
Copyright © 1997 IEEE. Reprinted from Proceedings of the Third
international Symposium on High Performance Computer Architecture
(HPCA).

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of the University of Maryland’s products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

mailto:pubs-permissions@ieee.org

Copyright © 1997 IEEE. Published in the Proceedings of the Third International Symposium on High Performance Computer Architecture, February 1-5, 1997 in San Antonio, Texas, USA. Per-
sonal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribu-
tion to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service
Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

Abstract

In this paper we explore software-managed address trans-
lation. The purpose of the study is to specify the memory
management design for a high clock-rate PowerPC imple-
mentation in which a simple design is a prerequisite for a
fast clock and a short design cycle. We show that software-
managed address translation is just as efficient as hard-
ware-managed address translation, and it is much more
flexible. Operating systems such as OSF/1 and Mach
charge between 0.10 and 0.28 cycles per instruction (CPI)
for address translation using dedicated memory-manage-
ment hardware. Software-managed translation requires
0.05 CPI. Mechanisms to support such features as shared
memory, superpages, sub-page protection, and sparse
address spaces can be defined completely in software,
allowing much more flexibility than in hardware-defined
mechanisms.

1 Introduction

In many commercial architectures the hardware support for
memory management is unnecessarily complicated, places
constraints on the operating system, and often frustrates
porting efforts [37]. For example, the IntelPentium Proces-
sor User’s Manual devotes 100 of its 700+ pages to mem-
ory-management structures [31], most of which exist for
backward compatibility and are unused by today’s system
software. Typical virtual memory systems exact a run-time
overhead of 5-10% [4, 9, 41, 47], an apparently acceptable
cost that has changed little in ten years [14], despite signifi-
cant changes in cache sizes and organizations. However,
several recent studies have found that the handling over-
head of memory management hardware can get as high as
50% of application execution time [1, 28, 44]. Taken
together these trends beg the question,is dedicated mem-
ory-management hardware buying us anything—do its ben-
efits outweigh its overhead?

In this paper we demonstrate a memory management
design that stays within an acceptable performance over-
head and that does not require complex hardware. It places
few constraints on the operating system but still provides all
the features of systems with more hardware support. The
design issoftware-managed address translation, or softvm
for short. It dispenses with hardware such as the translation
lookaside buffers (TLBs) found in every modern microar-
chitecture and the page-table-walking state machines found
in x86 and PowerPC architectures. It uses a software-han-
dled cache miss, as in the VMP multiprocessor [11, 12, 13],
except that VMP used the mechanism to explore cache
coherence in a multiprocessor, while we use it to simplify
memory management hardware in a uniprocessor. It also
resembles the in-cache address translation mechanism of
SPUR [26, 43, 56] in its lack of TLBs, but takes the design
one step further by eliminating table-walking hardware.

Software-managed address translation supports common
operating systems features such as address space protec-
tion, fine-grained protection, sparse address spaces, and
superpages. Compared to more orthodox designs, it reduces
hardware complexity without requiring unduly complex
software. It has two primary components: a virtually
indexed, virtually tagged cache hierarchy with a writeback
cache at the lowest level (L2, for example), and a software-
managed cache miss at the lowest level. Virtual caches do
not require address translation when requested data is found
in the cache, and so obviate the need for a TLB. A miss in
the L2 cache invokes the operating system’s memory man-
ager, allowing the operating system to implement any type
of page table, protection scheme, or replacement policy, as
well as a software-defined page size. The migration of
address-translation support from hardware to software
increases flexibility significantly.

We show the efficiency of software-managed address
translation by analyzing a specific implementation, thereby
finding an upper bound on overhead. The example adds
software-managed translation to a conventional PowerPC
memory management organization. It forms the basis of the
memory management design of the PUMA processor, a
high clock-rate 32-bit PowerPC in which a simple design is

This work was supported by Defense Advanced Research Projects Agency
under DARPA/ARO Contract Number DAAH04-94-G-0327.

Software-Managed Address Translation

Bruce Jacob and Trevor Mudge
Advanced Computer Architecture Lab

EECS Department, University of Michigan
{blj,tnm}@eecs.umich.edu

vital for a fast clock and a short design cycle.
The example implementation adds PowerPC segments

[39] to thesoftvm design; these support address space pro-
tection, shared memory, and provide access to a large vir-
tual address space. They are not an essential component of
software-managed address translation—for example, they
could be replaced by long address space identifiers or a 64-
bit address space. However, the use of segments in conjunc-
tion with a virtual cache organization can solve the consis-
tency problems associated with virtual caches.

2 Memory system requirements

There is a core set of functional mechanisms associated
with memory management that computer users have come
to expect. These are found in nearly every modern microar-
chitecture and operating system (e.g., UNIX [3], Windows
NT [15], OS/2 [16], 4.3 BSD [34], DEC Alpha [17, 46],
MIPS [23, 32], PA-RISC [25], PowerPC [29, 39], Pentium
[31], and SPARC [52]), and include the following:

Address space protection. User-level applications
should not have unrestricted access to the data of other
applications or the operating system. A common hard-
ware assist uses address space identifiers (ASIDs), which
extend virtual addresses and distinguish them from
addresses generated by different processes. Alternatively,
protection can be provided by software means [5, 19, 50].

Shared memory. Shared memory allows multiple pro-
cesses to reference the same physical data through (poten-
tially) different virtual addresses. Space requirements can
be reduced by sharing code between processes. Using
shared memory for communication avoids the data-copy-
ing of traditional message-passing schemes. Since a sys-
tem call is typically an order of magnitude faster than
copying a page of data, many researchers have investi-
gated zero-copy schemes, in which the operating system
unmaps pages from the sender’s address space and re-
maps them into the receiver’s address space [18, 20, 35].

Large address spaces.Applications require increasingly
large virtual spaces; industry has responded with 64-bit
machines. However, a large address space does not imply
a large address: large addresses are simply one way to
implement large address spaces. Another is to provide

each process a 4GB window into a larger global virtual
address space, the approach used by the PA-RISC 1.X
and 32-bit PowerPC architectures [25, 39].

Fine-grained protection. Fine-grained protection marks
objects as read-only, read-write, execute-only, etc. The
granularity is usually a page, though a larger or smaller
granularity is sometimes desirable. Many systems have
used protection to implement various memory-system
support functions, from copy-on-write to garbage collec-
tion to distributed shared virtual memory [2].

Sparse address spaces.Dynamically loaded shared
libraries and multithreaded processes are becoming com-
monplace, and these features require support for sparse
address spaces. This simply means that holes are left in
the address space between different objects to leave room
for dynamic growth. In contrast, the 4.3BSD UNIX [34]
address space was composed of two continuous regions,
depicted in Fig 1. This arrangement allowed the user page
tables to occupy minimal space, which was important
because the original virtual memory design did not allow
the page tables to be paged.

