
Copyright © 2006 IEEE. Reprinted from IEEE Transactions on Computers.

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of
any of the University of Maryland’s products or services. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

mailto:pubs-permissions@ieee.org

In-Line Interrupt Handling and Lock-Up Free
Translation Lookaside Buffers (TLBs)

Aamer Jaleel, Student Member, IEEE, and Bruce Jacob, Member, IEEE

Abstract—The effects of the general-purpose precise interrupt mechanisms in use for the past few decades have received very

little attention. When modern out-of-order processors handle interrupts precisely, they typically begin by flushing the pipeline to

make the CPU available to execute handler instructions. In doing so, the CPU ends up flushing many instructions that have been

brought in to the reorder buffer. In particular, these instructions may have reached a very deep stage in the pipeline—representing

significant work that is wasted. In addition, an overhead of several cycles and wastage of energy (per exception detected) can be

expected in refetching and reexecuting the instructions flushed. This paper concentrates on improving the performance of precisely

handling software managed translation look-aside buffer (TLB) interrupts, one of the most frequently occurring interrupts. The paper

presents a novel method of in-lining the interrupt handler within the reorder buffer. Since the first level interrupt-handlers of TLBs

are usually small, they could potentially fit in the reorder buffer along with the user-level code already there. In doing so, the

instructions that would otherwise be flushed from the pipe need not be refetched and reexecuted. Additionally, it allows for

instructions independent of the exceptional instruction to continue to execute in parallel with the handler code. By in-lining the TLB

interrupt handler, this provides lock-up free TLBs. This paper proposes the prepend and append schemes of in-lining the interrupt

handler into the available reorder buffer space. The two schemes are implemented on a performance model of the Alpha 21264

processor built by Alpha designers at the Palo Alto Design Center (PADC), California. We compare the overhead and performance

impact of handling TLB interrupts by the traditional scheme, the append in-lined scheme, and the prepend in-lined scheme. For

small, medium, and large memory footprints, the overhead is quantified by comparing the number and pipeline state of instructions

flushed, the energy savings, and the performance improvements. We find that lock-up free TLBs reduce the overhead of refetching

and reexecuting the instructions flushed by 30-95 percent, reduce the execution time by 5-25 percent, and also reduce the energy

wasted by 30-90 percent.

Index Terms—Reorder-buffer (ROB), precise interrupts, exception handlers, in-line interrupt, lock-up free, translation lookaside

buffers (TLBs), performance modeling.

�

1 INTRODUCTION

1.1 The Problem

PRECISE interrupts in modern processors are both frequent
and expensive and are rapidly becoming even more so

[20], [9], [21], [27]. One reason for their rising frequency is
that the general purpose interrupt mechanism, originally
designed to handle the occasional exceptional condition, is
now used increasingly often to support normal (or, at least,
relatively frequent) processing events such as integer or
floating-point arithmetic overflow, misaligned memory
accesses, memory protection violations, page faults or TLB
misses in a softwaremanaged TLB [15], [10], [11], and other
memory-management related tasks [20]. If we look at TLB
misses alone, we find that interrupts are common occur-
rences. For example, Anderson et al. [1] show TLB miss
handlers to be among the most commonly executed OS
primitives, Huck and Hays [8] show that TLB miss handling
can account for more than 40 percent of total runtime, and
Rosenblum et al. [21] show that TLB miss handling can
account for more than 80 percent of the kernel’s computa-
tion time.

Recent studies have shown that a precise interrupt
occurs once every 100-1,000 user instructions on all ranges
of code, from SPEC to databases and engineering workloads
[21], [2]. Besides their increasing frequency, interrupts are
also becoming more expensive; this is because of their
implementation. Out-of-order cores typically handle precise
interrupts much in the same vein as register-file update: for
instance, at commit time [20], [23], [27], [19]. When an
exception is detected, the fact is noted in the instruction’s
reorder buffer entry. The exception is not usually handled
immediately; rather, the processor waits until the instruc-
tion in question is about to commit before handling the
exception because doing so ensures that exceptions are
handled in program order and that they are not handled
speculatively [22]. If the instruction is already at the head of
the ROB when the exception is detected, as in late memory
traps [20], then the hardware can handle the exception
immediately. Exception handling then proceeds through
the following phases:

1. The pipeline and ROB are flushed; exceptional PC is
saved and the PC is set to the appropriate handler.

2. The exception is handled with privileges enabled.
3. Once the interrupt handler has finished execution,

the exceptional PC is restored and the user program
continues execution.

In this model, there are two primary sources of applica-
tion-level performance loss: 1) While the exception is being

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006 1

. The authors are with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD 20742.
E-mail: {ajaleel, blj}@eng.umd.edu.

Manuscript received 15 Jan. 2004; revised 13 Dec. 2004; accepted 15 Sept.
2005; published online 22 Mar. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0018-0104.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

handled, there is no user code in the pipeline and, thus, no
user code executes—the application stalls for the duration of
the handler; 2) after the handler returns control to the
application, all of the flushed instructions are refetched and
reexecuted, duplicating work that has already been done. The
fact that there may be many cycles between the point where
the exception is detected and the moment when the exception
is acted upon is covered by 2): As the time it takes to detect an
exception increases, so does the number of instructions that
will be refetched and reexecuted [20]. Clearly, the overhead of
taking an interrupt in a modern processor core scales with the
size of the reorder buffer and the current trend is toward
increasingly large ROB sizes [6]. With an 80-entry ROB, like
the Alpha 21264, as much as a whole window of instructions
can be flushed at the time of an exception. This can result in a
significant amount of energy wasted in the refetching and
reexecuting of instructions flushed. Given that we have
broken the triple digit Wattage ratings for modern micro-
processors, it is thus imperative that we improve the
traditional method of handling interrupts.

1.2 A Novel Solution

If we look at the two sources of performance loss (user code
stalls during handler; many user instructions are refetched
and reexecuted), we see that they are both due to the fact
that the ROB is flushed at the time the PC is redirected to
the interrupt handler. If we could avoid flushing the
pipeline, we could eliminate both sources of performance
loss. This has been pointed out before, but the suggested
solutions have typically been to save the internal state of the
entire pipeline and restore it upon completion of the
handler. For example, this is done in the Cyber 200 for
virtual-memory interrupts, and Moudgill and Vassiliadis
briefly discuss its overhead and portability problems [19].
Such a mechanism would be extremely expensive in
modern out-of-order cores, however; Walker and Cragon
briefly discuss an extended shadow registers implementa-
tion that holds the state of every register, both architected
and internal, including pipeline registers, etc., and note that
no ILP machine currently attempts this [27]. Zilles et al.
discuss a multithreaded approach, where, at the time an
exception is detected, the processor spawns a new thread to
fetch and execute the interrupt handler [30]. The scheme,
however, requires the processor architecture to allow
multiple threads executing in parallel.

We are interested instead in using existing out-of-order
hardware, on uniprocessor with a single thread of execu-
tion, to handle interrupts both precisely and inexpensively.
Looking at existing implementations, we begin by ques-
tioning why the pipeline is flushed at all—at first glance, it
might be to ensure proper execution with regard to
privileges. Is it to prevent privileged operating system
instructions (interrupt handler) to coexist with user level
instructions already present in the pipeline? However,
Henry has discussed an elegant method to allow privileged
and nonprivileged instructions to coexist in a pipeline [7];
with a single bit per ROB entry indicating the privilege level
of the instruction, user instructions could execute in parallel
with the handler instructions.

If privilege level is not a problem, what requires the pipe
flush? Only space: user instructions in the ROB cannot

commit, as they are held up by the exceptional instruction
at the head. Therefore, if the handler requires more ROB
entries than are free, the machine would deadlock were the
processor core to simply redirect the PC without flushing
the pipe. However, in those cases where the entire handler
could fit in the ROB in addition to the user instructions
already there, the processor core could avoid flushing the
ROB and at the same time avoid such deadlock problems.

