expect that better understanding of

neutrino mass physics would clarify one of the deepest mysteries of cosmology both

qualitatively as well as quantitatively.

This question has been the subject of many investigations in recent years

[31, 32, 33, 34, 35, 36, 37, 38] in the context of different neutrino mass models and
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many interesting pieces of information about issues such as the spectrum of right-

handed neutrinos, upper limit on the neutrino masses etc have been obtained. In

a recent paper [39], the authors showed that if one assumes that the lepton sector

of minimal seesaw models has a leptonic µ− τ interchange symmetry [29, 30], then

one can under certain plausible assumptions indeed predict the magnitude of the

matter-anti-matter asymmetry in terms of low energy oscillation parameter, ∆m2
solar

and a high scale CP phase. The choice of µ− τ symmetry was dictated by the fact

that it is the simplest symmetry of neutrino mass matrix that explains the maximal

atmospheric mixing as indicated by data. Using present experimental value for

∆m2
solar, one obtains the right magnitude for the baryon asymmetry of the universe.

The results of the paper [39] were derived in the limit that µ− τ interchange

symmetry is exact. If however a nonzero value for the neutrino mixing angle θ13

is detected in future experiments, this would imply that this symmetry is only

approximate. Also, since in the standard model νµ and ντ are members of the

SU(2)L doublets Lµ ≡ (νµ, µ) and Lτ ≡ (ντ , τ), any symmetry between νµ and ντ

must be a symmetry between Lµ and Lτ at the fundamental Lagrangian level. The

observed difference between the muon and tau masses would therefore also imply

that the µ − τ symmetry has to be an approximate symmetry. In view of this, it

is important to examine to what extent the results of Ref. [39] carry over to the

case when the symmetry is approximate. We find two interesting results under some

very general assumptions:

(i) a simple formula relating the lepton asymmetry and neutrino oscillation

observables for the case of three right-handed neutrinos, i.e. εl = (a∆m2
solar +
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b∆m2
atmθ2

13) and (ii) a relation of the form εl ∝ θ2
13 for the case of two right-handed

neutrinos. Measurement of θ13 will have important implications for both the models;

in particular we show that in a class of models with two right-handed neutrinos with

approximate µ−τ symmetry breaking, there is a lower limit on θ13, which is between

0.1 to 0.15 depending on the values of the CP phase. These values are in the range

which will be probed in experiments in near future [42].

The basic assumption under which the two results are derived are the following:

(A) type I seesaw formula is responsible for neutrino masses:

(B) µ−τ symmetry for leptons is broken only at high scale in the mass matrix

of the right-handed neutrinos.

We start with an extension of the minimal supersymmetric standard model

(MSSM) for the generic the type I seesaw model for neutrino masses. The effective

low energy superpotential for this model is given by

W = ecT Y`LHd + N cT YνLHu +
MR

2
N cT N c (2.1)

Here L, ec, νc are leptonic superfields; Hu,d are the Higgs fields of MSSM. Yν and

MR are general matrices where we choose a basis where Y` is diagonal. We do not

display the quark part of the superpotential which is same as in the MSSM. After

electroweak symmetry breaking, this leads to the type I seesaw formula for neutrino

masses given by

Mν = − Y T
ν f−1Yν

v2
wk tan2 β

vR

(2.2)

The constraints of µ − τ symmetry will manifest themselves in the form of the Yν

and MR. It has been pointed out that if we go to a basis where the right-handed
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neutrino mass matrix is diagonal, we can solve for Yν in terms of the neutrino masses

and mixing angles as follows [43]:

Yνv = iM̂
1/2
R R(zij)(M̂ν)

1/2U † (2.3)

where R is a complex matrix with the property that RRT = 1. The unitary matrix

U is the lepton mixing matrix defined by

Mν = U∗M̂νU
† (2.4)

The complex orthogonal matrices R can be parameterized as:

R(z12, z23, z13) = R(z23)R(z13)R(z12) (2.5)

with

R(z12) =




cos z12 sin z12 0

− sin z12 cos z12 0

0 0 1




(2.6)

and similarly for the other matrices. zij are complex angles.

Let us now turn to lepton asymmetry: the formula for primordial lepton asym-

metry in this case, caused by right-handed neutrino decay is

εl =
1

8π

∑
j

Im[ỸνỸ
†
ν ]21j

(ỸνỸ
†
ν )11

F (
M1

Mj

) (2.7)

where Ỹν is defined in a basis where right-handed neutrinos are mass eigenstates and

their masses are denoted by M1,2,3 where F (x) = − 1
x

[
2x2

x2−1
− ln(1 + x2)

]
[44]. In

the case where that the right-handed neutrinos have a hierarchical mass pattern i.e.
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M1 ¿ M2,3, we get F (x) ' −3x. In this approximation, we can write the lepton

asymmetry in a simple form [45]

εl = − 3

8π

M1Im[YνM
†
νY

T
ν ]11

v2(ỸνỸ
†
ν )11

(2.8)

where using the expression for Yν given above, we can rewrite εl as:

εl = − 3

8π

Im[M̂
1/2
R R(zij)M̂

2
ν R(zij)M̂

1/2
R ]11

v2|RT (zij)MνR†(zij)|211

(2.9)

We will now apply this discussion to calculate the lepton asymmetry in the

general case without any symmetries. In the following sections, we follow it up with

a discussion of two cases: (i) the cases of exact µ − τ symmetry and (ii) the case

where this symmetry is only approximate. Since the formula in Eq. (2.9) assumes

that there are three right-handed neutrinos, we will focus on this case in the next two

sections. In a subsequent section, we consider the case of two right-handed neutrinos

(Nµ, Nτ ), which transform into each other under the µ − τ symmetry. Both cases

are in agreement with the observed neutrino mass differences and mixings.

It follows from Eq. (2.9) that

εl = − 3M1

8π

Im[m2
1R

2
11 + m2

2R
2
12 + m2

3R
2
13]

v2|R(zij)MνR†(zij)|211

(2.10)

Since the matrix R is an orthogonal matrix, we have the relation

R2
11 + R2

12 + R2
13 = 1 (2.11)

Using this equation in Eq. 2.10, we get

εl = − 3M1

8π

Im[∆m2
solarR

2
12 + ∆m2

atmR2
13]

v2
∑

j(|R1j|2mj)
(2.12)
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This relation connects the lepton asymmetry to both the solar and the atmospheric

mass difference square [32]. To make a prediction for the lepton asymmetry, we need

to the lengths of the complex quantities R1j. The out of equilibrium condition does

provide a constraint on |R1j| as follows:

∑
j=1,2,3

(|R1j|2mj) ≤ 10−3 eV (2.13)

It is clear from Eq. (2.13) that if neutrinos are quasi-degenerate i.e. m1 ' m2 '

m3 ≡ m0, then using Eq. (2.11), we find that the left hand side of Eq. (2.13) has

a lower bound of m0 which is clearly much bigger than the right hand side of the

inequality. Defining K ≡ Γ
H

, this means that K ≥ m0

2×10−3 eV
À 1. This implies

that the right-handed neutrinos decays are in equilibrium at T ' M1. This will

cause dilution of the lepton asymmetry generated with the dilution factor given by

K. Using a parameterization for the dilution factor κ1 ' 0.3
K(ln K)3/5 [46], we get

κ1 ' 10−3 which will make the baryon to photon ratio much too small. Based

on this argument, we conclude that a degenerate mass spectrum with m0 ≥ 0.1

eV will most likely be in conflict with observations, if type I seesaw is responsible

for neutrino masses. It must however be noted that a more appealing and natural

scenario for degenerate neutrino masses is type II seesaw formula [21], in which

case the above considerations do not apply. Therefore, it is not possible to conclude

based on the leptogenesis argument alone that a quasi-degenerate neutrino spectrum

is inconsistent.

In a hierarchical neutrino mass picture, Eq. (2.13) implies that |R13|2 ≤ 0.02

and |R12|2 ≤ 0.1. If we assume that the upper limit in the Eq. (2.13) is saturated,
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then we get the atmospheric neutrino mass difference square in Eq. (2.12) to give

the dominant contribution. We will see below that if one assumes an exact µ − τ

symmetry for the neutrino mass matrix, the situation becomes different and it is

the solar mass difference square that dominates.

2.2 Three Right-handed Neutrinos and Exact µ− τ Symmetry

In this section, we consider the case of three right-handed neutrino with an

exact µ−τ symmetry in the Dirac mass matrix as well as the right-handed neutrino

mass matrix. In this case, the right-handed neutrino mass matrix MR and the Dirac

Yukawa coupling Yν can be written respectively as:

MR =




M11 M12 M12

M12 M22 M23

M12 M23 M22




(2.14)

Yν =




h11 h12 h12

h21 h22 h23

h21 h23 h22




where Mij and hij are all complex. An important property of these two matrices is

that they can be cast into a block diagonal form by the same transformation matrix

U23(π/4) ≡




1 0

0 U(π/4)


 on the ν’s and N ’s. Let us denote the block diagonal

forms by a tilde i.e. Ỹν and M̃R. We then go to a basis where the M̃R is subsequently

diagonalized by the most general 2× 2 unitary matrix as follows:

V T (2× 2)UT
23(π/4)MRU23(π/4)V (2× 2) = M̂R (2.15)
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where V (2 × 2) =




V 0

0 1


 where V is the most general 2 × 2 unitary matrix

given by V = eiαP (β)R(θ)P (γ). The 3×3 case therefore reduces to a 2×2 problem.

The third mass eigenstate in both the light and the heavy sectors play no role in the

leptogenesis as well as generation of solar mixing angle [39]. Note also that we have

θ13 = 0. The seesaw formula in the 1-2 subsector has exactly the same form except

that all matrices in the left and right hand side of Eq. (2.9) are 2× 2 matrices. The

formula for the Dirac Yukawa coupling in this case can be inverted to the form:

Ỹν(2× 2) = iM̂
1/2
R (2× 2)R(z12)(M̂ν)

1/2(2× 2)Ũ † (2.16)

where U = U23(π/4)




Ũ 0

0 1


. Using this, we can cast εl in the form:

εl =
3

8π

M1

v2

Im(cos2 z12)∆m2
solar

(| cos z12|2m1 + | sin z12|2m2)
(2.17)

This could also have been seen from Eq. (2.12) by realizing that for the case of exact

µ− τ symmetry, we have z13 = 0 and z23 = π/4.

The above result reproduces the direct proportionality between εl and solar

mass difference square found in Ref. [39]. To simplify this expression further, let

us note that out of equilibrium condition for the decay of the lightest right-handed

neutrino leads to the condition:

M2
1

v2
wk

[m1| cos z12|2 + m2| sin z12|2] ≤ 14
M2

1

MP`

(2.18)

which implies that

|m1| cos z12|2 + m2| sin z12|2| ≤ 2× 10−3 eV (2.19)
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Since solar neutrino data require that in a hierarchical neutrino mass picture m2 '

0.9 × 10−2 eV, in Eq. (2.19), we must have | sin z12|2 ∼ 0.2. If we parameterize

cos2 z12 = ρeiη, we recover the conclusions of Ref. [39]. This provides a different

way to arrive at the conclusions of Ref. [39].

2.3 Lepton Asymmetry and µ− τ Symmetry breaking

In this section, we consider the effect of breaking of µ− τ symmetry on lepton

asymmetry. Within the seesaw framework, this breaking can arise either from the

Dirac mass matrix for the neutrinos or from the right-handed neutrino sector or

both. We focus on the case, when the symmetry is broken in the right-handed

sector only. Such a situation is easy to realize in seesaw models where the theory

obeys exact µ − τ symmetry at high scale (above the seesaw scale) prior to B-L

symmetry breaking as we show in a subsequent section. We will also show that in

this case there is a simple generalization of the lepton asymmetry formula that we

derived in the exact µ− τ symmetric case [39]1.

In this case the neutrino Yukawa matrix is given in the mass eigenstates basis

of the right-handed neutrinos by

Ỹν = V +
1/3V

+
1/2V

+
2/3Yν (2.20)

where Yν is the neutrino Dirac matrix in the flavor basis; The notation V +
i/j denotes a

unitary 2× 2 matrix in the (i, j) subspace. In the above equation, V2/3 = V2/3(π/4).

1Leptogenesis in a specific µ − τ symmetric model where the Dirac Yukawa coupling has the

form Yν = diag(a, b, b) has been discussed in Ref. [40]. Our discussion applies more generally.
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Now if we substitute for Ỹν the expression in Eq. (2.3) and use maximal mixing for

the atmospheric neutrino we obtain



Ỹ2×2 0

0 ỹ3


 = V1/3M

1/2
R R1/2R1/3M

1/2
ν U+

1/2U
+
1/3 (2.21)

Since the µ − τ symmetry breaking is assumed to be small and from reactor

neutrino experiments θ13 << 1 we will expand the mixing matrices in the 1 − 3

subspace to first order in mixing parameter:

(V,R, U)1/3 ' 1 + (ε, z, θ)13E (2.22)

where

E =




0 0 1

0 0 0

−1 0 0




(2.23)

To first order in ε13, z13 and θ13 we have

z13M
1/2
R R1/2EMνU

+
1/2 + ε13EM

1/2
R R1/2M

1/2
ν U+

1/2 − θ13M
1/2
R R1/2M

1/2
ν U+

1/2E = 0

(2.24)

It is straight forward to show that the perturbation parameters should satisfy the

following equations

ε13MR3m3 + z13MR1m3R11 − θ13e
−iδMR1cθ(m1R11 −m2R12) ' 0,

ε13MR2(m2R12sθ −m1R11cθ)− z13MR3m1cθ − θ13e
−iδMR3m3 ' 0,

ε13MR2(m1R11sθ + m2R12cθ) + z13MR3m1sθ ' 0,

z13MR2m3R21 − θ13e
−iδMR2cθ(m1R21 −m2R22) ' 0 (2.25)
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Where Rij are the matrix elements of R1/2 and cθ and sθ are the sine and cosine

of the solar neutrino mixing angle. Hence one can see that the parameter z13 is

proportional to the θ13 neutrino mixing angle and is given to first order by

z13 = [(
m1

m3

)R21 − (
m2

m3

)R22]θ13e
−iδcθ (2.26)

This proves that the matrix element R13 that goes into the leptogenesis formula is

directly proportional to the physically observable parameter θ13. This enables us to

write εl = a∆m2
solar + b∆m2

atmθ2
13. A consequence of this is that if the coefficient of

proportionality is chosen to be of order one, then as experimental upper limit goes

down, unlike the generic type I seesaw case in section II, the solar mass difference

square starts to dominate for the LMA solution to the solar neutrino deficit.

2.4 Lepton Asymmetry for Two Right-handed Neutrinos

In this section, we consider the case of two right-handed neutrinos which trans-

form into one another under µ − τ symmetry. The leptogenesis in this model with

exact µ− τ symmetry was discussed in [39] and was shown that it vanishes. In this

model therefore, a vanishing or very tiny θ13 would not provide a viable model for

leptogenesis. Turning this argument around, enough leptogenesis should provide a

lower limit on the value of θ13.

To set the stage for our discussion, let us first review the argument for the exact

µ − τ symmetry case [39]. The symmetry under which (Nµ ↔ Nτ ) and Lµ ↔ Lτ
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whereas the mµ 6= mτ constrains the general structure of Yν and MR as follows:

MR =




M22 M23

M23 M22


 (2.27)

Yν =




h11 h22 h23

h11 h23 h22




In order to calculate the lepton asymmetry using Eq. (2.7), we first diagonalize

the righthanded neutrino mass matrix and change the Yν to Ỹν . Since MR is a

symmetric complex 2× 2 matrix, it can be diagonalized by a transformation matrix

U(π/4) ≡ 1√
2




1 1

−1 1


 i.e. U(π/4)MRUT (π/4) = diag(M1,M2) where M1,2 are

complex numbers. In this basis we have Ỹν = U(π/4)Yν . We can therefore rewrite

the formula for n` as

εl ∝
∑

j

Im[U(π/4)YνY
†
ν UT (π/4)]212F (

M1

M2

) (2.28)

Now note that YνY
†
ν has the form




A B

B A


 which can be diagonalized by the

matrix U(π/4). Therefore it follows that ε` = 0.

Let us now introduce µ−τ symmetry breaking. If we introduce a small amount

of µ − τ breaking in the right-handed neutrino sector as follows: we keep the Yν

symmetric but choose the right-handed neutrino mass matrix as:

MR =




M22 M23

M23 M22(1 + β)


 . (2.29)

After the right-handed neutrino mass matrix is diagonalized, the 3× 2 Y ′
ν takes the
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form (for θ13 ¿ 1 and in the basis where the light neutrino masses are diagonal):



A B wθ13

xθ13 yθ13 D


 (2.30)

Here B,D, x, y, w are of order one and θ13 ∝ β.

