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This dissertation explores the learning and risk mechanisms underlying the dynamics 

of route choice and activity scheduling decisions. With respect to route choice 

dynamics, the study models decision mechanisms related to travel time perception, 

learning, and risk attitudes, exploring their implications on system performance over 

time. This objective is accomplished by performing experiments using a network 

performance model, in this case an agent-based simulation model of individual 

experience given the collective effects arising from the interaction of the agents’ route 

choice decisions. In regards to activity scheduling decisions, the study examines the 

range of behavioral insights obtained from a modeling framework that views the 

individual scheduling process as a single-server queuing system, introducing the 

concept of activity stress. The study presents numerical experiments on this 



  

framework using a discrete event simulation of an M/G/1 queuing system. 

Furthermore, an operational model of activity participation is estimated using 

observed activity schedules. The results indicate that travel time uncertainty and user 

perception of this uncertainty greatly affect the performance of the system over time, 

in particular the convergence of traffic flows. With respect to activity scheduling, the 

results overall indicate the significance of activity stress in motivating activity 

scheduling and participation decisions over time, with particular importance placed 

on the evolution of activity queue and activity schedule states over time. Results from 

studies investigating both route choice and activity scheduling behavior indicate the 

important role of decision dynamics for determining the behavior of users in complex 

information-rich environments. 
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Chapter 1.0 Introduction and Motivation 
 
The study of human decision making is central to the understanding of socio-

economic systems, including transportation systems, as decisions determine a major 

part of human interactions. Therefore, understanding and modeling decisions are 

essential for the microscopic understanding of macroscopic social phenomena 

observed, such as social exchange, formation of groups, economic markets, and the 

dynamics of traffic flow and activity patterns. This study focuses on the last 

phenomena, namely the decisions driving the time-dependent flow of traffic and 

activities. An understanding of the human level dynamics or mechanisms governing 

traffic and activity patterns, by means of empirical and numerical studies, can lead to 

improved insights into the resulting macroscopic phenomena, and possibly the ability 

to derive them from these dynamics. This optimistic vision is motivated by the great 

success in the derivation of the structural and dynamic properties of matter from 

elementary physical interactions. Along a similar line of thought, this study seeks to 

apply the same optimistic vision and principles towards exploring and understanding 

traffic flows and human activity patterns over space and time, focusing on the 

underlying dynamic decisions.    

 
Additionally, this study is conducted against a backdrop of public discussion and 

policies aimed at improving growing societal problems, such as traffic congestion and 

the resulting externalities that include public health, air pollution, and energy 

consumption. These policies focus on providing better travel demand management 

strategies, such as demand peak-spreading, telecommuting, versus capital 

improvements. Evaluating and determining the effectiveness of these policies requires 
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an understanding of travel and activity patterns over varying time frames. Along with 

this shift in policy perspective, the rapid spread of new information and 

communication technologies has profoundly affected the spatial and temporal 

boundaries of human activity, creating both new opportunities for improved travel 

experiences through telecommuting, e-shopping, and real-time information systems 

for trips and activities. However, assessing and forecasting the promise of these new 

technologies and services requires insight into the decision making of travelers under 

dynamic and complex information environments.  

 
The motivation behind this study of traffic system user decisions, and in particular the 

interaction of these decisions with the system, is two-fold. First, from a scientific 

perspective, traffic systems are examples of socio-economic systems that exhibit 

macroscopic properties, patterns, or features as a result of microscopic decisions. The 

consequences of these decisions are determined collectively from the physical 

interactions of users with varying levels of information and technological capabilities. 

This study seeks to understand the microscopic user behaviors that lead to 

macroscopic behaviors of traffic. Second, from a practical standpoint, we seek the 

ability to devise strategies and policies for managing traffic systems for many 

compelling reasons, including concern for the quality of urban life. Severe traffic 

congestion and substandard air quality are symptoms of the same phenomena that 

result from the same underlying decision processes of individual system users.  

