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Abstract

Modeling and understanding complex non-manifold shapes is a key issue in several ap-
plications including form-feature identification in CAD/CAE, and shape recognition for
Web searching. Geometric shapes are commonly discretized as simplicial 2- or 3-complexes
embedded in the 3D Euclidean space. The topological structure of a non-manifold simpli-
cial shape can be analyzed through its decomposition into a collection of components with
simpler topology. The granularity of the decomposition depends on the combinatorial com-
plexity of the components. In this paper, we present topological tools for structural analysis
of three-dimensional non-manifold shapes. This analysis is based on a topological decom-
position at two different levels. We discuss the topological properties of the components at
each level, and we present algorithms for computing such decompositions. We investigate
the relations among the components, and propose a graph-based representation for such
relations.

1 Introduction

Modeling shapes requires representations that integrate geometry, topology, and
semantics.. At the geometric level, a shape is described as a collection of elemen-
tary cells, such as a cell, or a simplicial complex. A structural representation is
a more concise description of the shape in which geometric details are abstracted,
and only important features remain. Thus, it is more suitable as a basis for semantic
annotation and reasoning. A high-level representation of a shape reflects its overall
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structure, as, for instance, in skeleton-based representations, or its topology, which
describes the structure of an object in terms of the connectivity of its parts. An ex-
ample is provided by the decomposition of solid objects into form features used in
CAD/CAM applications.

Most of existing representations are actually for manifold shapes. On the other
hand, non-manifold shapes arise in several application contexts, often as the re-
sult of an abstraction process applied to manifold ones. This happens, for instance,
in the idealization process to which finite element meshes generated from CAD
models undergo to meet simulation requirements. Informally, a manifold object is
a subset of the Euclidean space for which the neighborhood of each internal point
is homeomorphic to an open ball. Objects that do not fulfill this property at one or
more points are called non-manifold.

Here, we focus on structural representations for non-manifold shapes based on
topology. We consider a shape modeled as a simplicial complex. Simplicial com-
plexes are commonly used to represent multi-dimensional shapes in a variety of
application domains, including finite element analysis, solid modeling, animation,
terrain modeling, and visualization of scalar and vector fields, because of their at-
tractive combinatorial properties.

We propose here a two-level topological decomposition for a non-manifold shape.
At the lower level, a shape is hierarchically decomposed into basic components,
which have a simpler topological structure. Our approach is based on dimensional-
ity and connectivity at non-manifold singularities, since they provide useful infor-
mation on the structure of a non-manifold shape. The classes of topologically sim-
ple shapes can be hierarchically ordered based on their degree of “non-manifoldness”.
At the upper level, the same shape is decomposed into semantically-rich compo-
nents. An example is shown in Figure 1. Such composite shapes are the wire-webs,
which are collections of wires connected together, the sheets which are triangu-
lated dangling surfaces, the 2-cycles which are triangulated surfaces enclosing 3D
volumes, and nearly-manifold tetrahedralized parts.

Fig. 1. A fan viewed as a structure of composite shapes: two 2-cycles (the motor and the
pendant), four sheets (the blades) and a wire-web (the thread that ties the pendant to the
motor)

Based on its topological decomposition, the structure of a non-manifold shape can



be described as a hypergraph, that we call the decomposition graph, that encodes
the connectivity among topological components. The level of structuring reflected
in the connectivity of the decomposition graph is determined by the level of struc-
turing within the topological components. The more basic the components are, the
more topological details the graph tends to show. As the topological components
encompass more structure, the connectivity among them tend to simplify. Thus, the
graph reveals a more global structure.

Since all decomposition in our two-level model are unique, they constitute a natural
tool for attaching semantic information to the shape description. This is an impor-
tant step in the direction of semantic-based shape representations and of semantic-
oriented tools to acquire, build, transmit, and process shapes with their associated
knowledge. Relevant applications of such techniques are in detecting form features
from non-manifold simplicial shapes, which are generated from CAD models [8],
and shape retrieval and matching for visual data mining over the Web [12].

The remainder of this paper is organized as follows. Section 2 provides some back-
ground notions on simplicial complexes and on manifoldness and connectivity. Sec-
tion 3 reviews related work on decomposition of shapes based on geometry and on
topology. Section 4 introduces classes of nearly-manifold topological shapes dis-
cretized as simplicial complexes and discusses their properties and relations. In
Section 5, we present a hierarchy of decompositions for a shape discretized as a
two-dimensional or three-dimensional simplicial complex and an algorithm for the
computing such decomposition. In Section 6, we present a semantic-oriented de-
composition for a non-manifold shape based on semantic-richer topological shapes,
and we discuss an algorithm for computing it based on the lower-level topological
decomposition presented in 5. Section 7 presents a graph-based representation for
the two-level decompositions, the decomposition graph, and discusses its proper-
ties. Finally, in Section 8, we draw some concluding remarks and discuss current
and future developments of this work.

2 Background

In this Section, we introduce some background notions on manifold shapes and on
simplicial complexes, that we will use throughout the paper (see [1, 24] for more
details).

Let x be a vector and ||x|| denote the length of x. S¢ = {x € FE*! such that
|x|| = 1} is called a unit d-sphere. D* = {x € E such that ||x|| < 1} is called
the unit d-disk. B¢ = {x € E? such that ||x|| < 1} is called the unit d-ball.
A sub-space M of the Euclidean space E" is called a d-manifold, for d < n, if
and only if every point p of M has a neighborhood in M that is homeomorphic to
the d-dimensional unit ball B¢. M is called a d-manifold with boundary if every



point p is homeomorphic to B? or to the d-dimensional unit ball Bﬁlr intersected
with a hyperplane. In the following, we only consider connected manifolds with or
without boundary embedded in the three-dimensional Euclidean space E*. We call
non-manifold any connected subspace which violates the manifold property at at
least one point.

A Euclidean simplex o of dimension £ is the convex hull of £+ 1 linearly indepen-
dent points in the n-dimensional Euclidean space £, 0 < k < n. We simply call a
Euclidean simplex of dimension k a k-simplex. k is called the dimension of o and is
denoted dim(o). Any Euclidean p-simplex o', with 0 < p < k, generated by a set
V, C V, of cardinality p+1 < d, is called a p-face of 0. Whenever no ambiguity
arises, the dimensionality of ¢’ can be omitted, and ¢’ is simply called a face of o.
Any face o’ of o such that o’ # o is called a proper face of o.

A finite collection Y. of Euclidean simplexes forms a Euclidean simplicial complex
if and only if (i), for each simplex o € %, all faces of ¢ belong to >, and (ii), for
each pair of simplexes o and o', either o N ¢’ = ) or ¢ N ¢’ is a face of both &
and o’. If d is the maximum of the dimensions of the simplexes in 3, we call > a
d-dimensional simplicial complex, or a simplicial d-complex. A subset ¥’ of X is a
sub-complex if Y’ is a simplicial complex.