Our solution to the interrupt problem, then, is simple: If,
at the time of redirecting the PC to the interrupt handler,
there is enough space in the ROB, we in-line the interrupt
handler code without flushing the pipeline. If there are not
sufficient empty ROB slots, we handle the interrupt as
normal. If the architecture uses reservation stations in
addition to an ROB [4], [29] (an implementation choice that
reduces the number of result-bus drops), we also have to
ensure enough reservation stations for the handler, other-
wise handle interrupts as normal. We call this scheme a
nonspeculative in-line interrupt-handling facility because the
hardware knows the length of the handler a priori.
Speculative in-lining is also possible, as discussed in our
future work section.

Though such a mechanism is generally applicable to all
types of software managed interrupts with relatively short
interrupt handlers, we focus only on one type of interrupt
handler-that used by a software managed TLB to invoke the
first-level TLB-miss handler. We do this for several reasons:

1. TLB-miss handlers are invoked very frequently and
account for more than 40 percent of total runtime
[1], [8].

2. The first-level TLB-miss handlers tend to be short
(on the order of 10 instructions) [10], [20].

3. These handlers also tend to have deterministic
length (i.e., they tend to be straight-line code—no
branches).

This will give us the flexibility of software-managed
TLBs without the performance impact of taking a precise
interrupt on every TLB miss. In effect, this gives us lockup-
free TLBs. Note that hardware-managed TLBs have been
nonblocking for some time: For example, a TLB-miss in the
Pentium-III pipeline does not stall the pipeline—only the
exceptional instruction and its dependents stall [2]. Our
proposed scheme emulates the same behavior when there is
sufficient space in the ROB. The scheme thus enables
software-managed TLBs to reach the same performance as
nonblocking hardware-managed TLBs without sacrificing
flexibility [27].

1.3 Results

We evaluated two separate lock-up free mechanisms
(append and prepend schemes) on a performance model of
the Alpha 21264 architecture (4-way out-of-order, 150 phy-
sical registers, up to 80 instructions in flight, etc.). No
modifications are required of the instruction-set; this could
be implemented on existing systems transparently—i.e.,
without having to rewrite any of the operating system.

The scheme cuts the number of user instructions flushed
due to TLB misses by 30-95 percent; the handler still must
be executed, and the PTE load often causes a cache miss.
When applications generate TLB misses frequently, this

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

reduction in overhead amounts to a substantial savings in
performance. We model a lockup-free data-TLB facility;
instruction TLBs do not benefit from the mechanism
because, in most architectures, by the time an instruction-
TLB miss is handled, the ROB is already empty. We find
that lockup-free TLBs enable a system to reach the
performance of a traditional fully associative TLB with a
lockup-free TLB of roughly one-fourth the size. In general,
we observe performance improvements of 5-25 percent and
a reduction in the amount of energy wasted by 30-
90 percent.

2 BACKGROUND

2.1 Reorder Buffers and Precise Interrupts

Most contemporary pipelines allow instructions to execute
out of program order, thereby taking advantage of idle
hardware and finishing earlier than they otherwise would
have—thus increasing overall performance. To provide
precise interrupts in such an environment typically requires
a reorder buffer (ROB) or a ROB-like structure [20], [23]. The
reorder buffer queues up partially completed instructions
so that they may be retired in-order, thus providing the
illusion that all instructions are executed in sequential
order—this simplifies the process of handling interrupts
precisely.

There have been several influential papers on precise
interrupts and out-of-order execution. In particular, Toma-
sulo [24] gives a hardware architecture for resolving
interinstruction dependencies that occur through the
register file, thereby allowing out-of-order issue to the
functional units; Smith and Pleszkun [22] describe several
mechanisms for handling precise interrupts in pipelines
with in-order issue but out-of-order completion, the reorder
buffer being one of these mechanisms; Sohi and Vajapeyam
[23] combine the previous two concepts into the register
update unit (RUU), a mechanism that supports both out-of-
order instruction issue and precise interrupts (as well as
handling branch mispredicts).

2.2 The Persistence of Software-Managed TLBs

It has been known for quite some time that hardware-
managed TLBs outperform software-managed TLBs [10],
[25]. Nonetheless, most modern high-performance architec-
tures use software-managed TLBs (e.g., MIPS, Alpha,
SPARC, PA-RISC), not hardware-managed TLBs (e.g. IA-
32, PowerPC), largely because of the increased flexibility
inherent in the software-managed design [14], the ability to
deal with larger virtual address spaces, and because
redesigning system software for a new architecture is
nontrivial. Simply redesigning an existing architecture to
use a completely different TLB is not a realistic option. A
better option is to determine how to make the existing
design more efficient.

2.3 Related Work

Torng and Day discuss an imprecise-interrupt mechanism
appropriate for handling interrupts that are transparent to
application program semantics [25]. The system considers
the contents of the instruction window (i.e., the reorder
buffer) part of the machine state and, so, this information is

saved when handling an interrupt. Upon exiting the
handler, the instruction window contents are restored,
and the pipeline picks up from where it left off. Though the
scheme could be used for handling TLB-miss interrupts, it
is more likely to be used for higher-overhead interrupts.
Frequent events, like TLB misses, typically invoke low-
overhead interrupts that use registers reserved for the OS,
so as to avoid the need to save or restore any state
whatsoever. Saving and restoring the entire ROB would
likely change TLB-refill from a several-dozen-cycle opera-
tion to a several-hundred-cycle operation.

Qiu and Dubois recently presented a mechanism for
handling memory traps that occur late in the instruction
lifetime [20]. They propose a tagged store buffer and prefetch
mechanism to hide some of the latency that occurs when
memory traps are caused by events and structures distant
from the CPU (for example, when the TLB access is performed
near to the memory system, rather than early in the
instruction-execution pipeline). Their mechanism is ortho-
gonal to ours and could be used to increase the performance
of our scheme, for example, in multiprocessor systems.

Walker and Cragon [27] and Moudgill and Vassiliadis
[19] present surveys of the area; both discuss alternatives
for implementation of precise interrupts. Walker and
Cragon describe a taxonomy of possibilities and Moudgill
and Vassiliadis looks at a number of imprecise mechanisms.

Keckler et al. [17] present an alternative architecture for
SMT processors, concurrent event handling, which incor-
porates multithreading into event handling architectures.
Instead of handling the event in the faulting thread’s
architectural and pipeline registers, the exception handler is
forked as a new thread that executes concurrently with the
faulting thread. Zilles et al. in [30] utilized the concurrent
approach to handle TLB miss exceptions on SMT proces-
sors. Though the concurrent event handling scheme mirrors
our proposed in-line scheme, the processor must be
required to support multiple threads of execution. Our
approach, however, does not require multiple threads, a
single thread of execution is sufficient.

3 IN-LINE INTERRUPT HANDLING

We present two separate schemes of in-lining the interrupt
handler within the reorder buffer. Both our schemes use the
properties of an ROB: 1) Queue new instructions at the tail
and 2) retire old instructions from the head [22]. If there is
enough room between the head and tail pointer of the ROB,
we in-line the interrupt by either inserting the interrupt
handler code before or after the existing user instructions.
Inserting the handler instructions after the user-instruc-
tions, the append scheme, is similar to the way that a branch
instruction is handled: The PC is redirected when a branch
is predicted taken; similarly, in this scheme, the PC is
redirected when an exception is encountered. Inserting the
handler instructions before the user-instructions, the pre-
pend scheme, uses the properties of the head and tail
pointers and inserts the handler instructions before the
user-instructions. The two schemes differ in their imple-
mentations, the first scheme being easier to build into
existing hardware. To illustrate our schemes, we are
assuming a 16-entry reorder buffer, a four-instruction
interrupt handler, and the ability to fetch, enqueue, and
retire two instructions at a time. To simplify the discussion,

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 3

we assume all instruction state is held in the ROB entry, as
opposed to being spread out across ROB and reservation-
station entries.

We now provide a detailed description and implementa-
tion of the two in-lining schemes.

