
Copyright © 2003 IEEE. Reprinted from IEEE Transactions on Computers.

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of the University of Maryland’s products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

mailto:pubs-permissions@ieee.org

The Performance and Energy Consumption of
Embedded Real-Time Operating Systems

Kathleen Baynes, Chris Collins, Eric Fiterman, Member, IEEE, Brinda Ganesh,

Paul Kohout, Member, IEEE, Christine Smit, Student Member, IEEE,

Tiebing Zhang, and Bruce Jacob, Member, IEEE

Abstract—This paper presents the modeling of embedded systems with SimBed, an execution-driven simulation testbed that

measures the execution behavior and power consumption of embedded applications and RTOSs by executing them on an accurate

architectural model of a microcontroller with simulated real-time stimuli. We briefly describe the simulation environment and present a

study that compares three RTOSs: �C/OS-II, a popular public-domain embedded real-time operating system; Echidna, a

sophisticated, industrial-strength (commercial) RTOS; and NOS, a bare-bones multirate task scheduler reminiscent of typical

“roll-your-own” RTOSs found in many commercial embedded systems. The microcontroller simulated in this study is the Motorola

M-CORE processor: a low-power, 32-bit CPU core with 16-bit instructions, running at 20MHz. Our simulations show what happens

when RTOSs are pushed beyond their limits and they depict situations in which unexpected interrupts or unaccounted-for task

invocations disrupt timing, even when the CPU is lightly loaded. In general, there appears no clear winner in timing accuracy between

preemptive systems and cooperative systems. The power-consumption measurements show that RTOS overhead is a factor of two to

four higher than it needs to be, compared to the energy consumption of the minimal scheduler. In addition, poorly designed idle loops

can cause the system to double its energy consumption—energy that could be saved by a simple hardware sleep mechanism.

Index Terms—Embedded systems, real-time operating systems (RTOS), power and energy modeling, performance modeling,

Motorola M-CORE, �C/OS-II, Echidna, Chimera.

�

1 INTRODUCTION

THIS paper motivates the use of simulated embedded
microcontrollers for system design and presents a

simulation-based experimental study comparing the per-
formance and energy characteristics of three real-time
operating systems (RTOSs)—1) the public-domain em-
bedded kernel �C/OS-II [24], 2) the commercial real-time
kernel Echidna [12], and 3) a “roll-your-own” style system
that has an organization common in today’s embedded
systems [15], [16].

1.1 Motivation

With embedded systems moving toward faster and smaller
processors and systems on a chip, it becomes increasingly
difficult to accurately quantify embedded-system behavior.
Probing a piece of silicon or accurately measuring timing
values down to a nanosecond or less become more
expensive and more difficult—in some cases, impossible.

Only a handful of years ago, it was easy enough to hook a
probe to the memory and I/O buses, but, with the advent of
systems on a chip and application-specific integrated
circuits, it is no longer possible to obtain those signals for
they never leave the silicon [27], [35]. The only way to
debug these systems is to either probe the silicon itself (a bit
unrealistic) or to add logic to the chip to bring the desired
signal off the chip; the latter option is limited by the number
of physical pins that can be put on a chip and spared for
simple debug and evaluation purposes. Also, with the
speeds at which some of today’s embedded processors are
running, it becomes difficult to find a logic analyzer that can
keep up with the processors and not cost something beyond
the reach of most academic research groups and small
embedded-systems design houses. If there were another
method to evaluate these systems early on, both time and
money could be saved.

There are three recent trends that are relevant to this
observation. First is the increasing popularity of hardware/
software cosimulation or codesign [21], [1]. One of the
fundamental aspects of this methodology is that, early on in
the process, software is developed for and executed on
models of the hardware that are implemented in some high-
level language. As opposed to the traditional method of
developing the hardware and software for a system sepa-
rately, the hardware/software codesign methodology rea-
lizes the advantages of designing the two together. Doing so
provides benefits in performance, reliability, and time to
market, due to the observation that, when hardware and
software designers communicate during the design process,
there is less chance of problems arising due to ignorance [9].

Another trend gaining in popularity is the use of real-
time operating systems [26], [11], [42]. RTOSs are increas-
ingly used in the development and deployment of real-time

1454 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

. K. Baynes is with Verizon, Reston, VA.
E-mail: Kathleen.Baynes@imake.com.

. C. Collins is with Intel Corp., Mail stop HD2-141, 77 Reed Rd., Hudson,
MA 01749-2895. E-mail: christopher.m.collins@intel.com.

. E. Fiterman is with Salar, Inc., 5569 Gloucester Ave., Churchton, MD
20733. E-mail: efiterman@yahoo.com.

. B. Ganesh, C. Smit, and B. Jacob are with the Department of Electrical and
Computer Engineering, University of Maryland, College Park, MD 20742.
E-mail: {brinda, blj}@eng.umd.edu, christinesmit@hotmail.com.

. P. Kohout is with EVI Technology, LLC, 7138 Columbia Gateway Dr.,
Columbia, MD 21046. E-mail: pkohout@evitechnology.com.

. T. Zhang is with 3e Technologies Inc., 19117 Willow Spring Dr.,
Germantown, MD 20874. E-mail: tiebingzhang@yahoo.com.

Manuscript received 2 May 2001; revised 9 May 2002; accepted 17 Sept. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114089.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

embedded systems. Their benefits are well-known: They
provide numerous helpful facilities, including cooperative
and preemptive multitasking, multithreading, support for
both periodic and aperiodic tasks, fixed-priority/dynamic-
priority scheduling, semaphores, interprocess communica-
tion, shared memory, and memory management; in doing
so, they can dramatically reduce the time to design,
develop, and test a product [17], [3], [18].

The third trend is the increasing importance of low-
energy systems. There is rapidly growing consumer
demand for computing devices that are both compute-
intensive and battery operated, including PDAs, cell
phones, wearable computers, handhelds, and laptops [6],
[33]. Like many things, it is difficult to retro-fit a low-energy
philosophy into an existing system architecture; as the
StrongARM has shown, energy consumption must be
considered from the beginning of the design phase if the
system is to be both high-performance and low-power.

These three trends meet at a simple, clear conclusion: It is
prudent to have a simulation-based experimental environ-
ment for real-time embedded systems, but, if the model is to
be truly useful for developing modern embedded systems,
it must be accurate enough to run unmodified real-time
operating systems and it must accurately characterize the
energy consumption of the system. High-level language
modeling of applications and their operating systems has
been performed by the SimOS group [34] and there has
been a large number of recent studies modeling the power
consumption of microprocessors and applications [22], [19],
[20], [14], [7], [43], [38], [39], [31], [32], [13], but ours is one of
the few experimental environments that performs both (the
only other one of which we are aware is described in [10]).

1.2 SimBed

Our group has developed SimBed, a high-level language
model of an embedded hardware system that is accurate
enough to run unmodified real-time operating systems (i.e.,
the binary that runs on the simulator is the same binary that
runs on real hardware). In this study, we present a
processor model written in C that emulates the Motorola
M-CORE microcontroller, a low-power, 32-bit CPU core
with 16-bit instructions [40], [41]. All on-chip timers,
interrupts, and interrupt handlers used by the operating
systems and applications are precisely and accurately
simulated. This is essential to the simulation of a system
running an operating systems because it will be accessing
these components very frequently. The model has been
verified as cycle-accurate to within 100 cycles per million
compared to actual hardware (the difference is due to a
handful of variable-latency hardware instructions such as
multiplication that, for simplicity, we model as having
constant latencies). The hardware used include two of
Motorola’s M-CORE evaluation boards: one for the generic
ISA, another for the MMC2001. The numbers presented in
this paper correspond to the first evaluation board, which
clocks the processor at 20MHz.

We have also instrumented the processor simulator to
measure energy consumption, using existing instruction-
based techniques [38]. We have verified the simulator’s
output to measurements of actual hardware and our results
are within 10-15 percent of real measurements. This level of
accuracy for modeling power at the processor level is about
where most current research stands (e.g., [7], [38]).

This paper presents an experimental study using SimBed
in which the real-time performance and energy consump-
tion of three different RTOSs are compared: a public-
domain preemptive multitasking kernel, an industrial-
strength cooperative multitasking kernel, and a bare-bones
task scheduler (which represents the limiting case of a
lightweight cooperatively-scheduled RTOS). We also pre-
sent the theoretical maximum throughput of the application
code sans RTOS.