To first order in the small mixing θ13, the complex parameters A,B, D satisfy

the constraint

A ∼ θ13; Bv2 ' m2M1; Dv2 ' m3M2 (2.31)

Using these order of magnitude values, we now find that

εl ' 3

8π

M1

v2

sin η[m2
3θ

2
13ξ]

m2

(2.32)

where ξ is a function of order one. It is clear that very small values for θ13 will lead

to unacceptably small εl. In Fig. 2.1, we have plotted ηB against θ13 for values of

the parameters in the model that fit the oscillation data and find a lower bound on

θ13 ≥ 0.1− 0.15 for two different values of the CP phases (Fig. 2.1). In this figure,

we have chosen, M1 ' 7× 1011 GeV. For higher values of M1 the allowed range θ13

moves to the lower range. Also we note that for values of M1 < 7× 1011 GeV, the

baryon asymmetry becomes lower than the observed value.

2.5 A Model for µ− τ Symmetry for Neutrinos

In this section, we present a simple extension of the minimal supersymmetric

standard model (MSSM) by adding to it specific high scale physics that at low

energies can exhibit µ − τ symmetry in the neutrino sector as well as real Dirac

masses for neutrinos.

37



0 0.05 0.1 0.15 0.2
ÈUe3È

0

2·10-10

4·10-10

6·10-10

8·10-10

Η
B

∆=Π�3

∆=Π�4

Figure 2.1: Plot of ηB vrs θ13 for the case of two right-handed neutrinos with ap-

proximate µ − τ symmetry and CP phases δ = π/4 and π/3. The values of θ13

are predicted to be 0.1 and 0.15 respectively. The horizontal line corresponds to

ηobs
B = (6.5+0.4

−0.3)× 10−10 [47].

First we recall that MSSM needs to be extended by the addition of a set of

right-handed neutrinos (either two or three) to implement the seesaw mechanism

for neutrino masses [20]. We will accordingly add three right-handed neutrinos

(Ne, Nµ, Nτ ) to MSSM. We then assume that at high scale, the theory has µ− τ S2

symmetry under which N± ≡ (Nµ ±Nτ ) are even and odd combinations; similarly,

we have for leptonic doublet superfields L± ≡ (Lµ ± Lτ ) and leptonic singlet ones

`c
± ≡ (µc± τ c); two pairs of Higgs doublets (φu,± and φd,±), and a singlet superfields

S±. Other superfields of MSSM such as Ne, Le, e
c as well as quarks are even under

the µ − τ S2 symmetry. Now suppose that we write the superpotential involving

the S fields as follows:

WS = λ1φu,−φd,+S− + λ2φu,−φd−S+ (2.33)
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then when we give high scale VEVs to < S± > = M±, then below the high scale

there are only the usual MSSM Higgs pair Hu ≡ φu,+ and Hd ≡ (cφd,+ + sφd,−)

that survive whereas the other pair becomes superheavy and decouple from the low

energy Lagrangian. The effective coupling at the MSSM level is then given by:

W = heLeHde
c + h1LeHd`

c
+ + h2LeHdm

c
− + h3L+Hde

c (2.34)

+h4L−Hde
c + h5L+Hd`

c
+ + h6L−Hdm

c
− + h7L−Hd`

c
+

+f1LeHu,+Ne + f2LeHu,+N+ + f3L+Hu,+Ne + f4L+Hu,+N+

+f5L−Hu,+N−

Note that the µ− τ symmetry is present in the Dirac neutrino mass matrix whereas

it is not in the charged lepton sector as would be required to .

We show below that it is possible to have a high scale supersymmetric theory

which would lead to real Dirac Yukawa couplings (fi) if we require the high scale

theory to be left-right symmetric. To show how this comes about, consider the gauge

group to be SU(2)L × SU(2)R × U(1)B−L with quarks and leptons assigned to left

and right-handed doublets as usual [25] i.e. Q(2, 1, 1/3), Qc(1, 2,−1/3); L(2, 1,−1)

and Lc(1, 2, +1); Higgs fields Φ(2, 2, 0); χ(2, 1, +1); χ̄(2, 1,−1); χc(1, 2,−1) and

χ̄c(1, 2,−1). The new point specific to our model is that we have two sets of the

Higgs fields with the above quantum numbers, one even and the other odd under

the µ − τ S2 permutation symmetry i.e. Φ±, χ±, χ̄±, χc
± and χ̄c

± (plus for fields

even under S2 and − for fields odd under S2. ) Furthermore, we will impose the

parity symmetry under which Q ↔ Qc∗, L ↔ Lc∗, (χ, χ̄ ↔ χc∗, χ̄c∗), Φ ↔ Φ†.

The Yukawa couplings of this theory invariant under the gauge group as well
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as parity are given by the superpotential:

W = h11L
T
e Φ+Lc

e + h++LT
+Φ+Lc

+ h−−LT
−Φ+Lc

− he+LT
e Φ+Lc

+ + h∗e+LT
+Φ+Lc

e(2.35)

+ he−LT
e Φ−Lc

− + h∗e−LT
−Φ−Lc

e + h+−LT
+Φ−Lc

− + h∗+−LT
−Φ−Lc

where h11, h++, h−− are real.

The Higgs sector of the low energy superpotential is determined from this

theory after left-right gauge group is broken down to the standard model gauge

group by the VEV’s of χc. The phenomenon of doublet-doublet spitting leaves

only two Higgs doublets out of the four in Φ± and is determined by a generic

superpotential of type

WDD =
∑

i,j,k

λijkχiΦjχ
c
k + λ′ijkχ̄iφjχ̄

c
k + M1(χ±χ̄± + χc

±χ̄c±) (2.36)

where i, j, k go over + and − for even and odd and only even terms are allowed by

µ − τ invariance e.g. λ+++, λ+−−, ... are nonzero. Now suppose that < χc
+ >= 0

but < χc
+ >6= 0 and < χ̄c± >6= 0. These VEVs break the left-right group to the

standard model gauge group. It is then easy to see that below the < χc > scale,

there are only one Higgs pair where Hu = φu,+ and Hd =
∑

i=+,−,3,4 aiφd,i. Here we

have denoted the Φ ≡ (φu, φd) and φd,3,4 = χ±. The upshot of all these discussions

is that the right-handed neutrino Yukawa couplings are µ − τ even and therefore

have the form:

Yν =




h11 he+ 0

h∗e+ h++ 0

0 0 h−−




(2.37)
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It is easy to see that redefining the fields appropriately, we can make Yν real. So

the only source of complex phase in this model is in the right-handed neutrino mass

matrix, which in this model are generated by higher dimensional couplings of the

form LcLcχ̄cχ̄c as we discuss now.

The most general nonrenormalizable interactions that can give rise to right-

handed neutrino masses are of the form:

WNR =
1

M
[(Lc

eχ̄
c
+)2 + Lc

eχ̄
c−)2 + (Lc

+χ̄c
+)2 (2.38)

(Lc
−χ̄c−)2 + (Lc

−χ̄c
+)2 + (Lc

+χ̄c−)2

(Lc
+χ̄c−)(Lc

−χ̄c
+)

Note that since both χ̄c± acquire vevs, the last term in the above expression will

give rise to µ − τ breaking in the right-handed neutrino sector while preserving it

in the Yν . The associated couplings in the above equations are in general complex.

This leads to a realistic three generation model with approximate µ− τ symmetry

as analyzed in the previous sections.

In summary, we have studied the implications for leptogenesis in models where

neutrino masses arise from the type I seesaw mechanism and where the near maximal

atmospheric mixing angle owes its origin to an approximate µ − τ symmetry. We

derive a relation of the form εl = (a∆m2
solar + b∆m2

atmθ2
13) for the case of three right-

handed neutrinos, which directly connects the neutrino oscillation parameters with

the origin of matter. We also show that if θ13 is very small or zero, only the LMA

solution to the solar neutrino puzzle would provide an explanation of the origin of

matter within this framework. Finally for the case of two right-handed neutrinos
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with approximate µ− τ symmetry, we predict values for θ13 in the range 0.1− 0.15

for specific choices of the the high energy phase between π/4 and π/3.
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Chapter 3

Grand Unification of µ− τ Symmetry

3.1 Overview

Observation of nonzero neutrino masses and determination of two of their three

mixing parameters by experiments have raised the hope that neutrinos may provide

a clue to flavor structure among quarks. In order to make progress in this direction

however, one needs knowledge of the detailed nature of the quark-lepton connection

e.g. whether there is an energy scale where quarks and leptons are unified into one

matter (or grand unification of matter). While there are similarities between quarks

and leptons that make such an unification plausible, there are also many differences

between them which may a priori point the other way: for instance, the mixing

pattern among quarks is very different from that among leptons and the neutrino

mass matrices in the flavor basis exhibit symmetries for which there apparently is no

trace among quarks. Two examples of such apparent lepton-exclusive symmetries

are : (a) discrete µ − τ symmetry [29, 30] of the neutrino mass matrix in the

flavor basis indicated by maximal atmospheric mixing angle and small θ13 and (b)

continuous Le−Lµ−Lτ [48] symmetry, which will be indicated if the mass hierarchy

among neutrinos is inverted.

If neutrinos are Majorana fermions, they are likely to acquire masses from

very different mechanisms e.g. one of the various seesaw mechanisms which involve
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completely independent flavor structure (say for example from right handed neutri-

nos) than quarks. The apparent disparate pattern for quark and leptons mixings

then need not argue against eventual quark-lepton unification. In fact there are

now many grand unification models (where quarks and leptons are unified at short

distances) where small quark mixings and large lepton mixings along with all their

masses can be understood with very few assumptions in a seesaw framework [38].

In this chapter we address the question as to whether there could be an appar-

ently pure leptonic symmetry such as µ− τ symmetry in the neutrino mass matrix

in the flavor basis (i.e. the basis where charged leptons are mass eigenstates), which

is part of a general family symmetry within a quark-lepton unified framework such

as a grand unified model. We particularly focus on this symmetry since there ap-

pears to be some hint in favor of this from the present mixing data. In the exact

symmetry limit, the mixing parameter θ13 = 0 [29] and breaking of the symmetry

not only implies a small nonzero value for θ13 but also leads to a correlation between

θ13 with θ23 − π/4, which can be used to test for this idea [30]. This question has

been discussed at a phenomenological level in several recent papers [49] but to the

best of our knowledge no full-fledged gauge model has been constructed. Indeed

most gauge models for νµ − ντ symmetry discussed in the literature treat leptons

separately from quarks [40].

One simple way to have quark flavor structure completely separated from

that of leptons and yet have quark-lepton unification is to use the double seesaw

[41] framework where neutrino flavor texture from “hidden sector” singlet fermions

(e.g. SO(10) singlets ) which are completely unrelated to quarks (for examples of
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such models, see [50, 51]). One can then have any pure “leptonic” symmetry on

the hidden singlets without at the same time interfering with quark flavor texture.

A necessary feature of such models is that one must introduce new fermions into

the model. A question therefore remains as to whether one could do this without

expanding the matter sector. In this paper, we propose such an approach without

introducing new fermions within a realistic SU(5) GUT framework that unifies

quarks and leptons. We demand the full theory prior to symmetry breaking to

obey a symmetry between the second and third generation (or a generalized version

of µ − τ symmetry). The neutrino masses are assumed to arise from a type II [21]

mechanism, which disentangles the neutrino flavor structure from the quark flavor

structure. The quark mass matrices are however constrained by the µ−τ symmetry.

The quark mixing angles then introduce departures from exact µ − τ symmetry

results and lead to nonzero θ13 as well as departures from maximal atmospheric

mixing.

3.2 A SUSY SU(5) Model with µ− τ Symmetry

The model consists of a minimal set of Higgs bosons which are anyway required

to reconcile the charged fermion masses in the minimal SU(5) model. We find that

the requirement of µ − τ symmetry for neutrinos can be imposed on the model

without contradicting observed charged fermion masses and mixings. As noted, the

model predicts a nonzero value for θ13 correlated with the departure of θ23 from its

maximal value.
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As in the usual SU(5) model, matter fields are assigned to 5̄ ≡ Fα and 10 ≡ Tα

(with α = 1, 2, 3 denotes the generation index). We choose the Higgs fields to belong

to the multiplets 24 (denoted by Φ and used to break the SU(5) symmetry down

to the standard model); 5⊕ 5̄ (denoted by h + h̄) and 45⊕ 4̄5 (denoted by H + H̄)

used to give masses to fermions) and 15⊕ 1̄5 (denoted by S + S̄) to give masses to

neutrinos via the type II seesaw mechanism [21].

The matter and Higgs fields transform under the µ−τ discrete flavor symmetry

as follows:

Fµ ↔ Fτ

(h, h̄) ↔ (h, h̄)

(H, H̄) ↔ (−H,−H̄) (3.1)

and all other fields are singlets under this transformation. In this model, the matter

part of the superpotential can be written as

W = Y15FFS + Y5TTh + Y5̄TF h̄ + Y45TFH. (3.2)

After the electro-weak symmetry breaking, the mass matrices for the standard

model fermions are given by
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Mν = Y15〈S〉 =




X Y Y

Y Z W

Y W Z




(3.3)

Mu = Y5〈h〉 =




A B C

B D E

C E F




(3.4)

Md = Y5̄〈h̄〉+ Y45〈H〉 =




A1 B1 C1

E1 D1 F1

E1 D1 F1




+




0 0 0

E2 D2 F2

−E2 −D2 −F2




(3.5)

Me = Y T
5̄ 〈h̄〉 − 3Y T

45〈H〉 =




A1 E1 E1

B1 D1 D1

C1 F1 F1



− 3




0 E2 −E2

0 D2 −D2

0 F2 −F2




(3.6)

where the various parameters characterising the mass matrices are given in terms of

the Yukawa couplings and vacuum expectation values of fields as follows:〈S〉, 〈h〉, 〈h̄〉, 〈H〉

are VEVs of S, h, h̄,H respectively.

The mass matrices depend on nineteen parameters if we ignore CP phases

and there are seventeen experimental inputs (6 quark masses, 3 charged lepton

masses, two neutrino mass difference squares plus five mixing angles values and

an upper limit on θ13). For the sake of comparison, we note that if we generated

neutrino masses in the standard model using a Higgs triplet field, there would be

18 parameters in the absence of CP violation (9 from the quark sector, 3 from the
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charged lepton mass matrix and six from the neutrino sector). When one embeds the

standard model into a GUT SU(5), to be realistic, one needs to introduce 45 Higgs

and its associated Yukawa couplings. In this case, the total number of parameters in

the Yukawa sector is 30. In our model the requirement of µ−τ symmetry has first led

to a reduction in the total number by eleven and furthermore grand unification has

strongly correlated the down quark and charged lepton mass matrix, as expected.

It is therefore not obvious that the model will be consistent with known data on

fermion masses.

To see if the model is phenomenologically acceptable, we first fit the masses

of the charged leptons and down type quarks using the mass values of leptons and

quarks at GUT scale given in the Table 3.1 [52]. These values are obtained by two-

loop RGEs running from Z boson mass scale to the GUT scale. The initial values

are from the experimental data.

The values of parameters in the model are found by scanning the whole param-

eter space under the constraint that we satisfy the current experiment requirements

of θ13 and θ23. Note that since in this model, neutrino mass matrix in the flavor

basis is µ− τ symmetric, it is diagonalized by the matrix:

Uν =
1√
2




√
2 cos θν

√
2 sin θν 0

− sin θν cos θν 1

− sin θν cos θν −1




, (3.7)

where θν is the solar mixing angle. The deviations of θ13 and θ23 from 0 and π
4

respectively should come from left-handed charged leptons mixing matrix. Since

these deviations have upper bounds, this puts an nontrivial constraint on the charged
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input observable tan β = 10

mu (MeV) 0.7238+0.1365
−0.1467

mc (MeV) 210.3273+19.0036
−21.2264

mt (GeV) 82.4333+30.2676
−14.7686

md (MeV) 1.5036+0.4235
−0.2304

ms (MeV) 29.9454+4.3001
−4.5444

mb (GeV) 1.0636+0.1414
−0.0865

me (MeV) 0.3585+0.0003
−0.0003

mµ (MeV) 75.6715+0.0578
−0.0501

mτ (GeV) 1.2922+0.0013
−0.0012

Table 3.1: The masses of charged fermions at the GUT scale.
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Figure 3.1: Scatter plot in the sin2 θ23 and sin2 θ13 plane.

lepton mass matrix of the model; but since the charged lepton mass matrix is already

constrained by µ− τ symmetry, it is nontrivial to get all masses and mixings to fit.