3.1 Append In-Line Scheme

Fig. 1 illustrates the append scheme of in-lining the
interrupt handler. In the first state (Fig. 1a), the exceptional
instruction has reached the head of the reorder buffer and is
the next instruction to commit. Because it has caused an
exception at some point during its execution, it is flagged as
exceptional (indicated by asterisks). The hardware responds
by checking to see if the handler can fit into the available
space—in this case, there are eight empty slots in the ROB.
Since we are assuming our handler is four instructions long,
the handler will fit in the available ROB space. The
hardware turns off user-instruction fetch, sets the processor
mode to INLINE, and begins fetching the first two handler
instructions. These have been enqueued into the ROB at the
tail pointer as usual, shown in Fig. 1b. In Fig. 1c, the last of
the handler instructions have been enqueued, the hardware
then resumes fetching of user code, as shown in Fig. 1d.
Eventually, when the last handler instruction has finished
execution and has handled the exception, the processor can
reset the flag of the excepted instruction and retry the
operation, Fig. 1e.

Note that though the handler instructions have been
fetched and enqueued after the exceptional instruction at
the head of the ROB, in order to avoid a deadlock situation
(instructions are held up at commit due to the exceptional
instruction at the head of the reorder buffer), the handler
must be allowed to update the state of the exceptional
instruction—for example, in the case of a TLB miss, the TLB
write instruction should be able to update the TLB without
having to commit. This can be achieved by allowing the
TLB to be updated when the TLB write instruction executes
rather than wait for the instruction to commit. Though this
may seem to imply out-of-order instruction commit, this
does not represent an inconsistency, as the state modified
by such handler instructions is typically transparent to the

application—for example, the TLB contents are merely a
hint for better address translation performance.

The append scheme of in-lining, however, has one
drawback: The interrupt handler occupies space within
the reorder buffer. Since the interrupt handler is only
required to perform behind the scenes tasks for the
program, it would seem befitting for the interrupt handler
to “disappear” after the handler’s job is done. This will
1) provide more available space for user instructions to be
fetched and executed and 2) in the event of future
exceptions, precious ROB space is not occupied by already
executed handler instructions. To avoid these drawbacks,
we now describe the prepend scheme of in-lining interrupts.

3.2 Prepend In-Line Scheme

Fig. 2 illustrates the prepend scheme of in-lining the
interrupt handler. In the first state, Fig. 2a, the exceptional
instruction has reached the head of the reorder buffer. The
hardware checks to see if it has enough space and, if it does,
it saves the tail pointer into a temporary register and moves
the head and tail pointer to four instructions before the
current head, shown in Fig. 2b. The old tail pointer needs to
be saved and the tail pointer changed because new
instructions are always queued at the tail of a reorder
buffer and instructions are committed from the head. Once
the head and tail pointers are changed, the processor is put
in INLINE mode, the PC is redirected to the first instruction
of the handler, and the first two instructions are fetched into
the pipeline. They are enqueued at the tail of the reorder
buffer as usual, shown in Fig. 2c. The hardware finishes
fetching the handler code (Fig. 2d) and restores the tail
pointer to its original position and continues fetching user
instructions from where it originally stopped. Eventually,
when the last handler instruction finishes execution, the flag
of the excepted instruction can be removed and the
exceptional instruction may retry the operation (Fig. 2e).
This implementation effectively does out-of-order commit-
ting of instructions (handler instructions that are fetched
after user instructions, retire before user instructions,
however, instructions are still committed in ROB order),

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 1. Append In-line scheme: In-line the interrupt handler by fetching the instructions at the tail of the reorder buffer. The figure shows the in-lining
of a 4-instruction handler, assuming that the hardware fetches and enqueues two instructions at a time. The hardware stops fetching user-level
instructions (light gray) and starts fetching handler instructions (dark gray) once the exceptional instruction, identified by asterisks, reaches the head
of the queue. When the processor finishes fetching the handler instructions, it resumes fetching user instructions. When the handler instruction
handles the exception, the processor can reset the flag of the excepted instruction and it can retry the operation.

but again, since the state modified by such instructions is
transparent to the application, there is no harm in doing so.

Unlike the append scheme, with the prepend scheme the
handler instructions are brought physically “ahead” of all
user instructions. Since the handler instructions are at the
head of the reorder buffer and can retire and update state,
no modifications to the pipeline were required. For
example, the TLB write instruction is no longer required to
update the TLB when it has executed, rather the TLB is
updated when committing the handler instructions. Since
handler instructions are retired from the head of the ROB,
this allows for the prepend scheme to restore the occupied
space within the reorder buffer, thus making room for more
user instructions to execute or allow room for subsequent
in-lining of interrupts.

3.3 Issues with Interrupt In-Lining

The two schemes presented differ slightly in the additional
hardware needed to incorporate them into existing high
performance processors. Both the schemes require addi-
tional hardware to determine if there are enough reorder
buffer entries available to fit the handler code. Since the
prepend scheme exploits the properties of the head and tail
pointers, an additional register is required to save the old
value of the tail pointer. Besides the additional hardware,
there are a few implementation issues concerning nospe-
culative in-lining of interrupt handlers. They include the
following:

1. The hardware knows the handler length. The hardware
must determine whether to handle an interrupt as
usual (flush the pipeline and ROB) or to in-line the
handler code. Therefore, the hardware must have
some idea how long the handler code is or at least
must have an upper limit on how long the code
could be—for example, the hardware can assume
that a handler is 16 instructions long and a handler
that is shorter than 16 instructions can fail to be in-
lined occasionally, even though there was enough
room for it in the ROB.

2. There should be a privilege bit per ROB entry. As
mentioned earlier, handler in-lining allows the
coexistence of user and kernel instructions in the
pipeline, each operating at a different privilege level.
The most elegant way to allow this without creating
security holes is to attach a privilege bit to each
instruction, rather than having a single mode bit that
applies to all instructions in the pipe [7]. Note that
this mechanism is already implemented in existing
processors (e.g., Alpha) and each structure checks
whether the operator is allowed for a specific
operation before it is actually executed.

3. Hardware needs to save nextPC and not exceptionalPC. If
the hardware determines that it can use the in-line
scheme, it should save nextPC, i.e., the PC of the
instruction that it was about to fetch had it not seen
the exception. The logic here amounts to an MUX
that chooses between exceptionalPC and nextPC.

4. Hardware needs to signal the exceptional instruction
when the handler is finished. When the handler has
finished execution, i.e., the exception has been
satisfied, the hardware must convey this information
to the exceptional instruction and perhaps any other
instruction that has faulted for the same type of
exception. For example, a TLB-miss handler must
perform the following functions in addition to
refilling the TLB: 1) Undo any TLBMISS exceptions
found in the pipeline and 2) return those instructions
affected to a previous state so that they reaccess the
TLB and cache. This does not need a new instruction
nor does it require existing code to be rewritten. The
signal can be the update of TLB state. The reason for
resetting all instructions that have missed the TLB is
that several might be attempting to access the same
page—this would happen, for example, if an
application walking a large array walks into a new
page of data that is not currently mapped in the TLB:
Every load/store would cause a DTLB miss. Once
the handler finishes, all these would hit the TLB
upon retry. Note that there is no harm in resetting
instructions that cause TLB misses due to access to

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 5

Fig. 2. Prepend In-line scheme: In-line the interrupt handler by resetting the head and tail pointers. The figure shows the in-lining of a 4-instruction
handler, assuming that the hardware fetches and enqueues two instructions at a time. Once the exceptional instruction, identified by asterisks,
reaches the head of the queue, the hardware stops fetching user-level instructions (light gray), saves the current tail pointer, resets the head and tail
pointers, and starts fetching handler instructions (dark gray). When the entire handler is fetched, the old tail pointer is restored and the normal
fetching of user instruction resumes.

different pages because these will simply cause
another TLB-miss exception when they access the
TLBs on the second try.