An interesting side note is that some of SimBed’s
measurements represent quantities that cannot be obtained
via traditional means (e.g., probes and logic analyzers) on
current M-CORE chips without perturbing the observed
system, as M-CORE offerings all use on-chip memories. For
example, the division of time and energy into kernel, user,
idle, and interrupt-handler components could be obtained
by either instrumenting code or using off-chip memory and
a logic analyzer, but both schemes would change the
system’s execution time and energy consumption.

1.3 Energy Consumption Model

Unlike instruction set simulation, which can be done by
using some simple computation statements, there is no
obvious way to determine the power and energy consumed
by the system. Instead, we need to find out all the relevant
factors and construct a mathematical model which will
approximately reflect the power and energy consumption
of the system.

The way in which the power estimation function was
added to the instruction level emulator was first published
by a Princeton group [39]. Instead of running simulations,
this method is based on experiment data. The power
consumption of each instruction is measured by using an
infinite loop with only this instruction inside. Because it is
an infinite loop, a jump instruction has to be used. In order
to minimize the influence of this instruction, several
hundred of the tested instructions are included inside the
loop. The power number will be the base power consump-
tion number of this specific instruction. This number
multiplied by the execution time of the instruction will
serve as the basic energy consumption of the instruction.

When a piece of code is running, all of the instructions’
energy consumption numbers are simply added together to
estimate the total energy consumption. However, according
to another paper [7], this number will always be smaller
than the real measured number. One explanation is that,
during the single instruction test, the state of all the
modules inside the processor will not change as much as
when the next instruction is different from the previous one.
This extra power consumption is called interinstruction
overhead, which is different for different pairs of instruc-
tions, and this accounts for a big part of the processor’s
overall power consumption. Measuring all the instruction
pairs’ overhead power consumption is nearly impossible
due to the large number of pairs. It was found that this
number stays at a similar level for most instruction pairs.
Therefore, a simple alternative method is to add a constant
value to all the executed instruction pairs to compensate for
this overhead value. With this added, the simulated power
consumption number is close to the measured number and
the error is within the acceptable region.

Another factor that influences the accuracy of this
method is the changing of the operators of each instruction.

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1455

Moving an all zero constant and moving an all one constant
will result in different circuit state changes and, therefore,
different power consumptions. However, because the
parameter of an instruction is random, we can use an
average number to represent this fluctuation. Test results
show that this method is a good approximation.

We verified the accuracy of our power model by running
a small program in an infinite loop, then using a digital
multimeter to measure the current that the chip consumes.
Because the multimeter gives out an average current value
and the program only needs several millisecond to run each
iteration, the reading number will give out the average
current consumption. With a simple multiplication with the
power supply voltage, the average power consumption is
found. After several such tests and comparing the results
with the simulation results, the error is within 15 percent.
This is an acceptable error considering that this is an
architecture level tool.

1.4 Experiments

This study looks at the behavior of embedded real-time
systems, particularly those that use embedded RTOSs. Our
initial focus is on systems that use online scheduling (the
choices are made at runtime as opposed to compile-time), as
they tend to be less amenable to analytical verification than
systems with offline scheduling (those in which the
scheduling decisions are made at compile-time). All RTOSs
studied handle the simultaneous execution of multiple
applications. The RTOSs are also compared to the theore-
tical maximum throughput values calculated for the bench-
mark applications. Briefly, these are the execution models
studied in this paper:

uC/OS-II: A preemptive multitasking RTOS that is in the
public domain [24]. It is ROMable and scalable (only
modules that are needed are compiled into the execu-
table). Execution times of all kernel functions and
services are deterministic. Despite its small size
(1,700 lines of code), it offers such services as mailboxes,
queues, semaphores, time-related functions, etc. It is
chosen to represent sophisticated preemptive multi-
tasking RTOSs with footprints small enough for micro-
controller systems.

ECHIDNA: A cooperative multitasking RTOS based on
Chimera [36] that swaps Chimera’s POSIX-like threads in
the microkernel for port-based objects [37]; it supports
reconfigurable component-based software for microcon-
trollers and digital signal processors [12]. This is chosen to
be representative of sophisticated dynamic-priority co-
operative RTOSs with footprints small enough for micro-
controller systems (Echidna has a footprint of ~6KB).

NOS: A bare-bones, fixed-priority, multirate executive
based on descriptions of “roll-your-own” RTOSs given
by embedded-systems designers in industry [16].
Though it is just a task scheduler and not a full OS, we
refer to it in this paper as an “RTOS” for convenience. It
is chosen to represent the attainable energy and
performance limit of nonpreemptive RTOSs.

LIMIT: The theoretical performance limit of each applica-
tion, based solely on the computational requirements of
its implementation. This represents the (unattainable)
energy and performance limit of a zero-overhead RTOS.

For the realistic performance limit (NOS), we chose a
multirate executive rather than something simpler, such as
a cyclic scheduler, because the behavior of a cyclic scheduler

is very sensitive to the execution profile of the application
program, while the multirate executive is much less so [23].

On each of these execution models, we execute several
different applications. Following Liu’s terminology [28], we
use the term “job” to mean an independently scheduled block of
code and the term “task” to mean a collection of logically
related jobs that together perform some function. The
embedded applications studied exploit multitasking to the
extent possible in the given OS (�C/OS provides preemp-
tive multitasking, Echidna provides cooperative multitask-
ing, and NOS schedules work on function boundaries) and
use for all data transfer whatever interprocess communica-
tion mechanism is supplied by the RTOS. Within a task, we
stress the RTOS’s communication mechanism by having
different independently scheduled jobs read the input and
write the output, i.e., the same job does not perform both
reads and writes to the I/O system. Therefore, the
minimum workload for any application is a task of two
independently scheduled jobs.

The application kernels differ primarily in the amount of
computation and include raw IPC (both periodic and
aperiodic), up-sampling, down-sampling, and a 128-tap FIR
filter. The applications are chosen to be simple so that they
can be sped up and/or layered atop each other to gradually
increase the total system workload. Additionally, we also
use some applications from the Mediabench suite g721-
encode, decode and Adpcm-encode, decode. Background
load in the form of aperiodic interrupt-driven tasks and a
control loop performing administrative work makes the
system less predictable and thus makes life more difficult
for each scheduler. The same application code is executed
on all three operating systems (with minor RTOS-specific
modifications) and is used to determine the theoretical
computational limit as well. The experiments keep track of
real-time jitter, response-time delay, and total CPU energy
consumption divided into user, kernel, handler, semaphore,
and idle components.

1.5 Results

The performance measurements yield both predictable and
surprising results. Predictably, as system load is increased,
the RTOSs studied hit their job deadlines consistently until
a critical system load is reached, beyond which point the
RTOSs miss deadlines with increasing frequency and by
increasing amounts of time. Also predictably, the fixed
priority scheduler in NOS leads to complete denial of
service for lower-priority jobs when the critical system load
is reached. The surprising results include situations where
the industrial RTOSs miss deadlines with predictable
regularity and with probability 1, even when the system
is under light load. This is due to unexpected interrupts and
unaccounted-for task invocations that cause individual job
timing to be thrown off, but only occasionally. In general, to
ensure on-time task invocations in the face of unpredictable
events (e.g., external device interrupts), an RTOS must
maintain significant CPU head-room: 10-20 percent idle
CPU cycles is not too much.

The energy-consumption measurements show some
interesting results. RTOS energy overheads can be extre-
mely high when running low-overhead tasks; if the task
requires very little computation time for each job invoca-
tion, the RTOS can easily account for 90 percent of the
processor’s energy consumption and poorly considered idle
loops can double the system’s energy requirements. As a
periodic task’s complexity and CPU requirements grow, the
proportion of the energy spent in the RTOS diminishes

1456 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

significantly and the effect of the idle loop is also
diminished. There is also an interesting trade off that the
more complex RTOSs seem to have taken: While the bare-
bones scheduler has the lowest energy consumption, that
consumption scales with the workload. The more complex
RTOSs have a higher initial energy consumption, but this
consumption does not increase as quickly as the simpler
RTOS when the user-level computational load grows.
Therefore, the energy consumption and CPU requirements
of these more complex RTOSs are likely to be much more
predictable than a simpler RTOS.