It turns out that the fitting for the masses of leptons and quarks does not provide

any bound on θ23, however it gives quite stringent bound on θ13. Using the relation

UMNS = U †
l Uν , one can write sin θ13 and tan θ23 as

sin θ13 =
1√
2
|Ul21 − Ul31| (3.8)

tan θ23 = |Ul22 − Ul32

Ul23 − Ul33

| (3.9)

The 3σ experimental bounds of θ13 and θ23 are 0.34 ≤ sin2 θ23 ≤ 0.68 and sin2 θ13 ≤

0.051 [14].

The scatter plot in Fig. 3.1 gives sin2 θ13 as a function of sin2θ23 allowing for

3 σ uncertainty in all masses except me (chosen to be 0.3 − 0.4 MeV), mµ (chosen

to be 73− 76 MeV) and md left free and θ23 within 3 σ.

Here, we give two typical fitting points for our model:
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Figure 3.2: Value distribution of sin2 θ13. 67 percent of fitting points have sin2 θ13 ≤

0.03 and 80 percent have sin2 θ13 ≤ 0.05.

(i) Case 1:

md = 0.355117 MeV ms = 34.0438 MeV mb = 985.857 MeV (3.10)

me = 0.356047 MeV mµ = 75.1597 MeV mτ = 1336.14 MeV (3.11)

Ul =




0.999327 0.036688 0.0000316411

0.0366849 −0.999231 −0.0138381

0.000476075 −0.01383 0.999904




(3.12)

For this case, we predict the following values for the neutrino mixing parameters θ13

and θ23:

θ13 ' 0.026 (3.13)

θ23 ' 44.3◦ (3.14)

(ii) Case 2:
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md = 0.336552 MeV ms = 38.4364 MeV mb = 926.78 MeV (3.15)

me = 0.381779 MeV mµ = 73.112 MeV mτ = 1288.52 MeV (3.16)

Ul =




0.959961 0.280133 0.000326329

0.279872 −0.959014 −0.0443148

0.0121011 −0.0426319 0.999018




(3.17)

giving us

θ13 ' 0.19788 (3.18)

θ23 ' 41.2◦ (3.19)

We therefore note that the value of the most probable value for θ13 is in the range

from 0.02 − 0.19 with (as indicated in Fig. 3.2) values below 0.1 being much more

probable.

Note that mass md in both cases has almost same magnitude as me and is

smaller than the central value at the GUT scale by about ∼ 1MeV. The reason

for this is that H is µ− τ odd, leading to zero entries in the Me,Md. Note that in

this model, we also have additional threshold correction from the exchange of the

gauginos, which make larger contribution to quarks relative to the charged leptons

of the corresponding generation due to strong coupling of the gluinos. In particular,

the gluino contribution to the tree level masses of the quarks can be significant if

the assumption of proportionality between the A-terms and the Yukawa couplings
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Figure 3.3: One-loop SUSY threshold correction to d quark mass due to gluino-

squark exchange.

is abandoned. Fig. 3.3 gives a typical Feynman diagram contributing to the quark

masses [54]. The generic contribution to the (i, j) element of the down quark mass

matrix is given by:

δmd,ij ' 2αs

3π

Mg̃

m2
q̃

(m0
d,ijµ tan β + A

(d)
ij m0) (3.20)

Including this radiative correction only in the 11 element of the down quark

mass matrix, one can get the down quark mass to be in agreement with observations.

We also note that the process of fitting the charged lepton and down quark masses

gives a definite rotation matrix that diagonalizes the down quark mass matrix and

contributes to the VCKM . We then appropriately choose the parameters in the

symmetric up-quark mass matrix so that we get the correct VCKM .

3.3 Gauge Coupling Unification

This type-II seesaw requires that we have a medium scale for the mass of the

SM triplet Higgs which is present in 15-Higgs i.e. MT ∼ 1014GeV; this is satisfied

if we tune the coupling λ of λΦSS̄ to ∼ 10−2 or so since MT ∼ λvU . Once Φ get
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Figure 3.4: Unification of the gauge couplings at two-loop level for central values of

low-energy oberservables. We find MGUT = 2.36 × 1016GeV. The dashed lines in

the figure show the pure MSSM running.

VEV and breaks SU(5) to Standard Model, it also can induce the mass splitting of

multiplets of S, S̄. This will affect the unification of coupling. We display the effect

of these mass splittings to the gauge coupling running as a threshold correction, in

Fig. 3.4 and show that the unification of couplings is maintained and we get a slight

increment in the value of MU ' 2.36× 1016 GeV.

3.4 45 vrs its Higher Dimensional Equivalent

We also like to comment that a more economical possibility is to consider a

model that uses a high dimension operator involving with Φ instead of the H. The

matter part of the superpotenial in this case is given by:

W = Y15FFS + Y5TTh + Y5̄FT h̄ +
1

MP

Y24FTΦh̄, (3.21)
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where MP is Planck scale and H24 is the SU(5) adjoint representation used to break

SU(5) to SU(3)×SU(2)×U(1). MP ∼ 1019GeV,VEV of H is ∼ 1016GeV and VEV

of h̄ is ∼ 102GeV ,thus the overall scale of the contribution of this higher dimensional

operator to fermion mass matrices ∼ 100MeV. We have tried a fitting of data for this

model and find it to be unacceptable, since it gives very large sin2 θ23 ∼ 0.76 − 0.8

which is around 4-5 σ.

In summary, we have discussed the grand unification of apparently pure lep-

tonic symmetries such as µ− τ symmetry into the quark-lepton unifying supersym-

metric SU(5) model for quarks and leptons and studied its implications for neutrino

mixing angles. We find that it is possible to have a completely viable SU(5) model

of this type. In this model the neutrino masses arise from a triplet VEV induced

type II seesaw mechanism. The presence of quark lepton unification leads to small

deviations from maximal atmospheric mixing angle and vanishing θ13 implied in the

exact symmetry limit.
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Chapter 4

S3 Flavor Fymmetry and Tri-bimaximal Mixing

4.1 Overview

µ−τ flavor symmetry has been proposed to understand lepton mixing pattern

with near maximal atmospheric mixing angle and vanishing θ13. Even though there

is no such apparent “µ − τ” symmetry among quarks and charged leptons, in the

previous chapter, we have shown that unified description of quarks and leptons is

possible within SU(5) GUT by extending neutrino µ− τ symmetry to the permuta-

tion family symmetry between the second and third generations. A question raised

by this is whether there are higher underlying symmetries of leptons.

A hint for a higher symmetry may be coming from the observation that the

solar angle in the PMNS mixing matrix satisfies the relation sin2 θsolar ' 1
3
. The

resulting PMNS matrix has the simple form [53]:

U =




√
2
3

1√
3

0

− 1√
6

1√
3

1√
2

− 1√
6

1√
3
− 1√

2




(4.1)

and is called a tri-bimaximal mixing. The true nature of the symmetry responsible

for this pattern is not clear, although there are many interesting suggestions [55, 56,

57].

In this chapter, we explore the possibility that the relevant symmetry may be
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the permutation symmetry S3 of three lepton generations. We show that a softly

broken S3 symmetry for leptons can lead to tri-bimaximal mixing pattern if we use

a combination of type I and type II seesaw mechanism to understand the smallness

of neutrino mass. This approach appears to be different from previous attempts at

building models for tri-bimaximal mixing [55, 56, 57].

We proceed in two steps: we first show how in a basis where charged leptons

are diagonal, one can derive the mixing pattern in Eq. (4.1) using softly broken

S3 symmetry under certain assumptions. We then show how this the S3 symmetry

combined with Z2e×Z2µ×Z2τ symmetry can lead to a diagonal charged lepton mass

matrix. We then extrapolate the neutrino mass matrix from the seesaw scale to the

weak scale and obtain constraints on the mass ratios m1/m3 and m2/m3 so that

the mixing angles match the observations. We obtain a prediction for θ13, which

turns out to be extremely small (∼ 0.004). We further show that if the neutrino

masses are quasi-degenerate and have the same CP property (i.e. are all positive),

then the radiative corrections in the extrapolation to the weak scale are so large

that the solar mixing angle is in disagreement with observations. This implies that

in supersymmetric theories with large tanβ, seesaw scale tri-bimaximal mixing and

degenerate neutrinos are mutually exclusive.
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4.2 An S3 Model

We start with the Majorana neutrino mass matrix whose diagonalization at

the seesaw scale leads to the tri-bimaximal mixing matrix:

Mν =




a b b

b a− c b + c

b b + c a− c




(4.2)

Diagonalizing this matrix leads to the U of Eq. (4.1) and the neutrino masses:

m1 = a − b; m2 = a + 2b and m3 = a − b − 2c. Clearly if |a| ' |b| ¿ |c|, we get a

normal hierarchy for masses.

We now show that the mass matrix in Eq. (4.2) can be obtained from a softly

broken S3 symmetry in the neutrino sector. For this purpose, we assign the three

lepton doublets of the standard model (Le, Lµ, Lτ ) to transform into each other

under permutation. The three right handed neutrinos (Ni=1,2,3) transform under

three permutation and two cyclic operations of S3 as:

e ↔ µ : N1 ↔ −N1; N2 ↔ −N3

µ ↔ τ : N2 ↔ −N2; N1 ↔ −N3

τ ↔ e : N3 ↔ −N3; N1 ↔ −N2

e → µ → τ : N1 → N2; N2 → N3; N3 → N1

e → τ → µ : N1 → N3; N2 → N1; N3 → N2 (4.3)

In order to obtain the neutrino mass matrix, we assume that there is a standard

model triplet Higgs field ∆ with Y = 2 which is S3 singlet that couples to the two
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lepton doublets and an S3 singlet Higgs doublet field H that gives the Dirac mass

for the neutrinos. The triplet VEV can be made small and of the desired order if

the mass of the triplet Higgs field is around 1014 GeV or so [38].

The first point to note is that the most general S3 invariant coupling of the

triplet i.e. fabLaLb∆ is given by the coupling matrix:

f =




a b b

b a b

b b a




(4.4)

For the Dirac neutrino coupling we choose to keep the following S3 invariant term:

LD = hν [N1H(Le − Lµ) + N2H(Lµ − Lτ ) + N3H(Lτ − Le)] + h.c. (4.5)

One other S3 invariant coupling is set to zero. This is natural in a supersymmetric

theory due to the nonrenormalization theorem. We then get for the Dirac mass

matrix for neutrinos

MD =




d −d 0

0 d −d

−d 0 d




. (4.6)

where d = hν〈H〉. If we now assume the following hierarchy among the right handed

neutrinos, i.e. MN1,3 À MN2 so that a single right handed neutrino dominates the

type I contribution to the seesaw formula [59], then in the strict decoupling limit,

using the mixed type I+II seesaw formula:

Mν = M0 −MT
DM−1

R MD, (4.7)
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we get the desired form for the neutrino Majorana mass matrix (Eq. (4.2)) which

leads to tri-bimaximal mixing. Note that the right handed neutrino masses being

dimension three operators break the S3 softly.

In this discussion we have assumed that the charged lepton mass matrix is

diagonal. A major challenge for any model for neutrino mixings is to have a con-

sistent picture for both the charged lepton and neutrino sectors simultaneously so

that the combination U †
` Uν equals the observed PMNS matrix. Since in our case,

the neutrino sector by itself gives the tri-bimaximal form for the PMNS matrix, the

charged lepton sector should be diagonal or nearly so. We will now show that we

can obtain a diagonal charged lepton mass matrix in a simple way using the S3 sym-

metry, provided we choose only one of two allowed S3 invariant Yukawa coupling

terms.

In order to achieve this, we assume that there are three standard model Higgs

doublets (He, Hµ, Hτ ) transforming like the lepton doublets above under S3. We

also assume that the right handed charged leptons (eR, µR, τR) transform under S3

same way. We then assume a product of discrete symmetries Z2e×Z2µ×Z2τ under

which all fields except the following are even: (eR, He) odd under only Z2e and

similarly (µR, Hµ) are odd only under Z2µ and (τR, Hτ ) odd under Z2τ . The Yukawa

couplings invariant under this are:

L′Y = he(L̄eHeeR + L̄µHµµR + L̄τHττR) + h′e(L̄eHµµR + L̄µHeeR

+L̄µHττR + L̄τHµµR + L̄eHττR + L̄τHeeR) + h.c. (4.8)

By softly breaking the global S3 symmetry in the Higgs potential for the He,µ,τ , we
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can get 〈He〉 ¿ 〈Hµ〉 ¿ 〈Hτ 〉 which allows us to obtain a realistic diagonal charged

lepton mass matrix if we assume h′e = 0. This model then gives us a tri-bimaximal

neutrino mixing at the seesaw scale.

4.3 Radiative Stability of the Texture

In order to compare this model with observations, we need to extrapolate the

seesaw scale neutrino mass matrix in Eq. (4.2) down to the weak scale [58] and

then calculate the masses and mixing angles. This extrapolation depends on the

mass hierarchy of the neutrinos. So comparing with observations, we can put limits

on the mass hierarchy at low scale. From the expressions for the neutrino masses

derived after Eq. (4.2), one might think that degenerate masses are compatible

with tri-bimaximal pattern since there are three parameters and three masses to be

fitted. However, in supersymmetric models, mixing angles can receive substantial

contributions from RGE effects (specially for large tanβ) and will in general lead to

distortion of the mixing angles away from the tri-bimaximal values. For the specific

case of tanβ = 50 we calculate the radiative corrections to the solar mixing angle

θ12 in fig. 4.1. We plot sin2θ12 against m2/m3 with the input constraint being that

∆m2
solar/∆m2

atm is within 3 σ of its present value i.e. 0.024 ≤ ∆m2
solar/∆m2

atm ≤ 0.060

[14]. We see that for m2/m3 > 0.3 or so, the solar mixing angle goes outside the

observed range and the agreement gets worse for larger values of this mass ratio

which corresponds to quasi-degenerate neutrino spectrum. This leads us to conclude

that tri-bimaximal mixing at the seesaw scale is incompatible with quasi-degenerate
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Figure 4.1: sin2θ12 at the weak scale for the case of quasi-degenerate neutrinos. Note

that the higher the ratio m2/m3, the more degenerate the neutrinos are and further

off the prediction for sin2θ12 is from the observed value.

neutrinos for large values of tan β.

For the same value of tan β, we show in fig. 4.2 the allowed ranges for the

neutrino mass ratios for the case of normal hierarchy and in fig. 4.3, the prediction

for θ13 for this model. In these figures, we have used the above 3σ experimental

bounds for ∆m2
solar/∆m2

atm and also 3 σ bounds for 0.23 ≤ sin θ2
12 ≤ 0.38 and

0.34 ≤ sin θ2
23 ≤ 0.68 [14]. We find that the prediction for θ13 ∼ 0.004 which is much

too small to be observable in near future. This is because the low energy theory

in the absence of radiative corrections is µ − τ symmetric. Clearly observation of

θ13 higher than this value will rule out this model and indeed any simple model for

tri-bimaximal mixing at the seesaw scale for the case of normal mass hierarchy.

In conclusion, in this chapter, we have presented a new way to obtain the

tri-bimaximal mixing pattern for neutrinos by embedding µ − τ symmetry of the
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Figure 4.2: Allowed ranges of mass ratios at the weak scale for normal hierarchy

case.
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Figure 4.3: Distribution of sin θ13 value.

63



neutrino mass matrix into a softly broken S3 permutation symmetry for leptons and

using a simple combination of the type I and type II seesaw formulae along with the

dominance of a single right handed neutrino [59]. We also find that tri-bimaximal

mixing at the seesaw scale is incompatible with degenerate neutrino spectrum due

to large radiative correction effects for large tan β.
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Chapter 5

Connecting Leptogenesis to CP Violation in Neutrino Mixings in a

Tri-bimaximal Mixing model

5.1 Overview

In the Chapter 3, we derived two simple formulas connecting lepton number

asymmetry and low scale neutrino oscillation data with the basic assumption that

type I seesaw generates light neutrino mass and slightly broken µ− τ symmetry at

the high scale. The flavor symmetry reduces the seesaw parameters in a natural

way and makes it possible to have such direct connection.

