
Copyright © 2005 IEEE. Reprinted from Proceedings of SPIE’s 17th Annual
Symposium on Electronic Imagine Science & Technology.

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of the University of Maryland’s products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

mailto:pubs-permissions@ieee.org

Instruction-Level Power Dissipation in the Intel XScale
Embedded Microprocessor

Ankush Varma†‡, Eric Debes‡, Igor Kozintsev‡ and Bruce Jacob†

†University of Maryland, College Park, MD;
‡Intel Labs, Santa Clara, CA

ABSTRACT

We present an instruction-level power dissipation model of the Intel XScale R© microprocessor. The XScale im-
plements the ARMTMISA, but uses an aggressive microarchitecture and a SIMD Wireless MMXTMco-processor
to speed up execution of multimedia workloads in the embedded domain.

Instruction-Level power modelling was first proposed by Tiwari et. al. in 1994. Adaptations of this model
have been found to be applicable to simple ARM processors. Research also shows that instructions can be
clustered into groups with similar energy characteristics. We adapt these methodologies to the significantly
more complex XScale processor.

We characterize the processor in terms of the energy costs of opcode execution, operand values, pipeline stalls
etc. through accurate measurements on hardware. This instruction-based (rather than microarchitectural)
approach allows us to build a high-speed power-accurate simulator that runs at MIPS-range speeds, while
achieving accuracy better than 5%.

The processor core accounts only for a portion of overall power consumption, and we move beyond the core
to explore the issues involved in building a SystemC simulation framework that models power dissipation of
complete systems quickly, flexibly and accurately.

Keywords: XScale, Power, SystemC, Instruction-Level

1. INTRODUCTION

Power is a primary design constraint for embedded systems, and accurate power estimation tools are required
to ensure that power envelope and battery life constraints are satisfied. Such estimates are useful feedback
tools to allow code optimizations for minimization of energy consumption.

The Intel XScale [1] is a family of microprocessors that implement the ARM ISA, use deep pipelines
and microarchitectural optimizations for high performance, and feature a WMMX (Wireless MMX) SIMD
co-processor optimized for wireless and multimedia applications in mobile platforms. To the best of our
knowledge, the 8-stage XScale is the most complex processor to have been characterized for instruction-level
power modelling so far. We present a fast instruction-level power model of the XScale microprocessor that takes
a wide variety of energy effects into account in order to provide highly accurate power estimates of processor
power consumption. We implement this power model in SystemC, and integrate it into an accurate system
simulation framework in order to achieve power estimates that are accurate within 5%, yet provide simulation
speeds over 1 MIPS.

A variety of tools exist for power analysis of microprocessors at the microarchitectural level. Wattch [2] is
built on the SimpleScalar [3] processor simulation framework and it provides power models for register files,
caches and other microprocessor components. SimplePower [4], also based on SimpleScalar provides a tool for
microarchitectural and circuit-level power estimation of on-chip buses, caches and other components. Chen

Further author information, send correspondence to:
Ankush Varma (ankush@eng.umd.edu)
Eric Debes (eric.debes@intel.com)

†‡This work was done by Ankush Varma as an intern at the Intel Labs, Santa Clara, CA.

et. al. [5] also describe a microarchitectural scheme for microprocessor power estimation, while [6] describes a
detailed microarchitectural power model of the XScale microprocessor core. Microarchitectural power models
rely on the availability of detailed knowledge of the internal microarchitecture of a processor. This information
changes rapidly with each processor generation, and is usually not in the public domain. The vast amount of
detail required for modeling modern processors also makes such analysis slow (typically KIPS).

Instruction-level microprocessor power consumption was first explored by Tiwari et. al. [7, 8], who described
how instruction-level power can be characterized from hardware measurements. Sinha et. al. [9] perform energy
profiling of ARM processors and also describe how leakage power can be estimated by plotting processor power
at various frequencies. This provides a route to building power models that are suited for high-speed simulation
and do not necessarily rely on microarchitectural information.

Instruction-level power studies of ARM ISA processors have been performed earlier[9–14]. However, none
of these accurately characterize or model external memory accesses or stalls. While this is acceptable for small
benchmarks, a real OS and application can spend a significant number of cycles in such states. We accurately
model both instructions and events such as stalls and memory accesses, in order to create a power model that
is sufficiently accurate for modeling an full-featured OS and complete applications running over billions of clock
cycles.

2. CHARACTERIZATION METHODOLOGY
Tiwari et. al. [7] describe how the energy consumption for each instruction, and for inter-instruction effects,
can be obtained by running a repeated instruction sequence in a loop and measuring the energy consumed by
the processor. For accuracy, the loop must be short enough to fit entirely in the instruction cache, yet long
enough that the branch at the end of the loop has a negligible effect on accuracy. In practice, loops of 100–1000
instructions are typically used. We use such programs (which we refer to as stimuli) to characterize a variety
of energy-related instruction-level effects. A stimulus sets up the processor into a desired initial state and then
runs a long loop of containing repeated instances of a short instruction sequence. The loops can be run for an
arbitrary number of iterations.