2 EXPERIMENTAL SET-UP

We use an execution-driven simulation of the Motorola
M-CORE processor that can run unmodified RTOSs. On this
simulator, we run three different software configurations:
�C/OS-II, Echidna, and NOS—the public-domain kernel,
the industrial RTOS, and the simple multirate executive,
respectively. We run several benchmarks atop each of these,
increasing the workload to the point where the system fails
to meet deadlines. We also ran the benchmarks without any
RTOS support, to obtain performance and energy-con-
sumption limits.

2.1 Motorola M-CORE Processor

The M-CORE is a low-power, compiler-friendly core
designed specifically for the embedded market [29], [30],
[40], [41]. It is a RISC-based design that uses 16-bit
instructions and operates on 32-bit data. It has a simple
four-stage single-issue pipeline, memory-mapped I/O, an
orthogonal general-purpose register file with 16 registers,
and a duplicate “shadow” register file that privileged
software can enable instead of the regular register file. For
this study, we simulate the processor at 20MHz, the same
clock frequency as the evaluation hardware. The timing
mechanism on the M-CORE evaluation board is simple and
offers precision on the order of 1�s. It is a 2-byte counter in
I/O space that increments every 1.6�s. Every 100ms (every
62,500 ticks of the counter), the counter wraps around and
raises a timer interrupt to the CPU.

2.2 Application Code

The following describe the range of user-level code run in
the experiments.

Periodic Interprocess Communication. Periodic interpro-
cess communication (IPC) is the simplest of the bench-
marks that was used to evaluate performance. As
mentioned above, the first job grabs data off of the input
I/O port and use RTOS-provided IPC (e.g., shared
memory). The second job receives that value memory
and writes it to the output I/O port. There is no
computation, only the movement of data. This task
represents the simplest possible two-job task possible.

Up/Down Sampling. With up sampling (UP), the second job
runs at a higher frequency than that of the first job. Only a
fraction of times that the second job has run will there be
any new information. Therefore, the second job carries out
a basic form of interpolation. In down sampling (DOWN),
the first job runs at a higher frequency than the second job.
The second job takes all of the values that have been
brought inby the read job since the last time that second job
was run, averages them, and then outputs that average to
the output I/O port.

Finite Impulse Response Filter. The finite impulse
response (FIR) filter is a computation intensive bench-
mark. The second job runs a 128-tap filter on the data
that has been collected by the first task. For each run of
the second job, the last 128 values to be input by the first
job are used to compute an inner product and that value
is output to the I/O port.

G721 Decode. G721 is an application in the Mediabench
suite. It decodes a G.721 voice compressed sample. The
first job reads in a previously compressed sample which
the second job decodes 4 bits at a time.

ADPCM Encode. Adpcm is an application in the Media-
bench suite. It performs a conversion from a linear 16 bit
PCM sample to a 4 bit ADPCM sample. The first job
reads in a single sample which the second job encodes
and writes to an I/O port. This is the most computation
intensive of the benchmarks used.

Background Load. To add some nondeterminism to the
evaluation of these two operating systems and to offer
more realistic simulations indicative of real-world
systems, two different additional tasks were created.
These tasks can be run concurrently with the above listed
benchmarks to provide a background load. These two
tasks are a periodic control loop and an aperiodic
interprocess communication process.

Control Loop. This task runs in the background at a period
of 32ms to simulate the background load that many
embedded systems have running while they are per-
forming other tasks, such as a cell phone that has a task
that runs periodically to refresh its LCD display. This
control loop performs several memory lookups with an
index that is randomly generated.

Aperiodic Interprocess Communication. This task is run
when a simulated I/O interrupt is generated by the
hardware. It schedules a high-priority user-level job in
response that writes to the I/O space. This is the
mechanism used to determine system response time
under load. The interrupt interarrival times obey a
geometric distribution: The emulator generates an inter-
rupt every 100�s with a probability of 0.01, giving an
average of 100 interrupts a second.

Note that the same application code is executed on all three
operating systems (with minor RTOS-specific modifica-
tions). The experiments keep track of real-time jitter,
response-time delay, and total CPU energy consumption
divided into user, kernel, handler, semaphore, and idle
components.

2.3 Characterization of Real-Time Behavior

As mentioned earlier, we take three measurements: jitter,
delay, and cycle-by-cycle energy consumption.

Jitter. Jitter is measured by keeping track of interarrival
times of periodic output. For example, if a task is
scheduled to generate an output value every 10 milli-
seconds, its average interarrival time should be 10 milli-
seconds. Any variation in the interarrival time represents
output that fails to arrive on time.

Note that this differs slightly from the traditional
definition which is based on the RTOS’s knowledge of a
missed deadline because, if a scheduler happens to

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1457

execute a task consistently late, it will nonetheless appear
on-time to the external world.

Delay. Delay is measured by keeping track of the time
between actions in aperiodic stimulus-response pairs. In
the aperiodic-IPC workload, we keep track of the delay
between the I/O interrupt that signals the input and the
time that the application output is received at the
I/O system (as opposed to the time that the handler is
invoked or the moment that the output to I/O system is
initiated). This represents the response time of the
system as a function of system load.

Note that this differs significantly from traditional
definitions of interrupt latency, which characterize a
system by the time interval from raising the interrupt to
executing the handler for that interrupt. Moreover,
traditional measurements of delay give a single number,
whereas we present a distribution.

Energy consumption. Energy consumed is tagged with the
currently executing instruction’s program counter, indi-
cating what function in the system is being executed. The
execution time for NOS and Echidna is divided into user,
kernel, handler, semaphore, and idle components. The
execution time for �C/OS is divided more finely, includ-
ing idle, user, event handling, semaphore management,
time management, context switching, interrupt handling,
interrupt disabling and enabling, thread scheduling, task
management (creation/deletion/etc.), and initialization.
Wealso study theeffect ofusing thedoze instructionon the
energy consumption of the RTOS.

More detail on the MCORE processor, SimBed’s internals,
applications, and RTOS models can be found elsewhere [4],
[5], [8], [44].

2.4 Real-Time Kernels

2.4.1 The uC/OS-II Kernel

The �C/OS-II real-time kernel is a full-featured preemptive
multitasking RTOS [24]. It is portable, targeted at both
microcontrollers and DSPs, and it currently runs on over
50 different instruction-set architectures. It is designed to
have a small footprint: There are roughly 1,700 lines of code
in the OS (including comments) and modules are only
compiled into the executable if used by the application.
Multitasking is preemptive and the kernel can preempt
itself. The system can run up to 64 tasks, with eight of those
tasks reserved for the kernel’s use. It provides traditional
OS services such as IPC, semaphores, and memory
management and it also provides time-related features
such as the ability to sleep until a specified time and callout
functions in which an application can specify code to
execute on task creation, task deletion, context switch, and
system timer tick.

Because �C/OS-II has no concept of a periodic task, we
used two facilities within the kernel to implement periodic
job invocations. Each job sleeps on a unique semaphore and
a user-level task is attached to the clock interrupt (�C/OS-II
allows user-level code to be attached to arbitrary events).
This user-level task keeps track of the job invocation times
and generates wake up messages when the job periods are
reached. The interprocess communication method is mes-
sage-passing.

2.4.2 The Echidna RTOS

Echidna is a scaled down version of the Chimera RTOS [36]
that replaces Chimera’s concept of a process (which is
notionally similar to that of POSIX threads) with port-based
objects [37]. It is designed to support dynamically reconfi-
gurable real-time software and is targeted for 8-bit to 32-bit
microcontrollers as well as DSPs, whereas Chimera was
intended for 32-bit multiprocessor systems due to its
relatively high overhead. Echidna, like Chimera, provides
cooperative multitasking. It offers a good deal of function-
ality in a small footprint—as little as 6KB, depending on the
configuration. The design concepts embodied in the RTOS
are described in more detail in [12].

Echidna is designed to support only periodically
scheduled tasks and its periods are defined in terms of
milliseconds (no finer granularity is supported by the OS).
The interprocess communication method used is shared
memory. To calculate delay times, we create a process with
the smallest period possible (1ms) that checks to see if an
AP-IPC interrupt has occurred. If such is the case, then the
AP-IPC code will run. It is important to note that, since an
interrupt is possible (though not likely) every 100�s and the
interrupt is checked only every 1ms, it is possible for two or
more interrupts to happen before any of them are serviced.
This is an expected behavior of nonpreemptive systems.