A further question of this connection is whether CP-violating phases in neu-

trino mixing that can be probed in long baseline as well as in neutrinoless double

beta decay experiments are the ones that are responsible for the matter-anti-matter

asymmetry. It turns out that in generic seesaw models there is no a priori connection

between them and it is hoped that in a true theory of neutrino masses and mixing,

such a connection may exist. By a direct connection, we mean the phase responsible

for lepton asymmetry of the Universe is the same one that appears as either a Dirac

or one of the two Majorana phases in neutrino mixings. The non-triviality of this

problem stems from two facts: (i) in generic seesaw models, lepton asymmetry ε`

depends only a subset of the phases of Dirac mass matrix MD whereas low energy

65



phases in the neutrino mass matrix involves all of them; and (ii) the seesaw formula

“scrambles” up the phases due to multiplication of matrices so that any direct con-

nection between low and high energy phases, if they exist at all becomes difficult to

discern.

In this chapter, we show that the S3 model proposed in Chapter 4 for tri-

bimaximal neutrino mixing, the structure of the neutrino mass matrix is so con-

strained by symmetry that a direct connection between the leptogenesis phase and

neutrino mixing phases emerges. Thus within the context of this model, a measure-

ment of the neutrino CP phases would provide a direct understanding of the origin

of matter. In this model, the key flavor symmetry leading to tri-bimaximal mixing

is the permutation symmetry of three lepton families. The resulting neutrino mass

matrix is characterized by only three complex parameters, whose absolute values

are constrained by already existing observations. We find that (i) in the exact tri-

bimaximal limit, when there is no Dirac phase, one of the two Majorana phases

is directly responsible for the lepton asymmetry of the Universe; (ii) even after we

include small departures from the tri-bimaximal limit, the direct connection remains

– there are then two contributions to ε`, one being proportional to the Dirac phase

and the other to one of the two Majorana phases. This direct connection is possible

due to the simple form of MD dictated by the S3 symmetry of the model and the

assumptions that in case (i) only one and in case (ii) only two right-handed neutri-

nos dominate the seesaw formula as well as the fact there is an S3 symmetric type

II contribution to the neutrino masses in both cases.

This chapter is organized as follows: in section 2, we give a brief review the
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salient features of the S3 model for tri-bimaximal mixing and set up the notation; in

section 3, we present a general discussion of leptogenesis in our model; in section 4,

we calculate the baryon asymmetry in the exact tri-bimaximal mixing and establish

the direct connection between one of the Majorana phases in the neutrino mixing

and ε`; in section 5, we do the same for the case where we include deviations from

tri-bimaximal limit and show the connection of ε` to the Dirac and the Majorana

phases.

5.2 CP Violating Phases of the S3 Model

We start with the Majorana neutrino mass matrix whose diagonalization at

the seesaw scale leads to the tri-bimaximal mixing matrix:

Mν =




a′ b′ b′

b′ a′ − c′ b′ + c′

b′ b′ + c′ a′ − c′




(5.1)

where the elements are chosen to be complex. Diagonalizing this matrix leads to

the tri-bimaxial mixing pattern and the neutrino masses: m1 = a′− b′; m2 = a′+2b′

and m3 = a′ − b′ − 2c′. Clearly if |a′| ' |b′| ¿ |c′|, we get a normal hierarchy for

masses. It was pointed out in the Chapter 4 that the above Majorana neutrino

mass matrix can be realized in a combined type I type II seesaw model with soft-

broken S3 family symmetry for leptons. The type II contribution comes from an S3
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invariant coupling fαβLαLβ∆,

f =




fa fb fb

fb fa fb

fb fb fa




(5.2)

After the triplet Higgs field ∆ gets VEV and decouples, its contribution to the light

neutrino mass can written as

MII =




a′ b′ b′

b′ a′ b′

b′ b′ a′




(5.3)

where a′ = v2 sin2 βλ
MT

fa and b′ = v2 sin2 βλ
MT

fb. We denote MT as the mass of the

triplet Higgs and λ as the coupling constant between the triplet and doublets in the

superpotential.

Coming to the type I contribution, the Dirac mass matrix for neutrinos comes

from an S3 invariant Yukawa coupling of the form:

LD = hν [N1H(Le − Lµ) + N2H(Lµ − Lτ ) + N3H(Lτ − Le)] + h.c. (5.4)

leading to

Yν =




h −h 0

0 h −h

−h 0 h




. (5.5)

In the limit of |MR1,R3| À |MR2|, where a single right-handed neutrino dominates

the type I contribution, the mixed type I+II seesaw formula

Mν = MII −MT
DM−1

R MD, (5.6)
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gives rise to the desired form for the neutrino Majorana mass matrix which leads to

the tri-bimaximal mixing [62].

We can now do the phase counting in the model. When two of the above

right-handed neutrinos decouple, there is only one Yukawa coupling. We can first

redefine the phase of N2 so that its mass is real and we then redefine all the lepton

doublets by a common phase which now makes the Dirac Yukawa coupling h real.

One cannot then do any more phase redefinitions and we are left with two phases

in the neutrino mass matrix which in this basis reside in the entries a′ and b′ in

Eq. (5.3). These two phases will appear as the Majorana phases in the low energy

mass matrix as we show below.

As far as the charged lepton masses are concerned, the symmetry needs to be

extended to S3× (Z2)
3 to have a simple diagonal mass matrix and all their masses

can be made real by separate independent phase redefinition of the right-handed

charged leptons. No new phases enter the PMNS matrix.

Turning to the case where two of the right-handed neutrinos contribute to Mν ,

there are three phases in the light neutrino mass matrix. This is because in this case

there are two apriori complex right-handed neutrino masses and only one of them

together with h can be made real by phase redefinition as in the first case. This

leaves the phases of a′ and b′ and that of the second right-handed neutrino giving a

total of three phases. This case represents a deviation from the tri-bimaximal mixing

with the deviation being proportional to |MR2|/|MR3|. We will show in sec. 4 that

the new phase in this case appears as the Dirac phase. Let us now proceed to discuss

leptogenesis in both these cases. As noted, we choose fa, fb, MR3 to be complex and
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h,MR2 to be real, and express them as fa = |fa|eiφa , fb = |fb|eiφb ,MR3 = M3e
−iφ3

and MR2 = M2.

5.3 Leptogenesis in the Type II Seesaw Model

In this section, we present the calculation of lepton asymmetry in our model

and show that for the parameter range of interest from neutrino mixing physics, one

can explain the baryon asymmetry of the universe whose present value is given by

the WMAP observations [63] to be

nB

nγ

= 6.1±0.2× 10−10. (5.7)

Let us start by reminding ourselves of some well known facts about leptoge-

nesis. In the type I seesaw scenario, lepton asymmetry is generated by the out-

of-equilibrium decay of the right-handed neutrinos which participate in the seesaw

mechanism to give neutrino masses and mixings. Most of the discussion of leptoge-

nesis uses type I seesaw and there have been many papers [73] which have studied

its connection to neutrino masses and mixings. In models with both type I [20]

and type II seesaw [21], the presence of the triplet Higgs may also contribute to the

lepton asymmetry in two ways: either the decay of one or more triplets [64] or the

decay of right-handed neutrino with triplets running in the loop [65] [66]. Our model

involves both type I and type II seesaw; however, it turns out that the first contri-

bution (i.e. the one from triplet decay) is highly suppressed and only the lightest

right-handed neutrino(sneutrino) decay is important, which we compute below.

The asymmetry from the decay of the right-handed neutrino Ni into a lep-
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ton(slepton) and a Higgs(Higgsino) is given by:

εi =
Γ[Ni → lH(l̃H̃)]− Γ[Ni → l̄H∗(˜̄lH̃∗)]

Γ[Ni → lH(l̃H̃)] + Γ[Ni → l̄H∗(˜̄lH̃∗)]
, (5.8)

and we also have the sneutrino Ñi decay asymmetry, which we denote as ε̃i. If one

ignores the supersymmetry breaking effects, one has εi = ε̃i.

In the basis where right-handed neutrinos mass matrix is diagonal, the decay

asymmetry of right-handed neutrino from type I contribution is given by [44]

εI
i = − 1

8π

1

[Y ′
νY

′†
ν ]ii

∑
j

Im[Y′
νY

′†
ν ]2ijF (

M2
j

M2
i

), (5.9)

where F (x) =
√

x( 2
x−1

+ ln[1+x
x

]) and for x À 1, F (x) ' 3√
x
.

The type II contribution has been calculated and is given in Ref. [65] [66] to

be

εII
i =

3

8π

Im[Y ′
νf

∗Y ′T
ν µ]ii

[Y ′
νY

′†
ν ]iiMi

ln(1 +
M2

i

M2
T

), (5.10)

where µ ≡ λMT and λ is the coupling between triplet and two doublets in the

superpotential. In general λ is complex, but its phase can be absorbed by rescaling

phases of every elements of matrix f with same amount. We will treat it real in our

discussion.

The total contribution to the lepton asymmetry then becomes

εi = εI
i + εII

i . (5.11)

In our model, the lightest right-handed neutrino is N2, and we will take i = 2.

The generated B − L asymmetry can be written as

YB−L ≡ nB−L

s
= −η(ε2Y

EQ
N2

+ ε̃2Y
EQ

Ñ2
) (5.12)
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where

Y EQ
N2

=
nEQ

N2

s
=

3

4

45ζ(3)

π4g∗s

Y EQ

Ñ2
=

nEQ

Ñ2

s
=

45ζ(3)

π4g∗s
, (5.13)

g∗s is the effective degree of freedom contributing to entropy s with value 228.75 in

MSSM, and η is the efficiency factor for leptogenesis. Ignoring the SUSY breaking

effect, we have ε2 = ε̃2 and YB−L can be simplified as

YB−L = −7

4

45ζ(3)

π4g∗s
ηε2. (5.14)

Lepton number asymmetry produced by decay of right-handed neutrino(sneutrino)

can be converted to baryon number asymmetry by sphaleron effect. The baryon

number is related to the B − L asymmetry YB−L via

YB = wYB−L, (5.15)

where w = 8NF +4NH

22NF +13NH
with NF as generations of fermions and NH as the number

of the Higgs doublet. In MSSM, NF = 3 and NH = 2, one has w = 8
23

. Putting all

this together, we get the baryon to photon ratio to be

nB

nγ

' 7.04YB = −1.04× 10−2ε2η. (5.16)

The efficiency factor η can be calculated by solving a set of coupled Boltzmann

equations(See for example Refs. [67] [69]). We assume that to a good approximation

the efficiency factor depends only on a mass parameter usually called the effective

mass and the initial abundance of the right-handed neutrino(sneutrino). We also
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use the result for η in type I seesaw scenario. In our model, the effective mass for

both the cases discussed below, is given by

m̃2 =
[YνY

†
ν ]22v

2 sin2 β

M2

=
2h2v2 sin2 β

M2

'
√

∆m2
A ' 0.05eV, (5.17)

which is larger than the equilibrium neutrino mass m∗ =
16π5/2√g∗

3
√

5

v2 sin2 β
Mpl

' 1.50 ×

10−3eV, so it is in the strong washout region. In this region, the dependence of

efficiency factor on the initial abundance of right-handed neutrino(senutrino) is small

[68] [69]. We take the approximation formula from Ref. [69] to estimate the efficiency

factor for our model

1

η
' 3.3× 10−3eV

m̃2

+ (
m̃2

0.55× 10−3eV
)1.16, (5.18)

and find η ' 5.3 × 10−3, which we will use in the calculation of baryon to photon

ratio for our model.

5.4 Exact Tri-bimaximal Limit

In this section, we establish the connection between ε` and the low energy

phase in the neutrino mixing. In the limit of |MR1,R3| → ∞, light neutrino mass

matrix has the form that leads to tri-bimaximal mixing pattern. In this limit, the

contributions to lepton asymmetry from the exchange of N1 and N3 in the loops

are negligible. As far as neutrino masses go, N2 contribution dominates ∆m2
A and

triplet Higgs has the full contribution to ∆m2
solar. The observed values require that

MT ∼ (101 − 102)M2. This triplet can go into loop of the decay of N2 and its

interference with tree level diagram of N2 decay can generate lepton asymmetry. In
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this case, Eq. (5.10) is simplified as

εII
2 =

3

8π

Im[Yνf
∗Y T

ν ]22µ

[YνY
†
ν ]22M2

ln(1 +
M2

2

M2
T

). (5.19)

From Yukawa coupling matrices, one easily gets

Im[Yνf
∗Y T

ν ]22 = 2h2(|fb| sin φb − |fa| sin φa) (5.20)

[YνY
†
ν ]22 = 2h2. (5.21)

We also have

|fa| = a
MT

v2 sin2 βλ
, |fb| = b

MT

v2 sin2 βλ
(5.22)

where a ≡ |a′| and b ≡ |b′|, and εII
2 can be written as

εII
2 =

3

8π

(b sin φb − a sin φa)M2

v2 sin2 β

M2
T

M2
2

ln(1 +
M2

2

M2
T

). (5.23)

Note that in the tri-bimaximal limit,

Mν =




aeiφa beiφb beiφb

beiφb aeiφa − c beiφb + c

beiφb beiφb + c aeiφa − c




, (5.24)

which can be diagnolized by UTB

UT
TBMνUTB =




aeiφa − beiφb 0 0

0 aeiφa + 2beiφb 0

0 0 −2c + aeiφa − beiφb




. (5.25)

Therefore one of the Majorana phases is given by

ϕ1 ' Arc sin[
a sin φa − b sin φb

m1

] (5.26)
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up to O(

√
∆m2

¯
∆m2

A
). And for MT ≥ (101− 102)M2, one has

M2
T

M2
2

ln(1 +
M2

2

M2
T
) ' 1. So the

lepton asymmetry can be written as

εII
2 ' − 3

8π

m1M2 sin ϕ1

v2 sin2 β
. (5.27)

Thus we see that the Majorana phase ϕ1 directly gives the lepton asymmetry, as

noted in the introduction. This is the first main result.

To estimate the value of the baryon to photon ratio, we note that in this case

εI
2 ' 0 and ε2 = εII

2 , using Eq. (5.16) and Eq. (5.27), giving

nB

nγ

' 6.1× 10−10(
m1

2.8× 10−3eV
)(

M2

1012GeV
)(

sin ϕ1

1
)(

η

5× 10−3
), (5.28)

where we take v = 170Gev and tan β = 10. To get the right range for baryon to

photon ratio, the lightest right-handed neutrino mass should be larger than about

1012GeV. Strict lower bound is on the product m1M2 ≥ 2.8 GeV2. The thermal

production of N2 requires a reheat temperature of the Universe after inflation be

Treh ≥ 1012 − 1013GeV. It is to be noted that in most supersymmetry models, the

reheat temperature is much below this scale- however, in more elaborate models, the

reheat temperature can be different and will presumably include the higher values

required in our mechanism [71]. An alternative mechanism is to use non-thermal

leptogenesis. The interesting point however is that the high and low energy phase

connections remain in both cases.

The right-handed neutrino mass M2 is an input in our model. If we take as

upper bound on M2 to be 1014GeV required to fit the atmospheric neutrino data, to

get right baryon to photon ratio, we have to have a lower bound of m1 ∼ 10−5eV.
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On the other hand, if we take M2 ∼ 1014GeV and m1 ∼ 10−3eV, we get the lower

bound of sin ϕ1 as ∼ 10−2.

Let us now address the question of whether the phase ϕ1 can be measured in

ββ0ν decay. The ββ0ν is proportional to |m1 cos θ12e
iϕ1 + m2 cos θ12e

iϕ2|. First of all

in our model m1 ¿ m2 which leads to a suppression of the ϕ1 effect and secondly

there is the unknown ϕ2. Therefore, without additional experimental input, it may

not be possible to determine ϕ1 from ββ0ν experiments.

5.5 Departure from Tri-bimaximal mMixing and New Contribution

to Leptogenesis

In this section, we consider the case when we relax the mass constraint on the

right-handed neutrinos and assume that |MR2| < |MR3| ¿ |MR1|. This will lead to

departures from the exact tri-bimaximal mixing pattern [70]. In this case, there are

three independent phases as noted above.

While the type II contribution to neutrino mass matrix in this case remains

the same as in the exact tri-bimaximal case, the type I contribution changes and is

given by

MI = −MT
DM−1

νRMD = −




σeiφ3 0 −σeiφ3

0 c −c

−σeiφ3 −c c + σeiφ3




, (5.29)

where c ≡ h2

M2
v2 sin2 β and σ ≡ h2

M3
v2 sin2 β.