We ran the stimuli on hardware to obtain the parameters for the XScale power model. However, this
approach is not limited to post-silicon characterization. A variety of RTL and micro-architectural power
modeling tools exist, and stimuli can be easily run on these instead of hardware to extract power model
parameters. Based on these, we create a power model incorporating the energy consumption patterns observed,
and implement it in SystemC to create an execution-driven power model of the complex Intel XScale processor,
its WMMX coprocessor and L1 caches.

3. THE XSCALE MICROPROCESSOR POWER MODEL
We create an accurate,instruction-level power model of the XScale microprocessor. It incorporates a number
of energy-relevant effects, with the energy consumed by a given instruction being the sum of the energies due
to all the applicable effects. We describe all effects and the stimuli used to characterize them in this section.

3.1. Leakage Power and Voltage-Frequency Scaling
The XScale processor provides a large number of voltage/frequency settings. We run a given stimulus at a fixed
voltage and vary the frequency, obtaining a linear plot. Static power dissipation is estimated by extending this
curve to obtain power consumption at zero frequency, as described in [9]. Static power is the sum of leakage
power and bias currents, which are small for the XScale. Power is then given by:

P = Pstatic + Pdynamic = V Ileakage +
1
2
CLV 2

ddf (1)

3.2. Low-Power States
We also characterize power consumption of the processor in various low-power modes, such as idle, deep idle,
standby, sleep and deep sleep. Each of these states is described in [1] and the power consumption in each state
can be characterized easily through an instruction sequence that puts the processor into the desired low-power
state.

3.3. Instruction Opcode
Based on functionality, the instructions were divided into 11 different types (add, b, cdp, cmp, dummy, ldr,
logical, mov, mul, str and sub), similar to [9]. Dummy refers to conditionally predicated instructions that were
fetched but not committed. Each energy cost was measured using straightforward stimuli running the same
instruction repeatedly with zero operands.

3.4. Operand Value
The effect of the value of the operands on the energy consumed to execute an instruction. Energy tends to
increase roughly linearly with the operand value and the number of “1”s in the operand. Such effects are also
observed in [6, 13]. This effect can be observed and characterized by comparing the average power consumptions
of stimuli that differ in the values of the operands they are adding, but are identical in other respects. Stimuli
that yield power parameters based on their differences rather than the actual values of power observed are
referred to as differential stimuli.

3.5. Bypass Paths
A rather interesting pattern of bypass path behavior was observed, with three different cases:

1. The base case is when there are no inter-instruction dependencies and all source operands are obtained
through register file reads. For example, running add r6, r7, r8 repeatedly.

2. When all source registers for an instruction are the destination registers for a previous instruction, the
source operands are obtained from bypass paths and 4% less energy than the base case is used. An
example of this is executing add r6, r6, r6 over and over.

3. When both the bypass paths and the register file are used to get source operands, 5% more energy than
the base case is used. An example of this would be executing add r6, r6, r7 repeatedly.

To the best of our knowledge, this effect has not been characterized before.

3.6. Sign Update and Conditional Flags
Instructions which updated or used the conditional flags consumed more energy than corresponding instructions
which did not. For example an adds or addeq instruction consumes more energy than a simple add. However,
this increase is under 0.5% and so it has not been made part of the power model.

3.7. Register Switching
When two consecutive instructions use different source or destination registers, an energy overhead is incurred
depending upon the number of registers switched. This can exceed 10% of instruction energy and can be
expected to be incurred often. To the best of our knowledge, this effect has been not been used in instruction-
level power models before. This effect is characterized by running a series of differential stimuli, each of which
changes a different number of registers between consecutive instructions, with all other factors being constant.

3.8. Cache Accesses
Caches are modeled as on-chip SRAM. From the instruction-set point of view, the energy cost of a load or
store depends on the number of bytes accessed. We characterize and model this. The relevant stimuli load
or store a given number of bytes to a given address. We observed negligible address and data dependance in
cache accesses.

3.9. Shifts
The ARM instruction set [15] allows the last operand of an instruction to be bit-shifted by either an immediate
or a register value. This shift causes an additional result latency of one cycle and consumes additional energy.
We divide shifts into three distinct types: RRX (Rotate Right eXtended) with takes no operands, shifts by an
integer operand, and shifts by a register operand. The incremental cost of a given type of shift can be extracted
using differential stimuli that compare the energy cost of an instruction with and without the shift.

