
ABSTRACT

Title of dissertation: ALGORITHMS FOR DATA PLACEMENT,
RECONFIGURATION AND MONITORING
IN STORAGE NETWORKS

Srinivas Raaghav Kashyap
Doctor of Philosophy, 2007

Dissertation directed by: Professor Samir Khuller
Department of Computer Science

In this thesis we address three problems related to self-management of storage networks -

data placement, data reconfiguration and data monitoring. Examples of such storage networks

include centrally managed systems like Storage Area Networks and Network Attached Storage

devices, or even highly distributed systems like a P2P network or a Sensor Network.

One of the crucial functions of a storage system is that of deciding the placement of data

within the system. This data placement is dependent on the demand pattern for the data and

subject to constraints of the storage system. For instance, if a particular data item is very popular

the storage system might want to host it on a disk with high bandwidth or make multiple copies

of the item. We present new results for some of these data placement problems.

As the demand pattern changes over time, the storage system will have to modify its place-

ment accordingly. Such a modification in placement will typically involve movement of data items

from one set of disks to another or changing the number of copies of a data item in the system. For

such a modification to be effective, it should be computed and applied quickly since the system is

running inefficiently during this reconfiguration. We propose new schemes to reconfigure the data

placement to deal with changing demand.

To re-compute data placement periodically and to reconfigure the data placement, we need

to continuously track of the demand distribution in the storage system and also be able to answer

aggregate queries about the demand distribution. The data monitoring portion of the thesis deals

with such problems that arise in the context of distributed data management applications. A

monitoring system for such a scenario would need to process large amounts of data from a widely



distributed set of data sources. The thesis presents new schemes that improve communication-

efficiency of existing methods that address these problems.



ALGORITHMS FOR DATA PLACEMENT,
RECONFIGURATION AND MONITORING

IN STORAGE NETWORKS

by

Srinivas Raaghav Kashyap

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Samir Khuller, Chair/Advisor
Professor Amol Deshpande
Professor Peter J. Keleher
Professor Mark A. Shayman
Professor Aravind Srinivasan



Dedicated

To amma and appa.

ii



Acknowledgements

First and foremost, I thank my advisor and mentor Samir Khuller. He introduced me to

the field of algorithms and theoretical computer science. A single guest lecture he gave during

an undergraduate algorithms class I was enrolled in completely changed my view of algorithms.

He inspired me to join graduate school and has taught me everything I know about research and

algorithms. His amazing insight into problems which is second to none and his ability to simplify

ideas have always helped me understand better. His approach to research has been a source of

great inspiration for me. He is one of the most patient people I have ever known and was always

available to discuss even the most trivial matters. He has much more to offer than one could expect

from an academic advisor and was someone I could turn to for any kind of assistance or guidance.

I would like to thank Samir for supporting me through NSF grant CCF-0430650 and NSF award

CCR-0113192.

I thank Rajeev Rastogi for hosting me for over a year during the course of two internships

at Bell Labs. I benefited greatly from his extensive experience and excellent intuition about the

right problems to study. A significant portion of the results in this thesis are a consequence of my

interactions with Rajeev and the other great folks I worked with at Bell Labs Bangalore - Anand

Srinivasan, Supratim Deb, K. V. M. Naidu and S. R. Jeyashankher.

I thank Rajiv Gandhi for support and guidance during the early years of graduate school.

I thank Atif Memon and David Doermann for their support. Apart from the folks above, I

would like to thank Srinivasan Parthasarathy, Indrajit Bhattacharya, Krishna Chitrapura, Yung-

Chun (Justin) Wan, Leana Golubchik, Vijay Gopalakrishnan, Vinayaka Pandit and Julian Mestre.

Technical discussions and interactions with them were a lot of fun and have benefited me greatly.

The results in the thesis have also benefited from discussions with and comments from Suman

Banerjee, David Mount, Moses Charikar and An Zhu. Much thanks to Aravind Srinivasan, Amol

Deshpande, Peter Keleher and Mark Shayman for agreeing to be on my advisory committee.

I thank my roommates and friends during my stay in Maryland - Nitin Chandrachoodan,

Nagarajan Valanoor, Gaurav Aggarwal, Abheek Anand, Akhil Gupta, Narayanan Ramanathan,

Shiv N. P. Vitaladevuni and Saurabh Srivastava. I thank my friend from school, Bharath Mad-

iii



husudan, for encouraging me to come to College Park in the first place! I thank Pratima Rao, an

inspiring teacher who taught me Computer Science in school.

Above all, I thank my family - Amma (Nalini Iyengar) and Appa (A. V. Narasimha ”Nachu”

Iyengar) who have constantly given me everything they have, always put my needs before theirs

and encouraged me to pursue my goals; Kavitha Babu (my wife) for being patient, keeping me

motivated, helping me through difficulties and for being there all the time; Sheela Jacob and Babu

Jacob for their patience and support. I thank my cousin and friend, Jayant Sirohi, who took care

of me when I was new to Maryland and even well after that - I also thank him for Starcraft, for

Monty Python and whole lot of other things! I thank my friends and relatives who have helped

me in so many ways at various points in my academic life.

iv



Table of Contents

1 Introduction 1
1.1 Organization and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Data Placement in Centralized Storage Networks . . . . . . . . . . . . . . . . . . . 7

1.2.1 Centralized data placement without connection costs . . . . . . . . . . . . . 8
1.2.2 Centralized data placement with connection costs . . . . . . . . . . . . . . . 9

1.3 Data Reconfiguration in Centralized Storage Networks . . . . . . . . . . . . . . . . 11
1.4 Data Placement in Decentralized Storage Networks . . . . . . . . . . . . . . . . . . 12

1.4.1 Decentralized solutions for Problem 1.2 . . . . . . . . . . . . . . . . . . . . 13
1.4.2 A simpler problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Data Reconfiguration in Decentralized Storage Networks . . . . . . . . . . . . . . . 15
1.6 Data Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.1 Data Monitoring (One-shot Queries) . . . . . . . . . . . . . . . . . . . . . . 17
1.6.2 Data Monitoring (Continuous Queries) . . . . . . . . . . . . . . . . . . . . . 19

2 Centralized Data Placement 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Other Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Motivational Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.4 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Sliding Window Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Multi-List Sliding Window Algorithm for ∆ = 2 . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Analysis of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1.1 Even K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1.2 Odd K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Tight Algorithm for si ∈ {1, 2, 22, . . . ,∆} . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Reduction to S = {q,∆} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Tight algorithm for the reduced instance . . . . . . . . . . . . . . . . . . . . 42

2.5 Tight Example for si ∈ {1 . . .∆} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Generalized Sliding Window Algorithm (SW-Alg2) . . . . . . . . . . . . . . . . . . 48
2.7 Polynomial Time Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.1 Preprocessing the Input Instance. . . . . . . . . . . . . . . . . . . . . . . . 53
2.7.2 Structured Approximate Solutions. . . . . . . . . . . . . . . . . . . . . . . 54
2.7.3 The Approximation Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Centralized Data Reconfiguration 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.3 Hardness proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Algorithm for one round migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Speeding up the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



4 Decentralized Data Placement and Reconfiguration 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 The pSearch System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2 Adaptive Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Background: Data and Query Model . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 The Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.3 Adaptive Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.4 Randomized Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.1 Extensions to other data models and distance metrics . . . . . . . . . . . . 92
4.5.2 Routing Optimizations for Hypercube-like Networks . . . . . . . . . . . . . 93

4.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.6.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.2 Search Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6.3 Load Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.1 Similarity Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.2 Adaptive Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Data Monitoring (One-shot Queries) 102
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 Our Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Simple Approaches (that do not work) . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Computation of MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.3 Computation of SUM, AVERAGE, RANK . . . . . . . . . . . . . . . . . . 119

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Technical Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Data Monitoring (Continuous Queries) 126
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.2 Detection of distributed constraints violations . . . . . . . . . . . . . . . . . 132
6.3.3 Cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.4 Local thresholds assignment problem . . . . . . . . . . . . . . . . . . . . . . 134
6.3.5 Zipf case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 Adaptive threshold assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.1 Geometric approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4.2 Brute force algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4.3 Markov-based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.4 Reactive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4.5 Maintaining histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.6 Computational Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

vi



6.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7 Conclusions 160

Bibliography 161

vii



Chapter 1

Introduction

The “How much information?” study produced by the school of information management

and systems at the University of California at Berkeley [127], estimates that about 5 exabytes of

new information was produced in 2002. It estimates that the amount of stored information doubled

in the period between 1999 and 2002. It is believed that more data will be created in the next

five years than in the history of the world. Clearly we live in an era of data explosion. This data

explosion necessitates the use of large storage networks, where a collection of storage elements are

made available to a large network of users.

Storage Area Networks (or SANs) and Network Attached Storage (NAS) devices are com-

mon examples of enterprise storage systems. Storage area networks (SANs) may be centralized,

where the storage area network can contain many heterogeneous storage elements (or disk drives)

connected to a single storage space. The storage space can be treated as a black box so that admin-

istration of storage is easy. SANs may also be distributed, where the storage area network contains

many geographically dispersed disk drive networks. All the constituent networks are treated as

one unit and are connected by the iSCSI storage area network protocol over a common storage

fabric. In a NAS device the storage elements are typically at a common location. For our purposes

both SAN and NAS devices would be examples of a centralized storage network because they are

both centrally managed.

While in many scenarios centralized storage networks are a natural solution since they sim-

plify management and help in meeting requirements such as consistency and persistence, there

are other scenarios where they are not the best solution. For example, the data many have only

short-term state or the data itself may be naturally distributed. In such cases, decentralized stor-

age networks are an attractive solution since they avoid single-points of failures, scale naturally,

and can leverage resources from participating users, thus avoiding the need for an expensive cen-

1



tralized system. Such fully decentralized storage networks borrow ideas from overlay networking,

distributed computing and distributed data management. An example of a decentralized storage

network would be a P2P network or a sensor network.

Note that “centralized” and “decentralized” are used to distinguish between how the stor-

age network is managed. While the problems that arise in these two classes of storage networks

are varied and diverse, “self-management” is a common goal shared by most of these problems.

Self-management means that the system automatically optimizes itself in response to changes in

the load, system status, and environment. This thesis studies three crucial problems that arise in

the context of self-management of both centralized and decentralized storage networks. Two funda-

mental algorithmic challenges in a storage network are that of data placement and reconfiguration

- deciding the placement of data and assignment of requests for data in the storage network; and

dealing with changes in the access pattern for the data as well as changes to the storage network

itself. To address either of these problems, the problem of monitoring access statistics (for instance

answering aggregate queries over access statistics and continuous tracking of access statistics) must

be addressed.

To make the relationship between these problems clearer, consider the following examples.

Example 1.1: Consider a sensor network comprising of a large number of sensor nodes. One of the

models for querying historical data in this sensor network (beyond “dumb querying”) is to view the

network as a database that supports archival query processing where queries are pushed inside the

network. Such a model is feasible since current trends challenge the conventional wisdom about the

role of storage in sensor networks (See [61, 130]). They make a compelling case for equipping sensor

nodes with high-capacity energy-efficient local flash storage and redesigning algorithms to exploit

cheap storage for reducing expensive communication. Making effective use of data in such a sensor

network will require scalable, self-organizing, and energy-efficient data dissemination mechanisms.

Promising methods that address these issues include data-centric storage mechanisms (GHTs [160],

DHTs [9]).

Consider decentralized storage networks that use such data-centric storage mechanisms as

2



a means of organizing data inside the network. The decentralized data placement portion of

this thesis extends such data-centric storage mechanisms to support sophisticated information

retrieval applications in storage networks. The decentralized data reconfiguration portion of this

thesis presents a low-overhead adaptive replication scheme to ensure that the load incurred while

processing queries for data is shared equitably across all the nodes in the storage network. The

data monitoring portion of the thesis addresses questions related to answering aggregate queries in

decentralized storage networks. For instance, “What is the total number of accesses for this data

item across all sensor nodes?” and “Issue an alert whenever the storage space used on any sensor

node exceeds a threshold”. Answering such queries in a communication efficient manner is clearly

essential in addressing both the data placement and reconfiguration problems.

Example 1.2: Consider a Video-On-Demand system. One viable architecture is a parallel (or

distributed) system with multiple processing nodes in which each node has its own collection of

disks and these nodes are interconnected via a high-speed network. An alternative system is

described in [172] where the nodes are connected in a shared-nothing manner [165]. Each node j

has a finite storage capacity, Cj (in units of continuous media (CM) objects), as well as a finite

load capacity, Lj (in units of CM access streams). These nodes are constructed by putting together

several disks. In fact, in the paper we will mostly view nodes as logical disks. For instance, consider

a server that supports delivery of MPEG-2 video streams where each stream has a bandwidth

requirement of 4 Mbits/s and each corresponding video file is 100 mins long. If each node in such

a server has 20 MBytes/s of load capacity and 36 GB of storage capacity, then each such node

can support Lj = 40 simultaneous MPEG-2 video streams and store Cj = 12 MPEG-2 videos. In

general, different nodes in the system may differ in their storage and/or load capacities.

Requests are made to a central location that then assigns connections to nodes based on the

location of the movies on the nodes and available bandwidth on the nodes. The data placement

problems seeks to find such an assignment of movies to nodes and an assignment of connections

to nodes (see Figure 1.1). The data reconfiguration results address the problem of rearranging

movies and reassigning connections when the demand for movies changes with time. The data

3



Node 2

A

D

C100 50

30

L = 100 L = 100

Node 1

(a) A sub-optimal placement that satisfies

a total demand of 180.

Node 2Node 1

A

D

L = 100

50

L = 100

C

A

50

60

30

(b) An optimal placement that satisfies a

total demand of 190.

Figure 1.1: An instance of the data placement problem consisting of two nodes. Each node has storage

capacity of 2 and bandwidth capacity of 100. There are also 4 data items. Each item has unit size. The

demand for item A=110, item B=10, item C=50, item D=30. The figures show two possible data

placements.

reconfiguration results can also be used to address the problem of recovering from a scenario where

some nodes in the storage network have failed and there is a need to quickly rearrange the data

placement to deal with the failures without having to recompute or make wholesale changes to

the data placement. Keeping track of the demand distribution in this case is straightforward since

all requests are processed through a central location. However, the system might need to enforce

certain policies - such as allowing at most a certain number of connections from a certain group

of IPs; or monitoring Quality of Service requirements by ensuring that packet loss along network

paths to preferred users does not exceed a certain threshold. The data monitoring results can be

used to address these problems.

1.1 Organization and Contributions

Briefly, this thesis makes the following contributions to the problems of data placement,

reconfiguration and monitoring. The precise problem definitions along with detailed results and

discussion are presented in subsequent chapters. Previous work is discussed in sections 1.2, 1.3,

1.4, 1.5 and 1.6 of this chapter.

1. Results from the centralized data placement portion of this thesis (Chapter 2) include a

polynomial time approximation scheme (PTAS) for the data placement problem - computing

4



an assignment of data items to nodes and a corresponding assignment of requests to data

items while maximizing the profit of assigned requests subject to the capacity constraints of

the nodes. The results also include practical combinatorial algorithms for this problem with

provably good performance guarantees that hold regardless of the input distribution. These

results generalize the results of Golubchik et al. [70] to handle the case where data items

may have arbitrary sizes.

2. The centralized data reconfiguration portion of the thesis (Chapter 3) considers the problem

of adapting an existing data placement to accommodate changes in demand pattern. The

thesis introduces a new approach to this problem, by trying to make changes to the existing

data placement so that the resulting placement will be the best possible placement that can be

obtained within a specified number of migration rounds. In each migration round, nodes are

paired up and paired nodes can exchange data during that round. One of our results is that

the problem is NP-Hard and we present heuristics for the problem. The thesis demonstrates,

through a set of extensive experiments, that even in a small number of consecutive rounds

the existing placement for the old demand pattern can be transformed into one that is almost

as good as the best placement for the new demand pattern.

3. The decentralized data placement and reconfiguration portion of this thesis (Chapter 4)

makes the following contributions:

(a) Distributed hash table (DHT) based storage mechanisms are popular solutions to the

problem of decentralized data placement but lack support for similarity search. Results

from this chapter present new algorithms for finding a data placement in any DHT based

decentralized storage network so that semantically related data can be located easily and

is placed on “nearby” nodes. Results include analytical guarantees for the performance

of the algorithms in terms of search accuracy and cost. Results from simulations confirm

the insights derived from these analytical models.

(b) The chapter also presents adaptive replication and randomized lookup schemes for any

5



DHT based storage mechanism. These schemes ensure that the number of copies of

a data item is proportional to its demand and that all replicas are equally likely to

serve a given request. Therefore, for DHT based storage mechanisms, these schemes

address the problem of modifying an existing data placement to accommodate changes

in demand pattern.

One-shot queries and continuous queries are important classes of queries that arise in data monitor-

ing applications. Communication efficient algorithms for answering these queries in a decentralized

setting are essential components in algorithms for data placement and reconfiguration (see Exam-

ples 1.1 and 1.2).

4. The one-shot querying portion of the thesis (Chapter 5) presents a novel gossip-based scheme

that improves the result of Kempe et al. [107] using which all the nodes in an n node

overlay network can compute the common aggregates of MIN, MAX, SUM, AVERAGE,

and RANK of their values using O(n log log n) messages within O(log n log log n) rounds of

communication. This is the first result that shows how to compute these aggregates with

high probability using only O(n log log n) messages.

5. In the continuous querying portion of this thesis (Chapter 6), we introduce a new set of

methods called non-zero slack schemes for communication efficient monitoring of distributed

SUM queries and also undertake a comprehensive study of these non-zero slack schemes.

(a) We show both analytically and empirically that non-zero slack schemes outperform the

state-of-the-art zero slack scheme for different data distributions.

(b) We present adaptive algorithms for setting threshold values at remote nodes in the

presence of non-zero slack (for changing data distributions).

(c) Finally, we present the results of a thorough and detailed set of experiments using both

synthetically generated data and real world data, and show that our adaptive non-zero

slack algorithms can result in significant savings in the amount of communication.

6



This is the first work to systematically study non-zero slack schemes for detecting distributed

constraint violations.

The following sections will put the contributions of this thesis in perspective with previous

work for each of these problems. Recall that we use the terms centralized and decentralized to

distinguish between how the storage network is managed. Section 1.2 discusses the centralized data

placement problem, Section 1.3 discusses the centralized data reconfiguration problem, Section 1.4

discusses the decentralized data placement problem, Section 1.5 discusses the decentralized data

reconfiguration problem, Section 1.6.1 discusses the problem of answering one-shot queries and

Section 1.6.2 discusses the problem of answering continuous queries.

1.2 Data Placement in Centralized Storage Networks

Most work in this area assumes that a data item can fit on a node completely in terms of

storage size. Our thesis makes this assumption as well. This is a reasonable assumption given that

storage devices have much larger capacities than the size of individual data items. Also note that

this assumption does not rule out the use of striped storage on a lower level - for example a node

in our data placement problem can be a “logical disk” that comprises of several physical disks in

say a RAID configuration where the data items assigned to the logical disks (nodes) are striped

across the physical disks for performance and reliability.

In the centralized scenario, constituent nodes of the storage network might be heterogeneous

but they are typically co-located. Therefore the connection cost to serve a request for a data item

is similar across all the nodes and depends only on where the request originated from within the

network. However in some cases, like with distributed SANs, the connection cost to serve a request

for a data item depends both on the node that stores the data item and also on where the request

originated from within the network. The former is the version of the problem without connection

costs (Problem 1.1) and the latter is the version of the problem with connection costs (Problem

1.2). This thesis makes contributions to the version of the problem without connection costs. As

observed earlier, most SAN and NAS configurations fall under this category and the version without

7



connection costs is applicable in most centralized data placement scenarios. This version is also a

special case of the version with connection costs. Consequently, the best possible results for this

problem are better than the best possible results for the version with connection costs.

1.2.1 Centralized data placement without connection costs

This thesis, in context of the centralized data placement problem, makes contributions to

the variant of the problem that can be abstracted as follows:

Problem 1.1: We are given a collection of M data items that need to be assigned to a storage

network consisting of N nodes d1, . . . , dN . Data item i has size si. Each node dj is characterized

its storage capacity Cj which indicates the maximum total size of data items that may be assigned

to it, and a load capacity Lj which indicates the maximum number of requests that it can serve.

We are also given a set of U requests. Each request u ∈ U seeks a particular data item i and has

profit fu associated with the data item that it seeks. The goal is to find a placement of data items

to nodes and an assignment of clients to nodes to maximize the total profit of requests served,

subject to the capacity constraints of the storage network.

This variant is identical to the “connection cost” variant (Problem 1.2) except for that in

this case, the profit associated with a request is uniform across all the nodes whereas it could vary

with the node that it was assigned to in the “connection cost” variant.

Shachnai and Tamir [156] studied the above data placement problem for unit sized data

items when all si = 1; they refer to it as the class constrained multiple knapsack problem. They

gave an elegant algorithm, called the sliding window algorithm, and showed that this algorithm

packs all items whenever
∑N
j=1 Cj ≥M +N − 1. They showed that the problem is NP-hard when

each node has an arbitrary load capacity, and unit storage. Golubchik et al.[70] improved this

result to show that even the problem with identical nodes is NP-hard for any fixed k ≥ 2 (Cj = k

for all nodes j). Golubchik et al.[70] also establish a tight upper and lower bound on the number

of items that can always be packed for any input instance regardless of the distribution of requests

for data items under the assumption that all items require unit storage. They also present a PTAS

8



for the problem when all items require unit storage.

Packing problems with color constraints are studied in [47, 155]. Here items have sizes

and colors; and items have to be packed in bins, with the objective of minimizing the number

of bins used. In addition there is a constraint on the number of distinct colors in a bin. For a

constant total number of colors, the authors develop a polynomial time approximation scheme. In

our application, this translates to a constant number of data items (M), and is too restrictive an

assumption.

In this thesis (Chapter 2), we generalize the result of Golubchik et al. [70] to the case where

data items may have arbitrary sizes. Specifically, for the case where si ∈ {1, . . . ,∆} for some

constant ∆, we develop a polynomial time approximation scheme (PTAS). This result is obtained

by developing two algorithms, one that works for constant k and one that works for arbitrary k. In

addition we develop an algorithm for which we can prove tight upper and show a matching lower

bound when si ∈ {1, 2, 22, . . . ,∆} and log ∆ ∈ Z regardless of the input distribution. Indepen-

dently, Shachnai and Tamir [157] have recently announced a result similar to ours. However, the

algorithms and the ideas in their work are based on a very different approach as compared to the

ones taken in this thesis. The results presented in this portion of the thesis have appeared in [105].

For the sake of completeness, previous work on the version of the problem with connection

costs is also presented here.

1.2.2 Centralized data placement with connection costs

The problem can be abstracted as follows :

Problem 1.2: We are given a collection of M data items that need to be assigned to a storage

network consisting of N nodes d1, . . . , dN . Data item i has size si. Each node dj is characterized

its storage capacity Cj which indicates the maximum total size of data items that may be assigned

to it, and a load capacity Lj which indicates the total bandwidth of requests that may be assigned

to it. We are also given a set of U requests. Each request u ∈ U seeks a particular data item,

requires bandwidth bu and has profit fuj associated with each node j for the data item that it

9



seeks. The goal is to find a placement of data items to nodes and an assignment of requests to

nodes to maximize the total profit of requests served, subject to the capacity constraints of the

storage network.

Baev and Rajaraman [17] study the problem of data placement in arbitrary networks. They

formalize a minimization version in which they need to place objects in caches to minimize the total

connection costs. They give a constant-factor approximation for this problem, which is improved

to factor 10 by Swamy in [166]. However in their formulation, nodes do not have bandwidth con-

straints. Meyerson et al.[122] study the version with bandwidth as well as storage constraints and

present a O(log n) approximation algorithm that requires node capacities to be enlarged by a O(1)

factor. Guha et al.[76] present a solution for this problem that is a constant factor approximation

but requires node capacities to be enlarged by a O(log n) factor.

Korupulu et al.[112] study the problem of data placement in hierarchical networks (a version

of the problem where distances have properties similar to an ultrametric). Their problem again

ignores bandwidth constraints and they show that the problem can be solved using min-cost flow

under the hierarchical network distances assumption. They also present a faster local search based

2-approximation (minimization).

Fleischer et al.[58] call this the Distributed Caching Problem. Their results show LP-based

(1− 1/e− ε) approximation algorithm and a local search algorithm with (1/2− ε) approximation

guarantee. They also present complementary lower bounds showing that this problem cannot be

approximated better than (1 − 1/e) unless NP ⊆ DTIME
(
no(log logn)

)
, even if there exists an

exact poly-time algorithm for the single-bin subproblem. However, the algorithms they present

are not very practical, both the local search and the separation oracle based LP solution that

they devise use a polynomial-time approximation scheme for the single-node subproblem as a

subroutine. None of the polynomial time approximation schemes for the problem known in the

literature are very practical. Hence there is a space for practical combinatorial algorithms with a

good approximation ratio.

10



1.3 Data Reconfiguration in Centralized Storage Networks

Maintaining an optimal or near optimal data placement is crucial in ensuring that the storage

network operates efficiently. The optimal data placement is likely to change over time because of

changes in access pattern for the data items, addition of nodes or failures of nodes. Consequently,

the storage network will have to modify its data placement to adapt to these changes. Such a

modification will typically involve movement of data items from one set of nodes to another or

requires changing the number of copies of a data item in the system. For such a modification

to be effective, it should be computed and applied quickly since the system runs at sub-optimal

efficiency during this phase. The data reconfiguration portion of the thesis deals with the problem

of finding such an efficient modification.

Seo et al.[154] study the disk replacement problem (DRP) which is concerned with finding

a sequence of disk drive removals and additions to obtain a final, target storage system while

minimizing the data migration cost. Results from their work can be used to address the data

migration issues that arise out of changes to the underlying storage network. However, their work

is not concerned with changes to the access pattern of the data items. Their work treats all data

items as being similar. They also do not have explicit bandwidth or storage constraints on the

disks. They consider a system in which the data items are load balanced in both the initial and

final configurations.

Hewlett-Packard’s AutoRAID [171] consists of a small disk array that supports a two-level

RAID hierarchy. The system uses adaptive replication to handle changes in the storage system due

to disk additions and also to handle changes in access pattern for the data items. For replacing

disks, the system first removes the old disks, then attaches all the new disks and waits for the

automatic data reorganization and rebalancing to complete (without interrupting its operations).

Golubchik et al.[71], Hall et al.[82] and Khuller et al.[109] study the data migration problem.

They use a data placement algorithm to compute a new target layout. The goal of the data

migration problem is to convert the existing layout to the target layout as quickly as possible. The

communication model they assume is a half-duplex model where a matching on the nodes can be

11



fixed, and for each matched pair one can transfer a single object in a round. The goal is to minimize

the number of rounds taken. Khuller et al.[109] develop constant factor approximation algorithms

for this NP-hard problem. In practice these algorithms find solutions that are reasonably close to

optimal. However, even when there is no drastic change in the demand distribution it can still

take many rounds of migration to achieve the new target layout. This happens since the scheme

completely disregards the existing placement in trying to compute the target placement.

In the centralized data reconfiguration portion of this thesis we consider a new approach to

the problem of dealing with changes in the demand pattern. We consider the following problem.

Given a certain number of migration rounds (a node may be involved in at most one transfer per

round), we want to obtain a layout by making changes to the existing layout so that the resulting

layout will be the best possible layout that can be obtained within the specified number of rounds.

Of course, such a layout is interesting only if it is significantly better than the existing layout for

the new demand pattern.

The approach used in this thesis to address the problem of finding a good layout that can

be obtained in a specified number of rounds by finding a sequence of layouts. Each layout in the

sequence can be transformed to the next layout in the sequence by applying a small set of changes

to the current layout. These changes are computed so that they can be applied within one round

of migration. Results in this thesis show that by making these changes even for a small number of

consecutive rounds, the existing placement for the old demand pattern can be transformed into one

that is almost as good as the best layout for the new demand pattern. The method can therefore

be used to quickly transform an existing placement to deal with changes in the demand pattern.

Results from this portion of the thesis appeared in [106].

1.4 Data Placement in Decentralized Storage Networks

The goal of this body of work is to find a decentralized solution to Problem 1.2. While there

has been some progress toward this goal, the solutions are not very practical. In this subsection,

we will briefly review some previous results for this problem including results which indicate that

12



the problem is hard to solve in a decentralized way. The decentralized solutions presented in

previous work are known to be PLS-complete (See [95, 137, 150] for more about PLS-completeness).

Consequently, there have been attempts at solving a much simpler version of the original problem.

The contributions of this thesis are related to solutions for the simplified problem (Problem 1.3).

1.4.1 Decentralized solutions for Problem 1.2

Goemans et al.[67] formulate Problem 1.2 (ignoring bandwidth constraints) as a market

sharing game. In this game, in each step, every node (one at a time) greedily modifies the subset

of items stored on it to maximize its individual profit. If no subset of items has higher profit than

the profit of items already stored on the node, the node makes no changes. Among the nodes

that contain a particular data item, each request for the data item is assigned to the node with

the lowest connection cost for that request. The profit that accrues to a node is the sum of the

individual profits associated with the requests that are served by the subset of items stored on the

node. The total profit of a solution is the sum of the individual profits of all the nodes. A locally

optimal solution is one where none of the nodes have an incentive to change the subset of items

that they have decided to store. They show that such a locally optimal solution always exists.

For the case where all data items have the same size, finding the subset of items that

maximizes profit is an easy problem. In this case, the decentralized procedure converges to a

locally optimum solution in a polynomial number of steps. They show that the total profit of

a locally optimal solution always has at least 1/2 of the profit of the globally optimal solution.

However, this is not a very practical solution since the polynomial time algorithm they present

requires each node to know about the total number of requests for each of the data items in order

to make a decision about which subset of items to store on it.

They also extend their results to the case where data items can have arbitrary sizes. How-

ever, now any node can only find a subset of items that approximates the subset of items with

maximum profit. They show that in this case their decentralized algorithm reaches a locally opti-

mal solution that always has at least 1/ log n of the profit of the globally optimal solution. While

13



they show that the algorithm achieves this solution in finitely many steps, they do not show that

it does so in a polynomial number of steps. Again, this is not a very practical solution.

Fleischer et al.[58] extends the formulation of this game to handle bandwidth constraints.

As before, in each step, every node (one at a time) greedily modifies the subset of items stored on

it to maximize its individual profit. If no subset of items has higher profit than the profit of items

already stored on the node, the node makes no changes. As before, a locally optimal solution is

one where none of the nodes have an incentive to change the subset of items that they store. They

show that for some instances, such a locally optimal solution might not exist at all. They also

show that for some instances, even though a locally optimal solution exists, the nodes may not be

able to find this local optimum in a polynomial number of steps. Clearly, the problem appears to

be very difficult.

1.4.2 A simpler problem

To simplify the problem and obtain practical schemes that might do well, many attempts

at solving this problem drop the explicit “objective function” that we are trying to maximize here.

Another simplification is to drop the hard capacity constraints, instead the goal is to balance

resource usage across all the nodes. These assumptions make the problem considerably easier.

This simpler problem can be abstracted as follows:

Problem 1.3: We are given a set of N nodes Q = {d1, . . . , dN} that are completely interconnected.

Let U = {1, . . . , p} represent the set of all numbers available for addressing data items. All data

items are assumed to be of equal size. Only a subset D ⊆ Q of nodes and only a subset M ⊆ U of

the data items may be present at a time. Each data item m ∈ M has to be assigned to a unique

node j ∈ D. Each node j has a limited storage capacity Cj , representing the number of data items

that can be stored on it. The goal is then to find, using a decentralized scheme, a data placement

such that the data items in M are distributed among the nodes D so that the maximum number

of data items stored on any node is minimized (and less than Cj for each node j).

There is a vast amount of literature related to Problem 1.3 in the peer-to-peer community. A

14



complete discussion of results from this area are beyond the scope of this thesis. Distributed Hash

Tables or DHTs are a common solution to the problem and they provide an efficient distributed

data placement and lookup mechanism. Common examples of DHT based peer-to-peer systems

include but are not limited to CAN[144], CHORD[164], Viceroy[128, 118], Koorde[99], Pastry[149],

Tapestry[179], Kademlia[121], Kelips [79], Skipnet[83], Salad[54] and Bamboo[148]. Most of these

systems draw on the distributed hashing schemes presented in Karger et al. [100], Plaxton et

al. [141], Brinkmann et al. [24, 25], Schindelhauer et al. [152], Adler et al. [5], Schiedler [151] and

Awerbuch et al. [152].

However such DHTs only provide basic lookup functionality. Several researchers have pro-

posed mechanisms to extend the scope of DHTs beyond the traditional lookup. Reynolds et al.[147],

Liu et al.[114], and Shi et al.[161] address efficient keyword searching in DHTs. The work of Gupta

et al.[77] and Schmidt et al.[153] use SPHs to distribute high dimensional data vectors on top of a

CHORD overlay. The former supports approximate range queries while the latter supports exact

range queries. The work of Bhattacharjee et al.[21] supports efficient set intersection operations

using view trees. The pSearch system [167] extends a specific DHT to support similarity searching.

Results from the distributed data placement portion of this thesis extend the capabilities of

any such distributed hash based lookup mechanism to extend its functionality to support similarity

based lookup services. The differences between the pSearch system and ours are discussed in detail

in the distributed data placement portion of the thesis. Enabling similarity search on DHTs is an

important step in the direction of enabling more realistic and distributed IR applications over a

distributed storage network. The results presented in this portion of the thesis have appeared in

[22].

1.5 Data Reconfiguration in Decentralized Storage Networks

While the DHT based decentralized data placement schemes presented in Section1.4.2 for

Problem 1.3 ensure that the maximum storage utilized on any node is minimized, they do not

make any attempt to balance load incurred by answering requests for data items. These systems

15



therefore need some form of caching or replication to achieve load balance when the data items have

non-uniform popularities. Decentralized data reconfiguration addresses this issue by spawning or

reducing the number of replicas of data items based on the popularities of the data items.

With the exception of the hashing scheme of Adler et al.[5] which is tied to a specific

underlying DHT, most other DHTs provide only for static replication where each object in the DHT

is replicated a fixed number of times and hence they do not deal with changing query distributions.

The Lightweight Adaptive Replication (LAR) protocol of Gopalakrishnan et al.[72] addresses this

problem by measuring the load on individual servers and using the load measurements to create

appropriate number of copies of a data item. They also modify the DHT lookup primitive by

augmenting nodes in the DHT with information about the newly created copies.

The adaptive replication technique presented in this thesis also relies on server load infor-

mation for spawning and retracting copies of a data item. However, our scheme differs from that

of LAR in significant ways. The differences are discussed in detail in the distributed data recon-

figuration portion of the thesis. One of the most attractive features of the scheme presented in

this thesis is that the scheme can operate over any underlying DHT (most adaptive replication

schemes are tied to properties of a particular underlying DHT). Results from this portion of the

thesis have appeared in [22].

1.6 Data Monitoring

The problem of centralized data management - that of organizing, indexing, accessing and

querying data that is located centrally is well understood. However, in distributed scenarios, these

data management problems assume a different character since it is not feasible to collect the data

in one place: the volume of data collection is too high, and the capacity for data communication

relatively low. For example, in battery-powered wireless sensor networks, the main drain on battery

life is communication, which is orders of magnitude more expensive than computation or sensing.

This establishes a fundamental tenet for distributed data monitoring: push computational work

into the network to reduce communication.

16



The data monitoring portion of this thesis deals with such distributed data monitoring

problems and efficient solutions for such data monitoring problems are crucial building blocks in

algorithms for the data monitoring and reconfiguration problems. There are two broad classes

of data monitoring problems in previous work. In the one shot model, a query is issued by a

user at some node, and must be answered based on the current state of data in the network.

In the continuous model, a query is placed by a user which requires the answer to be available

continuously. The thesis addresses problems from each of these models and presents new schemes

that improve communication-efficiency of existing methods that address these problems.

1.6.1 Data Monitoring (One-shot Queries)

One-shot queries are interested in computing the aggregate (e.g., MAX, SUM, QUANTILES,

RANK of an element) of a collection of data that is distributed across an n-node overlay network.

Common assumptions are that time is slotted and synchronized across nodes, messages exchanged

in any round cannot be arbitrarily large and that in any round each node can only communicate

with a O(1)-fraction of the nodes.

A popular approach to answering one-shot queries efficiently is to use in-network query

processing. Nodes are organized in a tree structure. Each node hears from all children, computes

the aggregate and sends the result to its parent (each node sends only one item). Of course, in

case of evaluating duplicate sensitive aggregates (for example quantiles), the algorithms need to

use sketch summaries or other mergeable summaries. These sketches or summaries are easy to

merge and functions evaluated on these sketches are guaranteed to be a good approximation to the

exact answer. The choice of which sketch to use depends on the function or aggregate of interest.

A complete discussion of such techniques is beyond the scope of this thesis. Commonly used sketch

techniques include: CM sketches [40], FM sketches [57], AMS sketches [11, 10] and Bloom filters.

Commonly used mergeable summaries include those of Greenwald et al.[74] and Manjhi et al.[119].

The tree aggregation techniques mentioned above assume a reliable network, however this

is not a valid assumption in sensor networks or peer-to-peer networks. Nath et al.[129] present

17



a aggregation scheme to compute MAX that is robust to such failures. The idea is to broadcast

each node’s value to multiple nodes instead of a single node. The procedure relies on the MAX

aggregate being order and duplicate insensitive (ODI). Nath et al.[129] also extend FM sketches

(which are also ODI) to compute sum aggregates in a robust manner. In general, one can take

sketches and other summaries and make them ODI by replacing counters in them with FM sketches

(which are useful to keep track of the number of distinct items). Examples include the schemes

presented in Cormode et al.[41], Marios et al.[81] and Considine et al.[36]. Manjhi et al.[119] use

multi-path routing of ODI summaries to achieve robust computation of aggregates.

However, these techniques may not be very practical in sensor network scenarios since

sketches with FM sketches for counters can grow very large and also due to the computational

cost for sensors in executing these schemes. To overcome the above-mentioned problems, several

researchers have proposed decentralized gossip-based schemes for computing various aggregates in

overlay networks [107, 30, 93, 129, 23]. In gossip-based protocols, each node exchanges information

with a randomly chosen communication partner in each round. By their very nature, gossip-based

schemes are robust; they are resilient to message failures as well as node failures, thus making

them ideally suited for P2P, wireless and sensor networks with potentially poor link-reliability.

Kempe et al.[107] presented the first set of analytical results on computation of aggregate

functions using randomized gossip. They analyzed a simple gossip-based protocol for computing

sums, averages, quantiles and other aggregate functions. In their scheme for estimating averages,

each node selects another random node to which it sends half of its value; a node on receiving a set

of values just adds them to its own halved value. Kempe et al.showed that these values converge

to the true average in O(log n) rounds resulting in O(n log n) messages.

This thesis, addresses the following question: is it possible to reduce the message complexity

of aggregate (MAX, SUM, AVERAGE, RANK of an element) computation schemes from O(n log n)

while relaxing the number of rounds to slightly exceed log n?. The thesis presents a novel scheme to

compute MIN, MAX, SUM, AVERAGE and RANK using O(log n log log n) rounds of communi-

cation and O(n log log n) messages. This is the first result that computes these various aggregates

18



in a network with probabilistic link and node failures using only O(n log log n) messages. Thus,

compared to previous work [107], our scheme achieves a significant reduction in communication

overhead at the cost of only a modest increase in the number of rounds. Results from this portion

of the thesis have appeared in [104].

1.6.2 Data Monitoring (Continuous Queries)

The goal of this body of work is to continuously track a global query over a distributed set of

data streams. Typically there a number of nodes that are each connected to a coordinator. Other

communication models are possible as well but this is the standard communication model used in

previous work. There is a need to guarantee or compute an answer at the coordinator that is always

correct or within some guaranteed accuracy bound. Näıve solutions must continuously centralize

all data but this incurs enormous communication overhead. Sometimes periodic polling suffices

for simple tasks. However very frequent polling causes high communication and infrequent polling

causes delays in observing events. Techniques that reduce communication while guaranteeing rapid

response to events are desirable.