The boundary of a simplex o is the set of all faces of ¢ in X, different from o
itself. A simplicial d-complex X is said to be with boundary if there exists at least
one (d—1)-simplex that is a face of exactly one d-simplex in 3. The boundary of
Y is the set of all such (d — 1)-simplexes. All d-complexes embedded in £ have
boundaries, while d-complexes embedded in £, n > d may be without boundary.

The star of a simplex o is the set of simplexes in X that have o as a face, and we
denote it as star(o). The link of a simplex o is the set of all the faces of the sim-
plexes in the star of o which are not incident in o, and we denote it as link(c). Any
simplex o such that star(o) contains only o is called a fop simplex. A d-complex
in which all top simplexes are of dimension d is called regular, or of uniform di-
mension. For instance, a regular simplicial 2-complex does not contain edges which
are not on the boundary of some triangle. A regular simplicial 3-complex does not
contain edges or triangles that are not on the boundary of a tetrahedron.

Let us consider a simplicial d-complex Y. An h-path between two (h+1)-simplexes
in X, where h = 0,1,....,d — 1 is a path formed by an alternating sequence of h-
simplexes and (h+1)-simplexes. A complex X is said to be h-connected if and only
if there exists an h-path joining every pair of (h+1)-simplexes in ¥. Any maximal
h-connected sub-complex of a d-complex ¥ is called an h-connected component.

A regular (d—1)-connected d-complex in which all (d— 1)-simplexes are shared
by one or two d-simplexes is called a (combinatorial) d-pseudo-manifold (possi-
bly with boundary). A simplicial d-pseudo-manifold is a d-manifold complex if its
carrier in E" is a d-manifold. It can be easily shown that a d-manifold complex



is a d-pseudo-manifold in which the link of every vertex is a triangulation of the
(d—1)-sphere S9! or of the (d—1)-disk D?"!. Figure 2(a) shows an example of a
3-pseudo-manifold which is not a 3-manifold complex. The solid pinched pie con-
tains a non-manifold vertex v, and its link is not homoemorphic to the sphere or to
the disk, as shown in Figure 2(b).

N
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Fig. 2. (a) A solid pinched pie with a non-manifold vertex v; (b) The link of non-manifold
vertex v

3 Related Work

Shape analysis of three-dimensional models is an ongoing active area of research
in shape and solid modeling, computer vision, and computer graphics. In Computer
Aided Design and Manufacturing (CAD/CAM), objects are described as an orga-
nization of meaningful parts, known as form features. In reverse engineering a 3D
model, the identification of form features requires an analysis of the shape of the
object [30]. In the management of large shape databases, the classification and re-
trieval of data requires a shape analysis. In molecular biology, analysis of the 3D
structure of protein is an important tool to the understanding of phenomena such as
protein folding and docking [7].

The major approaches to shape analysis are based on computing the decomposi-
tion of a shape into simpler parts. Primitive-based shape decompositions have been
developed in computer vision for object recognition. In this case, a shape is de-
scribed as a collection of volumetric primitives, like generalized cylinders [5], su-
perquadrics [34], or geons [4]. More recent approaches are either interior-based,
in the sense that they measure properties of the volumes enclosing a shape, or
boundary-based, in the sense that they consider local properties of the boundary
of the shape, such as critical features or curvature (see [40] for a survey). Examples
of the former representations are skeletons, like the medial axis [2, 6,9, 17, 41], or
the Reeb graph [3, 22, 42]. Skeletons provide an abstract representation by ideal-
ized lines that retain the connectivity of the original shape.

Boundary-based methods provide a decomposition of the boundary of an object



into parts, which can be described as a cell complex [23, 27, 28, 31, 32, 33, 46].
All methods try to decompose an object into meaningful components, i.e., compo-
nents which can be perceptually distinguished from the remaining part of the object.
Boundary-based methods have been developed in CAD/CAM for extracting the so-
called form features, like protrusions, depressions or through-holes, which produce
a boundary-based decomposition of a 3D object guided by geometric, topologi-
cal and semantic criteria [10, 19, 29, 26, 36, 38, 39, 43, 45]. Not much work has
been done on extracting features from CAD meshes. These latter can be obtained
by tessellating the native CAD models, or from a reverse engineering task. Some
approaches have been developed for segmenting CAD meshes, which combine cur-
vature with the detection of other measures, like planarity or the size of the dihedral
angles.

All above techniques, however, work on manifold shapes. A common approach to
represent a non-manifold shape consists of decomposing it into manifold compo-
nents. Some techniques have been proposed in the literature for decomposing the
boundary of regular non-manifold 3D shapes, i.e, for non-manifold shapes which
do not contain dangling faces or edges, which are described by their boundary. In
[21], the idea of cutting a two-dimensional non-manifold complex into manifold
pieces is exploited to develop compression algorithms. In [20], the problem of de-
composing r-sets into their manifold parts is discussed. Desaulniers and Stewart
[16] propose a representation scheme based on a decomposition of a regular object
(called an r-set) into manifold parts. In [37], a decomposition algorithm is presented
which minimizes the number of duplications introduced by the decomposition pro-
cess. In [15] an algorithm for extracting 2-cycles (connected collections of triangles
in a mesh bounding a hollow cavity) in a simplicial 3-complex is described with the
purpose of computing the topological invariants on a simplicial 3-complex.

Pesco et al. [35] propose a decomposition of a 2D cell complex based on a combi-
natorial stratification of the complex, inspired by Whitney stratification. The com-
binatorial stratification is a collection of manifold pieces of different dimensions,
the union of which forms the original object. They propose a data structure and a
set of operators based on such representation, which allow incremental construc-
tion of the object through a sequence of cell attachment, but they do not provide an
algorithm for building it from a given (non-decomposed) complex.

In [13], a decomposition of a simplicial complex in arbitatry dimensions is pro-
posed, in which the complex is split into nearly manifold components by cutting it
at non-manifold simplexes. This decomposition has been developed as a basis for
defining data structures for abstract simplicial complexes not necessarily embed-
dable in the Euclidean space. It is a good basis for defining both dimension-specific
and dimension-independent representations for complex simplicial shapes [14, 25].
The main drawback of this approach is that it produces a too refined shape decom-
position, which makes it difficult to use as a basis for reasoning on non-manifold
shapes.



4 Non-Manifold Simplicial Shapes

In this Section, we introduce classes of nearly-manifold simplicial complexes which
we will use as the basis for our lower-level shape decompistion . We will restrict to
simplicial d-complexes embeddable in the three-dimensional Euclidean space E3,
where d = 1,2, 3.

4.1 Non-manifold Singularities

In this Subsection, we introduce the definition of manifold and non-manifold ver-
tices and edges, which form the connectivity information which characterize the
different classes of basic shapes.