 
The next section presents the main objectives of this study as they relate to the 

motivations discussed. The following section discusses the research approach to 
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address the study objectives. The third section discusses the main contributions of this 

research. The final section of this chapter outlines the remaining chapters of this 

study. 

 
 
1.1 Research Objectives 
 
The main objective of this study is to investigate the decision mechanisms or 

dynamics underlying travel and activity choices. In this study, travel is viewed as an 

integral component of a time-continuous activity pattern or schedule, viewed as a 

sequence of activities; it results from the interdependent choices of which activities to 

participate in, where, for how long, and in what sequence (which may include choices 

of start and finish times), along with travel choices such as mode and route choices. 

Due to the breadth of travel and activity decisions users make, this study focuses on 

understanding and modeling mechanisms related to two decisions: i) day-to-day route 

choice; and ii) activity scheduling and participation.  

 
Both types of decisions share similarities as well as differences. Underlying both 

decisions are mechanisms that govern the integration of new information with past 

experiences (learning), leading to updated perceptions, and the choices that result 

from evaluating these updated perceptions of anticipated payoffs. However, route 

choice decisions are indicative of the spatial distribution of users across a network, 

whereas activity scheduling and participation decisions are more indicative of the 

temporal distribution of their activities. This study focuses on both decisions due to 

the similarities in their underlying mechanisms or dynamics, allowing a comparison 
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between the dynamics of two decisions that govern different dimensions (spatial and 

temporal) of travel-activity patterns.  

 
In regards to day-to-day route choice decisions, two main objectives of this study are: 

 

1) Develop a modeling framework for examining decision mechanisms that 

capture the following day-to-day route choice dynamics:  

 

i) travel time perception, in particular uncertainty; 

ii) travel time learning and updating, including the timing of updating;  

iii) risk perception; and 

 

2) Investigate the interrelationship between the three mechanisms above on 

the day-to-day traffic flow evolution of networks. 

 
The need for research on these two objectives stems from wide ranging applications 

in modeling commuter behavior, network state prediction, and traffic management 

and planning. A greater emphasis is placed on the first objective of representing and 

modeling route choice dynamics, in view of its significant role in determining several 

aspects of network performance over time. 

 
The first objective related to the dynamics of route choice decisions focuses on the 

perception and updating of travel times, and the role of risk attitudes. With respect to 

travel time perception, this study investigates the implications of a travel time 

uncertainty updating mechanism based on concepts from Bayesian statistical 
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inference. Perceived travel time is viewed as consisting of mean and error 

components, both of which can be updated in light of new experiences (observations), 

using concepts from the Bayesian updating of probability distributions with new 

information. The error component is assumed to reflect the degree of uncertainty 

associated with a perceived travel time. In relation to updating the mean and error, or 

the second objective, (i) Bayesian updating, in addition to two other behavioral 

learning perspectives, (ii) reinforcement and (iii) belief (epistemic) learning, are also 

considered. To further address this objective, updating trigger mechanisms are 

modeled to account for the timing of learning and updating, possibly resulting from 

associated costs of updating or personal perceptions. Finally, with respect to the last 

objective concerning risk attitudes, this study proposes a mechanism for weighing the 

objective probabilities in relation to personal risk attitudes. In particular, risk seekers 

are assumed to overweigh objective probabilities of gains and under-weigh 

probabilities of losses, with the opposite for risk avoiders. 

 

The second objective related to route choice is to examine the system performance 

implications of the mechanisms mentioned above, in particular the day-to-day 

evolution of traffic flows. Two principal types of descriptors are considered: i) day-

to-day flow pattern of traffic, in particular convergence and ii) time until 

convergence, if any, is reached. The existence of an equilibrium state is commonly 

assumed in transportation planning practice. The particular focus on convergence 

addresses the validity of this assumption in relation to the decision mechanisms 

mentioned previously. More specifically, investigating the convergence of the system, 
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if any, under the behavioral mechanisms proposed, may offer insight into the validity 

of an equilibrium state commonly assumed in practice. Although no concrete 

conclusions about the existence of an equilibrium state in “real” networks can be 

made, the second objective is concerned primarily with how reasonable this 

assumption might be, given behaviorally plausible user decision mechanisms.  