5. After loading the handler, the “return from interrupt”
instruction must be killed and fetching resumes at nextPC,
which is unrelated to exceptionalPC. When returning
from an interrupt handler, the “return from interrupt”
instruction is usually executed, which jumps to the
exceptional PC and disables privileges. However, the
processor must NOP this return from interrupt
instruction and resume fetching at some completely
unrelated location in the instruction stream at some
distance from the exceptional instruction. Therefore,
we require additional logic to ignore the exceptional
PC and instead store the PC of the next-to-fetch
instruction at the time of in-lining the handler code.
The logic amounts to an MUX.

6. The processor needs to make sure it is not already stalled.
If, at the time the TLB miss is discovered, the
processor will need to make sure it is not stalled in
one of the critical paths of the pipeline, e.g., register
renaming. A deadlock situation might occur if there
are not enough free physical registers available to
map existing instructions prior to and including
those in the register renaming phase. To prevent
this, the processor can do one of two things:
1) Handle the interrupt via the traditional method,
or 2) flush all instructions in the fetch, decode, and
map stage and set nextPC (described above) to the
earliest instruction in the map pipeline stage. As
mentioned, since most architectures reserve a hand-
ful of registers for handlers to avoid the need to save
and restore user state, the handler will not stall at the
mapping stage. In architectures that do not provide
such registers, the hardware will need to ensure
adequate physical register availability before vector-
ing to the handler code. For our simulations, we
implemented scheme 1).

7. Branch mispredictions in user code should not flush
handler instructions. If, while in append INLINE
mode, a user-level branch instruction is found to
have been mispredicted there are one of two
possibilities. If the interrupt handler has finished
execution, the branch mispredict can be handled in
the traditional manner (i.e., pipeline flush and fetch
user instructions from the new target PC). However,
if the interrupt handler has not yet finished execu-
tion, the resulting pipeline flush should not flush the
handler instructions. This means that the hardware
should overwrite nextPC (described above) with the
correct branch target, it should invalidate the
appropriate instructions in the ROB and it should
be able to handle holes in the ROB contents. Note
that this applies only to the append scheme and not
the prepend scheme, of handling interrupts. In the
prepend scheme, the handler instructions within the
reorder buffer are unaffected by the branch mis-
predict and will not be flushed (even though they
came in logically after the branch).

In addition, the in-lined schemes interaction with the register-
renaming mechanism is nontrivial. There are several differ-
ent alternative implementations of register renaming, and
each interacts with this mechanism differently. For example,
a Tomasulo or RUU-style register-renaming mechanism [23],

[24] tags a register’s contents as “invalid” when an instruction
targeting that register is enqueued, and the ID of that
instruction (its reservation station number or its ROB-entry
number) is stored in the register. When an instruction
commits that matches the stored ID, the committed result is
then stored in the register, and the register contents are then
tagged as “valid.” If an in-lined interrupt handler is going to
share the same register space as normal instructions, this
must be modified. In the prepend scheme, because the
handler instructions are enqueued after existing user
instructions but commit before those user instructions, it is
possible for the handler instructions to leave the register file in
an incorrect state in which a register that is targeted by an
outstanding user instruction is marked “valid,” which will
cause the user instruction’s result to never update the register
file. The append scheme will face a similar problem in the case
of branch mispredicts: handler instructions will have an
incorrect state of registers.

A possible solution is to reserve registers for kernel use
that are never touched by user code; for example, the MIPS
register usage convention partitions the register file in
exactly this fashion (the k0 and k1 registers in the MIPS
TLB-miss handler code listed above are never touched by
user code). The more complex solution, which allows user
instructions to share the register space with kernel instruc-
tions, is for an in-lined handler to remember the previous
register state and restore it once the last handler instruction
commits. Note that, if this is the case, then user instructions
cannot be decoded while the handler is executing, other-
wise, they might obtain operand values from the handler
instructions instead of other user instructions.

Another register renaming scheme is that of the MIPS
R10000 [29], in which a mapping table the size of the
architectural register file points to a physical register file of
arbitrary size. Just as in the Tomasulo mechanism, it is
possible for in-lined handler instructions in a MIPS R10000
register-renaming implementation to free up physical
registers that are still in use. When an instruction in the
R10000 that targets register X is enqueued, a physical
register from the free pool is assigned to that instruction
and the mapping table is updated to reflect the change for
register X. The previous mapping for register X is retained
by the instruction so that, at instruction commit time, that
physical register can be placed on the free list. This works
because the instruction in question is a clear indicator of the
register lifetime for register X because the instruction
targets register X, indicating that the previous contents are
dead. Therefore, when this instruction commits, the pre-
vious contents of register X held in the previously mapped
physical register can be safely freed. Because in-lined
handler instructions are decoded after and commit before
user instructions already in the pipe, the physical register
that a handler instruction frees might belong to a user-
instruction that is in-flight.

Just as in the Tomasulo case, a possible solution to the
potential problem is to provide a set of registers that are
used only by the handler instructions—but, they must be
physical registers, not necessarily architectural registers,
because, otherwise, the free pool may become empty,
stalling the handler instructions and, therefore, putting
the processor into a deadlock situation. Alternatively, the
hardware could verify the availability of both sufficient

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

ROB entries and sufficient physical registers before commit-
ting itself to in-lining the handler code. Moreover, a
committing interrupt-handler instruction, if in-lined, cannot
be allowed to free up physical registers that belong to user-
level instructions. Like the Tomasulo scheme, this can be
avoided if the user and kernel instructions do not use the
same architectural registers and it can be solved by the
handler saving and restoring register-file state.

The hardware requirements otherwise are minimal: One
can staple the scheme onto an existing ROB implementation
with a handful of registers, a CPU mode bit, a privilege bit
per ROB entry, and some combinational logic. Instructions
are still enqueued at the tail of the ROB and retired from the
head and register renaming still works as before. Prece-
dence and dependence are addressed by design (the in-
lining of the handler code). The most complex issue—that of
the schemes interaction with the register renaming mechan-
ism—is that of ensuring correct implementation: In-line
interrupt handling does not preclude a correct implementa-
tion coexistent with register renaming, they simply require
a bit of diligent design in the implementation.

3.4 Append Scheme versus Prepend Scheme

Though the append scheme and prepend scheme are very
similar, the implementation differences between the two
schemes may show different performance behaviors. The
schemes differ in terms of the location where the interrupt
handler is in-lined. With the append scheme, the interrupt
handler is embedded in user code, whereas, with the
prepend scheme, the interrupt handler is brought physi-
cally before all user instructions. The fact that the append
scheme occupies reorder buffer space and prepend scheme
restores the reorder buffer space can allow for the two
schemes to behave differently. Additionally, the problems
associated with speculative execution (e.g., branch mis-
predicts, replay traps, etc.) need to be tolerated by the
append scheme as the handler instructions are embedded
within user code. Even more, the mere fact that the handler
instructions can update state (e.g., TLB state) a few cycles
earlier in the append scheme than the prepend scheme can
also allow for minor differences in terms of performance.
We now analyze the performance behavior of both these
schemes of interrupt in-lining.

4 EXPERIMENTAL METHODOLOGY

4.1 Simulator

We use the performance model of the Alpha 21264 (EV67)
that was developed by the Alpha designers at the Palo Alto
Design Center (PADC) in Palo Alto, California. We use
64KB 2-way L1 instruction and data caches, fully associative
16/32/64/128-entry separate instruction, and data TLBs
with an 8KB page size. The model issues four integer
instructions and two floating-point instructions per cycle
and holds a maximum of 80 instructions in-flight. The
simulator also models a 72-entry register file (32 each for
integer and floating-point instructions and eight for
privileged handler instructions), four integer functional
units, and two floating-point units. The model also provides
154 renaming-registers, 41 reserved for integer instructions
and 41 for floating-point instructions.

The performance model also provides a 21 instruction
TLB miss handler. The model does not reserve any
renaming registers for privileged handler instructions as
they are a subset of integer instructions. Therefore, to use
the in-lined schemes, the hardware must know the
handler’s register needs as well as the handler’s length.
Additionally, the model uses a reorder buffer as well as
reservation stations attached to the different functional
units—in particular, the floating-point and integer instruc-
tions are sent to different execution queues. Therefore, both
ROB space and execution-queue space must also be
sufficient for the handler to be in-lined. The page table
and TLB-miss handler are modeled after the MIPS
architecture [16], [10] for simplicity.