3.10. Stalls

Stalls can be divided into instruction stalls, which are due to inter-instruction data dependencies, event stalls,
such as stalls on a double-word load, branch stalls, or the pipeline flush penalty, and memory stalls on accesses
to external memory. Energy costs of all stall types were characterized and modeled.

3.11. The WMMX Coprocessor

The XScale processor family has an on-die Wireless MMX coprocessor [16] for fast SIMD processing. We
divided the WMMX instructions into 17 types based simply on functionality, in a manner similar to that for
the main processor. WMMX instructions clusters that were close in functionality and energy cost were then
merged, reducing the number of instruction clusters to 12: bit, pack, unpack, logical, arith, cmp, mul, maxmin,
read, write, load and store. Base costs for WMMX instructions were then characterized and built into the
power model.

4. IMPLEMENTATION

We create an execution-driven implementation of this power model. In this approach, an existing performance
simulator is modified to provide information about the instruction stream, cache accesses, stalls etc. to a power
model as they occur.

We use Xsim, a C-based cycle-count accurate performance simulator for the XScale family. It models all
XScale instructions, the L1 caches and the WMMX coprocessor. The fetch and retire times of each instruction
are computed by tracking dependencies and resource constraints instead of detailed pipeline modeling. Xsim
has been validated to be cycle-accurate within 2% of actual hardware and achieves speeds over 10 MIPS when
run as a stand-alone processor simulator. We modify Xsim to enable its use as a SystemC component which
can be used to execute instructions on a cycle-by-cycle basis or a specified number of cycles at a time.

In addition, we use SystemC models of SDRAM, buses and arbitration to ensure that system performance is
simulated accurately, and all latencies are correctly modeled. An accurate system-wide performance simulation
is needed to realistically model the system’s behavior (bus latencies, arbitration etc.) even if only microprocessor
power is being studied. This is because microprocessor activity, such memory stall cycles, interrupts etc.,
depends on the latency and behavior of other system components, which must be modeled correctly for the
processor simulation to be accurate. The XScale power model plugs directly into this to maintain instruction-
by-instruction computation of core power consumption. However, an existing performance model can be easily
leveraged to build in power models of other components too. We are currently investigating such a system
modeling approach, and preliminary results suggest that this is highly feasible.

5. EXPERIMENTAL SETUP

For validation, we use a reference platform (Figure 1) featuring an XScale-based PXA271 SoC which contains
an XScale processor, its WMMX coprocessor, L1 instruction and data caches (32KB each) and other system
components [1]. The platform also has 64MB on-board SDRAM, 32MB synchronous Flash and a variety of
peripherals. The main board is instrumented with 100mΩ resistors in series with the power supply on each
module, which enable power measurements of individual components.

We measure the power consumption of the processor using an NI-DaQ data acquisition card, sampling at up
to 20KHz. Post-processing of acquired data is done using LabView virtual instruments. Processor frequency
is varied, while the memory controller runs the off-chip bus at 91MHz.

We use Windows CE as the operating system, and run identical benchmarks on the hardware and the
simulator. The simulator runs a complete OS boot routine followed by the application. Each benchmark is
run in a loop, with average power measured physically on hardware over a period of one second and compared
with the estimate obtained from the simulator.

To validate our results, we use the following benchmarks:

• Autocorrelation and Huffman Decoding benchmarks from the EEMBC benchmark suite.

Figure 1: The reference platform used for physical experiments. The XScale processor, the WMMX unit and
the L1 caches are on the PXA271 SoC. The Logic Analyzer connections allow bus signals and timing to be
observed, while an array of power instrumentation resistors allows the power supply of various components to
be studied.

• The Motion Estimation kernel from an H.264 video encoder.

• A video filter (vidsp) from an H.264 video decoder. We evaluate three versions of this filter: plain C,
hand-optimized assembly, and hand-optimized assembly with additional WMMX optimizations.

• FFT (for 10,000 samples), JPEG Forward DCT (JFDCT) and Matrix Multiply (MatMul) benchmarks
from SNU-RT benchmark suite from Seoul National University. MatMul is a simple cache-resident bench-
mark.

6. RESULTS

Figure 2 compares the power consumption physically measured on the core power consumption for all bench-
marks. Variations in power across benchmarks were tracked accurately. The worst-case error was 4.46%, for
the Motion Estimation benchmark. In particular, the three versions of the vidsp benchmark were correctly
ranked, indicating good relative accuracy as well.

One of the advantages of a simulation-based approach is the ability to study the processor in great detail
and obtain information that cannot be revealed through simple hardware measurements. Figure 3 shows the
various contributors to XScale power consumption for two benchmarks. Note that Huffman Decoding is far
more memory intensive than MatMul, and spends comparatively more energy stalled on memory accesses and
less on cache accesses or opcode execution. In contrast, hardware measurements can only reveal net power,
not the fine level of detail seen here.