2.4.3 The NOS Multirate Executive

NOS represents the type of “roll-your-own” RTOS often
produced in the embedded-systems industry—it was
designed in-house and is based entirely on descriptions of
home-grown embedded system software given by practi-
cing engineers in the embedded-systems industry [16]. NOS
is a fixed-priority multirate executive for periodic tasks [23]
and handles interrupt-driven stimuli via masking interrupts
and polling the interrupt status registers when idle. Its main
control loop is shown in Fig. 1.

NOS’s callout queue is taken from the callout table in
Unix [2]; events to happen in the future are placed in the
queue keyed by the time at which they are expected to
execute and the delta field in the event structure represents
the time difference between the event in question and the
one before it in the queue. The delta field of the first event
represents the invocation time relative to now. If the value is
negative, the deadline for the first task (and perhaps
following tasks as well) has been missed; if the value is
zero, it is time to execute the first task; if the value is
positive, the first event is to happen at some point in the
future. One nice feature of this organization is that a
periodic task can easily be created by having a function
place itself back on the queue at the end of its execution.

NOS only handles a job or interrupt if there are no jobs or
interrupts waiting at higher priority levels. Therefore, at
levels beneath priority 1 (HARD jobs that have reached
their time to execute), only one job is executed before
jumping back to the top of the control loop—e.g., only one
interrupt is handled before checking the callout queue to
see if any more HARD jobs are ready to run. It is a simple
fixed-priority scheduler with the expected weakness that
low priority jobs will be ignored indefinitely if there is
enough work to do at a higher priority.

2.5 Simulation Support for Real-Time Operating
Systems

For a real-time operating system to succesfully run on a
microprocessor, the processor must provide the RTOS with

1458 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

several features. First, the processor must allow the RTOS to

accurately determine the current time and how this relates

to the external clock time. Second, if interrupts are not

polled, the hardware must be able to preempt the current

instruction stream upon arrival of an interrupt, save the

relevant system state, and start executing a predetermined

interrupt service routine. These are the only essential

functions that the processor needs to run an RTOS.
The simulator must accurately model all of the proces-

sor’s functionality that is used by the real-time operating

system. In addition to being cycle-accurate, the simulator

must correctly support the above-mentioned essential

functions of a processor. For the MCORE processor, this

includes interrupts, exceptions, and hardware timers, all of

which have been implemented and validated.

3 EXPERIMENTAL RESULTS

For these studies, we execute the following benchmarks:
periodic IPC (P-IPC), up-sampling (UP), down-sampling
(DOWN), a 128-tap FIR filter (FIR, ADPCM encode and
g721 decode. We also have a periodic control-type admin-
istrative loop (CL) and interrupt-driven aperiodic IPC (AP-
IPC) that can be run concurrently with the benchmarks to
provide background load. The CL background task runs at
32Hz and the AP-IPC interarrival times obey a geometric
distribution (we generate an interrupt every 100�s with
probability 0.01, resulting in an average of 100 AP-IPC
interrupts per second). We varied the following parameters:

. RTOSs: {�C/OS-II, Echidna, NOS}

. Periodic tasks: {P-IPC, UP, DOWN, FIR, ADPCM
Encode, G721 Decode}

. Workload: {1, 2, 4, 8 tasks}

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1459

Fig. 1. NOS main loop—simple multirate executive with fixed priority scheme. Design based on descriptions of RTOSs built by designers in industry

[16], e.g., “The dispatch mechanism is a while(1) loop that does the highest priority thing, then the next highest, then the next highest, etc., in each

case repeating the loop without touching lower priority tasks if there is more to do on that priority ... This can be interrupt-based or completely polled

depending upon hardware.” In this case, all I/O is polled.

. Periods: {16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.064 msec}

. UP/DOWN Sampling ratios: {2:1, 4:1, 8:1}

. Background load: {AP-IPC, AP-IPC+CL, CL}

The studies represent the effective cross-product of these
variations, minus those configurations that lie beyond the
point where the system in question failed to meet deadlines.
Also, Echidna will not schedule periodic tasks with periods
less than 1ms; therefore, we do not have results for periods
at 500�s or below for Echidna. Remember that, by design,
no job performs both reads and writes to I/O; therefore,
each task is actually two separately scheduled jobs.

3.1 Real-Time Jitter

As described above, jitter measurements represent the time
deltas between successive output seen at the I/O device for
a given executing task. When multiple tasks are executing
simultaneously, each writes to a different I/O port,
enabling the distinction between tasks, and each task
contributes equally to the data in the graphs.

The graphs shown are probability density graphs,
centered on the expected period. Data points at positive
x-coordinates indicate late execution; data at negative
x-coordinates indicate early execution. To keep the graphs
readable, only nonzero y-values are shown and values have
been gathered into 100 �s intervals.1

Fig. 2 presents the jitter measurements for the periodic
IPC, with background load and without. The periodic IPC
task represents the simplest possible case of two interacting
jobs: The input job reads input from I/O space and uses
RTOS-supplied interprocess communication to send the
data to the output job and the output job sends the received
datum to another I/O port. There is no computation
performed other than moving data; this therefore represents
the smallest workload that a realistic application would
schedule on an RTOS. It is thus likely to exhibit the highest
possible RTOS overhead.

The graphs show spikes of data points, usually centered
at zero (indicating an on-time arrival of output I/O), with
any number of data points on either side of the spike. The
height of a data point indicates the probability of seeing that
time delta—for instance, Fig. 2d shows that, when Echidna
is running eight tasks with 16ms periods (16 jobs), roughly
20 percent of the jobs will execute exactly on-time,
40 percent of the jobs will execute a little early, and
40 percent of the jobs will execute a little late; roughly
1 percent of the time the job executions will be 50�s off, in
either direction. When the system load is four tasks (eight
jobs), job executions are on-time roughly 85 percent of the
time and missed deadlines are either too early or too late
with roughly equal probability and absolute value. When
executing one or two tasks, job execution is always on time.

There are some obvious RTOS behaviors shown in the
figure: There is a workload level at which point the RTOS
fails to meet deadlines. Once this line is crossed, most if not
all of the output arrives late every time (e.g., 8-task output
in Fig. 2c, Fig. 2h, etc.). For Echidna, this point is around
500Hz with eight IPC tasks running; for �C/OS and NOS,
the point is above 1MHz, even for eight tasks running.

Fig. 3 presents the jitter measurements for the FIR filter.
This benchmark represents the largest computational over-
head per job invocation; as expected, it shows the same
behavior as the IPC benchmark, only at different periods
—the system is overloaded sooner, compared to IPC. The
results are very similar to the IPC results, except that they
display slightly more variation in the timing.

An interesting result seen in the graphs is that, even at
light workloads (e.g., tasks running with 16ms periods),
Echidna and �C/OS execute a number of tasks too
late—and an equal number of tasks too early. Moreover,
the number of early/late job invocations does not seem to
scale with workload (for example, �C/OS at task periods of
16ms cannot get more than 50 percent of the tasks to execute
on-time when the system is perturbed by occasional
interrupts (see Fig. 3l). This behavior is caused in both
RTOSs by task self-interference. This is specific to tasks with
jobs that run with different periods; when the periods are
not relatively prime, job invocations coincide in time every
Nth invocation. If the RTOS fails to distribute the workload
appropriately, the system experiences a traffic jam every
Nth invocation, resulting in late executions for many of the
jobs. Thus, we see that the larger the ratio between the two
periods, the fewer instances of traffic jams, even if the total
workload increases. This also means that, when different
jobs periodically all want the same invocation time, the
traffic jams will happen with probability 1, even if the
workload is light.

This type of early/late behavior is not confined to self-
interference, however. We saw the behavior in all applica-
tions studied; the presence of background load that
occasionally (but not always) intrudes on execution time
also causes regular traffic jams. In Echidna, the background
control loop is a periodic task with period 32ms. The control
loop is executed every other job invocation when run
against 16ms tasks, every fourth job invocation when run
against the 8ms tasks, etc. Whenever the control loop runs,
it pushes the actual invocation times of other jobs out
slightly so that they run late and then early on the next
invocation. Therefore, 16ms tasks are upset by the dis-
turbance more than 1ms tasks, even though they represent a
higher system workload.

The disturbance in �C/OS is the aperiodic IPC interrupt
that happens on average every 10ms. Because �C/OS is
preemptive, the task invoked by the interrupt handler has a
higher priority than any of the periodic application tasks, so
it preempts application threads whenever it runs. The 16ms
tasks are upset most by this (see Fig. 3l) because the
interrupt displaces a user thread on roughly every other job
invocation (thus, only 50 percent of the job invocations are
on-time). As the user threads execute more frequently, the
interrupt preempts user threads with decreasing frequency
and we see that more job invocations are on-time, even
though the system load has increased.

