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This paper studies engineering design decision-making.  We show that the decision-based 
design framework, which seeks to find the most profitable design, can be separated into a 
sequence of subproblems.  This separation is similar to decomposition but does not 
require a second-level coordination.  We identify conditions under which this separation 
yields an exact solution and other conditions under which the error can be bounded.  This 
separation provides a different way to solve the decision-based design framework and 
indicates a way to apply the principles of decision-based design to design processes.  
 

1. INTRODUCTION  

Organizations that develop products and systems want to create the most valuable design that is 

feasible.  The measurement of value, which depends upon the type of organization, may be 

profitability, life-cycle cost, or system effectiveness, for example.  The value of the product or 

system that is being designed depends upon the decisions that the design engineer (or 

development team) makes.   

The observation that engineering design requires making decisions has motivated a great 

deal of research, including work on decision analysis, decision theory, concept generation, 

modeling customer demand, multi-attribute decision-making, enterprise models, product 

development processes, and decentralized decision-making [1].  Design organizations can be 

viewed as a set of loosely-coupled decision-makers [2] that generate and share information in 

order to generate designs [3, 4].  The ultimate goal is to improve the quality of these decisions 

and increase the value of product development processes [5].  

A variety of decision-making processes have been identified [6].  The two that are most 

relevant to engineering design are the incremental decision process model and optimization.  The 

incremental decision process model [7] presents a structure in which a major decision is 
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implemented as a series of small decisions.  This detailed model involves iterating between the 

following types of activities: recognition, diagnosis, search, screen, design, judgment, analysis, 

bargaining, and authorization.  Designers will easily recognize the similarities between this 

process and their own activities. 

Design optimization is an important engineering design activity and a difficult 

mathematical problem.  In general, design optimization determines values for design variables 

such that an objective function is optimized while performance and other constraints are satisfied 

[8, 9, 10].  Formal design optimization is a useful decision-making process when two conditions 

hold: (1) there exists enough technical knowledge to formulate a mathematical model that can 

express the value of a design as a mathematical function of the design variables and (2) there is a 

consensus on the appropriate objective function [6].  The attributes used to describe a design 

optimization model can be grouped into four areas: scope, variable set, objective function, and 

model structure [11].   

The difficulty of solving large scale optimization problems and multidisciplinary 

optimization (MDO) problems, especially in the area of aerospace systems, has motivated 

various decomposition approaches.  In general, these decomposition approaches require multiple 

iterations to converge to a feasible, optimal solution for a given design optimization model.  

Model coordination and goal coordination are two common methods for the decomposition of 

large scale design optimization problems [12, 13].  MDO problems have been the focus of 

decomposition approaches such as the bi-level integrated system synthesis (BLISS) approach 

[14], analytical target cascading [15, 16], and collaborative optimization [17].   

The decision-based design (DBD) framework [18] is an approach that explicitly 

addresses the challenge of creating the most profitable design.  In this framework, the design 
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problem is to optimize the value of the profit (the expected utility of the profit) by selecting 

values for all of the design variables and the price.  The all-at-once nature of the DBD 

framework has inspired researchers to develop new design optimization models (called 

enterprise models) that add variables from the marketing and manufacturing domains to models 

with conceptual design variables and to adapt existing decomposition techniques to solve them 

[17, 19].  These more extensive design optimization problems reflect the natural desire to handle 

large, complex problems in an integrated way [20].  However, this recent work does not include 

detailed design variables in the enterprise models.  Thus, they do not completely solve the 

problem posed by the DBD framework. 

This paper introduces an approach to solve design optimization problems by separating 

them into a sequence of subproblems to form a decision-based design process.  In particular, this 

paper analyzes a version of the DBD framework and identifies conditions under which the 

separation is exact (the result is optimal) and sufficient conditions for establishing bounds on the 

quality of a non-optimal solution.   

This paper first introduces the concept of separation.  We then analyze the DBD 

framework.  Finally, the paper discusses some more general thoughts about engineering design 

processes. 

2. SEPARATION  

In this paper we pursue the goal of replacing a large design optimization problem with a 

sequence of subproblems, solving each subproblem once, and producing a feasible, optimal 

solution without iterative cycles.  We call such an approach separation.   

The concept of separation is similar (but not identical) to the idea of decomposition.  

Both replace a large design optimization problem with a set of subproblems.  In a typical 
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decomposition approach, a second-level problem must be solved to coordinate the subproblem 

solutions in an iterative manner.  (See Figure 1.) 