Within this framework of continuous, distributed, and resource-constrained systems, there

are many possible types of continuous monitoring queries that can be posed. The research com-

munity has looked at developing algorithms for computing and tracking a wide range of aggre-

gate statistics over distributed data streams, including top-k [16], quantiles [39], MAX[162], set-

expressions[46] and joins[38]. These apply to a general class of continuous monitoring applications,

where the goal is to optimize the operational resource usage of these algorithms and still guarantee

that the estimate of the aggregate function is always within specified error bounds.

Many queries rely on monitoring sums or counts of values, in combination with thresholds

(lower bounds) and is the focus of the continuous query monitoring portion of this thesis. Olston

et al. [135] study the problem of continuously tracking multiple SUM queries with different error

bounds. The problem we consider, of minimizing communication overhead while maintaining

accurate counts above a threshold, is not covered by this approach. To monitor thresholded sums

19



in a communication efficient manner, the idea of distributed triggers was introduced by Jain et al.in

[91] and further explored by Sharfman et al.[158], Huang et al.[87, 86, 85], Agrawal et al.[6] and

Keralapura et al.[108]. They describe distributed constraints monitoring or distributed triggers as

a mechanism of reducing the amount of communication. These methods filter out “uninteresting”

events and do not require communication across the network for these events; thus, reducing the

communication needed to perform the computations. Huang et al. [97] consider a novel variant of

the instantaneous tracking problem where they track constraint violations that persist over time.

Please see Chapter 6 for a detailed discussion of the differences between these results and the

results in this thesis.

This thesis introduces a new set of methods called non-zero slack schemes to implement

distributed SUM queries efficiently. It shows, both analytically and empirically, that these methods

can lead to a considerable reduction in the amount of communication. It proposes three adaptive

non-zero slack schemes that adapt to changing data distributions; the best scheme is a lightweight

reactive scheme that probabilistically adjusts local constraints based on the occurrence of certain

events (using only a periodic probability estimation). It conducts an extensive experimental study

using real-life and synthetic data sets, and shows that the non-zero slack schemes presented in this

thesis incur significantly less communication overhead compared to the state of the art zero slack

scheme (over a 60% savings). Results from this portion of the thesis have appeared in [103].

20



Chapter 2

Centralized Data Placement

This is joint work with Samir Khuller. These results also appeared in [105].

2.1 Introduction

We study a data placement problem that arises in the context of multimedia storage systems.

In this problem, we are given a collection of M multimedia objects (data items) that need to be

assigned to a storage system consisting ofN nodes d1, d2..., dN . We are also given sets U1, U2, ..., UM

such that Ui is the set of clients seeking the ith data item. Each data item has size si. Each node dj

is characterized by two parameters, namely, its storage capacity Cj which indicates the maximum

storage capacity for data items that may be placed on it, and its load capacity Lj which indicates

the maximum number of clients that it can serve. The goal is to find a placement of data items to

nodes and an assignment of clients to nodes so as to maximize the total number of clients served,

subject to the capacity constraints of the storage system.

The data placement problem described above arises naturally in the context of storage

systems for multimedia objects where one seeks to find a placement of the data items such as

movies on a system of nodes. The main difference between this type of data access problem and

traditional data access problems are that in this situation, once assigned, the clients will receive

multimedia data continuously and will not be queued. Hence we would like to maximize the

number of clients that can be assigned/admitted to the system. We study this data placement

problem for uniform storage systems, or a set of identical nodes where Cj = k and Lj = L for all

nodes dj .

In the remainder of this chapter, we make the following assumptions: (i) the total number

of clients does not exceed the total load capacity, i.e.,
∑M
i=1 |Ui| ≤ N · L, and (ii) the total size of

data items does not exceed the total storage capacity, i.e.,
∑M
i=1 si ≤ N · k and (iii) If Mp is the

21



number of data items of size p then Mp ≤ Nbkp c, since at most bkp c items of size p can be stored

on a single node.

In [70, 156] this problem is studied with the assumption that all data items have unit size,

namely si = 1 for all data items, and even this case is NP -hard for homogeneous node systems

[70]. In this work, we generalize this problem to the case where we can have non-uniform sized

data items. For the previous algorithms [70, 156] the assumption that all items have the same size

is crucial.

For arbitrary k and when si ∈ {1, 2} (this corresponds to the situation when we have

two kinds of movies - standard and large), we develop a generalization of the sliding-window

algorithm [156], called SW-Alg, using multiple lists, that has the following property. For any input

distribution that satisfies the size requirements mentioned above, we can show that the algorithm

guarantees that at least (1− 1

(1+
√
bk/2c)2

)-fraction of the clients can be assigned to a node. Note

that (1− 1

(1+
√
bk/2c)2

) approaches 1 as k increases, and is at least 3
4 . This bound holds for k ≥ 2.

While this bound is trivial when k is even, the proof is quite complicated for odd k. In addition, we

show that this bound is tight. In other words there are instances where no placement of data items

can guarantee a better bound as a function of k. In fact, this suggests that when si ∈ {1, . . . ,∆}

we should get a bound of (1− 1

(1+
√
bk/∆c)2

) (easy to check that this would be a tight bound). Our

results for items of size 1 and 2 suggests that such a bound should hold for any value ∆.

For the more general problem when si ∈ {1, . . . ,∆}. we develop a new method (SW-Alg2)

that works with a single list of all the items, sorted in non-decreasing density (ratio of |Ui|/Si)

order. This algorithm has the property that at least f(k,∆) = k−∆
k+∆

(
1− 1(

1+
√

k
2∆

)2

)
-fraction of

all clients are assigned. When si ∈ {1, . . . ,∆} for some constant ∆, we develop a polynomial time

approximation scheme (PTAS) as follows. For a given ε > 0, if (1− ε) ≤ f(k,∆) then we can use

SW-Alg2 to get the desired result. If (1− ε) > f(k,∆), then k is a fixed constant (as a function of

ε and ∆) and we can use an algorithm whose running time is polynomial for fixed k. In fact, this

algorithm works when si ∈ {a1, . . . , ac} for any fixed constant c. This generalizes the algorithm

presented in [70], which is for the case when all si = 1. While the high level approach is the same,

22



the algorithm is significantly more complex in dealing with lightly loaded nodes. For any fixed

integer k,∆ and ε > 0 this algorithm runs in polynomial time and outputs a solution where at

least (1− ε)-fraction of the clients in an optimal solution are assigned.

At this point, it is worth noting that while there is a PTAS for the problem for a constant

number of distinct sizes (Section 2.7 of this chapter, and the independent work in [157]), even for

the simplest case when the data items have unit sizes (for example the first PTAS in [70]), none

of the approximation schemes are actually practical since the running times are too high, albeit

polynomial for a fixed ε. The only known algorithms that are practical, are the ones based on

the sliding window approach. Hence even though the bounds that one can derive using sliding

window based methods can be improved by other approaches, this still remains the best approach

to tackling the problem from a practical standpoint. Obtaining a practical PTAS remains an

outstanding open problem.

2.1.1 Related Work.

The data placement problem described above bears some resemblance to the classical multi-

dimensional knapsack problem [143, 29]. However, in our problem, the storage dimension of a node

behaves in a non-aggregating manner in that assigning additional clients corresponding to a data

item that is already present on the node does not increase the load along the storage dimension.

It is this distinguishing aspect of our problem that makes it difficult to apply known techniques

for multi-dimensional packing problems.

Shachnai and Tamir [156] studied the above data placement problem for unit sized data

items when all si = 1; they refer to it as the class constrained multiple knapsack problem. The

authors gave an elegant algorithm, called the sliding window algorithm, and showed that this

algorithm packs all items whenever
∑N
j=1 Cj ≥M +N − 1. An easy corollary of this result is that

one can always pack a (1− 1
1+k )-fraction of all items. The authors [156] showed that the problem

is NP-hard when each node has an arbitrary load capacity, and unit storage. Golubchik et al.[70]

establish a tight upper and lower bound on the number of items that can always be packed for

23



any input instance to homogeneous storage systems, regardless of the distribution of requests for

data items. It is always possible (under certain assumptions) to pack a (1 − 1
(1+
√
k)2 )-fraction of

items for any instance of identical nodes. Moreover, there exists a family of instances for which it

is infeasible to pack any larger fraction of items. The problem with identical nodes is shown to be

NP-hard for any fixed k ≥ 2 [70].

In addition, packing problems with color constraints are studied in [47, 155]. Here items

have sizes and colors; and items have to be packed in bins, with the objective of minimizing the

number of bins used. In addition there is a constraint on the number of distinct colors in a bin. For

a constant total number of colors, the authors develop a polynomial time approximation scheme.

In our application, this translates to a constant number of data items (M), and is too restrictive

an assumption.

Independently, Shachnai and Tamir [157] have recently announced a result similar to the one

presented in Section 2.7. For any fixed ε and a constant number of sizes si ∈ {a1, . . . , ac} and for

identical parallel nodes they develop a polynomial time approximation scheme where the running

time is polynomial in N and M , the number of nodes and data items. Since this does not assume

constant k, they do not need a separate algorithm when k is large. However, the algorithms and

the ideas in their work are based on a very different approach as compared to the ones taken in

this chapter.

2.1.2 Other Issues.

Once a placement of items on the nodes has been obtained, the problem of assigning clients

to nodes can be solved optimally by solving a network flow instance. Our algorithm computes a

data placement and an assignment, however it is possible that a better assignment can be obtained

for the same placement by solving the appropriate flow problem. (For the unit size case this is not

an issue since we can show that the assignment is optimal for the placement that is produced by

the sliding window algorithm.)

Another important issue concerns the input size of the problem. The input parameters are

24



N , the number of nodes, and M(≤ Nk) the total number of movies. Since only the cardinalities of

the sets Ui are required, we assume each of these can be specified in O(log |Ui|) bits. In other words,

our algorithms run in time polynomial in these parameters and are not affected by exceptionally

large sets Ui, assuming we can manipulate these values in constant time.

2.1.3 Motivational Application.

Recent advances in high speed networking and compression technologies have made mul-

timedia services, such as video-on-demand (VoD) servers, feasible. The enormous storage and

bandwidth requirements of multimedia data necessitates that such systems have very large disk

farms. One viable architecture is a parallel (or distributed) system with multiple processing nodes

in which each node has its own collection of disks and these nodes are interconnected, e.g., via a

high-speed network.

We note that nodes are a particularly interesting resource. Firstly, nodes can be viewed

as “multidimensional” resources, the dimensions being storage capacity and load capacity, where

depending on the application one or the other resource can be the bottleneck. Secondly, all node

resources are not equivalent since a node’s utility is determined by the data stored on it. It is this

“partitioning” of resources (based on data placement) that contributes to some of the difficulties in

designing cost-effective parallel multimedia systems, and I/O systems in general. In a large parallel

VoD system improper data distribution can lead to a situation where requests for (popular) videos

cannot be serviced even when the overall load capacity of the system is not exhausted because

these videos reside on highly loaded nodes, i.e., the available load capacity and the necessary data

are not on the same node.

One approach to addressing the load imbalance problem is to partition each video across all

the nodes in the system and thus avoid the problem of “splitting resources”, e.g., as in the staggered

striping technique [20]. However, this approach suffers from a number of implementation-related

shortcomings that are detailed in [33]. An alternative system is described in [172] where the nodes

are connected in a shared-nothing manner [165]. Each node j has a finite storage capacity, Cj (in

25



units of continuous media (CM) objects), as well as a finite load capacity, Lj (in units of CM access

streams). These nodes are constructed by putting together several disks. In fact, in this chapter

we will mostly view nodes as “logical disks”. For instance, consider a server that supports delivery

of MPEG-2 video streams where each stream has a bandwidth requirement of 4 Mbits/s and each

corresponding video file is 100 mins long. If each node in such a server has 20 MBytes/s of load

capacity and 36 GB of storage capacity, then each such node can support Lj = 40 simultaneous

MPEG-2 video streams and store Cj = 12 MPEG-2 videos. In general, different nodes in the

system may differ in their storage and/or load capacities.

In our system each CM object resides on one or more nodes of the system. The objects may

be striped on the intra-node basis but not on the inter-node basis. Objects that require more than

a single node’s load capacity (to support the corresponding requests) are replicated on multiple

nodes. The number of replicas needed to support requests for a continuous object is a function of

the demand. This should result in a scalable system which can grow on a node by node basis.

The difficulty here is in deciding on: (1) how many copies of each video to keep, which can

be determined by the demand for that video, as in [172], and (2) how to place the videos on the

nodes so as to satisfy the total anticipated demand for each video within the constraints of the

given storage system architecture. It is these issues that give rise to our data placement problem.

2.1.4 Main Results.

When data items have size si ∈ {1, 2}, we develop a generalization of the Sliding Window Al-

gorithm (SW-Alg) using multiple lists, and prove that it guarantees that at least (1− 1

(1+
√
bk/2c)2

)-

fraction of clients will be assigned to the nodes. Note that this function is always at least 3
4 and

approaches 1 as k goes to ∞. When data items have sizes si ∈ {1, 2, 22, . . . ,∆} where log ∆ ∈ Z,

we generalize this multi-list sliding window algorithm to guarantee that at least (1− 1

(1+
√
b k∆ c)2

)-

fraction of clients will be assigned to the nodes. Moreover, we can show that these bounds are

tight. In other words there are client distributions for which no layout would give a better bound.

Developing tight bounds for this problem turn out to be quite tricky, and much more complex than

26



the case where all items have unit size. This already allows for understanding the fragmentation

effects due to imbalanced load as well as due to non-uniform item sizes. We were able to develop

several generalizations of the sliding window method, but it is hard to prove tight bounds on their

behavior.

In addition, we develop a new algorithm (SW-Alg2) for which we can prove that it guarantees

that at least f(k,∆) = k−∆
k+∆

(
1− 1(

1+
√

k
2∆

)2

)
-fraction of clients will be assigned to a node, when

si ∈ {1, . . . ,∆}.

As mentioned earlier, by combining SW-Alg2 with an algorithm that runs in polynomial

time for fixed k we can obtain a polynomial time approximation scheme. We develop an algorithm

(PTAS) that takes as input parameter two constants k and ε′ and yields a (1−ε′)3 approximation to

the optimal solution, in time that is polynomial for fixed k and ε′. Pick ε′ so that (1−ε′)3 ≥ (1−ε)

and ε′ ≤ 1
k (we need this for technical reasons). In fact we can set ε′ = min( 1

k , 1− (1− ε) 1
3 ). Use

PTAS with parameters ε′ and k, both of which are constant for fixed ε. This gives a polynomial

time approximation scheme.

2.2 Sliding Window Algorithm

For completeness we describe the algorithm [156] that applies to the case of identical nodes

with unit size items.

At step j, we assign items to node dj . For the sake of notation simplification, R[i] always

refers to the number of currently unassigned clients for a particular data item (i.e., we do not

explicitly indicate the current step j of the algorithm in this notation). We keep the data items

in a sorted list in non-decreasing order of the number of clients requiring that data item, denoted

by R. The list, R[1], . . . , R[m], 1 ≤ m ≤ M , is updated during the algorithm. At first, m = M

and R[i] = |Ui|. We assign data items and remove from R the items whose clients are packed

completely, and we move the partially packed clients to their updated places according to the

remaining number of unassigned clients for that data item.

The assignment of data items to node dj has the general rule that we want to select the

27



first consecutive sequence of k or less data items, R[u], . . . , R[v], whose total number of clients is

at least the load capacity L. We then assign items R[u], . . . , R[v] to dj . In order to not exceed the

load capacity, we will break the clients corresponding to the last data item into two groups (this

will be referred to as splitting an item). One group will be assigned to dj and the other group is

re-inserted into the list R. It could happen that no such sequence of items is available, i.e., all data

items have relatively few clients. In this case, we greedily select the data items with the largest

number of clients to fill dj . The selection procedure is as follows: we first examine R[1], which is

the data item with the smallest number of clients. If these clients exceed the load capacity, we will

assign R[1] to the first node and re-locate the remaining piece of R[1] (which for R[1] will always

be the beginning of the list). If not, we examine the total demand of R[1] and R[2], and so on until

either we find a sequence of items with a sufficiently large number of clients (≥ L), or the first k

items have a total number of clients < L. In the latter case, we go on to examine the next k data

items R[2], . . . , R[k + 1] and so on, until either we find k items with a total number of items at

least L or we are at the end of the list, in which case we simply select the last sequence of k items

which have the greatest total number of clients.

2.3 Multi-List Sliding Window Algorithm for ∆ = 2

The proof of the tight bound in [70] involves obtaining an upper bound on the number of

data items that were not packed in any node, and upper-bounding the number of clients for each

such data item. By using this approach we cannot obtain a tight bound for the case when the data

items may have differing sizes. One problem with such an algorithm is that it may pack several

size 1 items together, leaving out size 2 items for later, and when K is odd, we may waste space

on a node simply because we are left with only size 2 items and cannot pack them perfectly.

Let M1 be the number of size-1 items and M2 be the number of size-2 items. At any stage,

let m
′

1 and m
′

2 be the number of size-1 and size-2 items on the remaining items list (the list of

items whose clients have not been assigned completely). Here we only discuss the case when k is

odd, since there is a simple reduction of the case when k is even to the unit size case (as will be

28



shown later).

The algorithm constructs and maintains three lists R1, R2 and aux-list. If M1 < N , then

note that there are at least N −M1 units of unused space in the input instance. In which case, the

algorithm adds N −M1 dummy size-1 items with zero load. The algorithm then sorts the size-1

items and the size-2 items in non-decreasing order of demand in lists R1 and R2 respectively. The

top N size-1 items with the highest demand are moved into aux-list. The remaining size-1 items

are kept in R1. All the size-2 items are placed in the R2 list. From this stage on, the algorithm

maintains the R1, R2 and aux-list lists in non-decreasing order of demand.

For each node (stage), the algorithm must make a selection of items from R1, R2 and aux-

list. Assume the lists are numbered starting from 1. Exactly one item for the selection is always

chosen from aux-list (see Fig. 2.3.1.2). The algorithm then selects w1 consecutive items from R1

and w2 consecutive items from R2 such that the total utilized space of the selected items from R1

and R2 is ≤ k − 1 (< k − 1 if we have an insufficient number of items, or the items have a very

high density).

Define the wasted space of a selection to be the sum of the unused space and the size of the

item that must be split to make the selection load-feasible. At each stage the algorithm makes

a list of selections (S) by combining the following selections (one from R2, one from R1 and one

from aux-list). It selects w2, 0 ≤ w2 ≤ min(bk2 c,m
′

2) consecutive size-2 items from R2 at each of

the positions 1 . . . (m
′

2 − w2 + 1). It selects w1, 0 ≤ w1 ≤ min(k − 2w2 − 1,m
′

1) size-1 items from

R1 at each of the positions 1 . . . (m
′

1 −w1 + 1). It selects a size-1 item from aux-list at each of the

positions 1 . . . |aux-list|.

If ∀s ∈ S, load(s) < L the algorithm outputs the selection with highest load. If ∃s ∈ S

where load(s) ≥ L, then let D be the set of all the selections in S with load ≥ L. Let D′ ⊆ D

be the set of all the selections which can be made load-feasible by allowing the split of either the

highest size-2 item in the selection, or the highest size-1 item from R1 in the selection, or the size-1

item from aux-list in the selection.

The algorithm chooses the d ∈ D′ with minimum wasted space. The algorithm outputs

29



d
′

= {d1, . . . , d
′

i} where di = d
′

i + d
′′

i , load(d1, . . . , di) ≥ L and load(d1, . . . , d
′

i) = L. In the step

above, the algorithm is said to split di. If d
′′

i > 0 the algorithm then reinserts d
′′

i (the broken off

piece) into the appropriate position in the list from which di was chosen. If the broken off piece

was reinserted into aux-list, the algorithm shrinks the length of aux-list by one by moving one item

from aux-list into R1. The size-1 item that leaves aux-list in the previous step is then reinserted

into the appropriate position of the R1 list. If the broken off piece was reinserted into some other

list (other than aux-list) then note that the size of aux-list reduces by one anyway since the item

from aux-list is used up completely.

2.3.1 Analysis of the Algorithm

For each node in the system, the solution consists of an assignment of data items along with

an assignment of the demand (i.e., the clients for this item that are assigned to the node) for each

of the items assigned to the node. We will argue that the ratio of packed demand to total demand

is at least (1− 1

(1+
√
bk/2c)2

). Further, we will show that this bound is tight. This bound is trivial

to obtain for even k as shown next. Most of this section will focus on the case when k is odd. We

denote the number of packed clients by S and the number of unpacked clients by U.

2.3.1.1 Even K.

Given an instance I create a new instance I
′

by merging arbitrary pairs of size-1 items to

form size-2 items. If M1 (the number of size-1 items in I) is odd, then we create a size-2 item with

the extra (dummy) size-1 item. Size-2 items in I remain size-2 items in I
′
. Note that since k is

even, I
′

will remain feasible although M1 may be odd. We now scale the sizes of the items in I
′

by 1/2 and apply the sliding window algorithm described in Section 2.2. The basic idea is to view

a capacity k node as a capacity k/2 since each item has size 2. From the result of [70], we get the

desired bound of S
U+S ≥ (1− 1

(1+
√
bk/2c)2

).

It is easy to use the above approach to obtain a bound of (1− 1
k )(1− 1

(1+
√
bk/2c)2

) when k

is odd. However, this bound is not tight.

30



2.3.1.2 Odd K.

The algorithm produces a set of load-saturated nodes at first, where the total load is exactly

L. The number of such nodes will be referred to as Nl. The number of nodes with load less than

L will be Ns (non load-saturated nodes). We will assume that the minimum load on a non load-

saturated node is cL (in other words define c appropriately, so that each non load-saturated node

has load at least cL). We will refer to us(i) as the utilized space on node di. This is the total

amount of occupied space on a node.

We will first bound the space wasted in packing the load-saturated nodes and then bound

the space wasted in packing the non load-saturated nodes to show that S
S+U ≥ (1− 1

(1+
√
bk/2c)2

).

The algorithm works in stages, producing one combination of windows per stage which

corresponds to the assignment for a single node. We know that, at any stage, if we have at least

one load-saturated window, then the algorithm selects the window with load ≥ L that is:

• Load-feasible with one split (i.e. the load of the window becomes = L by splitting at most

one item) and

• Minimizes wasted space

R1 is the list of (M1 −N) size-1 items, R2 is the list of size-2 items, and aux-list is the list

of N size-1 items with highest load.

If at any stage, both the R1 and R2 lists are empty while there are some items remaining in

the aux-list, since the number of items in the aux-list is equal to the number of unpacked nodes,

they will be packed completely (this actually follows from [156], see [70] for a simpler proof).

Furthermore it is not hard to show that if at any stage j, we have produced j − 1 load-saturated

nodes and the total size of the objects in the R1 and R2 lists is ≤ k− 1, then all the items will be

packed at the termination of the algorithm. The running time of this algorithm is O(n4k3).

Lemma 2.3.1. When the current window has us(i) = k − 1 and a size 2 item is split, then every

leftmost window in the future of size k − 2 (not including the split piece) has load ≥ L.

This argues that the split piece of size 2 along with a chosen window of size k−2 will produce

31



L1

L2

aux-list

w1

w2

1

Figure 2.1: Lists used by Algorithm.

a load-saturated node. If again we split off a piece of size 2, then repeatedly we will continue to

output load-saturated windows, until we run out of items.

Proof. Assume not. Now w (the current window of size k − 1) has i items m1
1, . . . ,m

i
1 from R1,

m1
2, . . . ,m

j
2 from R2 (j = 0 implies w has no items from R2) and aux-item(1) from aux-list (this

item is mandatory). Consider a window (call it w
′
) with size k−2 and with load < L chosen in the

future. (We will discuss the case when the window is chosen at the next step, however since the

items are sorted in non-decreasing order the same proof works for all such windows.) Suppose w
′

has items say mi+1
1 , . . . ,mi+i

′

1 from R1 (i
′

= 0 implies w
′

has no items from R1), mj+1
2 , . . . ,mj+j

′

2

from R2 (j
′

= 0 implies w
′

has no items from R2) and aux-item(2) from aux-list (this item is

mandatory). Let `pq be the number of clients for item mp
q .

Note the following:
i∑

p=1

`p1 +
j∑
p=1

`p2 + aux-list(1) ≥ L

i∑
p=1

`p1 +
j−1∑
p=1

`p2 + aux-list(1) < L

Since we cannot reduce the load to L by splitting a size 1 item, we have

i−1∑
p=1

`p1 +
j∑
p=1

`p2 + aux-list(1) > L

Suppose the window of size k − 2 we select has load < L. This implies that

i+i′∑
p=i+1

`p1 +
j+j′∑
p=j+1

`p2 + aux-list(q) < L

Since the items of a list are in non-decreasing order, we can claim the following:

i′∑
p=1

`p1 +
j′∑
p=1

`p2 + aux-list(1) < L

32



Call this window w′′. It has size k− 2 and load < L. There are three cases based on the values of

j and j′.

1. j = j′. Since j = j′ and i′ = i− 1, we obtain

i−1∑
p=1

`p1 +
j∑
p=1

`p2 + aux-list(1) < L

This is in direct contradiction to the assumption we made about w (see equation above).

2. j > j′. Add mj′+1
2 to w′′. This window now has size k. If the load now is > L, we can find a

window of load > L with size k that is load-saturating. This is a contradiction to our choice

of a window of size k − 1. Otherwise the load is at most L and we keep adding items from

R2 and dropping items from R1, to maintain a size k window, until we obtain a window with

load > L.

(Certainly by the time we add mj
2 we obtain a window of size k with total load > L.) As

soon as this happens we have found a window with size k that is load-saturating. This is a

direct contradiction to our choice of a window of size k − 1.

3. j < j′. Add mi′+1
1 and mi′+2

1 to w′′. If the load now is > L then we can load-saturate with

a window of size ≥ k − 1 and split a size 1 item. This is in contradiction to the choice that

we made. Now assume that the total load is ≤ L and the size is exactly k. We remove mj′

2

from w′′ and add mi′′+3
1 and mi′′+4

1 . Again if the load > L we are done. We keep doing this

until the load exceeds L. This must happen after we remove mj+1
2 .

Lemma 2.3.2. When the current window has us(i) ≤ k − 2 and an item is split, then every

leftmost window of the same size as the current window must have load ≥ L

Proof. Assume not. Now w (the current window) has items say m1
1, . . . ,m

i
1 from R1 (i = 0 implies

w has no items from R1), m1
2, . . . ,m

j
2 from R2 (j = 0 implies w has no items from R2) and aux-

item(1) from aux-list (this item is mandatory). Consider a leftmost window (call it w
′
) with the

same size as w and with load < L. Also w
′

has items say m1
1, . . . ,m

i
′

1 from R1 (i
′

= 0 implies

33



w
′

has no items from R1), m1
2, . . . ,m

j
′

2 from R2 (j
′

= 0 implies w
′

has no items from R2) and

aux-item(1) from aux-list (this item is mandatory). Since w
′

has the same size as w but is different

from w, one of the following must be true:

1. j′ < j. Since size(w
′
) ≤ k − 2, add in the items from R2 starting from mj

′

2 + 1 until

size(w
′
) = k or until the load of w

′
becomes > L. If the load of w

′
becomes > L and we

have managed to add in an item, then we have a contradiction since we have found a window

larger than w that is load-feasible within one split. Note that if we add in items upto mj
2,

the load of w
′

must become > L and as before if we have managed to add in an item, then

we have a contradiction. So now, we have size(w
′
) = k and the load of w

′
is < L and we

have not yet added in mj
2. Now we drop the two highest items in w

′
from R1 and add in the

next higher item (not already in w
′
) from R2 and repeat until we have either added in mj

2

or until the load of w
′

becomes > L. In either case, we have a contradiction since we have

found a larger feasible window than the current window.

2. j′ > j. Since size(w
′
) ≤ k − 2, add in the items from R1 starting from mi

′

1 + 1 until

size(w
′
) = k or until the load of w

′
becomes > L. If the load of w

′
becomes > L and we

have managed to add in an item, then we have a contradiction since we have found a window

larger than w that is load-feasible within one split. Note that if we add in items upto mi
1,

the load of w
′

must become > L and as before if we have managed to add in an item, then

we have a contradiction. So now, we have size(w
′
) = k and the load of w

′
is < L and we

have not yet added in mi
1. Now we drop the highest item in w

′
from R2 and add in the

next higher items (not already in w
′
) from R1 and repeat until we have either added in mi

1

or until the load of w
′

becomes > L. In either case, we have a contradiction since we have

found a larger feasible window than the current window.

We next show that for each load-saturated node we have at most two units of wasted space.

34



Lemma 2.3.3. If at the termination of the algorithm there are unassigned clients then for every

load-saturated node di one of the following conditions must hold:

1. Node di has us(i) ≥ k − 1 and a size-1 item is split, or

2. Node di has us(i) = k and a size-2 item is split.

Proof. We need to show that if we produce a load-saturated node that violates conditions (1) and

(2) then all the items from all the lists (R1, R2 and aux-list) will be packed completely.

From Lemma 2.3.1, we know that if we waste three units of space by splitting an item of

size 2 and having us(i) = k − 1 then we will assign all clients to nodes.

From Lemma 2.3.2 we know that when the current window has ≥ 2 units of unused space

and a size-1 item is split or a size-2 item is split, then every leftmost window of the same size as

the current window must have load ≥ L.

Since we know that every leftmost window with the same size as the current window has

load ≥ L, we also know that in the next stage there exists a window of the same size as the

current window with load ≥ L. Further, since the current window has size ≤ k − 2, the broken

off piece from the current window can be reused in the next stage. As a result, we will produce

load-saturated nodes until the total load of the items remaining on R1 and R2 is < L. However

the total size of the items remaining on R1 and R2 is now < size(current− window) ≤ k − 2. In

this case, as mentioned previously, all the items will be packed in the following rounds.

Lemma 2.3.4. If at the termination of the algorithm there are unassigned clients then either

1. All the non load-saturated nodes are size-saturated.

2. Only size-2 items are remaining and there is at most one non load-saturated node with exactly

one unit of unused space and all the other non load-saturated nodes are size-saturated.

Proof. If at the termination of the algorithm, R1 is not empty then all the non load-saturated nodes

must also be size-saturated; otherwise the algorithm would have found a selection with higher load

by adding in another item from R1.

35



Now consider the case where R1 is empty and R2 is not empty. Since R2 is not empty,

for each non-load saturated node i we have us(i) ≥ k − 1. Now assume (for contradiction) that

there are two non load-saturated nodes i and j (say i < j) s.t. us(i) = us(j) = k − 1. If we have

us(i) = k − 1 then R1 must become empty after this selection has been assigned to i; otherwise,

the algorithm could just have added in another item from R1 and would have found a selection

with higher load. Since us(i) = k − 1, the R1 list becomes empty after the current selection has

been assigned to node i. Now R1 is empty and exactly one item from aux-list will be forced onto

j, so for all future nodes j > i, us(j) must be odd. Since k is odd and we have us(j) ≥ k − 1, it

follows that us(j) = k and we have a contradiction.

Theorem 1. It is always possible to pack a (1− 1

(1+
√
b k2 c)2

)-fraction of items for any instance.

Proof. As a result of the Lemmas 2.3.3 and 2.3.4, we know that at the termination of the algorithm

if there are unassigned clients then either:

1. At most 2Nl+1 units of space are wasted in the packing and only size-2 items are remaining,

or

2. At most 2Nl units of space are wasted in the packing.

We will show that in both cases the total load of the remaining items (U) is ≤ NlcL
b k2 c

.

We first see how to prove the theorem using this bound. The number of satisfied clients (S)

is at least L×Nl + c×Ns×L. Subtracting this quantity from the upper bound on the load of the

input instance (N × L) gives us U ≤ (1 − c) × Ns × L where U is the unassigned clients. Hence

the ratio of unpacked (U) to packed (S) items can be bounded as follows.

U

S
≤

min(Nl×c×Lb k2 c
, (1− c)×Ns × L)

L×Nl + c×Ns × L

Since

S

U + S
=

1
1 + U

S

the claimed bound now follows from the method outlined below to upper bound U
S .

36



The ratio of unpacked (U) to packed (S) items is at most

U

S
≤

min(Nl×c×Lb k2 c
, (1− c)×Ns × L)

L×Nl + c×Ns × L

Let y = Nl
N and thus 1− y = Ns

N . Simplifying the upper bound above we obtain.

U

S
≤

min( cy
b k2 c

, (1− c)(1− y))

y + c(1− y)

U

S
≤ min(

cy
b k2 c

y + c(1− y)
,

(1− c)(1− y)
y + c(1− y)

)

The first term is strictly increasing as c or y increases, while the second term is strictly decreasing

as c or y increases. So in order to maximize the expression, we need to set the two terms equal,

which means

cy

bk2 c
= (1− c)(1− y)

y =
1− c

1− c+ c
b k2 c

Substituting for y gives us that the upper bound for U/S is at most c−c2
b k2 c−b

k
2 cc+c2

. This achieves

its maxima when c = (1− 1

1+
√
b k2 c

). The fraction of all the items that are packed is

S

U + S
=

1
1 + U

S

(2.1)

S

U + S
≥ (1− 1

(1 +
√
bk/2c)2

)

We now prove that U ≤ NlcL
b k2 c

:

1. If at most 2Nl+1 units of space are wasted in the packing and only size-2 items are remaining,

then we can have at most Nl size-2 items on the remaining items list. Let the load on the

lightest loaded non load-saturated node be cL. Since any non load-saturated node must have

at least bk2 c size-2 groups (i.e. either two size-1 items or a single size-2 item), the load on

the lowest size-2 group is at most cL
b k2 c

(average load of an assigned item). The load of any

size-2 item on the remaining items list must be ≤ cL
b k2 c

since otherwise, the algorithm could

have obtained a better packing by swapping the size-2 item on the remaining items list with

this lowest size-2 group. Therefore, the total load of the remaining items is ≤ NlcL
b k2 c

.

37



2. Let m
′

1 be the number of size-1 items on the remaining items list, and let m
′

2 be the number

of size-2 items on the remaining items list. We know that all the non load-saturated nodes

have k units of utilized space. This node has bk2 c size-2 groups (i.e. either two size-1 items

or a single size-2 item) and a size-1 item. Let the load on this size-1 item be x.

• If m
′

1 = 0, then the same reasoning as for case 1 gives us the desired bound.

• If m
′

1 = 1. Since we know that all the non load-saturated nodes are size-saturated,

we have at least bk2 c + 1 objects (both size-1 and size-2 items) on the lightest loaded

node. Therefore, the maximum load of the smallest object on the lightest loaded node

is ≤ cL
b k2 c+1

. The load of the single size-1 item on the remaining items list must be at

most x and must also be ≤ cL
b k2 c+1

≤ cL
b k2 c

since otherwise, the algorithm would have

obtained a better packing by swapping the size-1 item on the remaining items list with

the lowest object (a size-1 or size-2 item) on the lightest loaded node.

U ≤ min(x,
cL

bk2 c
) +m

′

2(
cL− x
bk2 c

)

≤ min(x,
cL

bk2 c
) + (b2Nl − 1

2
c)(cL− x

bk2 c
)

≤ min(x,
cL

bk2 c
) + (Nl − 1)(

cL− x
bk2 c

)

≤ NlcL

bk2 c

• If m
′

1 ≥ 2. Let Li1 be the remaining load of the ith size-1 item and let Lj2 be the

remaining load of the jth size-2 item. Since m
′

1 ≥ 2, we must have that load of any

unpacked size-2 group be less than the load of the smallest size-2 group on the lightest

loaded node. We can thus obtain a bound for
∑m′1
i=1 L

i
1 as follows. Consider all pairs of

size 1 items with load Li1 + Lj1 with i 6= j. The total load for this pair cannot exceed

cL−x
b k2 c

, which is the load for the minimum size 2 group that was packed. Summing over

all pairs gives ∑
(i,j)i 6=j

(Li1 + Lj1) = (m′1 − 1)
m′1∑
i=1

Li1.

38



Thus

(m′1 − 1)
m′1∑
i=1

Li1 ≤
m′1(m′1 − 1)

2
cL− x
bk2 c

.

Simplifying yields
m′1∑
i=1

Li1 ≤
m′1
2
cL− x
bk2 c

.

U ≤
m′1∑
i=1

Li1 +
m′2∑
j=1

Lj2

≤ m
′

1.min(x,
1
2

(
cL− x
bk2 c

)) +m
′

2(
cL− x
bk2 c

)

≤ (m
′

1 + 2m
′

2)
2

.
cL

bk2 c

≤ NlcL

bk2 c

2.4 Tight Algorithm for si ∈ {1, 2, 22, . . . , ∆}

We extend the multi-list algorithm from Section 2.3 for the case when sizes are in the set S =

{1, 2, 22, . . . ,∆} and log ∆ ∈ Z. Say k = p∆ + q where p, q,∆ ∈ Z and 0 ≤ q < ∆. The approach,

presented in this section, to obtain a tight algorithm for an instance where S = {1, 2, 22, . . . ,∆}

is to first reduce it to an instance where S = {q,∆} and then extend the algorithm from Section

2.3 to solve the simpler instance. As in Section 2.3, we assume that ignoring load constraints,

there exists a feasible packing of all the items. Also, as earlier, we assume that the total size of

all the items in the input instance is equal to Nk (inserting dummy size-1 items with zero load, if

necessary, to ensure this) and that the total demand of all the items in the input instance is equal

to NL.

2.4.1 Reduction to S = {q, ∆}

Given an instance where S = {1, 2, 22, . . . ,∆}, we will reduce it to an instance where

S = {q,∆} so that if there was a packing of all the items (ignoring load constraints) in the original

39



instance, then there will be a packing of all the items (ignoring load constraints) in the reduced

instance.

To ensure that the reduced instance has a packing of all the items (ignoring load constraints),

we will create N groups of size q each and Np groups of size ∆ each. To verify that such groups

must exist in any instance where S = {1, 2, 22, . . . ,∆} and where all the items can be packed

(ignoring load constraints), consider any such packing that assigns all the items. Now on each

disk we form as many size-∆ groups using these items as possible. This is done by consecutively

merging groups of the same size smaller than ∆ on each disk, until on each disk there exists at

most one group each of any size < ∆ along with some number of groups of size ∆. These remaining

groups with size < ∆, at most one of each such size, are then merged into a single group of size

say g. Note that g < ∆. Since k = p∆ + q and since each disk was packed to its full capacity k,

there must be p groups of size ∆ and one group of size g = q on each disk. Also note that q is

the sum of a unique subset of sizes from S. For instance, q = 7 can only be represented (without

repetitions) as q = 1 + 2 + 4 if S = {1, 2, 4, 8, . . . ,∆}. Say q =
∑r

′

i=1 ai where ai ∈ A ⊆ S/∆. Any

group of size q can therefore be further broken down into r
′

= |A| groups of size ai each. So there

must be N groups of size ai each for every ai ∈ A and Np groups of size ∆ each. So as long as we

show how to form these groups, we have shown that there is a packing of all the items (ignoring

load constraints) in the reduced instance.

We form these groups as follows. Let m(si) denote the number of size si items for any

si ∈ S. For any i, j let si < sj if i < j. We have sj = 2j−1 for any 1 ≤ j ≤ log ∆ + 1. Let s0 = 0

and m(s0) = 0. The initial number of items is then represented by {m(1),m(2),m(22), . . . ,m(∆)}.

The algorithm then proceeds in rounds starting from round i = 1 and ending when round i = r
′

is complete.

At the end of round i − 1 (for i > 1) there must be at least N groups of size ai−1 (see

Lemma 2.4.1). Before the start of round i(> 1), the algorithm ensures that there are exactly N

groups of size ai−1. Say m(ai−1) = N + n
′
. If n

′
> 0, we pair up each of the n

′
items to form

bn′/2c groups of size sj = 2ai−1. Before round i = 1, we start with zero items of size a0 = 0. In

40



round i, we form at least N groups of size ai. All items with sizes sj such that ai−1 < sj < ai are

merged together to form size ai groups as follows. Starting from sj = 2 ∗ ai−1 two items with size

sj are merged together to form an item of size sj+1. This merge operation decreases m(sj) by 2

and increases m(sj+1) by 1. Once m(sj) ≤ 1, we continue this process with size sj+1 items. The

process stops when m(sj) ≤ 1 where sj+1 = ai. This way we have merged all items smaller than

ai but larger than ai−1 into size ai groups. This marks the end of round i.