4.2 Benchmarks

While the SPEC 2000 suite might seem a good source for
benchmarks as it is thought to exhibit a good memory
behavior, the suite demonstrates TLB miss rates that are
three orders of magnitude lower than those of realistic high-
performance applications. In his WWC-2000 Keynote
address [18], McCalpin presented, among other things, the
graph shown in Fig. 3, which compares the behavior of
SPEC 2000 to the following set of applications that he claims
are most representative of real-world high performance
programs:

. Linear Finite Element Analysis (three data sets, two
applications),

. Nonlinear Implicit Finite Element Analysis (eight
data sets, three applications),

. Nonlinear Explicit Finite Element Analysis (three
data sets, three applications),

. Finite Element Modal (Eigenvalue) Analysis (six
data sets, three applications),

. Computational Fluid Dynamics (13 data sets, six
applications),

. Computational Chemistry (seven data sets, two
applications),

. Weather/Climate Modeling (three data sets, two
applications),

. Linear Programming (two data sets, two applications),

. Petroleum Reservoir Modeling (three data sets, two
applications).

The SPEC results are run with a larger page size than the
apps, which would reduce their TLB miss rate, but even
accounting for that, SPEC TLB miss rates are off those of
McCalpin’s suite by a factor of at least 10, largely because
SPEC applications tend to access memory in a sequential
fashion [18].

McCalpin’s observations are important because we will
see that our work suggests that the more often the TLB
requires management, the more benefits one sees from
handling the interrupt by the in-line method. Therefore, we
use a handful of benchmarks that display typically non-
sequential access to memory and emulate the TLB behavior of
McCalpin’s benchmark suite (see Fig. 3). The benchmark
applications include QUICKSORT, MATMULT, RED-
BLACK, and JACOBI. QUICKSORT sorts a 1,024-array using
the quick-sort sorting algorithm, MATMULT multiplies two
100� 100 matrices, REDBLACK performs a 3D red-black

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 7

successive-over-relaxation using two 100� 100 matrices, and
JACOBI performs a 3D Jacobi relaxation using two 100� 100
matrices. Both JACOBI and REDBLACK are frequently found
in multigrid PDE solvers, such as MGRID and the SPEC/NAS
benchmark suite. The benchmarks were compiled on an
Alpha 21264 processor using the cc compiler with optimiza-
tion -O3. Each of the benchmarks is run using different
memory footprints: small, medium, and large. Since the
benchmarks are array-based, a small memory footprint is
where the array element size is 512 bytes (on average, 10,000
TLB misses with a 16-entry TLB), a medium memory
footprint is where the array element is three kilobytes (on
average, 60,000 TLB misses with a 16-entry TLB), and a large
memory footprint is where the array element is five kilobytes
(on average 80,000 TLB misses with a 16-entry TLB).
Changing the memory footprints of these applications may
change the nature of these applications, but the focus here is to
attempt to emulate the TLB behavior of McCalpin’s bench-
mark suite.

5 PERFORMANCE OF LOCK-UP FREE TLBS

5.1 Limitations of In-Lining TLB Interrupts

We first investigate how often our applications benefit from
the in-line scheme of handling TLB interrupts. Fig. 4
illustrates the limitations of the lock-up free TLB scheme
for the different benchmarks. The x-axis represents the
different memory footprint sizes, and the y-axis represents
the percent of time where the processor was: successful in-
lining TLB interrupts (black), unsuccessful in-lining TLB
interrupts due to insufficient ROB space (light gray), and
unsuccessful in-lining TLB interrupts due to insufficient
renaming registers (stripes). In the graphs, the first four bars
represent 16/32/64/128 entry TLBs managed by the
append in-lined scheme and the last four bars are for those
TLBs managed by the prepend in-lined scheme.

From the figure, our studies show that, besides the need
for available reorder buffer space, the processor also needs

to ensure the availability of free renaming registers to map
instructions that are newly fetched into the pipeline. This is
to be expected as the simulated processor reserves separate
renaming registers for integer and floating-point instruc-
tions (41 each) and, with an 80-entry reorder buffer, it is
possible to have more than 41 instructions of just integer or
just floating-point data-type to be in-flight. From the
graphs, we observe that in-lining of the interrupt handler
is successful for 25-90 percent of all TLB interrupts. We
observe that the lack of reorder buffer space is a nonissue
when in-lining TLB interrupts. The primary reason that a
TLB interrupt is unable to be in-lined is because the
processor is already stalled due to insufficient renaming
registers available to map existing user instructions. Hence,
to realize the full potential of interrupt in-lining, we observe
two possible modifications to existing architectures as part
of our future work: 1) reserve separate rename registers for
privileged instructions and 2) be able to partially flush the
pipeline (i.e., just the fetch and map/decode stage) without
affecting the rest of pipeline.

5.2 Interrupt Overhead—Instructions Flushed

One of the primary overheads associated with the traditional
method of handling interrupts is the wastage of time and
energy in redoing work that has already been done before, i.e.,
refetch and reexecute those instructions that were flushed.
Fig. 5 illustrates the average number of user instructions
flushed when a D-TLB miss is detected. The x-axis represents
the different memory footprint sizes and the y-axis represents
theaverage numberof instructions flushed perD-TLB miss. In
each graph, the first four bars represent 16/32/64/128 entry
TLBs managed by the append in-lined scheme, the next four
are for those TLBs managed by the prepend in-lined scheme
and the last four are for those TLBs managed by the traditional
scheme of handling interrupts (i.e., flush the ROB and
pipeline). The figure shows that, with the traditional scheme
ofhandling interrupts (last four bars), at the timea D-TLBmiss

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 3. TLB behavior of the SPEC 2000 suite (source McCalpin). McCalpin, in this graph, compares the TLB behavior of SPEC 2000 to a set of “apps”

that, according to him, truly represent high-performance computing. The TLB behavior of our benchmarks, shown in circles, emulates the behavior of

the real-life applications.

is detected, on average,an 80-entry ROB is about 50-55percent

full. This observation is promising in that relatively large
interrupt handlers can be in-lined provided there are enough

resources. From the figure, we also observe that the in-lined
schemes of handling TLB interrupts reduce the number of

instructions flushed per TLB interrupt by 30-95 percent. This
implies that a processor can possibly save energy that is

needlessly spent in refetching and reexecuting those user
instructions that were flushed.

From Fig. 5, we also observe that the append and

prepend schemes have a varying behavior in terms of the
number of user instructions flushed. We observe that, in

some cases, the append scheme flushes fewer instructions
than the prepend scheme. This is because, for one bench-

mark (JACOBI), the append scheme benefited from in-
lining more than the prepend scheme (see Fig. 4). However,

for the cases where the append and prepend scheme
benefited from in-lining equally or where the prepend

scheme benefited from in-lining more than the append
scheme—it is due to the implementation of the in-line

schemes. With the append scheme, the handler occupies
space within the reorder buffer, thus reducing the number

of user instructions within the reorder buffer. However, in
the case of the prepend scheme, the handler disappears
after having executed, thus making room for more user
instructions to reside within the reorder buffer.

An interesting observation from the graphs is that the
number of user instructions flushed per TLB-miss is
independent of the TLB size. It would seem that increasing
the TLB size should reduce the average number of
instructions flushed per TLB interrupt; however, this is
not the case: The number of instructions flushed can either
increase or decrease. This is because the number of
instructions flushed, on a TLB miss, is dependent on the
contents of the ROB and this is independent of the TLB size.