Separation, on the other hand, does not require subsequent coordination.  It is a 

decentralized and sequential approach related to the concept that is called factorisation in Pahl 

and Beitz [21].  A large problem is divided into subproblems.  The solution to one subproblem 

will provide the inputs to subsequent subproblems.  However, there is no higher-level problem to 

coordinate the solution.   

The objective functions of the subproblems are surrogates for the original problem’s 

objective function.  These surrogates come from substituting simpler performance measures that 

are correlated with the original one, eliminating components that are not relevant to that 

subproblem, or from removing variables that will be determined in another subproblem. 

It is also important to note that, despite a superficial resemblance, separation is not the 

same as dynamic programming, which solves subproblems and stores the solutions for later use 

by other subproblems in a recursive manner.  These aspects are not present in separation. 

P*

P1 P2 P3

(a)

P1 P2 P3

(b)  
Figure 1. (a) A typical decomposition scheme has multiple first-level subproblems (P1, P2, P3) 

that receive inputs from a second-level problem (P*), which also coordinates their solutions.   
(b) Separation yields a sequence of subproblems.  Solving one provides the input to the next. 
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3. SEPARATING A DESIGN OPTIMIZATION PROBLEM 

Within a design process, it will be helpful to focus on the decisions that determine the design 

variables and the relationships between these decisions.  This decision network view represents 

the separation of the system design problem.  It does not consider details about the individuals 

making decisions, how they make decisions, or the flow of information between them, unlike the 

decision production system perspective [3, 4].  We can ignore these details and information 

processing and project management activities because we are focusing on the essential logic of 

the separation, not its actual execution.  The decisions in the decision network can be seen, in 

some sense, as the value-adding activities of the decision production system (the design 

organization), in the same way that the metal cutting and assembly operations (not the material 

handling and quality assurance tasks) are the value-adding activities in a manufacturing system.  

In addition, the iteration that might occur if the design process runs into an obstacle is not part of 

the separation.  A separation in which a subproblem has no feasible solution (or the only feasible 

solutions are unacceptable) is a poor-quality separation.  A better one is needed. 

We now consider a modified version of the DBD framework [18].  (This version ignores 

any uncertainties, and the demand affects the manufacturer’s total lifecycle cost.)  First, we will 

define the following notation: 

m = system configuration.  M is the set of all possible configurations. 

x = vector of design variables.  

X(m) is the set of designs that are feasible for a given configuration m. 

p = selling price per unit. 

a = vector of product attributes. 

D = total demand over the product lifecycle (units). 
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C = lifecycle cost to manufacturer. 

The following functions are given: 

a(x) relates the attributes to the design variables. 

D = q(a, p) relates the demand to the attributes and the price. 

C(x, D) relates the lifecycle cost to the design variables and the demand. 

u = utility of profit.  Note that u is monotonically increasing. 

Problem P is to choose m, x, and p to maximize the utility of the profit: 

 

( )( )

( )

max ,

s.t. ( ( ), )

0

u Dp C x D

D q a x p
m M
x X m
p

−

=
∈

∈

≥

 

To separate this problem, the designer should define A, the set of all feasible attribute 

combinations, and ( )ˆ ,c a D , the life cycle cost if the demand is D and the product attributes are a.  

Then, let the profitability  be the surrogate objective function: Π

  ( ) ( ) ( )( )ˆ, , , ,a p q a p p c a q a pΠ = −  
Solve the following Problem P1 to get a*, p*:   
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Π
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Let (* *, )*D q a p= .  Then solve Problem P2 to get *m M∈  and * ( *)x X m∈ : 
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s.t. *

( )

C x D
a x a

m M
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The quality of this separation is determined by the set A and the function ( )ˆ ,c a D .  Let 

A(m) be the set of attribute combinations that are feasible for a given configuration m in M: 
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  ( ) ( ) ( ){ }:A m a x x X m= ∈  
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( )

( ) ( ){ }
,

ˆ , min , :
m M x X m

c a D C x D a x a
∈ ∈

= = , then this is an exact 

separation.  To show this, we need to show that m*, x*, and p* are an optimal solution to 

Problem P. 

Suppose not.  Then there exists 'm M∈  and ' ( ')x X m∈  and  such that a’ = a(x’), 

D’ = q(a’, p’), and u(D’p’-C(x’,D’)) > u(D*p*-C(x*,D*)).   