Combining the contributions from type I and type II, the light neutrino mass
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matrix is found to be

Mν =




aeiφa − σeiφ3 beiφb beiφb + σeiφ3

beiφb aeiφa − c beiφb + c

beiφb + σeiφ3 beiφb + c aeiφa − c− σeiφ3




. (5.30)

To diagnolize Mν , we first consider U †
TBM †

νMνUTB. The off-diagonal elements of

U †
TBM †

νMνUTB are all zeros except 1− 3 and 3− 1 entries,

[U †
TBM †

νMνUTB]13 =
√

3σ(ce−iφ3 + σ − a cos(φ3 − φa) + b cos(φ3 − φb)). (5.31)

To further diagnolize U †
TBM †

νMνUTB, one needs another rotation in the 1− 3

plane. Because of the normal hierarchical mass spectrum of the light neutrinos, one

has c À a ' b, and also c À σ due to small upper bound of sin θ13 value. In these

approximation, the unitarity matrix in 1− 3 plane is

V =




1 0 ξ

0 1 0

−ξeiφ3 0 eiφ3




(5.32)

where ξ '
√

3σ
4c

. Now the mixing matrix is given by U = UTBV ,

U =




√
2
3

1√
3

√
2
3
ξ

− 1√
6
− eiφ3ξ√

2
1√
3

eiφ3√
2
− ξ√

6

− 1√
6

+ eiφ3√
2

1√
3
− eiφ3√

2
− ξ√

6




. (5.33)

From this mixing matrix, we can read tan θ12 = |U12|
|U11| = 1√

2
, sin θ13 =

√
2
3
ξ

and tan θ23 = |U23|
|U33| ' 1 − 2ξ√

3
cos φ3. Note the correlation between θ13 and the
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departure of θ23 from its maximal value. For the Dirac phase, we use the Jarskog

invariant [79] to extract it from above mixing matrix JCP = Im[U11U22U
∗
12U

∗
21] =

1
8
sin 2θ13 sin 2θ23 cos θ13 sin δ. From Eq. (5.33), one can easily get

Im[U11U22U
∗
12U

∗
21] =

ξ

3
√

3
sin φ3 (5.34)

1

8
sin 2θ13 sin 2θ23 cos θ13 sin δ =

ξ

3
√

3
sin δ. (5.35)

Therefore we have δ ' φ3. Remarkably, although this model has three independent

CP phase at the seesaw scale, the low energy scale Dirac phase is equal to one of

the phases at the high energy scale up to O(

√
∆m2

¯
∆m2

A
). This is independent of the

way to assign these three phases.

Coming to the calculation of lepton asymmetry in this case, with |MR2| <

|MR3| ¿ |MR1| limit, besides the contribution from type II to the lepton asymmetry,

we should also consider the contribution from type I. From Eq. (5.9), we have

εI
2 = − 1

8π

1

[Y ′
νY

′†
ν ]22

Im[Y ′
νY

′†
ν ]223F (

M2
3

M2
2

), (5.36)

and Y ′
ν = U †

RYν , where UR is to diagnolize the right-handed neutrino mass matrix.

In the two light right-handed neutrinos limit, the phase of the mass of the

heaviest right-handed neutrino is irrelevant to the lepton asymmetry and one can

take UR = diag(1, 1, eiφ3/2).

Therefore we have [Y ′
νY

′†
ν ]23 = −h2eiφ3/2, [Y ′

νY
′†
ν ]22 = 2h2 and F (

M2
3

M2
2
) ' 3M2

M3
,

and plugging them into Eq. (5.36), we get

εI
2 = − 3

8π

h2

2
sin φ3

M2

M3

(5.37)

Notice that δ ' φ3, sin θ13 =
√

2
3
ξ =

√
2

4
M2

M3
, ∆m2

A ' 4c2 and c = h2

M2
v2 sin2 β, one
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can rewrite εI
2 as function of the low energy scale observables,

εI
2 ' − 3

8π

√
∆m2

AM2√
2v2 sin2 β

sin δ sin θ13. (5.38)

Combining the contribution from εII
2 given in Eq. (5.27), we have

ε2 = εII
2 + εI

2 ' − 3

8π

M2

v2 sin2 β
[

√
∆m2

A

2
sin δ sin θ13 + m1 sin ϕ1] (5.39)

We again see that the phases in the leptogenesis formula are the same phases in

the neutrino mixing matrix- one Dirac and one Majorana. This is the second main

result. In this case also one can get the right value for the baryon to photon ratio

by choosing the M2 masses.

In conclusion, we have shown that in a model for tri-bimaximal neutrino mix-

ing derived from an S3 permutation symmetry among lepton generations, the ob-

servable neutrino phases at low energies are directly responsible for the origin of

matter (up to small corrections of order
√

∆m2
solar

∆m2
atm

). Therefore, a measurement of

the low energy neutrino phase in this model will provide a direct understanding

of the high temperature early universe phenomenon of the origin of matter. This

model is especially interesting in view of the fact that tri-bimaximal mixing pattern

very closely resembles current experimental observations. Measurement of θ13 and

θ23 can provide test of the tri-bimaximal mixing. If this pattern gets confirmed,

experimental search for leptonic phases will become a matter of deep interest since

it may hold the key to a fundamental mystery of cosmology.
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Chapter 6

An SO(10) GUT Model with S4 Family Symmetry

6.1 Overview

The permutation symmetry have been used to understand lepton flavor mix-

ing. In the Chapter 3, we studied the S2 (µ − τ) permutation symmetry within

SU(5) grand unification theory frame. In the Chapter 4, we studied the S3 family

symmetry in the lepton sector and built a tri-bimaximal model with both type I and

type II contributions. In this chapter, we focus on the group S4× SO(10). S4 has

certain good features to be a family symmetry. First, it has three dimensional irre-

ducible representation to accommodate the three generations of fermions naturally.

Note that this is different from S3 because the largest irreducible representation of

S3 has dimension two and therefore we have to treat one family of fermions different

from other two. Second, it can be embedded into continuous group SU(3) or SO(3)

[72]. As we will show below, S4 symmetry also gives degenerate spectrum of the

right-handed neutrinos naturally, which has some interesting consequences for the

neutrino phenomenology. For example, in this case, one can use the resonant en-

hancement of leptogenesis for (quasi-)degenerate right-handed neutrinos to generate

enough baryon asymmetry. With the degenerate heavy right-handed neutrinos, the

low energy neutrino flavor structure is determined by Dirac mass matrix at the see-

saw scale completely, which makes it easier to reconstruct high energy physics from
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low energy observables. Some work has been done in this direction. In Ref. [74],

Lee and Mohapatra constructed a S4×SO(10) model, which naturally gives quasi-

degenerate spectrum of neutrinos masses with small solar angle, which already has

been ruled out by large mixing angle MSW solution to the solar neutrino deficit. In

principle radiative corrections may amplify the solar angle and keep the other two

angles unchanged, but generally this needs extreme fine-tuning of parameters at the

seesaw scale to realize it. On the other hand, in a recent paper [72] by Hagedorn,

Linder, and Mohapatra, a low energy scale non-supersymmetric model is presented

based on S4 flavor symmetry, which can accommodate current neutrino data. Our

goal is to see if we can embed the model of Ref. [72] into a SUSY GUT framework

without running into the small solar angle problem of Ref. [74]. Here, we address

this question and find that we can build a realistic model based on S4 × SO(10)

with the proper choice of the parameter space.

In this model, all the quarks and leptons of one generation are unified into

a 16 spinor representation of SO(10) and the Yukawa coupling structures of three

generations are determined by S4. We use 10 and 126 representations of SO(10)

for Yukawa couplings to account for all the fermions masses and mixing angles [75]

[76]. Even though in the most general CP-violating case this model has 18 complex

parameters, it is not obvious whether it can accommodate all observed masses and

mixing angles because of constraints from S4 flavor symmetry and the correlations

between quarks and leptons indicated by SO(10) unification. For instance, with

the particle assignment of S4 in this model, the heavy right-handed neutrino mass

matrix is proportional to an identity matrix, and the Dirac mass matrix of neutrino
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determines the mixing among light neutrinos completely. The general mechanism

to generate the lepton sector mixing independently from the quark sector by right-

handed neutrinos does not work in this model. On the other hand, one may argue

that since the total number of parameters is much larger than that of observables,

this model may lose predicability even if it can fit all the observables. We find this

not to be the case. It turns out that half of complex phases can be rotated away

by choices of basis and redefinitions of the right-handed fields of charged leptons

and down-type quarks. For the most general CP-violating case, this model gives

wide range of sin θ13 from zero to current bound with the most probable values

0.02− 0.09. The most probable values of leptonic CP phase are 2− 4 radians. With

certain assumptions where the leptonic phases have same CP-violating source as the

CKM phase, one gets narrower predicted range 0.03− 0.09 for sin θ13 with the most

probable values 0.04− 0.08.

Some issues about Higgs sector still need to be addressed. As we have six

10s and three 126s, without analyzing the S4× SO(10) invariant Higgs potential,

whether or not we can get the desired vacuum configuration still remains an open

question. We do not concern with doublet-doublet splitting and doublet-triplet

splitting problems in this paper. With such rich Higgs fields, we assume they can

be realized in some way. And another fact we should be careful is that generally

the discrete flavor symmetry can enhance the accidental global symmetry of Higgs

potential and lead to unwanted massless Nambu-Goldstone bosons. There are ways

found in the literature to avoid it. One can introduce gauge singlet Higgs fields whose

couplings are invariant under discrete symmetry but break the global symmetry [77],
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Fields Representation

Ψa,a=1,2,3 {3′} × {16}

Φ {1} × {210}

∆0 {1} × {126}

H0 {1} × {10}

H1,2 {2} × {10}

H3,4,5 {3} × {10}

Table 6.1: Transformation property of fermions and Higgs multiplets under S4 ×

SO(10)

or introduce soft terms which break discrete symmetry and global symmetry [78].

This chapter is organized as follows: in Section 2, we present an SO(10) model

with S4 family symmetry and present the mass matrices of quarks and leptons; in

Section 3, we present a detailed numerical analysis including CP-violating in quark

and lepton sector.

6.2 SUSY SO(10) Model with S4 Family Symmetry

The group S4 is the permutation group of the four distinct objects, which

has 24 distinct elements. It has five conjugate classes and contains five irreducible

representations 1,1′,2,3 and 3′. Our assignment of fermions and Higgs multiplets

to S4× SO(10) are shown in Table 6.1.
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In this model, we assign three generations of 16 to 3′ irreducible representation

of S4, because 3′ can be identified with the fundamental representation of continuous

group SO(3) or SU(3) [72]1. In Higgs sector, because of 3′ × 3′ = 1 + 2 + 3 + 3′, to

make Yukawa coupling S4 invariant, Higgs fields can not belong to 1′. 1 is necessary

for phenomenological reason, otherwise all of the mass matrices would be traceless.

To get symmetric mass matrices which is required by group structure of 16 · 16 · 10

or 16 · 16 · 126, Higgs should not belong to 3′. We include both 2 and 3 to get

realistic mass and mixing of quark and lepton. One might think six 10 Higgs fields

transforming as 1 + 2 + 3 under S4 are enough. But there are two reasons why we

also need 126, one is to give right-handed neutrinos heavy masses and the other is

to fix the bad mass relation between quark sector and lepton sector indicated by

16 · 16 · 10. In this sense, our choice of Higgs fields is minimal.

The breaking of SO(10) to Standard Model(SM) can be realized in many ways.

In this model, we choose 210 Higgs field, which is 1 under S4 transformation, to

break SO(10) to SU(2)L × SU(2)R × SU(4)C (G224) while keep the S4 symmetry.

We choose (1,3,10) components of only ∆0 (the numbers denote representation

under the G224) to get VEV vR that breaks G224 down to the SM and gives heavy

masses to right-handed neutrinos. With this breaking pattern, S4 symmetry is kept

down to the electroweak scale.

To see what this model implies for fermion masses, let us first explain how

the MSSM doublets emerge. Besides the SU(2)L Higgs doublets from submultim-

1If one gives up the possible embedding of S4 group to continuous group, one can choose 3 and

the mass matrices for fermions do not change.
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plets (2,2,1) and (2,2,15) contained in 10 and 126 respectively, we also have

Higgs doublets contained in (2,2,10)⊕ (2,2,10) from 210. Furthermore, to obtain

anomaly-free theory, we need to introduce three 126, which we denote by ∆, that

also contain Higgs doublets. Altogether, we have fourteen pairs of Higgs doublets:

φu = (Hiu, ∆ju, ∆ju, Φu1, Φu2), φd = (Hid, ∆jd, ∆jd, Φd1, Φd2), where i = 0, ..., 5 and

j = 0, ...2. As noted, six pairs from Hs, three pairs from ∆s, three pairs from ∆s

and two pairs from Φ. We can write Higgs doublet mass matrix as φuMHφT
d . MH

can be diagonalized by XMHY T , which X and Y are unitarity matrices acting on

φu and φd respectively. At the GUT scale, by some doublet-triplet and doublet-

doublet splitting mechanisms, we assume only one pair of linear combinations of

X∗
αβφuβ and Y ∗

αβφdβ, say X∗
1βφuβ and Y ∗

1βφdβ, has masses of order of the weak scale

and all others are kept super heavy near GUT scale, which generally can be realized

by one fine-tuning of the parameters in the Higgs mass matrix. The MSSM Higgs

doublets are given by this lightest pair: HMSSM
u = X∗

1βφuβ and HMSSM
d = Y ∗

1βφdβ.

Since we focus on the structures of Yukawa couplings, we do not discuss the details

of the splitting mechanisms that lead to the above results.

With Higgs fields and fermions listed in Table 6.1, we can write down S4 ×

SO(10) invariant Yukawa coupling as 2

2For the products and Clebsch-Gordan coefficients of S4 group, one can see Appendix B of this

thesis.
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WYukawa = (Ψ1Ψ1 + Ψ2Ψ2 + Ψ3Ψ3)(h0H0 + f0∆̄0)

+
1√
2
(Ψ2Ψ2 −Ψ3Ψ3)(h1H1 + f2∆̄1)

+
1√
6
(−2Ψ1Ψ1 + Ψ2Ψ2 + Ψ3Ψ3)(h1H2 + f2∆̄2)

+h3[(Ψ2Ψ3 + Ψ3Ψ2)H3 + (Ψ1Ψ3 + Ψ3Ψ1)H4 + (Ψ1Ψ2 + Ψ2Ψ1)H5].

(6.1)

After electroweak symmetry breaking, (2,2,1) of Hi(i = 0, ..., 5) component

acquires VEVs (denoted by 〈Hi〉u and 〈Hi〉d). And (2,2,15) sub-multiplet of ∆j(j =

0, ..., 2) also get induced VEVs. Their VEVs are denoted by 〈∆j〉u and 〈∆j〉d(j =

0, 1, 2).

The mass matrices for the quarks and the leptons have following sum rules:

Mu = M (10)
u + M (126)

u , (6.2)

Md = M
(10)
d + M

(126)
d , (6.3)

MD
ν = M (10)

u − 3M (126)
u , (6.4)

Ml = M
(10)
d − 3M

(126)
d , (6.5)

Mν = −MD
ν

T
MD

ν /f0vR, (6.6)
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where

M (10)
u =




a0 − 2a2 a5 a4

a5 a0 + a1 + a2 a3

a4 a3 a0 − a1 + a2




, (6.7)

M
(10)
d =




b0 − 2b2 b5 b4

b5 b0 + b1 + b2 b3

b4 b3 b0 − b1 + b2




, (6.8)

M (126)
u =




d0 − 2d2 0 0

0 d0 + d1 + d2 0

0 0 d0 − d1 + d2




, (6.9)

M
(126)
d =




e0 − 2e2 0 0

0 e0 + e1 + e2 0

0 0 e0 − e1 + e2




, (6.10)

and where ai and bi are products of the type h〈Hi〉u and h〈Hi〉d respectively. Simi-

larly, we use dj and ej to denote products of the type f〈∆j〉u and f〈∆j〉d respectively.

The MSSM VEVs are given by vu = X∗
1β〈φuβ〉 and vd = Y ∗

1β〈φdβ〉, where we use vu

and vd to denote VEVs of HMSSM
u and HMSSM

d respectively. The Yukawa couplings

and VEVs of Higgs fields in general are complex, and there are 18 complex param-

eters. We choose a basis in which the down-quark mass matrix is diagonalized and

set b3 = 0, b4 = 0, and b5 = 0. Note this is our main difference with Ref. [74], where

they choose a basis in which up-quark mass matrix is diagonal and set off-diagonal

entries of Mu to zeros, which leads to small solar mixing angle. In the basis we
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choose, the charged lepton mass matrix is also diagnolized. Therefore, the phases of

b0, b1, b2, e0, e1, and e2 can be rotated away by redefining 3 right-handed down-type

quarks fields and three right-handed charged leptons. We treat b0, b1, b2, e0, e1, and

e2 as real parameters in later analysis, and they can be determined by the masses

of down-quark and charged lepton completely.