5.3 Performance of Lock-Up Free TLBs

The benefits of lock-up-free TLBS are two-fold: 1) User
instructions execute in parallel while the interrupt handler
fills the missing information in the TLB and 2) the overhead
of refetching and reexecuting user instructions flushed is
eliminated. We now compare the performance of an ideal
TLB, the lock-up-free schemes, and the traditional method
of handling interrupts (Fig. 6). The x-axis represents the
different memory footprint sizes and the y-axis represents

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 9

Fig. 4. Limitations of interrupt in-lining. This figure shows the number of times interrupt in-lining was used and the reasons why interrupt in-lining

could not be used. The figure shows that space is not an issue; instead, the pipeline being stalled due to the lack of renaming registers is the primary

reason for not in-lining.

the CPI. In each graph, the first bar represents an ideal TLB,
the next four bars represent 16/32/64/128 entry TLBs
managed by the append in-lined scheme, the next four are
for those TLBs managed by the prepend in-lined scheme,
and, finally, the last four bars are for those TLBs managed
by the traditional scheme of handling interrupts (i.e., flush
the ROB and pipeline). From Fig. 6, we observe that virtual
memory adds significant overhead in the system. For
medium and large memory footprints we observe a 25-
50 percent performance degradation from the optimal case-
a perfect TLB. This is to be expected when TLB misses are
frequent and would be the case with realistic applications
[18]. Hence, it is clearly important to optimize TLB
management so as to reduce the overhead.

The figures show the performance benefit of using lock-
up-free TLBs: For the same-size TLB, execution time is
reduced by 5-30 percent. Another way of looking at this is
that one can achieve the same performance level with a
smaller TLB, if that TLB is lock-up-free. As the figures
show, one can usually reduce the TLB by a factor of four by
using a lock-up-free TLB and still achieve the same

performance as a traditional software-managed TLB. This
observation shows that lock-up-free TLBs can reduce power
requirements considerably: A recent study shows that a
significant portion of a microprocessor’s power budget can
be spent in the TLB [14], even if that microprocessor is
specifically a low-power design. Therefore, any reduction in
the TLB size is welcome if it comes with no performance
degradation.

Both the in-line schemes aid in reducing the overheads in
terms of the number of instructions flushed and the total
execution time. However, performance results from Fig. 6
show an unexpected behavior—the append scheme per-
forms better than the prepend scheme by 2-5 percent. Based
on the implementation of the append scheme, it was
expected that the prepend scheme would outperform the
append scheme because: 1) The append scheme occupies
valuable space within the reorder buffer and 2) handler
instructions have lower priority in terms of scheduling to
functional units. Since we observed from Fig. 4 that space is
clearly not an issue for interrupt in-lining, the small
differences in performance can thus be correlated to the

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 5. Average number of instructions flushed per D-TLB miss. The traditional method of handling an interrupt shows that, with our 88-entry ROB, at

the time the DTLB miss is detected, the ROB is 40-45 percent full (40-45 user instructions flushed). This is promising in that one does not have to

restrict oneself to small handlers. Additionally, we see that in-lining significantly cuts the number of instructions flushed by 30-95 percent.

commit logic modification needed to implement the append
scheme—we required the exception to be “handled”
transparently without having to commit the handler
instructions. Thus, rather than wait for the TLB write
instruction to commit and update the TLB, we allowed for
the TLB to be updated when the TLB write instruction
actually executed. This was required to prevent the
processor from entering a dead lock situation as instruc-
tions are held up at the head of the reorder buffer by the
exceptional instruction. With this modification, instructions
that missed in the TLB are awakened and executed a few
cycles earlier than the prepend scheme. Thus, due to this
modification, we observe that the append scheme outper-
forms the prepend scheme by 1-5 percent.

We also wanted to see if a correlation exists between an
application’s working-set size (as measured by its TLB miss
rate) and the benefit the application sees from lock-up free
TLBs. In addition to running the benchmarks “out of the
box,” we also modified the code to obtain different
working-set sizes, for example, by increasing the array
sizes and data structure sizes. The results are shown in

Fig. 7, which present a scatter plot of TLB miss rate to
application speedup. The figure first of all shows that
performance is independent of TLB sizes, instead depen-
dent on the TLB miss rate. We see a clear correlation
between the TLB miss rate and application speedup: The
more often the TLB requires management, the more benefit
one sees from lock-up free TLBs. This is a very encouraging
scenario: The applications that are likely to benefit from in-
line interrupt handling are those that need it the most.

5.4 Energy Savings with Lock-Up Free TLBs

To determine the amount of energy wasted, we first
characterize the properties of the instructions flushed as a
result of TLB-miss alone. Fig. 8 presents important results.
Most noticeably, the absolute number of instructions
flushed is very large: The y-axis in the figures indicates
the number of instructions flushed due to a TLB miss for
each instruction that is retired. The graphs show that
applications can end up flushing an enormous portion of
the instructions that are fetched speculatively into the
pipeline. The lock-up-free schemes thus create a great

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 11

Fig. 6. Performance of interrupt in-lining. This figure compares the performance of the benchmarks for an ideal TLB, append scheme, prepend
scheme, and traditional TLBs. Both the schemes of in-lining improve performance in terms of CPI by 5-25 percent. (a) Jacobi, (b) Matmult,
(c) Quicksort, and (d) Redblack.

opportunity to save time and energy by reducing this waste.
This can be seen by the effectiveness of the lock-up free
schemes in reducing the number of instructions flushed
—the schemes reduce instructions flushed by 30 percent or
more.

Fig. 8 also shows where, in the pipeline, the instructions
are flushed. We see that the bulk of the instructions are
flushed relatively early in the instruction life-cycle, i.e.,
before they have been executed. We observe that more than
50 percent of the instructions flushed have been decoded,
renamed (mapped), and enqueued into the reorder buffer
and issue queues by the time they are flushed (labeled to be
issued). About 10-15 percent of the instructions flushed
have already finished execution and are waiting to be
retired or are waiting to access the data cache. The figure
thus shows the significant amount of work wasted and how
in-line interrupt handling effectively reduces the additional
overhead in terms of execution.

Even though a majority of the instructions have been
flushed relatively early during their life-cycle, designers of
the Alpha 21264 processor have shown that simply fetching
and mapping instructions is relatively expensive, together
accounting for a fifth of the CPUs total power budget [3],
[28]. The following are the power breakdowns (with respect
to the entire chip) for the 21264, with the IBOX detailed:

. IBOX: Integer and Floating-Point Map Logic, Issue
Queues, and data path: 32 percent, Issue Unit:
50 percent, Map Unit: 23 percent, Fetch Unit:
23 percent, Retire Unit: 4 percent,

. MBOX: Memory Controller: 20 percent,

. EBOX: Integer Units (L, R) 16.5 percent,

. DBOX: Dcache 13 percent,

. CBOX: BIU Data & Control Busses: 12 percent,

. JBOX: Icache 6.5 percent.

Using these breakdowns, we computed the power break-
downs (with respect to the entire chip) for the 21264 by
pipeline stage:

. Instruction in Fetch Stage: 13.7 percent,

. Instruction in Issue Stage: 49.2 percent,

. Instruction in Memory Stage: 65.7 percent,

. Instruction (ALU) in Retire Stage: 65.7 percent,

. Instruction (MEM) in Retire Stage: 98.7 percent,

. Retired ALU instruction: 67.0 percent,

. Retired MEM instruction: 100 percent.

With the power breakdowns by pipeline stage, we now
quantify the energy-consumption benefits by using lock-up-
free TLB schemes. Fig. 9 shows trends in energy savings
that are very similar to the performance benefits (they differ
by about 5-10 percent). An immediately obvious feature of
the data in the Fig. 9 is the huge amount of energy spent on
partially executed instructions that are flushed before they
can retire. This is a significant result by itself. Today, high-
performance CPUs can waste as much as a quarter of their
energy budget on instructions that are ultimately flushed
due to TLB misses alone. Given that we have broken the
triple-digit Wattage rating (Pentium 4 with 0.18 micron
technology has rating of 100.6 Watts), it seems like the in-
lined scheme of handling interrupts is an obvious candidate
for power reductions. We see that the in-lined schemes
reduce the total energy consumption by 5-25 percent overall
and also reduce the energy wasted in refetching and
reexecuting by 30-90 percent, which is very significant.