Timing disturbances in real-time schedulers do not
require unpredictable background load, however. The UP
and DOWN benchmarks exhibit this interference even
without any background load. The simulation results for
up-sampling are shown in Fig. 4. The top row represents
Echidna without any background load. The second row of
graphs is Echidna with background load. The third row is
�C/OS without background load and the last row is �C/OS
with background load. We see that both RTOSs allow

1460 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

1. Note that the probability density graphs do not smooth out as more
data is collected—for example, there are only minimal differences in graphs
generated from 50 million data points as compared to graphs generated
from 1 billion data points.

applications to interfere with themselves, even when tasks
are scheduled with relatively low frequencies. This is
because the periods are not the same, but they are not
relatively prime (they are multiples of each other in this
instance), so task invocations will coincide in time every
Nth invocation. Neither operating system manages to
spread the tasks out in time.

The systems would clearly benefit from better load
distribution. For example, if the future job invocations were

scheduled relative to the actual job invocation time rather
than the intended invocation time, the system would
naturally spread out the jobs and it would only have late
invocations during the first round of invocations. Neither
�C/OS nor Echidna manages to spread the tasks out in
time. In contrast, NOS schedules tasks relative to their
actual invocation time. Thus, even if a task runs late the first
time, the following invoations will be on time. However,
this is not a panacea: As the workload increases, this

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1461

Fig. 2. JITTER probability density graphs for P-IPC. The x-axis represents time deltas btween successive I/O output events as they differ from the
expected period. Negative numbers mean a task ran early and positive numbers mean a task has run late in relation to the last task run. The y-axis
indicates the probability of each delta. The legend shows the symbols used to represent system load of one, two, four, and eight simultaneous tasks.
(a) Background = None, 16ms period. (b) Background = None, 2ms period. (c) Background = None, 1ms period. (d) Background = AP�IPC+CL,
16ms period. (e) Background = AP�IPC+CL, 8ms period. (f) Background = AP�IPC+CL, 4ms period. (g) Background = AP�IPC+CL, 2ms period. (h)
Background = AP�IPC+CL, 1ms period. (i) Background = None, 16ms period. (j) Background = None, 2ms period. (k) Background = None, 1ms
period. (l) Background = AP�IPC+CL, 16ms period. (m) Background = AP�IPC+CL, 8 ms period. (n) Background = AP�IPC+CL, 4ms period. (o)
Background = AP�IPC+CL, 2ms period. (p) Background = AP�IPC+CL, 1ms period. (q) Background = AP�IPC+CL, 1ms period. (r) Background =
AP�IPC+CL, 250�s period. (s) Background = AP�IPC+CL, 64�s period.

relative scheduling cannot prevent late invocations as NOS
is nonpreemptive and, therefore, low-priority tasks can
delay high-priority tasks.

3.2 Response-Time Delay

Our delay numbers represent the time between an AP-IPC
interrupt and the moment that the I/O system sees the
corresponding output from the user-level task invoked as a
result of the interrupt. Thus, the delay measures the

response time of the system in terms of when the first

physical reaction to an external stimulus could take place.
The �C/OS-II kernel handles interrupts preemptively;

both Echidna and NOS use a polling technique. The

difference between Echidna and NOS is that the Echidna

RTOS supports only periodic tasks and will not spawn a

new task as a result of an interrupt; this must be done by a

periodic application task. Therefore, our Echidna interrupt-

1462 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

Fig. 3. JITTER probability density graphs for FIR. The x-axis represents time deltas between successive I/O output events as they differ from the
expected period. Negative numbers mean a task rean early and positive numbers mean a task has run late in relation to the last task run. The y-axis
indicates the probability of each delta. The legend shows the symbols used to represent system load of one, two, four, and eight simultaneous tasks.
(a) Background = None, 16ms period. (b) Background = None, 2ms period. (c) Background = None, 1ms period. (d) Background = AP�IPC+CL,
16ms period. (e) Background = AP�IPC+CL, 8 ms period. (f) Background = AP�IPC+CL, 4ms period. (g) Background = AP�IPC+CL, 2ms period. (h)
Background = AP�IPC+CL, 1ms period. (i) Background = None, 16ms period. (j) Background = None, 2ms period. (k) Background = None, 1ms
period. (l) Background = AP�IPC+CL, 16ms period. (m) Background = AP�IPC+CL, 8ms period. (n) Background = AP�IPC+CL, 4ms period. (o)
Background = AP�IPC+CL, 2ms period. (p) Background = AP�IPC+CL, 1ms period. (q) Background = AP�IPC+CL, 1ms period. (r) Background =
AP�IPC+CL, 500�s period. (s) Background = AP�IPC+CL, 250�s period.

handler task is periodic with the shortest period supported

by Echidna, 1ms, and it simply checks for IPC-related

interrupts whenever it executes, sending output to an I/O

port whenever it finds that such an interrupt has happened.

NOS treats interrupts as tasks with a fixed priority (LOW).

When an interrupt occurs, NOS first finishes the currently

active task, if any, and then looks at the ready queue. If

there are no ready tasks with higher priority than the

interrupt handler, NOS services the interrupt. Thus, at light

workloads, an interrupt gets serviced almost at once. With a

heavier workload, this response time can vary from very

low to very high depending on what the instantaneous

workload is when the interrupt occurs.
The delay times are shown in Fig. 5. These represent the

range of CPU load from very light (1 G721 Decode task,
16ms period) to very heavy (8 Adpcm Encode tasks, 80 ms

period). As expected of a cooperatively multitasked RTOS,
Echidna’s response time is more-or-less evenly distributed
over a 1ms interval until the system becomes heavily
loaded, at which point the execution time of the periodic
interrupt-handler task can vary by a significant amount (up
to several milliseconds). Also as expected, the preemptive
�C/OS-II kernel handles interrupts with absolute precision
that is independent of application load. The NOS system
has the simplest mechanism of all because its cooperatively
scheduled nature means no state needs to be saved on task
switch, so we should expect to see zero response time at
light workloads. But, using the “idle” mode affects this
response time adversely, as we see in Fig. 5g. When the
system idles in NOS, the kernel executes the “doze”
instruction. The system will awake from doze mode at
every timer interrupt. As a result, the response time at light
workloads is distributed uniformly in a time interval of one

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1463

Fig. 4. JITTER probability density graphs for UP. The x-axis represents time deltas between successive I/O output events as they differ from the
expected period—negative numbers indicate the output happened early. The y-axis indicates the probability of each delta. The legend shows the
symbols used to represent system load of one, two, four, and eight simultaneously executing tasks. (a) Background = None, 8/4ms period. (b)
Background = None, 8/2ms period. (c) Background = None, 8/1ms period. (d) Background = 1, 4/2ms period. (e) Background = None, 4/1ms period.
(f) Background = None, 2/1ms period. (g) Background = AP�IPC+CL, 8/4ms period. (h) Background = AP�IPC+CL, 8/2ms period. (i) Background =
AP�IPC+CL, 8/1ms period. (j) Background = AP�IPC+CL, 4/2ms period. (k) Background = AP�IPC+CL, 4/1ms period. (l) Background = AP�IPC+CL,
2/1ms period. (m) Background = None, 8/4ms period, (n) Background = None, 8/2ms period. (o) Background = None, 8/1ms period. (p) Background
= None, 4/2ms period. (q) Background = None, 4/1ms period. (r) Background = None, 2/1ms period. (s) Background = AP�IPC+CL, 8/4ms period. (t)
Background = AP�IPC+CL, 8/2ms period. (u) Background = AP�IPC+CL, 8/1ms period. (v) Background = AP�IPC+CL, 4/2ms period. (w) Background
= AP�IPC+CL, 4/1ms period. (x) Background = AP�IPC+CL, 2/1 ms period.

operating system time tick - 1ms. As the system load

increases, the average response time of the NOS system

increases and it obeys a geometric distribution correspond-

ing to the average execution time of the application’s jobs.
The preemptive �C/OS-II kernel handles interrupts with

relative precision. Yet the figures show that its overhead

varies slightly from benchmark to benchmark. The variation

is due to the RTOS’s implementation of preemptive

scheduling: A task can made ready when the hardware

timer tick occurs. This event causes the RTOS to scan the

Task Control Block (TCB) list and mark all appropriate

tasks ready to run. The ready task with the highest priority

is then made the current running task. This is a common

design for preemptive schedulers, but, because the sche-

duler traverses the entire TCB list on a timer tick, the time to

complete the tick is dependent on the number of tasks. This

explains the observed behavior that the response time scales

with the number of tasks in the configuration.