 

In regards to activity scheduling and participation decisions, three main objectives of 

this study are to: 

 

1) Develop a framework for modeling activity scheduling dynamics, in 

particular considering the following aspects:  

 

(i) the interrelationship between the static (long-term) and dynamic 

(short-term) aspects of activity scheduling; 

 

ii) the role of perceived stress related to latent or queued activities, in 

particular activities scheduled but not completed or engaged; 

 

iii) the role of unplanned, possibly emergency activities that arise 

during schedule execution, 

 

2) Explore the range of behavioral insights that can be obtained from viewing 

the activity scheduling process as a single-server queuing system; and 
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3) Provide empirical evidence to support the concept of “activity stress,” in 

particular, its role in activity participation decisions. 

 

Interest in the activity scheduling process arises from the realization that an improved 

understanding of travel behavior and activity patterns requires more than a better 

account for observed outcomes; it requires better models of the mechanisms 

underlying these behaviors (Pas 1985; Kitamura 1988; Ettema and Timmermans 

1997; McNally 2000). A better understanding of activity scheduling dynamics (such 

as rescheduling) may lead to improved insights into the scheduling of unplanned 

activities, an issue ignored in previous studies. Furthermore, empirical evidence 

suggests that activity scheduling is highly dynamic, occurring over varying time 

horizons, with significant amounts of revision and continuous preplanning, even 

during execution (Doherty 2000; Miller and Roorda 2003). Recognizing that 

observed travel patterns are the result of an (unobserved and latent) underlying 

activity scheduling decision process, a need exists for adequately accounting for these 

dynamics (Hirsh et al. 1986; Kitamura 1988; Hanson and Huff 1988). 

The first and main objective related to activity scheduling dynamics is to provide a 

theoretical and conceptual framework for modeling the scheduling of activities, 

including activity participation, in relation to both planned and executed schedules, of 

particular interest is the role of activities scheduled but not necessarily completed or 

engaged. To account for these “latent” activities the main behavioral perspective 

adopted is that of a queuing system, with the individual as a “server” that undertakes 
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or participates in arriving activities. Additionally, within this framework, the effect of 

activities that arise during schedule execution can also be accounted for. The range of 

behavioral insights drawn from such a behavioral perspective (a queuing system) is 

further explored in this study, as stated in the second objective above. In particular, 

this study further investigates the interrelationship between activity 

scheduling/participation decisions and the evolution of the queue, such as the queue 

length and other properties. The time-dependent properties of the activity queue are 

examined since activity stress is related to state of the queue, under the assumptions 

of the activity scheduling modeling framework in this study. Under the third 

objective, empirical evidence of the concept of “activity stress” is provided to 

illustrate the operational potential of the proposed framework.  

The next section presents an overview of the research methodology adopted for 

pursuing these objectives and tasks. 

 
1.2 Overview of Research Methodology 
 
To investigate route choice dynamics with respect to the objectives described above, 

a model was used consisting of two main components: a) the individual user 

decisions component, which includes route switching, the mechanisms for updating 

travel times, mechanisms that trigger updating and learning, and a mechanism for 

route selection based on the subjective weighing of objective probabilities of travel 

time improvements, and b) a network performance model, in this case an agent-based 

simulation model of individual experience given the collective effects arising from 

the interaction of the agents’ route choice decisions. The interactions are captured 
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using a simple cost function that yields the mean objective travel times on links given 

the corresponding flows. The resulting travel times are then used as input in the user 

decision component, generating a set of new route choice decisions for the next day, 

and so on. Experiments are conducted using this simulation model with a hypothetical 

network to analyze the day-to-day dynamics of the system under different behavioral 

mechanisms. Note that the performance modeling has been kept to a bare minimum 

of complexity in order to focus the study on the route choice mechanisms; it would 

have been possible to use a more elaborate traffic simulator, though that might reduce 

the clarity of the resulting insight. 