A vertex (0-simplex) v in a d-dimensional pseudo-manifold > (with d >= 1) isa
manifold vertex if and only if link(v) in X is a triangulation of the (d—1)-sphere
S4=1 or of the (d—1)-disk BY~1. A vertex is called non-manifold otherwise. Figures
3(a) and (b) give two examples of non-manifold vertices. An edge (1-simplex) e in
a d-dimensional pseudo-manifold ¥ (with d >= 2) is a manifold edge if and only if
link(e) in X is a triangulation of the (d—2)-sphere S¢~2 or of the (d—2)-disk B2,
An edge is called non-manifold otherwise. Figures 3(c) and (d) give two examples
of non-manifold edges.
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Fig. 3. Examples of non-manifold simplexes: (a) a non-manifold vertex whose link con-
sists of two vertices and one edge; (b) a non-manifold vertex whose link consists of one
triangle and one edge; (c) a non-manifold edge whose link consists of three vertices; (d) a
non-manifold edge whose link consists of two edges

Informally, manifold vertices and edges are characterized by the following proper-
ties:

e In a 1-pseudo-manifold, a vertex v is a manifold vertex if link(v) consists of one
or two vertices.

e In a2-pseudo-manifold, a vertex v is a manifold vertex if [ink(v) is a O-connected
1-simplicial complex in which all the vertices, at most with the exception of two,
have exactly two incident edges.

e In a 2-pseudo-manifold, an edge e is a manifold edge if link(e) consists of one
or two vertices.



e In a 3-pseudo-manifold, a vertex v is a manifold vertex if link(v) is a 1-connected
simplicial 2-complex with a domain homemorphic to a 2-sphere or to a disk (1-
ball).

e In a 3-pseudo-manifold, an edge e is a manifold edge if link(e) is a 0-connected
1-simplicial complex in which all the vertices, at most with the exception of two,
have exactly two incident edges.

Note that a 2-simplex (i.e., a triangle) in a simplicial 3-complex is manifold when
its link consists of one or two vertices. Since we restrict our attention to complexes
embedded in the 3D Euclidean space, thus all 2-simplexes are manifold.

4.2  Manifold-Connected and Initial Quasi-Manifold Complexes

In this Subsection, we define two new classes of regular complexes. We consider
simplicial d-complexes, where d = 1, 2, 3.

We consider a regular simplicial d-complex ¥ embedded in the 3D Euclidean space,
where d = 1,2, 3. In such a complex, a (d — 1)-simplex o is a manifold simplex
if and only if there are at most two d-simplexes in X incident in 0. An (d — 1)-
path (i.e., a path formed by alternating d- and (d — 1)-simplexes) such that every
(d — 1)-simplex in the path is a manifold simplex is called a manifold (d — 1)-path.
Two d-simplexes in X are said to be manifold-connected if and only if there exists
a manifold (d—1)-path connecting them. We define manifold-connected simplicial
complexes and initial quasi-manifolds as follows:

e aregular simplicial d-complex ¥ is manifold-connected if and only if any pair of
d-simplexes in 3. are manifold-connected.

e A regular simplicial d-complex X is an initial d-quasi-manifold (IQM) if the star
of each vertex in X is manifold-connected.

Figure 4(a) shows an example of a manifold-connected 2-complex. It is a 2D duster
that is pinched at an edge. Figure 4(b) shows an example of an initial 2-quasi-
manifold. Note that all its vertices and edges are manifold (as it is always the case
in 2D). The tetrahedralized pinched pie in Figure 2 is an example of an initial 3-
quasi-manifold, which has a non-manifold singularity.

4.3 Properties

In this Subsection, we discuss the properties of the classes of complexes we have
introduced in the previous subsection and their relations with pseudo-manifold and
manifold complexes (defined in the background section). We consider regular sim-
plicial 2- and 3-complexes embedded in the 3D Euclidean space.
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Fig. 4. (a) Example of a 2D manifold-connected complex: a 2D duster that is pinched at an
edge. The four triangles incident at the non-manifold edge e are highlighted. (b) Example
of a 2D initial quasi-manifold: It is a hollow tube.

We focus first on the two-dimensional case, and analyze the non-manifold singular-
ities contained in the different 2-complexes. Manifold-connected 2-complexes may
contain both non-manifold vertices and edges (see Figure 4(a)). On the contrary, a
2-pseudo-manifold cannot contain a non-manifold edge, since all the edges must
be shared by one or two triangles, but it may contain non-manifold vertices. Figure
5 shows a hollow torus pinched at one vertex. It has one non-manifold vertex, v,
but every pair of triangles on the torus is manifold-connected.

Fig. 5. Example of a 2-pseudo-manifold: It is a hollow torus pinched at one vertex. The
neighborhood of the non-manifold vertex v is highlighted

Initial 2-quasi-manifolds and manifold 2-complexes cannot contain non-manifold
singularities. Since the star of any vertex v in an initial 2-quasi-manifold is manifold-
connected, the link of v must consist of a single manifold-connected 1-complex and
thus it must be a graph in which each vertex has one or two incident edges. An ini-
tial 2-quasi-manifold cannot contain any non-manifold edge for the same reason.

Thus, we have the following relations among the various complexes in the 2D case:

e An initial 2-quasi-manifold is the same as a manifold 2-complex, since the con-
dition on the star of any vertex in an initial 2-quasi-manifold is translates directly
on the condition of the link being homeomorphic to the sphere or to the disk.

e An initial 2-quasi-manifold is a 2-pseudo-manifold (as a consequence of the
above), but the reverse is not true because 2-pseudo-manifolds may contain non-



manifold vertices. Figure 5 shows an example of a 2-pseudo-manifold that is not
an initial quasi-manifold because of the non-manifold vertex v.

e A 2-pseudo-manifold is a manifold-connected 2-complex, since it is 1-connected,
and every edge is shared by at most two triangles, but the reverse is not true (see
Figure 4(a)), which shows an example of a manifold-connected complex that
is not a 2-pseudo-manifold because there are four triangles incident at the non-
manifold edge at the center.

In summary, among all 2-complexes, the classes of manifold ()/5), initial 2-quasi-
manifolds (/QM ,), 2-pseud-omanifolds (PSDM ,), and manifold-connected 2-complexes
(MC'5) are related as follows:

My = IQM, C PSDM, C MC,

We focus here on the three-dimensional case. In this case, except for manifold
complexes, all other 3-complexes, namely manifold-connected complexes, pseudo-
manifolds and initial quasi-manifolds can contain both non-manifold vertices and
non-manifold edges. We discuss here the relations among the different classes of
complexes in the three-dimensional case.

Property 1 Manifold simplicial 3-complexes are initial 3-quasi-manifolds.

Proof: The link of any vertex v in a manifold 3-complex is a triangulation of the
sphere or of the 2-disk, thus it is a manifold 2-complex, since all its edges are
manifold. This implies that the star of vertex v is a manifold 3-complex, since it is
bounded by link(v).

The reverse is not true, that is an initial 3-quasi-manifold is not necessarily a man-
ifold 3-complex. The solid pinched pie in Figure 2 is an example of an initial 3-
quasi-manifold, which has a non-manifold singularity at vertex v.