Lemma 2.4.1. At the end of round i (for i ≥ 1) the algorithm produces at least N groups of size

ai where i ≤ r′ , q =
∑r

′

i=1 ai and ai ∈ A ⊆ S/∆.

Proof. (Sketch) We have the invariant that before round i begins, there are a maximum number

of size sk = 2 ∗ ai−1 groups that can be formed using the instance excluding N groups of each size

aj , j ≤ i− 1.

This is trivially true before round i = 1 begins. To see that the invariant holds true before

the start of the next round i + 1, consider round i. In round i, starting with sj = 2 ∗ ai−1,

the algorithm forms as many groups of size sj+1 as possible (excluding N groups of each size aj ,

j ≤ i−1) by merging pairs of groups of size sj . This merging results in the largest possible number

of size sj+1 groups (excluding N groups of each size aj , j ≤ i− 1) since any group of size sj+1 can

only be formed using either two groups of size sj or using a single item of size sj+1 and we start

with the maximum possible number of size sj items (excluding N groups of each size aj , j ≤ i−1).

So at the end of round i, the algorithm creates as many size sj = ai groups as possible excluding

N items of each size aj , j ≤ i− 1.

Since there exists a packing of all the items (ignoring load constraints) we know that there

are at least N groups of each size aj for j ≤ i and we have the maximum possible number of size

ai groups (excluding N items of each size aj , j ≤ i− 1) at the end of round i. Consequently m(ai)

must be at least N . Say m(ai) = N +n
′
. If n

′
> 0, we pair up each of the n

′
items to form bn′/2c

groups of size sj+1 = 2ai. Again, we have the maximum number of size sj+1 = 2ai groups along

with exactly N groups of each size aj , j ≤ i and the invariant holds before the start of round i+ 1.

Consequently at the end of round r
′

the algorithm produces at least N groups of size ai where

41



i ≤ r′ .

At the end of round r
′
, we have m(ai) = N + n

′′
(see Lemma 2.4.1). As before if n

′′
> 0,

we pair up each of the n
′′

items to form bn′′/2c groups of size sj = 2ar′ . If sj = ∆, we are done.

If not, starting from sj = 2ar′ two items with size sj are merged together to form an item of size

sj+1. Once m(sj) ≤ 1, we continue this process with size sj+1 items. The process stops when

m(sj) ≤ 1 where sj+1 = ∆.

Lemma 2.4.2. At this stage of the algorithm, there are exactly N groups of each size ai and zero

groups of any size sj 6= ai where sj < ∆ and 1 ≤ i ≤ r′ .

Proof. We know from Lemma 2.4.1 that there must be at least N groups of size ai for each

1 ≤ i ≤ r′ . The algorithm ensures that there is at most one remaining group of any size sj where

sj < ∆, excluding N groups of each size sj = ai for each 1 ≤ i ≤ r′ (otherwise it would have found

another pair of items to merge). The sum of the sizes of all these remaining groups is some g < ∆

since there is at most one each of any size < ∆. Now since the original instance had N groups

of size ai each and Np groups of size ∆ it follows that since we already have N groups of size ai

each, the total space of the size ∆ groups and the size g group must be equal to Np∆. However,

since g < ∆ and all the other groups have size = ∆, it follows that we must have that g = 0.

Note that while the merge operation changes the number of groups in the instance, the total

size of the groups remains unchanged. So at the end of this final round, since the total space of

items used to form these groups is Np∆ (this follows from Lemma 2.4.2) and because we form

groups of size exactly equal to ∆, we must have Np groups of size ∆. We complete the reduction

by forming N groups of size q each by merging one group of each size a1, . . . , ar′ .

2.4.2 Tight algorithm for the reduced instance

The algorithm works in two phases. In the first phase, it attempts to pack all the items

using an algorithm similar to that of Section 2.3. In the second phase, the algorithm improves this

packing using local-search swaps.

42



During the first phase, the algorithm has two lists; q-list consisting of groups of size q (N

initially) arranged in non-decreasing order of demand and ∆-list consisting of groups of size ∆ (Np

initially) arranged in non-decreasing order of demand.

For each node, the algorithm must make a selection of groups from q-list and ∆-list. Exactly

one group is always chosen from q-list and w1 (1 ≤ w1 ≤ p) consecutive groups from ∆-list are

chosen.

Define wasted space of a selection to be the sum of the unused space and the size of the size

of the group that must be split to make the selection load-feasible. At each stage, the algorithm

makes a list of selections L by combining the following selections - w1 (1 ≤ w1 ≤ p) consecutive

groups from ∆-list and one size-q group from q-list.

If ∀l ∈ L, load(l) < L the algorithm outputs the selection with highest load. If ∃l ∈ L where

load(l) ≥ L, then let D be the set of all the selections in L with load ≥ L. Let D
′ ⊆ D be the

set of all the selections which can be made load-feasible by allowing the split of either the highest

size-∆ group or the size-q group in the selection. The algorithm choses d ∈ D
′

with minimum

wasted space. The algorithm outputs d
′

= d1, . . . , d
′

i where di = d
′

i + d
′′

i , load(d1 . . . di) ≥ L and

load(d1 . . . d
′

i) = L. In the step above, the algorithm is said to split group di. If d
′′

i > 0 the

algorithm reinserts d
′′

i into the appropriate position in the list form which di was chosen. If us(i)

< k, then the split piece is forced into the next selection. The algorithm proceeds in this way until

its outputs a selection of groups for each of the N nodes.

Lemma 2.4.3. If us(i) < k for any load-saturated node, then all the demand is packed when the

algorithm terminates

Proof. Suppose the items assigned to a load saturated node i are x1, . . . , xr (in non-decreasing

order of load). Then
∑r−1
j=1 lj < L and

∑r
j=1 lj = L. Note that the items must be the first

r − 1 items from the ∆-list along with the first item from the q-list. If not, then we can derive

a contradiction by finding a selection with load ≥ L but with lesser wasted space. Note that if

us(i) < k then us(i) ≤ k − ∆. As a result, the split piece can always be accommodated in the

selection for the next round. Further, every future selection with us(i) ≥ k −∆ has load ≥ L. So

43



the algorithm continues to produce load-saturated nodes until all items are packed or until we run

out of nodes.

Lemma 2.4.4. At the end of phase 1 of the algorithm there are at most Nl groups that remain

unpacked.

Proof. Call the packing we obtain at the end of phase 1 as P . To count the number of unpacked

groups in P , note that we assume there is a packing of all items (ignoring load constraints) in

the original instance. Consider any such packing say P
′
. The total space of the groups in this

packing P
′

is Nk. In our packing P , only a single group is split on any load-saturated node and

consequently at most Nl new copies of groups are created. The newly created groups have size

identical to one of the original groups. Further, the total space of packed groups in packing P from

Lemma 2.4.3 is Nk. Consequently, the packing at the end of phase 1, P can be transformed into

packing P
′

by a series of swaps between groups in P and the list of unpacked groups. Note that

the swaps do not change the number of unpacked groups, they simply change which groups were

not packed. Consequently, once we transform the packing at the end of phase 1, P into the packing

P
′
, the only groups that remain in the list of unpacked groups are the newly created groups and

there are at most Nl such groups.

If there are no size-q items remaining at the end of phase 1, then we are done. However, if

there are size-q items remaining at the end of phase 1, then we need to do local-search swaps to

improve the packing. These local-search swaps are performed during phase 2.

In phase 2, if the size-q list is not empty, the size-q groups are first broken into their

constituent items. Recall that in Section 2.4.1, an instance where sizes were originally in the set

S = {1, 2, 22, . . . ,∆} was reduced to an instance where sizes are in the set S = {q,∆}. The

algorithm then forms as many size-∆ groups using these items as possible. This is done, as

in Section 2.4.1, by consecutively merging groups of the same size smaller than ∆, until there

exists at most one group each of any size < ∆ along with some number of groups of size ∆. These

remaining groups with size < ∆, at most one of each such size, are then merged into a single group,

44



say this group has size g. Note that g < ∆. At the end of this merge operation, the algorithm

produces some number of size-∆ items along with at most one size-g group. The algorithm places

all these groups (including the size-g group) in the remaining groups list R. The list R now has

these newly created groups along with the groups that remained unpacked at the end of phase

1. Note that R has at most Nl groups since the merge operation cannot increase the number of

unpacked groups and from Lemma 2.4.4, there were at most Nl unpacked groups before the start

of the merge operation.

The algorithm then does a series of local-search swaps to improve the load of the packing.

In the local-search step, the least profitable group on a non load-saturated node is swapped out

and the most profitable group remaining in R is swapped in. If the swap results in an improvement

in the load of the node, then the swap is retained else no improvement is possible and the phase

ends. If the swap results in an improvement and also causes the node to become load-saturated,

then the item that was swapped in is split (as before) to make the node load-feasible and the

remaining piece is reinserted into the remaining items list R. Note that the local-search operation

guarantees that the number of items in R never exceeds Nl. This is because a new item is added

to R only if a previously non load-saturated node becomes load-saturated and hence Nl increases

by 1. Consequently, we have the following Lemma.

Lemma 2.4.5. At the end of phase 2 of the algorithm, there are at most Nl groups that remain

unpacked.

Theorem 2. It is always possible to pack a (1− 1

(1+
√
b k∆ c)2

)-fraction of items for any instance.

Proof. As a result of the Lemmas 2.4.4 and 2.4.5, we know that at the termination of the algorithm

there are at most Nl unpacked groups. The local-search swaps during phase 2 ensure that the load

any unpacked group is at most the load of the least profitable group on a non-load saturated disk.

Let the load on the lightest loaded non load-saturated node be cL. Since any non load-saturated

node must have at least b k∆c + 1 groups, any unpacked group can therefore have load at most

cL
b k∆ c+1

< cL
b k∆ c

. The total load of the remaining items (U) is therefore ≤ NlcL
b k∆ c

.

The number of satisfied clients (S) is at least L×Nl+ c×Ns×L. Subtracting this quantity

45



from the upper bound on the load of the input instance (N × L) gives us U ≤ (1 − c) × Ns × L

where U is the unassigned clients. Hence the ratio of unpacked (U) to packed (S) items can be

bounded as follows.

U

S
≤

min(Nl×c×Lb k∆ c
, (1− c)×Ns × L)

L×Nl + c×Ns × L

Since

S

U + S
=

1
1 + U

S

the claimed bound now follows from the method outlined below to upper bound U
S .

The ratio of unpacked (U) to packed (S) items is at most

U

S
≤

min(Nl×c×Lb k∆ c
, (1− c)×Ns × L)

L×Nl + c×Ns × L

Let y = Nl
N and thus 1− y = Ns

N . Simplifying the upper bound above we obtain.

U

S
≤

min( cy
b k∆ c

, (1− c)(1− y))

y + c(1− y)

U

S
≤ min(

cy
b k∆ c

y + c(1− y)
,

(1− c)(1− y)
y + c(1− y)

)

The first term is strictly increasing as c or y increases, while the second term is strictly decreasing

as c or y increases. So in order to maximize the expression, we need to set the two terms equal,

which means

cy

b k∆c
= (1− c)(1− y)

y =
1− c

1− c+ c
b k∆ c

Substituting for y gives us that the upper bound for U/S is at most c−c2
b k∆ c−b

k
∆ cc+c2

. This achieves

its maxima when c = (1− 1

1+
√
b k∆ c

). The fraction of all the items that are packed is

S

U + S
=

1
1 + U

S

(2.2)

S

U + S
≥ (1− 1

(1 +
√
b k∆c)2

)

46



2.5 Tight Example for si ∈ {1 . . . ∆}

The tight example in this section is for the case where si ∈ {1, . . . ,∆} and is an extension

of the tight example presented in [70] for the uniform size sliding window algorithm. The tight

example instances will only consist of size-∆ items.

We give an example to show that the bound of (1− 1

(1+
√
bk/∆c)2

) on the fraction of packed

demand (i.e. the fraction of assigned clients) is tight. In other words, there are instances for which

no solution can pack more than a (1 − 1

(1+
√
bk/∆c)2

)-fraction of the total demand. Assume that

b k∆c is a perfect square, where k is the storage capacity of a node. Let N the number of nodes be

1 +
√
b k∆c and let L = b k∆c+

√
b k∆c. There are b k∆c size-∆ items with a large demand (call them

“large items”). Say these items are U1, . . . , U√b k∆ c each with demand 2 +
√
b k∆c. There are also

(b k∆c − 1)(1 +
√
b k∆c) + 1 size-∆ items with a small demand (call them “small items”). Say these

items are U√b k∆ c+1
, . . . , Ub k∆ c(1+

√
b k∆ c)

.

We will show that at least
√
b k∆c demand will never get packed. In this case, the fraction

of unpacked items is at least
√
b k∆ c

(1+
√
b k∆ c)(b

k
∆ c+
√
b k∆ c)

which is exactly 1

(1+
√
b k∆ c)2

. This proves the

claim.

First consider the
√
b k∆c large items. An unsplit item Ui has all its demand allocated to a

single node. A split item Ui has its demand allocated to several nodes. For a node that contains at

least one large unsplit item, the available load capacity is at most b k∆c−2. Note that after packing

one large unsplit item, the available load capacity is smaller than the storage capacity. Even is

there is no single large unsplit item on a node, we can obtain the same configuration without losing

any packed demand by swapping the demand of this item with the demand of the other items on

the node. The nodes now have one large unsplit item and at most b k∆c − 2 small items. The

remaining nodes have only large split items. Assume that there are exactly p(0 ≤ p ≤ b k∆c) large

items that do not get split U1, . . . , Up with node di containing Ui.

Consider the remaining N − p nodes; we are left with at least b k∆c × N − p(b
k
∆c − 1) =

b k∆c× (N−p)+p items, but we only have b k∆c× (N−p) storage capacity left. Since the remaining

b k∆c − p large items are all split, this generates an additional b k∆c − p instances of items. Thus we

47



have at least b k∆c × (N − p) + p+ b k∆c − p items. This will create an excess of b k∆c items that we

cannot pack.

2.6 Generalized Sliding Window Algorithm (SW-Alg2)

The sizes of the items in our instance are chosen from the set {1, . . . ,∆}. In this section,

we present algorithm SW-Alg2 that guarantees to pack a k−∆
k+∆

(
1− 1(

1+
√

k
2∆

)2

)
-fraction of clients

for any valid problem instance.

The algorithm works in two phases. In the first phase it produces a solution for a set of N

nodes each with storage capacity k+∆−1 and load capacity L. In the second phase, the algorithm

makes the solution feasible by dropping items from these nodes until the subset of items on each

node has size at most k.

In the first phase of the algorithm, the algorithm keeps the items in a list sorted in non-decreasing

order of density ρi, where ρi = li
si

, li and si are the load and size of item i. At any stage of the

algorithm, this list will be referred to as the list of remaining items.

For each node, the algorithm attempts to find the first (from left to right in the sorted list)

“minimal” consecutive set of items from the remaining items list such that the load of this set is at

least L and the total size of the items in the set is at most k+∆−1. We call such a consecutive set

of items a “minimal” load-saturating set. The set is “minimal” because removing the item with

highest density (i.e., the rightmost item) from this set will cause the load of the set to become

less than L. Say the items in such a “minimal” set are some xu, . . . , xv. We have
∑v
i=u li ≥ L,∑v−1

i=u li < L,
∑v
i=u si ≤ k+ ∆− 1 and u is the first index where such a load-saturating set can be

found. If a “minimal” load-saturating set is found, then the algorithm breaks the highest density

item in this set (i.e., xv) into two pieces xv′ and xv′′ such that lv′ +
∑v−1
i=u li = L. The piece xv′′

is reinserted into the appropriate position on the remaining items list.

If the algorithm is unable to find such a “minimal” load-saturating set, then it outputs the

48



last (from left to right) “maximal” consecutive set of the highest density items from the remaining

items list. We call such a set a “maximal” non load-saturating set. Say the items in this “maximal”

set are some xp, . . . , xq (where xq is the last item on the list of remaining items at this stage).

The set is “maximal” in the sense that sp−1 +
∑q
i=p si > k + ∆ − 1 (if xp is not the first item

in the list of remaining items) and
∑q
i=p si ≤ k + ∆ − 1. Since we know that the set was not a

load-saturating set we have
∑q
i=p li < L.

The algorithm outputs these sets as follows. Let the items on the remaining items list be

x1, . . . , xq. For each node, add item x1 to the current selection. Repeat the following steps until we

find either a “minimal” load-saturating set or a “maximal” non load-saturating set: Say the next

item, that is the item on the remaining items list after the last item in current selection, at any

stage is xi. If load(current selection) < L and si+size(current selection) ≤ k+∆−1, then add xi to

current selection. Else if load(current selection) < L and si + size(current selection) > k + ∆− 1,

drop the lowest density items from current selection as long as si + size(current selection) >

k+ ∆−1, and then add xi to current selection. Note that if load(current selection) ≥ L or xi = ∅,

then we have found either a “minimal” load-saturating set or a “maximal” non load-saturating

set. If the algorithm finds a “minimal” load-saturating set then it breaks off the highest density

item in current selection (as described above), reinserts the broken-off piece into the appropriate

position on the remaining items list and outputs the modified current selection. If the algorithm

finds just a “maximal” non load-saturating set, it simply outputs the current selection. After the

algorithm outputs a selection, these items are removed from the list of remaining items. At the

end of the first phase of the algorithm, each node is assigned either a “minimal” load-saturating

set of items or a “maximal” non load-saturating set of items.

In the second phase, for each node, the algorithm drops the lowest density items assigned

to the node until the size of the packing is at most k. Since the load of the packing was feasible to

begin with, at the end of this phase the algorithm produces a feasible solution.

Theorem 3. It is always possible to pack a k−∆
k+∆

(
1− 1(

1+
√

k
2∆

)2

)
-fraction of clients for any valid

input instance.

49



Lemma 2.6.1. If us(i) ≤ k−∆ for any load-saturated node i at the end of phase I of the algorithm,

then all items are packed at the end of phase I of the algorithm.

Proof. Suppose that the items assigned to a load-saturated node i are x1, . . . , xp (in non-decreasing

order of density). Then we have
∑p
j=1 sj ≤ k −∆− 1,

∑p
j=1 lj ≥ L and

∑p−1
j=1 lj < L.

If the items in our current selection are not the first p items, then clearly some items were

dropped. Since some items were dropped, adding in another item to the current selection must

have made size(current selection) > k + ∆ − 1. The algorithm will then drop items to make the

current selection size feasible. Since each item has size at most ∆, this operation cannot decrease

us(i) below k. We have a contradiction since we assumed us(i) ≤ k −∆. So the only way for the

selection to have size ≤ k−∆−1 is for the selection to consist of some p items where these p items

are also the first p items in the list of remaining items.

As a result, every consecutive subset of items of size between k − ∆ and k − 1 has load

≥ L. Since the algorithm permits every node to pack items of total size upto k+ ∆− 1 in phase I,

note that the broken off piece (which has size ≤ ∆) from the previous load-saturated node can be

accomodated in the next load-saturated node. In this way, the algorithm produces load-saturated

nodes until there are no more items in the remaining items list.

Lemma 2.6.2. At the end of phase I of the algorithm, at least a

(
1− 1(

1+
√

k
2∆

)2

)
-fraction of

clients are packed.

Proof. We will argue that the total unassigned load at the end of phase I is less than 2∆NlcL
k where

Nl is the number of load-saturated nodes in the assignment and cL denotes the load of the lightest

loaded non load-saturated node in the assignment. The bound will then follow from the method

outlined in the proof of Theorem 1. (Note that the bound we use there is NlcL
b k2 c

.) Observe that at

the end of phase I of the algorithm, every item that has unassigned load (i.e., every item on the list

of remaining items at the end of phase I of the algorithm) will have density less than that of the

lowest density item on lightest loaded node. This is because when we are unable to produce any

more load-saturated nodes, the algorithm effectively outputs the largest possible consecutive set of

the highest density items. Let items x1, . . . , xp be assigned to the lightest loaded non load-saturated

50



node. Since the load of the lightest loaded node is cL, we also have
∑p
i=1 load(xi) = cL. Since in

phase I we allow each node to be filled upto size k + ∆− 1, we have k <
∑p
i=1 size(xi) < k + ∆,

unless all the items have been packed. Let ρmin denote the density of the lowest density item

assigned to the lightest loaded node. Then we have:

ρmin

p∑
i=1

size(xi) ≤
p∑
i=1

ρi · size(xi) = cL

ρmin ≤ cL∑p
i=1 size(xi)

ρmin <
cL

k

Now for each item yi on the remaining items list, since the density of yi is less than ρmin, we

have load(yi) ≤ ρmin · size(yi). So the total load of the items on the remaining items list is

≤ ρmin ·
∑
size(yi). Since at the end of phase I the remaining items list was not empty, from

Lemma 2.6.1, we know that each load-saturated node is filled to size > k −∆. Further, we know

that each non load-saturated node is filled to size > k, otherwise we can add an item to this node.

Since our instance was feasible, the total size of all the items in the instance is Nk. Every time we

create a load-saturated node we might split at most one item and this item can have size at most

∆. As a result, the size of the unpacked items is:

∑
size(yi) ≤ Nk +Nl∆−Nl (k −∆)−Nsk = 2Nl∆

where each yi is an item on the remaining items list, Nl is the number of load-saturated nodes and

Ns is the number of non load-saturated nodes. So the total unassigned load (i.e. the total load of

the items on the remaining items list at the end of phase I of the algorithm) is ≤ ρmin · 2∆Nl <

2∆NlcL
k .

Let S be the total load of items packed at the end of phase II and let S′ be the total load

of items packed at the end of phase I.

Lemma 2.6.3. At the end of phase II of the algorithm, S
S′
≥ k−∆

k+∆ .

Proof. Say the items assigned to a node are x1, . . . , xp (these items are labeled in non-decreasing

order of density). Suppose
∑p
j=1 size(xj) > k. Say items x1, . . . , xq need to be dropped from the

51



selection to make
∑p
j=q+1 size(xj) ≤ k. Since the largest sized item in our instance has size ∆,∑q

j=1 size(xj) ≤ 2∆ and
∑p
i=q+1 si > k −∆. Let ρ be the density of item xq+1. Since the items

x1, . . . , xp are labeled in non-decreasing order of density, for each node we can lower bound the

remaining load (after dropping items x1, . . . , xq to make it size-feasible) as follows:

∑p
i=q+1 ρisi ≥ ρ

∑p
i=q+1 si > ρ (k −∆)

Further, for each node we can upper bound the lost load as follows:

q∑
i=1

ρisi ≤ ρ (2∆) .

Therefore, the ratio of total lost load to total remaining load is at most 2∆
k−∆ and the fraction of

total load remaining after phase II is at least k−∆
k+∆ (using Equation 2.1).

Using these two lemmas, we easily obtain the proof of Theorem 3.

2.7 Polynomial Time Approximation Schemes

From Theorem 3 we know that when the sizes of our items are chosen from the set {1 . . .∆},

algorithm SW-Alg2 guarantees to pack a k−∆
k+∆

(
1− 1(

1+
√

k
2∆

)2

)
-fraction of clients for any valid

problem instance. Say f(k,∆) = k−∆
k+∆

(
1− 1(

1+
√

k
2∆

)2

)
.

Note that

f(k,∆) >
k −∆
k + ∆

(
1− 1

k
2∆

)
>
k −∆
k + ∆

(
1− 1

k−∆
2∆

)
.

Thus algorithm SW-Alg2 can definitely pack a k−∆
k+∆

(
1− 1

k−∆
2∆

)
-fraction of items for any valid

problem instance. Also note that k−∆
k+∆

(
1− 1

k−∆
2∆

)
tends to 1 as k →∞.

If 1−ε ≤ k−∆
k+∆

(
1− 1

k−∆
2∆

)
then we can use Algorithm SW-Alg2 and get a solution within the

desired error bounds. If 1−ε > k−∆
k+∆

(
1− 1

k−∆
2∆

)
then k is a constant (k < 2(2−ε)∆

ε ) and we develop

a PTAS for this case. This scheme is a generalization of the scheme developed in [70]. Algorithm

PTAS takes as input parameters k, c and ε′ and produces a solution that has an approximation

factor of (1 − ε′)3, in time that is polynomial for fixed ε′ > 0 and integers k, c. The sizes of the

items are in the set {a1, . . . , ac} with ai ≥ 1. (If the sizes are chosen from {1, . . . ,∆} for some

52



constant ∆, then this is easily seen to be the case.) To get a (1 − ε) approximation, we simply

define ε′ = 1− (1− ε) 1
3 .

For technical reasons we will also need to assume that ε′ ≤ 1
k . If this is not the case, we

simply lower the value of ε′ to 1
k . Since k is a fixed constant, lowering the value of ε′ only yields a

better solution, and the running time is still polynomial.

The approximation scheme involves the following basic idea:

1. Any given input instance can be approximated by another instance I ′ such that no data item

in I ′ has an extremely high demand.

2. For any input instance there exists a near-optimal solution that satisfies certain structural

properties concerning how clients are assigned to nodes.

3. Finally, we give an algorithm that in polynomial time finds the near-optimal solution referred

to in step (2) above, provided the input instance is as determined by step (1) above.

We now describe in detail each of these steps. In what follows, we use OPT(I) to denote an

optimal solution to instance I and α to denote 1/ε′. Also, for any solution S, we use |S| to denote

the number of items packed by it.

2.7.1 Preprocessing the Input Instance.

We say that an instance I is B-bounded if the size of each set Uj is at most B. We omit the

proof of the following lemma as it is the same as in [70].

Lemma 2.7.1. For any instance I, we can construct in polynomial time another instance I ′ such

that

• I ′ is (αL)-bounded,

• any solution S′ to I ′ can be mapped to a solution S to I of identical value, and

• |OPT(I ′)| ≥ (1− ε′)|OPT(I)|.

53



2.7.2 Structured Approximate Solutions.

Let us call a data item j unpopular if |Uj | ≤ ε′ Lk , and popular otherwise. For a given solution,

we say that a node is light if it contains less than ε′L clients, and it is called heavy otherwise. The

lemma below shows that there exists a (1−ε′)-approximate solution where the interaction between

light nodes and popular data items and between heavy nodes and unpopular data items, obeys

some nice properties. The proof of the following lemmas is in [70].

Lemma 2.7.2. For any instance I, there exists a solution S satisfying the following properties:

• at most one light node receives clients from a set Uj.

• a heavy node is assigned either zero or all clients that require an unpopular item.

• S packs at least (1− ε′)OPT(I) items.

For a given solution S, a node is said to be δ-integral w.r.t. to a data item Uj if it is assigned

βdδLe clients from Uj , where 0 < δ ≤ 1 and β is a non-negative integer.

Lemma 2.7.3. Any solution S can be transformed into a solution S′ such that

• each heavy node in S is (ε′2/k)-integral in S′ w.r.t. each popular data item, and

• S′ packs at least (1− ε′)|S| items.

• each heavy node packs (1− ε′)L items corresponding to popular items.

2.7.3 The Approximation Scheme.

Start by preprocessing the given input instance I so as to create an (αL)-bounded instance

I ′ as described in Lemma 2.7.1. We now give an algorithm to find a solution S to I ′ such that

S satisfies the properties described in Lemmas 2.7.2 and 2.7.3 and packs the largest number of

clients. Clearly,

|S| ≥ (1− ε′)2|OPT(I ′)| ≥ (1− ε′)3|OPT(I)|.

54



Let O be an optimal solution to the instance I ′ that is lexicographically maximal. Assume

w.l.o.g. that we know the number of heavy nodes in O, say N ′. Let H be the set of nodes d1

through dN ′ and let L be the remaining nodes, dN ′+1 through dN . The algorithm consists of two

steps, corresponding to the packing of nodes in H and L respectively.

Packing items in H: We first guess a vector 〈l1, l2, ..., lN ′〉 such that li = 〈l1i , . . . , l∆i 〉 where lji

denotes the number of unpopular size aj data items whose clients are assigned (completely) to a

node di ∈ H.

Since all nodes are identical, we can guess each such vector in O(Nk+1∆
) time by guessing

a compact representation of the following form. First note that the number of possible distinct

li vectors is upper-bounded by (k + 1)∆, simply because each lji value is chosen from the set

{0, 1, . . . , k}. (Note that better bounds can be derived since to be a feasible packing we require that∑
j l
j
iaj ≤ k.) Let T (1), T (2), . . . , T (γ) be distinct feasible vectors. We guess a vector 〈q0, q1, · · · , qγ〉

such that
∑γ
i=0 qi = N ′ where qi denotes the number of nodes in H that are of type T (i). It is

easily seen that any such vector can be mapped to a vector of the form 〈l1, l2, ..., lN ′〉 and vice

versa. Now proceeding from 1 through N ′, we assign to node di the largest size lji size aj unpopular

data items that remain.

Next we develop a dynamic program moving across the nodes from 1 through N ′ so as to

find an optimal (ε′2/k)-integral solution for packing the largest number of clients from the popular

data items.

For the purpose of this packing, the capacity of each heavy node is restricted to be (1− ε′)L

and the number of data items allowed in node di is given by k−
∑
j l
j
iaj , since we already packed

lji unpopular items of size aj in di.

Let β = k/ε′3 and q = d(ε′2L)/ke. The dynamic program is based on maintaining a β-tuple

~v = 〈v1
1 , v

1
2 , ..., v

1
β , v

2
1 , v

2
2 . . . , v

2
β , . . . , v

∆
1 , v

∆
2 , . . . , v

∆
β 〉 where vji denotes the number of size aj popular

data items that have i · q clients available in them.

Proceeding from i = 1 through N ′, we compute a table entry T [~v, i] for each possible state

vector ~v. The entry indicates the largest number of clients that can be packed in the nodes d1

55



through di subject to the constraint that the resulting state vector is ~v. Since there are at most

Nk items, the total number of state vectors is bounded by (Nk)∆k/ε′3 , which is polynomial for

any fixed ε′.

Packing items in L: We know that our solution need not assign clients corresponding to a popular

data item to more than one node in L. Moreover, at most ε′L clients from any popular data item

are packed in a node in L. So at this stage we can truncate down the size of each popular data item

to bε′Lc. Together with the unpopular items, we have ∆ lists of items, L′i (i = 1 . . .∆)where L′i

has both popular and unpopular items of size ai. The popular items are truncated as mentioned

above.

We have exactly N−N ′ nodes that are light nodes, and we wish to obtain an optimal packing

of these light nodes using the ∆ lists mentioned above. First note that if ε′ ≤ 1
k then no subset

of data items of total size at most k can ever load saturate a node. This essentially implies that

we can ignore the load dimension, only worrying about the storage capacity constraint. However,

at the same time we wish to pack a set of data items that yield the maximum number of assigned

clients.

Our approach is based on the following idea. For each i = 1 . . .∆ we guess ni, the number

of data items from L′i that are chosen to be packed in light nodes. Since there are O(M∆) such

choices, this is a polynomially bounded search space. For each such choice, we can easily compute

the “yield” of this guess, namely the number of clients that can be assigned if we can pack ni data

items from each list L′i in the N − N ′ light nodes. Note that within each list L′i we will always

choose the most profitable set of ni items (with the maximum number of clients).

We still need an algorithm to verify if it is possible to pack ni items from each list L′i. This is

done as follows. We can characterize each node by a vector (x1, x2, . . . x∆) where xi is the number

of items of size ai packed in this node. For this to be feasible, it must satisfy the property that∑∆
i=1 aixi ≤ k. Note that this immediately upper bounds the value of xi by b kai c. The number

of possible vectors is thus at most O(k∆), in other words a constant for fixed k and ∆. Hence

we obtain the fact that each light node is characterized by a constant number of (feasible) types

56



T (1), . . . , T (α) where T (j) = (xj1, . . . , x
j
∆).

Let Ni be the number of nodes of type T (i). Clearly, we are looking for a solution to the

following Integer Program (IP):

α∑
j=1

Nj = N −N ′

α∑
j=1

xjiNj = ni∀i = 1 . . .∆

The first constraint simply specifies that the total number of nodes of each type is exactly

the total number of light nodes. The second constraint says that exactly ni items of each size ai

are packed. Since this is an integer program with a constant number of variables, we can use the

algorithm by Lenstra [113] to solve it, or we can use the fact that each Ni is upper bounded by

N −N ′ to obtain a polynomial time algorithm.

57



Chapter 3

Centralized Data Reconfiguration

This is joint work with Samir Khuller, Yung-Chun (Justin) Wan and Leana Golubchik.

These results also appeared in [106].

3.1 Introduction

We live in an era of data explosion and this data explosion necessitates the use of large

storage systems. Storage Area Networks (or SANs) are the leading [170] infrastructure for enter-

prise storage. A SAN essentially allows multiple processors to access several storage devices. They

typically access the storage medium as though it were one large shared repository. One crucial

function of such a storage system is that of deciding the placement of data within the system. This

data placement is dependent on the demand pattern for the data. For instance, if a particular

data item is very popular the storage system might want to host it on a node with high bandwidth

or make multiple copies of the item. The storage system needs to be capable of handling flash

crowds [98]. During events triggered by such flash crowds, the demand distribution becomes highly

skewed and different from the normal demand distribution.

It is known that the problem of computing an optimal data placement (An optimal place-

ment will allow a maximum number of users to access information of their interest) for a given

demand pattern is NP-Hard [70]. However, polynomial time approximation schemes as well as effi-

cient combinatorial algorithms that compute almost optimal solutions are known for this problem

[156, 155, 70]. So we can assume that a near-optimal placement can be computed once a demand

pattern is specified.

As the demand pattern changes over time and the popularity of items changes, the storage

system will have to modify its internal placement accordingly. Such a modification in placement

will typically involve movement of data items from one set of nodes to another or requires changing

58



the number of copies of a data item in the system. For such a modification to be effective it should

be computed and applied quickly. In this work we are concerned with the problem of finding such

a modification i.e., modifying the existing placement to efficiently deal with a new demand pattern

for the data. This problem is referred to as the data migration problem and was considered in

[109, 71]. The authors used a data placement algorithm to compute a new “target” layout. The goal

was to “convert” the existing layout to the target layout as quickly as possible. The communication

model that was assumed was a half-duplex model where a matching on the nodes can be fixed,

and for each matched pair one can transfer a single object in a round. The goal was to minimize

the number of rounds taken. The paper developed constant factor approximation algorithms for

this NP-hard problem [109]. In practice these algorithms find solutions that are reasonably close

to optimal. However, even when there is no drastic change in the demand distribution it can still

take many rounds of migration to achieve the new target layout. This happens since the scheme

completely disregards the existing placement in trying to compute the target placement.

In this chapter we consider a new approach to dealing with the problem of changes in the

demand pattern. We ask the following question:

In a given number of migration rounds, can we obtain a layout by making changes to the existing

layout so that the resulting layout will be the best possible layout that we can obtain within the

specified number of rounds?

Of course, such a layout is interesting only if it is significantly better than the existing layout for

the new demand pattern.

We approach the problem of finding a good layout that can be obtained in a specified number

of rounds by trying to find a sequence of layouts. Each layout in the sequence can be transformed

to the next layout in the sequence by applying a small set of changes to the current layout. These

changes are computed so that they can be applied within one round of migration (a node may be

involved in at most one transfer per round).

We show that by making these changes even for a small number of consecutive rounds, the

existing placement that was computed for the old demand pattern can be transformed into one

59



that is almost as good as the best layout for the new demand pattern.

Our method can therefore be used to quickly transform an existing placement to deal with

changes in the demand pattern. We do not make any assumptions about the type of demand

changes – hence the method can be used to quickly deal with any type of change in the demands.

We also show that the problem of finding an optimal set of changes that can be applied in one

round is NP-hard (see Section 3.2.3 for the proof). The proof demonstrates that some unexpected

data movement patterns can yield a high benefit.

In the remaining part of the introduction, we present the model and the assumptions made,

and restate our result formally.

3.1.1 Model summary

We consider the following model for our storage system. There are N parallel nodes that

form a Storage Area Network. Each node has a storage capacity of K and has a load handling

capacity (or bandwidth) of L. Each node can be viewed as a collection of physical disks - i.e. as a

”logical disk”.

The efficiency of the system depends crucially on the data layout pattern that is chosen for

the nodes. This data layout pattern or data placement specifies for each item, which set of nodes

it is stored on (note that the whole item is stored on each of the nodes specified by the placement,

so these are copies of the item). The next problem is that of mapping the demand for data to

nodes. Each node has an upper bound on the total demand that can be mapped to that node. A

simple way to find an optimal assignment of demand to nodes, is by running a single network flow

computation in an appropriately defined graph (see Section 3.2.1).

Different communication models can be considered based on how the nodes are connected.

We use the same model as in [12, 82] where the nodes may communicate on any matching; in other

words, the underlying communication graph allows for communication between any pair of devices

via a matching (e.g., as in a switched storage network with unbounded backplane bandwidth).

This model best captures an architecture of parallel storage devices that are connected on a switched

60



network with sufficient bandwidth. This is most appropriate for our application. This model is one

of the most widely used in all the work related to gossiping and broadcasting. These algorithms

can also be extended to models where the size of the matching in each round is constrained [109].

This can be done by a simple simulation, where we only choose a maximal subset of transfers to

perform in each round.

Suppose we are given an initial demand pattern I. We use this to create an initial layout

LI . Over time, the demand pattern for the data may change. At some point of time the initial

layout LI may not be very efficient. At this point the storage manager may wish to re-compute

a new layout pattern. Suppose the target demand pattern is determined to be T (this could be

determined based on the recent demand for data, or based upon projections determined by previous

historical trends). Our goal is to migrate data from the current layout to a new layout. We would

like this migration to complete quickly since the system is running inefficiently in addition to using

a part of its local bandwidth for migrating data. It is therefore desirable to complete the conversion

of one layout to another layout quickly. However, note that previous methods completely ignored

the current layout and fixed a target layout LT based on the demand T . Is it possible that there

are layouts L′ with the property that they are almost as good as LT , however, at the same time

we can “convert” the initial layout LI to L′ in very few rounds (say compared to the number of

rounds required to convert LI to LT )? It is our objective to consider this central question in this

chapter. In fact, we answer the question in the affirmative by doing a large set of experiments.

To do this, we define the following one round problem. Given a layout LP and a demand

distribution T , our goal is to find a one round migration (a matching), such that if we transfer

data along this matching, we will get the maximum increase in utilization. In other words, we will

“convert” the layout LP to a new layout LP+1, such that we get the maximum utilization, and

the new layout is obtainable from the current layout in one round of migration.

Now we can simply use an algorithm for the one round problem repeatedly by starting with

the initial layout LI , and running ` iterations of the one round algorithm. We will obtain a layout

LI+`, which could be almost as good is the target layout LT .

61



Of course there is no reason to assume that repeatedly solving the one round problem will

actually yield an optimal solution for the ` round version of this problem. However, as we will see,

this approach is very effective.

3.2 The problem

3.2.1 Example

Since the formal definition of the problem will involve a lot of notation, we will first infor-

mally illustrate the problem and our approach using an example. In this example, we will show

an initial demand distribution I; an initial placement for this distribution LI ; we will then show

the changed demand distribution T . We will show why the initial placement LI is inadequate to

handle the changed demand distribution T . We will then show how a small change (a one-round

migration) to the initial placement LI results in a placement that is optimal for the new demand

distribution.

In this toy example, we consider a storage system that consists of 4 identical nodes. Each

node has storage capacity of 3 units and load capacity (or bandwidth) of 100 units. There are 9

data items that need to be stored in the system. The initial demand distribution I and the new

demand distribution T are as follows:

Item Initial demand New Demand

A 130 55
B 90 55
C 40 20
D 30 60
E 25 5
F 25 10
G 25 15
H 22 70
I 13 110

The placement LI (which in this case is also an optimal placement) obtained using the

sliding window algorithm. The sliding window algorithm proposed by Shachnai and Tamir [156] is

currently the best practical algorithm for this problem. For more on the sliding window algorithm

and its performance, see [70]. for the demand distribution above is as follows (the numbers next

62



to the items on nodes indicates the mapping of demand to that copy of the item):

Node 4

B

E

F H B

C

B A

G

A

I

25 22

30

40

30

50

25

53

25

77

13

10D

Node 1 Node 2 Node 3

Figure 3.1: Optimal placement LI for the initial demand distribution I, satisfies all the demand.