In order to investigate the effect of different assumptions on activity scheduling and 

participation decisions on the time-dependent properties of the activity queue, a 

discrete-event simulation for an M/G/1 queuing systems was developed for evaluating 

the individual activity scheduling process under different activity service and 

selection rules. The simulation model consists of two basic events, an activity arrival 

and a completed activity departure, that alter the state of the system. A next-event 

time advance approach is used to advance the simulation clock. The process of 

advancing the clock from one event to the next is continued until a stopping condition 

is satisfied, in the case of this study a set number of completed activities. To provide 

empirical support for the concept of an “activity stress,” an activity participation 

threshold was estimated using data on observed activity participation decisions. The 

development of simulated maximum-likelihood estimation procedures for dynamic 

discrete choice models, such as kernel-logit (mixed-logit) and probit models has 

relaxed many limitations, such as time dependence and substitution patterns. These 
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procedures are adapted and applied to an activity participation model based on the 

concept of a stress-threshold over time. 

1.3 Significance of Research Objectives and Contributions 
 
As mentioned previously, this research seeks to understand the dynamics behind route 

choice and activity scheduling decisions. From a scientific standpoint, this research 

adds to our understanding of the interrelationships between the microscopic behaviors 

of users in a traffic system and the macroscopic behavior of the system in relation to 

travel and activity patterns over time. Transportation systems are complex nonlinear 

social decision systems, where agents (sometimes) make non-cooperative decisions, 

the consequences of which are determined collectively from the interactions between 

users with varying information availability, technological capabilities, and decision-

making capabilities. Providing information (via ICT, ATIS, ITS, etc…) to these 

systems adds complexity, possibly increasing user interaction, increasing randomness 

and thus, unpredictability in system behavior. Additionally, information may also 

allow for the exertion of regulatory effects. Furthermore, these systems, termed 

“symplectic” systems, are more complex than physical systems (fixed rules), due to 

human behavior (Herman 1992). 

From a more practical standpoint, our ability to understand qualitatively and describe 

mathematically these behavioral and physical processes and their interactions may 

permit us to devise strategies and policies to manage these systems and guide them 

along socially desirable paths. Practical applications include the evaluation of demand 

management strategies, such as demand peak spreading, congestion pricing, ICT-
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based demand management (telecommuting), and feedback and education programs 

that may lead to long-term behavior adjustment. 

The investigation of route choice dynamics examines the day-to-day behavior of 

traffic flows under different user decision mechanisms. Three aspects of route choice 

decisions are investigated: i) travel time perception; ii) travel time updating and 

learning; and iii) risk attitudes. Notwithstanding the work done on travel time 

perception in past research, the issue of perception updating has received less 

attention, due to its latent nature. Furthermore, risk attitudes, viewed as the weighing 

of objective outcome probabilities, have also been given little attention in the 

transportation field. Thus, this investigation seeks to contribute to our understanding 

of these decision dynamics, focusing on their implications on system performance, 

with particular emphasis on convergence. Specifically, understanding the 

convergence of the system, if any, under the behavioral mechanisms proposed, may 

offer insights into the validity of an assumed equilibrium state, commonly used in 

transportation planning practice. Although no concrete conclusions about the 

existence of an equilibrium state can be made, this study provides indications of the 

reasonableness of this assumption given behaviorally plausible user decision 

mechanisms.  

 

With respect to activity scheduling, a framework is developed to address the dynamic 

aspects of individual activity scheduling, and address the shortcomings of past 

models, building on an analogy between the individual activity scheduling process 

and the operation of a single server queuing system. Past studies have addressed only 
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to a very limited extent, or ignored altogether, the effect of unplanned activities 

generated during execution, the role of latent activities, and adjustments made to the 

initial schedule of tentatively planned activities. This study contributes to our 

understanding of these factors by considering their implications on the empirical 

analysis of reported (observed) activity diaries. This study also extends past 

investigation on activity scheduling by utilizing results from queuing theory in 

studying the individual activity scheduling process. Finally, this study provides an 

operational model of activity participation to illustrate the amenability of the 

proposed framework towards being operational. This model further provides 

additional insight into the role of activity stress as it relates to activity participation 

decisions. 