The breakdowns indicate what types of instructions
contribute to the energy total. One feature to notice is that
the energy used by the TLB miss handler reduces with
growing TLB sizes. This is no mistake; as TLB sizes
decrease, the frequency of invoking TLB-miss handlers
increases and, therefore, the number of handler instructions
retired by the CPU also increase. Thus, an increase in the
number of instructions executed results in an increase in
energy used. This is an effect not often talked about—that
different runs of the same application on different hardware
might execute different numbers of instructions—but, these
results demonstrate that it is a significant effect.

As mentioned earlier, we found that the reduction in
performance is slightly higher than the reduction in energy
consumption. Execution time is reduced because the lock-
up free scheme eliminates a significant number of redun-
dant instructions that would otherwise be refetched and

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 7. TLB miss rate versus performance improvement (append, prepend). This figure shows that performance improvement is dependent not on

TLB size but TLB miss rate. The figure shows that the more often the TLB requires management, the more the benefit the application sees from

interrupt in-lining. (a) Append in-line scheme. (b) Prepend in-line scheme.

reexecuted. The average joules-per-instruction for these
redundant operations is slightly lower than the average
joules-per-instruction for the entire run because many are
only partially executed and, therefore, contribute less than
an average instruction to the total. Therefore, eliminating
these instructions reduces power slightly less than if one
eliminated fully executed instructions.

An additional overhead in terms of energy wastage is
due to those instructions that were flushed speculatively,
i.e., not due to a TLB miss, but due to branch mispredic-
tions, load store ordering, and other exceptions that require
a pipeline flush. The graphs show that about 5-25 percent of
an application’s energy budget is spent in speculative
execution, which is a tremendous waste in itself.

6 CONCLUSIONS

The general purpose precise interrupt mechanisms in use
for the past few decades have received very little attention.

With the current trends in processor design, the overhead of
refetching and reexecuting instructions is severe for
applications that incur frequent interrupts. One example
is the increased use of the interrupt mechanism to perform
memory management—to handle TLB misses in current
microprocessors. This is putting pressure on the precise
interrupt mechanism to become more lightweight.

We propose the use of in-line interrupt handling, where
the reorder buffer is not flushed on an interrupt if there is
enough space for the handler instructions to be fetched.
This allows the user application to continue executing while
an interrupt is being serviced. For our studies, we in-lined
the TLB interrupt handler to provide us with lock-up free
TLBs. For a software-managed TLB miss, this means that
only those instructions stall that are dependent on the
instruction that misses the TLB. All other user instructions
continue executing in parallel with the handler instructions
and are only held up at commit (by the instruction that
missed the TLB).

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 13

Fig. 8. Location of instructions flushed due to a TLB miss. This figure shows the stages in which the instructions were before they were flushed. The
y-axis shows the number of instructions flushed for each instruction retired. In-lining significantly reduces the number of instructions flushed.
Additionally, the graph shows that the majority of the instructions flushed are relatively early in the pipeline with 10-15 percent in the final stages.
(a) Jacobi, (b) Matmult, (c) Quicksort, and (d) Redblack.

We present the append and prepend schemes of in-lining
of the interrupt handler. The append scheme temporarily
stops fetching user code and inserts the handler instructions
after the user-instructions, thus retiring the handler instruc-
tions in processor fetch order. The prepend scheme
however, utilizes the head and tail properties of the reorder
buffer and inserts the handler instructions before the user
instructions, thus retiring them out of processor fetch order
without incurring any side affects.

With interrupt in-lining, at the time the processor detects
an exception, the processor first checks if there is enough
space within the reorder buffer for the interrupt to be in-
lined. If there is not enough space, the interrupt is handled
by the traditional scheme, i.e., flushing the pipeline. Our
studies additionally show another limitation of interrupt in-
lining: pipeline stalls. If the pipeline is already stalled when
the exception is detected, a deadlock situation can occur if
the mode were changed to INLINE. For our studies, we
observed that (besides no reorder buffer space) interrupt in-

lining is not possible if the pipeline stalls (at the decode

stage) due to insufficient renaming registers available to

map user instructions fetched.
Our studies also show that lock-up free TLBs reduces the

overhead due to the flushing of instructions by 30-

95 percent. This is significant in that a processor no longer

wastes time or energy refetching and reexecuting instruc-

tions. A reduction in the number of instructions flushed

allows for lock-up free TLBs to provide a performance

improvement of 5-25 percent. Additionally, we see that one

can achieve the same performance level with a smaller TLB,

if that TLB is lock-up free. Our results show that one can

usually reduce the TLB size by a factor of four by using a

lock-up-free TLB and still achieve the same performance as

a traditional software-managed TLB. Furthermore, we

observed that applications that often require TLB manage-

ment receive the most benefit from in-lining. This is a very

encouraging scenario: The applications that are likely to

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

Fig. 9. Energy distribution of application. This figure shows the energy consumption of instructions that were retired, handler instructions, speculative

instructions, and those that were flushed due to a TLB miss. In-lining reduces the energy wasted in refetching and reexecuting instructions by 30-

90 percent. (a) Jacobi, (b) Matmult, (c) Quicksort, and (d) Redblack.

benefit from in-line interrupt handling are those that need it
the most.

The use of lock-up free TLBs not only aids in
performance improvement, but also reduces the energy
consumption. By avoiding the refetch and reexecute of
instructions, a processor can spend time doing useful work
by executing those instructions independent of the excep-
tion causing instruction. Our studies show that modern
high-performance CPUs can waste as much as a quarter of
their energy budget on instructions that are ultimately
flushed due to TLB misses alone. In-line interrupt handling
reduces this waste by 30-90 percent. Given that we have
broken the triple-digit Wattage rating (Pentium 4—100.6
Watts), it seems like the in-lined approach of handling
interrupts is an obvious candidate for power reductions.

In conclusion, in-line interrupt handling reduces the two
sources of performance loss caused by the traditional
method of handling interrupts. In-line interrupt handling
avoids the refetching and reexecuting of instructions, and
allows for user instructions and handler instructions to
execute in parallel. In-line interrupt handling can be used
for all types of transparent interrupts, i.e., interrupts that
perform behind the scenes work on behalf of the running
program. One such example is the TLB interrupt. In-lining
the TLB interrupt provides for lock-up free TLBs and
reduces the number of instructions flushed by 30-95 percent,
reduces execution time by 5-25 percent, and reduces the
energy wasted by 30-90 percent.

7 FUTURE WORK

For the purposes of this paper, we proposed nonspeculative
interrupt in-lining, i.e., the hardware knows the length of
the interrupt handler (or knows of an upper limit) before
hand. It is possible, however, to do speculative interrupt in-
lining, where the hardware in-lines the interrupt handler
without checking to see if there is enough reorder buffer
space. With such a scheme, the processor will need to be
able to detect a deadlock. If the processor detects a
deadlock, it will flush the pipeline and reorder buffer and
handle the interrupt by the traditional scheme.

Additionally, since interrupt in-lining avoids flushing
the pipeline, it is also possible to handle interrupts
speculatively, i.e., one does not need to wait till commit
time to decide on whether or not the interrupt be handled.
With the growing lengths in pipelines and the fact that
modern microprocessors wait to retire instructions in large
chunks (for example, four to eight instructions at a time),
the time to handle an interrupt increases. By handling
interrupts speculatively, we can allow for exceptional
instructions and their dependencies to finish executing
early, thus improving performance.

Furthermore, in this study, we observed that the lack of
renaming registers, and not ROB space, is the primary
reason for not in-lining interrupts. As mentioned earlier, a
possible solution is to allow for partial flushing of the fetch,
decode, and map stages of the pipeline and, additionally,
reserve a set of renaming registers for handler instructions.
Such a mechanism if integrated will allow a processor to
realize the full potential of interrupt in-lining.