Because the mass matrix of down-quark sector is diagnolized and Mu is sym-

metric, one can have

Mu = V T
CKMM̂uVCKM , (6.11)

where M̂u ≡ diag(mu,mc,mb). By fitting mass matrix of up-quark in Eq. (6.11),

parameters a3, a4, a5 can be determined. In addition, we get three conditions among

the parameters a0, a1, a2, d0, d1, and d2. Therefore, there are three complex param-

eters left to be determined by masses and mixings of neutrino sector. Without loss

of generality, we choose d0, d1, and d2 to be determined by fitting of neutrino sector.

And Dirac neutrino mass matrix can be written conveniently as

MD
ν = V T

CKMM̂uVCKM − 4mt




x 0 0

0 y 0

0 0 z




(6.12)

with

x ≡ 1

mt

(d0 − 2d2), y ≡ 1

mt

(d0 + d1 + d2), z ≡ 1

mt

(d0 − d1 + d2). (6.13)

Because we know nothing about leptonic phases, in principle, there is no constraint

on the phases of d0, d1, and d2.

88



To see how this model can give a large atmospherical mixing angle, we give

an approximate analysis first. Using first order Wolfenstein parameterization [7] for

the quark mixing, V T
CKMM̂uVCKM can be written as

mt




λ6 + A2λ6(1− iη − ρ) · ··

−λ5 − A2λ5(1− iη − ρ) λ4 + A2λ4 · · ·

Aλ3(1− iη − ρ) −Aλ2 1




(6.14)

where we use mc/mt ' λ4 and mu/mt ' λ8. Therefore, to get near maximal mixing

of θ23, y and z should satisfy

λ4(1 + A)− 4y ' 1− 4z. (6.15)

6.3 Detailed Numerical Analysis

To see if the model is phenomenologically acceptable, we first fit the masses

of the charged leptons and down-type quarks using the mass values of leptons and

quarks at the GUT scale with tan β = 10 given in the Table 3.1 [52].

We use standard parametrization form for the VCKM and take the following

values at the scale Mz [6]: sin θq12 = 0.2272, sin θq13 = 0.00382, sin θq23 = 0.04178

and the CP phase δq = π
3
, where we use subscript q to distinguish them from the

lepton section mixing angles. And we use RGE running factor η = 0.8853.
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6.3.1 Quark and Charged Lepton Sector

Using the central values of charged lepton and down-quark masses at GUT

scale, b0, b1, b2, e0, e1 and e2 are solved from Eq. (6.5) and Eq. (6.3) (in Mev)

b0 = 387.756, b1 = −539.649, b2 = 193.27,

e0 = −22.7734, e1 = 22.8717, e2 = −11.5298.

For up-quark sector, by solving Eq. (6.11) and Eq. (6.2), we get values of a3, a4, a5

and three conditions for a0, a1, a2, d0, d1, d2 (in Mev):

a3 = −2990.72− i54.757, a4 = 554.859− i234.705, a5 = −66.748 + i8.155,

a0 − 2a2 + d0 − 2d2 = 14.628− i3.162,

a0 + a1 + a2 + d0 + d1 + d2 = 308.363 + i3.977,

a0 − a1 + a2 + d0 − d1 + d2 = 82288.5− i7.169× 10−6. (6.16)

We can see that accommodation of hierarchical structure of fermions masses is

realized by adjusting the parameters, S4 flavor symmetry itself does not provide

hints on it.

6.3.2 Neutrino Sector

In this model, the light neutrino mass matrix is given by type I seesaw [20].

The mass matrix of right-handed neutrinos is proportional to an identity matrix

due to the S4 quantum number assignment, therefore the Dirac mass matrix MD

determines the lepton sector mixing because the charged lepton mass matrix is
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diagnolized.

Mν = − 1

f0vR

MD
ν

T
MD

ν . (6.17)

This model gives hierarchical neutrino mass spectrum naturally. One can choose

f0 ∼ 1 and vR ∼ 1014GeV, so the mass of the heaviest light neutrino is around

10−2 − 10−1eV.

The fit of neutrino sector are found by scanning whole parameter space spanned

by x, y and z under the constrain of the current experiment requirements.

We choose the standard parametrization for the lepton sector mixing, and take

3σ experiment values given in Eq. (1.39) [14].

As mentioned earlier x, y, and z generally are complex numbers. For the

most general CP-violating case, we treat the phases of x, y, and z as random input

numbers with range 0−2π. The results are shown in fig. 6.1. In this case, sin θ13 has

wide range from zero to the current bound with the most probable values 0.02−0.09

as shown in fig. 6.1 (a). fig. 6.1 (b) shows the correlation between sin θ23 and sin θ13.

fig. 6.1 (c) is the value distribution of Dirac CP-violating phase in the lepton sector.

The allowed range of δ is quite large from 0 to 2π radians with the most probable

values 2 − 4 radians. Two Majorana phases ϕ1 and ϕ2 have wide range from 0 to

2π as shown in fig. 6.1 (d), which is expected.

Now we consider an interesting special case where x, y, and z are all real. Note

the complexity of f0vR only contributes an overall phase to the light neutrino mass

matrix, which can be rotated away. Therefore, in this case leptonic CP-violating

phases have same source as CKM phase.
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Figure 6.1: Numerical analysis for the most general case where x, y, and z are com-

plex consistent with current experimental bound Eq. (1.39). (a) Value distribution

of sin θ13. (b) Correlation between sin θ23 and sin θ13. (c) Value distribution of

leptonic Dirac CP-violating phase. (d) Scatter plot of two Majorana CP-violating

phases ϕ1 and ϕ2.
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Figure 6.2: Numerical analysis for case where x, y, z are real consistent with current

experimental bound Eq. (1.39). (a) Value distribution of sin θ13. (b) Correlation

between sin θ23 and sin θ13. (c) Value distribution of leptonic Dirac CP-violating

phase. (d) Scatter plot of two Majorana CP-violating phases ϕ1 and ϕ2.
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The allowed range 0.03− 0.09 for sin θ13 is narrower compared to the general

case, and the most probable range is 0.04 − 0.08 as shown in fig. 6.2 (a). Unlike

fig. 6.1 (b), fig. 6.2 (b) exhibits an interesting correlation between sin θ23 and sin θ13.

If we take the central value of θ23 = π
4
, we can get two much narrower ranges for

sin θ13. One is 0.055 − 0.06, and the other is 0.070 − 0.075. The values of δ are

2.8− 3 radians, and 6.0− 6.1 with small possibility as shown in fig. 6.2 (c). fig. 6.2

(d) shows the allowed values of two Majorana phases. Note this parameter region is

just left-up corner of fig. 6.1 (d) for the most general case. The most probable value

ranges for ϕ1 and ϕ2 are 0.02− 0.15 radians and 6.19− 6.25 radians respectively.

For illustration, we give a typical example of fit for this case. We take

x = 0.0139726, y = 0.025914, z = 0.273173 (6.18)

and solve d0, d1, d2, a0, a1, a2 from Eq. (6.13) and Eq. (6.16)(in Mev)

d0 = 8602.18, d1 = −10191.2, d2 = 3725.19, a0 = 18935 + i0.271681,

a1 = −30798.9 + i1.9887, a2 = 10036.1 + i1.71701. (6.19)

With these parameters values as input, one then obtains for the neutrino

parameters

sin θ12 ' 0.53, sin θ23 ' 0.73

sin θ13 ' 0.054, ∆m2
solar/∆m2

atm ' 0.031.

(6.20)

And light neutrino masses are m1 = 0.00774eV, m2 = 0.0118eV, m3 = 0.051eV,

which are normalized by ∆m2
31 = 2.6 × 10−3eV. The Dirac phase appearing in

MNS matrix is δ = 2.84 radians. And two Majorona phases are (in radians): ϕ1 =

0.093, ϕ2 = 6.21. The Jarlskog invariant [79] has the value Jcp = 1.80× 10−3. One
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can evaluate the effective neutrino mass for the neutrinoless double beta decays

process to be

|
∑

U2
eimνi| ' 0.009 eV.

In summary, we build a supersymmetric SO(10) model with S4 flavor sym-

metry. The three dimensional irreducible representation of S4 group unify three

generations of fermions horizontally. 10 and 126 Higgs fields have been used to

give the Yukawa couplings and generate all the masses and mixings of quarks and

leptons. This model accommodates all obervables including CKM CP-Violation

phase. We studied the prediction of this model in the neutrino sector. For the most

general CP-violating case, this model gives the most probable values 0.02− 0.09 for

sin θ13. In a special case where leptonic phases have same CP-violating source as

CKM phase, one gets narrower range 0.03− 0.09 for sin θ13 with the most probable

values 0.04− 0.08.
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Chapter 7

Natural Realization of Seesaw in Mini-Warped Minimal SO(10)

Model

7.1 Overview

In general, seesaw mechanism itself does not explain the lepton mixing pat-

tern. As we have shown in the previous chapters, the lepton flavor mixing can

be understood very well by adding flavor symmetry to the seesaw framework. And

such flavor symmetry can be extended to include the quark mixing even in the grand

unification models. But there is one class of SO(10) grand unification models, the

apparently different quark and lepton mixing patterns can be naturally accommo-

dated without any flavor symmetry. And the near maximal atmospheric mixing

angle and small rector mixing angle receive physical explanation.

In this chapter, we address an important aspect of embedding the seesaw

mechanism in such grand unification model i.e. a minimal SUSY SO(10) model.

We will discuss the class of models which we call minimal SO(10) models because of

the Higgs content of 10, 126⊕126 and 210 and matter content in three 16 spinors

[85]. In [80] and several subsequent papers [81], the neutrino mass discussion in

this model was carried out using only the type I seesaw formula. But as is now well

known, there are two contributions to the seesaw formula [21] in left-right symmetric
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as well as SO(10) models i.e.

Mν = fvL −MT
D(fv)−1MD. (7.1)

When the second term dominates, it is called type I seesaw whereas when the first

one dominates, it is called type II seesaw. The advantage of the type II seesaw

formula in understanding large atmospheric neutrino mixings in a two generations

minimal SO(10) model was first observed in Ref. [82]. It was subsequently shown

[83] that the same scenario can help to explain the large solar as well as small reactor

mixing angle θ13 bringing these models to the mainstream of neutrino phenomenol-

ogy. Other detailed questions in the model such as CP violation [87], proton decay

[88] as well as symmetry breaking [89] have since been discussed. Because of predic-

tivity in the neutrino sector while keeping the rest of fermion mass phenomenology

in agreement with observations as well as general economy of the Higgs sector, these

minimal models have become very attractive. One must therefore examine to what

extent the model parameters needed for the neutrino predictions can be naturally

obtained. It is this aspect of the models that we address in this chapter.

Since in the minimal SO(10) model, GUT symmetry relates the Dirac masses

of the neutrinos to the up quark masses, one can ask for a more quantitative un-

derstanding of the seesaw formula. For example, the atmospheric neutrino mass

difference square ∆m2
atm ∼ 0.0025 eV2 requires that at least one of the right handed

neutrinos has a mass around 1014 GeV, if one uses the type I seesaw formula for

neutrino masses. This is much less than the GUT scale which determines the B-

L breaking and therefore implies a fine tuning of some Yukawa couplings. In the
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context of minimal SO(10) models, it in fact turns out that fitting charged fermion

masses also requires a Yukawa coupling suppressed to that level [83]. Therefore they

go together and clearly, it will be important to understand this mini-fine tuning from

a more fundamental point of view.

In this chapter we concern ourselves with minimal SUSY SO(10) models that

use type II seesaw where a different fine tuning becomes essential. The the magni-

tude of the type II seesaw contribution to neutrino masses is given by f
v2

wk

MT
where MT

is the B-L=2, SU(2)L triplet mass and for f ∼ 1, one needs MT ∼ 1014 GeV whereas

for f ∼ 0.01 as may be required by charged fermion fitting, we need MT ∼ 1012 GeV

1. Since MT is related to MGUT , the discrepancy between them must be explained.

An additional challenge for this class of models is that for type II term to dominate,

one must not only have the first term dominate in Eq. (7.1) but the second term

must also be simultaneously smaller. In the language of SU(5) submultiplets in the

126 field, MT must be the mass of the 15 sub-multiplet.

The problem in understanding type II dominance was discussed in Ref. [90]

where it was shown that the requirements given above for type II dominance cannot

be satisfied in the minimal four dimensional SUSY SO(10) model with 10⊕126⊕210

Higgs fields. The reason is that at high scale there are only four parameters in the

superpotential and constraints of supersymmetry imply that the triplet mass must

be at the GUT scale, making then type II term subdominant. This calls into question

1Note that in non-SUSY SO(10) models, there is an additional enhancement factor in the

type II seesaw of the form MGUT /MT making the fine tuning problem less severe. However such

enhancement is absent in supersymmetric theories [86].
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the viability of the minimal models. The solution to this suggested in [90] was that

the model be extended to include a 54-dim. Higgs field, in which case one can fine

tune parameters to get a lower triplet mass while at the same time suppressing the

type I term. Since 54 Higgs does not couple to matter fields, it does not affect the

discussion of fermion masses and mixings.

In this chapter, we propose a different way to solve these fine tuning problems

without adding extra Higgs fields but rather by embedding the minimal model into

a warped 5-dimensional space time with warping between the Planck scale and the

GUT scale and with all fields of the model in the bulk. We call this “mini-warping”

since the warp factor required here is ω ≡ MGUT /MP ∼ 10−2 rather than the usual

mW /MP as in canonical Randall-Sundrum (RS) models. Two things happen in such

models if the gauge group and other fields are in the bulk: (i) all mass parameters

in the IR brane are suppressed by ω and (ii) depending on bulk mass and the gauge

charge, there may be additional suppression factors [91]. A combination of these

two factors provides a new way to resolve some of the fine tuning problems in these

models.

An initial application of this idea to understand type I seesaw in minimal

SO(10) has recently been discussed by Fukuyama, Kikuchi and Okada [92] where it

was shown how the smallness of the right-handed neutrino mass can be understood

as a consequence of mini-warping. In the present chapter, we show that mini-

warping can also help to explain type II dominance of the seesaw formula. Unlike

the case of type I seesaw dominance, type II case involves a lot of subtle issues

such as the magnitude of the GUT scale, structure of the MSSM doublets in terms
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of the GUT Higgs multiplets etc. and is highly nontrivial due to interconnections

between various terms in the superpotential. We have however succeeded in finding

an example where this happens. This is the subject of this chapter. The significance

of our result is that it restores the type II dominated minimal SUSY SO(10) into a

viable model.

The chapter is organized as follows: in Section II we discuss the basic ingredi-

ents of the approach; in Section III, we discuss the minimal SO(10) and show how

type II seesaw arises naturally without extra Higgs fields.

7.2 Basic Ingredients of a Mini-warped Model

Our basic approach consists of embedding the minimal SO(10) model in the

warped five dimensional brane world scenario [93] with warping between the Planck

scale to the GUT scale. The fifth dimension is compactified on the orbifold S1/Z2

with two branes, ultraviolet (UV) and infrared (IR), located on the two orbifold

fixed points. As in the RS model, we use the warped metric [93],

ds2 = e−2krc|y|ηµνdxµdxν − r2
cdy2 , (7.2)

with −π ≤ y ≤ π and ηµν = (+,−,−,−). In the above expression, k is the AdS

curvature, and rc and y are the radius and the angle of S1, respectively. As is

well known, five dimensional N = 1 SUSY corresponds to N = 2 SUSY in four

dimensions. We can therefore write the 5-D superfields in terms of N = 2 4-D

multiplets. The process of compactification leads to N = 1 SUSY on the brane as

well as in 4-D.
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The Lagrangian for a generic U(1) gauge theory with matter and Higgs fields

in the bulk can be written in terms of 4-D N = 1 superfields as [94]:

L =

∫
dy

{∫
d4θ rc e−2krc|y|

(
H†

i e
−QiV Hi + Hc

i e
QiV Hc†

i

)

+

∫
d2θe−3krc|y|Hc

i

[
∂y − (1 + Ci) krcε(y)−Qi

χ√
2

]
Hi + h.c.