Property 2 Initial 3-quasi-manifolds are 3-pseudo-manifolds.

Proof: We need to prove that an initial 3-quasi manifold is 2-connected. This is
a consequence of the fact that an initial 3-quasi-manifold cannot contain a non-
manifold edge.

The reverse is not true since there exist 3-pseudo-manifolds which are not initial 3-
quasi-manifolds, as shown in the example of Figure 6(a). The non-manifold vertex
(shown in Figure 6(b)) between two non-manifold edges has a 0-connected link,
which is not manifold-connected.

A 3-pseudo-manifold, that is not an initial quasi-manifold, may contain two types
of non-manifold vertices that violate the initial quasi-manifold properties:

e vertices whose link consists of more than one connected component
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e vertices whose links are 0-connected

In the latter case, the 3-pseudo-manifold contains non-manifold edges. This case is
shown in the example of Figure 6. The first case is shown in the example of Figure
8(a). Figure 8(b) shows the star of the non-manifold vertex, which is connected
only through the vertex itself (and thus the link is disconnected)

i
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Fig. 6. (a) A solid pinched duster with two non-manifold edges. The four tetrahedra incident
at the non-manifold vertex v at the center of the pinched duster are highlighted; (b) The link
of the non-manifold vertex v.

Unlike in the two-dimensional case, a manifold-connected 3-complex is a 3-pseudo-
manifold and viceversa. The motivation is that a 2-connected complex embedded
in the three-dimensional Euclidean space must be a 3-pseudo-manifold, since a
triangle has to be in this case on the boundary of one or two tetrahedra.

In summary, among simplicial 3-complexes, the classes of manifold (M3), initial
quasi-manifolds (/QM ;), pseudo-manifolds (PSDM 3), and manifold-connected 3-
complexes (MC'3) are related as follows:

M; C IQM45 C PSDM 3 = MCj

4.4  Relations between 3-complexes and their boundary complexes

In this Subsection, we discuss the relations between classes of regular simplicial
3-complexes embedded in £? and their boundary complexes.

Let X3 be a regular simplicial 3-complex. The boundary of >3, denoted by 033, is
a regular simplicial 2-complex. It is well-known that the boundary of a manifold
3-complex with boundary is a manifold 2-complex [24].

If 323 is an initial 3-quasi-manifold, but not a 3-manifold, then >3 must contain non-
manifold vertices whose stars are manifold-connected. Thus, 933 is not an initial
2-quasi-manifold (that means a 2-manifold in the two-dimensional case).

If the link of each non-manifold vertex is manifold, then 9¥5 is in the class of
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PSDM 4 — IQM ,, and thus has non-manifold vertices but no non-manifold edge.
Otherwise, 03 is in the class of MCy — PSDM 5 due to the presence of non-
manifold edges, which cause the links of non-manifold vertices in X3 to be non-
manifold.

The tetrahedralized pinched pie in Figure 2 is an example of an initial 3-quasi-
manifold whose boundary is a 2-pseudo-manifold. In Figure 7 the solid duster with
one non-manifold edge has a boundary that is manifold-connected but it is not a
2-pseudo-manifold (see Figure 4(a) which shows the boundary of the solid duster).

Fig. 7. A solid pinched duster with one non-manifold edge. The tetrahedra incident at the
non-manifold edge are highlighted.

Suppose I3 is a 3-pseudo-manifold, but not an initial 3-quasi-manifold. Then, X3
has non-manifold vertices whose links are not manifold-connected. If the links of
all non-manifold vertices of Y3 consist of disjoint manifold components, then 933
is a 2-pseudo-manifold (but not a manifold), since it does not contain any non-
manifold edge. Figure 8(a) shows a solid torus pinched at one side, which is an
example of 3-pseudo-manifold which is not an initial quasi-manifold. The link of
its non-manifold vertex consists of two manifold disks of triangles shown in Figure
8(b), and thus 933 is in the class of PSDM o — IQM,,. If the non-manifold vertices
of 3 have 0-connected links, then 05 is in the class of MC'y — PSDM . In Fig-
ure 8(c), the solid pinched duster with two non-manifold edges has a boundary in
MCy — PSDM,.

(a) (b) (©)

Fig. 8. (a) A solid torus pinched at one vertex; (b) the star of the non-manifold vertex of the
pinched torus; (c¢) a solid pinched duster with two non-manifold edges
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5 A Hierarchical Decomposition

In this Section, we discuss a hierarchical decomposition of a simplicial complex
based on the basic simplicial shapes introduced in Section 4. The decomposition
is hierarchical since it based on the degree of connectivity and on the presence of
different non-manifold singularities in the resulting component. There are classes
of complexes such as the manifold complexes which do not contain any manifold
singularity, others like the 2-pseudo-manifolds that may contain only non-manifold
vertices and also complexes like the 3-pseudo-manifolds, the initial quasi-manifold
3-complexes and the manifold connected 2-complexes which may contain both
non-manifold vertices and edges.

We are interested in the decomposition of non-manifold and non-regular shapes,
discretized as simplicial 3-complexes embedded in the three-dimensional Euclidean
space. We call the hierarchical decomposition the basic decomposition, since it is
composed of basic topological shapes, and we denote it as D. We call any complex
arising from the hierarchical decomposition of a simplicial 3-complex X a compo-
nent of the decomposition.

The first level of the basic decomposition, that we call the 01-decomposition, con-
sists of decomposing 3 into maximal O-connected components composed only of
top 1-simplexes (that we call wire-edges) and into maximal 1-connected compo-
nents. We call the O-connected one-dimensional components wire-webs. An ex-
ample of a wire-web is shown in Figure 9(a). The remaining components in the
01-decomposition are not necessarily of uniform dimension, but may contain top
simplexes which are triangles, or tetrahedra. Figure 9(b) shows a complex that de-
scribes a bucket half-filled with water. In the 01-decomposition, the handle of the
bucket (i.e., the wire-web) is detached from the empty part of the bucket (which is
formed by triangles alone) and the water-filled part (which is formed by tetrahedra).

The components in a 01-decomposition will share non-manifold vertices. The wire-
webs are maintained through all levels of the basic decomposition. Note that such
components are not necessarily manifold-connected, since a vertex in a wire-web
can have several incident edges.

The second level in the basic decomposition D is a decomposition of the 1-connected
components of the 01-decomposition into two-dimensional and three-dimensional
regular components which are 1- and 2-manifold connected, respectively. We call
such decomposition an MC-decomposition.

To define an MC-decomposition, we consider first a decomposition of the 1-connected
components in the 01-decomposition into 2-connected 3-dimensional components
and 1-connected 2-dimensional components. The 3-dimensional components are
maximal 3-manifold-connected complexes composed of tetrahedra. Recall that in
the 3D case are the same as 3-pseudo-manifolds, since 2-manifold-connectivity is
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Fig. 9. (a) Example of a wire-web; (b) A bucket with handle described by a wire-web, the
empty upper half of the bucket is formed by triangles, and the water-filled part is formed
by tetrahedra.

the same as 2-connectivity. The 2-dimensional components are composed only of
triangles. The 3-components and the 2-components will share non-manifold edges
and vertices.