3.3 Energy Consumption

To measure energy consumption, we ran each configuration
for the same number of application iterations. The results
are shown in Figs. 6 and 7, which show the energy overhead
one pays for an RTOS. This closely mirrors the overhead
one pays in terms of execution time as well [10]. Results are
only shown for the applications with the least (IPC) and
greatest (FIR) overhead per job invocation.

The IPC results in Fig. 6 indicate several things very
clearly. First, at the extreme of performing essentially no
computation at all per job invocation, using an RTOS is
overkill, even for a simple task scheduler. For NOS, the
kernel overhead increases energy consumption by roughly
a factor of 20; Echidna and �C/OS-II eat up even more. The
implications are obvious: Simply keeping track of time and
what task to execute at what time consumes considerable
energy and CPU resources, compared to simple I/O
operations. Note that the measurements are for a 20MHz
microcontroller.

1464 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

Fig. 5. DELAY probability density graphs for ECHIDNA and NOS. The x-axis represents time between an interrupt being generated by an I/O device
and the corresponding output to an I/O port of the responding thread. The y-axis indicates the probability of each delta. All measurements are for
configurations with both types of background load (3Hz periodic control loop and aperiodic interrupt-driven IPC)—these delay measurements are for
the interrupt-driven IPC that is the background load. Results range from little foreground load (one G721 Decode task) to heavy foreground load
(eight Adpcm Encode tasks). Note that the y-axis scale is different for the uC/OS graphs and that the x-axis scales are different in (c) and (i). (a)
ECHINDA: 1 G721 Decode task, atms period. (b) ECHIDNA: 4 G721 Decode tasks, 2ms period. (c) ECHIDNA: 8 ADPCM Encode tasks, 80ms
period. (d) uC.OS-II: 1 G721 Decode task, 16ms period. (e) uC/OS-II: 4 G721 Decode tasks, 1ms period. (f) uC/OS-II: 8 ADPCM Encode tasks,
80ms period. (g) NOS: 1 G721 Decode task, 16ms period. (h) NOS: 4 G721 Decode tasks, 1ms period. (i) NOS: 8 ADPCM Encode tasks,
80ms period.

The FIR results in Fig. 7 show that, for more realistic

applications (bear in mind that FIR is still relatively light in

computation time at ~233�s per invocation), RTOS kernel

overhead is more reasonable. The use of the NOS scheduler

increases energy consumption by less than a factor of two

and the Echidna and �C/OS-II kernels increase energy

consumption by less than a factor of three.
Several behaviors can be seen in the data, from the

obvious to the not-so-obvious:

. Interrupt handling overhead is significant in systems
that are interrupt-driven and insignificant in the
cooperative systems. The latter makes sense because,
in the polled systems, no state is saved or restored
during interrupt handling. The former is interesting;
the �C/OS-II kernel demonstrates that, in heavily
loaded systems, it can use interrupts to off-load
some of Echidna’s overhead.

. The user components for the more sophisticated
RTOSs (Echidna and �C/OS-II) tend to be less than
theuser components forNOS—and less than the limit,
as well! This simply represents the trade off of being
able to move some of the functionality from the
application into the kernel. However, in the IPC
graphs, the user components are higher—the low
computation requirements of IPC expose the user-
level component of the clock-tick interrupt handler in
�C/OS-II that runs every clock tick and wakes up
sleeping threadswhen it determines that their periods
have expired. This is present in all applications.

. The systems all consume an enormous amount of
energy doing nothing, as represented by the idle
components. This is because none of the systems
have an intelligent sleep mechanism that can use less
power when there is nothing to do; though the
McORE has such a facility (a doze mode that can be
awakened by a watch-dog timer interrupt), no
system uses it. If implemented, this would save
considerable energy resources. Note, however, that
there is very little idle time as the system is pushed
up to but not beyond its limits, which is where
embedded-system engineers would like their

systems to be as this makes most effective use of
the CPU resources.

. The kernel overhead in NOS scales with the
application workload, while the kernel components
in the other RTOSs are more constant. The more
sophisticated RTOSs do a better job of ensuring that
all computations are deterministic in the time and
energy it takes to perform them, which gives more
predictable system behavior. The cost is obviously a
higher starting point for energy consumption.

. It is cheaper to run tasks faster than to add tasks to
the system. For instance, in the FIR graphs, compare
NOS:8 in Fig. 7a, NOS:4 in Fig. 7b, NOS:2 in Fig. 7c,
and NOS:1 in Fig. 7d, which represent different
trade offs of speed and number of tasks. The user
components are the same for these configurations as
the configurations all represent the same amount of
work: 2,000 job invocations per second, broken down
as (respectively) 16 jobs, each scheduled every 8ms,
eight jobs, each scheduled every 4ms, four jobs, each
scheduled every 2ms, and two jobs, each scheduled
every millisecond. Though the work is the same, the
kernel energy is not; this is seen in other configura-
tions as well as in NOS. The reason is simple: The
RTOSs maintain queues of tasks, typically as linked
lists, which grow with the number of tasks.

Please note that “idle” time is both time spent sleeping and
time in certain inactive loops. Just because Echidna still has
idle time after the system is overloaded with work does not
mean that any more useful work can be done.

We study the effect of using the doze mode provided by
the processor on the energy consumption of two operating
systems—NOS and UCOS. The graphs in Fig. 8 are for the
two operating systems using the idle instruction.

The idle mode on the Mcore can be reached by executing

a simple doze instruction. This reduces the current drawn
by the processor by nearly 50 percent. The processor leaves
this mode only when an interrupt arrives.The two operating
systems—NOS and �COS can use this mode very easily.

These operating systems maintain a system clock whose
granularity is determined by the rate of the timer interrupt.

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1465

Fig. 6. Energy consumption graphs for IPC. The x-axis represents increasing workloads as a result of increasing the number of executing tasks or.

The y-axis represents the total CPU energy consumption and breakdowns for how much energy is consumed by executing kernel code, executing

user application code, handling interrupts, performing semaphore handling, and sitting idle. Note that “idle” includes both time sleeping as well as

some loop overhead in the main loop—and parts of the timekeeping code for Echnidna. (a) Task period: 16ms. (b) Task period: 1ms.

We peg this to 1 kHz or a system clock granularity in the
order of milliseconds. When the system executes the idle
task, it implies that there are no tasks on the task queue
which need to be executed in that particular timer tick. The
operating system can thus safely execute the doze instruc-
tion at this juncture. The system will stay in low power
mode till the next interrupt—when it will update its clock
and timeout queue. As the systems sense of time is tied
directly with the timer interrupt, one can safely use the doze
instruction without losing time.

By contrast, Echidna’s system clock is updated by a
regular timer interrupt every 1/5th of a second. The time in
between is computed by interpolation using the value of the
timer interrupt counter. When the system is idle, the
scheduler polls the system clock continuosly in order to
determine when the first waiting task can be released. Since
the order of the delays is finer than that of the timer
interrupt, invoking the doze mode may cause tasks in the
queue to miss their deadlines. This prevents us from using
the doze instruction for Echidna.

. The graphs represent data for the adpcm encode
benchmark from the media bench suite. Utilization of
the doze mode yields great energy savings. When the
system is lightly loaded, as in the case of one instance
of the application running at the different rates, the

energy consumed by the system is in the order of
1200mJ. This can be contrasted with a fully loaded
system which has eight adpcm encode tasks running
withperiods of 80ms eachwhen the systemconsumes
roughly three times the energy.

. We also have a break up of the energy consumed by
the kernel in the case of �COS. The overhead of the
kernel scales with workload. The bulk of the RTOS
overhead is seen in the timer interrupt. This is
because every timer tick the RTOS walks through the
task queue and this operation scales linearly with the
number of tasks in the system. Thus, the timer
interrupt energy is the same across all configurations
for a given number of tasks, as can be seen for the
various instances in the graphs a, b, c, d.