}
, (7.3)

where Ci is a dimensionless (bulk mass) parameter, ε(y) = y/|y| is the step function,

Hi, Hc
i is the hypermultiplet with the charge Qi under the gauge group, and

V = −θσµθ̄Aµ − iθ̄2θλ1 + iθ2θ̄λ̄1 +
1

2
θ2θ̄2D ,

χ =
1√
2
(Σ + iA5) +

√
2θλ2 + θ2F , (7.4)

are the vector multiplet and the adjoint chiral multiplets, which form an N = 2

SUSY gauge multiplet. Z2 parity for Hi and V is assigned as even, while odd for

Hc
i and χ. This technique is easily generalized to the case of SO(10) model. The

point to emphasize is that in RS models, the mass scale of the IR brane is warped

down by the warp factor [93], ω = e−krcπ, in effective four dimensional theory. If

we take the cutoff of the original five dimensional theory and the AdS curvature as

M5 ' k ' MP , the four dimensional (reduced) Planck mass, the cutoff scale in the

IR brane is ΛIR = ωMP . In our case, we choose the warp factor to be such that

MGUT = ΛIR = ωMP . In the IR brane, the theory becomes non-perturbative above

this scale so that the question of large threshold corrections becomes moot.

Let us now assume that the gauge symmetry is broken down and the adjoint

chiral multiplet χ develops a VEV. Since its Z2 parity is odd, the VEV has to take
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the form,

〈Σ〉 = 2αkrcε(y). (7.5)

In this case, the zero mode wave function of Hi satisfies the following equation

of motion:

[∂y − (1 + Ci + Qiα) krcε(y)] Hi = 0 (7.6)

which yields

Hi =
1√
Ni

e(1+Ci+Qiα)krc|y| hi(x
µ) , (7.7)

where hi(x
µ) is the chiral multiplet in four dimensions. Here, Ni is a normalization

constant which ensures that the kinetic term is canonically normalized. We have

1

Ni

=
2(Ci + Qiα)k

e2(Ci+Qiα)krcπ − 1
. (7.8)

There are now two typical cases to consider:

(i) if e(Ci+Qiα)krcπ À 1, the wave functions at y = 0 and y = π are, respectively,

given by

Hi(y = 0) '
√

2(Ci + Qiα)k ωCi+Qiα h(xµ).

H(y = π) '
√

2(Ci + Qiα)k ω−1 h(xµ). (7.9)

(ii) whereas for e(Ci+Qiα)krcπ ¿ 1, the wave functions are

H(y = 0) '
√
−2(Ci + Qiα)k h(xµ),

Hi(y = π) '
√
−2(Ci + Qiα)k ω−(Ci+Qiα)ω−1 h(xµ) (7.10)
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In case (i), the wave function is localized around the IR brane while around the UV

brane in case (ii). These non-trivial wave function profiles lead to important effects,

namely suppression of couplings and masses, in effective four dimensional theory.

To see this, let us consider Yukawa couplings on the IR and UV branes for

three bulk hypermultiplets:

LY =

∫
d2θω3 Y1

M
3/2
5

Hi(y = π)Hj(y = π)Hk(y = π)

+

∫
d2θ

Y2

M
3/2
5

Hi(y = 0)Hj(y = 0)Hk(y = 0) + h.c., (7.11)

where Qi + Qj + Qk = 0 has been assumed for the U(1) gauge invariance, and

Y1 and Y2 are independent Yukawa coupling constants on the IR and UV branes,

respectively. When all the bulk fields are localized around the IR brane (Ci,j,k +

Qi,j,kα > 0), we obtain the Yukawa coupling constant in effective four dimensional

theory as

Y4D ∼ Y1 + Y2ω
Ci+QiαωCj+QjαωCk+Qkα ∼ Y1. (7.12)

There is no suppression for the Yukawa coupling constant on the IR brane while the

Yukawa coupling constant on the UV brane is very much suppressed by the small

wave function overlapping. A more non-trivial example is to assume Hi is localized

around the UV brane (Ci + Qiα < 0) and the others are localized around the IR

brane (Cj,k + Qj,kα > 0). This case leads to the effective Yukawa coupling constant

as

Y4D ∼ Y1ω
−(Ci+Qiα) + Y2ω

Cj+QjαωCk+Qkα. (7.13)

Both of the coupling constants are suppressed according to the wave function over-
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lapping between each field. Other cases are completely analogous and the effective

Yukawa coupling constants are suppressed or not suppressed according to the wave

function profiles.

Next let us consider mass terms on the IR and UV branes for two bulk hyper-

multiplet such as

Lm =

∫
d2θ ω3 m1

M5

Ha(y = π)Hb(y = π)

+

∫
d2θ

m2

M5

Ha(y = 0)Ha(y = 0) + h.c. (7.14)

Here two mass terms on the IR and UV branes have been generally introduced. If

two bulk fields are localized around the IR brane (Ca,b + Qa,bα > 0), we obtain the

mass term in effective four dimensional theory as

m4D ∼ m1 + m2ω. (7.15)

Although there is no suppression due to the wave function profiles in this case, the

mass term on the IR brane is warped down. This is the characteristic feature of

RS models mentioned above. More general cases are, again, analogous and we find

that suppression factors (in addition to the warp factor) appear in the effective mass

according to the wave function overlap.

In the next section, we apply these results to explain the naturalness of type

I and type II seesaw in the minimal SO(10) model. We will see that this goal can

more or less be achieved except we still need to do one fine tuning.
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7.3 Relevant Aspects of the Minimal SUSY SO(10) Model

In order to apply the discussion of the previous section to the minimal SO(10)

model, we provide a brief reminder of the salient aspects of these models. All

the couplings and mass parameters in this model refer to four dimensions and we

omit the superscript 4D for all of them for simplicity. As long as we allow only

renormalizable couplings, the model has only two Yukawa coupling matrices: (i) h

for the 10 Higgs and (ii) f for the 126 Higgs. SO(10) has the property that the

Yukawa couplings involving the 10 and 126 Higgs representations are symmetric.

Therefore if we assume that CP violation arises from other sectors of the theory

(e.g. squark masses) and work in a basis where one of these two sets of Yukawa

coupling matrices is diagonal, then there are only nine parameters describing the

Yukawa couplings. Noting the fact that the 45 and 5̄ SU(5)-submultiplets of 126

has a pair of standard model doublets in addition to the 5 and 5̄ multiplets of 10

that contributes to charged fermion masses, one can write the quark and lepton

mass matrices as follows [80]:

Mu = hκu + fvu

Md = hκd + fvd

M` = hκd − 3fvd

MD = hκu − 3fvu, (7.16)

where κu,d are the VEVs of the up and down standard model type Higgs fields in the

10 multiplet and vu,d are the corresponding VEVs for the same doublets in 126. This
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gives 13 parameters describing the fermion masses and mixings (for both leptons

and quarks). If we input six quark masses, three lepton masses and three quark

mixing angles and weak scale, these are a total of 13 parameters and all parameters

are now determined. Thus all parameters of the model that go into fermion masses

are determined. The neutrino sector therefore has no free parameters except an two

overall scales (vL and vR) as we see below:

Mν = 2fvL −MT
D(2fvR)−1MD (7.17)

If type I or type II seesaw dominates, except for an overall scale, all the rest of the

parameters of the neutrino mass matrix are predicted. The problem addressed in

this paper is to what extent one can understand the naturalness of parameters that

make either type I or type II dominate. As noted earlier, a simple understanding of

the large neutrino mixings [44, 83] as well as an explanation of the value of
√

∆m2
¯

∆m2
atm

as being of order of the Cabibbo angle comes about in the case of type II dominance.

When one tries to understand CKM CP violation in these models, it is useful

to extend it by the inclusion of a 120 Higgs field that couples to SM fermions [95].

We omit the 120 field from our considerations since our main point is not affected

by this.

To see what fine tunings are needed to make type II seesaw dominate, let

us write down the superpotential for the 4-D SUSY SO(10) model that we are

discussing. Denoting the 126 fields by Σ, and 210 ones by Φ, we have

W = M4D
Σ ΣΣ̄ + M4D

Φ Φ2 + λ4D
1 ΣΣ̄Φ + λ4D

2 Φ3 (7.18)

where we have used the superscript 4-D to denote that this is a 4-D theory. It
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Figure 7.1: Supergraph for the type II seesaw in the minimal SO(10) model.

is helpful to write down the SU(5)×U(1)X sub-multiplets of the various SO(10)

multiplets used here:

210 = 10 ⊕ 5−8 ⊕ 58 ⊕ 104 ⊕ 10−4 ⊕ 240 ⊕ 750 ⊕ 40−4 ⊕ 404,

126 = 1−10 ⊕ 5−2 ⊕ 10−6 ⊕ 15+6 ⊕ 452 ⊕ 50−2,

10 = 52 ⊕ 5−2. (7.19)

And the decomposition of matter field 16 is

16 = 1−5 ⊕ 53 ⊕ 10−1. (7.20)

The supergraph responsible for type II seesaw term is given in fig. 7.1. An

inspection of this graph reveals that the following conditions must be satisfied for

the type II seesaw to be important for neutrino mass discussion:

(i) M15 ∼ f 10−2MGUT ;

(ii) coupling 15 ·5 ·5 ⊂ 210 · 126 · 10 or 15 ·5 ·5 ⊂ 210 · 126 · 126 must not

be suppressed and be of order one.
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We will show in the next section how we can have an understanding of these

two conditions within a mini-warped model using the technique outlined in Sec. II.

7.4 Minimal SO(10) Theory in Five Dimensions

We take N=1 SUSY SO(10) model in five dimensions and put all the fields

(matter as well as Higgs) in the bulk with different bulk mass terms for different

fields. Note that all fields are paired with its complex conjugate field so that the

bulk mass terms are allowed by gauge invariance and supersymmetry. Note that

these mass terms play the role of a parameter describing the wave function profile

of the field and are not the mass terms of 4-D theory.

We put the interaction terms on both IR and UV branes. Both 126 and 10

mass terms on the IR brane, and the mass term of 210 on the UV brane. The

relevant part of the Lagrangian can be written as L =
∫

d2θWIR +
∫

d2θWUV +h.c.,

where

WIR = ω3

[
MΣ

M5

ΣΣ +
MH

M5

H2 +
λ1

M
3/2
5

Φ3

+
η1

M
3/2
5

ΦΣΣ +
1

M
3/2
5

ΦH(α1Σ + α1Σ)

]

y=π

WUV =

[
MΦ

M5

Φ2 +
λ2

M
3/2
5

Φ3 +
η2

M
3/2
5

ΦΣΣ +
1

M
3/2
5

ΦH(α2Σ + α2Σ)

]

y=0

. (7.21)

Suppose that the couplings on the UV and IR branes are of the same order.

Now we assume that the adjoint chiral multiplet of U(1)X has non-zero VEV as

in Eq. (7.5) 2 and gives additional contributions to the bulk mass parameters for the

2Since Z2 parity for this field is assigned as odd, the non-zero VEV leads to the Fayet-Iliopoulos
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bulk fields. In the following, we denote each chiral field of SU(5)-submultiplets in Hi

as Him = (Φm, Hm, Σm, Σm), where m specifies the dimension of the submultiplets.

The zero mode solution of Him is described as

Him(x, y) = κim

√
kekrc|y|e(Ci+αQim)krc|y|him(x), (7.22)

where κim ≡
√

2(Ci+αQim)

e2(Ci+αQim)krcπ−1
.

On the IR brane Him(x, π) = κim

√
kω−1ω−(Ci+αQim)him(x) while Him(x, 0) =

κim

√
khim(x) on the UV brane.

We take MΣ and MH to be ∼ MP and MΦ to be ∼ MGUT . Because of the warp

factor ω, the 4-D effective masses of the IR brane are warped down to ωMP ' MGUT .

Next note that

e(Ci+αQim)krcπ À 1, κim '
√

2(Ci + αQim) ωCi+αQim (7.23)

e(Ci+αQim)krcπ ¿ 1, κim '
√
−2(Ci + αQim) (7.24)

e(Ci+αQim)krcπ = 1, κim '
√
− 1

ln ω
. (7.25)

The extent of suppression of couplings and masses in effective four dimensional the-

ory are determined by parameters Ci and α. In this paper, we choose the parameters

as listed in Tables.

D-terms localized on both the UV and IR branes [96], which should be canceled to preserve SUSY.

For this purpose, we need to introduce new fields on both branes by which the D-terms are

compensated. We can choose such fields to in representation 126 on of the branes and 126 on

the other, which have VEVs along SU(5) singlet direction. The same fields can also generate the

nonzero VEV for the Σ field. This does not affect the result of discussion.
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7.4.1 Masses of Submultiplets of 126

As noted in Sec. III, one main problem for the minimal 4-D SO(10) is that

the SU(5)-submultiplets 15,50 and 45 have the same mass MΣ (up to the Clebsch-

Gordan (CG) coefficients) [90]. When we lower the 15 Higgs mass so as to obtain

type II dominance, other Higgs fields accordingly becomes light. As a result, gauge

couplings blow up before they unite at the GUT scale. As we show now, the situation

is very different in the mini-warped model.

Under the SU(5) decomposition, the mass term of the 126 pair on the IR

brane can be written as

∫
d2θω3

[
MΣ

M5

ΣΣ

]

y=π

∼
∫

d2θ mΣ [εσ0εσ0σ0σ0 + εσ15εσ15σ15σ15 + εσ10εσ10σ10σ10

+ εσ50εσ50σ50σ50 + εσ45εσ45σ45σ45 + εσ5εσ5σ5σ5] , (7.26)

where mΣ = ωMΣ ∼ MGUT , and εim ≡ κimω−(Ci+αQim). From Table 7.3 and Table

7.4, we have εσ15 ∼ ω3/2 and εσ15 ∼ 1, therefore the mass of 15 is suppressed by

the factor ω3/2 and M15 ∼ ω3/2MGUT ∼ 1013 GeV. On the other hand, we read

εσ50 = εσ50 ∼ 1, so the mass of 50 is ∼ MGUT . For 45, εσ45 ∼ ω1/2 and εσ45 ∼ 1,

and its mass is ∼ ω1/2MGUT ∼ 1015 GeV. In our mini-warped SO(10) model, there

is no mass degeneracy between these submultiplets.

This mass splitting also leaves gauge coupling unification of MSSM unchanged,

since the submultiplets are all full SU(5) multiplets. It is easy to check that the

unified gauge coupling value at the GUT scale i.e. αGUT ∼ 0.2 which is in the

perturbative regime even though the 15 ⊕ 15 multiplets with mass around 1013

GeV and the 45⊕ 45 multiplets with mass around 1015 GeV are involved into the
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gauge coupling running.

7.4.2 Symmetry Breaking

Here we examine the realization of the SO(10) symmetry breaking. Let us first

see the SO(10) gauge symmetry breaking down to SU(5). There are three SU(5)

singlets: one in 210 and one in each of the 126 pair with non-zero B-L charge.

Since supersymmetry must remain unbroken all the way down to the weak scale,

F-flatness conditions determine vacuum expectation values. The relevant part in

the superpotential in Eq. (7.21) is given by

∫
d2θω3

[
MΣ

M5

ΣΣ +
λ1

M
3/2
5

Φ3 +
η1

M
3/2
5

ΦΣΣ

]

y=π

+

[
MΦ

M5

Φ2 +
λ2

M
3/2
5

Φ3 +
η2

M
3/2
5

ΦΣΣ

]

y=0

⊃ mΣεσ0εσ0σ0σ0 + MΦκ2
φ0φ

2
0 + (λ1ε

3
φ0 + λ2κ

3
φ0)φ

3
0

+(η1εφ0εσ0εσ0 + η2κφ0κσ0κσ0)σ0σ0φ0

∼ mΣω3/2σ0σ0 + MΦφ2
0 + (λ1ω

6 + λ2)φ
3
0 + (η1ω

5/2 + η2ω
7/2)σ0σ0φ0. (7.27)

F-flatness conditions for σ0 and φ0 lead to

σ0

[
mΣω3/2 + (η1ω

5/2 + η2ω
7/2)φ0

]
= 0,

2MΦφ0 + 3(λ1ω
6 + λ2)φ

2
0 + (η1ω

5/2 + η2ω
7/2)σ0σ0 = 0, (7.28)

and the solutions are

〈φ0〉 ' −mΣ

η1ω
, 〈σ0σ0〉 ' −2MΦ 〈φ0〉

η1ω5/2

(
1 +

3λ2 〈φ0〉
2MΦ

)
. (7.29)
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SO(10) gauge symmetry is broken down to SU(5)×U(1)X by 〈φ0〉 at the scale

mΣ/(η1ω). More correctly, when we carefully consider the CG coefficients and nor-

malization of submultiplets of SO(10) under SU(5), we have an extra factor 10

accompanying with the coupling η1 [90]. Thus, if we take, for example, η1 ∼ 4π this

symmetry breaking occurs around the GUT scale, 〈φ0〉 ∼ mΣ/(10η1ω) ∼ MGUT . On

the other hand, in order to arrange the B-L breaking scale to be around the GUT

scale, one needs to fine tune the coupling λ2 to be λ2 ∼ 1− ω3/2.