The 1-connected 2-components can be further decomposed into manifold-connected
components, since 1-connectivity does not imply manifold-connectivity in the two-
dimensional case. Unfortunately, while a decomposition into 3-connected compo-
nents is unique, a 1-connected 2-complex admits several possible decompositions
into manifold-connected components. For instance, the 1-connected complex in
Figure 10(a) can be decomposed into manifold-components in four different ways,
as shown in Figures 10(b)-(e).

) Eal=

() (b) (©) (d) (e)

Fig. 10. An example of decompositions of 1-connected simplicial complex that remove
the non-manifoldness at a non-manifold edge: (a) original 1-connected complex (b)-(e)
decompositions that remove non-manifoldness at e.

Given a 1-connected 2-complex >/, the MC-decomposition for >’ consists of manifold-
connected components I'; satisfying the following conditions:

e Any two components I'; and I'; can share only one or more non-manifold edge.

e If a component I'; contains a non-manifold edge e, all the triangles in star(e)N[;
must be connected within I'; through a manifold-connected path which does not
include edge e.

The above conditions translate the fact that we do not want to break the complex
at manifold edges, but, while keeping this constraint, we want the most refined
decomposition at the non-manifold edges into components, which are manifold-
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connected. In the example of Figure 10(a), we will just break the given 1-connected
complex into three triangles as shown in Figure 10(e). This actually will lead to the
most refined decomposition into manifold-connected components of a 1-connected
simplicial 2-complex. And thus, this decomposition is unique.

Figure 11 shows another example of an MC-decomposition: a hollow ball that is
pinched at the top and has a circular wing. The MC-decomposition partitions the
complex into three manifold-connected components.

(a) (b)

Fig. 11. An example of an MC-decomposition: (a) A hollow ball that is pinched at the top
and has a circular wing; (b) Its MC-decomposition into three manifold-connected compo-
nents

The third level in the basic decomposition D consists of a decomposition of the
original complex into wire-webs and into pseudo-manifold components, and it is
called a PM-decomposition. Since a manifold-connected 3-complex is a 3-pseudo-
manifold, then 3-dimensional components in the PM-decomposition are the same
as the three-dimensional ones in the MC-decomposition. The 2-pseudo-manifold
components are obtained from those manifold-connected 2-components in the MC-
decomposition, which are not pseudo-manifolds, by duplicating all non-manifold
edges.

The fourth level in the basic decomposition D consists of a decomposition of
the original complex into wire-webs and into initial quasi-manifold components,
and it is called an IQM-decomposition. Note that the two-dimensional compo-
nents are manifold, while the three-dimensional ones may contain non-manifold
vertices. The initial 2-quasi-manifolds are obtained from the 2-pseudo-manifolds
in the PM-decomposition, by duplicating the non-manifold vertices. The initial
3-quasi-manifolds are obtained from the 3-pseudo-manifolds by duplicating the
non-manifold edges and those non-manifold vertices whose stars are not manifold-
connected. Note that the non-manifold vertices which can be present in an initial
3-quasi-manifold are only those which have a manifold-connected star.

Figure 12(a) shows a 2D manifold-connected component of the MC-decomposition.
This component is a ball that is pinched on four sides, thus it contains non-manifold
edges. Figure 12(b) shows an initial 2-quasi-manifold obtained after applying the
PM-decomposition and the IQM-decomposition successively on the manifold-connected
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component.

(a) (b)

Fig. 12. An example of applying the PM-decomposition and the IQM-decomposition suc-
cessively on a manifold-connected component of the MC-decomposition: (a) The original
object is a hollow ball pinched at four sides; (b) the initial 2-quasi-manifold obtained after
duplicating all the non-manifold edges and non-manifold vertices

Note that all decompositions are unique and, thus, the basic decomposition D is
unique as well.

5.1 Computing the basic decomposition

In this Subsection, we present an algorithm for computing the basic decomposition
of a simplicial 3-complex ..

The 01-decomposition is computed in two steps:

(1) the wire-webs are computed by extracting all the top 1-simplexes and com-
puting the connected components of such set of simplexes;

(2) the other components (the 1-connected ones) are computed by traversing the
hypergraph formed by the triangles and the edges of the complex obtained
from X by eliminating all wire-webs

To compute the MC-decomposition, we observe that in the MC-decomposition of
a simplicial complex ¥ embedded E3, any pair of manifold simplexes belonging
to the same h-dimensional manifold-connected component (for A = 2, 3) must be
connected through a manifold (h—1)-path. This means that every such component
can be traversed by following the manifold (h—1)-paths connecting the h-simplexes
in the component. The algorithm for computing the MC-decomposition performs
the following steps for each 1-connected component Y in the 01-decomposition:

(1) Identify all the non-manifold edges and vertices in ¥’ to ensure that these
simplexes will not be visited in the traversal.

(2) For each unvisited h-dimensional top simplex 0 € ¥ (for h = 2, 3), find
all other unvisited h-dimensional top simplexes that are reachable from o by
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alternately visiting manifold (h—1)-faces and their incident top h-simplexes.
All such visited top h-simplexes belong to the same h-dimensional manifold-
connected component.

(3) Mark each non-manifold singularity, that is shared by more than one manifold-
connected component, as a joint.

The PM-decomposition is computed from the MC-decomposition by removing
non-manifold edges from 2-manifold-connected components, which are not 2-pseudo-
manifolds. The strategy for removing such edges is the following: for each non-
manifold edge e in a manifold-connected 2-component, make one copy of e for each
connected component in the link of e. The uniqueness of the PM-decomposition
follows directly from the uniqueness of the MC-decomposition.

The IQM-decomposition is computed from the PM-decomposition in two steps:

(1) For the 2-components of the PM-decomposition, which contain non-manifold
vertices, we remove non-manifold vertices through duplication. Each such
vertex is duplicated in each disjoint component in its link.

(2) For the 3-components of the PM-decomposition, we duplicate first all non-
manifold edges by inserting one copy for each connected component in their
links. Then, we check whether the non-manifold vertices have a manifold-
connected star. We remove the non-manifold vertices which do not satisfy
such condition by duplicating them for each disjoint component in their links.

The uniqueness of the IQM-decomposition follows from the uniqueness of the PM-
decomposition.

5.2 Our Implementation

We have implemented the basic hierarchical decomposition by using a compact
dimension-independent data structure, we have developed, Incidence Simplicial
(IS) data structure to encode the given complex [11]. The IS data structure is an
incidence-based representation for simplicial complexes in arbitrary dimensions,
that encodes all the simplexes in the complex and some relations among such sim-
plexes. It has been developed specifically as a representation for finite element
meshes, and for this reason it encodes all simplexes explicitly and uniquely. Com-
pared with the incidence graph [18] commonly used to encode general simplicial
complexes, the IS data structure has the same representation power, but it is much
more compact.