1.4 Outline of Remaining Chapters 
 
The next chapter provides a review of relevant literature pertaining to the objectives 

discussed in this chapter. In particular studies related to route choice models, activity 

scheduling models, and behavioral dynamics are reviewed and discussed as they 

pertain to the research objectives. Chapter 3 presents models of route choice 

dynamics, including mechanisms for travel time perception and learning, and risk 

attitudes. Simulation experiment results investigating the effect of these mechanisms 

on system performance are presented and discussed in Chapter 4. Chapter 5 presents 

models of activity scheduling dynamics. Chapter 6 presents simulation results that 

illustrate the range of behavioral insights gained from the models presented in 

Chapter 5. Additionally, an estimated mode of activity participation is presented and 

discussed. Chapter 7 presents concluding remarks for this investigation.  
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Chapter 2.0 Background and Literature Review 
 
This chapter discusses issues relevant to an investigation of route choice and activity 

scheduling dynamics, and presents a review of existing modeling approaches. There 

are three main goals of this review. First, current knowledge on user route choice 

behavior is synthesized with respect to the research objectives presented in Chapter 1. 

In particular, past studies on modeling the interdependence between user behaviors 

and system performance are visited, and studies that examine the effects of learning, 

in conjunction with risk and uncertainty perception, are discussed. Second, an attempt 

is made to synthesize current knowledge on activity scheduling and activity-based 

approaches to travel analysis. Along this line of thought, the effectiveness of current 

modeling approaches in capturing the dynamics of activity participation decisions 

over time will be discussed. Models of activity participation and time allocation taken 

from economics, regional science, and transportation are reviewed. The third 

objective is to recognize the essential characteristics of the dynamic processes under 

study, outline the approaches used by other researchers, and highlight their 

advantages and limitations with respect to the research issues of interest. This review 

is not intended to be comprehensive with respect to related streams of research. In 

view of the main objectives of this study, this chapter focuses on the following areas: 

i) approaches to modeling the interdependence between day-to-day commuter route 

choice decision and system performance, in relation to learning and uncertainty and 

risk perceptions; ii) approaches to modeling activity scheduling, activity participation, 

and time allocation; and iii) decision processes in complex dynamic environments.  
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2.1 Models of User Behavior and System Performance 
 
The dominant approach for capturing the interdependence between user behavior and 

network (system) performance has been to solve for an assumed equilibrium under 

various assumptions on this behavior. For example, when users are assumed to select 

paths that minimize their perceived travel times, a stochastic user equilibrium flow 

pattern can result (Sheffi 1985). Although widely used in planning practice, 

equilibrium approaches have two main shortcomings. First, they rely heavily on the 

assumption that the equilibrium state exists, is unique, stable, and converges quickly, 

though no empirical evidence is available to support these assumptions. Second, the 

effect of factors such as heterogeneity in users’ behavior, learning and perception 

processes, and random variations in demand response and network characteristics are 

difficult to capture.  

 

Extensions of the classical equilibrium framework that consider the day-to-day 

adjustment processes of traveler decisions were first explored in Beckmann, 

McGuire, and Winsten’s (1956) seminal contribution to network modeling. Day-to-

day adjustment models of departure time and route decisions of commuters in 

response to experience and other information were proposed by Mahmassani and 

Chang (1986) and Mahmassani (1990). The consideration of day-to-day adjustment 

resulted in the development of disequilibrium approaches to investigate the 

transportation system’s dynamic evolution and properties. Cascetta (1989) proposed a 

Markov chain formulation for analyzing day-to-day route choice dynamics. Cascetta 

and Cantarella (1991) further extended this formulation to include within-day 
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dynamics, and more recently (1996) have derived conditions for the existence and 

uniqueness of an equilibrium state in various dynamic process models for 

probabilistic assignment. A “tatonnement” adjustment process model, based on 

optimal control theory, has also been proposed, but no user behavioral models were 

embedded in the equations describing the day-to-day dynamics (1994).  