Next we consider the SU(5) symmetry breaking by 24 VEV. The relevant

superpotential is given by

∫
d2θω3

[
λ1

M
3/2
5

Φ3

]

y=π

+

[
MΦ

M5

Φ2 +
λ2

M
3/2
5

Φ3

]

y=0

⊃ MΦκ2
φ24φ

2
24 + (λ1εφ0ε

2
φ24 + λ2κφ0κ

2
φ24)φ0φ

2
24 + (λ1ε

3
φ24 + λ2κ

3
φ24)φ

3
24

∼ MΦφ2
24 + (λ1ω

6 + λ2)φ0φ
2
24 + (λ1ω

6 + λ2)φ
3
24. (7.30)

Through the F-flatness condition for φ24, we obtain

〈φ24〉 ∼ −Mφ + λ2 〈φ0〉
λ2

∼ MGUT . (7.31)

Once φ0 gets the VEV, a new contribution appears to the mass of 15 through

the superpotential,

∫
d2θ ω3

[
η1

M
3/2
5

ΦΣΣ

]

y=π

+

[
η2

M
3/2
5

ΦΣΣ

]

y=0

⊃ [η1εφ0εσ15εσ15 + η2κφ0κσ15κσ15] 〈φ0〉σ15σ15

∼ [
η1ω

7/2 + η2ω
5/2

] 〈φ0〉σ15σ15. (7.32)

Substituting the above 〈φ0〉 into this formula, we find the additional contribu-

tion of order ω3/2MGUT , that is the same order as the one from the tree level mass
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term in Eq. (7.26).

7.5 Neutrino Mass and Type II Dominance

In this section we show how type II dominance emerges in our model. Yukawa

couplings on both the IR and UV branes are given by

∫
d2θω3

[
f1ab

M
3/2
5

ΨaΨbΣ +
h1ab

M
3/2
5

ΨaΨbH

]

y=π

+

[
f2ab

M
3/2
5

ΨaΨbΣ +
h2ab

M
3/2
5

ΨaΨbH

]

y=0

, (7.33)

where Ψa is the 16 matter field of the a-th generation (a = 1, 2, 3).

We first consider the Yukawa coupling for 5 · 5 · 15, which is extracted as

[
f1abε

2
ψ5εσ15 + f2abκ

2
ψ5κσ15

]
ψ5ψ5σ15 ∼

[
f1abω

1/2 + f2abω
5/2

]
ψ5ψ5σ15. (7.34)

Now the effective Yukawa coupling in 4-D is found to be ∼ f1abω
1/2.

In fig. 7.1, there are two vertexes between Higgs fields involved in type II seesaw

formulas, 210 · 126 · 10 or 210 · 126 · 126. From the superpotential in Eq. (7.21)

the vertex in fig. 7.1 (a) can be read off as

[α1εφ5εh5εσ15 + α2κφ5κh5κσ15] φ5h5σ15. (7.35)

From Tables, εφ5 ∼ εh5 ∼ 1, εσ15 ∼ ω3/2, and κφ5 ∼ κh5 ∼ κσ15 ∼ 1, so that we

have the coupling ∼ α2φ5h5σ15 un-suppressed. On the other hand, for the vertex in

fig. 7.1(b), we have

[η1εφ5εσ5εσ15 + η2κφ5κσ5κσ15] φ5σ5σ15. (7.36)
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This contribution is negligible compared to the previous one, since εσ5 ∼ 1 and

κσ5 ∼ ω1/2.

We are now ready to estimate the relative magnitudes of the two different

seesaw contributions to neutrino mass in our model. For this purpose, we note that

in terms of the original SO(10) Yukawa couplings the f116 ·16 ·126, we can rewrite

the seesaw formula as

Mν = 2f1vL −MT
D(2f1vR)−1MD (7.37)

The magnitude of the neutrino mass from the Type II seesaw contribution is esti-

mated as

M II
ν ' 2(f1)33ω

1/2v10v210α2

MGUT ω3/2
, (7.38)

where v10,210 is the VEV of up-type Higgs doublets in 10 and 210. If we take (f1)33 ∼

1, α2 ∼ 0.5 and assume v10 ' v210 ∼ 100 GeV, we arrive at the reasonable value for

the atmospheric neutrino oscillation data, M II
ν ' 0.05 eV. Note however that b− τ

unification as well as charge fermion fitting implies that (f1)33 ∼ 0.037 [84]. In this

case also one can get type II term to be 0.046 eV if α2 ∼ 4π and is perturbative.

Next let us examine type I seesaw contribution. The right-handed neutrino

mass can be read as

[
f1abε

2
ψ1εσ0 + f2abκ

2
ψ1κσ0

] 〈σ1〉 ∼ ω3/2f1abMGUT . (7.39)

Thus, the type I seesaw contribution is found to be

M I
ν = MT

DM−1
R MD ' m2

t ω
1/2

2(f1)33MGUT ω3/2
, (7.40)
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where mt is top quark mass, and we have used the natural relation MD ∼ mt in

GUT models. Using mt ∼ 100 GeV at the GUT scale, the type I seesaw gives the

contribution to the neutrino mass as M I
ν ' 0.025 eV for (f1)33 ∼ 1, which is already

smaller than the type II seesaw contribution. Again for the case of (f1)33 ∼ 0.037

obtained from charged fermion fitting in Ref. [84], even though the naive order of

magnitude estimate for mν from type I seesaw may appear to be large, full matrix

effects from MD and MR indeed gives the desired neutrino masses. For example, if we

use the explicit forms for the coupling matrices given in Ref. [84], with (f1)33 ' 0.035

using Eq. (V.7), we get the right order for m3 even though naive estimates would

have suggested mν ' 0.5 eV.

In conclusion, we have shown that unlike the 4-dimensional minimal SUSY

SO(10) models where it is not possible to achieve type II dominance of the seesaw

formula, embedding into a mini-warped 5-D space-time cures this problem and leads

to an effective 4-D theory where either type II or mixed seesaw can dominate the

neutrino mass. Thus the simple understanding of the large neutrino mixings as well

as the right solar mass difference square obtained in minimal SUSY SO(10) models

is based on sound theoretical footing and no new Higgs fields need be added. We

have also analyzed the symmetry breaking of SO(10) down to the standard model

in this framework and we found that to maintain the SU(5) and SO(10) scales at

1016 GeV in this model, we need to fine tune only one parameters by a factor of

10−3. Note that in the minimal 4-D SO(10) model, we could not even do any fine

tuning to get the desired feature of type II dominance. We have also checked that

the SU(5) multiplets below the GUT scale not only do not affect unification as
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expected but they also keep the GUT couplings αGUT ∼ 0.2 meaning that one can

use perturbation theory up to the GUT scale without any problem.
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16 components C16 + αQi

1−5 7/4

10−1 3/4

53 −1/4

Table 7.1: Effective mass parameters of submultiplets 16 with C16 = 1/2 and

α = −1/4.

10 components C10 + αQi

52 0

5−2 1

Table 7.2: Effective mass parameters of submultiplets of 10 with C10 = 1/2 and

α = −1/4.
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126 components C126 + αQi

1−10 5/2

5−2 1/2

10−6 3/2

156 −3/2

452 −1/2

50−2 1/2

Table 7.3: Effective mass parameters of submultiplets of 126 with C126 = 0 and

α = −1/4.

126 components C126 + αQi

110 −3/2

52 1/2

106 −1/2

15−6 5/2

45−2 3/2

502 1/2

Table 7.4: Effective mass parameters of submultiplets of 126 with C126 = 1 and

α = −1/4.
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210 components C210 + αQi

10 −2

5−8 0

58 −4

104 −3

10−4 −1

240 −2

404 −3

40−4 −1

750 −2

Table 7.5: Effective mass parameters of submultiplets of 210 with C210 = −2 and

α = −1/4.
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Chapter 8

Summary and Conclusion

In this thesis, we assume neutrinos are Majorana particles and use the seesaw

mechanism to generate light neutrino masses. We studied the possible permuta-

tion flavor symmetry indicated by the low scale neutrino data, its implications on

leptogenesis and grand unification theories.

Leptonic µ−τ symmetry is introduced to explain the lepton mixing data. This

symmetry has interesting consequences for the leptogenesis. It provides a natural

way to reduce the seesaw parameters and make it possible to connect the baryon

asymmetry of our universe to the low scale neutrino experiment data if leptogenesis

is the mechanism to generate baryon asymmetry.

We have shown that it is possible to apply a µ− τ symmetry extracted from

the lepton sector to the quark sector by extending this symmetry to a permutation

symmetry between the second and third generations. A supersymmetric SU(5)

GUT model with this extended µ− τ symmetry has been proposed to describe the

mixing and mass of all fermions consistently.

Motivated by the agreement between the mixing angle data and so-called tri-

bimaximal mixing pattern, the µ − τ symmetry has been extended to the higher

permutation symmetry S3. A simple leptonic model based on permutation sym-

metry between three families of leptons has been built to realize the tri-bimaximal
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mixing. The stability of texture under quantum correction has been studied. The

quasi-degenerate spectrum of neutrino spectrum is excluded. This model is so con-

strained that the CP-violating phases are directly related to the phases that can be

measured at low energy experiments.

A supersymmetric SO(10) GUT model with S4 family symmetry has been

proposed. The three families of fermions is described by three irreducible represen-

tation of S4. This model predicts degenerate right-handed neutrino spectrum due

to S4.

We also discussed the issue of a natural realization of the seesaw mechanism

in the supersymmetric minimal SO(10). We embedded the 4 dimensional model

in 5 dimension model with a warped fifth dimension. This setup provides a way

to reduce the tuning of parameters needed in the 4 dimensional case and realizes

the type II seesaw dominance without adding Higgs fields. The good features and

predictivity of the model remains.

In this thesis, we have focused on the flavor mixing indicated by the results

of neutrino oscillation experiments. To fully understand new physics indicated by

massive neutrinos and lepton mixing, we need more information from experiments.

The Majorana nature of neutrinos has not been confirmed yet, which is essential for

the seesaw mechanism. More precise measurements of θ12, θ23 and the determination

of θ13 value as well as the order of the mass eigenstate order are important to

test the leptonic flavor symmetry and judge different models. The future neutrino

experiments will help us uncover this new physics beyond the standard model. The

work presented in this thesis is based on a series of published papers of the author
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and his collaborators [97].
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Chapter A

Branching Rules for SO(10)

For convenience, we list the branching rules for SO(10) under its sub-group

SU(5)× U(1) and SU(2)× SU(2)× SU(4) [99].

A.1 SO(10) ⊃ SU(5)× U(1)

10 = 52 + 5−2

16 = 1−5 + 53 + 10−1

45 = 10 + 104 + 10−4 + 240

54 = 154 + 15−4 + 240

120 = 52 + 5−2 + 10−6 + 106 + 452 + 45−2

126 = 1−10 + 5−2 + 10−6 + 156 + 452 + 50−2

144 = 53 + 57 + 10−1 + 15−1 + 24−5 + 40−1 + 453

210 = 10 + 5−8 + 58 + 104 + 10−4 + 240 + 40−4404 + 750
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A.2 SO(10) ⊃ SU(2)× SU(2)× SU(4)

10 = (2,2,1) + (1,1,6)

16 = (2,1,4) + (1,2,4)

45 = (3,1,1) + (1,3,1) + (1,1,15) + (2,2,6)

54 = (1,1,1) + (3,3,1) + (1,1,20) + (2,2,6)

120 = (2,2,1) + (1,1,10) + (3,1,6) + (1,3,6) + (2,2,15)

126 = (1,1,6) + (3,1,10) + (1,3,10) + (2,2,15)

144 = (2,1,4) + (1,2,4) + (3,2,4) + (2,3,4) + (2,1,20) + (1,2,20)

210 = (1,1,1) + (1,1,15) + (2,2,6) + (3,1,5) + (1,3,15) + (2,2,10) + (2,2,10)
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Chapter B

S4 Permutation Symmetry

In this appendix, we show some features of the S4 permutation group [72].

B.1 Representations

S4 is the permutation group of four distinct objects and it contains five irre-

ducible representations.

1 : one dimensional symmetricrepresentation;

1′ : one dimensional anti− symmetric representation;

2 : two dimensional representation;

3 : three dimensional symmetric representation;

3′ : three dimensional anti− symmetric representation.

B.2 Products

1× 1 = 1,1× 1′ = 1′,1′ × 1′ = 1

2× 1 = 1,2× 1′ = 2,2× 2 = 1 + 1′ + 2,2× 3 = 3 + 3′,2× 3′ = 3 + 3′

3× 3 = 1 + 2 + 3 + 3′,3× 3′ = 1′ + 2 + 3 + 3′,3′ × 3′ = 1 + 2 + 3 + 3′

(B.1)
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Note for any representations A and B, one has A×B = B × A.

B.3 Clebasch Gordan Coefficients

A0, B0 ∼ 1, A′
0, B

′
0 ∼ 1′,




A1

A2


 ,




B1

B2


 ∼ 2,




C1

C2

C3




,




D1

D2

D3



∼ 3,




C ′
1

C ′
2

C ′
3




,




D′
1

D′
2

D′
3



∼ 3′.

1× 1 : A0B0 ∼ 1, 1× 1′ : A0B
′
0 ∼ 1, 1′ × 1 : B′

0A
′
0 ∼ 1 1′ × 1′ : B′

0B
′
0 ∼ 1.

(B.2)

1× 2 :




A0A1

A0A2


 ∼ 2,1× 3 :




A0C1

A0C2

A0C3



∼ 3,1× 3′ :




A0C
′
1

A0C
′
2

A0C
′
3



∼ 3. (B.3)

1′ × 2 :



−A′

0A2

−A′
0A1


 ∼ 2,1′ × 3 :




A′
0C1

A′
0C2

A′
0C3



∼ 3′,1′ × 3′ :




A′
0C

′
1

A′
0C

′
2

A′
0C

′
3



∼ 3. (B.4)

2× 2 : A1B1 + A2B2 ∼ 1,−A1B2 + B2A2 ∼ 1′,




A1B2 + A2B1

A1B1 − A2B2


 ∼ 2. (B.5)
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3× 3 : C1D1 + C2D2 + C3D3 ∼ 1,




1√
2
(C2D2 − C3D3)

1√
6
(−2C1D1 + C2D2 + C3D3)


 ∼ 2,




C2D3 + C3D2

C1D3 + C3D1

C1D2 + C2D1



∼ 3,




C3D2 − C2D3

C1D3 − C3D1

C2D1 − C1D2



∼ 3′ (B.6)

3′ × 3′ : C ′
1D

′
1 + C ′

2D
′
2 + C ′

3D
′
3 ∼ 1,




1√
2
(C ′

2D
′
2 − C ′

3D
′
3)

1√
6
(−2C ′

1D
′
1 + C ′

2D
′
2 + C ′

3D
′
3)


 ∼ 2,




C ′
2D

′
3 + C ′

3D
′
2

C ′
1D

′
3 + C ′

3D
′
1

C ′
1D

′
2 + C ′

2D
′
1



∼ 3,




C ′
3D

′
2 − C ′

2D
′
3

C ′
1D

′
3 − C ′

3D
′
1

C ′
2D

′
1 − C ′

1D
′
2



∼ 3′.

2× 3 :




A2C1

−1
2
(
√

3A1C2 + A2C2)

1
2
(
√

3A1C3 − A2C3)



∼ 3,




A1C1

1
2
(
√

3A2C2 − A1C2)

−1
2
(
√

3A2C3 + A1C3)



∼ 3′.

(B.7)

2× 3′ :




A1C
′
1

1
2
(
√

3A2C
′
2 − A1C2)

−1
2
(
√

3A2C
′
3 + A1C

′
3)



∼ 3,




A2C1

−1
2
(
√

3A1C2 + A2C2)

1
2
(
√

3A1C3 − A2C3)



∼ 3′.

(B.8)
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3× 3′ : C1C
′
1 + C2C

′
2 + C3C

′
3 ∼ 1′,




1√
6
(2C1C

′
1 − C2C

′
2 − C3C

′
3)

1√
2
(C2C

′
2 − C3C

′
3)


 ∼ 2,




C3C
′
2 − C2C

′
3

C1C
′
3 − C3C1

C2C
′
1 − C1C

′
2



∼ 3,




C2C
′
3 + C3C

′
2

C1C
′
3 + C3C

′
1

C1C
′
2 + C2C

′
1



∼ 3′. (B.9)
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