4 FUTURE WORK

This paper characterizes the performance of a few sample

applications, running with various realistic RTOSs, on a

low-power embedded processor. Future papers will be

focused on updating, validating, and extending this

research.
Because the Motorola Mcore processor is being phased

out, a more modern processor is being modeled—the

Texas Instruments TMS320C6201 digital signal processor.

1466 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

Fig. 7. Energy consumption graphs for FIR. The x-axis represents increasing workloads as a result of increasing the number of executing tasks or.
The y-axis represents the total CPU energy consumption and breakdowns for how much energy is consumed by executing kernel code, executing
user application code, handling interrupts, performing semaphore handling, and sitting idle. Note that “idle” includes both time sleeping as well as
some loop overhead in the main loop—and parts of the timekeeping code for Echidna. (a) Task period: 8ms. (b) Task period: 4ms. (c) Task period:
2ms. (d) Task period: 1ms.

This common DSP appears in several modern products,
including devices for wireless communication, broadband
communication, audio/video processing, and encryption.
Not only is this processor newer, it is also quite different.
The processor is a high performance 8-way VLIW 32-bit
fixed-point DSP, operating at up to 1,600 MIPS.

The sample applications used in this paper are realistic,
however, more widely used benchmarks would allow the
results to be related to existing research more easily.
Therefore, standard benchmarks, including the MediaBench
benchmark suite [25], are being utilized.

Another goal of future research is to propose new
hardware components intended to improve the perfor-
mance of RTOSs running on embedded microprocessors
and digital signal processors. Such hardware components
are often found on desktop computer processors, but rarely
in the embedded market. Detailed analyses of the effect of
these components will be performed on various RTOSs that
fairly represent those used in industry.

This research will significantly contribute to the devel-
opment of embedded microprocessors, as well as real-time
operating systems.

5 CONCLUSION

We have described SimBed, a simulation-based environment
for evaluating the performance and energy consumption of

embedded real-time operating systems. The simulation
environment was built to study hardware mechanisms that
help facilitate low-power real-time processing, as well as to
quantify differences between design and implementation in
existing RTOSs. The simulator’s performance measurement
is accurate to within 100 cycles per million compared to
identical software executing on reference hardware. Its
energy measurement is accurate to within 10-15 percent.

We presented a study of preemptive and nonpreemptive
real-time operating systems, focusing on two industrial-
strength RTOSs aimed at microcontrollers as well as DSPs.
We compared these to a raw scheduler that should
represent the realistic performance and energy-consump-
tion limit for nonpreemptive RTOSs since it has none of the
overhead that would be found in a real RTOS, such as
support for semaphores, message-passing, etc. We find that
RTOS overheads for lightweight applications are very
high—95 percent or more—but that the overhead di-
minishes significantly for more compute-intensive applica-
tions (down to 50 percent for Echidna and �C/OS-II,
30 percent for the limit). There is also an interesting trade
off that the more complex RTOSs seem to have taken: While
the bare-bones scheduler has the lowest energy consump-
tion, that consumption scales with the workload. The more
complex RTOSs have a higher initial energy consumption,
but this consumption does not increase quickly as the user-
level computational load grows Therefore, the energy

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1467

Fig. 8. Energy consumption graphs for ADPCM ENCODE. The x-axis represents increasing workloads as a result of increasing the number of

execting tasks or. The y-axis represents the total CPU energy consumption and breakdowns for how much energy is consumed by executing kernel

code, executing user application code, handling interrupts, performing semaphore handling, and sitting idle for NOS. For uCOS, the kernel

breakdown is further divided. (a) Task period: 80ms. (b) Task period: 160ms. (c) Task period: 320ms. (d) Task period: 640ms.

consumption and CPU requirements of these systems are
likely to be much more predictable than a simpler RTOS.

We also saw that utilization of the idle mode can
effectively lower the energy consumption in the system,
but may come at the cost of worse response to polled
interrupts as seen in the case of NOS.

ACKNOWLEDGMENTS

The work of Kathleen Baynes and Christine Smit was
supported in part by the US National Science Foundation’s
(NSF) sponsorship of undergraduate research through
grant NSF-9912218. The work of Chris Collins, Brinda
Ganesh, Paul Kohout, and Tiebing Zhang was supported in
part by NSF grant EIA-9806645 and NSF grant EIA-0000439.
The work of Bruce Jacob was supported in part by NSF
CAREER Award CCR-9983618, NSF grant EIA-9806645,
NSF grant EIA-0000439, DOD award AFOSR-
F496200110374, and by Compaq and IBM. Kathleen Baynes,
Chris Collins, Eric Fiterman, Brinda Ganesh, Paul Kohout,
Christine Smit, and Tiebing Zhang were students at the
University of Maryland while working on the research
presented in this paper.

REFERENCES

[1] A. Allara, C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto,
“System-Level Performance Estimation Strategy for SW and HW,”
Proc. Int’l Conf. Computer Design, Oct. 1998.

[2] M.J. Bach, The Design of the UNIX Operating System. Englewood
Cliffs, N.J.: Prentice Hall, 1986.

[3] S.R. Ball, Embedded Microprocessor Systems: Real World Design.
Boston: Newnes, Butterworth–Heinemann, 1996.

[4] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit,
T. Zhang, and B. Jacob, “The Performance and Energy Consump-
tion of Three Embedded Real-Time Operating Systems,” Proc.
Fourth Workshop Compiler and Architecture Support for Embedded
Systems (CASES ’01), pp. 203-210, Nov. 2001.

[5] K. Baynes, C. Collins, E. Fiterman, C. Smit, T. Zhang, and B. Jacob,
“The Performance and Energy Consumption of Embedded Real-
Time Operating Systems,” Technical Report UMD-SCA-TR-2000-
04, Univ. of Maryland Systems & Computer Architecture Group,
Nov. 2000.

[6] L. Benini and G.D. Micheli, “System-Level Power Optimization:
Techniques and Tools,” Proc. Int’l Symp. Low Power Electronics and
Design, pp. 288-293, Aug. 1998.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
27th Ann. Int’l Symp. Computer Architecture (ISCA ’00), pp. 83-94,
June 2000.

[8] C.M. Collins, “An Evaluation of Embedded System Behavior
Using Full-System Software Emulation,” Master’s thesis, Univ. of
Maryland at College Park, May 2000.

[9] Design & Test Roundtable, “Hardware-Software Codesign,” IEEE
Design and Test of Computers, vol. 14, no. 1, pp. 75-83, Jan.-Mar.
1997.

[10] R.P. Dick, G. Lakshminarayana, A. Raghunathan, and N.K. Jha,
“Power Analysis of Embedded Operating Systems,” Proc. 37th
Design Automation Conf., pp. 312- 315, June 2000.

[11] C. Ellis, “The Case for Higher-Level Power Management,” Proc.
Workshop Hot Topics in Operating Systems, 1999.

[12] Embedded Research Solutions, Embedded Zone—Publications,
http://www.embedded-zone.com, 2000.

[13] J. Flinn and M. Satyanarayanan, “Powerscope: A Tool for Profiling
the Energy Usage of Mobile Applications,” Proc. Workshop Mobile
Computing Systems and Applications, pp. 2-10, Feb. 1999.

[14] R. Fromm, S. Perissakis, N. Cardwell, C. Kozyrakis, B. McGaughy,
D. Patterson, T. Anderson, and K. Yelick, “The Energy Efficiency
of IRAM Architectures,” Proc. 24th Ann. Int’l Symp. Computer
Architecture (ISCA ’97), pp. 327-337, June 1997.

[15] J. Ganssle, “Conspiracy Theory,” The EmbeddedMuse, no. 46, 3 Mar.
2000.

[16] J. Ganssle, “Conspiracy Theory, Take 2,” The Embedded Muse,
no. 47, 22 Mar. 2000.

[17] J.G. Ganssle, “An OS in a Can,” Embedded Systems Programming,
Jan. 1994.

[18] J.G. Ganssle, “The Challenges of Real-Time Programming,”
Embedded Systems Programming, vol. 11, no. 7, pp. 20-26, July 1997.

[19] R. Gonzalez and M. Horowitz, “Energy Dissipation in General
Purpose Microprocessors,” IEEE J. Solid-State Circuits, vol. 31,
no. 9, pp. 1277-1284, Sept. 1996.

[20] J.K.M. Gupta and W. Mangione-Smith, “The Filter Cache: An
Energy Efficient Memory Structure,” Proc. 30th Ann. Int’l Symp.
Microarchitecture (MICRO ’97), pp. 184-193, Dec. 1997.