For each p-dimensional simplex o, the IS encodes all the (p—1)-simplexes on the
boundary of ¢, and one (p-+1)-simplex for each connected component of the link of
o. The latter, that we call the partial co-boundary relations, are illustrated in Figures
13(a)-(c) for simplexes of dimensions 0, 1 and 2 in a simplicial 3-complex. For the

17



example in Figure 13(a), the IS data structure encodes the two tetrahedra that are
incident at triangle ¢. In Figure 13(b), there are four triangles incident at edge ¢, but
two of them belong to the same component (i.e., the tetrahedron) that is incident at
e. The IS data structure encodes one triangle for each connected component in the
link of e. Figure 13(c) shows a vertex whose link consists of three components. The
IS encodes one edge for each component of the linkof v. Notice that the complete
co-boundary relation of a p-simplex o consists of all the (p + 1)-simplexes that are
incidents at o. The difference between the incidence graph and the IS data structure
is that the latter encode only partial co-boundary relations, while the former encode
the corresponding complete relations.

F2 5N j!%

(a) (b) ()

Fig. 13. An example of the topological partial co-boundary relations encoded by the IS for
simplexes in a simplicial 3-complex: (a) The star of triangle ¢; (b) the star of edge e; (c) the
star of vertex v

In what follows, we discuss the computation of the hierarchical decomposition of
a simplicial complex Y represented in an IS data structure.

The 01-decomposition is computed by examining the co-boundary relations of all
the vertices of Y. For each vertex v, that is connected to some wire-edges, one copy
of v is created. All the wire-edges incident at v are transferred to the copy of v.

In the computation of the MC-decomposition, the non-manifold edges in the sim-
plicial complex can be identified from their partial co-boundary relations. An edge
is manifold if its partial co-boundary consists of either just one triangle, or two tri-
angles that are top simplexes. Non-manifold vertices are detected as extreme ver-
tices of non-manifold edges, or as vertices whose partial co-boundary relations con-
sists of more than one edge. The p-manifold-connected components are traversed
by exploring the boundary relations of the p-simplexes and the top simplexes in the
partial co-boundary relations of the (p— 1)-simplexes. The non-manifold edges and
vertices are duplicated accordingly.

The PM-decomposition and the IQM-decomposition are computed by duplicating
the appropriate non-manifold edges and vertices within each manifold-connected
component. These operations involve only the star of the non-manifold simplex
involved.

By using the IS data structure, the computation of the basic hierarchical decompo-
sition has a time complexity that is linear in terms of the number of simplexes in
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the simplicial complex ..

6 A Semantic-Oriented Decomposition

In this Section, we discuss a decomposition of a non-manifold shape into three com-
posite topological shapes which are of interest because of their richer semantics in
several application scenarios. When we consider a simplicial 2-complex represent-
ing a non-manifold shape, we want to identify the parts of the shape which are
I-dimensional (the wire-webs we introduced before), parts that form sheets, that
is 2-dimensional parts forming dangling surfaces, and parts that can enclose vol-
umes. These latter will be connected set of triangles forming a closed surface. If
we have a representation of the shape with solid parts (filled with tetrahedra) and,
thus, a simplicial 3-complex, we need to distinguish between triangulated closed
and open surfaces. This will produce a semantic-oriented decomposition which is
computed based on the MC-decomposition, and is intended as a basis for analyzing
the structure of a shape and for reasoning on shapes.

6.1 Components of a semantic-oriented decomposition

We consider the following composite shapes as constituent parts of a semantic-
oriented decomposition of a shape, namely, the wire-web, introduced in Section 5,
the sheet and the 2-cycle. A sheet is a manifold-connected simplicial 2-complex
with boundary. Figure 14(a) shows an example of a sheet. A simplicial 2-complex
¥, in E3 induces a partition of £3. A 2-cycle C of Y5 is any 1-connected component
of X» without boundary, such that the three-dimensional region in space enclosed
by C'is connected, that is, every two points in the region can be joined by a curve
which does not intersect any simplex of XJo. Intuitively, a 2-cycle is a minimal sub-
complex that completely encloses a three-dimensional region. Figure 5 shows a 2D
torus pinched at one side, which is an example of a 2-cycle.

(a) (b)

Fig. 14. Examples of (a) a sheet and (b) a decomposition of a 2-complex into a 2-cycle (the
hollow pinched ball) and a sheet (the circular wing).
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Let us consider a simplicial 3-complex X and its MC-decomposition. We start
from an MC-decomposition to define a semantic-oriented one. Wire-webs are al-
ready part of the MC-decomposition. We characterize sheets and 2-cycles in terms
of components of the MC-decomposition. This is also the way we construct the
semantic-oriented decomposition.

Each component in the MC-decomposition is a manifold-connected 2-complex
with or without boundary, a wire-web or a 3-pseudo-manifold. Let ¥’ be a manifold-
connected 2-complex with boundary. The boundary of ¥’ consists of either edges
that are boundary edges in X2, or non-manifold edges. If ¥’ consists of an edge that
is a boundary edge in Y5, then X’ is a sheet in X.

For the sake of simplicity, let us consider first the MC-decomposition of a simpli-
cial 2-complex 5. A 2-cycle in X5 is a manifold-connected component without
boundary and with empty interior, or it is composed of a collections of manifold-
connected 2-components with boundary, or is generated by collection of compo-
nents which are enclosed in another component.

Note that each manifold-connected component in the MC-decomposition may be-
long to at most two 2-cycles. If a 2-cycle is formed by a collection of manifold-
connected components with boundary, the boundary of manifold-connected com-
ponents which form a 2-cycle must be formed only by non-manifold edges in the
original complex >, (it cannot contain any boundary edge of X,). Thus, the inter-
section of the manifold-connected 2-components forming a 2-cycle must be at a
chain of non-manifold edges.

Figure 14(b) shows a hollow pinched ball with a circular wing. The cycle of non-
manifold edges and non-manifold vertices connect the circular wing and the pinched
ball. As a result, the non-manifold edges partition the 2-cycle into upper and lower
parts, each of which is a manifold-connected component with boundary. The fig-
ure illustrates the decomposition of a 2-complex into a 2-cycle (the hollow pinched
ball) and a sheet (the circular wing).

It is known that the triangles and the edges of a 2-cycle can be assigned a consis-
tent orientation in such a way that, given one triangle and a specific orientation, all
triangles on the same 2-cycle can be found incrementally by matching orientations
[15]. There is a unique way to assign orientations consistently to all the 2-cycles in
a simplicial 2-complex .5 so that, if a triangle appears in two 2-cycles, its orien-
tations in the two 2-cycles are opposite. Moreover, at a non-manifold edge e, two
triangles ¢; and ?,, that belong to the same 2-cycle, induce two opposite orientations
on e. In this way, ¢; and ¢, are successors of each other when they are sorted based
on the orientation they induce around e [44]. Thus, given an MC-decomposition
D of a simplicial 2-complex, we compute the 2-cycles from the components of D
based on orientation.