Storage capacity K=3, Bandwidth L=100. In addition to producing the layout the sliding window

algorithm finds a mapping of demand to nodes, which is optimal for the layout computed.

To determine the maximum amount of demand that the current placement LI can satisfy

for the new demand distribution T , we compute the max-flow in a network constructed as follows.

In this network we have a node corresponding to each item and a node corresponding to each

node. We also have a source and a sink vertex. We have edges from item vertices to node vertices

if in the placement LI , that item was put on the corresponding node. Capacities of edges from

the source to every item is equal to the demand for that item in the new distribution. The rest

of the edges have capacity equal to the node bandwidth. Using the flow network above, we can

re-assign the demand T using the same placement LI as given in Figure 3.3. Figure 3.2 shows the

flow network obtained by applying the construction described above, corresponding to the initial

placement LI and new demand T .

A small change can convert LI to an optimal placement. In general, we would like to find

changes that can be applied to the existing placement in a single round and get a placement that

is close to an optimal placement for the new demand distribution. In a round a node can either be

the source or the target of a data transfer but not both. In fact, in this example a single change

that involves copying an item from one node to another is sufficient (and does not involve the other

two nodes in data transfers). This is illustrated in Figure 3.4.

We stress that we are not trying to minimize the total number of data transfers, but simply

find the best set of changes that can be applied in parallel to modify the existing placement for the

new demand distribution.

We compare this approach to that of previous works [109, 71] which completely disregard

63



55

A

G

I

B

C

D

E

F

H

70/100

80/100

100

100

70

15

100/110

10

5

15/55

60

20

Figure 3.2: Flow network to determine maximum benefit of using placement LI with demand

distribution T . LI is sub-optimal for T and can only satisfy 350 out of a maximum of 400 units of

demand. Saturated edges are show using solid lines.

Node 4

B

D

E

F H B

C

B A

G

A

I

10 70

0 55

5

15

15

0

100

0

20

60

Node 1 Node 2 Node 3

Figure 3.3: Maximum demand that placement LI can satisfy for the new demand distribution T . LI is

sub-optimal for T and can only satisfy 350 out of a maximum of 400 units of demand.

Node 4

B

D

E

F H B

C

I A

G

A

I

10 70

15

15

40

25

35

20

60

85(I)20

5

Node 1 Node 2 Node 3

Figure 3.4: Removing item B from node 2 and replacing it with a copy of item I from node 4 converts

LI to an optimal placement L′ for the new demand distribution T . The placement shown above is

optimal for T and satisfies all demand.

the existing placement and simply try to minimize the number of parallel rounds needed to convert

the existing placement to an optimal placement for the new demand distribution. In Fig. 3.6, we

show that using the old approach, it takes 4 rounds of transfers to achieve what our approach

did in a single round (and using just one transfer). In Figure 3.5 an optimal placement LT is

64



recomputed, using the sliding window algorithm for computing a placement for a given demand,

for the new demand distribution T . We show in Figure 3.6 the smallest set of transfers required

to convert LI to LT . Note that both placement L′ (obtained after the transfer shown in Figure

3.4 is applied) and placement LT shown in Figure 3.5 are optimal placements for the new demand

distribution T . Note that this is an optimal solution that also addresses the space constraint on

the node (this property is not actually maintained by the data migration algorithms developed

earlier [109]).

Node 4

B

A D

C

E

I

55

5

90

5

20

25

55 A

G

D

30

15

I

H

F

20

70

10

Node 1 Node 2 Node 3

Figure 3.5: Placement LT . Output of the Sliding window algorithm for the new demand distribution T .

3.2.2 Formal definition

The storage system consists of N nodes. Each node has load-capacity of L and a storage-

capacity of K. We have m items, each item j has size 1 and demand `j . This constitutes an

m-dimensional demand distribution ` = (`1, . . . , `m). An m-dimensional placement vector pi for

a node i is (pi1, . . . , pim) where pij are 0 − 1 entries indicating that item j is on node i. An

m-dimensional demand vector di for a node i is (di1, . . . , dim) where dij is the demand for item j

assigned to node i. Define V({di}) =
∑
i

∑
j dij as the benefit of the set of demand vectors {di}.

A set of placement and demand vectors that satisfy the following constraints is said to constitute

a feasible placement and demand assignment:

1.
∑
j pij ≤ K for all nodes i. This ensures that the storage-capacity is not violated.

2.
∑
j dij ≤ L for all nodes i. This ensures that the load-capacity is not violated.

3. dij ≤ pij`j . This ensures that the demand for an item j is routed to node i only if that item

is present on node i.

65



Label 2

B

D F H B

C

B A

G

A

IE

B

D F H B

C

B A

G IE

E

B

D F H D

C

B A

G

E

IH

B

D F D

C

A

G

E

IH

I

D

B

D F H B

C

B A

G

A

IE

Node 1 Node 2 Node 3 Node 4

Label 4Label 3Label 1

Figure 3.6: Transforming LI to LT takes 4 rounds. Note that the nodes here will need to be

renumbered to match the sliding window output. Final node 2 corresponds to node 3 in the sliding

window output, final node 3 corresponds to node 2 in the sliding window output.

4.
∑
i dij ≤ `j for all items j. This ensures that no more than the total demand for an item is

packed.

A one-round-migration is essentially a matching on the set of nodes. More formally, a one-

round-migration is a 0-1 function ∆(sd, si, td, ti) where sd, td ∈ {1, . . . , N} and si, ti ∈ {1, . . . ,m}.

Here sd is the source node, si is the source item, td is the target node, ti is the target item. Further,

∆(.) has to satisfy the following conditions:

1.
∑
td

∑
si

∑
ti

∆(sd, si, td, ti) ≤ 1 for all nodes sd. This ensures that a node can be the source

for at most one transfer.

66



2.
∑
sd

∑
si

∑
ti

∆(sd, si, td, ti) ≤ 1 for all nodes td. This ensures that a node can be the target

for at most one transfer.

3.
(∑

sd

∑
si

∑
ti

∆(sd, si, td, ti)
)

+
(∑

td

∑
si

∑
ti

∆(sd, si, td, ti)
)
≤ 1 for all node pairs sd = td.

This ensures that a node can simultaneously not be both a source and a target.

4. (sd = td)⇒ ∆(sd, ∗, td, ∗) = 0. This ensures that there are no self loops in the transfer graph.

5.
∑
td

∑
ti

∆(sd, si, td, ti) ≤ psdsi for all nodes sd and items si. This ensures that a node sd

can be source of an item si only if that item is on that node (i.e. psdsi = 1).

We can apply this function to an existing placement to obtain a new placement as follows. If

∆(sd, si, td, ti) = 1, then set ptdti = 0 and ptdsi = 1. We compute the optimal demand assignment

for the new placement using max-flow.

ONE-ROUND-MIGRATION: When given an initial demand distribution `initial, a correspond-

ing set of feasible placement vectors {pi}, and demand vectors {di} and a final demand distribution

`final, the problem asks for a one-round-migration ∆(.) that when applied to the initial placement

yields placement vectors {p∗i } and demand vectors {d∗i } such that V({d∗i }) is maximized.

We show that this problem is NP-Hard (See Section 3.2.3 for a proof).

3.2.3 Hardness proof

Recall that the Subset-Sum Problem is known to be NP -complete [64]. The Subset-Sum

problem is defined as follows: Given a set S = {a1, . . . , an} and a number b, where ai, b ∈ Z+.

Does there exist a subset S′ ⊂ S such that
∑
aj∈S′ aj = b? Let sum(S) =

∑
ai∈S ai.

The One-Round Migration problem is defined as follows. We are given a collection of

identical nodes D1, . . . DN . Each node has a storage capacity of K, and a load capacity of L. We

are also given a collection of data objects M1, . . .MM , and a layout of the data objects on the

nodes. The layout specifies the subset of K data objects stored on each node. Each data object Mi

has demand ui. The demand for any data object may be assigned to the set of nodes containing

that object (demand is splittable), without violating the load capacity of the nodes. For a given

67



layout, there may be no solution that satisfies all the demand. Is there a one-round migration to

compute a new layout in which all the demand can be satisfied?

A one-round migration is a matching among the nodes, such that for each edge in the

matching, one source node may send an item to a node that it is matched to (half-duplex model).

We show that the One-Round Migration problem is NP -hard by reducing Subset-Sum to

it. We will create a set of N = 3n+ 4 nodes, each having capacity two (K = 2). There are 4n+ 6

items in all. We will assume that L is very large. The current layout is shown in Figure 3.7.

The demand for various items is as follows: Demand for Gi is L−ai. Demand for Ci = L
2 +ai.

Demand for Ei = L
2 . Demand for Fi = L− ai.

Demand for A = sum(A) + L
2 . Demand for H = sum(A) + L

2 . Demand for X = L
2 . Demand

for Y = L− b. Demand for Z = L− (sum(A)− b). Demand for W = L
2 .

If we assume that the demand for Ci is L
2 then the assignment shown can satisfy all the

demand. We will assume that all but two of the nodes are load saturated (total assigned demand

is exactly L). If the demand for Ci increases by ai, then we have to re-assign some of this demand.

The claim is that all of the demand can be handled after one round of migration if and only if

there is a solution to the subset-sum instance. It is clear that a given solution (a matching) can

be verified in polynomial time.

(⇒) Suppose there is a subset S′ ⊂ S that adds exactly to b. We copy H (from the node

containing H and W ) to the node containing Z, and A (from the node containing X and A) to the

node containing Y . If ai ∈ S′ then we copy Ci to the node containing Gi, and over-write the copy

of A on that node. All clients for A from this set of nodes can be moved to the node containing A

and Y . If ai /∈ S′ then we copy Ci to the node containing Fi and over-write the copy of H on that

node. All clients for H from this set of nodes can be moved to the node containing H and Z.

(⇐) First note that the total demand is 3nL+ 4L. Since there are 3n+ 4 nodes, all nodes

must be load saturated for a solution to exist. We leave it for the reader to verify that with the

current layout there is no solution that meets all the demand. Suppose there exists a one-round

migration that enables a solution where all of the demand can be assigned. A new copy has to be

68



���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

................

................

................

(b)

H(an)

A(an)A(a1)

∑
ai − b

G1 Gn

Cn

EnE1

C1

FnF1

H

A

X

H(a1)

Y Z

W

Figure 3.7: Reduction from SUBSET-SUM to ONE-ROUND-MIGRATION. Shaded portion indicates

empty space. Number within brackets following item name indicates the amount of load assigned to the

item.

created for each Ci, or Ei since the total load for Ci and Ei is L + ai, and exceeds L. Assume

w.lo.g that a copy of Ci will be made to handle the excess demand of ai on this node. We also

assume without loss of generality that ai < b so moving Ci to one of the nodes containing Y or Z

would not be of much use in load saturating those nodes. The only choice is to decide whether this

new copy is made at the expense of a copy of H or at the expense of a copy of A. Note that Ci

cannot overwrite any of the other items since only a single copy of these items exists in the system.

Since this is a one-round migration, we cannot move a single copy of an item to another node, and

then re-write it subsequently. Note that Ci has to overwrite the corresponding A node or H node,

otherwise we will be unable to recover all the demand. Since the nodes containing Y and Z are

also load saturated, we will copy an item onto those nodes. Moreover we have to move one item

(either A or H) to the node containing Y . Suppose that A is copied to the node containing Y and

H is copied to the node containing Z. (The reverse case is similar.) When we shift b amount of

demand of A to the node containing Y , we have to completely remove the demand from a node

containing A, otherwise we will lose some demand. If Ci is moved to a node containing A then

ai ∈ S′. If Ci is moved to a node containing H then ai /∈ S′. Since Ci over-writes A (H), all of

the demand of A (H) is moved out of the node. Clearly, the total size of S′ must be exactly b.

69



3.3 Algorithm for one round migration

For any node d, let I(d) denote the items on that node.

Corresponding to any placement {pi} (a placement specifies for each item, which set of

nodes it is stored on), we define the corresponding flow graph Gp(V,E) as follows. We add one

node ai to the graph for each item i ∈ {1 . . .m}. We add one node dj for each node j ∈ {1 . . . N}.

We add one source vertex s and one sink vertex t. We add edges (s, ai) for each item i. Each

of these edges have capacity demand(i) (where demand(i) is the demand for item i). We also add

edges (dj , t) for each node j. These edges have capacity L (where L is the load capacity of node

j). For every node j and for every item i ∈ I(j), we add an edge (ai, dj) with capacity L.

The algorithm starts with the initial placement and works in phases. At the end of each

phase, it outputs a pair of nodes and a transfer corresponding to that node pair.

We determine the node and transfer pair as follows. Consider a phase r. Let {pi}r be the

current placement. For every pair of nodes di and dj , for every pair of items (ai, aj) in I(di)×I(dj),

modify the placement {pi}r to obtain {p′i}r by overwriting aj on dj with ai. Compute the max-

flow in the flow graph for the placement {p′i}r. Note down the max-flow value and revert the

placement back to {pi}r. After we go through all pairs, pick the (ai, aj) transfer pair and the

corresponding (di, dj) node pair that resulted in the flow-graph with the largest max-flow value.

Apply the transfer (ai, aj) modifying placement {pi}r to obtain {pi}r+1 - which will be the starting

placement for the next phase. We can no longer use nodes di and dj in the next phase. Repeat

until there is no pair that can increase the max-flow or till we run out of nodes.

3.4 Speeding up the algorithm

The algorithm described in Section 3.3 recomputes max-flow in the flow graph from scratch

when evaluating each move. Recall that the algorithm proceeds in phases and at the end of each

phase, it identifies a pair of nodes (di, dj) and a (ai ∈ I(di), aj ∈ I(dj)) transfer for that pair of

nodes.

We can speed up the algorithm by observing that the max-flow value increases monotonically

70



from one phase to the next and therefore we need not recompute max-flow from scratch for each

phase. Rather, we compute the residual network for the flow graph once and then make incremental

changes to this residual network for each max-flow computation. All max-flow computations in

this version of the algorithm are computed using the Edmonds-Karp algorithm (see [8]). Let Gi

denote the residual graph at the end of phase i. Let G0 be the residual graph corresponding to the

initial graph. All max-flow computations in phase i+ 1, we begin with the residual graph Gi and

find augmenting paths (using BFS on the residual graph) to evaluate the max-flow. After each

transfer pair in phase i + 1 is considered, we undo the changes to the residual graph and revert

back to Gi. At the end of phase i+ 1, we apply the best transfer found in that phase, recompute

max-flow and use the corresponding residual graph as Gi+1.

Even with the speedup, the algorithm needs to perform around 415,000 max-flow compu-

tations even for one of the smallest instances (N=60, K=15) that we consider in our experiments.

Since we want to quickly compute the one-round migration, too many flow computations are not

acceptable. We therefore consider the following variants of our algorithm. In our experiments, we

found these variants to yield solutions that are as good as the algorithm described above.

Variant 1: For every pair of nodes di and dj , let I+(di) be the set of items on node di

that have unsatisfied demand. For every pair of items (ai, aj) in I+(di) × I(dj), overwrite aj

on dj with ai, compute the max-flow. Pick the (ai, aj) pair that gives the largest increase in the

max-flow value. Repeat till there is no pair that can increase the max-flow or until we run out of

nodes.

Variant 2: For every pair of nodes di and dj , let I+(di) be the set of items on node di that

have unsatisfied demand and I−(dj) be the items with lowest demand on node dj . For every

pair of items (ai, aj) in I+(di) × I−(dj), overwrite aj on dj with ai, compute the max-flow. Pick

the (ai, aj) pair that gave the largest increase in the max-flow value. Repeat till there is no pair

that can increase the max-flow or until we run out of nodes.

All the experimental results that we present in Section 3.5 are obtained using the second

variant (described above). Experiments were run on a 2.8Ghz Pentium 4C processor with 1GB

71



RAM running Ubuntu Linux 5.04. To solve even the largest instances in our experiments, a C

(gcc 3.3) implementation of the second variant took only a couple of seconds while the brute force

algorithm took on the order of several hours.

3.5 Experiments

In this section, we describe the experiments used to evaluate the performance of our heuristic

and compare it to the old approach to data migration. The framework of our experiments is as

follows:

1. (Create an initial layout) Run the sliding window algorithm [70], given the number of user

requests for each data object.

2. (Create a target layout) To obtain a target layout, we take one of the following approaches.

(a) Shuffle method 1: Initial demand distribution is chosen with Zipf (will be defined later

in this section) parameter 0.0 (high-skew). To generate the target distribution, pick

20% of the items and promote them to become more popular items.

(b) Shuffle method 2: Initial demand distribution is chosen with Zipf parameter 0.0 (high-

skew). To generate the target distribution, the lowest popularity item is promoted to

become the most popular item.

(c) Shuffle method 3: The initial demand distribution is chosen with Zipf parameter 1.0

(uniform-distribution). The target distribution is chosen with Zipf parameter 0.0 (high-

skew).

(d) Shuffle method 4: The initial demand distribution is chosen with Zipf parameter 0.0

(high-skew). The target distribution is chosen with Zipf parameter 1.0 (uniform-distribution).

3. Record the number of rounds required by the old data migration scheme to migrate the initial

layout to the target layout.

72



4. Record the layout obtained in each round of our heuristic. Run 10 successive rounds of our

one round migration starting from the initial layout. The layout output after running these

10 successive rounds of our heuristic will be considered as the final layout output by our

heuristic.

We note that few large-scale measurement studies exist for the applications of interest here

(e.g., video-on-demand systems), and hence below we are considering several potentially interesting

distributions. Some of these correspond to existing measurement studies (as noted below) and

others we consider in order to explore the performance characteristics of our algorithms and to

further improve the understanding of such algorithms. For instance, a Zipf distribution is often

used for characterizing people’s preferences.

Zipf Distribution The Zipf distribution is defined as follows:

Prob(request for item i) = c
i1−θ

∀i = 1, . . . ,M
and

0 ≤ θ ≤ 1

where c = 1

H1−θ
M

and H1−θ
M =

∑M
j=1

1
j1−θ

and θ determines the degree of skewness. For instance, θ = 1.0 corresponds to the uniform

distribution, whereas θ = 0.0 corresponds to the skewness in access patterns often attributed

to movies-on-demand type applications. See for instance the measurements performed in [32].

Flash crowds are also known to skew access patterns according to Zipf distribution [98]. In the

experiments below, Zipf parameters are chosen according to the shuffle methods described earlier

in the section.

We now describe the storage system parameters used in the experiments, namely the number

of nodes, space capacity, and load capacity (the maximum number of simultaneous user requests

that a node may serve).

In the first set of experiments, we used a value of 60 nodes. We tried three different pairs of

settings for space and load capacities, namely: (A) 15 and 40, (B) 30 and 35, and (C) 60 and 150.

In the second set of experiments, we varied the number of nodes from 10 to 100 in steps of

10. We used a value of K=60, L=150 (this is the 3rd pair of L,K values used in the first set of

73



experiments).

We obtained these numbers from the specifications of modern SCSI hard drives. For exam-

ple, a 72GB 15,000 rpm node can support a sustained transfer rate of 75MB/s with an average seek

time of around 3.5ms. Considering MPEG-2 movies of 2 hours each with encoding rates of 6Mbps,

and assuming the transfer rate under parallel load is 40% of the sustained rate, the node can store

15 movies and support 40 streams. The space capacity 30 and the load capacity 35 are obtained

from using a 150GB 10,000 rpm node with a 72MB/s sustained transfer rate. The space capacity

60 and the load capacity 150 are obtained by assuming that movies are encoded using MPEG-4

format (instead of MPEG-2). So a node is capable of storing more movies and supporting more

streams. For each tuple of N,L,K and shuffle method we generated 10 instances. These instances

were then solved using both our heuristic as well as the old data migration heuristic. The results

for each N,L,K and shuffle method tuple were averaged out over these 10 runs.

3.5.1 Results and Discussion

Figures 3.8a, 3.9a, 3.9b, 3.9c and Tables 3.1a, 3.1b, 3.1c correspond to the first set of

experiments. Figures 3.10a, 3.10b, 3.10c, 3.10d, 3.8b and Tables 3.2a, 3.2b, 3.2c, 3.2d correspond

to the second set of experiments.

Figures 3.9a, 3.9b, 3.9c, 3.10a, 3.10b, 3.10c, 3.10d compare the solution quality of our

heuristic with that of the old approach. Tables 3.1a, 3.1b, 3.1c, 3.2a, 3.2b, 3.2c, 3.2d and Figure

3.8a compares the number of rounds taken by our approach with the number of rounds taken by

the old approach to achieve similar solution quality.

We highlight the following observations supported by our experimental results:

• In all our experiments, our heuristic was able to get within 8% of the optimal solution using

10 rounds. This can be seen in all the figures and tables. For instance, see Figure 3.8a.

• In comparison (see Figure 3.8a and Tables 3.1a, 3.1b, 3.1c, 3.2a, 3.2b, 3.2c, 3.2d), the old

scheme took a significantly larger number of rounds. For example, in the case of K=60,

L=150 (corresponding to storing video as mpeg-4) the old scheme took over 100 rounds for

74



every shuffle method and for every value of N we used, while our scheme was able to achieve

similar solution quality within 10 rounds.

• Response to change in demand distribution: The experiments reveal an interesting behavior

of the heuristic. When the target demand distribution is highly skewed, the heuristic’s

response or the amount of improvement made in successive rounds is linear. In contrast,

when the demand is less skewed (i.e. the demand distribution is significantly different from

the initial distribution but still the target distribution is not very skewed), the response is

much sharper. For example in Figure 3.8b, consider the response curve for shuffle methods

4 and 2 (low-skew) and contrast it with the flat response curves for shuffle methods 1 and 3

(high-skew).

– Sharp response or diminishing returns: For a concrete example; in Figure 3.10a the

improvement obtained by our heuristic in the first round is almost as high as 10%, but

successive improvements taper off quickly. This probably happens because we use a

greedy algorithm and most of the gains are made in the first round and since this type

of behavior is observed mainly when the demand is less skewed, there are presumably

several items that need to replicated.

– Flat response: For a concrete example; in Figure 3.10c the improvement obtained by

our heuristic for N=100 in the first two rounds (1 and 2) is just about twice the benefit

obtained in the last two rounds (9 and 10). This is probably because most of the load

is concentrated on a few items and there is a large amount of unsatisfied demand. In

each round we make more copies of these high popularity items and see almost the same

benefit in each round.

• The case for this type of approach (that of making small changes to existing placement in

consecutive rounds) is best supported by results from Table 3.2d. This is an example of

a case where the existing placement is already very good for the target distribution. The

storage manager may wish to do a few rounds of migration to recover the amount of lost

75



load. Our scheme lets the storage manager do such a quick adaptation. In contrast the old

scheme takes over 150 rounds on average to achieve comparable results. This is especially

unacceptable given that we already start off with a pretty good placement. In fact, shuffle

method 4 seemed to consistently trigger expensive migrations in the old scheme while our

scheme was able to get close to optimal within a couple of rounds. This is not surprising

since the old scheme completely disregards the existing placement.

• Shuffle method 3 seemed to produce “harder” instances for our heuristic compared to the

other shuffle methods we tried. This is not surprising since shuffle method 3 makes a drastic

change to the demand distribution (moving it from uniform to highly skewed Zipf).

• It is very promising that our scheme performs particularly well for shuffle methods 1 and 2

(which is the type of demand change we expect to see in practice).

Shuffle method Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

1 10 99.10 41.8 99.92
2 10 98.86 39.1 99.92
3 10 97.26 43.7 98.91
4 10 99.04 54.2 100

(a) Comparison of old scheme with our

scheme for N=60, K=15, L=40

Shuffle method Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

1 10 98.50 54.2 99.83
2 10 97.72 41.6 99.79
3 10 97.02 71.8 98.99
4 10 98.57 89.9 100

(b) Comparison of old scheme with our

scheme for N=60, K=30, L=35

Shuffle method Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

1 10 99.41 130.3 99.98
2 10 98.54 127.3 99.99
3 10 94.41 150.4 99.68
4 10 99.30 170.5 100

(c) Comparison of old scheme with our

scheme for N=60, K=60, L=150

Table 3.1: Experimental Results

76



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

Shuffle4Shuffle3Shuffle2Shuffle1

N
um

be
r 

of
 R

ou
nd

s 
 to

 r
ea

ch
 w

ith
in

 5
%

 o
f S

W

Old Scheme (K=15, L=40)
Old Scheme (K=30, L=35)

Old Scheme (K=60, L=150)
Our scheme (all 3 K,L pairs)

(a) Plot compares the number of rounds

that the old migration scheme took to

reach within 5% of the optimal solution.

We used N=60 and tried each of the shuffle

methods for every pair of K and L shown in

the plot. Every data point was obtained by

averaging over 10 runs. In each of the

experiments shown above, our scheme was

set to run for 10 consecutive rounds.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  1  2  3  4  5  6  7  8  9  10

S
at

is
fie

d 
D

em
an

d,
 %

Round

Shuffle1

Shuffle2

Shuffle3

Shuffle4

(b) Plot comparing the response of our

heuristic to the various shuffle methods.

The response to shuffle 3 and shuffle 2 is

much flatter than the diminishing returns

type of response for shuffle 4 and shuffle 1.

We used N=100, K=60, L=150 for each

experiment. Every data point was obtained

by averaging over 10 runs.

Figure 3.8: Experimental Results

3.6 Conclusion

We proposed a new approach to deal with the problem of changing demand. We defined

the one-round-migration problem to aid us in our effort. We showed that the one-round-migration

problem is NP-Hard and that unexpected data movement patterns can yield high benefit. We gave

heuristics for the problem. We gave experimental evidence to suggest that our approach of doing

a few rounds of one-round-migration consecutively performs very well in practice. In particular,

in all our experiments they were able to quickly adapt the existing placement to one that is close

to the optimal solution for the changed demand pattern. We showed that, in contrast, previous

approaches took many more rounds to achieve similar solution quality.

77



SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  65

  70

  75

  80

  85

  90

  95

  100

4321

D
em

an
d 

Sa
tis

fi
ed

 %

Shuffle Method

(a) N=60, K=15, L=40

SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  90

  92

  94

  96

  98

  100

4321

D
em

an
d 

Sa
tis

fi
ed

 %

Shuffle Method

(b) N=60, K=30, L=35

SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  65

  70

  75

  80

  85

  90

  95

  100

4321

D
em

an
d 

Sa
tis

fi
ed

 %

Shuffle Method

(c) N=60, K=60, L=150

Figure 3.9: Plot shows improvement obtained by our scheme when presented with instances generated

using the different shuffle methods. Every data point was obtained by averaging over 10 runs. SW is the

solution value achieved by the old method.

78



SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  82

  84

  86

  88

  90

  92

  94

  96

  98

  100

100908070605040302010

D
em

an
d 

Sa
tis

fi
ed

 %

Number of Nodes

(a) Shuffle Method 1, K=60, L=150

SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  90

  92

  94

  96

  98

  100

100908070605040302010

D
em

an
d 

Sa
tis

fi
ed

 %

Number of Nodes

(b) Shuffle Method 2, K=60, L=150

SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  65

  70

  75

  80

  85

  90

  95

  100

100908070605040302010

D
em

an
d 

Sa
tis

fi
ed

 %

Number of Nodes

(c) Shuffle Method 3, K=60, L=150

SW
Round 10
Round 8
Round 6
Round 4
Round 2
Flow (Round 0)

  97

  97.5

  98

  98.5

  99

  99.5

  100

100908070605040302010

D
em

an
d 

Sa
tis

fi
ed

 %

Number of Nodes

(d) Shuffle Method 4, K=60, L=150

Figure 3.10: Performance of our scheme with varying number of nodes for different shuffle methods.

The number of nodes N varied from 10 to 100. Every data point was obtained by averaging over 10 runs.

SW is the solution value achieved by the old method.

79



N Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

10 10 99.64 104.8 99.98
20 10 99.52 111.8 99.99
30 10 99.50 121 99.99
40 10 99.53 121.9 99.98
50 10 99.51 125.9 99.99
60 10 99.41 128.2 99.98
70 10 99.46 128.5 99.99
80 10 99.42 135.4 100
90 10 99.45 138.6 99.99
100 10 99.43 136.2 99.99

(a) Shuffle method 1

N Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

10 10 95.12 103.3 99.98
20 10 96.82 109.4 99.98
30 10 97.96 119.4 99.97
40 10 98.31 119.7 99.98
50 10 98.26 124.7 99.99
60 10 98.37 127.4 100
70 10 98.57 129.3 100
80 10 98.67 135.3 100
90 10 98.81 134.4 100
100 10 98.82 137.5 100

(b) Shuffle method 2

N Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

10 10 98.89 126.2 99.75
20 10 98.46 133 99.71
30 10 97.03 138.8 99.7
40 10 96.22 144.1 99.68
50 10 94.45 146.5 99.69
60 10 93.89 149.4 99.67
70 10 93.29 149.8 99.68
80 10 92.69 154.6 99.66
90 10 92.29 152.8 99.65
100 10 91.63 155.9 99.66

(c) Shuffle method 3

N Our Scheme Old Scheme

Rounds Demand % Rounds (avg) Demand %

10 10 99.33 128.3 100
20 10 99.31 139.6 100
30 10 99.22 148.9 100
40 10 99.30 159.2 100
50 10 99.29 166.6 100
60 10 99.32 170.8 100
70 10 99.29 178.7 100
80 10 99.25 183.6 100
90 10 99.29 190.3 100
100 10 99.32 196.1 100

(d) Shuffle method 4

Table 3.2: Comparison of old scheme with our scheme for various number of nodes N=10 to 100, K=60,

L=150 and various shuffle methods.

80



Chapter 4

Decentralized Data Placement and Reconfiguration

This is joint work with Indrajit Bhattacharya and Srinivasan Parthasarathy. These results

also appeared in [22].

4.1 Introduction

Distributed Hash Table (DHT) based peer-to-peer systems such as CAN, CHORD, Pastry,

and Tapestry [144, 164, 149, 179] support a basic abstraction: the lookup. Given a query for a

specific key, the lookup efficiently locates the network node which owns the key. Although all DHTs

implement the basic lookup functionality efficiently, most real-life applications demand more. For

instance, consider an Information Retrieval (IR) application where nodes export a collection of text

documents. Each document is characterized by a d-dimensional vector. The field of IR is replete

with vector-space methods for such document representations (for e.g, see [19, 49]). A user query

consists of a vector and the user needs all documents in the database which match this vector or

which are semantically related to it.

DHTs do not support information retrieval applications like the one above. The fundamental

reason which renders DHTs ineffective in these situations is that data objects in a DHT are

distributed uniformly at random across the network nodes. While this ensures that no node stores

too many objects, it also scatters semantically related objects across the network. Thus, when a

query is issued, the only way the DHT can return all objects relevant to it would be to flood the

entire network, leading to unacceptable network loads.

Our focus in this work is to efficiently support similarity queries for text information retrieval

in DHT based overlay networks. We introduce a new query model where users issue queries of the

form (x, δ). Here x is a data object and δ is a distance measure. The search algorithm needs to

return all data objects y in the network such that f(x, y) ≤ δ, where f is an application specific

81



distance function. The schemes presented in this chapter are geared toward the Cosine distance

metric which is defined as follows: f(x, y) = cos−1 x·y
|x||y| , where x ·y is the dot product between the

vectors and | · | is the Euclidean (l2) norm. The Cosine distance is a widely used distance function

in text retrieval applications.

The key technical challenges which we attempt to address here are as follows:

1. Developing an efficient object placement and search mechanism such that given a query for

an object, the search returns all objects in the DHT which are similar to the query object.

2. Developing efficient mechanisms for adaptive replication of popular objects so that query

loads are uniformly distributed across network nodes. This is particularly relevant for systems

which support similarity searching: similar objects tend to be co-located with each other and

if an object is popular, then other objects similar to it can also be expected to be popular.

3. Developing mechanisms which are oblivious to the underlying DHT technology so that the

resultant system can be implemented over a variety of DHT topologies, making it possible

to leverage other advantages specific to each DHT.

The techniques developed in this work address the challenges identified above. In particular, we

view the following as the main contributions of our work.

• We develop an indexing scheme which clusters data such that a group of closely related

objects belong to a small set of clusters. This in turn paves the way for an efficient search

mechanism for answering similarity queries.

• Our indexing scheme decouples object and node location in the DHT, allowing popular

objects to be adaptively replicated in the DHT. We propose simple adaptive replication and

randomized lookup algorithms to exploit this feature of our indexing algorithm. Our adaptive

replication scheme ensures that the number of copies of a key in the DHT is proportional to

its popularity and the randomized lookup scheme guarantees that a query is equally likely to

be served by any of the replicas of that key in the DHT. Thus, the replication and randomized

lookup algorithms together guarantee perfect load-balancing.

82



• We present precise analytical guarantees for the performance of our algorithms in terms

of search accuracy, cost, and load-balancing. All the algorithmic and analytical results

presented here are oblivious to the underlying DHT topology, thus making it possible for

implementation over any DHT.

The key driver behind our techniques is the notion of similarity preserving hash functions

(SPHs) [28]. SPHs provide a powerful and interesting property in the context of our work. Given

a set of points which are at a small distance from each other, with high probability an SPH maps

these points into a “small” set of related indices. Such a mapping of data objects onto indices

leads to a simple search strategy as follows: a node u which has a query (x, δ), computes the set

of indices which are relevant to object x; u then queries all the nodes which own these indices.

The queried nodes return the set of relevant objects back to u. The use of SPHs for developing

provably good similarity search algorithms is one of the key innovations of this work.

The rest of the chapter is organized as follows. We survey related work in Section 4.2. Section

4.3 formally describes our data and query model and Section 4.4 presents a detailed description of

the major techniques developed in this work. We discuss potential extensions and optimizations

of our techniques in Section 4.5. Section 4.6 presents analytical performance evaluation of our

schemes and Section 4.7 presents the results of our experimental studies. We close with concluding

remarks and directions for future work in Section 4.8.

4.2 Related Work

Several researchers have proposed mechanisms to extend the scope of DHTs beyond the

traditional lookup. Vahdat et al. [147], Liu et al. [114], and Shi et al. [161] address efficient keyword

searching in DHTs. The work of Gupta et al. [77] and Schmidt et al. [153] use SPHs to distribute

high dimensional data vectors on top of a CHORD overlay. The former supports approximate

range queries while the latter supports exact range queries. The work of Gopalakrishnan et al. [21]

supports efficient set intersection operations using view trees. The pSearch system [167] comes

closest to our work since this is the only system, prior to our work, which supports similarity

83



searching in any DHT.

4.2.1 The pSearch System

The pSearch system [167] supports similarity queries for real-valued data vectors for the

Cosine distance metric (see Section 4.3). It is built on top of the CAN DHT [144] and uses Lexical

Semantic Indexing (LSI) [49] for indexing text documents. Object coordinates derived from these

indices are used for routing and object location. Although the basic goals of pSearch is the same

as ours, the techniques presented here differ significantly from those developed in pSearch. We

outline some of the key differences and the resulting trade-offs below.

1. pSearch uses projections of object coordinates derived from the LSI algorithm as object

indices. This restricts object indices to only real vectors which makes it implementable

only on the CAN DHT and precludes its implementation over other popular DHTs such

as CHORD, Pastry and Tapestry. This is due to the fact that all DHTs invoke customized

object-to-node mapping functions for mapping a given object onto a node in the DHT. While

the range of this mapping function is a real vector for CAN, this is not the case in other

DHTs (for CHORD it is a real number in the range [0, 360); for Pastry or Tapestry it is a

bit string). In contrast, our indexing scheme simply partitions the data into clusters and

assigns the same index to each object in the cluster; we allow the underlying DHT mapping

functions to assign indices to nodes in the DHT. Thus, our schemes can be implemented over

any underlying DHT topology.

2. The object placement algorithm in pSearch converts the CAN physical overlay into a seman-

tic overlay such that nodes within a small physical neighborhood store data objects which

are similar to each other. This has an implicit advantage since similar objects can be re-

trieved by flooding a small neighborhood of nodes within a region. This physical locality is

not always possible with our object location technique, since we allow the underlying DHT

mapping functions to assign object clusters to nodes. Hence, a single-hop neighborhood

query in the pSearch system may correspond to a DHT lookup in our scheme resulting in

84



increased network traffic. However, the tight coupling of object and node location in pSearch

virtually makes it impossible for adaptive replication of highly popular objects in the system

for effective query load balancing. Our indexing scheme provides for adaptive replication of

popular clusters and avoids hotspots; this is one of most significant flexible feature offered

by our techniques vis-a-vis the pSearch system.

3. Our indexing scheme relies on the notion of Similarity Preserving Hash (SPH) functions which

hash a group of related objects onto a small set of indices. While the primary motivation

for our work is supporting cosine similarity queries for use in text retrieval applications, the

basic techniques developed here can be generalized to a large class of data and query models

and similarity metrics which support SPHs. One such important category is image and

multimedia retrieval which can be supported by the SPHs developed by Indyk et al. [89]. The

use of SPHs also allows us to model the behavior of our system in terms of the search accuracy

vs. search cost using precise analytical models which are independent of the underlying DHT.

Thus, unlike the pSearch system, the use of SPHs make our techniques applicable to a variety

of data models and similarity metrics, allows for precise analytical modeling, and is oblivious

to the underlying DHT topology, thus staking a strong claim for widespread acceptance in

peer-to-peer database applications.

4.2.2 Adaptive Replication

Object placement algorithm within DHTs typically place objects uniformly at random on

one of the DHT nodes in an attempt to balance query load. While this is reasonable under

assumptions of uniform query-rate for all objects, in practice, query behavior tends to follow very

skewed zipf-like distributions [20]. This behavior is even more acute in systems which co-locate

related objects to support similarity searching, since objects close to popular objects also tend

to be popular. Most DHTs provide only for static replication where each object in the DHT is

replicated a fixed number of times and hence do not deal with non-uniform query distributions.

The Lightweight Adaptive Replication (LAR) protocol of Gopalakrishnan et al. [72] ad-

85



dresses this problem by measuring the load on individual servers and using the load measurements

to create appropriate number of copies of a key. They also modify the DHT lookup primitive by

augmenting nodes in the DHT with information about the newly created copies. We note that

the adaptive replication technique presented in this work is similar in spirit to this scheme, since

our technique also relies on server load information for spawning and retracting copies of a key.

However, our scheme differs from that of LAR in significant ways: a query node in our scheme is

required to have a good estimate of the current number of copies of a key in the system (failing

which the query may incur more than a single DHT lookup; however the query is still guaranteed

to be successful even without a good estimate). However, unlike LAR, our scheme does not require

nodes in the DHT to be augmented with “routing hints to direct the lookups to the appropriate

replicas. We also note that, like LAR, our scheme is also oblivious to the underlying DHT topology

and can be implemented on top of any DHT. Finally, our techniques are also interoperable with

LAR or any other adaptive replication protocol specific to any DHT.

4.3 Background: Data and Query Model

Information Retrieval (IR) applications frequently model text documents as term vectors.

A term vector is a vector of real numbers; coordinates in the vector correspond to terms and the

value of each coordinate represents the relative frequency of the corresponding term within the

document. In general, terms may correspond to keywords or a combination of keywords found

within the documents. It is also usual to normalize the term vectors so that vectors are of unit

length, in order to account for the variable sizes of the documents. Several techniques exist in the

IR literature for representing documents as term vectors, most of which are variants the Vector

Space Model (VSM) [19] and the Latent Semantic Indexing (LSI) schemes [49].

For the rest of this chapter, we assume that all data objects are unit vectors in a d-

dimensional Euclidean space. Equivalently, the data objects may also be viewed as points on

the surface of the d-dimensional unit hyper-sphere. Two objects are considered similar, if they lie

close to each other on the surface of the unit sphere. Formally, let x and y be two objects and let

86



θ be the angle between them. The similarity between x and y is defined by the function f , where

f(x, y) = cos(θ) = x · y, the so called dot-product or the inner-product of x and y. The distance

between x and y is defined as the angle θ. The greater the value of f , lesser the value of the angle

θ, and more similar are the objects x and y. We note that the pSearch system also works with

this data and similarity model. Later, in Section 4.5.1, we discuss ways to generalize many of the

techniques developed in this chapter to other interesting data models and similarity metrics.