Superpages. Some structures must be mapped for virtual
access, yet are very large. The numerous page table
entries (PTEs) required to map them flood the TLB and
crowd out other entries. Systems have addressed this
problem with “blocks” or “superpages”—multiples of the
page size mapped by a single TLB entry. For example, the
Pentium and MIPS R4000 allow mappings for super-
pages to reside in the TLB alongside normal mappings,
and the PowerPC defines a Block TLB to be accessed in
parallel with the normal TLB. Several studies have shown
significant performance gains for reducing the number of
TLB entries to cover the current working set [33, 47, 49].

Direct memory access. Direct memory access (DMA)
allows asynchronous copying of data from I/O devices
directly to main memory. It is difficult to implement with
virtual caches, as the I/O space is usually physically
mapped. The I/O controller has no access to the virtual-
physical mappings, and so cannot tell when a transaction
should first invalidate data in the processor cache. A sim-
ple solution performs DMA transfers only to uncached
physical memory, but this could reduce performance by
requiring the processor to go to main memory too often.

Figure 1: Sparse address spaces. The top address space is that of a traditional 4.3BSD process, with contiguous text, data, and heap segments and a
continuous stack segment. The bottom address space contains modern features like dynamically loaded libraries and multiple threads of control, which leave
holes within the address space, and thus would leave holes within a linear page table. A wired-down linear page table (as in 4.3BSD) would not be practical.

Text Data Heap StackDLL1 DLL2 Thread1 DLL3Thread2

Text Data Heap Stack

3 Background and previous work

Address translation is the mechanism by which the operat-
ing system provides virtual address spaces to user-level
applications. The operating system maintains a set of map-
pings from per-process virtual spaces to the system’s physi-
cal memory. Addresses are usually mapped at apage
granularity—typically several kilobytes. The mappings are
organized in apage table, and for performance reasons
most hardware systems provide atranslation lookaside
buffer (TLB) that caches parts of the page table. When a
process performs a load or store to a virtual address, the
hardware translates this to a physical address using the
mapping information in the TLB. If the mapping is not
found in the TLB, it must be retrieved from the page table
and loaded into the TLB before processing can continue.

3.1 Problems with virtual caches

Virtual caches complicate support for virtual-address alias-
ing and protection-bit modification. Aliasing can give rise
to thesynonym problem when memory is shared at different
virtual addresses [22], and this has been shown to cause sig-
nificant overhead [54]; protection-bit modification is used
to implement such features as copy-on-write [1, 42], and
can also cause significant overhead when used frequently.

The synonym problem has been solved in hardware using
schemes such as dual tag sets [22] or back-pointers [51],
but these require complex control logic that can impede
high clock rates. Synonyms can be avoided by setting pol-
icy in the operating system—for example, OS/2 requires all
shared segments to be located at identical virtual addresses
in all processes so that processes use the same address for
the same data [16]. SunOS requires shared pages to be
aligned in virtual space on extremely large boundaries (at
least the size of the largest cache) so that aliases will map to
the same cache line [10, 24]1. Single address space operat-
ing systems such as Opal [7, 8] or Psyche [45] solve the
problem by eliminating the need for virtual-address aliasing
entirely. In a single address space all shared data is refer-
enced through global addresses; as in OS/2, this allows
pointers to be shared freely across process boundaries.

Protection-bit modification in virtual caches can also be
problematic. A virtual cache allows one to “lazily” access
the TLB only on a cache miss; if so, protection bits must be
stored with each cache line or in an associated page-protec-
tion structure accessed every cycle, or else protection is
ignored. When one replicates protection bits for a page
across several cache lines, changing the page’s protection
can be costly. Obvious but expensive solutions include

1. Note that the SunOS scheme only solves the problem for direct-
mapped virtual caches or set-associative virtual caches with physical
tags; shared data can still exist in two different blocks of the same set in
an associative, virtually-indexed, virtually-tagged cache.

flushing the entire cache or sweeping through the entire
cache and modifying the affected lines.

3.2 Segmented translation

The IBM 801 introduced a segmented design that persisted
through the POWER and PowerPC architectures [6, 29, 39,
53]; it is illustrated in Fig 2. Applications generate 32-bit
“effective” addresses that are mapped onto a larger “vir-
tual” address space at the granularity ofsegments, 256MB
virtual regions. Sixteen segments comprise an application’s
address space. The top four bits of the effective address
select a segment identifier from a set of 16 registers. This
segment ID is concatenated with the bottom 28 bits of the
effective address to form an extended virtual address. This
extended address is used in the TLB and page table. The
operating system performs data movement and relocation at
the granularity of pages, not segments.

The architecture does not use explicit address space iden-
tifiers; the segment registers ensure address space protec-
tion. If two processes duplicate an identifier in their
segment registers they share that virtual segment by defini-
tion; similarly, protection is guaranteed if identifiers arenot
duplicated. If memory is shared through global addresses,
no aliasing (and therefore no virtual-cache synonyms) can
occur and the TLB and cache need not be flushed on con-
text switch2. This solution to the virtual cache synonym
problem is similar to that of single address space operating
systems—global addresses cause no synonym problems.

Figure 2: PowerPC segmented address translation. Processes
generate 32-bit effective addresses that are mapped onto a 52-bit
address space via sixteen segment registers, using the top four bits of
the effective address as an index. It is this extended virtual address that
is mapped by the TLB and page table. The segments provide address
space protection and can be used for shared memory.

Segment Offset

32-bit Effective Address

Page Offset

DATA

Segno

Segment Registers

Segment Offset Page OffsetSegment ID

52-bit
Virtual
Address

TLB and
Page Table

TAG COMPARE

Virtual Page Number

Cache

3.3 MIPS: A simple 32-bit page table design

MIPS [23, 32] eliminated the page-table-walking hardware
found in traditional memory management units, and in
doing so demonstrated that software can table-walk with
reasonable efficiency. It also presented a simple hierarchi-
cal page table design, shown in Fig 3. On a TLB miss, the
hardware creates a virtual address for the mapping PTE in
the user page table. The virtual page number (VPN) of the
address that missed the TLB is used as an index into the
user page table, which must be aligned on a 2MB virtual
boundary. The base pointer, calledPTEBase, is stored in a
hardware register and is usually changed on context switch.
This is illustrated as part of Fig 4. The advantage of this
page table organization is that a small amount of wired-
down memory (2KB) can map an entire user address space
efficiently; in the worst case, a user reference will require
two additional memory lookups: one for the root-level PTE,
one for the user-level PTE. The TLB miss handler is very
efficient in the number of instructions it requires: the han-
dler is less than ten instructions long, including the PTE
load. We base our page table and cache miss examples on
this scheme for simplicity and clarity; however, any other
organization could be used as well.

3.4 SPUR: In-cache address translation

SPUR [26, 43, 55, 56] demonstrated that the storage slots
of the TLB are not a necessary component in address trans-
lation. The architecture uses a virtually indexed, virtually
tagged cache to delay the need for address translation until
a cache miss occurs. On a miss, a hardware state machine
generates the virtual address for the mapping PTE and

2. Flushing is avoided until the system runs out of identifiers and must
reuse them. For example, the address space identifiers on the MIPS
R3000 and Alpha 21064 are six bits wide, with a maximum of 64
active processes [17, 32]. If more processes are desired, identifiers
must be constantly reassigned, requiring TLB & virtual-cache flushes.

searches the cache for that address. If this lookup misses,
the state machine continues until the topmost level of the
page table is reached, at which point the hardware requests
the root PTE (at a known address) from physical memory.