' 0p ≥

Because u is monotonically increasing, D’p’-C(x’,D’) > D*p*-C(x*,D*).  By the 

definition of m* and x*, .  Then, because ( ) ˆ*, * ( *, *)C x D c a D= ( )ˆ ', ' ( ', ')c a D C x D≤ : 

 

( ) ( )
( )
( )

( )

', ' ' ' ', '

* * *, *
ˆ* * *, *

*, *

a p D p C x D

D p C x D

D p c a D
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= −

= Π

 

This contradicts the optimality (from P1) of a*, p*.  Therefore, m*, x*, and p* are an 

optimal solution to Problem P. QED. 

Now suppose that the cost function is not exact but we have the following bound on the 

cost function error: 

  ( )
( )

( ) ( ){ }
,

ˆ , min , :
m M x X m

c a D C x D a x a ε
∈ ∈

− = <  

Then we can show that the profitability of m*, x*, and p* must be within 2ε of the 

optimal profitability. 

We will use a graph-like figure to represent a separation.  This decision network figure 

has nodes that correspond to subproblems.  An arc from a subproblem node indicates the 

variables whose values are determined by that subproblem.  An arc leading into a node indicates 

the variables whose values are required by that subproblem.   

 7



The decision networks corresponding to the integrated model and the separation are 

shown in Figure 2.  This separation corresponds to a simple design process in which marketing 

experts determine the product’s price and the attribute combination that the product should have; 

then the engineers have to find the lowest cost design that can satisfy these attributes.   

The analysis shows that the quality of this separation depends upon the marketing 

group’s ability to identify feasible attribute combinations and to estimate costs.  If marketing 

selects an infeasible attribute combination, then it will be impossible to design a satisfactory 

product.  If the cost estimates are inaccurate, then the resulting product will be suboptimal.   

 
 

(a) (b)

P1: P2:
min C

a, p, D m, xP:
max u

m, x, p
maxΠ

 
Figure 2.  (a) The decision network for the integrated design optimization model.  

(b) The decision network for the separation.  
 
 

We can further separate Problem P2 into two subproblems: the first chooses the 

configuration m, and the second determines, for that configuration, values for the design 

variables x. 

To separate this problem, the designer should define ( ),C m D , the life cycle cost if the 

demand is D and the product configuration is m, and ( )A m , the set of all attribute combinations 

that product configuration m can achieve. 

Solve the following Problem P2.1 to get m*:   

 
( )

( )
min , *
s.t. *

C m D
a A m
m M
∈

∈
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Solve the following Problem P2.2 to get x*:   

 
( )min , *

s.t. ( ) *
( *)

C x D
a x a
x X m

=
∈

 

Before analyzing this separation, we need to introduce the following definition: Let x and 

y be vectors in spaces  and  with .  Consider a real-valued objective function 1E 2E 1S E E⊂ × 2

( ),f x y  defined over the set S and a real-valued function ( )g x  defined over the set . If 

 if and only if 

1E

( ) ( )1g x g x< 2 ( ) ( ){ } ( ) ( ){ }1 1 2 2min , : , min , : ,f x y x y S f x y x y S∈ < ∈ , then we 

will call  a correlated surrogate.   ( )g x

Now, define ( ) { }min , min ( , ) : (C m D C x D x X m= ∈ ) .  If ( ) ( )A m A m=  and ( ),C m D  is a 

correlated surrogate for , then P2.1 and P2.2 form an exact separation of P2.  That is, 

the resulting m* and x* are optimal solutions to P2.  The proof follows directly from the 

definition of a correlated surrogate. 

(min ,C m D)

In the following case, we can form an approximate separation for P2.  Suppose that 

( ) ( )A m A m=  and we have the following bound on the cost function error: 

  ( ) ( )min, ,C m D C m D ε− <  

Let m’ be the configuration that minimizes ( )min , *C m D  and x’ be a solution in X(m’) 

that minimizes ( ), *C x D .  This m’ and x’ are the optimal solutions to P2.  Then, we have the 

following bound on the separation penalty: 

 

( ) ( )
( )
( )

min

min

*, * *, *

', *

', * 2

C m D C m D

C m D

C m D

ε

ε

ε

< +

≤ +

< +

 

Thus, under this condition, this separation has a separation penalty of 2ε.  The cost of the 

solution is less than 2ε from the optimal cost. 
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4. DISCUSSION: ENGINEERING DESIGN PROCESSES  

The analysis above shows that a design optimization problem can be replaced by a sequence of 

subproblems.  The first benefit is that the separation approach provides a way to model a 

decision-making process in which a decision does not determine a specific design but instead 

selects a set of similar designs (e.g., those that provide the same functionality), which is an 

important aspect of real-world engineering design decision-making. 