We consider now a simplicial 3-complex and its MC-decomposition, and we ad-
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dress the properties of 2-cycles based on such decomposition.

We know that the boundary of a 3-pseudo-manifold component in the MC-decomposition
of a 3-complex is a 2-cycle or a collection of 2-cycles. This is the consequence

of the fact that the boundary of a 3-pseudo-manifold is a collection of manifold-
connected 2-complexes without boundary.

Now let us consider how to identify all the 2-cycles in a simplicial 3-complex.
In the MC-decomposition of a simplicial 3-complex .3, the 3-pseudo-manifold
components can be viewed as collection of 2-cycles that are tetrahedralized. Let
9 be the 2-complex obtained from >3 by removing all the tetrahedra forming any
3-pseudo-manifold component, but not the triangles bounding the component. The
2-cycles in X5 are the boundaries of the 3-pseudo-manifolds plus the actual 2-cycles
in 3. Thus, the 2-cycles in a simplicial 3-complex >3 can be found by computing
the 2-cycles in the associated 2-complex Yo followed by filtering those 2-cycles
that bound 3-pseudo-manifolds in the MC-decomposition of 5.

The example in Figure 15(a) shows a 3-complex X with an empty upper hemisphere
and a tetrahedralized lower hemisphere. The 2-complex Y’ associated with ¥ is
computed by replacing the solid lower hemisphere with its boundary (shown in
Figure 15(b)). The MC-decomposition of ¥’ consists of three components: empty
upper and lower hemispheres and a flat circular disc, as shown in Figure 15(c). The
circular disc in the middle and the empty lower hemisphere belong to the boundary
of the solid part of X. There are two 2-cycles in Y/, namely, the one formed by the
upper empty hemisphere and the circular disc, and the other by the lower empty
hemisphere and the circular disc. The latter 2-cycle is tetrahedralized in X..

6.2 Computing a semantic-oriented decomposition

In this Subsection we present a topological decomposition for a complex at a level
of richer semantics, with the wire-webs, sheets, the 2-cycles and the 3D pseudo-
manifolds as components. We call this decomposition a semantics-oriented decom-
position.

Consider a 3-simplical complex > embedded in £3. The building blocks of the
semantics-oriented decomposition are found from the MC-decomposition of X.. Let
D be the MC-decomposition of . Wire-webs are collections of 0-connected one-
dimensional top-simplexes and are not elaborated. The sheets in X are identified as
the 2-components in D that do not belong to any 2-cycle in . In what follows, we
elaborate on the computation of the 2-cycles in X based on its MC-decomposition
D.

In the computation of the 2-cycles, if X is a 3-complex, it is reduced to a 2-complex
first. This is how the 2-complex associated with Y (defined in the previous section)
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(b)

(c)

Fig. 15. Example of 2-cycles in a 3-complex: (a) a complex X with empty upper hemi-
sphere and solid lower hemisphere; (b) the boundary of the lower hemisphere; (c) the
MC-decomposition D of the reduced 2-complex X’ of X consists of three components.

is computed: for each 3-pseudo-manifold C, its boundary OC' is found by sim-
ply traversing all the triangles that belong to exactly one tetrahedron in C'. The 2-
complex Y’ associated with ¥ is formed by replacing the 3-pseudo-manifold com-
ponents by their boundaries, i.e., ¥’ = X — J C U U(0C).

The 2-cycles of >’ are then extracted on the basis of the MC-decomposition D’ of
Y'. The manifold-connected 2-components without boundaries are 2-cycles. Thus,
we need to compute only those cycles which are formed by joining manifold-
connected components with boundary. The basic idea here is like fixing a 3D jigsaw
puzzle: the manifold-connected 2-components form the patches which will have to
be pasted together through chains of non-manifold edges. Each patch may be shared
by two 2-cycles. The algorithm for computing the 2-cycles performs the following
basic steps:

(1) Foreach manifold-connected 2-component with boundary C'in the MC-decomposition
D', we create a duplicate C’. We then introduce a consistent orientation for ev-
ery triangle of C', and an opposite orientation to all the triangles of C’. The
orientation of the triangles of C' induces an orientation to the boundary of C'.

(2) Starting with any manifold-connected 2-component with boundary, we per-
form a depth-first search over all other components, and sew together the
components whose oriented boundaries partially match each other.
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Figure 16 illustrates the steps in the computation of 2-cycles. The object shown
in Figure 16(a) consists of two boxes sharing a common face (for clarity, we do
not show the faces subdivided into triangles and thus the simplicial complex). The
MC-decomposition consists of three components, shown in Figure 16(b), with the
boundary labeled. The components are duplicated, and orientations are assigned to
each component and its duplicate as shown in Figure 16(c). Based on the orientation
of the boundaries, pieces belonging to the same 2-cycle are matched, see Figure
16(d).

7 The Decomposition Graph

In this Section, we introduce a graph-based representation for topological decom-
positions of non-manifold two- and three-dimensional simplicial complexes. Such
representation captures the complexity of the connectivity among the components
and supports the extraction of interesting global topological features of the decom-
posed complex.

Consider a simplicial complex Y with vertices V' and embedded in E®. Let C =
{C1,Cs, - -+, Ci} be the set of components in a decomposition D on 3. If D is the
MC-decomposition, a component C; can be a wire-web, a manifold-connected 2-
or 3-dimensional component. If D is the semantic-oriented decomposition, then a
component C; can be a wire-web, a sheet, a 2-cycle or a 3-pseudo-manifold.

The basic elements that describe the connections among components in a topo-
logical decompositions are the vertices. The simplest way to define the relations
among the components in C would be consider all non-manifold vertices which are
common to such components (disregarding those that are inside the wire-webs).
Thus, the relations among the components would be described as a hypergraph in
which the nodes are the components in C and the hyperarcs correspond to the non-
manifold vertices. A hyperarc will thus connect all components sharing the cor-
responding non-manifold vertex. This graph-based representation is unambiguous,
since any simplex in a simplicial complex is a set of vertices, but it does not convey
information about the global connectivity among two ore more components.