The SPUR design eliminated specialized, dedicated hard-
ware to store mapping information. However, it replaced
the TLB with another specialized hardware translation
mechanism—a finite state machine that searched for PTEs
in general-purpose storage (the cache) instead of special-
purpose storage (TLB slots).

3.5 VMP: Software-controlled caches

The VMP multiprocessor [11, 12, 13] places virtual caches
under software control. Each processor node contains sev-
eral hardware structures, including a central processing
unit, a software-controlled virtual cache, a cache controller,
and special memory. Objects the system cannot afford to
have causing faults, such as root page tables and fault-han-
dling code, are kept in a separate area calledlocal memory,
distinguished by the high-order bits of the virtual address.
Code in local memory controls the caches; a cache miss
invokes a fault handler that locates the requested data, pos-
sibly causes other caches on the bus to invalidate their cop-
ies, and loads the cache.

The scheme reduces the amount of specialized hardware
in the system, including memory management unit and
cache miss handler, and it simplifies the cache controller
hardware. However, the design relies upon special memory
that lies in a completely separate namespace from the rest
of main memory.

4 Software-managed address translation

Thesoftvm design requires a virtual cache hierarchy. There
is no TLB, no translation hardware. When a reference fails
to hit in the bottommost virtual cache a CACHEMISS excep-
tion is raised. We will refer to the address that fails to hit in
the lowest-level cache as thefailing address, and to the data
it references as thefailing data.

This general design is based on two observations. The
first is that most high performance systems have reasonably
large L2 caches, from 256KB found in many PCs to several
megabytes found in workstations. Large caches have low
miss rates; were these caches virtual, the systems could sus-
tain long periods requiring no address translation at all. The
second observation is that the minimum hardware neces-
sary for efficient virtual memory is a software-managed
cache miss at the lowest level of a virtual cache hierarchy. If
software resolves cache misses, the operating system is free
to implement whatever virtual-to-physical mapping it
chooses. Wood demonstrated that with a reasonably large
cache (128KB+) the elimination of a TLB is practical [55].
For the cache sizes we are considering, we reach the same
conclusion (see theDiscussion section for details).

Figure 3: The MIPS 32-bit hierarchical page table. MIPS hardware
provides support for a 2MB linear virtual page table that maps the 2GB
user address space by constructing a virtual address from a faulting vir-
tual address that indexes the mapping PTE in the user page table. This
2MB page table can easily be mapped by a 2KB user root page table.

A 4-byte PTE,
which maps 4KB

A 4KB PTE Page: 1024
PTEs, maps 4MB

4 B

4 KB

A 4MB virtual
region

4 MB

Maps

Maps

Unmapped Physical Memory

Mapped Virtual Memory

...

...

...
User address space: 2GB

User page table: 2MB

User root page table: 2KB

4.1 Handling the CACHEMISS exception

On a CACHEMISS exception, the miss handler loads the data
at the failing address on behalf of another thread. The oper-
ating system must therefore be able to load a datum using
one address and place it in the cache tagged with a different
address. It must also be able to reference memory virtually
or physically, cached or uncached; to avoid causing a
cache-miss exception, the cache-miss handler must execute
using physical addresses. These may be cacheable, pro-
vided that a cacheable-physical address that misses the
cache causes no exception, and that a portion of the virtual
space can be directly mapped onto physical memory.

When a virtual address misses the cache, the failing data,
once loaded, must be placed in the cache at an index
derived from the failing address and tagged with the failing
address’s virtual tag, otherwise the original thread will not
be able to reference its own data. We define a two-part load,
in which the operating system first specifies a virtual tag
and set of protection bits to apply to the incoming data, then
loads the data with a physical address. The incoming data is
inserted into the caches with the specified tag and protec-
tion information. This scheme requires two privileged
instructions to be added to the instruction set architecture
(ISA)3: SPECIFYVTAG and LOAD&M AP, depicted in Fig 4.

SPECIFYVTAG instructs the cache to insert future incom-
ing data at a specific offset in the cache, tagged with a spe-
cific label. Its operand has two parts: the virtual tag (VTAG)
comes from the failing virtual address; the protection bits
come from the mapping PTE. The bottom half of the VTAG
identifies a block within the cache, the top half is the tag.

3. Many ISAs leave room for such management instructions, e.g. the
PowerPC ISAmtspr andmfspr instructions (move to/from special
purpose register) would allow implementations of both functions.

Note that the VTAG is larger than the virtual page number;
the hardware should not assumeany overlap between vir-
tual and physical addresses beyond the cache line offset.
This is essential to allow a software-defined page size.

The operand of a LOAD&M AP is a physical or virtual
address. The datum identified by the operand is loaded
from the cache or memory and then (re-) inserted into the
cache at the cache block determined by the previously exe-
cuted SPECIFYVTAG, and tagged with the specified virtual
tag. Thus an operating system can translate data that misses
the cache, load it from memory (or even another location in
the cache), and place it in any cache block, tagged with any
value. When the original thread is restarted, its data is in the
cache at the correct line, with the correct tag. Note the oper-
ations can be performed out of order for performance rea-
sons, as long as the tag arrives at the cache/s before the data
arrives. Note also that without hardware support, the two-
part load must not be interrupted by another two-part load.

4.2 An example ofsoftvm and its use

A PowerPC implementation is shown in Fig 5, with a two-
level cache hierarchy. Both caches in the hierarchy are vir-
tual and split, to make the cost analysis clearer. Modifica-
tion and protection bits are kept with each cache line, which
should give a conservative cost estimate. In the cost analy-
sis we vary the L1 cache from 2KB to 256KB (1K to 128K
per side), and the L2 cache between 1MB and 2MB.

We assume for the sake of argument a 4GB maximum
physical memory. To parallel the MIPS design, the top bits
of the virtual address space (in this case, 20 of 52 bits)

Line Off.Failing Virtual Address Virtual Tag

Prot. BitsSPECIFYVTAG operand Virtual Tag

Page OffsetFailing Virtual Address Virtual Page Number

0Virtual Page NumberPTEBase

Virtual address for PTE

LOAD

 Page Frame Number

Page OffsetLOAD&MAP operand Page Frame Number

Page Table Entry

Figure 4: S PECIFYVTAG and L OAD&MAP. The top figure illustrates
SPECIFYVTAG, the bottom figure illustrates LOAD&MAP. The Load&Map
example assumes a MIPS-like page table.

Prot. Bits

Figure 5: The example mechanism. Segmentation extends a 32-bit
user address into a 52-bit global address. The top 20 bits of the global
address determine if the address is physical and/or cacheable.