We assume that user queries of the form q = (x, δ), where x is a d-dimensional unit vector

and 0 ≤ δ ≤ π
2 is the distance measure. An object y matches query q if y is sufficiently close

to x: i.e., cos−1 x · y ≤ δ. The search accuracy is defined as the fraction of matching objects in

the system that are returned by the search. The search cost is defined as the number of lookups

performed by the system during the search. The algorithms presented in this chapter trade-off

search accuracy with respect to the search cost.

4.4 Design Details

Four basic techniques underlie the mechanisms developed in this chapter. Following is a

brief description of these techniques.

• TheIndexing Scheme partitions the data-space into several clusters. Each data object is

assigned an index and clustering is achieved implicitly by assigning all objects which have

the same index to the same cluster. The indexing scheme guarantees that any set of objects

which are sufficiently similar to each other are assigned either to the same cluster or to a

small group of clusters. The indices are treated as keys by the DHT; each index is owned by

some node and all objects with this index are stored by the node which owns the index.

• The Search Algorithm computes a set of indices S which are relevant to the given query

q = (x, δ); it then performs a lookup for each index in S. These lookups terminate at a set of

nodes, which return all objects owned by them that match the query q. In general, a higher

search accuracy would require the algorithm to compute a larger set of indices S resulting

in higher search costs.

87



• The Adaptive Replication algorithm ensures that the number of copies of each key in the

network is proportional to its popularity. Specifically, the number of copies of each key in

the DHT is proportional to the rate at which queries arrive for this key. The creation and

retraction thresholds, which are global system-wide parameters determine how aggressively

copies are created or retracted in the system.

• The Randomized Lookup algorithm guarantees that the lookup for a specific key ter-

minates uniformly at random at one of the copies of this key. Thus, the lookup and the

replication algorithms, in tandem, guarantee that the load is balanced uniformly across all

copies of all keys in the system.

In the following sections, we present the details involved in each of these techniques.

4.4.1 Indexing

Each data object in the peer-to-peer database is assigned an index. We now propose a

hash function h which takes a d-dimensional data object x as input and computes a k-bit string

h(x) as output. The string h(x) is the index of object x. Let r be a d-dimensional unit vector.

Corresponding to this vector, we define the binary function br as follows:

br(x) =
{

1 if r · x ≥ 0
0 if r · x < 0 (4.1)

br(x) defines the orientation of x w.r.t. r. This function was proposed by Charikar [28] for

estimating cosine distances between points in high dimensional space. He also observed that if r

is chosen uniformly at random from all d-dimensional unit vectors, then for any two vectors x and

y, Pr[br(x) 6= br(y)] = δ
π , where δ = cos−1 x·y

|x||y| is the angle between the two vectors in radians.

Our hash function h is parametrized by a set of unit vectors r1, . . . , rk, each of which is chosen

uniformly and independently at random from the set of all d-dimensional unit vectors. The hash

value h(x) is simply the concatenation of the bits br1(x), . . . , brk(x). Objects with the same index

belong to the same cluster. Object x is stored at the node which owns the DHT key h(x).

The above hashing scheme essentially attempts to group nearby objects to indices with

88



low hamming distance. However, there is still a reasonable chance that nearby objects can differ

in some bit positions in their indices. In order to reduce the probability of this bad event from

occurring, we construct t hash functions h1, . . . , ht as described above, which yields t sets of object

indices. This ensures that there is a high probability of two related objects hashing onto indices

with low hamming distance in at least one of these sets. We note that we can treat these sets

of indices as a static replication of objects; the static replicas are also analogous to the “rolling

indices in the pSearch system. Further, we show both using theoretical analysis (see Section 4.6)

and using simulations (see Section 4.7) that static replication boosts the search accuracy. However,

it does not address the problem of load balancing, which we deal with in Sections 4.4.3 and 4.4.4.

We emphasize again that these static replicas of objects are not the same as multiple copies of

the DHT keys. For the remainder of the chapter, we use the term replicas to denote the static

replicas and the term copies to denote the multiple copies of a DHT key created by the adaptive

replication algorithm.

4.4.2 The Search Algorithm

The search algorithm is parameterized by a radius r, which is a non-negative integer. A

node u which generates a query (x, δ) first computes the index h(x). It then computes the set S

of all indices whose hamming distance from h(x) is at most r (i.e., the set of indices which differ

from h(x) in at most r bit positions; note that S always includes h(x)). Let V be the set of nodes

in the network which own the keys in S. Node u queries each of the nodes in V . Nodes in V

return all data objects which match us query. How is the search radius r determined? The search

radius r is affected by various parameters such as k, t, the query parameter δ, and the desired

search accuracy. Fixing all other variables, an increase in the value of r would result in more

objects which match the query being returned. Of course, the increased accuracy is also achieved

at an increased search cost. We examine the effect of r on the search accuracy and cost in Section

4.6. We note that the search algorithm may be easily extended to the case where we have t static

replicas of the objects in the system.

89



4.4.3 Adaptive Replication

We now present the details of our adaptive replication scheme which creates and retracts

keys adaptively depending on load conditions. Keys in our system refer to indices within a specific

static replication, although, in general, the replication scheme is oblivious to what the keys may

refer to. Recall that in a DHT, each key y is mapped onto a random value m(y) using a mapping

function m; a lookup for m(y) terminates at a specific node u which is said to own m(y); this

node stores a copy of the key y. Our replication scheme parameterizes the mapping function m

with a positive integer i. Specifically, let s = m(i, y). Then, the node which owns s is responsible

for storing the ith copy of the key y. We now describe how to a create a new copy and retract

an existing copy of a key in the DHT. Consider a key y which currently has l copies. The main

invariant maintained by the replication algorithm is that the copies are contiguous, ranging from 1

to l: i.e., the l copies are placed at nodes which own values m(1, y),m(2, y), . . . ,m(l, y) respectively.

The copies can be visualized as nodes of a complete binary tree, with copy i being the parent of

copies 2i and 2i + 1. We note that the binary tree abstraction is completely implicit and there

are no pointers associated with children or parents of copies in reality. All nodes in the system

maintain two thresholds rhigh and rlow and a periodic local timer. A node which owns a copy of

y performs the following check at the end of each period: let the number of queries it received for

key y in the previous time period be q; if q ≥ rhigh, it creates copies l+1 and l+2 of y. If q < rlow,

it retracts copies l and l− 1 of y. Creation and retraction are both achieved by sending a message

to the parent of the nodes which own the corresponding copies; if the parent has not already

performed the creation (retraction) it performs this action after receiving a creation (retraction)

message. These messages are routed using the standard lookup primitives of the DHT. We observe

that the creator or retractor of a copy need not know the node which owns the last copy l of y, or

its parent, but just the value of l.

How does a creator (or a retractor) of a copy know the value of l? We note that a simple

solution is to notify all nodes which own a copy of y, whenever a copy is created or retracted in the

system. Yet another solution is to perform a simple binary search in the range 1, . . . , lmax, where

90



lmax is the maximum number of replicas allowed for any key within the DHT. We note that the

latter discovers the value of l after O(log(lmax)) lookups with high probability.

4.4.4 Randomized Lookup

Let node u generate a query for key y and let there be l copies of y currently in the system.

If node u knows the exact value of l, it chooses a random number i in the range 1, . . . , l and

performs a lookup for m(i, y). This ensures that all copies of the key are equally likely to serve

this query. However, in general, nodes can not be expected to have exact information about the

number of replicas for a specific key in the DHT. We now show how our randomized lookup solves

this problem in two scenarios. In the first scenario, node u does not have any information about

l. In this case, it performs a randomized binary search in the range 1, . . . , lmax to obtain a copy

of y. Specifically, u selects a random number l1 uniformly in the range 1, . . . , lmax and performs

a lookup for m(l1, y). If this lookup returns a copy of y, the lookup terminates. Else, the node

repeats the randomized binary search in the range 1, . . . , l1−1. The randomized lookup terminates

whenever any of these DHT lookups returns a copy of y. Observe that the randomized lookup

is guaranteed to terminate for any initial estimate of l since the successive DHT lookups are in

strictly decreasing ranges and a lookup for m(1, y) is guaranteed to terminate successfully.

Fixing the initial estimate of l at lmax results in at most O(log(lmax)) DHT lookups with high

probability. However, this increased lookup latency may be unacceptable for many applications.

One way to avoid this problem is for each node to estimate the value of l using counting bloom

filters [56]. Counting bloom filters are compact data structures for checking set membership in

distributed environments. In our setting, the entries in the counting bloom filter are of the form

(i, y). If such an entry exist, it indicates that the ith copy of key y exists in the system. These

bloom filters are updated periodically to reflect any changes in the number of copies of any key.

We note that an exact estimate for the number of copies is not required for the correctness of

our lookup algorithm. Hence, one possible optimization in the bloom filter design is to just store

entries of the form (i, y) where i is a power of two, instead of all values of i in the range 1, . . . , lmax.

91



This results in an estimate of l which is at most within a factor of two from the correct value, thus

only slightly increasing the randomized lookup latency while decreasing the size of the bloom filter

substantially (from O(lmax) to O(log(lmax))). The work of Mitzenmacher [123] discusses several

techniques for updating counting bloom filters in distributed settings with low message overhead.

4.5 Discussion

We now discuss extensions to our indexing scheme for other models and optimizations for

our search algorithm in idealized hypercube-like networks such as Pastry and Tapestry.

4.5.1 Extensions to other data models and distance metrics

The indexing scheme exploits the central property of SPHs that objects at a small distance

from each other hash onto nearby indices with high probability. While the hash functions presented

here are motivated by text retrieval applications and geared toward cosine similarity, the basic

indexing and search mechanisms can be extended to several other classes of data models and

similarity metrics. One such important class of distance metrics is the usual Euclidean norm

defined as follows: f(x, y) = (
∑d
i=1 |xi − yi|

r)
1
r r ≥ 1,x, y ∈ Rd In this case, f is the the lr-norm

of the vector (x− y). In practice, the most widely used norms are l1, l2, and the linf norms. These

metrics are of significance in image and multimedia retrieval, where a common first step is to extract

a set of numerically-valued features or parameters from the document [138, 55]. After these features

have been extracted, an image in the database may be thought of as a point in a high-dimensional

space. User queries are again transformed to the same vector space where the documents are

represented and may be thought of as nearest-neighbor searches in the high-dimensional space.

We note that the similarity-preserving hashing scheme of Indyk et al.[89] perform a clustering

of the data space are geared toward the normed-distance. These hashing-schemes can be readily

plugged into the our indexing mechanism thus extending our approach to image and multimedia

databases as well. Yet another notable case is that of set similarity measure which is defined as

follows: sim(A,B) = |A
⋂
B|

|A
⋃
B| ; here A and B are sets and sim(A,B) also known as the Jaccard

92



coefficient in Information Retrieval literature, is a measure of the similarity between the sets A and

B. We note that one may plug in the min-wise independent permutations introduced by Broder

et al.[26] to handle this similarity measure.

4.5.2 Routing Optimizations for Hypercube-like Networks

In an idealized scenario, Pastry and Tapestry can be viewed as implementations of a hyper-

cube network. Each node in the overlay has a unique ID which is a k-bit binary string. Two nodes

are overlay neighbors of each other if and only if the hamming distance of their IDs is one (i.e.,

they differ in exactly one bit). An object is stored by a node if the object index matches with the

node ID.

In this scenario, a node u with a query (x, δ) performs a single lookup for x which terminates

in a node v whose ID is h(x). Node v performs a local search by flooding the query to all its r-hop

overlay neighbors where r is the search radius. These nodes return their local search results to

v which gathers and returns the union of all the results to u. Note that this optimization does

not reduce the number of nodes being queried. However, it reduces the routing load substantially

since each lookup is now replaced by a single hop message.

We note that the setting described here may not be realizable in practice due to two main

reasons. The above optimization assumes that each key is owned by exactly one node which

precludes adaptive replication. Secondly, the index size k is determined during network creation

when the total number of nodes is unknown. Further, the network dynamics could lead to nodes

joining and leaving the system resulting in variable number of network nodes. We leave the problem

of achieving the routing optimizations in the hypercube networks under realistic network scenarios

as an interesting topic of future research.

4.6 Analysis

Consider a query q = (x, δ). Let S be the set of all objects in the database which matches

this query. Let S′ be the set of objects returned by the search algorithm. Recall that t is the

93



number of static replications, k is the number of bits in the index and r is the search radius. We

define the accuracy of the search to be |S′|/|S|, i.e., the fraction of objects in the database which

match the query and which are returned by the search. E[|S′|/|S|] denotes the expected accuracy.

4.6.1 Accuracy

Theorem 4.

E[|S′|/|S|] ≥ 1−

(
1−

r∑
i=0

(
k
i

)(
δ

π

)i(
1− δ

π

)k−i)t
(4.2)

Proof. Consider a specific object z in the DHT which matches the query q, i.e., cos−1(xz) ≤ δ.

Consider a specific replication p among the t replications. Let φ(s1, s2) denote the hamming

distance between two equal sized bit strings s1 and s2. We now compute the probability of the

hamming distance between hp(z) and hp(x) being equal to a specific value i. Recall from Equation

(4.1) that the probability of a specific bit in hp(z) differing from its corresponding bit in hp(x) is

equal θ
π , where θ is the angle between the two objects in radians. Hence we have,

Pr[φ(hp(x), hp(z)) = i] =
(
k
i

)(
θ

π

)i(
1− θ

π

)k−i
Pr[φ(hp(x), hp(z)) ≤ r] =

r∑
i=0

(
k
i

)(
θ

π

)i(
1− θ

π

)k−i
Pr[φ(hp(x), hp(z)) > r] = 1−

(
r∑
i=0

(
k
i

)(
θ

π

)i(
1− θ

π

)k−i)

Pr[∀p, φ(hp(x), hp(z)) > r] =

(
1−

r∑
i=0

(
k
i

)(
θ

π

)i(
1− θ

π

)k−i)t

Hence,

Pr[z is returned by the search ] = 1− Pr[∀p, φ(hp(x), hp(z)) > r]

= 1−

(
1−

r∑
i=1

(
k
i

)(
θ

π

)i(
1− θ

π

)k−i)t

Since the expected accuracy is the same as the above probability, and since θ ≤ δ for all objects

z, the theorem holds.

94



4.6.2 Search Cost

Theorem 5. Let the number of keys being looked up be C. Then,

C = t

r∑
i=0

(
k
i

)
(4.3)

Proof. For a specific replication p, the search algorithm lookups all indices which are within a

hamming distance r from the index hp(x). Since, there are exactly
∑r
i=0

(
k
i

)
such indices and

since there are t replications, the theorem follows.

We note that in general, the search cost could potentially be greater than C. This is because,

each key lookup could result in more than a single DHT node lookup in the randomized lookup

algorithm. However, we show in Section 4.7 that this is not the case: each key lookup on an

average incurs only slightly more than one node lookup even with a bloom filter of small size.

4.6.3 Load Balance

Theorem 6. Let the number of copies of a key y at time t be l. Then a lookup for key l at time t

will terminate at one of these l copies uniformly at random.

Proof. Consider the last step of the randomized lookup algorithm when the DHT query for a copy

of y is successful. Let the estimate for the value of l before this step be some value j ≥ l. Since,

the DHT lookup is for a random copy of y in the range 1, . . . , j, all the copies in this range have

equal probability of being looked up. Hence, the theorem holds.

4.7 Experiments

Our experiments assume an underlying CHORD network that provides lookup, insert and

delete primitives. The number of nodes in the network is fixed throughout all our experiments.

4.7.1 Similarity Search

Data objects in our simulations are sampled uniformly at random from the surface of the

d-dimensional unit hypersphere. This is achieved by sampling each coordinate of the vector inde-

95



pendently from a standard normal distribution. A k-bit index of a data object is created using k

random unit vectors. We use static replication with t hash functions. We use the publicly available

CHORD simulator [1] for evaluating the accuracy results. Initially all nodes and keys are inserted

into the CHORD simulator. Each query object is a randomly sampled d-dimensional unit vector.

We observe the effect of the number of replicas t, the search radius r, the size of the index k, the

dimensionality of the data d, the number of nodes n, the number of data objects N , and the query

parameter δ on the search accuracy and storage load. The default values of these parameters are

in the table below. Results are averaged over 100 trials.

N d k t r δ n

50,000 15 10 1 1 0.75 2k=1024

Table 4.1: Default values for network parameters used in the similarity search experiments

To evaluate storage load, we sort the nodes in decreasing order of number of objects they

store and group them into 20 buckets. For each of the buckets, we plot the percentage of the total

number of objects stored in the nodes of the bucket. The baseline for comparison is the uniform

distribution where each bucket stores 5 percent of the objects. Figure 4.1 (a)-(g) plot the effect

of the various system parameters on accuracy. We plot both the experimentally observed values

as well as the analytically predicted ones. The accuracy increases as a function of the number of

replicas t and the search radius r. It does does not vary much as a function of the data dimension

d or the number of nodes n or the number of data objects N in the system. However, the accuracy

decreases with the size of the index k as well as the query parameter δ. Our analysis predicts

the experimental trends accurately in all the trials. This suggests that the accuracy guarantees

provided by our analysis do not only hold in expectation, but also with high probability. Also

note that the experimentally observed values are always higher than the analytically predicted

ones. This is explained by the fact that our analysis always yields a lower bound on the expected

accuracy rather than the exact value. Figure 4.1 (h)-(i) plot the effect of the number of replicas

and the size of the index on the storage load across nodes. We observe that increasing the size

96



of the index k adversely affects the storage load balance while increasing the number of replicas

t aids load balance. Varying other parameters does not seem to change the storage distribution

across the nodes.

0
10
20
30
40
50
60
70
80
90

100

6 7 8 9 10 11 12 13 14 15

ac
cu

ra
cy

 in
 %

index size k

accuracy vs. k

observed
predicted

(a)

0
10
20
30
40
50
60
70
80
90

100

200 400 600 800 1024

ac
cu

ra
cy

 in
 %

no. of nodes n

accuracy vs. no. of nodes

observed
predicted

(b)

0
10
20
30
40
50
60
70
80
90

100

10 11 12 13 14 15 16 17

ac
cu

ra
cy

 in
 %

data dimension d

accuracy vs. d

observed
predicted

(c)

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

 in
 %

no of replicas t

accuracy vs. no. of replicas.

observed
predicted

(d)

0
10
20
30
40
50
60
70
80
90

100

0 1 2

ac
cu

ra
cy

 in
 %

search radius r

accuracy vs. search radius

observed
predicted

(e)

0
10
20
30
40
50
60
70
80
90

100

0.6 0.7 0.8 0.9 1

ac
cu

ra
cy

 in
 %

query parameter delta (in radians)

accuracy vs. delta

observed
predicted

(f)

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80

ac
cu

ra
cy

 in
 %

no of documents N (in thousands)

accuracy vs. N

observed
predicted

(g)

0
5

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

%
 o

f d
oc

s 
st

or
ed

buckets

storage load balance vs. number of replicas

h=1
h=2
h=3
h=4
h=5

baseline

(h)

0
5

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

%
 o

f d
oc

s 
st

or
ed

buckets

storage load balance vs. index size

k=8
k=10
k=12
k=14

baseline

(i)

Figure 4.1: Experimental Results for Accuracy and Load Balance

4.7.2 Adaptive Replication

In our adaptive query load balancing experiments, we have 100,000 data objects distributed

over a network with 5000 nodes. The data and keys are generated as mentioned in the previous

section. We generate 100,000 queries for these objects according to a Zipf distribution. The skew in

97



Load Balance

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node Buckets (top 20%)

A
ve

ra
ge

 L
oa

d

NoReplication AdaptiveReplication

(a) Effect of Adaptive Replication on Load

Balance.

Average DHT Lookups

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node Buckets (top 15%)

L
oo

ku
ps

NoFilter GlobalFilter PerfectFilter

(b) Average Number of DHT Lookups with

Global Bloom Filter, Perfect Knowledge and

Randomized Binary Search.

Figure 4.2: Experimental Results

the distribution causes a small number of keys in the network to become load hot-spots while most

other keys receive very few queries. The queries arrive according to an exponential distribution

with an expected interarrival time of 1 time unit . Local timer events occur every 1000 time-units.

All nodes maintain a query log (since the last local timer event) for each copy of a key assigned to

it. At a local timer event, a node calculates the query rates for each of the keys assigned to it and

then decides for each key whether to create a copy or retract an existing copy. This decision in

determined by global creation and retraction thresholds. We study the effect of load balance with

Load Balance

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10
Node Buckets (top 10%)

A
ve

ra
ge

 L
oa

d

RepThreshold=3 RepThreshold=5 RepThreshold=10 RepThreshold=20

(a)

Number of Replicas

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10Key Buckets (top 10%)

A
ve

ra
ge

 R
ep

lic
as

RepThreshold=3 RepThreshold=5 RepThreshold=10 RepThreshold=20

(b)

Figure 4.3: Effect of Varying Replication Threshold

98



0

20

40

60

80

100

120

140

160

180

1 74 147 220 293 366 439 512 585 658 731 804 877 950 1023

Key Number

N
um

be
r 

of
 R

ep
lic

as

(a) Replication for keys

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 75 149 223 297 371 445 519 593 667 741 815 889 963

Key Number

N
um

be
r 

of
 Q

ue
ri

es

(b) Query distribution over keys

Figure 4.4: Replication Response to Query Rate

respect to the thresholds. In all our experiments, retraction is turned off (rlow = 0). This also

makes analyzing the results easier. We set lmax, the maximum number of copies of a key to 250.

When querying a key y, a node needs to estimate the number of active copies of y. The

query converges to an active copy using randomized binary search over the range [1, est(y)], where

est(y) is the estimated number of current copies of y. This range determines the number of DHT

lookups before the query terminates. We compare two different schemes for estimating the number

of copies. First, we use a global counting bloom filter that has 4-bit counters, 2 hash functions

and whose size is 3 × 2k × lmax, where k is the size of each key (10 in our case). This bloom

filter experimentally generates a false positive rate of 0.237. We compare this with the pessimistic

estimate est(y) = lmax. We also compare with the ideal (hypothetical) scenario where every node

has perfect knowledge about the number of copies for each key.

In Figure 4.2a and 4.3(a) respectively, we compare load balance across nodes with and

without adaptive balancing and with different creation thresholds. Both figures show the top

20 percent of the nodes that have the highest loads. Clearly, the load on the hot-spot nodes is

alleviated by spreading the load over other nodes. It can be observed that nodes that had low load

with no adaptive replication have progressively higher loads with more aggressive copy creation.

However, the load balancing does not come for free. We can see from Figure 4.3(b) that the lower

the threshold, the more the number of copies created, which explains the reduced load on hot-spots.

99



It can also be seen from the plot that the number of copies created is not uniform over the keys.

Some keys have significantly more copies than others for all thresholds. Ideally, we would like the

popular keys to have more copies. This is confirmed by Figure 4.4. Figure 4.4(b) shows the query

rate over the 1024 keys in the network. Note the significant spikes which denote the popular keys.

Figure 4.4(a) shows the number of copies created for the same keys when using the most aggressive

threshold of 3. We can see that the replica creation correlates with query rates. Specifically, the

following table presents the correlation coefficient of the distribution of requests over keys and the

distribution of number of copies created for the keys for different creation thresholds. We can see

that in all cases the distributions are very strongly correlated, and the more aggressive the creation

threshold, the stronger the correlation.

thresh 3 5 10 20 50

CorCoeff 0.975 0.971 0.939 0.899 0.724

Table 4.2: Correlation Coefficients between query rate on keys and number of replicas created for key

when using different creation thresholds. 1.00 indicates perfect correlation

In Figure 4.2b, we compare the average number of DHT lookups for a query on a key

when estimating the current number of copies for the key using a bloom filter with the pessimistic

estimate of lmax and the hypothetical scenario when the correct number of copies in known. We

observe that the use of the bloom filter with a small false positive rate reduces the number of

lookups to 1 per query, which is the case for perfect knowledge. However, without the bloom filter,

the average number of lookups is about 5.

4.8 Conclusion

We have presented a framework for indexing and searching data objects in peer-to-peer

information retrieval systems. Our schemes use SPHs to map semantically related data objects to

a small set of indices leading to a simple and efficient search algorithm. Our indexing algorithms

decouple object characteristics and node locations, thus enabling adaptive replication of popular

100



indices resulting in efficient load-balancing. Our framework is oblivious to the underlying DHT

network topology and can be implemented on a wide variety of structured overlays such as CAN,

CHORD, Pastry and Tapestry. Plans for future work include extensive experimental evaluation

of the search and replication techniques in realistic distributed environments, evaluation of our

schemes with data sets obtained from real applications and comparing our results with the pSearch

system.

101



Chapter 5

Data Monitoring (One-shot Queries)

This is joint work with Supratim Deb, K. V. M. Naidu, Rajeev Rastogi and Anand Srini-

vasan. These results also appeared in [104].

5.1 Introduction

Many large-scale distributed applications require aggregate statistics (e.g., MIN, MAX,

SUM, AVERAGE) to be computed over data stored at individual nodes. For example, in peer-

to-peer systems [149, 164], the average number of files stored at each peer node or the maximum

size of files exchanged between nodes is an important input to system designers for optimizing

overall performance. Similarly, in sensor networks [142, 116], disseminating individual readings of

temperature or humidity among all the sensor nodes, besides being too expensive, may also be

unnecessary, and aggregates like MAX or AVERAGE may suffice in most cases. And finally, in

a wireless network monitoring application using software probes deployed on mobile handsets to

monitor performance, a service provider may be more interested in the abnormal measurements

recorded by the probes like unusually low signal strength or atypically high application response

times.

Depending on the application, the aggregate computation procedure must satisfy some of

the following requirements.

• Scale to a large number of nodes. P2P systems and sensor networks can have millions of

participating nodes. The procedure should be able to handle such massively distributed

applications, and overall computation times should increase gradually and smoothly as new

nodes join.

• Be robust in the presence of failures. Link and node reliability can be expected to be poor

102



in wireless and sensor networks. Thus, the procedure must be resilient to node failures and

message loss.

• Incur low communication overhead. Wireless links typically have low bandwidths, and in

sensor networks, nodes have limited battery lives. As a result, the computation process

should involve only a small number of message transmissions.

While the exact trade-off between the aforementioned requirements is not completely understood,

an important question is whether it is possible to design efficient algorithms satisfying a sizable

subset of the above-mentioned requirements.

For example, consider a centralized approach in which each node transmits its value to

a central coordinator that then computes the aggregate. Clearly, this is extremely efficient in

terms of message overhead. However, it is lacking in terms of scalability and reliability since the

coordinator can quickly become a bottleneck and is a single point of failure. Similarly, though

alternate approaches based on propagating aggregate computation up the nodes of a deterministic

tree solve the scalability issue [80, 146], they are still susceptible to node and link failures.

To overcome the above-mentioned scalability and reliability problems, several researchers

have proposed decentralized gossip-based schemes for computing various aggregates in overlay

networks [107, 129, 93, 30, 23]. In gossip-based protocols, each node exchanges information with

a randomly-chosen communication partner in each round. By their very nature, gossip-based

schemes are robust; they are resilient to message failures as well as node failures, thus making

them ideally suited for P2P, wireless and sensor networks with potentially poor link-reliability.

Much of the early gossip work focused on using randomized communication to propagate a

single message throughout a network of n nodes [50, 140, 101]. More recently, Kempe et al. [107]

presented the first set of analytical results on computation of aggregate functions using randomized

gossip. They analyzed a simple gossip-based protocol for computing sums, averages, quantiles and

other aggregate functions. In their scheme for estimating averages, each node selects another

random node to which it sends half of its value; a node on receiving a set of values just adds them

to its own halved value. Kempe et al. showed that these values converge to the true average in

103



O(log n) rounds resulting in O(n log n) messages.

In this chapter, we address the following question: is it possible to reduce the message com-

plexity of aggregate (max, sum, average, rank of an element) computation schemes from O(n log n)

while relaxing the number of rounds to slightly exceed log n? We present a novel scheme to compute

MIN, MAX, SUM, AVERAGE and RANK using O(log n log log n) rounds of communication and

O(n log log n) messages. To the best of our knowledge, ours is the first result that computes these

various aggregates in a network with probabilistic link and node failures using only O(n log log n)

messages. Thus, compared to previous work [107], our scheme achieves a significant reduction in

communication overhead at the cost of only a modest increase in the number of rounds. This

can yield significant benefits in terms of lowering congestion and lengthening node lifetimes in

bandwidth and energy-constrained environments like wireless and sensor networks.

Our algorithms achieve this O(log n/ log log n) factor reduction in the number of messages

by randomly clustering nodes into groups of size O(log n), selecting representatives for each group,

and then having the group representatives gossip among themselves. It is interesting to note that

Karp et al. [101] proved that a single message cannot be spread in a network using less than

n log log n message exchanges for a class of algorithms referred to as address-oblivious algorithms.

Although our algorithm is not “strictly” address-oblivious, this lower-bound result indicates that

it might be hard to reduce the message complexity further without substantially increasing the

number of rounds.

The rest of this chapter is organized as follows. In Section 5.2, we present the underlying

assumptions of our gossip framework. Section 5.3 describes prior related work. In Section 5.4, we

describe our schemes for computing the various aggregates. Finally, we conclude in Section 5.5.

5.2 Model

The network consists of a set V of n nodes; each node u ∈ V has a value denoted by val(u).

We are interested in computing aggregate functions like MIN, MAX, SUM, AVERAGE, RANK

etc. of the node values.

104



The nodes communicate in discrete time-steps referred to as rounds. As in prior work on

this problem [107, 101, 23], we assume that communication rounds are synchronized, and that all

nodes can communicate simultaneously during a given round. The communication graph can be

either push-based or pull-based. In the push-based model, a node selects a communication partner

at random, and transmits information. A node can transmit to only one node in a round. In the

pull-based model, a node chooses a communication partner at random and requests information.

Thus, in this model, a node can receive from only one node in a round.

We assume that each node can communicate with every other node; each node chooses a

communication partner independently and uniformly at random. A node u is said to call a node v

if u chooses v as a communication partner. Once a call is established, we assume that information

can be exchanged in both directions along the link.

Message sizes are bounded by O(log n+ log q) bits, where {1 . . . q} is the range of values at

the nodes. The values at the nodes do not change during the execution of a query. When multiple

nodes attempt to communicate with a node, then a connection is either queued up or rejected (if

the queue size is already sufficiently large).

We assume the failure model of [107]. In particular, we assume two types of failures: (i)

some fraction of the nodes may crash initially, and (ii) links are lossy and messages may get lost.

Thus, while nodes cannot crash during the execution of the algorithm, communication can fail

(either due to lossy links or due to initial node crashes) with a certain probability δ. W.l.o.g., we

assume that δ is some constant such that 1
logn < δ < 1

8 . Our results can also be proved without

this assumption. In particular, for larger values of δ, we can make O(1/ log(1/δ)) repeated calls to

bring down the call failure probability below 1
8 . On the other hand, call failure probabilities lower

than 1
logn only make it easier to prove our claims.

We consider two query models: one in which only a single node that initiates the query is

interested in knowing the result, and another in which all nodes need to know the query answer.

105



5.3 Related Work

Randomized gossip-based schemes for spreading a single message update in a network date

back to the work on epidemic algorithms by Demers et al. [50]. Initial work on spreading a single

message using randomized gossip [50, 140] essentially show that a single message can be spread

in a network of n nodes in O(log n) rounds and O(n log n) message transfers. Karp et al. [101]

presented an improved algorithm and showed that even when a δ fraction of the nodes and messages

can fail adversarially, all but a O(δ) fraction of the nodes in the network will have the message

within O(log n) rounds and using only O(n log logn) messages. They also gave lower bounds for

the problem of single message dissemination.

Several works have considered the problem of deterministic in-network aggregation using

trees [80, 146]. As shown in [107] and [23], such approaches are not resilient to node and message

failures.

Kempe et al. [107] used gossip to compute aggregates of a distributed collection of values.

They presented schemes that compute the sum and average of a distributed collection of values in

O(log n) rounds and O(n log n) messages. They also extended the scheme to compute rank, select

random samples, quantiles (using O(log2 n) rounds and O(n log2 n) messages) and several other

aggregate functions. Our work aims to save an O(log n/ log logn) factor in the number of messages

used to compute these aggregates while giving up a O(log log n) factor in the number of rounds.

Boyd et al. [23] considered non-uniform gossip where the probability of node i communi-

cating with its neighbor j is Pij . Their proposed algorithm is different from the standard uniform

gossip model in that it considers an asynchronous setting and in each asynchronous clock tick,

it finds a random matching between the vertices. These vertices then average and update their

values. They also presented a distributed scheme to find the optimal communication probabilities

for each pair of vertices to ensure that the gossip algorithm converges at the fastest rate.

Finally, in [30], the authors employ a gossip-based approach to compute aggregates in a

wireless sensor network setting. They present an algorithm with better performance based on a

property of wireless transmissions where all nodes within the radio range can hear a broadcast.

106



5.4 Our Scheme

In this section, we describe our various schemes; the scheme for computing MAX is detailed

in Section 5.4.2, and the schemes for computation of SUM, AVERAGE and RANK are described

in Section 5.4.3. However, before delving into the details of our approach, we discuss some of our

initial attempts that did not work.

5.4.1 Simple Approaches (that do not work)

In this subsection, we discuss two approaches that are simple, but have high message com-

plexity. These will motivate the need for a more sophisticated solution.

Repeated rumor-spreading Computation of MAX is in some sense similar to the rumor-spreading

problem considered in [101]; however, we cannot simply invoke their results to spread the MAX

value throughout the network because each node in the network holds a potentially important

piece of information. Thus, naively running the rumor-spreading algorithm of [101] by considering

each node’s information as a rumor imposes a communication cost of O(n2 log log n).

Random query trees Another attempt to compute MAX is to gossip for O(log log n) rounds, which

will result in the MAX spreading to O(logp n) nodes (for some constant p) with only O(n log logn)

work. Then, the query node selects two nodes at random from the set of all nodes, and each

selected node then repeats this process. A selected node marks itself to ensure it is not picked

again. This construction goes on until the tree has O(n/ logp−1 n) nodes. Once this happens

the nodes will aggregate values up the tree and the query node will have the MAX w.h.p. (with

probability at least 1 − O(n−α) for some constant α > 0) after O(log n) rounds. This is because

the probability that the tree does not contain the MAX is at most (1− logp n
n )n/ logp−1 n ≤ 1/n.

However, consider the communication complexity of this scheme. Consider the penultimate

level of the tree. We have about n/c logp−1 n nodes at this level. Each of them needs to contact

two new neighbors in the current round. The probability of a failed call for a node at this level is

1
c logp−1 n

. To ensure this is O(n−α), each node has to draw O(logp n/ log log n) random samples.

107



This means that, at the last level alone, the scheme has communication complexity O( n
logp−1 n

∗

logp n
log logn ) = O(n log n/ log log n). Note that we are ignoring the fact that there might be collisions

between the samples chosen at the same level. This however only makes the tree smaller and our

argument stronger. Further, if we consider message failures as well, the communication overhead

will be even higher.

5.4.2 Computation of MAX

We first describe the idealized version of our scheme to give the key intuition, and subse-

quently present the more practical version.

Intuition

Suppose that, incurring zero cost, we can divide all the nodes into n
logn groups, each of

size log n, and each group having a fixed root (let us call the roots red nodes and the others blue

nodes). Now each red node can determine the MAX in its group, for example, by sequentially

getting values from all nodes in the group and computing MAX. Note that this will need O(log n)

rounds and O(log n) messages per group. Let us call this phase as Grouping.

Next, the red nodes gossip among themselves to compute MAX. For this, one can use the

scheme in [107] to compute MAX for m nodes in O(logm) rounds and O(m logm) messages. Since,

there are n
logn red nodes involved in gossiping, we get a complexity of O(log n) rounds and O(n)

messages. We refer to this phase as Gossip.

Finally, the red nodes propagate the MAX in their own groups, which has complexity similar

to the Grouping phase. We call this phase as Sampling/Propagation. Essentially, if any node wishes

to know MAX, it can do sampling, but, if all the nodes wish to know MAX, then few nodes can

do sampling followed by propagation to the other nodes.

Note that this gives us an ideal scheme with O(log n) rounds and O(n) messages. However,

in order to achieve it in the presence of node and message failures, the Grouping phase must be

performed in a distributed manner . Deterministic grouping is not possible due to initial node

108



failures, which can potentially result in a red node failure if chosen deterministically. Therefore,

we propose a randomized strategy to form the groups. Each node decides to be a red node

independently with probability 1
logn . This gives roughly O( n

logn ) red nodes to start with. Now,

the red nodes start forming groups by randomly contacting/being contacted by other nodes. This

group formation happens in two phases: first Push and then Pull. Essentially, the Push and Pull

phases simulate the ideal case, but in a distributed manner. Below, we describe these further in

the context of our overall algorithm, and also argue that it is necessary to do both push and pull

for making every node part of some group.

Overview of the Algorithm

With the above intuition in place, we are now ready to provide an overview of our scheme.

The scheme consists of four phases: Push, Pull, Gossip and Sampling/Propagating.

1. Push: Initially all nodes are unmarked (no color assigned). Roughly n
logn decide to be red

nodes. Each red node makes O(log n log log n) requests for other nodes to join. Each non-red

node accepts one of the join requests randomly and marks itself blue. Also, each successful

join updates the value at the red node to the max of the two values. At the end of this phase,

at most O( n
logn ) nodes remain unmarked and each red node knows the MAX of its current

group. The complexity of this phase is O(log n log log n) rounds and O(n log log n) messages.

Clearly, at the end of this phase, group size is at most O(log n log log n).

2. Pull: Each remaining unmarked node makes O(log n) calls and joins the first group it

successfully calls (i.e., the call is not rejected by the red node of the group). In each round,

a red node accepts at most O(log log n) calls and drops the remaining calls, so that its group

size is at most O(log n log log n) (we will see in a moment why this is needed). At the end of

this phase, all nodes are marked with some color w.h.p., and thus, part of some group. Also,

each red node knows the MAX of its current group. The complexity of this phase is O(log n)

rounds and O(n) messages.

109



3. Gossip: Once grouping is done, the red nodes start the Gossip phase where they gossip

among themselves. Since calls are made uniformly and randomly, a red node might end up

calling a blue node. We can easily fix this by having the blue node return its parent red node

to the caller so that it can be called in the subsequent round. Note that this does not make

much difference to the protocol except for increasing the call failure probability. Also, since

groups are not of the same size and the probability of a red node receiving a call is directly

proportional to its group size, this is no longer uniform gossip, as considered in [107]. Using

the fact that the group sizes are O(log n log log n), we show that at the end of this Gossip

phase (after each red node has made O(log n) calls), the number of nodes with the MAX

is Ω(n/(log n log log n)). The complexity of this phase is O(log n log log n) rounds and O(n)

messages.

4. Sampling/Propagation: Any node that wishes to compute MAX requests log n other

nodes to “sample”O(log n log log n) nodes for the MAX. The maximum of theseO(log2 n log log n)

samples is then reported as the MAX. We show that this is just the right number of samples

for a node to get the MAX w.h.p. The message complexity of this phase is poly(log n).

The preceding shows how any node interested in MAX can do sampling to obtain the MAX.

If the MAX needs to be propagated to all the nodes, roughly Θ(log n) nodes (this can be

achieved by each node tossing a coin with probability c log n/n) decide to be propagators and

sample the max values. The result is then propagated to all the nodes using a modified version

of the rumor spreading algorithm of [101]. This requires O(log n) rounds and O(n log log n)

messages.

Note that we have two phases (a Push phase followed by a Pull phase) during the group construc-

tion. This is necessary to keep the message complexity low; as observed in [101], push or pull

applied alone to contact the unmarked nodes can result in excessive message transmissions. Basi-

cally, push is more efficient initially when a large number of unmarked nodes need to be contacted,

while pull works better toward the end when fewer unmarked nodes remain. It is also important

that the scheme for the group construction ensures that none of the constructed groups are too

110



large. Otherwise, a single red node can receive a large number of simultaneous calls during the

Gossip phase resulting in an increased number of rounds.