Let Si;,%,7 = 1,---, k be the non-empty set of simplexes such that o belongs to
S;; if and only if o is shared by components C; and C}, and o is not a proper face to
some other simplex that is also common to C; and C}. That s, S;; = {oc € Sij o€
C;NCj,and Ao’ € C;NC; whereo C o'}

Theset S = {S;; € S|i,j = 1,---,k and S;; # 0} consists of the simplexes
shared between all pairs of components C; and C; in a given decomposition D, and
the simplexes in each S;; are of maximal dimension, in the sense that they are not
on the boundary of some other simplexes common to components C; and C};.
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Fig. 16. Example to illustrate the computation of 2-cycles: (a) A 2D simplicial complex X
(actually the triangles splitting the faces are not shown for the sake of clarity); (b) compo-
nents of the MC-decomposition of 33; (c) orientations assigned to each component and its
duplication; (d) resulting 2-cycles

Let S denote the collection of all elements in the sets S;;. We consider the partition
of the simplexes in set S into a collection of sets H induced by S. In this way,
every [}, in H is formed by the collection of simplexes in S which belong to the
same sets .S;; and every H}, is maximal. We denote with I}, the set of indexes of the
components in C connected by the set of simplexes in H,. These are the components
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generating the sets .S;; of which Hj, is the intersection.

We consider a graph-based representation of the decomposition, that we call the
decomposition graph, in which the nodes represent the components and the hyper-
arcs connect two or more components, as defined below. We consider the isolated
vertices, the 0-connected and 1-connected components formed by the simplexes in
each set H. Such components group the simplexes in H} into hyperarcs. We can
classify hyperarcs as follows (based on the connectivity):

e (-hyperarcs consist only of one vertex
e I-hyperarcs are graphs of edges (they are hyperarcs of type edge)
e 2-hyperarcs are manifold-connected collections of triangles

The sets Hj in ‘H are thus a way of grouping the hyperarcs. We call such sets
macro-hyperarcs.

The decomposition graph, when applied to the 01-decomposition, consists only of
O-hyperarcs, while, when applied to the MC-decomposition, it consists of 0- and
1-hyperarcs. 2-hyperarcs will be present only when we apply such representation
to the semantic-oriented decomposition. A 2-hyperarc can be common only to two
2-cycles or to one 2-cycle and a 3-psueso-manifold. A 2-hyperarc cannot be shared
by two or more 3-pseudo-manifolds.

The decomposition graphs for a PM-decomposition or for an IQM-decomposition
are the same as the graph for the MC-decomposition from which they are obtained.
Each component in the PM- or IQM-decomposition is an expansion of an MC-
component obtained by duplicating edges and/or vertices. The non-manifold sin-
gularities in a component in both PM- or IQM-decompositions are represented as
self-loops, the hyperacs describing the connections of a component with other com-
ponents are the same as in the MC-decomposition and are described by 0- and
1-hyperarcs.

We illustrate the decomposition graph through some examples. Consider the semantics-
oriented decomposition of the object in Figure 17(a). The object consists of two
2-cycles, C'; and C5. The connectivity between these two 2-cycles is shown in Fig-
ures 17(b) and (c). C; and (', share vertex v and the four edges e; to e4. Thus there
are two hyperarcs, a 1-hyperarc defined by the connected component {eq, - -, e}
shown in Figure 17(b), a O-hyperarc defined by the standalone vertex shown in
Figure 17(c). The macro-hyperarc connecting them corresponds in this case to set
S{1,2y Figure 17(d) shows the hypergraph with the macro-hyperarc connecting com-
ponents C'; and Cs. The components C'; and C5 are represented by circles. The
macro-hyperarc is labeled as S{; ;. The two joints within S, 2, are shown in the
dash-lined bubbles. Note that the number of hyperarcs between the two components
is related to the number 1-cycles in the object. In this case, the two components
form a 1-cycle in the object.
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Fig. 17. An example showing the multiple connectivity between two 2-cycles: (a) the
semantics-oriented decomposition consists of two 2-cycles C'; and Cs; (b) connection
through a chain of four edges e; to e4; (c) connection at vertex v; (d) the hypergraph show-
ing the macro-hyperarc with two hyperarcs (shown in dash-lined bubbles) connecting C'y
and C»

Consider the example of Figure 18(a) which consists of two boxes sharing a com-
mon triangulated surface. In the semantics-oriented decomposition of this object,
the two boxes are components C; and C. The set S15 consists of just one element
which is the set of triangles ¢, ---,%4 on the common surface shown in Figure
18(b). The connectivity is described by one 2-hyperarc corresponding to the trian-

glesin {t1,---,t4}.

Consider the example of the object in Figure 19(a). The semantics-oriented decom-
position of this object consists of 2-cycles C; and C5, which are the boxes, and
sheet (5, which is the surface. There are two macro-hyperarcs, each consisting of
a hyperarc, here: the set {¢1,---,t,} composed by the four triangles defining the
common surface, and the set {e}.

8 Concluding Remarks

In this paper, we have presented topological tools for the structural analysis of
three-dimensional non-manifold shapes. Our analysis is based on a topological de-
composition of the simplicial complex discretizing the shape at two different lev-
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Fig. 18. An example showing a common surface between two 2-cycles: (a) the seman-
tics-oriented decomposition consists of two 2-cycles, sharing a surface; (b) the common
surface formed by triangles ¢1, - - - , 4 shared by the two boxes; (c) the hypergraph showing
hyperarc connecting C; and C9

els. The first level in the decomposition, that we called the basic decomposition,
consists of a hierarchy of topological decompositions based on simpler simpli-
cial shapes, such as 1-connected, manifold-connected, pseudo-manifold and initial
quasi-manifold components. The second level is a semantic-oriented decomposi-
tion into more complex shapes oriented to semantic annotation and reasoning. The
semantic-oriented decomposition is built on top of the basic one. We have discussed
the topological properties of the different components at each level, and we have
described algorithms for computing such decompositions. We have investigated
the relations among the components, and proposed a graph-based representation
for such relations which can be used for describing both the basic hierarchy of
decompositions and the semantic-oriented one.

The two-level decomposition is relevant in two applications, that we are consider-
ing in our research. The first one is in shape matching and retrieval. The uniqueness
property of both the basic and semantic-oriented levels makes them very useful
in such application. The semantic-oriented decomposition could be combined with
with descriptions of the manifold parts, thus forming the basis for a two-level shape
recognition process. Moreover, topological invariants can be easily computed from
our semantic-based decomposition which will act as an effective topological shape
signature.

The second application is in the context of finite element meshes generated from
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(c)

Fig. 19. An example showing the connectivity among two 2-cycles and one sheet: (a) In the
semantics-oriented decomposition, two boxes form components C'; and Cs, and the surface
forms component C'5; (b) The two 2-cycles share a common surface formed by triangles
t1,--,t4. The edge e is shared by all the three components of the decomposition; (c) the
hypergraph showing the two macro-hyperarcs

CAD models for simulation. In this case, one objective is to detect form features
in a non-manifold shape, like protrusions, depressions, handle or through-holes,
based on the structure of the single components and on the combinatorial struc-
ture of the decomposition. In [8], we have defined a taxonomy for form features
in non-manifold shapes and we have proposed a first classification based on the
mutual relations among a form feature and its adjacent ones. In our future work,
we will apply the decomposition graph which describes the relations among the
components in the semantic-oriented decomposition as the basis for form feature
identification and classification.
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