Cache
Controller

Split Direct-Mapped
Virtual L2 Cache

Split Direct-
Mapped Virtual

L1 Cache
Cache
Miss

To physical
memory

Segment Registers (16)

Segment Offset

32-bit Effective Address

Seg#

Segment OffsetSegment ID

52-bit Virtual
Address

determine whether an address is physical and/or cacheable;
this is to allow physical addresses to be cached in the virtu-
ally indexed, virtually tagged caches. Also like MIPS, a
user process owns the bottom 2GB of the 4GB effective
address space. Therefore only the bottom 8 of the 16 seg-
ment registers are used by applications; the user address
space is composed of 8 256MB virtual segments.

To demonstrate the use ofsoftvm, we need also define a
page table and cache-miss handler. We would like some-
thing similar to the MIPS page table organization, as it
maps a 32-bit address space with a minimum of levels and
supports sparse address spaces easily. A global virtual
address space, however, suggests the use of a global page
table, whichcannot be mapped by a small, wired-down
piece of memory, meaning that we might need more than
two levels in our page table. However, each process need
only map enough of the global page table to in turn map its
2GB address space. Therefore, a process uses no more than
2MB of the global table at any given time, which can be
mapped by a 2KB user root page table.

A virtual linear table is at the top of the global address
space, 242 bytes long, mapping the entire global space
(pages are software-defined at 4K bytes, PTEs are 4 bytes).
The page table organization, shown in Fig 6, is a two-tiered
hierarchy. The lower tier is a 2MB virtual structure, divided
into 8 256KBsegment page tables, each of which (collec-
tively) maps one of the 256MB virtual segments in the user
address space. The segment page tables come directly from
the global table, therefore there is no per-process allocation
of user page tables; if two processes share a virtual segment
they share a portion of the global table. The top tier of the
page table is a 2KB structure wired down in memory while
the process is running; it is the bottom half of the process
control block. It is divided into 8 256-bytePTE groups,

each of which maps a 256KB segment page table that in
turn maps a 256MB segment. PTE groups must be dupli-
cated across user root page tables to share virtual segments.

We illustrate in Fig 7 the algorithm for handling misses in
the L2 cache. Processes generate 32-bit effective addresses
that are extended to 52 bits by segmentation, replacing the
top four bits of the effective address. In step 1, the VPN of a
52-bit failing global virtual address is used as an index into
the global page table to reference the PTE mapping the fail-
ing data (the UPTE). This is similar to the concatenation of
PTEBase and VPN to index into the MIPS user page table
(Fig 4). The bottom two bits of the address are 0’s, since the
PTE size is four bytes. The top ten bits of the address are
1’s since the table is at the very top of the global space.

If this misses in the L2 cache, the operating system takes
a recursive CACHEMISS exception. At this point, we must
locate the mapping PTE in the user root page table. This
table is an array of PTEs that cannot be indexed by a global
VPN. It mirrors the structure of the user’s perceived address
space, not the structure of the global address space. There-
fore it is indexed by a portion of the original 32-bit effective
address. The top 10 bits of the effective address index 1024
PTEs that would map a 4MB user page table, which would
in turn map a 4GB address space. Since the top bit of the
effective address is guaranteed to be zero (the address is a
user reference), only the bottom nine bits of the top ten are
meaningful; these bits index the array of 512 PTEs in the
user root page table. In step 2, the operating system builds a
physical address for the appropriate PTE in the user root
page table (the URPTE), a 52-bit virtual address whose top
20 bits indicate physical+cacheable. It then loads the
URPTE, which maps the UPTE that missed the cache at the
end of step 1. When control is returned to the miss handler
in step 1, the UPTE load retry will complete successfully.

Figure 6: An example page table organization. There is a single linear page table at the top of the 52-bit address space that maps the entire global space.
The 256KB Segment Page Tables that comprise the user page table are taken directly from this global page table. Therefore, though it may seem that there is
a separate user page table for every process, each page table is simply mapped onto the global space; the only per-process allocation is for the user root
page table. Though it is drawn as an array of contiguous pages, the user page table is really a disjunct set of 4KB pages in the global space.

2KB User Root Page Table
512 PTEs, 8 256B PTE Groups

2MB User Page Table
512 Pages, 8 256KB Segment Page Tables, 512K PTEs

2GB Per-Process User Address Space
8 256MB virtual segments, 512K Pages

Unmapped Physical Memory

Mapped Virtual Memory

PTE Group: a 32 contiguous 4-byte PTEs, each of which
maps 4KB individually, that collectively map 256KB

A 256KB segment page table: a contiguous group
of 32 pages of PTEs that collectively map 256MB

256 B

256 KB

52-bit Global Virtual Address Space: 224 256MB virtual segments

256 MB
Virtual Segment

A 256MB virtual segment,
1/8 of an address space

Segment Page Tables
256KB each

256 MB

Maps

Maps

The operating system then performs a SPECIFYVTAG
using the most significant bits of the failing 52-bit address,
and performs a LOAD&M AP using the physical address for
the failing data, built from the PFN in the UPTE and the
page offset from the failing address. This loads the failing
data and inserts it into the cache using the user’s virtual tag.

4.3 Memory system requirements, revisited

We now revisit the memory management requirements
listed earlier, and discuss howsoftvm supports them.

Address space protection and large address spaces.
These memory management functions are not inherent to
software-managed address translation, but asoftvm
design does not preclude their implementation. They are
satisfied in our example through the use of PowerPC seg-
ments. As described earlier, segments provide address
space protection, and by their definition provide a global
virtual space onto which all effective addresses are
mapped. A process could use its 4GB space as a window
onto the larger space, moving virtual segments in and out
of its working set as necessary. This type of windowing
mechanism is used on the PA-RISC [27].

Shared memory. The sharing mechanism is defined by
the page table. One can simplify virtual cache manage-
ment by sharing memory via global addresses, a scheme
used in many systems [7, 8, 16, 18, 20, 21, 45], and
shown to have good performance. Alternatively, one
could share memory through virtual-address aliasing.

Fine-grained protection. One can maintain protection
bits in the cache, or in an associated structure like a TLB.
If one could live with protection on a per-segment basis,
one could maintain protection bits in the segment regis-
ters. For our discussion we maintain protection bits in the

cache line. Protection granularity therefore becomes a
software issue; the page size can be anything from the
entire address space down to a single cache line. Note the
choice of this granularity does not preclude one from
implementing segment-level protection as well. The dis-
advantage is that if one chooses a page size larger than a
single cache line, protection information must be repli-
cated across multiple cache lines and the operating sys-
tem must manage its consistency. We analyze this later.

Sparse address spaces.Sparse address space support is
largely a page table issue. Hardware can either get out of
the way of the operating system and allow any type of
page table organization, or it can inhibit support for
sparse address spaces by defining a page table organiza-
tion that is not necessarily suitable. By eliminating trans-
lation hardware, one frees the operating system to choose
the most appropriate structure.

Superpages. By removing the TLB one removes hard-
ware support for superpages, but as with sparse address
spaces one also frees the operating system to provide sup-
port through the page table. For instance, a top-down
hierarchical page table (as in the x86 [31]) would provide
easy support for superpages. A guarded page table [36,
38] would also provide support, and would map a large
address space more efficiently, as would the inverted page
table variant described by Talluri, et al. [48].