Description of the Algorithm

We now describe each of the four phases in greater detail. In each phase, communication

between nodes takes place in rounds. Although, strictly speaking, each node is allowed to exchange

information with only one partner in a given round, for convenience, in certain phases, we allow

nodes to communicate with multiple nodes in a round. However, while calculating the total number

of rounds for a phase, we count the multiple communications involving a single node as separate

rounds. For instance, in Phase 2, a node can exchange information with O(log log n) nodes (while

dropping any extra requests) in a single round. Thus, even though Phase 2 has only O(log n)

rounds, we compute the time complexity of Phase 2 as O(log n log log n) rounds.

In our analysis, we use several well-known results to bound the tail probability of a random

variable (e.g., Chernoff bounds, Azuma’s inequality). These are included in Section 5.6 for easy

reference.

Phase 1 Push
1: Each node independently decides to remain active with probability 1/ log n or else becomes

inactive.
2: Let A be the set of all nodes that decide to remain active.
3: Each u ∈ A marks itself red.
4: for logn log logn

1−δ rounds do
5: Each u ∈ A selects a node v independently and uniformly at random from the set of all

nodes.
6: for all v that are unmarked do
7: v selects a node u at random from the red nodes that contacted v.
8: u and v exchange values and each stores the value max(val(u), val(v)).
9: v points to u and marks itself blue.

10: end for
11: end for
12: All marked (red and blue) nodes become inactive.

Lemma 1. The number of unmarked nodes at the end of Phase 1 is Θ(n/ log n) w.h.p.

Proof. After step 1 of Phase 1, using standard Chernoff-bound type arguments, we have n/ log n±
√
n red nodes w.h.p. Each of these red nodes tries to contact logn log logn

1−δ nodes independently and

111



Phase 2 Pull
1: Let B ⊂ V denote the set of all unmarked nodes.
2: for 2 logn

log(1/8δ) rounds do
3: Each u ∈ B selects a node v independently and uniformly at random from the set of all

nodes.
4: for all v that are unmarked do
5: Drop all requests.
6: end for
7: for all v that are marked blue do
8: Drop all but 4

δ(1−δ) log log n requests from nodes in B.
9: for all u ∈ B that contacted v, and are not dropped do

10: v sends u a pointer to its red parent w.
11: u contacts w.
12: end for
13: end for
14: for all v that are marked red do
15: Drop all but 4

δ(1−δ) log log n requests from nodes in B (including the requests forwarded
by the blue nodes in the group).

16: for all u ∈ B that contacted v, and are not dropped do
17: u points to v and marks itself blue.
18: u and v exchange values.
19: end for
20: end for
21: end for

uniformly at random (one connection attempt per round). Hence, the total number of connection

attempts is n log logn
1−δ

(
1± logn√

n

)
w.h.p. Fix an unmarked node u. We now determine the probability

that u receives none of these messages.

At each step, this can happen because of two reasons: either the connection failed, or the

connection succeeded, but went to a different node. Let Xi be an indicator random variable (r.v.)

such that Xi is 1 if node i was not contacted in Phase 1 by a red node and 0 otherwise. Then, the

number of unmarked nodes at the end of Phase 1 is given by X =
∑n
i=1Xi.

Let c denote the total number of connection requests. As shown above, w.h.p., we have the

following.

n log log n
1− δ

(
1− log n√

n

)
≤ c ≤ n log log n

1− δ

(
1 +

log n√
n

)
Now, the probability that u is not contacted in any of the c connection requests is given by the

112



Phase 3 Gossip
1: Let A be the set of all red nodes.
2: for

(
3 logn
(1−δ)2 + log 17

16
n
)

rounds do
3: Each node in A selects a node independently and uniformly at random from the set of all

nodes.
4: for all blue nodes (v) that are contacted do
5: Drop all but 2

δ(1−δ) log log n requests from nodes.
6: for all red nodes (u) whose requests have not been dropped do
7: v passes on its parent w’s address to u.
8: u then contacts v’s red parent w.
9: end for

10: end for
11: for all red nodes (v) that are contacted do
12: Drop all but 2

δ(1−δ) log log n requests from nodes.
13: for all red nodes (u) whose requests have not been dropped do
14: u and v compare values. The node with the smaller value replaces its value with the

higher one.
15: end for
16: end for
17: end for

following.

Pr[Xi = 1] = (δ + (1− δ)(1− 1/n))c

≤
(

1− 1− δ
n

) n
1−δ log logn

(
1− logn√

n

)

≤ e
− log logn

(
1− logn√

n

)

= (log n)−
(

1− logn√
n

)

≤ 2/ log n

Similarly, we obtain that

Pr[Xi = 1] ≥
(

1− 1− δ
n

) n
1−δ log logn

(
1+ logn√

n

)

Since et(1− t2/n) ≤ (1 + t/n)n, we have

Pr[Xi = 1] ≥ e
− log logn

(
1+ logn√

n

)(
1− 2(1− δ) log log n

n

)
= log n−

(
1+ logn√

n

)(
1− 2(1− δ) log log n

n

)
≥ 1

4 log n

Hence, it follows that E[X] ∈ Θ(n/ log n) and applying Azuma’s inequality, we have

Pr[|X − E[X]| > εE[X]] ≤ 2e−
ε2n2

2n log2 n

113



Finally, using Lemma 4 (in Section 5.6) and setting ε = log3/2 n√
n

, it follows that Pr[X > (1 +

ε)2n/ log n] ≤ 1/nΩ(1) and Pr[X < (1− ε)n/4 log n] ≤ 1/nΩ(1). Because 0 < ε < 1
2 , it follows that

n
8 logn < X < 4n

logn w.h.p.

Corollary 1. The number of blue nodes at the end of Phase 1 is Θ(n− n/ log n) w.h.p.

Proof. Follows directly from Lemma 1 by noting that the number of red nodes is Θ(n/ log n)

w.h.p.

Lemma 2. Every node that was unmarked at the end of Phase 1 attaches itself to a red node by

the end of Phase 2 w.h.p.

Proof. Consider the event that an unmarked node fails to attach to a red node at the end of its

2 log n/ log(1/8δ) calls. An unmarked node’s call fails to attach it to a red node if and only if one

of the following five bad events happen.

1. The call fails. This event occurs with probability δ.

2. The call succeeds but lands in another unmarked node. By Lemma 1, the number of

unmarked nodes is at most 4n/ log n. Therefore, the probability of this event is at most

4(1− δ)/ log n.

3. The call succeeds and lands in a blue node v. However, the subsequent call to attach to v’s

red parent fails. By Corollary 1, the number of blue nodes is at most n− n/8 log n. Hence,

the probability of this bad event is at most δ (1− δ)
(

1− 1
8 logn

)
.

4. The call lands in a red node that has already received 4
δ(1−δ) log log n connections, and is

dropped as a result. The probability of this event is at most the probability that a red node

receives more than 4
δ(1−δ) log log n connections. The latter can be bounded from above as

follows. Consider any red node r, and let g denote its group size. Then, for every round

of the pull phase, because at most 4n
logn unmarked nodes participate, the probability that r

receives more than 4
δ(1−δ) log log n is equivalent to the probability of getting 4

δ(1−δ) log log n

successes in 4n
logn binomial trials, each with success probability at most g(1−δ)2

n . The expected

114



number of successes is at most 4g(1−δ)2

logn < 4(1 − δ) log log n. From Markov’s inequality,

the probability that the number of connections Y is greater than 4
δ(1−δ) log log n equals

Pr[Y > 4
δ(1−δ) log log n] ≤ δ(1− δ)2 ≤ δ.

5. The call lands in a blue node that has already received 4
δ(1−δ) log log n connections, and is

dropped as a result. This is similar to the previous case (for red nodes) but with success

probability at most 1−δ
n . Thus, the probability of this bad event is at most δ(1− δ)2 ≤ δ.

Putting all this together and observing that we have δ as some constant greater than 1/ log n and

less than 1/8, we obtain the following:

Pr[Node fails to attach]

≤
(
δ + 4(1−δ)

logn + δ (1− δ)
(

1− 1
8 logn

)
+ 2δ

) 2 logn
log(1/8δ)

≤ (δ + 4δ(1− δ) + δ(1− δ) + 2δ)2 logn/ log(1/8δ)

≤ (8δ)2 logn/ log(1/8δ)

=
1
n2

Applying a union bound over all the unmarked nodes, it follows that the probability of a

node remaining unmarked is at most 1
n logn . In other words, every node that was unmarked at the

end of Phase 1 attaches itself to a red node by the end of Phase 2 w.h.p.

Remark At the end of Phase 2, all the group sizes are O(log n log log n). This follows because the

first phase runs for O(log n log log n) rounds, and in each round, a red node contacts at most one

node. Further, the second phase runs for O(log n) rounds, and in each round, a red node contacts

at most O(log log n) nodes.

Lemma 3. At the end of Phase 3, at least Ω
(

(1−δ)n
logn log logn

)
nodes have the max value w.h.p.

Proof. A call is now equivalent to at most two successive calls (if the call lands in a blue node, then

we have to make another call to connect to its red parent). Define the new call failure probability

as δ
′

= 1− (1− δ)2. Let φt be the number of red nodes with the max value at the end of round t

of Phase 3. Let φ0 denote the number of red nodes with the MAX before the start of Phase 3.

115



We first prove that φτ > (1 −
√

2/3) log n after τ = 3 logn

1−δ′ rounds. If φ0 > log n, we are

done. Consider the case when φ0 < log n. Since φ0 < log n, if a call does not fail, then it will

contact a new node w.h.p. Therefore we are only interested in finding the number of rounds before

log n successful calls are made. Define Xi = 1 as the probability that call i from the max node

succeeds. Let X =
∑(3 logn)/1−δ

′

i=1 Xi be the total number of successful calls in 3 logn

1−δ′ rounds. The

probability that a call succeeds is Pr[Xi = 1] = 1− δ′ . Hence, E[X] = 3 log n.

Applying Azuma’s inequality and setting ε =
√

2/3:

Pr[|X − E[X]| > εE[X]] < 2exp
(
−ε

2E[X]2

2 log n

)
= 2exp

(
−9ε2 log n

6

)
= 2exp (− log n)

= 2/n

Thus, w.h.p., at the end of τ = 3 logn
1−δ′ rounds, we have φτ >

(
1−

√
2/3
)

log n. Once this happens,

as we show below, we enter an exponential growth phase and in the next O(log n) rounds, about

O( n
logn log logn ) red nodes will have the MAX.

Let us re-number the rounds to simplify the expressions. Let us number the first round with

at least (1 −
√

2/3) log n red nodes having the MAX as round 0 (note that such a round exists

based on previous arguments). Now let us compute the value of φt+1 given that in the current

round φt red nodes have the MAX. We have φ0 >
(

1−
√

2/3
)

log n. Since we have φt red nodes

with MAX, there will be at least φt messages containing MAX in the current round (ignoring pull

transmissions). In the rest of this proof, we only consider these messages containing MAX.

Let Xi be the indicator r.v. that denotes whether message i (containing MAX) is successful

or not: a message is successful if the call succeeds and the MAX reaches a node that has not

already been informed about the MAX. Then, X =
∑φt
i=1Xi is the number of successful messages.

We also have 1− δ′ = (1− δ)2.

A message can fail if and only if one of the following happens.

1. Either the first or the second call fails. This event occurs with probability δ′.

116



2. Recall that some connections are dropped if a node receives more than 2
δ(1−δ) log log n con-

nections. The probability of this event at the first node (a blue node) is at most δ(1−δ) (the

proof is very similar to the proof in Lemma 2 for the case where a blue node receives more

than Ω(log log n) calls), while the probability of this event at the second contacted node (red

node that is the parent of the blue node in the first call) is at most δ(1 − δ′) < δ(1 − δ).

Thus, the total probability is at most 2δ(1− δ).

3. Both calls succeed, but the group contacted already contains the MAX. The probability of

this event occurring is at most (1−δ′)φt logn log logn
n , because the maximum group size of a red

node is logn log logn
1−δ (by construction) and there are at most φt red nodes with MAX.

4. Both calls succeed, but the group contacted is simultaneously contacted by another node

with the MAX. In this case, we conservatively assume that this message is wasted; in other

words, if two messages reach the same node, then both messages are considered unsuccessful.

This event occurs with probability at most (1−δ′)φt logn log logn
n .

Thus, the probability that a message is wasted can be upper-bounded as follows.

Pr[Xi = 0] ≤ δ′ + 2δ(1− δ) + 2(1−δ′)φt logn log logn
n

Since we have φt < n
16 logn log logn ,

Pr[Xi = 0] ≤ 1− (1− δ)2 + 2δ(1− δ) + (1−δ)2

8

= 1− 7
8 (1− δ)2 + 2δ(1− δ)

≤ 1
8 + 15δ

4

Pr[Xi = 1] ≥ 1− ( 1
8 + 15δ

4 )

= 7
8 −

15δ
4

E[X] ≥
(

7
8 −

15δ
4

)
φt

Since δ < 1/8, the above expression implies that, in expectation, the number of nodes with MAX

grows exponentially from one round to the next. To make this claim w.h.p., we apply Azuma’s

117



inequality to show a sharp concentration result for the expected number of successful messages.

Pr[|X − E[X]| > εE[X]] < 2exp
(
−ε

2(E[X])2

2φt

)

Since E[X] ≥
(

7
8 −

15δ
4

)
φt, we have

Pr[|X − E[X]| > εE[X]] < 2exp
(
− ε

2

2

(
7
8 −

15δ
4

)2
φt

)
Since φt >

(
1−

√
2/3
)

log n and
(

7
8 −

15δ
4

)2
> 0, setting ε = 1/2, we obtain

Pr
[
X < 1

2

(
7
8 −

15δ
4

)
φt
]

<
2

nO(1)

Hence, w.h.p., the number of red nodes with MAX in round t+ 1 is

φt+1 > φt + 1
2

(
7
8 −

15δ
4

)
φt

=
23− 30δ

16
φt

> 17
16φt

The last step above follows since δ < 1/8. Thus, w.h.p., after
(

3 logn
1−δ′ + log 17

16
n
)

rounds, at least

Ω
(

(1−δ)n
logn log logn

)
red nodes will have the MAX.

Theorem 1. Any node can compute the value of MAX using O (n log log n) messages and O (log n log log n)

rounds of communication.

Proof. From Lemma 3, it follows that at least cn
logn log logn red nodes (for some c > 0) have the

MAX. Once Phases 1, 2 and 3 are complete, any node that is interested in MAX requests log n other

nodes to “sample” the MAX. Each of these log n nodes then successfully samples 2
c log n log log n

nodes, and returns the maximum observed value to the querying node. The probability that none

of the nodes with the MAX is sampled is at most (1− c
logn log logn )

2
c log2 n log logn

< 1
n2 . Thus, the

maximum of all the values obtained from the delegated nodes is the actual maximum w.h.p.

To bound the total number of communication rounds, observe that the number of commu-

nication rounds in each phase is O(log n log log n). This can be easily seen from the description of

each phase.

118



To bound the total number of messages, we note that the number of messages in Phase 1

is O (n log log n). By Lemma 1, the number of unmarked nodes that take part in Phase 2 is

Θ(n/ log n), and hence the message complexity of Phase 2 is O(n). The message complexity of

Phase 3 is O (n) because the number of red nodes is Θ(n/ log n), and each red node makes O (log n)

calls. The message complexity of sampling is simply the number of samples that need to be drawn

and is therefore O
(
log2 n log log n

)
. Thus, the overall message complexity is O (n log log n).

Corollary 1. All nodes can compute the value of MAX using O (n log log n) messages and O (log n log log n)

rounds of communication.

Proof. If all nodes want MAX, then we first perform Phases 1, 2 and 3 as before. At the end of

Phase 3, each node decides to be a propagator of MAX with probability 2 log n/n. It can be shown

that there will be Θ(log n) propagators w.h.p. Next, each propagator gets MAX by sampling log n

other nodes as described in the first paragraph of the proof of Theorem 1. After this, applying

the result from [101], the propagator nodes can disseminate MAX to Ω((1 − δ)n) nodes using

O(n log log n) messages and O(log n) rounds.

After this, we can form groups as in Phases 1, 2, but with red nodes chosen from the

nodes that already have MAX. As every node belongs to some group, every node also has MAX.

Essentially, Phase 1 is performed with a minor modification. Only nodes who have MAX perform

step 1 of Phase 1. Since δ is a constant and at least Ω((1 − δ)n) nodes have MAX, we still have

Θ(n/ log n) red nodes at the end of this step. The rest of the Phase 1 proceeds as before. Phase 2

is unchanged. Since at the end of these two phases, each node has successfully communicated

with a red node, all nodes have MAX. Phases 1 and 2 together take O(log n log log n) rounds and

O(n log log n) messages as seen above.

5.4.3 Computation of SUM, AVERAGE, RANK

We now extend our MAX computation scheme to estimate the sum and average of node

values. The key idea behind our algorithm is the following. First, groups of nodes are formed

using Phases 1, 2 of the MAX computation algorithm. As before, the group heads will be referred

119



Algorithm 4 Modified-Push-Sum(xr1 . . . xrm)
1: su,t is node u’s value in round t. su,0 = xu for each u ∈ A.
2: wu,t is node u’s weight in round t. wu,0 = 1 for each u ∈ A.
3: for O(logm+ log(1/ε)) rounds do
4: Each node u ∈ A independently and uniformly at random calls a node v ∈ {1 . . . n}. If v is

a blue node, u is directed to the group head of v in the subsequent round. Note that the
group head is a red node from A.

5: Let Yv,t be the set of nodes that called v in round t.
6: sv,t = sv,t−1/2 +

∑
u∈Yv,t su,t−1/2.

7: wv,t = wv,t−1/2 +
∑
u∈Yv,t wu,t−1/2.

8: The current estimate of the average at node v is sv,t/wv,t.
9: end for

Algorithm 5 Compute-Average
1: Form groups as in Phases 1, 2 of MAX computation. Let A = {r1, . . . , rm} be the set of red

nodes, and for each red node u ∈ A, let gu denote its group size (that is, the size of red node
u and all the blue nodes attached to it).

2: Use the MAX finding scheme presented earlier to find the maximum size group for all the red
nodes. Since all red nodes can find MAX, red node r can determine that it has the maximum
sized group (break ties using node ids in the messages used for MAX computation).

3: Let yu =
∑
v∈group(u) val(v).

4: All the red nodes compute gavg using Modified-Push-Sum(gr1 , . . . , grm).
5: All the red nodes compute yavg using Modified-Push-Sum(yr1 , . . . , yrm).
6: Node r computes the average µ̂ = yavg/gavg, and communicates it to all nodes using the

rumor-spreading scheme in [101].

to as the red nodes and the other nodes will be referred to as the blue nodes. During group

formation, every red node maintains the size of its group, and the sum of the values within its

group. Next, the group heads use the MAX computation algorithm to compute the maximum

group size (for reasons that will become clear soon). Finally, the red nodes use the gossip-based

Push-Sum algorithm in [107] to compute the average of node values. As we will show later, owing

to the distinct group sizes, one can only ensure that the true-average resides in the red node with

the largest group size. As the nodes already compute the largest group size, the red node with

the largest group knows its identity and hence also knows that the value it has at the end of the

protocol is the true-average (with a small relative error).

Algorithm 4 is a modified version of the Push-Sum protocol in [107]. Let A = {r1 . . . rm}

be the set of red nodes after Phases 1, 2 of MAX computation. In our version, the Push-Sum

protocol computes the average of the set of values xr1 , . . . , xrm for only the red nodes. Note that

every other node will be child of one of the red nodes, and in the modified protocol, any call to

120



these nodes will be forwarded to its parent in A.

Let α denote the true average of the xri ’s. Further, let r be the red node with the maximum

group size and xavg denote the average computed at node r.

Theorem 2. At the end of Algorithm 4, |xavg − α|/α ≤ ε for any ε > 0. Furthermore, the total

number of messages is O(m(logm+ log 1
ε )) and the number of rounds is O(logm+ log 1

ε ).

The proof of Theorem 2 is along similar lines as the proof in [107]. We will need some

definitions as in [107] followed by a couple of key lemmas. Let ~vu,t be a vector for node u in round

t, of which the zth component vu,z,t denotes the fraction of node z’s value that is currently part of

u’s sum su,t in round t. Thus, the sum at node u in round t, su,t =
∑
z vu,z,txz. As shown in [107],

the invariant
∑
u vu,z,t = 1 ∀z holds for Algorithm 4 as well. Similar to [107], define the following

potential function for round t.

Φt =
∑
u,z

(vu,z,t − wu,t
m )2

Above, m = Θ(n/ log(n)) is the number of red nodes, and wu,t =
∑
z vu,z,t. We now state the

following lemma which is a variant of a similar result proved in [107].

Lemma 5.4.1. The following holds:

E[Φt+1|Φt = φ] = 1
2 (1−

∑
u∈A p

2
u)φ , (5.1)

where pu = (1− δ)2gu/
∑
v∈A gv.

Proof. This proof is very similar to the proof in [107]. The only difference is that pu, the probability

with which a node u is called in a round, is no longer uniform, but is skewed based on the group

size gu.

We also need the following lemma which is somewhat different from [107].

Lemma 5.4.2. There exists a τ ∈ O(logm) such that after τ
′
> τ rounds of execution of Modified-

Push-Sum, wr,τ ′ ≥ 2−τ w.h.p.

Proof. In [107], the above result is proved for all nodes and not just the node r with the maximum

group size. The proof in [107] relies on the fact that when every node is contacted with uniform

121



probability, each node receives a fraction of every other node’s value after τ rounds. In our case,

since the distribution is skewed, we cannot guarantee the lower bound on weight for each and

every node. However, it is easy to see that the red node with the largest group size has a higher

probability of being contacted. Thus, we can show that it receives a fraction of every other node’s

value after τ rounds, and thus its weight satisfies the lower bound.

of Theorem 2. The proof is along the lines of [107], and employs the results of Lemmas 5.4.1 and

5.4.2. Due to Lemma 5.4.1, we get Φt ≤ m2−t (intuitively, Φt decreases by a constant factor in

each round and is m when t = 0). By choosing t = logm+ 2 log 1
ε + 2τ (τ as in lemma 5.4.2), we

can show that Φt ≤ ε22−2τ for any ε > 0. This implies that |vr,z,t − wr,t
m | ≤ ε2−τ for all z, or in

other words |vr,z,twr,t
− 1

m | ≤
ε2−τ

wr,t
. Lemma 5.4.2 gives us the required lower bound of wr,t ≥ 2−τ to

have |vr,z,twr,t
− 1

m | ≤ ε. Note that vr,z,t
wr,t

represents the contribution of z’s value at r and w.h.p. this

is approximately 1
m for all nodes. This implies that after t ∈ O(logm+ log 1

ε ) rounds, the average

xavg computed at r has relative error at most ε.

Algorithm 5 uses our Modified-Push-Sum procedure to compute yavg and gavg, the average

group value and average group size, respectively. Let µ̂ = yavg
gavg

be the estimate of average as

computed by the red node r with the largest group, and let µ be the actual average of all the

values val(u) across nodes that did not fail at the beginning.

Our main result of this subsection is the following.

Theorem 3. At the end of Algorithm 5, |µ̂ − µ|/µ ≤ 3ε for any ε > 0. Furthermore, the total

number of messages is O(n(log log n+log 1
ε )) and the number of rounds is O(log n log log n+log 1

ε ).

Proof. It is easy to see that yavg and gavg are computed with relative error at most ε at node r

(follows from Theorem 2). This implies that the relative error in the computation of µ̂ = yavg/gavg

is at most 3ε. The message complexity of Modified-Push-Sum among m = Θ(n/ log n) red nodes

is simply O(m(logm + log 1
ε )) = O(n + n log 1

ε ) and the time complexity is O(logm + log 1
ε ) =

O(log n+log 1
ε ). Thus the message and time complexity are dominated by the formation of groups,

and are O(n log log n) and O(log n log log n), respectively.

122



Corollary 2. All nodes can find the true average of node values using O (log n log log n) rounds

of communication and O (n log log n) total messages.

Given the average, the sum can be computed by just multiplying the average group value

yavg by the number of groups (which can be estimated using Modified-Push-Sum with only xr = 1

and the remaining xis equal to 0). Using this algorithm for computing the sum, computing the

rank of a given value is also straightforward. The value x whose rank needs to be computed can be

disseminated to all the nodes, and every node now keeps a new value which is 1 if its original value

is less than x and 0 otherwise. Computing the sum of these new values gives the rank of x. Since

dissemination and sum computation can be done in O(log n log log n) rounds and O(n log log n)

messages, we have the following corollary.

Corollary 3. The rank of any value (the value is ranked among the values for nodes that did

not fail) can be computed using O(log n log log n) rounds of communication and O(n log log n) total

messages.

5.5 Conclusion

In this chapter, we presented a novel gossip-based scheme for computing common aggregates

like MIN, MAX, SUM, AVERAGE and RANK of node values using O(n log log n) messages and

in O(log n log log n) rounds of communication. To the best of our knowledge, this is the first result

to show that these aggregates can be computed with high probability using only O(n log log n)

messages. Thus, compared to the previously best known results for distributed aggregate compu-

tation by Kempe et al., our scheme significantly reduces the communication overhead (a factor of

O(log n/ log log n)) while causing only a modest increase (a factor of O(log log n)) in the number

of rounds.

We conjecture that our results achieve the lower bound for message complexity in the gossip

model since previous work by Karp et al. showed that even simpler problems like rumor dissemina-

tion require at least Ω(n log log n) messages regardless of the number of rounds. Formally deriving

the lower bounds for message and time complexity for aggregate computation using gossip-style

123



communication remains a topic for future work.

5.6 Technical Desiderata

We present some of the existing results in probability that we use extensively in our proofs.

We use the following inequality to apply the method of bounded differences.

Theorem 4 (Azuma’s Inequality [125]). Let Y0, Y1, . . . be a martingale sequence such that for each

k,

|Yk − Yk−1| ≤ ck

where ck may depend on k. Then for all t ≥ 0 and any λ > 0,

Pr[|Yt − Y0| ≥ λ] ≤ 2exp

(
− λ2

2
∑t
k=1 c

2
k

)

Since the method of bounded differences is applied frequently, we briefly revisit it here.

The following content is from [125]. Let X1, . . . , Xn be any sequence of random variables. Let

f(X1, . . . , Xn) be some function defined over these random variables. The function f is said to

satisfy the Lipschitz condition if an arbitrary change in the value of any one argument of the

function does not change the value of the function by more than 1. The sequence of random

variables Y0 = E[f(X1, . . . , Xn)], Yi = E[f(X1, . . . , Xn)|X1, . . . , Xi] and Yn = f(X1, . . . , Xn)

forms a martingale sequence. If f is Lipschitz, then for 1 ≤ i ≤ n, |Yi − Yi+1| ≤ 1. This condition

is clearly satisfied for the sum of indicator random variables. We can then use Azuma’s inequality

to bound the probability that a sum of indicator random variables deviates from the expected

value of that sum.

124



Theorem 5 (Chernoff bounds [125]). Let X be a sum of independent and identically distributed

0/1 random variables. Let µ denote the expected value of X. Then we have:

1. Pr[X ≤ (1− ε)µ] ≤ exp
(
−µε

2

2

)
for all 0 < ε < 1.

2. Pr[X ≥ (1 + ε)µ] ≤ exp
(
−µε

2

3

)
for all 0 < ε < 1.

3. Pr[X ≥ (1 + ε)µ] ≤ exp
(
− µε2

2+ε

)
for all ε > 1.

From the statement above, we can infer that Pr[X ≥ (1 + ε)µ] ≤ exp
(
−µε2

)
for all ε ≥ 2.

We also use the following simple fact frequently in the proofs.

Lemma 4. If µ1 ≤ µ ≤ µ2, then:

1. Pr[X > (1 + ε)µ2] ≤ Pr[X > (1 + ε)µ] ≤ Pr[X > (1 + ε)µ1].

2. Pr[X < (1− ε)µ1] ≤ Pr[X < (1− ε)µ] ≤ Pr[X < (1− ε)µ2].

Proof. For any two events A and B if A⇒ B, we have Pr[A] ≤ Pr[B]:

Pr[A and B] = Pr[B|A] Pr[A] = Pr[A|B] Pr[B]

Pr[A] = Pr[A|B] Pr[B]

Pr[A] ≤ Pr[B]

The lemma follows since (X > (1 + ε)µ2)⇒ (X > (1 + ε)µ) and (X > (1 + ε)µ)⇒ (X > (1 + ε)µ1).

Similarly, we have (X < (1− ε)µ1)⇒ (X < (1− ε)µ) and (X < (1− ε)µ)⇒ (X < (1− ε)µ2).

125



Chapter 6

Data Monitoring (Continuous Queries)

This is joint work with Jeyashankher Ramamirtham, Rajeev Rastogi and Pushpraj Shukla.

These results also appeared in [103].

6.1 Introduction

Monitoring emerging large-scale, distributed systems (like peer to peer systems, server clus-

ters, IP networks and sensor networks) poses several interesting challenges. Sensor networks place

various constraints on the communication and processing capabilities of the nodes. Network mon-

itoring systems need to process large volumes of data in (near) real-time from a widely distributed

set of sources, and it is nearly impossible to store and process the entire information in an on-

demand fashion. Further, many queries in these systems are continuous and are executed for the

lifetime of the system. For example, consider a system that monitors a large network for dis-

tributed denial of service (DDoS) attacks. This system needs to process data from several routers

at a rate of several gigabits per second. Also, the system needs to detect attacks as soon as they

happen (with minimal latency) to enable networks operators to take expedient countermeasures

in order to mitigate the effect of these attacks. The research community has looked at developing

algorithms for computing and tracking a wide range of aggregate statistics over distributed data

streams [16, 39]. These apply to a general class of continuous monitoring applications, where the

goal is to optimize the operational resource usage of these algorithms and still guarantee that the

estimate of the aggregate function is always within specified error bounds.

Communication efficiency is a critical concern for these distributed data management sys-

tems. In sensor networks, transmitting messages from sensor nodes consumes valuable battery

resources that determine the lifetime of these networks. In network data monitoring systems, each

node in the network receives voluminous amounts of data. Transmitting an equivalent amount of

126



data across the network in order to perform distributed computations is impractical. Thus, the

communication efficiency of the distributed computation algorithms determines the practicality of

these systems. Previous methods [91, 158, 51, 87] describe distributed constraints monitoring or

distributed triggers as a mechanism of reducing the amount of communication. These methods

filter out “uninteresting” events and do not require communication across the network for these

events; thus, reducing the communication needed to perform the computations.

In this chapter, we introduce a new set of methods that we call non-zero slack schemes.

We study these methods for an important class of queries called distributed SUM constraints or

distributed triggers, that are used to track anomalous behavior. We quantify the benefits of non-

zero slack schemes for distributed SUM constraints monitoring, both analytically and empirically,

and show that these methods can considerably reduce the number of communication messages in

the network (by 60% in our experiments). Implementing non-zero slack schemes for the simple

distributed SUM constraint queries presents a number of challenges and we address these challenges

in this chapter. We believe that non-zero slack schemes can be applied to a wide range of other

distributed queries to make them communication efficient and thus, practical. We leave the study

of non-zero schemes for other queries as future work.

Distributed SUM constraints: The distributed constraints that we focus on are of the form∑n
i=1 xi ≤ T , where n is the number of nodes in the system, xi is the value of a variable that is

being monitored at node i, and T is the constraint’s threshold. This constraint can be decomposed

into a set of local thresholds, Ti at each remote site i, such that
∑n
i=1 Ti ≤ T . If at all sites,

xi ≤ Ti then
∑n
i=1 xi ≤

∑n
i=1 Ti ≤ T . Thus, if none of the thresholds at the nodes are violated,

the global constraint is satisfied. In effect, the local thresholds act as filters that help in reducing

the amount of communication messages in the system.

Consider an example application for detecting service quality degradations of VoIP sessions

in a network. Let us suppose that VoIP requires the end-to-end delay to be within 200 milliseconds

and the loss probability to be within 1%. Consider a path through the network with n network

elements (routers, switches) s1, s2, . . . , sn. To monitor loss probabilities through the network, each

127



network element has an estimate of its local loss probability, say li, i ∈ [1, n]. The loss probability

of the path through these network elements is given by L = 1 − (1 − l1)(1 − l2) . . . (1 − ln). This

yields log(1 − L) = log(1 − l1) + log(1 − l2) + · · · + log(1 − ln). If we need L ≤ 0.01, we need

log(1 − L) ≥ log(0.99). Inverting the sign on both sides, this transforms into the constraint∑n
i=1 (− log(1− li)) ≤ − log(0.99).

Thus, the problem of monitoring losses in a network can be addressed using distributed

constraints monitoring. Delays can be monitored similarly using distributed SUM constraints.

Non-zero slack schemes: Algorithms to determine local constraints can be classified into two

categories: zero slack schemes and non-zero slack schemes.

• Zero slack schemes: These algorithms assign local constraints that do not have any slack in

the system. Specifically, the local threshold values, Ti are determined such that
∑n
i=1 Ti = T .

Most prior work uses this method of tight allocation of threshold values at the nodes.

• Non-zero slack schemes: These algorithms determine local constraints that retain some slack

in the system; i.e.
∑n
i=1 Ti ≤ T and the slack in the system is given by S = T −

∑n
i=1 Ti.

Zero slack schemes perform well if the values at the nodes do not exceed their threshold

values, i.e. xi ≤ Ti. However, this is seldom the case and the values can exceed this value frequently

even when the global sum is less than T . When a node’s value exceeds this threshold value, we

can no longer say with certainty if the global constraint is satisfied or not. This requires polling

the values at all nodes in the network to determine whether the global constraint is still satisfied,

causing a flurry of communication messages.

Non-zero slack schemes, on the other hand, retain some slack, and thus allow nodes to

exceed their local thresholds by that amount and are still able to guarantee satisfaction of the

global constraint without polling for values at all nodes. We demonstrate that the reduction in

the messages is considerable both analytically and through experiments for typical data.

Our contributions: In this chapter, we undertake a comprehensive study of communication

efficient monitoring of distributed SUM constraints using non-zero slack schemes.

128



1. We show both analytically and empirically that non-zero slack schemes outperform the state-

of-the-art zero slack scheme for different data distributions.

2. We develop adaptive algorithms for setting threshold values at remote sites in the presence

of non-zero slack (for changing data distributions).

3. Finally, we present the results of a thorough and detailed set of experiments using both

synthetically generated data and real world data, and show that our adaptive non-zero slack

algorithms can result in significant savings in the amount of communication.

To the best of our knowledge, our’s is the first work to systematically study non-zero slack schemes

for detecting distributed constraint violations.

The rest of this chapter is organized as follows. In Section 6.2, we review related work in

the area of distributed monitoring. We formally define the problem of threshold assignment for

distributed monitoring in Section 6.3 and show that non-zero slack schemes can result in lower

communication costs for a distribution pattern. In Section 6.4, we describe our adaptive algorithms

to set local threshold values. We present an experimental evaluation of the performance of our

algorithms in Section 6.5 and finally conclude in Section 6.6.

6.2 Related Work

Monitoring data streams in a distributed environment has been an important focus area of

research in recent years. Algorithms have been proposed for continuous monitoring of top-k items

[16], sums and counts [135], quantiles [39], joins and max values. These papers address problems

that are different from the problem we address in this chapter. For instance, Olston et al. [135]

tackle the problem of continuously tracking multiple SUM queries with different error bounds which

is very different from our problem which aims to detect if the result of a single SUM query exceeds

a given threshold.

Most recent work on the problem of distributed constraint monitoring propose zero-slack

schemes and one prior work describes a non-zero slack scheme for implementing distributed con-

129



straint monitoring.

Zero slack schemes: Jain et al. [91] discuss the challenges in implementing distributed triggering

mechanisms for network monitoring. They use a zero slack scheme that uses local constraints of

T/n to detect constraint violations.

The recent work of Sharfman et al. [158] represents the state of the art in detecting dis-

tributed constraint violations. For SUM constraints over variables xi, their scheme reduces to a

zero slack adaptive scheme that always maintains the invariant
∑
i Ti = T . Each time a local

constraint xi ≤ Ti is violated, the xi values are polled and the slack S = T −
∑
i xi is distributed

among the sites, that is, each Ti is set to Ti+S/n. We compare our algorithms against this scheme,

which we also refer to as the “Geometric Scheme” in later sections.

Agrawal et al. [6] present a zero slack scheme that formulates the problem of selecting local

constraints as an optimization problem whose objective function aims to minimize the probability

of global polls given the individual frequency distributions of variables xi.

Keralapura et al. [108] propose static and adaptive algorithms to monitor distributed SUM

constraints. We do not study static methods in this chapter as they result in much more commu-

nication than adaptive ones. Their adaptive schemes use similar methods to the ones proposed

in [158] and are essentially zero slack schemes.

Non-zero slack schemes: The scheme that is perhaps closest to our approach is that of Dilman

and Raz [51]. In addition to the Simple-Value scheme that sets each local threshold Ti to T/n, they

also propose an Improved Value scheme in which local thresholds Ti’s (same for all i) are set to

lower values than T/n, observing that the Improved Value scheme can outperform the simple value

scheme. This translates to the improvement of non-zero slack schemes over zero slack schemes in

our work. Their paper however does not address the following issues that we study in this chapter -

(1) They do not show how to set local thresholds, which is critical for achieving good performance.

(2) They do not show how to adapt local threshold values for changing data distributions.

Huang et al. [97] consider a novel variant of the instantaneous tracking problem where they

130



track constraint violations that persist over time. They use queuing theory as an analytical tool

to compute local threshold values that meet user-specified false alarm and missed detection rates.

Their analysis makes two assumptions which may not be true in our setting: (1) All local threshold

values are equal, and (2) Local site values follow a Normal N(0, σ2) distribution (e.g., network link

delay values have been found to follow a Weibull distribution). Also, it is unclear if the computed

local threshold settings in [97] optimize total communication costs - this is because false alarms

correspond to global polls and are only one component of communication costs (the second being

local alarms). Note that [97] allows missed detections, but we do not.

We propose a non-zero slack scheme called the reactive scheme that is inspired by the

probabilistic scheme presented in [136]. However, our problem setting is significantly more complex.

Please refer to the end of Section 6.4.4 for a detailed discussion of the differences between our work

and theirs as well as novel contributions of our work in this context.

6.3 Problem Definition

6.3.1 System Architecture

We consider a distributed monitoring system consisting of n remote sites s1, . . . , sn and a

central coordinator site s0. Each site si observes a continuous stream of updates, which it records

as a constantly changing value of its local variable xi. xi’s can take non-negative real values in

the domain [0,∞). Negative values can be handled as well. We omit it for clarity of discussion.

The remote sites can communicate with the coordinator to send or receive messages. We assume

that this communication can happen without any loss or delay. In addition, time is assumed to be

slotted and synchronized across sites. At the end of each time slot t, site si observes value xi(t).

If time is not important, we refer to the value at the site i as simply xi. We shall sometimes refer

to a slot as a ‘round’ for the system. Note that the values xi can increase or decrease with time.

This system architecture is in line with previous work [108].

131



6.3.2 Detection of distributed constraints violations

We are looking to devise schemes that can detect violation of global constraints defined over

distributed system variables of the form
∑n
i xi ≤ T . Each site si is assigned a local threshold Ti

such that
∑n
i Ti ≤ T . A remote site sends a local alarm to the coordinator whenever xi > Ti and

remains silent otherwise. If ∀i ∈ [1, n], xi ≤ Ti and
∑n
i Ti ≤ T , then

∑n
i xi ≤ T . Thus, if none of

the sites report local alarms, the global constraint is not violated.

If some site violates the local constraint, then the global constraint could have been violated.

Let us assume that site j violates the local constraint and sends the value at the site xj to the

coordinator. The coordinator now verifies if xj +
∑
i 6=j Ti ≤ T is satisfied. If this condition is

satisfied, then the global constraint is not violated. However, if the constraint is not satisfied, the

coordinator polls the remote sites for their exact values to determine if the global constraint is still

satisfied. We refer to this as a global poll.

A global poll can be performed by polling for the exact value at all sites. Alternatively, the

coordinator site can poll a subset of sites S and determine if the global constraint is not violated

by checking if
∑
i∈S xi +

∑
i/∈S Ti ≤ T is satisfied. If this constraint is satisfied, then the global

constraint is not violated. The coordinator need not poll the rest of the sites and hence this method

reduces the communication overhead. However, if the constraint is still violated, the coordinator

polls another larger subset of sites and performs the same procedure. This procedure is continued

until either the coordinator detects that the global constraint is not violated or all sites have been

polled. While this method reduces the communication required, it introduces undesired latency

in detecting constraint violations which might be unacceptable for many applications. Hence, we

prefer to restrict the number of rounds of polling to 1 or 2.