We now turn to engineering design processes and discuss how separation provides us 

with a new way to consider engineering design processes.  In particular, we can consider them as 

ways to solve the problem of finding the most valuable design and use separation as a model for 

a certain class of engineering design processes. 

We will use the term progressive design process to describe an engineering design 

process that creates a product or system design through a series of phases.  The phases generate 

intermediate results by making decisions about different aspects of the design and generating 

increasingly detailed information.  (The name reflects the similarity to a progressive die, which 

makes an increasingly complex part through a series of punches.)  Pahl and Beitz [21], Asimow 

[22], Ullman [23], and Ulrich and Eppinger [24] are among those presenting progressive design 

processes.   

Progressive design processes emphasize the movement from one phase to another and the 

intermediate results that are generated.  A progressive design process can be viewed as a 

heuristic for the value optimization problem discussed at the opening of this paper.  For instance, 

if we consider the design process presented by Pahl and Beitz [21], one part of the process is 

described as optimizing the principle (or concept); another optimizes the layout, form, and 

material; and another optimizes the production.  Moreover, the process is based on a general 
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problem-solving process and ends with a “solution.”  It seems clear that the entire process is 

concerned with optimizing the system design; it is a way to find a good solution to this problem 

(though optimality is not guaranteed).  In particular, Simon [2] describes the separation needed to 

design a battleship.  He emphasizes that the battleship design decision is a “composite decision” 

that is made by making decisions about different subsystems. 

Previous research has developed models of design processes that focus on the activities 

that need to be done, as in Gantt charts, the PERT and critical path methods, IDEF, the design 

structure matrix, Petri nets, and signposting [25].  Such models have been used to estimate the 

cost and duration of design processes [26-30].  The approach taken in this paper provides a way 

to consider the quality of the design process: how good is the solution that it creates?  Answering 

this question would seem to be a way to extend the principles of decision-based design 

(including the idea that design should find the most valuable product) from a single decision to a 

design process. 

The result above, though at a high level of abstraction, shows how to evaluate the quality 

of a progressive design process by modeling it as a separation of a design optimization problem.  

The separation of the DBD framework presented here provides a general guideline for how to do 

this.  Moreover, it indicates mathematically that a progressive design process is a reasonable way 

to design a product or system, provided that the subproblems are appropriately formulated.  It is 

not necessary to formulate and solve the problem as an integrated whole.  Ongoing work is 

evaluating separations for specific design optimization problems [31]. 

This discussion is not meant to justify all heuristic design methods.  Instead, it highlights 

the need to evaluate engineering design processes as a whole and to validate individual design 

tools and methods by considering their role as heuristics for subproblems in the separation of the 
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design optimization problem.  They can be evaluated properly only in the context of the design 

process in which they are used.  Otherwise, they may be finding excellent solutions to the wrong 

problem. 

5. CONCLUSIONS 

This paper introduces an approach for solving design optimization problems by replacing them 

with a sequence of subproblems, which we call a separation.  The separation approach provides a 

way to model a decision-making process in which a decision does not determine a specific 

design but instead selects a set of similar designs.  Separation also provides a different way to 

solve design optimization problems.  However, a separation must be carefully designed to 

provide a good solution.  This paper has shown how separation can be used to solve the decision-

based design framework.  If the subproblems are correctly formulated, the separation yields an 

optimal solution.  In the future perhaps we will see a careful analysis of various design methods 

that considers their usefulness as part of a design process and the quality of the solutions that are 

generated. 

Adopting a general concept of optimization as a way to view progressive design 

processes places this paper among other work that views design as a mathematical problem-

solving process or a rational decision-making process.  However, there is also value in other 

perspectives, including those that view design as a creative process, a cognitive process with 

divergent and convergent thinking, or a social process involving teams and various languages or 

representations for communication.  (See, for example, Dym et al. [32] for more about these 

other perspectives.)  Future research will need to study the relationships between these 

perspectives and the one taken in this paper.  
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