Direct memory access. While software-managed address
translation provides no explicit support for DMA, and
actually makes DMA more difficult by requiring a virtual
cache, direct memory access is still possible. For exam-
ple, one could perform DMA by flushing affected pages
from the cache before beginning a transfer, and restricting
access to the pages during transfer.

Segment Offset Page OffsetSeg#

Segment Offset Page OffsetSegment ID

Segment Offset 00Segment ID1111 1111 11

URPTE Index 00

PFN for Process Control Block

Page Frame Number

16 bits 12 bits4 bits

16 bits 12 bits24 bits

16 bits 224 bits10 bits

9 bits 220 bits

Per-Process Context

52-bit Failing Virtual Address

32-bit Effective Address

1

2
Physical Address for URPTE

Virtual Address for UPTE

0

1

Figure 7: An example cache miss algorithm. Step 1 is the result of a user-level L2 cache miss; the operating system builds a virtual address for a PTE in
the global page table. If this PTE is not found in the L1 or L2 cache a root PTE is loaded, shown in step 2. One special requirement is a register holding the ini-
tial failing address. Another required hardware structure, the per-process context register, points to the process control block of the active process.

Virtual address
causes a CacheMiss
exception

Virtual address
causes a CacheMiss
exception

(physical+cacheable address)

20 bits

5 Discussion

Many studies have shown that significant overhead is spent
servicing TLB misses [1, 4, 9, 28, 41, 44, 47]. In particular,
Anderson, et al. [1] show TLB miss handlers to be among
the most commonly executed primitives, Huck and Hays
[28] show that TLB miss handling can account for more
than 40% of total run time, and Rosenblum, et al. [44] show
that TLB miss handling can account for more than 80% of
the kernel’s computation time. Typical measurements put
TLB handling at 5-10% of a normal system’s run time.

The obvious question to ask isdoes the TLB buy us any-
thing? Do its benefits outweigh its overhead? We now dis-
cuss the performance costs of eliminating the TLB.

5.1 Performance overview

The SPUR and VMP projects demonstrated that with large
virtual caches the TLB can be eliminated with no perfor-
mance loss, and in most cases a performance gain. For a
qualitative, first-order performance comparison, we enu-
merate the scenarios that a memory management system
would encounter. These are shown in Table 1, with frequen-
cies obtained from SPECint95 traces on a PowerPC-based
AIX machine (frequencies do not sum to 1 due to round-
ing). The model simulated has 8K/8K direct-mapped vir-
tual L1 caches (in the middle of the L1 cache sizes
simulated), 512K/512K direct-mapped virtual L2 caches
(the smaller of the two L2 cache sizes simulated), and a 16-
byte linesize in all caches. As later graphs will show, the
small linesize gives the worst-case performance for the
software-managed scheme. The model includes a simulated
MIPS-style TLB [32] with 64 entries, a random replace-

ment policy, and 8 slots reserved for root PTEs.
The table shows what steps the operating system and

hardware take when cache and TLB misses occur. Note that
there is a small but non-zero chance a reference will hit in a
virtual cache but miss in the TLB. If so, the system must
take an exception and execute the TLB miss handler before
continuing with the cache lookup, despite the fact that the
data is in the cache. On TLB misses, a software-managed
scheme should perform much better than a TLB scheme.
When the TLB hits, the two schemes should perform simi-
larly, except when the reference misses the L2 cache. Here
the TLB already has the translation, but the software-man-
aged scheme must access the page table for the mapping
(note that the page table entry may in fact be cached). Soft-
ware-managed translation is not penalized by placing PTEs
in the cache hierarchy; many operating systems locate their
page tables in cached memory for performance reasons.

5.2 Baseline overhead

Table 2 shows the overheads of TLB handling in several
operating systems as percent of run-time and CPI. Percent
of run-time is the total amount of time spent in TLB han-
dlers divided by the total run-time of the benchmarks. CPI
overhead is the total number of cycles spent in TLB han-
dling routines divided by the total number of cycles in the
benchmarks. The data is taken from previous TLB studies
[4, 40, 41] performed on MIPS-based DECstations, which
use a software-managed TLB. CPI is not directly propor-
tional to run-time overhead for two reasons: (1) the run-
time overhead contains page protection modifications and
the CPI overhead does not, and (2) memory stalls make it

Table 1: Qualitative comparison of cache-access/address-translation mechanisms

Event

Frequency of
Occurrence

Actions Performed by Hardware and Operating System
per Occurrence of Event

I-side D-side TLB +
Virtual cache

Software-Mgd Addr
Translation

L1 hit,
TLB hit

96.7% 95.8% L1 access
(w/ TLB access in parallel)

L1 access

L1 hit,
TLB miss

0.01% 0.06% L1 access
+ page table access
+ TLB reload

L1 access

L1 miss, L2 hit,
TLB hit

3.2% 3.9% L1 access
+ L2 access

L1 access
+ L2 access

L1 miss, L2 hit,
TLB miss

0.03% 0.09% L1 access
+ page table access
+ TLB reload
+ L2 access

L1 access
+ L2 access

L1 miss, L2 miss,
TLB hit

0.008% 0.12% L1 access
+ L2 access
+ memory access

L1 access
+ L2 access
+ page table access
+ memory access

L1 miss, L2 miss,
TLB miss

0.0001% 0.0009% L1 access
+ page table access
+ TLB reload
+ L2 access
+ memory access

L1 access
+ L2 access
+ page table access
+ memory access

difficult to predict total cycles from instruction counts.
Table 3 gives the overheads of the software-managed

design, divided by benchmark to show a distribution. The
values come from trace-driven simulation of the SPEC95
integer suite. The simulations use the same middle-of-the-
line cache organization as before (8K/8K L1, 512K/512K
L2, 16-byte linesize throughout), but replace the TLB with
software address translation. Our memory penalties are 1
cycle to access the L1 cache, 20 cycles to access the L2
cache, and 90 cycles to access main memory.

Table 4 gives a more detailed breakdown of costs for one
of the benchmarks: gcc. Our example miss handler from the
previous section requires 10 instructions including two
loads. It is very similar to the MIPS TLB refill handler that
requires less than 10 instructions including one load, taking
10 cycles when the load hits in the cache, or 40+ when the
load misses in the cache, thereby forcing the reference to
main memory [4]. In our model, the L2 cache miss handler
always takes 10 cycles, and runs whenever we take an L2
cache miss (labeledL2 I-Cache missor L2 D-Cache miss in
the table). When the PTE load in the handler misses the L1
cache (Miss handler L1 D-miss) we take an additional 20
cycles to go to the L2 cache to look for the PTE. If that load
misses we either take a recursive cache miss (if handling a
user-miss, therefore the PTE address is virtual, accounted
for in L2 D-Cache miss), or the address is physical and goes
straight through to main memory (Miss handler L2 D-miss,
90 cycles). When the miss handler is handling a miss from
the handler itself, we need also load the failing UPTE on

behalf of the handler (Miss handler Load UPTE, 90 cycles).
Additionally, the miss-handler code can miss in the L1 or

L2 I-caches; since it is mapped directly onto physical mem-
ory it does not cause a cache miss itself. However, for every
instruction fetch that misses in the L1 cache we take a 20-
cycle penalty to reference the L2 cache; for every L2 miss
we take a 90-cycle penalty to reference physical memory.