ACKNOWLEDGMENTS

The work of Aamer Jaleel was supported in part by US

National Science Foundation (NSF) Career Award CCR-

9983618, NSF grant EIA-9806645, and NSF grant EIA-

0000439. The work of Bruce Jacob was supported in part by

NSF Career Award CCR-9983618, NSF grant EIA-9806645,

NSF grant EIA-0000439, US Department of Defense MURI

award AFOSR-F496200110374, the Laboratory of Physical

Sciences in College Park, Maryland, the US National Institute

of Standards and Technology, and Cray Inc.

REFERENCES

[1] T.E. Anderson, H.M. Levy, B.N. Bershad, and E.D. Lazowska,
“The Interaction of Architecture and Operating System Design,”
Proc. Fourth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’91), pp. 108-120, Apr.
1991.

[2] Z. Cvetanovic and R.E. Kessler, “Performance Analysis of the
Alpha 21264-Based Compaq ES40 System,” Proc. 27th Ann. Int’l
Symp. Computer Architecture (ISCA ’00), pp. 192-202, June 2000.

[3] M.K. Gowan, L.L. Biro, and D.B. Jackson, “Power Considerations
in the Design of the Alpha 21264 Microprocessor,” Proc. 35th
Design Automation Conf., pp. 726-731, June 1998.

[4] L. Gwennap, “Intel’s P6 Uses Decoupled Superscalar Design,”
Microprocessor Report, vol. 9, no. 2, Feb. 1995.

[5] L. Gwennap, “Digital 21264 Sets New Standard,” Microprocessor
Report, vol. 10, no. 14, Oct. 1996.

[6] D. Henry, B. Kuszmaul, G. Loh, and R. Sami, “Circuits for Wide-
Window Superscalar Processors,” Proc. 27th Ann. Int’l Symp.
Computer Architecture (ISCA ’00), pp. 236-247, June 2000.

[7] D.S. Henry, “Adding Fast Interrupts to Superscalar Processors,”
Technical Report Memo-366, MIT Computation Structures Group,
Dec. 1994.

[8] J. Huck and J. Hays, “Architectural Support for Translation Table
Management in Large Address Space Machines,” Proc. 20th Ann.
Int’l Symp. Computer Architecture (ISCA ’93), pp. 39-50, May 1993.

[9] B. Jacob and T.N. Mudge, “A Look at Several Memory-Manage-
ment Units, TLB-Refill Mechanisms, and Page Table Organiza-
tions,” Proc. Eighth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’98), pp. 295-306, Oct.
1998.

[10] B. Jacob and T.N. Mudge, “Virtual Memory in Contemporary
Microprocessors,” IEEE Micro, vol. 18, no. 4, pp. 60-75, July/Aug.
1998.

[11] B. Jacob and T.N. Mudge, “Virtual Memory: Issues of Implemen-
tation,” Computer, vol. 31, no. 6, pp. 33-43, June 1998.

[12] A. Jaleel and B. Jacob, “In-Line Interrupt Handling for Software-
Managed TLBs,” Proc. 2001 IEEE Int’l Conf. Computer Design (ICCD
2001), Sept. 2001.

[13] A. Jaleel and B. Jacob, “Improving the Precise Interrupt Mechan-
ism for Software Managed TLB Interrupts,” Proc. 2001 IEEE Int’l
Conf. High Performance Computing (HiPC 2001), Dec. 2001.

[14] T. Juan, T. Lang, and J.J. Navarro, “Reducing TLB Power
Requirements,” Proc. 1997 IEEE Int’l Symp. Low Power Electronics
and Design (ISLPED ’97), pp. 196-201, Aug. 1997.

[15] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and R.
Brown, “Design Tradeoffs for Software-Managed TLBs,” Proc.
20th Ann. Int’l Symp. Computer Architecture (ISCA ’93), May 1993.

[16] G. Kane and J. Heinrich, MIPS RISC Architecture. Englewood
Cliffs, N.J.: Prentice-Hall, 1992.

[17] S.W. Keckler, A. Chang, W.S. Lee, S. Chatterjee, and W.J. Dally,
“Concurrent Event Handling through Multithreading,” IEEE
Trans. Computers, vol. 48, no. 9, pp 903-916, Sept. 1999.

[18] J. McCalpin, “An Industry Perspective on Performance Character-
ization: Applications vs. Benchmarks,” Proc. Third Ann. IEEE
Workshop Workload Characterization, keynote address, Sept. 2000.

[19] M. Moudgill and S. Vassiliadis, “Precise Interrupts,” IEEE Micro,
vol. 16, no. 1, pp. 58-67, Feb. 1996.

[20] X. Qiu and M. Dubois, “Tolerating Late Memory Traps in ILP
Processors,” Proc. 26th Ann. Int’l Symp. Computer Architecture
(ISCA ’99), pp. 76-87, May 1999.

JALEEL AND JACOB: IN-LINE INTERRUPT HANDLING AND LOCK-UP FREE TRANSLATION LOOKASIDE BUFFERS (TLBS) 15

[21] M. Rosenblum, E. Bugnion, S.A. Herrod, E. Witchel, and A. Gupta,
“The Impact of Architectural Trends on Operating System
Performance,” Proc. 15th ACM Symp. Operating Systems Principles
(SOSP ’95), Dec. 1995.

[22] J.E. Smith and A.R. Pleszkun, “Implementation of Precise
Interrupts in Pipelined Processors,” Proc. 12th Ann. Int’l Symp.
Computer Architecture (ISCA ’85), pp. 36-44, June 1985.

[23] G.S. Sohi and S. Vajapeyam, “Instruction Issue Logic for High-
Performance, Interruptable Pipelined Processors,” Proc. 14th Ann.
Int’l Symp. Computer Architecture (ISCA ’87), June 1987.

[24] R.M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM J. Research and Development, vol. 11, no. 1,
pp. 25-33, 1967.

[25] H.C. Torng and M. Day, “Interrupt Handling for Out-of-Order
Execution Processors,” IEEE Trans. Computers, vol. 42, no. 1,
pp. 122-127, Jan. 1993.

[26] M. Upton, personal comm., 1997.
[27] W. Walker and H.G. Cragon, “Interrupt Processing in Concurrent

Processors,” Computer, vol. 28, no. 6, June 1995.
[28] K. Wilcox and S. Manne, “Alpha Processors: A History of Power

Issues and a Look to the Future,” Compaq Computer Corp., 2001.
[29] K.C. Yeager, “The MIPS R10000 Superscalar Microprocessor,”

IEEE Micro, vol. 16, no. 2, pp. 28-40, Apr. 1996.
[30] C.B. Zilles, J.S. Emer, and G.S. Sohi, “The Use of Multithreading

for Exception Handling,” Proc. 32nd Int’l Symp. Microarchitecture,
pp 219-229, Nov. 1999.

Aamer Jaleel received the BS degree in com-
puter engineering from the University of Mary-
land, College Park, in 2000, and the MS degree in
electrical engineering from the University of
Maryland, College Park, in 2002. He is currently
pursuing the PhD degree in the Department of
Electrical and Computer Engineering at the
University of Maryland, College Park. His re-
search interests include memory-system design,
computer architecture/micro-architecture, and

workload characterization. He is a student member of the IEEE, IEEE
Computer Society, and the ACM.

Bruce Jacob received the AB degree cum laude
in mathematics from Harvard University in 1988
and the MS and PhD degrees in computer
science and engineering from the University of
Michigan, Ann Arbor, in 1995 and 1997, respec-
tively. At the University of Michigan, he was part
of a design team building high-performance,
high-clock-rate microprocessors. He has also
worked as a software engineer for two success-
ful startup companies: Boston Technology and

Priority Call Management. At Boston Technology, he worked as a
distributed systems developer and, at Priority Call Management, he was
the initial system architect and chief engineer. He is currently on the
faculty of the University of Maryland, College Park, where he is an
associate professor of electrical and computer engineering. His present
research covers memory-system design, DRAM architectures, virtual
memory systems, and microarchitectural support for real-time em-
bedded systems. He is a recipient of a US National Science Foundation
Career award for his work on DRAM architectures and systems. He is a
member of the IEEE, the IEEE Computer Society, and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 5, MAY 2006

	In-Line.pdf
	ieeetc55-5.pdf