Huffd
e

auto
FFT

JFDCT

MatM
ul

Motio
n_est

vidsp_C

vidsp_asm

vidsp_wmmx350

360

370

380

390

400

410

420

430

440

450

460

470

A
ve

ra
ge

 P
ow

er
(m

W
)

Measured
Estimated

Core Power
CLK: 403MHz

Figure 2: Power consumption at 403MHz for various benchmarks. Bus frequency is 91MHz. Note that power
is tracked accurately, with variations between the three versions of the vidsp benchmark correctly estimated
by the simulator.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a detailed and accurate power model of the XScale processor core, including the
WMMX co-processor and L1 caches. We obtained excellent agreement between the estimates obtained from the
power model and physical measurements on hardware, with worst-case errors under 5%. The simulation speeds
we obtained were in excess of 1 MIPS. We are now focusing on extending this approach by modelling the power
consumption of other system components in order to obtain system-wide power-performance co-simulation.

ACKNOWLEDGMENTS

The Xsim simulator was built by Brett Gaines and modified for SystemC by Bhaktha Keshavachar. SystemC
integration was done in collaboration with Paul Klein. The reference board used for physical experiments was
provided by Jerzy Kolinski and Thao Xiong. Windows CE ports were provided by Sai Prasad, Peter Adamson,
Thomas Cronin and Josh Miller. The video filter for H.264 decoding was created by Bob Reese.

Leakage Stalls

Other

L1 cache
Opcode

 Reg. Switch

Contributors to Core Power Dissipation
Core: 403MHz Bus: 91MHz

(a) Huffman Decoding

Leakage

Stalls

Other

L1 cache

Opcode

 Reg. Switch

Contributors to Core Power Dissipation
Core: 403MHz Bus: 91MHz

(b) Matrix Multiply

Figure 3: Contributors to core power consumption for Huffde and MatMul benchmarks. Note that Huffde
causes more memory traffic, and so spends more power and time stalled than MatMul, which spends more
energy on instruction opcode execution and cache accesses.

REFERENCES
1. Intel, Intel PXA27x Processor Family Developers Manual, 2004.
2. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architecture-level power analysis and

optimization,” in Intl. Symp. on Computer Architecture, 2000.
3. T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for computer system modeling,”

IEEE Computer 35, pp. 59–67, Feb. 2002.
4. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design and use of SimplePower: A cycle-

accurate energy estimation tool,” in Design Automation Conference, 2000.
5. R. Y. Chen, M. J. Irwin, and R. S. Bajwa, “Architecture-level power estimation and design experiments,”

ACM Transactions on Design Automation of Embedded Systems , 2001.
6. G. Contreras, M. Martonosi, J. Peng, R. Ju, and G.-Y. Lueh, “XTREM: A power simulator for the Intel

XScale,” in Languages, Compilers, and Tools for Embedded Systems, 2004.
7. V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: A first step towards software

power minimization,” IEEE Transactions on VLSI Systems , 1994.
8. V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee, “Instruction-level power analysis and optimization of

software,” in IEEE International Conference on VLSI Design, 1996.
9. A. Sinha and A. P. Chandrakasan, “JouleTrack - a web based tool for software energy profiling,” in Design

Automation Conference, 2001.
10. N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy consumption measurement and analysis: Case

study of arm7tdmi,” in Intl. Symp. on Low-Power Electronics and Design, 2000.

11. S. Lee, A. Ermedahl, and S. L. Min, “An accurate instruction-level energy consumption model for em-
bedded risc processors,” in ACM SIGPLAN workshop on Languages, compilers and tools for embedded
systems, 2001.

12. S. Nikolaidis, N. Kavvadias, T. Laoppoulos, L. Bisdounis, and S. Blionas, “Instruction level energy mod-
eling for pipelined processors,” in International Workshop on Power And Timing Modeling, Optimization
and Simulation, 2003.

13. G. Sinevriotis, A. Leventis, D. Anastasiadou, C. Stavroulopoulos, T. Papadopoulos, T. Antonakopoulos,
and T. Stouraitis, “SOFLOPO: Towards systematic software exploitation for low-power designs,” in Intl.
Symp. on Low-Power Electronics and Design, 2000.

14. S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An accurate and fine grain instruction-level energy
model supporting software optimizations,” in International Workshop on Power And Timing Modeling,
Optimization and Simulation, 2001.

15. ARM, ARM Instruction Set Quick Reference Card v2.1, 2003.
16. N. Paver, B. Aldrich, and M. Khan, Programming with Intel Wireless MMX Technology: A Developer’s

Guide to Mobile Multimedia Applications, Intel Press, 2004.

	Instruction-level.pdf
	spie2005.pdf