The average overhead of the scheme is 0.033 CPI. This is
about the overhead measured of Ultrix on MIPS, consid-
ered to be an example of an efficient match between OS and
architecture. This CPI is several times better than that of
Mach, which should result in a run-time savings of at least
5% over Mach. However, the number does not take into
account the effect of writebacks.

5.3 Writebacks

When a cache miss occurs in a writeback cache, a common
rule of thumb says that half the time the line expelled from
the cache will be dirty, requiring it to be written back to
main memory. This case must be dealt with at the time of
our CACHEMISS exception. There are two obvious solu-
tions. The translation is available at the time a cache line is
brought into the cache; one can either discard this informa-
tion or store it in hardware. If discarded, the translation
must be performed again at the time of the writeback. If one
wishes to throw hardware at the problem one can keep the
translation with the cache line, simplifying writeback enor-
mously but increasing the size of the cache without increas-
ing its capacity. This also introduces the possibility of
having stale translation information in the cache. We do not
discuss the hardware-oriented solution further, as the pur-
pose of this paper is to investigate reducing address transla-
tion hardware to its simplest.

If writebacks happen in 50% of all cache misses, then
50% of the time we will need to perform two address trans-
lations: one for the data to be written back, one for the data

Table 2: TLB overhead of several operating systems

System Overhead
(% run-time)

Overhead
(CPI)

Ultrix 2.03% 0.042

OSF/1 5.81% 0.101

Mach3 8.21% 0.162

Mach3+AFSin 7.77% 0.220

Mach3+AFSout 8.88% 0.281

Table 3: Overhead of software-managed address translation

Workload Overhead
(CPI)

m88ksim 0.003

li 0.003

go 0.004

compress95 0.009

perl 0.019

ijpeg 0.052

vortex 0.060

gcc 0.097

Weighted
Average: 0.033

Table 4: Breakdown of GCC overhead

Event Frequency
(per instr.)

Penalty per
Occurrence

Overhead
(CPI)

L2 D-Cache
Ld/St miss

0.000697 10 cycles 0.006970

L2 I-Cache
I-fetch miss

0.004756 10 cycles 0.047560

Miss handler
L1 D-miss

0.000596 20 cycles 0.011920

Miss handler
L2 D-miss

0.000032 90 cycles 0.002880

Miss handler
Load UPTE

0.000053 90 cycles 0.004770

Miss handler
L1 I-miss

0.000985 20 cycles 0.019700

Miss handler
L2 I-miss

0.000035 90 cycles 0.003150

Total CPI: 0.096950

to be brought into the cache. This should increase our over-
head by roughly 50%, from 0.033 CPI to 0.050 CPI, which
is about the overhead of Ultrix and still far less than that of
OSF/1 or Mach. The problem this introduces is that the
writeback handler can itself cause another writeback if it
touches data in cacheable space, or if the handler code is in
cacheable space and the caches are unified.

5.4 Fine-grained protection

As mentioned earlier, managing protection information can
be inefficient if we store protection bits with each cache
line. If the protection granularity is larger than a cache line,
the bits must be replicated across multiple lines. Keeping
the protection bits consistent across the cache lines can
cause significant overhead if page protection is modified
frequently. The advantage of this scheme is that the choice
of protection granularity is completely up to the operating
system. In this section, we determine the overhead.

We performed a study on the frequency of page protec-
tion modifications in the Mach operating system. The
benchmarks are the same as in [41], and the operating sys-
tem is Mach3. We chose Mach as it uses copy-on-write lib-
erally, producing 1000 times the page-protection
modifications seen in Ultrix [41]. We use these numbers to
determine the protection overhead of our system; this
should give a conservative estimate for the upper bound.
The results are shown in Table 5.

Page-protection modifications occur on the average of
11.3 for every million instructions. At the very worst, for
each modification we must sweep through a page-sized
portion of the L1 and L2 caches to see if lines from the
affected page are present. Overhead therefore increases
with larger page sizes (a software-defined parameter) and
with smaller linesizes (a hardware-defined parameter). On a
system with 4KB pages and a 16-byte linesize, we must
check 256 cache lines per modification. Assuming an aver-
age of 10 L1 cache lines and 50 L2 caches lines affected per
modification4, if L1 cache lines can be checked in 3 cycles
and updated in 5 cycles (an update is a check-and-modify),

and L2 cache lines can be checked in 20 cycles and updated
in 40 cycles, we calculate the overhead as follows. Of 256
L1 cache lines, 10 must be updated (5 cycles), the remain-
ing 246 need only be checked (3 cycles); of 256 L2 cache
lines 50 must be updated (40 cycles), the remaining 206
need only be checked (20 cycles); the overhead is therefore
6908 cycles per page-protection modification (10 * 5 + 246
* 3 + 50 * 40 + 206 * 20). This yields between 0.019 and
0.164 CPI (6908 * 2.8 * 10-6 and 6908 * 23.8 * 10-6). This
is in the range of Ultrix and OSF/1 overheads and at the
lower end of Mach’s overhead. This translates to a worst
case of 2-7% total execution time. If the operating system
uses page-protection modification as infrequently as in
Ultrix, this overhead decreases by three orders of magni-
tude to 0.0001 CPI, or about 0.01% execution time.

We can improve this by noting that most of these modifi-
cations happen during copy-on-write. Often the protections
are being increased and not decreased, allowing one to
update protection bits in each affected cache line lazily—to
delay an update until a read-only cache line is actually writ-
ten, at which point it would be updated anyway.

5.5 Sensitivity to cache organization

The graphs in Fig 8 show the sensitivity of software-man-
aged address translation to cache size and cache linesize.
The benchmarks are from SPEC95 as before; we only show
graphs for the two worst-performing benchmarks—gcc and
vortex. The numbers differ slightly from those presented in
Table 3; the benchmarks were not run to completion for this
study, but were stopped after 1 billion references for each.

Besides the familiar signature of diminishing returns
from increasing linesize (e.g., the two largest overheads in
Fig 8a are from the smallest and largest linesizes), the
graphs show that cache size has a significant impact on the
overhead of the system. For gcc, overhead decreases by an
order of magnitude when the L2 cache is doubled, and
decreases by a factor of three as the L1 cache increases
from 1KB to 128KB (2KB to 256KB total L1 cache size);
for vortex, overhead decreases by a factor of two as the L2
cache doubles, and decreases by a factor of three as L1
increases from 1KB to 128KB. Within a given cache size,
linesize choice can affect performance by a factor of two or
more (up to ten for some configurations).

The best organization should result in an overhead an
order of magnitude lower than that calculated earlier—to
less than 0.01 CPI, or a run-time overhead far less than 1%.
This suggests that software-managed address translation is
viable today as a strategy for faster, nimbler systems.