6.3.3 Cost model

We now present the model that we use to estimate the communication cost of a distributed

constraints violation detection scheme. The coordinator keeps an estimate Yi of each xi such that

Yi ≥ xi at all times. Local alarms from a remote site si are used to update Yi. Once a remote

132



site exceeds its local threshold, it sends any change in its local value to the coordinator. It is

easy to extend our schemes to an approximate scheme where a remote site sends updates to the

coordinator on “significant” changes in its value only (for example, if the value changes by ∆v,

where v is the previous value sent to the coordinator). The coordinator estimate of the global sum

is approximate by a factor of ∆.

Yi = xi for each si that reports a local alarm

= Ti for each si that has not reported anything

Whenever this estimate
∑
i Yi > T , the coordinator initiates a global poll to know the xi

values and check if the constraint is actually violated.

The communication cost of the system comes from local alarms and global polls. Define

• Pl(i) : The probability of a local alarm at site i = Pr(xi > Ti) - i.e. The probability that

the value at remote site si is greater than its threshold Ti.

• Pg : The probability of a global poll = Pr(
∑
i Yi > T )

Let Cl be the cost of transmitting a message from a remote site si to the coordinator on a local

alarm and Cg be the cost of the global poll. Typically Cl is O(1) and Cg is O(n). Our model can

be easily extended to systems where the costs of sending messages to the coordinator are different

for the remote sites. For simplicity of exposition, we assume that this cost is the same for all

remote sites. The communication cost of our scheme is then given by

C = PgCg +
n∑
i=1

Pl(i)Cl (6.1)

Given a value of Ti at a remote site, Pl(i) depends entirely on the distribution of observed values

at the remote site and is not affected by changes in behavior of the other sites (assuming that

observed values are independent across sites). Pg, however, depends on the observed values as well

as the threshold values at the other remote sites. Hence, a change in the threshold value at some

site or a change in distribution of any site’s observed value affects the Pg across all sites.

133



Coordinator
T = 300

Remote Site
T1 = 100
x1 = 120

Remote Site
T2 = 100
x2 = 80

Remote Site
T3 = 100
x3 = 80

x1 + T2 + T3 = 320 > T

(a) Assigning local thresholds of T/n

results in a global poll

Coordinator
T = 300

Remote Site
T1 = 90
x1 = 120

Remote Site
T2 = 90
x2 = 80

Remote Site
T3 = 90
x3 = 80

x1 + T2 + T3 = 300 ≤ T

(b) Assigning lower local thresholds

absorbs transient spikes in values requiring

no global polls

Figure 6.1: Example to show effect of slack in threshold assignment.

6.3.4 Local thresholds assignment problem

A simple method to set the local thresholds at the remote sites is to assign Ti = T/n, ∀i ∈

[1, n]. This is referred to as the simple value scheme in Reference [51]. Note that if some site

sj violates its local constraint (xj > T/n), then the coordinator site needs to perform a global

poll. This is because xj +
∑
i 6=j Ti > T . This method is an example of a zero slack scheme, i.e.∑n

i=1 Ti = T . Note that in general for all zero slack schemes, a local alarm results in a global poll

because the estimate of the constraint would exceed T on a local alarm.

On the other hand, setting local thresholds to values less than T/n provides some slack at

the coordinator that can be used to avoid expensive global polls. The slack at the coordinator

is given by T −
∑n
i=1 Ti and any site can exceed its local threshold value by this value without

needing a global poll. This slack can thus be used to absorb temporary spikes (e.g., flash crowds)

in the values at the remote sites, whereas setting all local thresholds at T/n would have resulted

in global polls. Thus, a non-zero slack scheme can result in lower communication costs. Setting

the local thresholds to very low values however results in frequent local alarms and hence high

communication overhead. At an extreme, we can set all local thresholds to 0. This is equivalent to

the remote sites sending every change in local values to the coordinator and hence, the coordinator

tracks the exact values at the sites, requiring no global polls. However, the number of updates

sent from remote sites to the coordinator is clearly unacceptably large.

134



We illustrate this with an example in Figure 6.1 that has 3 remote sites and has a threshold

of T = 300. Figure 6.1a shows the case of a zero slack threshold assignment, where each local

threshold is set to T/n (= 100). The first site’s value increases to 120, causing it to send a

local alarm to the coordinator. The coordinator’s site estimate (x1 + T2 + T3) is greater than T

causing it to initiate a global poll. Figure 6.1b shows a non-zero slack assignment where the local

thresholds are assigned lower than T/n at 90. The slack in the system is 30 and since the first

site’s value is not more than this amount above its local threshold value, the coordinator does not

need to initiate a global poll. This reduces the amount of communication required to track the

distributed constraint. Note that if the local thresholds were set to 75 instead, this would have

resulted in local alarms at all sites and the amount of communication would be equivalent to a

global poll. Thus, it is vital to identify the optimum value of the local thresholds that results in

low overall communication overhead. Reference [51] makes the same observation in their Improved

Value scheme.

While smaller values of local thresholds results in higher probability of local alarms Pl(i)

and lower global poll probability Pg, larger values of local thresholds result in lower probability of

local alarms and higher global polls probability. The optimum local threshold assignment balances

these two costs to minimize the cost given by C in Equation 6.1.

We now define the local threshold assignment problem.

Problem Statement 7. Given a threshold T and n remote sites with values xi at site i ∈ [1, n],

determine the threshold values, Ti at each site such the total cost of communication C, given by

Equation (6.1), is minimized.

6.3.5 Zipf case

We now present a more concrete example that illustrates the cost benefits of identifying

optimal local thresholds. Consider n remote sites, each having values in the range [0, T ] that

follow a Zipf distribution (with Zipf exponent 1) in this example. The probability that site si

takes on a value v is given by Pr(xi = v) = 1
HT

. 1v , where Hi is the ith Harmonic Number defined

135



by Hi =
∑i
k=1

1
k . Let the global threshold value be T , where 2n < T < 22n . We assume that

Cl = 1 for all sites and Cg = n.

Theorem 8. For this example, if CT/n is the cost of the system when the local thresholds at all

the sites are T/n and CT/ log(T ) is the cost of the system when the local thresholds at the sites are

T/ log(T ), then the gain derived by using a threshold value of T/ log(T ) at the remote sites instead

of T/n, given by g = CT/n
CT/ log(T )

, is Ω(log(n)).

Proof. The probability of local threshold violations is given by Pl(i) = 1− HTi
HT

, the probability of

the value at the site being less than Ti. Note that since Hv is θ(log(v)),

Pl(i) =
1
HT

θ(log(
T

Ti
))

For the case when the local thresholds are Ti = T/n, the global poll probability is the

probability that none of the remote sites have a local threshold violation.

Pg(Ti = T/n) = 1− (1− Pl)n ≈ nPl (assuming Pl << 1)

Thus, the cost of the system when using local threshold values of T/n at each remote site

is given by

CT/n = nPl(Ti = T/n)Cl + Pg(Ti = T/n)Cg = nPl + n2Pl

=
n(n+ 1)
HT

θ(log(
T

T/n
)) =

n(n+ 1)
HT

θ(log(n))

When local thresholds are set to T/ log(T ), the global poll probability is that the probability

that the estimate at the coordinator exceeds T , i.e. Prob(Y =
∑
i Yi > T ). We use Markov’s

inequality to bound this probability and assume that each site’s values are independently and

identically distributed.

Pg(Ti = T/ log(T )) = Pr(Y =
∑
i

Yi > T )

≤
E(
∑
i Yi)
T

=
∑
iE(Yi)
T

=
nE(Yi)
T

136



Recall that Yi = Ti when xi < Ti and Yi = xi otherwise. Thus,

E(Yi) =
T/ log(T )∑
j=0

Ti Pr(xi = j) +
T∑

j=T/ log(T )+1

xi Pr(xi = j)

=
1
HT

(
T +

T

log(T )
HT/ log(T ) −

T

log(T )
+ 1
)

Note that T
log(T ) − 1 > 0 and

T

log(T )
HT/ log(T ) =

T

log T
θ

(
log
(

T

log(T )

))
≤ T

Thus, E(Yi) ≤ 2T
HT

and the global poll probability is given by

Pg(Ti = T/ log(T )) ≤ 2n
HT

The cost of the system when using local threshold values of T/ log(T ) at each remote site

is given by

CT/ log(T ) = nPl(Ti = T/ log(T ))Cl + Pg(Ti = T/ log(T ))Cg

=
n

HT
θ(log(

T

T/ log(T )
)) +

2n2

HT

=
n

HT
(θ(log(log(T ))) + 2n)

We now have the gain as

g =
CT/n

CT/ log(T )
≥ (n+ 1)θ(log(n))
θ(log(log(T ))) + 2n

= Ω(log(n)) since T < 22n , log(log(T )) < n

We assume large values of T (> 2n) because violation of this threshold must be a rare event

and hence the probability of this threshold being violated should be low. Note that since T > 2n,

the slack in the system is T− nT
log(T ) > 0. This slack absorbs the large values of the Zipf distribution

at the sites and hence results in the cost gains.

This example shows that using a threshold value of T/ log(T ) results in a reduction in the

communication overhead of tracking distributed constraint violations for the case where all sites’

137



values follow a Zipf distribution. In reality, the values at the sites need not follow this distribution.

Further, each site’s values can follow a different distribution and the distribution of values can

change over time. Thus, a threshold assignment algorithm should adapt to these changes when

they happen.

6.4 Adaptive threshold assignment

We now present our algorithms for the problem of determining optimal local threshold values

at the remote sites. We present three schemes to assign threshold values Ti at the remote sites.

• Brute force algorithm: The first algorithm uses the coordinator to assist the remote sites

to determine optimal threshold values. This algorithm performs well in our experiments.

However, it requires each remote site to periodically send their histograms to the coordinator,

and the coordinator performs a complex computation to determine the local thresholds for

each remote site. This makes the algorithm relatively expensive and less desirable to use in

large scale deployments.

• Markov based algorithm: This algorithm uses Markov’s inequality to approximate the

global poll probability and this results in a decentralized algorithm. The advantage of this

algorithm is that it is decentralized except for a few messages to ensure correctness. It,

however, performs relatively poorly in our experiments.

• Reactive algorithm: The third algorithm uses local alarm and global poll events in the

system to assign the local thresholds at the remote sites. This algorithm does not require as

much communication as the brute force algorithm but still results in comparable performance.

Before describing our algorithms, we present the cost of the geometric scheme [158] as applied

to our problem. We consider this algorithm to be state of the art and compare the performance

of our algorithms with this method. For all algorithms, a local alarm is a single message from

the remote site to the coordinator and each global poll requires n messages assuming that the

coordinator polls every remote site.

138



6.4.1 Geometric approach

The geometric approach is an adaptive algorithm that we have described in Section 6.2.

The communication costs of this scheme are as follows.

Communication costs: The cost for this scheme comprises of global polls and control messages.

Following every global poll, the scheme sends n control messages, one for each remote site to set

new threshold values. We can ignore the cost due to local alarms since this is a zero-slack scheme

and therefore the coordinator needs to perform a global poll for every local alarm.

6.4.2 Brute force algorithm

This algorithm uses information from all remote sites at the coordinator to compute the

local threshold values. It determines the local thresholds by computing Pl(i) and Pg, and then

selecting the local threshold that minimizes the total cost C (given by Equation 6.1).

Each site maintains a histogram of the values that it sees over time as Hi(v),∀v ∈ [0, T ],

where Hi(v) is the probability of site si taking the value v.

The probability of a local alarm is entirely dependent on the state of the remote sites and

each remote site can independently calculate Pl(i) at a given value of Ti and is given by

Pl(i) = 1−
Ti∑
j=0

Hi(j)

Pg however is dependent on the state of all remote sites. In order to compute Pg, each remote

site sends its local histogram to the coordinator periodically. We call this period the recompute

interval. The coordinator uses the histograms to compute Pg.

Pg = Pr(Y > T ) = 1−
T∑
v=0

Pr(Y = v)

Pr(Y = v) can be computed at the coordinator using the following dynamic programming

algorithm. Let Qi(v) denote the probability of the estimate of a remote site si’s value being equal

to v; i.e. Pr (Yi = v). Let ζ(k, v) denote Pr (
∑n
i=k Yi = v). Assuming that values at the sites are

139



BruteForce(T, n, δ)

1: Ti ← T
n ,∀i ∈ [1, n];

2: loop {receive histograms from all remote sites every recompute interval;}
3: Slack, S ← T −

∑n
i=1 Ti;

4: δupper = min(δ, Sn );
5: for i = 1 to n do
6: Ui ← Ti + δupper; Li ← max(Ti − δ, 0);
7: Ti(opt)← Ti; Ci(opt)←∞;
8: for T̂i = Li to Ui do
9: Compute cost, Ci, at T̂i;

10: if Ci < Ci(opt) then
11: Ti(opt)← T̂i; Ci(opt) = Ci;
12: end if
13: end for
14: end for
15: ∀i ∈ [1, n], Ti = Ti(opt);
16: Send Ti values to the remote sites.
17: end loop

Figure 6.2: Brute Force Algorithm

independent across sites (i.e. the Qi’s are independent), we have:

Qi (v) =



0 if v < Ti,

∑
v≤Ti Hi(v) if v = Ti,

Hi(v) Otherwise.

ζ (k, v) =


Qn(v) if k = n,

∑
y≤v ζ(k + 1, v − y) ∗Qk(y) if k < n.

ζ (1, v) gives us Pr(Y = v), and Pg can be computed by running the algorithm for each value

of v ∈ [0, T ]. Note that the same dynamic programming table can be used to compute Pr(Y = v)

for all values of v ∈ [0, T ]. The running time to compute the table is O(nT 2) and to sum the

entries (
∑T
v=0 ζ (1, v)) takes O(T ) time and thus the algorithm has pseudo-polynomial complexity.

In order to determine the optimal threshold values at each site that result in minimum cost,

we can do a naive exhaustive enumeration of all Tn possible sets of local threshold values. For

each combination of threshold values, we compute the Pl(i) values at each site and the Pg value

to determine the cost. Thus, this naive enumeration has a running time of O(nTn+2). This is

clearly not scalable for large values of T and n. We propose the following optimizations to make

140



the running time of the computation manageable.

• While determining optimal threshold values, we calculate the optimal threshold value for a

remote site by fixing the threshold value at the other sites. In other words, each site assumes

that the other sites do not change their threshold values for the next round. Thus, we

perform a search for the optimal threshold independently for each site and the complexity of

this search is O(nT ) (compared to O(Tn) search complexity for the exhaustive enumeration).

• Note that we assume that the other sites do not change their threshold values while calcu-

lating the optimal threshold value at a remote site. This is not true and the other sites can

change their threshold values arbitrarily in the range [0, T ]. If we allow arbitrary changes in

the threshold values, the estimated Pg value can be arbitrarily off from the actual Pg value

in the system . In order to prevent this, we assume that each remote site i can vary its

threshold value in the range [Ti − δ, Ti + δ] only. Thus, we limit the error in the Pg estimate

at each site. This also reduces the search space for threshold values at each remote site to

2δ from T .

• For the small range [Ti−δ, Ti+δ], we also assume that Pg is linear between the two endpoints.

Thus, it sufficient to run the dynamic programming algorithm at the two end points only

and at all other points in that range, we can calculate Pg using the linear interpolation.

We present the algorithm with the optimizations in Figure 6.2. Note that Ci represents the

cost of the system assuming that only site is threshold value changes in a given round.

Ensuring correctness: The slack computed in Line 3 of the algorithm is used to ensure that each

remote site’s threshold does not increase by a value more than δupper computed in Line 4. This

ensures that
∑n
i=1 Ti ≤ T , otherwise we will not be able to detect constraint violations correctly.

Communication costs: Apart from local alarms and global polls, each remote site sends an

update (see Section 6.4.5 for details) of its histogram values every recompute interval and the

141



coordinator recomputes the threshold values. Thus, there are 2n control messages in the system

every recompute interval.

Note that we count the message to send histogram data from a remote site to the coordinator

as one control message. This message is however larger in terms of size than a control message

used to send new threshold values to remote sites. Thus, our estimate in terms of the number of

messages (and not the size of messages) is an optimistic estimate of the control overhead of this

algorithm.

6.4.3 Markov-based algorithm

The brute force algorithm requires remote sites to send their histograms every recompute

interval and requires the coordinator to perform the above computation to determine the local

threshold values. This is not very desirable when the number of remote sites is large. Our Markov-

based algorithm decentralizes the computation of Pg thus enabling each site to independently

determine the local threshold values.

Using Markov’s inequality,

Pg = Pr(Y > T ) ≤E[Y ]
T

=
E[
∑n
i=1 Yi]
T

=
∑n
i=1E[Yi]
T

Thus, the cost of the system is given by

C =
n∑
i=1

ClPl(i) + CgPg ≤
n∑
i=1

ClPl(i) +
Cg
T

n∑
i=1

E[Yi]

C ≤
n∑
i=1

(
ClPl(i) +

Cg
T
E[Yi]

)

E[Yi] can be computed at the local sites as follows.

E[Yi] =
T∑
v=0

Yi Pr (Yi = v) =
Ti∑
v=0

TiHi(v) +
T∑

v=Ti+1

vHi(v)

Note that each site can independently determine the local threshold value that minimizes its

contribution to the total cost, ClPl(i)+ Cg
T E[Yi], thus requiring no assistance from the coordinator.

The global poll probability Pg using the Markov inequality is an upper bound on the actual

probability and this estimate grows to 1 very quickly with increasing Ti values. Hence, this

142



algorithm assigns local threshold values that are much smaller than the optimum threshold values

to minimize this estimated cost. This results in a large number of local alarms and hence, higher

cost (other estimates using Hoeffding and Chebyshev bounds do not yield better results). We

demonstrate this in our experiments in Section 6.5.

Each remote site computes its optimal threshold value every recompute interval. The opti-

mal local thresholds are computed by performing a linear search in the range 0 to T . This takes

O(T ) running time. We can reduce the running time to O(δ) by searching for the optimal threshold

value in a small range [Ti − δ, Ti + δ] in each round.

Ensuring correctness: If each remote site is allowed to independently decide on their local

threshold values, we will not be able to ensure correctness; i.e.
∑n
i=1 Ti ≤ T cannot be guaranteed.

A simple method to ensure correctness is to restrict each remote site’s local to a maximum of T/n.

This however can result in poor performance in cases where one site’s value is very high on average

compared to other sites.

In order to ensure that the sum of the threshold values is bounded by T , each remote site

sends the computed optimal local threshold value, Ti, to the coordinator every recompute inter-

val. The coordinator determines if
∑n
i=1 Ti ≤ T . If not, it reduces each threshold value Tj by

Tj∑n
i=1 Ti

(
∑n
i=1 Ti − T ). This ensures that

∑n
i=1 Ti ≤ T .

Communication costs: Apart from local alarms and global polls, the Markov based algorithm

sends 2n control messages every recompute interval to ensure correctness. Each remote site sends its

calculated threshold value and the coordinator sends either modified threshold values or validates

the threshold values calculated by the remote sites. These control messages are very light weight

as compared to the control messages sent by the remote sites in the brute force algorithm.

143



LocalAlarmAction(i, T, n, α, ρi)

1: With probability min(1, 1
ρi

), Ti ← α× Ti

GlobalPollAction(i, T, n, α, ρi)

1: With probability min(1, ρi), Ti ← Ti
α

Figure 6.3: Reactive threshold assignment algorithm

6.4.4 Reactive algorithm

The reactive algorithm adjusts local threshold values at the remote sites based on local alarm

and global poll events that occur in the system. Each local alarm from a remote site indicates

that the threshold value at the remote site is possibly lower than optimum and each global poll

indicates that the threshold value is higher than optimum. The basic reactive scheme at each

remote sites adapts the thresholds at the remote sites based on these events using the algorithm

shown in Figure 6.3.

Whenever there is a local alarm, the site increases the threshold value by a factor α with

a probability 1/ρi (or 1, if 1/ρi is greater than 1), where α and ρi are parameters of the system

greater than 0. Whenever there is a global poll each remote site reduces the threshold value by a

factor of α with a probability ρi (or 1, if ρi is greater than 1). α is a constant that determines the

rate of convergence and can typically take values in the range (1, 1.2]. Choosing an α value that is

too small leads to bad performance since it does not converge fast enough, while choosing a large

α leads to large oscillations in threshold values. We choose α = 1.1 in our experiments (which we

found to be the best).

If we want the remote site to take the optimal local threshold T opti , then setting ρi = Pl(T
opt
i )

P optg

will achieve this - here Pl(T
opt
i ) is the probability of a local alarm when the local threshold is T opti

and P optg is the probability of a global poll when all remote sites take the optimal threshold values.

The reason for this is that if the system is not at T opti at all sites, then we can show that at

some site either (1) current threshold T ′i > T opti , Pl(T ′i ) < Pl(T
opt
i ) and Pg(T ′i ) > Pg(T

opt
i ), or (2)

current threshold T ′i < T opti , Pl(T ′i ) > Pl(T
opt
i ) and Pg(T ′i ) < Pg(T

opt
i ). Let us look at the first

144



case; if at some site T ′i > T opti , Pl(T ′i ) < Pl(T
opt
i ) and Pg(T ′i ) > Pg(T

opt
i ):

Pl(T ′i )
Pg(T ′i )

<
Pl(T

opt
i )

Pg(T
opt
i )

and Pl(T ′i ) <ρiPg(T
′
i )

Hence, the average number of observed local alarms is lesser than ρi times the average

number of observed global polls. Thus, the threshold value decreases over time from T ′i . We can

similarly argue that the threshold value will increase if the threshold is lesser than T opti . So, the

stable state of the system is around T opti using the reactive algorithm. This argument ignores other

interactions in the system such as other sites varying their thresholds, thus affecting the observed

Pg. We conjecture that the system converges to the desired value of Ti even in the presence of

these interactions and our experiments corroborate this. Observe that, we introduce randomness

by increasing and reducing thresholds probabilistically and this desynchronizes threshold changes

at the remote sites and helps in convergence.

Since determining the optimum T opti and the corresponding Pg values is not feasible, we

propose to use the Markov-based scheme to identify the threshold value that gives the minimum

cost estimate and use this value to compute the contribution of the remote site to Pg. Every

recompute interval, the remote site then sends this component of Pg to the coordinator. The co-

ordinator sums the components of Pg it receives from the remote sites and computes the Pg value.

The coordinator sends this value of Pg to the remote sites. Each remote site uses this value of

Pg to compute the value of ρi for the reactive scheme. Note that the Pl used in the computation

of ρi is for the threshold value that gives the minimum cost according to the Markov-based scheme.

Comparison with Markov algorithm: The Markov algorithm does not perform well because

it sets the local thresholds to very low values. However, in the reactive scheme, the remote sites

see far less global polls than is estimated by the Markov scheme and hence, sets higher threshold

values than the Markov scheme. Thus, the reactive scheme is able to perform much better than

the Markov scheme in our experiments.

let T esti be the threshold value at remote site i determined by the Markov scheme and

T reali be the threshold value where the system actually converges. Let est(Pg) be the Markov

145



estimate of the global poll probability, Pg(T reali ) be the real global poll probability observed in

the system at T reali and Pg(T esti ) be the real global poll probability at T esti . Also, we have that

Pg(T esti ) ≤ est(Pg) since Markov overestimates Pg. By definition,

ρi =
Pl(T esti )
est(Pg)

=
Pl(T reali )
Pg(T reali )

If T reali < T esti , we have:

Pl(T reali ) > Pl(T esti ) and Pg(T reali ) < Pg(T esti ) ≤ est(Pg)

Thus,

Pl(T esti )
est(Pg)

<
Pl(T reali )
Pg(T reali )

Hence, we have a contradiction. Thus, T reali ≥ T esti . In reality, Markov’s estimate of Pg is

much higher than the real Pg observed in the system and hence, the system converges to a thresh-

old T reali that is significantly higher than the threshold T esti determined by the Markov-based

algorithm.

Ensuring correctness: The coordinator is always aware of the latest threshold value at each

remote site - this is because every time there is a local alarm, the remote site informs the coordi-

nator of the value that caused the local alarm along with the new threshold value at that remote

site. Therefore, whenever local alarms cause
∑n
i=1 Ti > T at the coordinator, the resulting global

polls reduce thresholds until
∑n
i=1 Ti ≤ T .

Communication costs: Apart from local alarms and global polls, every recompute interval the

scheme sends 2n control messages. Each site communicates its contribution to the global poll

probability at its estimate of the optimum based on the Markov-estimate, the coordinator then

adds up all these estimates from the remote sites and broadcasts this value to all the remote sites

which then use it to compute the local ρ value.

146



While our reactive scheme is inspired by the scheme presented by Olston et al. [136], our

problem is very different from theirs. We address the differences in Section 6.2

6.4.5 Maintaining histograms

Our algorithms rely on histograms of the values at remote sites to determine optimal local

thresholds. We can assume all values greater than T at a remote site to be equal to T without

affecting the constraint being monitored. However, if we assume that the range of values at remote

sites is [0, T ], we need a histogram size of T and this clearly does not scale with increasing values

of T .

We use equi-depth histograms at each monitoring site to keep track of the data distribution.

We did experiments with varying histogram sizes and as results in subsequent sections will show,

histograms that represent only 5% of the domain from which site values are drawn are sufficient to

see the claimed significant savings in communication cost. In all experiments, we use exponential

aging to ensure that the histogram reflects recently seen values more prominently than older ones.

In practice, one could use more sophisticated histogramming techniques such as the ones in [65].

In order to reduce the control overhead associated with the brute force algorithm, we send

site histograms to the coordinator only if the KL-distance [75] between the last shipped histogram

and the current histogram exceeds a certain threshold. See [75] for efficient algorithms to compare

distributions and estimate information theoretic distances.

6.4.6 Computational Overhead

The computation overhead has two components - the cost incurred at each remote site and

the cost incurred at the central coordinator. If we maintain full histograms at each remote site,

then the computational cost for each scheme is as follows (for each recompute interval):

• Markov based scheme: O(T ) cost at each remote site, O(n) cost at the coordinator

• Brute force scheme: O(T ) cost at each remote site, O(nTn+2) at the coordinator. With

the approximations we suggest the computational overhead at the coordinator reduces to

147



O(n2T 2 +nδ) (where threshold values are allowed to vary in a O(δ) range). Since we expect

O(δ) to be small, the cost at the coordinator for this scheme is O(n2T 2).

• Reactive scheme: O(T ) cost at each remote site, O(n) cost at the coordinator.

As expected, the brute force scheme has a huge computational overhead and is intractable for

asymptotic n and T . The other schemes are less computationally intensive. Note that although the

cost depends on T since the comparison assumes we use full-size histograms; in practice however,

we will only use approximate histograms. As mentioned in Section 6.4.5, we were able get very

good results in practice even with tiny histograms.

6.5 Experiments

We performed extensive experiments, using multiple real-world traces and also using syn-

thetic data, to evaluate the performance of our non-zero slack schemes and to explore properties

of our algorithms. When using our schemes to set thresholds at monitors for both real-world data

and synthetic data, we observed significant savings (40% to 90%) in the number of messages, over

using the state of the art zero-slack geometric scheme in [158]. We also found that the savings

in communication overhead when using our non-zero slack schemes increases as the number of

monitoring nodes in the system increases. Our experimental results indicate that among the non-

zero slack schemes that we suggest, the reactive scheme is the best in terms of performance across

different datasets and also in terms of scalability.

6.5.1 Experimental Setup

For our experiments, we consider a monitoring application that monitors the total amount of

traffic flowing into a service provider network. Our monitoring setup consists of getting information

about the ingress traffic of the network. This information can be derived by deploying passive

monitors ([59], [44]) at each link or by collecting flow information (e.g. Netflow [34] records) from

the ingress routers. Each monitor aggregates the information (packet level or flow level) to derive

the total amount of traffic (in bytes in this experiment) coming into the network through that

148



ingress point. The distributed constraint monitors the total amount of traffic flowing into the

network across all ingress links and throws an alarm if this amount exceeds a certain threshold.

In our experiments, we use the number of messages sent by each scheme to track the con-

straint as the performance metric. We used a recompute interval of 1000 rounds for each scheme.

For the bruteforce scheme, we used δ = 10. For the reactive scheme, we used α = 1.1. For all

schemes we used histograms that represent 5% of their original range. Refer to Section 6.4.5 for

details on histogram computation and maintenance.

6.5.2 Datasets

Abilene: Our first set of Netflow traces were obtained from the Abilene network, which is an

Internet2 high-performance backbone network with 11 routers located across the US [3]. We used

traces from +1000hrs to +1100hrs UTC on August 15th, 2006. The Netflow records show a total

of 73.3 million packets during this period. These packets were seen across the 11 Abilene router

nodes; the Chicago location saw the most packets (9.6 million) while the Seattle location saw the

least packets (2.2 million). Therefore the Abilene dataset gave us a real-life, large scale and natu-

rally distributed dataset. We scaled down all packet sizes by a factor of 100. Although the results

we present are for this selected time frame, we performed several experiments by looking at data

that spanned weekend/weekday transitions, different days of the week as well as different times of

day. We obtained very similar results for all these cases.

NLANR: We also use publicly available link traces from NLANR [133] as input to our distributed

monitoring system. This trace was collected with an NLANR PMA OC192MON located on SDSC’s

TeraGrid Cluster, from +0000hrs UTC to +0100hrs UTC on February 18th, 2004. The trace

contained a total of 21 million packets. These traces are for a single ingress link, and we transform

this data for our distributed system by assigning a probability distribution for distributing packets

randomly to the various monitors. By using different probability distributions, we can simulate

various scenarios that can occur in real networks. A uniform distribution implies that any packet

149



is equally likely to go to any of the monitoring nodes. A skewed distribution distributes packets

unevenly and a few nodes receive more packets than others. For ease of presentation and also

because we have a dataset that is naturally separated in Abilene, we only present the case where

data is uniformly distributed across the different routers in this case. We also present results for

experiments where we vary the number of monitoring nodes (from 10 to 160) across which this

data is distributed. We scaled down all packet sizes by a factor of 10.

Synthetic: Finally, we also used synthetic datasets to evaluate parameters that could not be

controlled using real-world datasets. For instance, to study the effect of changing the number

of monitors (from 10 to 160) on the observed savings. Values at each monitor were generated

independently at random in the range [0, 1500] using a Zipf distribution with a randomly chosen

Zipf exponent between 1.0 and 2.0. We ran experiments where all the monitors had the same

behavior as well as when they all had different behavior. Unless specifically mentioned, we use

n = 20 monitors whenever we mention that we generate synthetic data.

6.5.3 Results

Comparison of message overhead: Figure 6.4a compares the number of messages sent by the

various threshold setting mechanisms, while Figure 6.4b compares the percentage gain in number

of messages of the various schemes over using the geometric scheme for the Abilene dataset. In

each plot we vary the threshold values (T ) on the x-axis in a way that we have the true global

poll percentage (i.e. the percentage of the number of true global constraint violations) vary from

50% to 0%. Notice that we get a 40%-90% improvement over the geometric scheme using our

reactive scheme. Also notice that the reactive scheme performs close to the bruteforce approach

throughout the range of T values. Notice that as the event we are tracking becomes rare, the

performance of the Markov scheme degrades rapidly and it actually performs much worse than

the geometric scheme. Our reactive scheme does not suffer from these drawbacks. This is because

Markov overestimates global poll probability and sets lower thresholds, while (as argued earlier)

in the reactive case, thresholds converge to a higher value. These savings in plots include the

150



various costs incurred by the schemes in computing the thresholds and communicating them to

the monitors. One explanation for the drop off in gain while tracking rare events is that the control

overhead of schemes begin to dominate the overall cost since the number of local alarms and global

polls in these cases is small. Figures 6.4c and 6.4d show similar plots for the NLANR dataset.

Figures 6.4e and 6.4f show similar results for the synthetic dataset.

As we mentioned earlier, while the bruteforce approach shows very good performance it

involves periodically shipping site-histograms and therefore may not be very practical. We use its

performance more as an indicator of the optimum performance (that a histogram-based scheme

might achieve).

Breakdown of message overhead: Figure 6.5 shows the breakup of cost for the various schemes

while tracking events in the Abilene dataset. Each stacked chart breaks down the message overhead

in terms of local alarms, global polls and control overhead. In general, if a scheme sets lower

thresholds than another, then it will cause more local alarms than global polls compared to the

other scheme. The Markov scheme (Figure 6.5c) (especially at higher values of T - i.e. when

tracking rare events), overestimates the global poll probability and sets very low thresholds. As a

result, the number of global polls is very low. However, the scheme suffers due to the large number

of local alarms. The reactive scheme (Figure 6.5d) and the bruteforce scheme (Figure 6.5a) are

able to strike a good balance here and this is reflected in their performance - where these two

schemes consistently perform the best in the entire range of T values (Figure 6.4a). The cost of

the geometric scheme (Figure 6.5b) is comprised entirely of global polls and control overhead -

this is because it maintains zero slack and consequently every local alarm results in a global poll.

The bruteforce scheme has relatively low control overhead because we employ KL-distance based

histogram shipping. Another interesting observation is that at higher values T , control overhead

begins to look significant due to the smaller number of local alarms and global polls at these values.

Sensitivity to histogram size: As mentioned in Section 6.4.5, we did all our experiments

using small equi-depth histograms. We did experiments to see just how small we could make our

histograms without significantly increasing the number of messages sent by our schemes by varying

151



1E+05

1E+06

1E+07

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

T

N
o

. o
f 

M
es

sa
g

es
 (

lo
g

sc
al

e)

Geometric

Markov

Reactive

Brute Force

(a) Abilene dataset - number of messages

0

10

20

30

40

50

60

70

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

T

%
 s

av
in

g
s

(o
ve

r 
G

eo
m

et
ri

c)

0
5
10
15
20
25
30
35
40
45
50

G
lo

b
al

 P
o

ll 
%

Markov

Reactive

Brute Force

Global Poll %

(b) Abilene dataset - percentage savings

1E+03

1E+04

1E+05

1E+06

1E+07

35
0

13
15

22
80

32
45

42
10

51
75

61
40

71
05

80
70

90
35

10
00

0

T

N
o

. o
f 

M
es

sa
g

es
 (

lo
g

sc
al

e)

Geometric

Markov

Reactive
Brute Force

(c) NLANR dataset - number of messages

0
10
20
30
40
50
60
70
80
90

100

35
0

13
15

22
80

32
45

42
10

51
75

61
40

71
05

80
70

90
35

10
00

0

T

%
 s

av
in

g
s

(o
ve

r 
G

eo
m

et
ri

c)

0
5
10
15
20
25
30
35
40
45
50

G
lo

b
al

 P
o

ll 
%

Global 
Poll %

Markov

Reactive

Brute Force

(d) NLANR dataset - percentage savings

1E+05

1E+06

1E+07

1E+08

60
0

11
40

16
80

22
20

27
60

33
00

38
40

43
80

49
20

54
60

60
00

T

N
o

. o
f 

M
es

sa
g

es
 (

lo
g

sc
al

e)

Geometric

Markov

Reactive

Brute Force

(e) Synthetic data - number of messages

82

84

86

88

90

92

94

96

60
0

11
40

16
80

22
20

27
60

33
00

38
40

43
80

49
20

54
60

60
00

T

%
 s

av
in

g
s

(o
ve

r 
G

eo
m

et
ri

c)

0

10

20

30

40

50

G
lo

b
al

 P
o

ll 
%

Global Poll %

Brute Force

Markov

Reactive

(f) Synthetic data - percentage savings

Figure 6.4: Number of messages sent in tracking events at various value of T and Percentage Savings in

number of messages over the geometric scheme.

their size from 20% of the original range to 1% of the original range. Figure 6.6, shows the results

for the Abilene and synthetic datasets while tracking three different events that occur 5% of the

time, 1% of the time and an event that occurs 0.0005% of the time. As can be seen in Figure 6.6,

there is no significant change in the number of messages that each scheme sends until histograms

shrink to around 1% of their original size. We obtained similar results for the NLANR dataset.

Effect of scale - varying the number of monitoring nodes: Our analytical result from

152



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

local global control

(a) Brute Force

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

local global control

(b) Geometric

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

local global control

(c) Markov

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

local global control

(d) Reactive

Figure 6.5: Bar charts showing the breakup of cost for the various schemes while tracking various

events for the Abilene dataset.

0

500000

1000000

1500000

2000000

20
%

10
% 5% 1% 20
%

10
% 5% 1% 20
%

10
% 5% 1%

T = 3190 T = 3850 T = 5170

Brute Force Markov Reactive

(a) Abilene

0

1000000

2000000

3000000

4000000

5000000

6000000

20
%

10
% 5% 1% 20
%

10
% 5% 1% 20
%

10
% 5% 1%

T = 2000 T = 3000 T = 5460

Brute Force Markov Reactive

(b) Synthetic

Figure 6.6: Bar charts showing the variation in cost for the various schemes while using histograms of

different sizes. Notice that the solution quality remains largely unaffected until histograms shrink to

around 1% of their original size.

Theorem 8 suggests that the benefit from using a non-zero slack scheme over using a zero-slack

scheme should increase as the number of monitoring nodes in the system increases. The theorem

153



of course makes assumptions that might not always hold in practice. We did experiments to

determine the savings in communication using non-zero slack schemes with increasing number of

monitoring nodes. Our first experiment was with the synthetic dataset, where we varied the number

of monitoring nodes from 10 to 160, and each site chose a random Zipf exponent in the range of

1.0 to 2.0. Our second experiment was with the monolithic NLANR dataset, where we varied the

number of monitoring nodes from 10 to 160 and we distributed the packets in the trace by randomly

assigning them to the monitors. In both experiments, we were interested in tracking an event that

happens at most once during the entire trace. Figure 6.7a shows the results for the synthetic

experiment and Figure 6.7b shows the results for the NLANR experiment. Notice that in both

cases there is an increase in percentage gain over the geometric scheme as the number of monitoring

nodes increases. The most interesting result from these experiments was that our Markov-based

scheme starts performing very well for the NLANR dataset as the number of monitoring nodes

increases. Notice that in 6.7b, the Markov-based scheme goes from performing much worse than

the geometric scheme (this portion of the Markov plot is cut off) when n = 10, to showing a 95%

savings in communication cost when n = 160. This is because in the NLANR dataset we keep the

T value constant even as we increase n - since the event we are tracking remains the same in this

case. Markov’s estimate of the optimum threshold and the actual optimum threshold are actually

close by because the range of good threshold values shrinks as n increases and T remains the same.

We point out that while the bruteforce approach shows good results, its computation took a long

time at high values of n.

77

79

81

83

85

87

89

91

93

10 20 40 80 160

No. of Monitors

%
 g

ai
n

 (
o

ve
r 

G
eo

m
et

ri
c)

Reactive

Brute Force

Markov

(a) Zipf, T = 50n

55

60

65

70

75

80

85

90

95

100

10 20 40 80 160

No. of Monitors

%
 G

ai
n

 (
o

ve
r 

G
eo

m
et

ri
c)

Markov

Reactive

Brute Force

(b) NLANR, T = 9035

Figure 6.7: Percentage gain over the geometric scheme as we vary the number of monitoring sites.

154



Global poll probability comparison: Predicting the correct global poll probability is the

crucial part of determining the right thresholds to set to minimize communication cost. Figure

6.8b compares the global poll probability estimates using the bruteforce approach and using the

Markov-based approach. The plots also include the observed global poll probability (calculated

using the number of global polls seen in the system). The plots also indicate the true global poll

probability (labeled “full-knowledge” in the plot). Notice that in Figure 6.8b, for the bruteforce

scheme, the predicted global poll probability and the observed global poll probability are close to

each other, this is a good indicator that the global poll probability estimates that the scheme uses

are fairly accurate. Also notice that while the observed and estimated global poll probabilities

are very different from each other for the Markov scheme, the observed global poll probability is

actually lower than that of the bruteforce scheme. This is because the Markov scheme overestimates

the global poll probability and sets a much lower threshold than is optimal. This ensures that

Markov tracks the global sum accurately, but at the cost of increased communication in the form

of local alarms - causing the Markov scheme to perform badly overall. The spike in the plot is just

an artifact of the data - the sites see a lot of data in that period.