[21] J. Hennessy and M. Heinrich, “Hardware/Software Codesign of
Processors: Concepts and Examples,” Hardware/Software Co-De-
sign, G. De Micheli and M. Sami, eds., pp. 29-44, Kluwer
Academic, 1996.

[22] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital
Design,” Proc. IEEE Symp. Low Power Electronics, pp. 8-11, Oct.
1994.

[23] D. Kalinsky, “A Survey of Task Schedulers,” Proc. Embedded
Systems Conf., Sept. 1999.

[24] J.J. Labrosse, MicroC/OS-II: The Real-Time Kernel. Lawrence, Kans.:
R&D Books (Miller Freeman, Inc.), 1999.

[25] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Commu-
nications Systems,” Proc. 30th Ann. Int’l Symp. Microarchitecture
(MICRO ’97), pp. 330-335, Dec. 1997.

[26] Y. Li, M. Potkonjak, and W. Wolf, “Real-Time Operating Systems
for Embedded Computing,” Proc. Int’l Conf. Computer Design, Oct.
1997.

[27] C. Liema, F. Nacabal, C. Valderrama, P. Paulin, and A. Jerraya,
“System-on-a-Chip Cosimulation and Compilation,” IEEE Design
and Test of Computers, vol. 14, no. 2, pp. 16-25, Apr.-June 1997.

[28] J.W.S. Liu, Real-Time Systems. Upper Saddle River N.J.: Prentice
Hall, 2000.

[29] Mcore, M-CORE Reference Manual. Denver, Colo.: Motorola
Literature Distribution, 1997.

[30] Mcore, M-CORE MMC2001 Reference Manual. Denver, Colo.:
Motorola Literature Distribution, 1998.

[31] K. Roy and M.C. Johnson, “Software Design for Low Power,”
NATO Advanced Study Inst. on Low Power Design in Deep Submicron
Electronics, Aug. 1996.

[32] J. Russell and M. Jacome, “Software Power Estimation and
Optimization for High Performance, 32-Bit Embedded Proces-
sors,” Proc. Int’l Conf. Computer Design, Oct. 1998.

[33] J. Scott, L. Lee, A. Chin, J. Arends, and B. Moyer, “Designing the
M.CORE M3 CPU Architecture,” Proc. Int’l Conf. Computer Design,
Oct. 1999.

[34] SimOS, SimOS: The Complete Machine Simulator, Stanford Univ.,
http://simos.stanford.edu/, 1998.

[35] M.J. Smith, Application-Specific Integrated Circuits. Reading Mass.:
Addison-Wesley, 1997.

[36] D.B. Stewart, D.E. Schmitz, and P.K. Khosla, “The Chimera II
Real-Time Operating System for Advanced Sensor-Based Appli-
cations,” IEEE Trans. Systems, Man, and Cybernetics, vol. 22, no. 6,
pp. 1282-1295, Nov./Dec. 1992.

[37] D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of Dynami-
cally Reconfigurable Real-Time Software Using Port-Based Ob-
jects,” IEEE Trans. Software Eng., vol. 23, no. 12, pp. 759-776, Dec.
1997.

[38] V. Tiwari and M.T.-C. Lee, “Power Analysis of a 32-bit Embedded
Microcontroller,” VLSI Design J., vol. 7, no. 3, 1998.

[39] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded
Software: A First Step towards Software Power Minimization,”
IEEE Trans. VLSI Systems, vol. 2, no. 4, pp. 1277-1284, Dec. 1994.

[40] J. Turley, “M.Core Shrinks Code, Power Budgets,” Microprocessor
Report, vol. 11, no. 14, pp. 12-15, Oct. 1997.

[41] J. Turley, “M.Core for the Portable Millenium,” Microprocessor
Report, vol. 12, no. 2, pp. 15-18, Feb. 1998.

[42] A. Vahdat, A. Lebeck, and C. Ellis, “Every Joule Is Precious: The
Case for Revisiting Operating System Design for Energy Effi-
ciency,” Proc. SIGOPS European Workshop, Sept. 2000.

[43] N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim, and W. Ye,
“Energy-Driven Integrated Hardware-Software Optimizations
Using Simplepower,” Proc. 27th Ann. Int’l Symp. Computer
Architecture (ISCA ’00), pp. 95-106, June 2000.

1468 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

[44] T. Zhang, “RTOS Performance and Energy Consumption Analysis
Based on an Embedded System Testbed,” Master’s thesis, Univ. of
Maryland at College Park, May 2001.

Kathleen Baynes received the Bachelor of
Science degree in computer engineering from
the University of Maryland in May of 2001.
She is currently doing consulting work invol-
ving systems integration at Verizon in Reston,
Virginia.

Chris Collins received the BS degree with
honors in electrical engineering from the
University of Virginia in 1998 and the MS
degree in electrical engineering from the
University of Maryland, College Park in
2000. He is currently a senior architecture
modeling engineer at Intel Corporation in
Hudson, Massachusetts, and is working on
the Intel IXP2800 Network Processor.

Eric Fiterman received the BS degree in
computer science from the University of Mary-
land, College Park in 2000, and the BS degree in
electrical engineering from the University of
Maryland, College Park in 2000. He has worked
as an embedded software engineer and proto-
cols engineer for Ericsson IP Infrastructure,
developing unicast routing and tunnel protocols.
He presently works for Salar, Inc., a successful
startup company, developing enterprise data-

base applications and wireless/mobile software for the healthcare
industry. He is a member of the IEEE.

Brinda Ganesh received the BE degree in
electronics and communication from the Karna-
taka Regional Engineering College, Suratkal,
India, in 1999 and the MS degree in computer
engineering from the University of Maryland,
College Park in 2002. She is currently pursuing
the PhD degree in the Department of Electrical
and Computer Engineering at the University of
Maryland, College Park. Her research interests
include hardware and software for embedded
and real-time systems.

Paul Kohout received the BS and MS degree in
electrical engineering from the University of
Maryland in 2000 and 2002, respectively. While
at Maryland, he studied computer architecture
and embedded systems and he wrote his thesis
on hardware support for real-time operating
systems. He recently started working as an
electrical engineer for EVI Technology in Co-
lumbia, Maryland. EVI specializes in designing
and manufacturing digital and RF devices for the

government. At EVI, Paul is responsible for designing embedded
hardware and software. He is a member of the IEEE and the IEEE
Computer Society.

Christine Smit is a senior computer engineering
and vocal performance double major at the
University of Maryland, College Park. She has
done research internships at the University of
Cincinnati and NASA Goddard in addition to the
University of Maryland. She plans to attend
graduate school in electrical engineering once
she has finished her undergraduate degrees.
She is a student member of the IEEE.

Tiebing Zhang received the MS degree in
electrical engineering from the University of
Maryland, College Park in 2001, the MS degree
in automation from Tsinghua University, Peo-
ple’s Republic of China in 1999, and the BS
degree in automation from China Textile Uni-
versity (now East China University), People’s
Republic of China, in 1996. He is currently
working as a senior software engineer at 3e
Technologies Inc. His interests include em-

bedded Linux, RTOSs, and security of wireless communications.

Bruce Jacob received the AB degree cum laude
in mathematics from Harvard University in 1988
and the MS and PhD degrees in computer
science and engineering from the University of
Michigan, Ann Arbor, in 1995 and 1997, respec-
tively. At the University of Michigan, he was part
of a design team building high-performance,
high-clock-rate microprocessors. He has also
worked as a software engineer for two success-
ful startup companies: Boston Technology and

Priority Call Management. At Boston Technology, he worked as a
distributed systems developer and, at Priority Call Management, he was
the initial system architect and chief engineer. He is currently on the
faculty of the University of Maryland, College Park, where he is an
associate professor of electrical and computer engineering. His present
research covers memory-system design, DRAM architectures, virtual
memory systems, and microarchitectural support for real-time em-
bedded systems. He is a recipient of a US National Science Foundation
CAREER award for his work on DRAM architectures and systems. He is
a member of the IEEE, the IEEE Computer Society, and the ACM.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

BAYNES ET AL.: THE PERFORMANCE AND ENERGY CONSUMPTION OF EMBEDDED REAL-TIME OPERATING SYSTEMS 1469

	The performance.pdf
	ieeetc52-11.pdf