4. We chose these numbers after inspecting individual SPEC95
benchmark traces, which should give conservative estimates: (1) SPEC
working sets tend to be smaller than normal programs, resulting in less
page overlap in the caches, and (2) individual traces would have much
less overlap in the caches than multiprogramming traces.

Table 5: Page protection modification frequencies in Mach3

Workload Page Protection
Modifications

Modifications
per Million
Instructions

compress 3635 2.8

jpeg_play 12083 3.4

IOzone 3904 5.1

mab 27314 15.7

mpeg_play 26129 19.0

gcc 35063 22.3

ousterhout 15361 23.8

Weighted
Average: 11.3

6 Summary

We are building a high clock-rate 32-bit PowerPC. For the
design of the memory management system, we have
returned to first principles and discovered a small set of
hardware structures that provide support for address space
protection, shared memory, large sparse address spaces, and
fine-grained protection at the cache-line level. This set does
not include address-translation hardware; we show that
address translation can be managed in software efficiently.
Current virtual memory systems such as Mach exact an
overhead of 0.16 to 0.28 cycles per instruction to provide
address translation; a software scheme requires 0.05 CPI
(2% run-time, with a 16KB L1 cache, and 1MB L2), about
the same as the overhead of Ultrix on MIPS. If copy-on-
write and other page-protection modifications are used as
frequently as in Mach, protection-bit management can

increase this overhead to that of OSF/1 or Mach. However,
the number of page-protection modifications in Ultrix rep-
resent a negligible overhead. With slightly larger caches
(2MB L2, common in today’s systems), the overhead of
software-managed address translation should reduce to far
less than 1% of run-time. Therefore software-managed
address translation is a viable strategy for high-end comput-
ing today, achieving better performance with less hardware.

Beyond the performance gains suggested by our simula-
tions, the benefits of a minimal hardware design are three-
fold. First, moving address translation into software creates
a simpler and more flexible interface; as such it supports
much more innovation in the operating system than would a
fixed design. Second, a reduction in hardware will leave
room for more cache structures, increasing performance.
Last, simpler hardware should be easier to design and
debug, cutting down on development time.

1 2 4 8 16 32 64 128
L1 Cache Size − per side (KB)

0.000

0.020

0.040

0.060

0.080

0.100

0.120

O
ve

rh
ea

d
(C

P
I)

L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
L1 Linesize 16, L2 Linesize 64
L1 Linesize 16, L2 Linesize 128
L1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
L1 Linesize 32, L2 Linesize 128
L1 Linesize 64, L2 Linesize 64
L1 Linesize 64, L2 Linesize 128
L1 Linesize 128, L2 Linesize 128

1 2 4 8 16 32 64 128
L1 Cache Size − per side (KB)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

O
ve

rh
ea

d
(C

P
I)

L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
L1 Linesize 16, L2 Linesize 64
L1 Linesize 16, L2 Linesize 128
L1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
L1 Linesize 32, L2 Linesize 128
L1 Linesize 64, L2 Linesize 64
L1 Linesize 64, L2 Linesize 128
L1 Linesize 128, L2 Linesize 128

1 2 4 8 16 32 64 128
L1 Cache Size − per side (KB)

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

O
ve

rh
ea

d
(C

P
I)

L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
L1 Linesize 16, L2 Linesize 64
L1 Linesize 16, L2 Linesize 128
L1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
L1 Linesize 32, L2 Linesize 128
L1 Linesize 64, L2 Linesize 64
L1 Linesize 64, L2 Linesize 128
L1 Linesize 128, L2 Linesize 128

1 2 4 8 16 32 64 128
L1 Cache Size − per side (KB)

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200
O

ve
rh

ea
d

(C
P

I)
L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
L1 Linesize 16, L2 Linesize 64
L1 Linesize 16, L2 Linesize 128
L1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
L1 Linesize 32, L2 Linesize 128
L1 Linesize 64, L2 Linesize 64
L1 Linesize 64, L2 Linesize 128
L1 Linesize 128, L2 Linesize 128

Figure 8: The effect of cache size and linesize on software-managed address translation. The figure shows two benchmarks—gcc and vortex. All
caches are split. L1 cache size is varied from 1K to 128KB per side (2KB to 256KB total), and L2 cache size is varied from 512KB to 1024KB per side (1MB to
2MB total). Linesizes are varied from 16 bytes to 128 bytes; the L2 linesize is never less than the L1 linesize. In each simulation, the I-caches and D-caches
have identical configurations. We apologize for using different y-axis scales; however, they better show the effects of linesize for a given cache size.

(b) VORTEX, 1MB split L2 cache(a) GCC, 1MB split L2 cache

(c) GCC, 2MB split L2 cache (d) VORTEX, 2MB split L2 cache

References
[1] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska. “The

interaction of architecture and operating system design.” InProc. Fourth Int’l
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 4), April 1991, pp. 108–120.

[2] A. W. Appel and K. Li. “Virtual memory primitives for user programs.” In
Proc. Fourth Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 4), April 1991, pp. 96–107.

[3] M. J. Bach.The Design of the UNIX Operating System. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1986.

[4] K. Bala, M. F. Kaashoek, and W. E. Weihl. “Software prefetching and
caching for translation lookaside buffers.” InProc. First USENIX Symposium
on Operating Systems Design and Implementation, November 1994.

[5] B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak,
S. Savage, and E. G. Sirer. “SPIN – an extensible microkernel for application-
specific operating system services.” Tech. Rep. 94-03-03, University of
Washington, February 1994.

[6] A. Chang and M. F. Mergen. “801 storage: Architecture and programming.”
ACM Transactions on Computer Systems, vol. 6, no. 1, February 1988.

[7] J. S. Chase, H. M. Levy, M. Baker-Harvey, and E. D. Lazowska. “How to use
a 64-bit virtual address space.” Tech. Rep. 92-03-02, University of
Washington, March 1992.

[8] J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey.
“Lightweight shared objects in a 64-bit operating system.” Tech. Rep. 92-03-
09, University of Washington, March 1992.

[9] J. B. Chen, A. Borg, and N. P. Jouppi. “A simulation based study of TLB
performance.” InProc. 19th Annual International Symposium on Computer
Architecture (ISCA 19), May 1992.

[10] R. Cheng. “Virtual address cache in UNIX.” InProceedings of the Summer
1987 USENIX Technical Conference, June 1987.

[11] D. R. Cheriton, H. A. Goosen, and P. D. Boyle. “Multi-level shared caching
techniques for scalability in VMP-MC.” InProc. 16th Annual International
Symposium on Computer Architecture (ISCA 16), June 1989.

[12] D. R. Cheriton, A. Gupta, P. D. Boyle, and H. A. Goosen. “The VMP
multiprocessor: Initial experience, refinements and performance evaluation.”
In Proc. 15th Annual International Symposium on Computer Architecture
(ISCA 15), May 1988.

[13] D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle. “Software-controlled
caches in the VMP multiprocessor.” InProc. 13th Annual International
Symposium on Computer Architecture (ISCA 13), January 1986.

[14] D. W. Clark and J. S. Emer. “Performance of the VAX-11/780 translation
buffer: Simulation and measurement.”ACM Transactions on Computer
Systems, vol. 3, no. 1, February 1985.