Sensitivity to α: The α parameter in the reactive algorithm controls how quickly threshold

values can be changed by the algorithm. Small values of α will ensure that thresholds cont change

dramatically, while larger values of α will allow sites to change their thresholds quickly to adapt to

changes in the distribution. Ideally, we should be able to pick a very small value of α and it should

only affect the reactive scheme in as much as how fast it converges. However, in practice, choosing

a very small α amounts to setting a minimum value on the threshold. For any threshold value

less than α
α−1 , we will require several global polls to see a significant reduction in the threshold

value. It is therefore important to use an α value such that α
α−1 is small enough. This can be

seen in Figure 6.8c, which shows the percentage difference in the number of messages between the

best α value and a given α value for four different T values for the Abilene dataset. Consider

the case where α = 1.001 and T = 5500 and the scheme performs badly, while at lower T values

and the same α = 1.001, the scheme does not performs better. This is because at lower values of

155



T there are enough global polls to cause a significant change in the threshold value. The reason

for the drop off at higher values of α is simply that the thresholds change too rapidly even for

passing anomalies or momentary spikes in the data. Our experiments showed similar results for

the NLANR and synthetic datasets.

Adaptability to changes in data distribution: We performed an experiment to show that our

schemes can adapt to changes in distribution even though they rely on aged histograms to calculate

threshold values. We start with all monitors seeing data drawn from a Zipf distribution with a

high Zipf exponent of 2.0. After 30000s, the distribution changes to a much lower Zipf exponent of

1.25. After another 30000s, the distribution changes to a higher Zipf exponent of 1.5. Figure 6.8a

shows the number of messages sent by the various schemes in an interval spanning 1000s. Notice

that in all cases, the bruteforce scheme performs the best, although it takes longer than the rest

of the schemes to converge. The reactive scheme converges faster than the bruteforce approach

and performs almost as well for both the high and low Zipf exponents. In Figure 6.8a, the circled

region shows how the various schemes converge; while the Markov scheme and reactive scheme

move steeply toward their best cost, the bruteforce takes longer to get to its best cost. This is

because the bruteforce scheme adjust thresholds in additive increments. The reactive scheme on the

other hand adjusts thresholds in multiplicative increments which leads to exponential convergence.

The Markov scheme can make arbitrary changes to its threshold values.

Sensitivity to ρ: The value of ρ determines the threshold values to which the reactive scheme

will converge to. For instance if ρ = 1 then the reactive scheme will converge to a point where the

local alarm probability is equal to the global poll probability. Clearly, for arbitrary distributions

the expected cost need not be minimum at the point where they are equal. In general ρ can be

any value at the optimum point. For example, look at Figures 6.9a and 6.9b. The plots show the

expected message overhead and the ratio of local alarms to global polls (ρ) as a function of slack

for two different cases.

Notice that the optimum ρ value is different in the two cases - the optimum is close to ρ = 10

in 6.9a, while its close to ρ = 3 in 6.9b.

156



10

100

1000

10000

100000

1 11 21 31 41 51 61 71 81

Time (in 1000s)

N
o

. o
f 

M
es

sa
g

es
 (

in
 lo

g
sc

al
e)

Brute Force

Markov

Geometric

Reactive

region showing
convergence

(a) Plot showing how the different schemes

adapt to a drastic change in distribution.

The circled region shows that the various

schemes converge at different rates when

there is a change in distribution.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 31 34 37

Time (in 1000s)

G
lo

b
al

 P
o

ll 
P

ro
b

ab
ili

ty

bruteforce-estimate

bruteforce-observed

markov-observed

full-knowledge

markov-estimate

(b) Plot comparing the global probability

estimates for the Markov-based scheme and

the bruteforce scheme over a one hour trace

from the Abilene dataset while tracking an

event that occurs 0.5% of the time

throughout the trace (this corresponds to

T = 4180).

-55

-45

-35

-25

-15

-5

1.001 1.01 1.1 2 3

α

%
 d

if
fe

re
n

ce
 (

w
rt

 b
es

t 
al

p
h

a)

T = 5500

T = 4840

T = 3850

T = 2200

(c) Difference (in % messages) between a

given α value (varied along the x-axis) and

the best α value for 4 different values of T

for the Abilene dataset.

Figure 6.8: Additional experimental results

The reactive scheme we use in our experiments computes the ρ value at the estimated

optimum adaptively for each monitor using a Markov-based approach. We performed a set of

experiments to determine how the reactive scheme performed if this ρ value were to be changed.

In these experiments, ρ values ranging from 0.0001 to 10000 were chosen and fixed throughout the

execution of the reactive scheme. The performance in each of these cases was noted for the entire

157



0
2
4
6
8

10
12
14
16
18
20

16
00

14
80

13
60

12
40

11
20

10
00 88

0
76

0
64

0
52

0
40

0
28

0
16

0 40

Slack

E
xp

ec
te

d
 C

o
st

0
1
2
3
4
5
6
7
8
9
10

ρ 

ρ

Global Cost Local Cost

Total Cost

(a) T=1600

0

5

10

15

20

25

77
5

71
5

65
5

59
5

53
5

47
5

41
5

35
5

29
5

23
5

17
5

11
5 55

Slack 

E
xp

ec
te

d
 C

o
st

0

1

2

3

4

5

6

7

8

9

10

ρGlobal Cost

Local Cost

ρ

Total Cost

(b) T=775

Figure 6.9: Expected cost curves and ρ values (at two different T values) for an instance where n=20

and each monitor sees data drawn from a Zipf distribution with a Zipf exponent of 1.

range of T values that we examined earlier. The performance of these schemes over the range of

T values was compared to our scheme where the ρ value was computed adaptively. See Figure

6.10 for results. The synthetic dataset for the results in Figure 6.10c were generated using n = 20

monitors where each site saw data drawn from a Zipf distribution with a Zipf exponent of 1. In all

the experiments, the approach of computing ρ adaptively performed close to the scheme with the

best value of ρ - note that of course, we do not know this optimum ρ value in advance for a given

dataset. Also as expected, the best ρ value was different for different datasets. These experiments

stress the importance of computing ρ adaptively as opposed to fixing the ρ value apriori. The

main advantage however of fixing the ρ value is that it completely avoids histogram maintenance

and local computation. In our experiments, we found that choosing a ρ value of 1 often yields

reasonably good results - so if histogram maintenance and local computation is infeasible, then a

variant of our reactive scheme that uses a fixed value of ρ across all sites is an attractive alternative.

6.6 Conclusion and Future Work

We have shown that non-zero slack algorithms result in better performance than state

of the art zero slack algorithms in typical monitoring settings. We have presented three non-zero

slack algorithms that adapt to changing distributions to efficiently monitor distributed constraints.

The reactive scheme is lightweight in terms of communication overhead and still has solution

158



10e+4.9

10e+5.1

10e+5.3

10e+5.5

10e+5.7

10e+5.9

10e+6.1

10e+6.3

10e+6.5

22
00

25
30

28
60

31
90

35
20

38
50

41
80

45
10

48
40

51
70

55
00

T

N
o

. o
f 

M
es

sa
g

es

ρ=1

ρ=10
adaptive

ρ=0.1

(a) Abilene

10e+4.0

10e+4.5

10e+5.0

10e+5.5

10e+6.0

10e+6.5

35
0

13
15

22
80

32
45

42
10

51
75

61
40

71
05

80
70

90
35

10
00

0

T

N
o

. o
f 

M
es

sa
g

es

ρ=10
ρ=1

adaptive

ρ=0.1

(b) NLANR

10e+5.6

10e+5.7

10e+5.8

10e+5.9

10e+6.0

10e+6.1

10e+6.2

10e+6.3

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

T

N
o

. o
f 

M
es

sa
g

es

ρ=10

ρ=0.1

adaptive

ρ=1

(c) Synthetic

Figure 6.10: Effect of using different values of ρ (ratio of local alarms to global polls) for the reactive

scheme. In all datasets, our approach of adaptively changing ρ performs close to the scheme with the

best (fixed) ρ value. Also notice that the best performing ρ value is different in the various datasets -

intuitively, the ρ value determines the “sweet spot” in the cost curve.

quality comparable to the heavyweight brute force algorithm. The reactive scheme is therefore an

attractive method for practical use.

In this chapter, we have studied the implementation of a simple distributed constraint, sum

of variables. It would be interesting to generalize the observation that non-zero slack methods

can result in better performance for general functions (like join sizes, quantiles etc.) using the

framework proposed by [158]. Reference [87] suggested a novel tracking problem called cumulative

triggers and it would be interesting to see how our methods perform when applied to their problem.

In typical networks, nodes can be organized in a hierarchical structure that can be exploited to

further reduce communication required in implementing distributed constraints. Studying non-zero

slack algorithms for such structured networks presents an interesting area of future research.

159



Chapter 7

Conclusions

This thesis studied three basic problems that arise in the context of self-management of

both centralized and decentralized storage networks. Chapter 2 discussed the centralized data

placement problem, Chapter 3 discussed the centralized data reconfiguration problem, Chapter

4 discussed the decentralized data placement and reconfiguration problems, Chapter 5 discussed

the problem of answering one-shot queries and Chapter 6 discussed the problem of answering

continuous queries. The following problems would constitute interesting extensions to the results

and problems presented in this thesis:

1. A constant factor approximation algorithm for minimization version of the data placement

problem with connection costs and bandwidth and storage constraints.

2. A constant factor approximation algorithm for the one-round migration problem defined on

page 65.

3. Lower bounds for message and round complexity for aggregate computation using gossip-style

communication.

4. Generalizing non-zero slack schemes for continuous monitoring of functions more general

than sums and counts.

5. Generalizing the non-zero slack schemes presented in Chapter 6 to handle the case where the

values observed at the sites being monitored are correlated across the sites.

160



Bibliography

[1] http://www.pdos.lcs.mit.edu/chord/.

[2] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Ha-
toun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and
S. Zdonik. Aurora: a data stream management system. In SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD international conference on Management of data, pages 666–666, New
York, NY, USA, 2003. ACM Press.

[3] Abilene Observatory. http://abilene.internet2.edu/.

[4] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Rasmussen. Parallel
randomized load balancing. In STOC ’95: Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 238–247, New York, NY, USA, 1995. ACM Press.

[5] Micah Adler, Eran Halperin, Richard M. Karp, and Vijay V. Vazirani. A stochastic process
on the hypercube with applications to peer-to-peer networks. In STOC ’03: Proceedings of
the thirty-fifth annual ACM symposium on Theory of computing, pages 575–584, New York,
NY, USA, 2003. ACM Press.

[6] Shipra Agrawal, Supratim Deb, KVM Naidu, and Rajeev Rastogi. Efficient detection of
distributed constraint violations. To appear in IEEE 23rd International Conference on Data
Engineering (ICDE 2007), 2007.

[7] Yanif Ahmad, Bradley Berg, Uǧur Cetintemel, Mark Humphrey, Jeong-Hyon Hwang, Anjali
Jhingran, Anurag Maskey, Olga Papaemmanouil, Alexander Rasin, Nesime Tatbul, Wenjuan
Xing, Ying Xing, and Stan Zdonik. Distributed operation in the Borealis stream processing
engine. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, pages 882–884, New York, NY, USA, 2005. ACM Press.

[8] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: theory,
algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[9] Muneeb Ali and Koen Langendoen. A case for peer-to-peer network overlays in sensor
networks. In Int’l Workshop on Wireless Sensor Network (WWSNA’07), with 6th IPSN’07,
MIT Campus, Cambridge, MA, USA, April 2007.

[10] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking join and self-
join sizes in limited storage. In PODS ’99: Proceedings of the eighteenth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 10–20, New York,
NY, USA, 1999. ACM Press.

[11] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 20–29, New York, NY, USA, 1996. ACM Press.

[12] Eric Anderson, Joseph Hall, Jason D. Hartline, Michael Hobbs, Anna R. Karlin, Jared Saia,
Ram Swaminathan, and John Wilkes. An experimental study of data migration algorithms.
In WAE ’01: Proceedings of the 5th International Workshop on Algorithm Engineering, pages
145–158, London, UK, 2001. Springer-Verlag.

[13] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa,
Justin Rosenstein, and Jennifer Widom. STREAM: the stanford stream data manager
(demonstration description). In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD in-
ternational conference on Management of data, pages 665–665, New York, NY, USA, 2003.
ACM Press.

161



[14] James Aspnes and Gauri Shah. Skip graphs. In SODA ’03: Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 384–393, Philadelphia, PA,
USA, 2003. Society for Industrial and Applied Mathematics.

[15] Baruch Awerbuch and Christian Scheideler. Towards a scalable and robust DHT. In SPAA
’06: Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 318–327, New York, NY, USA, 2006. ACM Press.

[16] Brian Babcock and Chris Olston. Distributed top-k monitoring. In SIGMOD ’03: Proceedings
of the 2003 ACM SIGMOD international conference on Management of data, pages 28–39,
New York, NY, USA, 2003. ACM Press.

[17] Ivan D. Baev and Rajmohan Rajaraman. Approximation algorithms for data placement in
arbitrary networks. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 661–670, Philadelphia, PA, USA, 2001. Society for Industrial
and Applied Mathematics.

[18] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani. Estimating aggregates on a peer-
to-peer network. In Technical report, Computer Science Dept., Stanford University, 2003.

[19] Michael W. Berry, Zlatko Drmac, and Elizabeth R. Jessup. Matrices, vector spaces, and
information retrieval. SIAM Review, 41(2):335–362, 1999.

[20] Steven Berson, Shahram Ghandeharizadeh, Richard Muntz, and Xiangyu Ju. Staggered
striping in multimedia information systems. In SIGMOD ’94: Proceedings of the 1994 ACM
SIGMOD international conference on Management of data, pages 79–90, New York, NY,
USA, 1994. ACM Press.

[21] Bobby Bhattacharjee, Sudarshan Chawathe, Vijay Gopalakrishnan, Pete Keleher, and Bu-
jor Silaghi. Efficient peer-to-peer searches using result-caching. In The 2nd International
Workshop on Peer-to-Peer Systems (IPTPS’03), February 2003.

[22] Indrajit Bhattacharya, Srinivas R. Kashyap, and Srinivasan Parthasarathy. Similarity search-
ing in peer-to-peer databases. In ICDCS ’05: Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems (ICDCS’05), pages 329–338, Washington,
DC, USA, 2005. IEEE Computer Society.

[23] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip
algorithms. IEEE/ACM Trans. Netw., 14(SI):2508–2530, 2006.

[24] André Brinkmann, Kay Salzwedel, and Christian Scheideler. Efficient, distributed data
placement strategies for storage area networks (extended abstract). In SPAA ’00: Proceedings
of the twelfth annual ACM symposium on Parallel algorithms and architectures, pages 119–
128, New York, NY, USA, 2000. ACM Press.

[25] André Brinkmann, Kay Salzwedel, and Christian Scheideler. Compact, adaptive placement
schemes for non-uniform requirements. In SPAA ’02: Proceedings of the fourteenth annual
ACM symposium on Parallel algorithms and architectures, pages 53–62, New York, NY, USA,
2002. ACM Press.

[26] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise
independent permutations (extended abstract). In STOC ’98: Proceedings of the thirtieth
annual ACM symposium on Theory of computing, pages 327–336, New York, NY, USA, 1998.
ACM Press.

[27] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R. Madden, Fred Reiss, and Mehul A.
Shah. TelegraphCQ: continuous dataflow processing. In SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD international conference on Management of data, pages 668–668, New
York, NY, USA, 2003. ACM Press.

162



[28] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388. ACM
Press, 2002.

[29] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM J.
Comput., 33(4):837–851, 2004.

[30] Jen-Yeu Chen, Gopal Pandurangan, and Dongyan Xu. Robust computation of aggregates
in wireless sensor networks: distributed randomized algorithms and analysis. In IPSN ’05:
Proceedings of the 4th international symposium on Information processing in sensor networks,
page 46, Piscataway, NJ, USA, 2005. IEEE Press.

[31] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur
Cetintemel, Ying Xing, and Stan Zdonik. Scalable Distributed Stream Processing. In CIDR
2003 - First Biennial Conference on Innovative Data Systems Research, Asilomar, CA, Jan-
uary 2003.

[32] Ann Louise Chervenak. Tertiary storage: an evaluation of new applications. PhD thesis,
University of California at Berkeley, Berkeley, CA, USA, 1994.

[33] C. F. Chou, L. Golubchik, and J. C.S. Lui. A performance study of dynamic replication tech-
niques in continuous media servers. Technical Report CS-TR-3948, University of Maryland,
October 1998.

[34] Cisco netflow. http://www.cisco.com/warp/public/732/Tech/netflow.

[35] Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-peer net-
works. In SIGCOMM ’02: Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 177–190, New York, NY,
USA, 2002. ACM Press.

[36] Jeffrey Considine, Feifei Li, George Kollios, and John Byers. Approximate aggregation tech-
niques for sensor databases. In ICDE ’04: Proceedings of the 20th International Conference
on Data Engineering, page 449, Washington, DC, USA, 2004. IEEE Computer Society.

[37] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1989.

[38] Graham Cormode and Minos Garofalakis. Sketching streams through the net: distributed
approximate query tracking. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 13–24. VLDB Endowment, 2005.

[39] Graham Cormode, Minos Garofalakis, S. Muthukrishnan, and Rajeev Rastogi. Holistic
aggregates in a networked world: distributed tracking of approximate quantiles. In SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international conference on Management of
data, pages 25–36, New York, NY, USA, 2005. ACM Press.

[40] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[41] Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In
PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 271–282, New York, NY, USA, 2005. ACM Press.

[42] Graham Cormode, S. Muthukrishnan, and Wei Zhuang. What’s Different: Distributed,
Continuous Monitoring of Duplicate-Resilient Aggregates on Data Streams. In ICDE ’06:
Proceedings of the 22nd International Conference on Data Engineering (ICDE’06), page 57,
Washington, DC, USA, 2006. IEEE Computer Society.

163



[43] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Practical Internet
Coordinates for Distance Estimation. In ICDCS ’04: Proceedings of the 24th International
Conference on Distributed Computing Systems (ICDCS’04), pages 178–187, Washington,
DC, USA, 2004. IEEE Computer Society.

[44] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk. Gigascope:
a stream database for network applications. In SIGMOD ’03: Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, pages 647–651, New York, NY,
USA, 2003. ACM Press.

[45] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: a decentralized
network coordinate system. In SIGCOMM ’04: Proceedings of the 2004 conference on Appli-
cations, technologies, architectures, and protocols for computer communications, pages 15–26,
New York, NY, USA, 2004. ACM Press.

[46] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed set-expression cardinality
estimation, 2004.

[47] M. Dawande, J. Kalagnanam, and J. Sethuraman. Variable Sized Bin Packing With Color
Constraints. Technical report, IBM Research Division, T.J. Watson Research Center, 1999.

[48] Umeshwar Dayal, Jennifer Widom, and Stefano Ceri. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1994.

[49] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman. Index-
ing by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

[50] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database maintenance. In Proc. 6th ACM
PODC, pages 1–12, 1987.

[51] Mark Dilman and Danny Raz. Efficient reactive monitoring. In INFOCOM, pages 1012–1019,
2001.

[52] P. Dini, G. v. Bochmann, T. Koch, and B. Krämer. Agent based management of distributed
systems with variable polling frequency policies. In Proceedings of the fifth IFIP/IEEE
international symposium on Integrated network management V : integrated management in
a virtual world, pages 553–564, London, UK, UK, 1997. Chapman & Hall, Ltd.

[53] Danny Dolev, Yuval Harari, Nathan Linial, Noam Nisan, and Michal Parnas. Neighbor-
hood preserving hashing and approximate queries. SIAM Journal on Discrete Mathematics,
15(1):73–85, 2002.

[54] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Reclaim-
ing space from duplicate files in a serverless distributed file system. In ICDCS ’02: Proceed-
ings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02),
page 617, Washington, DC, USA, 2002. IEEE Computer Society.

[55] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz.
Efficient and effective querying by image content. J. Intell. Inf. Syst., 3(3-4):231–262, 1994.

[56] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable wide-
area web cache sharing protocol. SIGCOMM Comput. Commun. Rev., 28(4):254–265, 1998.

[57] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

164



[58] Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko. Tight approx-
imation algorithms for maximum general assignment problems. In SODA ’06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 611–620, New
York, NY, USA, 2006. ACM Press.

[59] Chuck Fraleigh, Christophe Diot, Bryan Lyles, Sue B. Moon, Philippe Owezarski, Dina
Papagiannaki, and Fouad A. Tobagi. Design and deployment of a passive monitoring infras-
tructure. In IWDC ’01: Proceedings of the Thyrrhenian International Workshop on Digital
Communications, pages 556–575, London, UK, 2001. Springer-Verlag.

[60] A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1
knapsack problem: worst-case and probabilistic analyses. European Journal of Operational
Research, 1984.

[61] Deepak Ganesan, Gaurav Mathur, and Prashant J. Shenoy. Rethinking data management
for storage-centric sensor networks. In CIDR, pages 22–31. www.crdrdb.org, 2007.

[62] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Tracking set-expression cardinalities
over continuous update streams. The VLDB Journal, 13(4):354–369, 2004.

[63] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. Freeman, San Francisco, 1979.

[64] Shahram Ghandeharizadeh and Richard Muntz. Design and implementation of scalable
continuous media servers. Parallel Comput., 24(1):91–122, 1998.

[65] Phillip B. Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental maintenance of
approximate histograms. ACM Trans. Database Syst., 27(3):261–298, 2002.

[66] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and Mar-
tin J. Strauss. Fast, small-space algorithms for approximate histogram maintenance. In
STOC ’02: Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 389–398, New York, NY, USA, 2002. ACM Press.

[67] Michel Goemans, Li Erran Li, Vahab S. Mirrokni, and Marina Thottan. Market sharing
games applied to content distribution in ad-hoc networks. In MobiHoc ’04: Proceedings of
the 5th ACM international symposium on Mobile ad hoc networking and computing, pages
55–66, New York, NY, USA, 2004. ACM Press.

[68] Michel Goemans, Vahab Mirrokni, and Adrian Vetta. Sink equilibria and convergence. In
FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pages 142–154, Washington, DC, USA, 2005. IEEE Computer Society.

[69] M.K. Goldberg. Edge-Coloring of multigraphs: Recoloring technique. J. Graph Theory,
8:121-137, 1984.

[70] L. Golubchik, S. Khanna, S. Khuller, R. Thurimella, and A. Zhu. Approximation algorithms
for data placement on parallel disks. In SODA ’00: Proceedings of the eleventh annual ACM-
SIAM symposium on Discrete algorithms, pages 223–232, Philadelphia, PA, USA, 2000.
Society for Industrial and Applied Mathematics.

[71] L. Golubchik, S. Khuller, Y. Kim, S. Shargorodskaya, and Y-C. Wan. Data migration on
parallel disks. In Proc. of European Symp. on Algorithms (2004). LNCS 3221, pages 689–701.
Springer, 2004.

[72] Vijay Gopalakrishnan, Bujor Silaghi, Bobby Bhattacharjee, and Pete Keleher. Adaptive
replication in peer-to-peer systems. In The 24th International Conference on Distributed
Computing Systems, March 2004.

165



[73] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile sum-
maries. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international conference
on Management of data, pages 58–66, New York, NY, USA, 2001. ACM Press.

[74] Michael B. Greenwald and Sanjeev Khanna. Power-conserving computation of order-statistics
over sensor networks. In PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 275–285, New York,
NY, USA, 2004. ACM Press.

[75] Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and sub-
linear approximation of entropy and information distances. In SODA ’06: Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 733–742, New
York, NY, USA, 2006. ACM Press.

[76] Sudipto Guha and Kamesh Munagala. Improved algorithms for the data placement problem.
In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 106–107, Philadelphia, PA, USA, 2002. Society for Industrial and Applied
Mathematics.

[77] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate range selection queries in peer-to-
peer systems. In Proceedings of the First Biennial Conference on Innovative Data Systems
Research, Asilomar, California, United States, January 2003.

[78] A. Gupta, B. Liskov, and R. Rodrigues. Efficient routing for peer-to-peer overlays. In Proc.
First Symposium on Networked Systems Design and Implementation (NSDI ’04), March
2004.

[79] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert van Renesse. Kelips:
Building an efficient and stable P2P DHT through increased memory and background over-
head. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), 2003.

[80] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman. Scalable fault-tolerant aggre-
gation in large process groups. In DSN ’01: Proceedings of the 2001 International Conference
on Dependable Systems and Networks (formerly: FTCS), pages 433–442, Washington, DC,
USA, 2001. IEEE Computer Society.

[81] Marios Hadjieleftheriou, John W. Byers, and George Kollios. Robust sketching and aggre-
gation of distributed data streams. technical report 2005-11, boston university computer
science department, 2005.

[82] Joseph Hall, Jason Hartline, Anna R. Karlin, Jared Saia, and John Wilkes. On algorithms
for efficient data migration. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, pages 620–629, Philadelphia, PA, USA, 2001. Society for
Industrial and Applied Mathematics.

[83] Nicholas Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman. Skip-
net: A scalable overlay network with practical locality properties. In In proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (USITS ’03), Seattle, WA,
March 2003.

[84] Dorit S Hochbaum, Takao Nishizeki, and David B Shmoys. A better than best possible
algorithm to edge color multigraphs. J. Algorithms, 7(1):79–104, 1986.

[85] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan, A. Joseph, and Nina Taft.
Distributed PCA and Network Anomaly Detection. In In Proceedings of INFOCOM 2007.,
2007.

166



[86] L. Huang, X. Nguyen, M. Garofalakis, M. Jordan, A. Joseph, and N. Taft. Distributed PCA
and Network Anomaly Detection. In In Proceedings of NIPS 2006., 2006.

[87] Ling Huang, Minos Garofalakis, Joseph Hellerstein, Anthony Joseph, and Nina Taft. Toward
sophisticated detection with distributed triggers. In MineNet ’06: Proceedings of the 2006
SIGCOMM workshop on Mining network data, pages 311–316, New York, NY, USA, 2006.
ACM Press.

[88] www.ibm.com/software/tivoli/products/monitor/.

[89] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala. Locality-
preserving hashing in multidimensional spaces. In STOC ’97: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 618–625, New York, NY, USA, 1997.
ACM Press.

[90] Intel-Dante Monitoring Project. http://www.cambridge.intel-
research.net/monitoring/dante/.

[91] Ankur Jain, Joseph M. Hellerstein, Sylvia Ratnasamy, and David Wetherall. A wakeup
call for internet monitoring systems: The case for distributed triggers. In Proc. 3rd ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets), San Diego, CA, November
2004.

[92] Navendu Jain, Praveen Yalagandula, Mike Dahlin, and Yin Zhang. INSIGHT: a distributed
monitoring system for tracking continuous queries. In SOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles - Work in progress session, pages 1–7, New
York, NY, USA, 2005. ACM Press.

[93] Márk Jelasity and Alberto Montresor. Epidemic-style proactive aggregation in large overlay
networks. In ICDCS ’04: Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04), pages 102–109, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[94] J. Jiao, S. Naqvi, D. Raz, and B. Sugla. Toward efficient monitoring. IEEE Journal on
Selected Areas in Communications, 18(5):723–732, May 2000., 2000.

[95] David S. Johnson, Christos H. Papadimtriou, and Mihalis Yannakakis. How easy is local
search? J. Comput. Syst. Sci., 37(1):79–100, 1988.

[96] Theodore Johnson, S. Muthukrishnan, Vladislav Shkapenyuk, and Oliver Spatscheck. A
heartbeat mechanism and its application in gigascope. In VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, pages 1079–1088. VLDB Endowment,
2005.

[97] A. D. Joseph, L. Huang, M. Garofalakis, and N. Taft. Communication-efficient tracking of
distributed cumulative triggers. In In Proceedings of ICDCS 2007., 2007.

[98] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and web sites. In Proceedings of the Interna-
tional World Wide Web Conference, pages 252–262. IEEE, May 2002.

[99] M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed hash
table. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), 2003.

[100] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, and Rina Pani-
grahy. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In ACM Symposium on Theory of Computing, pages 654–663,
May 1997.

167



[101] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. In
Proc. 41st IEEE FOCS, pages 565–574, 2000.

[102] S. Kashyap and S. Khuller. Experimental evaluation of data placement algorithms.
Manuscript, 2002.

[103] S. Kashyap, J. Ramamirtham, R. Rastogi, and P. Shukla. Efficient constraint monitoring
using adaptive thresholds. Technical Report ITD-06-47318H, Bell Labs Technical Memoran-
dum, 2006.

[104] Srinivas Kashyap, Supratim Deb, K. V. M. Naidu, Rajeev Rastogi, and Anand Srinivasan.
Efficient gossip-based aggregate computation. In PODS ’06: Proceedings of the twenty-
fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
308–317, New York, NY, USA, 2006. ACM Press.

[105] Srinivas Kashyap and Samir Khuller. Algorithms for non-uniform size data placement on
parallel disks. J. Algorithms, 60(2):144–167, 2006.

[106] Srinivas Kashyap, Samir Khuller, Yung-Chun Wan, and Leana Golubchik. Fast algorithms
for data reconfiguration in parallel disks. In Proceedings of the Eighth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 95–107. ACM and SIAM, 2006.

[107] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, page 482, Washington, DC, USA, 2003. IEEE Computer Society.

[108] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. Communication-
efficient distributed monitoring of thresholded counts. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on Management of data, pages 289–300, New
York, NY, USA, 2006. ACM Press.

[109] Samir Khuller, Yoo-Ah Kim, and Yung-Chun (Justin) Wan. Algorithms for data migration
with cloning. In PODS ’03: Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 27–36, New York, NY, USA,
2003. ACM Press.

[110] D. E. Knuth. The Art of Computer Programming, Volume 3. Addison-Wesley, 1973.

[111] Bong-Jun Ko and Dan Rubenstein. Distributed self-stabilizing placement of replicated re-
sources in emerging networks. IEEE/ACM Trans. Netw., 13(3):476–487, 2005.

[112] Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Placement algorithms
for hierarchical cooperative caching. In SODA ’99: Proceedings of the tenth annual ACM-
SIAM symposium on Discrete algorithms, pages 586–595, Philadelphia, PA, USA, 1999.
Society for Industrial and Applied Mathematics.

[113] H. W. Lenstra. Integer programming with a fixed number of variables. Math. of Oper. Res.,
pages 538–548, 1983.

[114] Lintao Liu and Kang-Won Lee. Keyword fusion to support efficient keyword-based search
in peer-to-peer file sharing. In CCGRID ’04: Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid, pages 269–276, Washington, DC, USA,
2004. IEEE Computer Society.

[115] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In ICS ’02: Proceedings of the 16th international conference on
Supercomputing, pages 84–95, New York, NY, USA, 2002. ACM Press.

168



[116] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: a Tiny
AGgregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146,
2002.

[117] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. The design of
an acquisitional query processor for sensor networks. In SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD international conference on Management of data, pages 491–502, New
York, NY, USA, 2003. ACM Press.

[118] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic emu-
lation of the butterfly. In PODC ’02: Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 183–192, New York, NY, USA, 2002. ACM Press.

[119] Amit Manjhi, Suman Nath, and Phillip B. Gibbons. Tributaries and deltas: efficient and
robust aggregation in sensor network streams. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages 287–298, New York,
NY, USA, 2005. ACM Press.

[120] Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston. Finding
(Recently) Frequent Items in Distributed Data Streams. In ICDE ’05: Proceedings of the
21st International Conference on Data Engineering (ICDE’05), pages 767–778, Washington,
DC, USA, 2005. IEEE Computer Society.

[121] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 53–65, London, UK, 2002. Springer-Verlag.

[122] Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Web caching using access statis-
tics. In SODA ’01: Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 354–363, Philadelphia, PA, USA, 2001. Society for Industrial and Applied
Mathematics.

[123] Michael Mitzenmacher. Compressed bloom filters. In Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing, pages 144–150. ACM Press, 2001.

[124] Alper Tugay Mizrak, Yuchung Cheng, Vineet Kumar, and Stefan Savage. Structured super-
peers: Leveraging heterogeneity to provide constant-time lookup. In Proceedings of the Third
IEEE Workshop on Internet Applications (WIAPP’03), pages 104–111, San Jose, California,
june 2003.

[125] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, USA,
1995.

[126] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitoring of
top-k queries over sliding windows. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 635–646, New York, NY, USA, 2006.
ACM Press.

[127] How much information? School of Information Management and Systems. University of Cal-
ifornia at Berkeley. http://www.sims.berkeley.edu/research/projects/how-much-info 2003/.

[128] Moni Naor and Udi Wieder. Novel architectures for P2P applications: the continuous-discrete
approach. In SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, pages 50–59, New York, NY, USA, 2003. ACM Press.

[129] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 250–262, New York,
NY, USA, 2004. ACM Press.

169



[130] Suman Nath and Aman Kansal. FlashDB: dynamic self-tuning database for NAND flash.
In IPSN ’07: Proceedings of the 6th international conference on Information processing in
sensor networks, pages 410–419, New York, NY, USA, 2007. ACM Press.

[131] T.S.E. Ng and Hui Zhang. Predicting internet network distance with coordinates-based
approaches. In INFOCOMM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, pages 170–179, 2002.

[132] T.S.E. Ng and Hui Zhang. A network positioning system for the internet. In USENIX 2004
Annual Technical Conference, pages 141–154, 2004.

[133] National Laboratory for Applied Network Research. http://www.nlanr.net/.

[134] The Ganglia Distributed Monitoring System. http://ganglia.sourceforge.net/.

[135] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous queries over
distributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pages 563–574, New York, NY, USA, 2003. ACM
Press.

[136] Chris Olston, Boon Thau Loo, and Jennifer Widom. Adaptive precision setting for cached
approximate values. In SIGMOD ’01: Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 355–366, New York, NY, USA, 2001. ACM Press.

[137] C. H. Papadimitriou, A. A. Schäffer, and M. Yannakakis. On the complexity of local search.
In STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of com-
puting, pages 438–445, New York, NY, USA, 1990. ACM Press.

[138] Alexander P. Pentland, Rosalind W. Picard, and S. Scarloff. Photobook: tools for content-
based manipulation of image databases. volume 2185, pages 34–47. SPIE, 1994.

[139] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Lighthouses for scalable dis-
tributed location. In Second International Workshop on Peer-to-Peer Systems (IPTPS ’03),
Feb 2003.

[140] B. Pittel. On spreading a rumor. SIAM J. Applied Math., 47(1):213–223, February 1987.

[141] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In SPAA ’97: Proceedings of the ninth
annual ACM symposium on Parallel algorithms and architectures, pages 311–320, New York,
NY, USA, 1997. ACM Press.

[142] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commun. ACM,
43(5):51–58, 2000.

[143] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: approximating
packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, 1988.

[144] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A scal-
able content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communications, pages
161–172, New York, NY, USA, 2001. ACM Press.

[145] D. Raz and Y. Shavitt. Toward efficient distributed network management. J. Netw. Syst.
Manage., 9(3):347–361, 2001.

[146] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst., 21(2):164–206, 2003.

170



[147] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In Proceedings
of International Middleware Conference, pages 21–40, jun 2003.

[148] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn in a DHT.
In ATEC’04: Proceedings of the USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[149] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Middleware ’01: Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, pages
329–350, London, UK, 2001. Springer-Verlag.

[150] Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard
to solve. SIAM J. Comput., 20(1):56–87, 1991.

[151] Christian Scheideler. How to spread adversarial nodes?: rotate! In STOC ’05: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing, pages 704–713, New
York, NY, USA, 2005. ACM Press.

[152] Christian Schindelhauer and Gunnar Schomaker. Weighted distributed hash tables. In SPAA
’05: Proceedings of the seventeenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 218–227, New York, NY, USA, 2005. ACM Press.

[153] Cristina Schmidt and Manish Parashar. Flexible information discovery in decentralized
distributed systems. In HPDC ’03: Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing (HPDC’03), page 226, Washington, DC, USA,
2003. IEEE Computer Society.

[154] Beomjoo Seo and Roger Zimmermann. Efficient disk replacement and data migration algo-
rithms for large disk subsystems. Trans. Storage, 1(3):316–345, 2005.

[155] H. Shachnai and T. Tamir. Polynomial time approximation schemes for class-constrained
packing problems. In Proceedings of Workshop on Approximation Algorithms (APPROX).
LNCS 1913, pages 238–249. Springer-Verlag, 2000.

[156] H. Shachnai and T. Tamir. On two class-constrained versions of the multiple knapsack
problem. Algorithmica, 29(3):442–467, 2001.

[157] H. Shachnai and T. Tamir. Approximation schemes for generalized 2-dimensional vector
packing with application to data placement. In Proceedings of Workshop on Approximation
Algorithms (APPROX). LNCS 2764, pages 165–177. Springer-Verlag, 2003.

[158] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitoring
threshold functions over distributed data streams. In SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on Management of data, pages 301–312, New York,
NY, USA, 2006. ACM Press.

[159] Y. Shavitt and T. Tankel. Big-bang simulation for embedding network distances in euclidean
space. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications Societies. IEEE, pages 1922–1932, 2003.

[160] Scott Shenker, Sylvia Ratnasamy, Brad Karp, Ramesh Govindan, and Deborah Estrin. Data-
centric storage in sensornets. SIGCOMM Comput. Commun. Rev., 33(1):137–142, 2003.

[161] S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen. Making Peer-to-Peer Keyword Search-
ing Feasible Using Multi-level Partitioning, in IPTPS’04, San Diego, CA, USA, February
2004., 2004.

171



[162] Adam Silberstein, Kamesh Munagala, and Jun Yang. Energy-efficient monitoring of extreme
values in sensor networks. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data, pages 169–180, New York, NY, USA, 2006. ACM
Press.

[163] Volker Stemann. Parallel balanced allocations. In SPAA ’96: Proceedings of the eighth
annual ACM symposium on Parallel algorithms and architectures, pages 261–269, New York,
NY, USA, 1996. ACM Press.

[164] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[165] M. Stonebraker. A Case for Shared Nothing. Database Engineering, 9(1), 1986.

[166] C. Swamy. Unpublished Manuscript. To be combined with the paper Approximation algo-
rithms for data placement in arbitrary networks from SODA 2001.

[167] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-peer information retrieval
using self-organizing semantic overlay networks. In SIGCOMM ’03: Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer commu-
nications, pages 175–186, New York, NY, USA, 2003. ACM Press.

[168] L. Tang and M. Crovella. Virtual landmarks for the Internet. In Internet Measurement
Conference, pages 143-152, Miami Beach, FL, October 2003.

[169] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. Dynamic multidimensional his-
tograms. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD international conference
on Management of data, pages 428–439, New York, NY, USA, 2002. ACM Press.

[170] Introduction to Storage Area Networks. IBM Redbook. http://www.redbooks.ibm.com/.

[171] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID hierar-
chical storage system. ACM Trans. Comput. Syst., 14(1):108–136, 1996.

[172] Joel L. Wolf, Philip S. Yu, and Hadas Shachnai. DASD dancing: a disk load balancing
optimization scheme for video-on-demand computer systems. SIGMETRICS Perform. Eval.
Rev., 23(1):157–166, 1995.

[173] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication algorithm.
ACM Trans. Database Syst., 22(2):255–314, 1997.

[174] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: a lightweight network
location service without virtual coordinates. SIGCOMM Comput. Commun. Rev., 35(4):85–
96, 2005.

[175] Alec Woo, Sam Madden, and Ramesh Govindan. Networking support for query processing
in sensor networks. Commun. ACM, 47(6):47–52, 2004.

[176] Praveen Yalagandula and Mike Dahlin. A scalable distributed information management
system. In SIGCOMM ’04: Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 379–390, New York, NY,
USA, 2004. ACM Press.

[177] Praveen Yalagandula, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Sung-Ju Lee. S3:
a scalable sensing service for monitoring large networked systems. In INM ’06: Proceedings
of the 2006 SIGCOMM workshop on Internet network management, pages 71–76, New York,
NY, USA, 2006. ACM Press.

[178] Y. Yao and J. Gehrke. Query processing in sensor networks. In Proc. 1st CIDR, 2003.

172



[179] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC Berkeley,
April 2001.

173