[15] H. Custer. “Inside Windows/NT.” Tech. Rep., Microsoft Press, 1993.
[16] H. Deitel.Inside OS/2. Addison-Wesley, Reading MA, 1990.
[17] Digital. DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors

Hardware Reference Manual. Digital Equipment Corporation, Maynard MA,
1994.

[18] P. Druschel and L. L. Peterson. “Fbufs: A high-bandwidth cross-domain
transfer facility.” InProc. Fourteenth ACM Symposium on Operating Systems
Principles, December 1993, pp. 189–202.

[19] D. Engler, R. Dean, A. Forin, and R. Rashid. “The operating system as a
secure programmable machine.” InProc. 1994 European SIGOPS Workshop,
September 1994.

[20] W. E. Garrett, M. L. Scott, R. Bianchini, L. I. Kontothanassis, . R. A.
McCallumm, J. A. Thomas, R. Wisniewski, and S. Luk. “Linking shared
segments.” InUSENIX Technical Conference Proceedings, January 1993.

[21] W. E. Garrett, R. Bianchini, L. Kontothanassis, . R. A. McCallum, J. Thomas,
R. Wisniewski, and M. L. Scott. “Dynamic sharing and backward
compatibility on 64-bit machines.” Tech. Rep. TR 418, University of
Rochester, April 1992.

[22] J. R. Goodman. “Coherency for multiprocessor virtual address caches.” In
Proc. Second Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2), October 1987, pp. 72–81.

[23] J. Heinrich, Ed.MIPS R10000 Microprocessor User’s Manual, version 1.0.
MIPS Technologies, Inc., Mountain View CA, June 1995.

[24] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, Inc., 1990.

[25] Hewlett-Packard.PA-RISC 1.1 Architecture and Instruction Set Reference
Manual. Hewlett-Packard Company, 1990.

[26] M. D. Hill, et al. “Design Decisions in SPUR.”IEEE Computer, vol. 19, no.
11, November 1986.

[27] J. Huck.Personal communication. 1996.
[28] J. Huck and J. Hays. “Architectural support for translation table management

in large address space machines.” InProc. 20th Annual International

Symposium on Computer Architecture (ISCA 20), May 1993.
[29] IBM and Motorola.PowerPC 601 RISC Microprocessor User’s Manual. IBM

Microelectronics and Motorola, 1993.
[30] J. Inouye, R. Konuru, J. Walpole, and B. Sears. “The effects of virtually

addressed caches on virtual memory design and performance.” Tech. Rep. CS/
E 92-010, Oregon Graduate Institute, 1992.

[31] Intel. Pentium Processor User’s Manual. Intel Corporation, Mt. Prospect IL,
1993.

[32] G. Kane and J. Heinrich.MIPS RISC Architecture. Prentice-Hall, Englewood
Cliffs NJ, 1992.

[33] Y. A. Khalidi, M. Talluri, M. N. Nelson, and D. Williams. “Virtual memory
support for multiple page sizes.” InProc. Fourth Workshop on Workstation
Operating Systems, October 1993.

[34] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman.The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley
Publishing Company, 1989.

[35] J. Liedtke. “Improving IPC by kernel design.” InProc. Fourteenth ACM
Symposium on Operating Systems Principles, December 1993, pp. 175–187.

[36] J. Liedtke. “Address space sparsity and fine granularity.”ACM Operating
Systems Review, vol. 29, no. 1, pp. 87–90, January 1995.

[37] J. Liedtke. “On micro-kernel construction.” InProc. Fifteenth ACM
Symposium on Operating Systems Principles, December 1995.

[38] J. Liedtke and K. Elphinstone. “Guarded page tables on MIPS R4600.”ACM
Operating Systems Review, vol. 30, no. 1, pp. 4–15, January 1996.

[39] C. May, E. Silha, R. Simpson, and H. Warren, Eds.The PowerPC
Architecture: A Specification for a New Family of RISC Processors. Morgan
Kaufmann Publishers, San Francisco CA, 1994.

[40] D. Nagle.Personal communication. 1995.
[41] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and R. Brown.

“Design tradeoffs for software-managed TLBs.” InProc. 20th Annual
International Symposium on Computer Architecture (ISCA 20), May 1993.

[42] R. Rashid, A. Tevanian, M. Young, D. Young, R. Baron, D. Black,
W. Bolosky, and J. Chew. “Machine-independent virtual memory
management for paged uniprocessor and multiprocessor architectures.”IEEE
Transactions on Computers, vol. 37, no. 8, pp. 896–908, August 1988.

[43] S. A. Ritchie. “TLB for free: In-cache address translation for a multiprocessor
workstation.” Tech. Rep. UCB/CSD 85/233, University of California, May
1985.

[44] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. “The
impact of architectural trends on operating system performance.” InProc.
Fifteenth ACM Symposium on Operating Systems Principles, December 1995.

[45] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. “Design rationale for Psyche, a
general-purpose multiprocessor operating system.” InProc. 1988
International Conference on Parallel Processing, August 1988.

[46] R. L. Sites, Ed.Alpha Architecture Reference Manual. Digital Equipment
Corporation, Maynard MA, 1992.

[47] M. Talluri and M. D. Hill. “Surpassing the TLB performance of superpages
with less operating system support.” InProc. Sixth Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS 6), October 1994.

[48] M. Talluri, M. D. Hill, and Y. A. Khalidi. “A new page table for 64-bit
address spaces.” InProc. Fifteenth ACM Symposium on Operating Systems
Principles, December 1995.

[49] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson. “Tradeoffs in supporting
two page sizes.” InProc. 19th Annual International Symposium on Computer
Architecture (ISCA 19), May 1992.

[50] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. “Efficient software-
based fault isolation.” InProc. Fourteenth ACM Symposium on Operating
Systems Principles, December 1993, pp. 203–216.

[51] W.-H. Wang, J.-L. Baer, and H. M. Levy. “Organizaiton and performance of
a two-level virtual-real cache hierarchy.” InProc. 16th Annual International
Symposium on Computer Architecture (ISCA 16), June 1989, pp. 140–148.

[52] D. L. Weaver and T. Germand, Eds.The SPARC Architecture Manual version
9. PTR Prentice Hall, Englewood Cliffs NJ, 1994.

[53] S. Weiss and J. E. Smith.POWER and PowerPC. Morgan Kaufmann
Publishers, San Francisco CA, 1994.

[54] B. Wheeler and B. N. Bershad. “Consistency management for virtually
indexed caches.” InProc. Fifth Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 5), October 1992.

[55] D. A. Wood.The Design and Evaluation of In-Cache Address Translation.
PhD thesis, University of California at Berkeley, March 1990.

[56] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, J. M. Pendleton, S. A.
Ritchie, G. S. Taylor, R. H. Katz, and D. A. Patterson. “An in-cache address
translation mechanism.” InProc. 13th Annual International Symposium on
Computer Architecture (ISCA 13), January 1986.

	Software-managed.pdf
	hpca97.pdf