 

Another approach to investigating the relationship between travel choices and 

network performance, which is recently gaining attention, consists of studies that 

either simulate the network conditions in response to decisions from real "actual" 

commuters (Mahmassani et. al. 1986, Mahmassani 1990, Helbing et. al. 2002), or 

simulate both the network and individual user decisions (Mahmassani and Chang 

1986, Peeta and Pasupathy 2001). These studies attempt to circumvent the difficulty 

faced by equilibrium and disequilibrium approaches in capturing user behavior at the 

desired level of richness, simultaneously with measurements of prevailing conditions. 

Additionally, these approaches provide the ability to investigate the dynamic system 

evolution, in particular convergence and stability, and the mechanisms underlying the 

day-to-day choice behavior of users. Although one shortcoming of the experimental 

approach is the difference between user behavior in a simulated environment and in a 

real network, for the daily commuting decision environment these experiments are 

quite amenable since all participants are working commuters themselves and the route 

choice decision is typically made daily (see also Mahmassani and Jou 2000). Aside 

from the relationship between travel choices and system properties, the perception 
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and integration or of travel information and experiences (learning behavior) has also 

been studied, though to a much lesser extent than traveler choice processes.  

 
 
2.2 Models of Learning and Route Choice 
 
Learning behavior involves the acquisition information or experiences, and relating 

them with current conditions and perceptions to make decisions. In the context of 

route choice, individuals continually learn about the travel times in a network as they 

make repeated choices and gain experiences day-to-day. Many dynamic system 

properties of traffic networks, such as the convergence, robustness, and existence of 

equilibrium states are affected by the learning behaviors of users. Thus, learning plays 

an important role from a network performance standpoint in driving the day-to-day 

evolution of flows. In the context of route choice, learning processes allow 

individuals to relate historical experiences with current travel time experiences, thus 

shaping their estimates or perceptions of travel times. Additionally, learning 

processes may lead to changes in the perceived uncertainty associated with the travel 

time estimates, consequently affecting risk attitudes and perceptions. Learning and 

risk attitudes are two interrelated parts of a decision making process. However the 

specific mechanisms operating behind their relationship in the context of individual 

route choice and network traffic flow evolution have not been fully investigated. 

Thus, since past experiences likely influence users’ perceptions of network 

performance, modeling the mechanisms by which users integrate or learn from past 

experiences and information from other sources is important. 

 



 

 17 
 

Behavioral decision theorists (psychologists) have extensively addressed the 

integration of experience and information, and its role in decision-making (Einhorn 

and Hogarth 1981; Ariely and Carmon 2001; Wallsten et al. 2006). These studies 

have examined learning at the individual-person level, focusing on the effects of 

information acquisition and integration on decision making in both deterministic and 

uncertain environments. However, these studies have typically ignored the effect of 

other decision makers and different information environments. Information 

availability plays an important role in determining which theories are feasible in 

different environments Economists have also investigated learning behavior 

experimentally and theoretically, but on a macroscopic scale. These studies examine 

the role of simple information adjustment rules in driving equilibrium processes in 

games under different information environments (Roth and Erev 1993 Crawford 

1995; Camerer et al. 2002). Theoretical work in learning and games has generally 

relied on the mathematics of stochastic processes to prove theorems about the limiting 

properties of different rules (Weibull 1995, Fudenberg and Levine 1998). Learning 

strategies with realistic limiting properties are often regarded as useful models of 

“actual” learning, but if limiting behaviors take too long to unfold these limiting 

theorems are less useful than modeling the actual path of equilibration over time. 

Additionally, studies in the game theory literature are less concerned with the 

individual attributes of the players, paying less attention to the effect of learning on 

personal perceptions of payoffs and uncertainty. Learning in the context of machine 

learning has been aimed at determining classification based on new samples, and thus 

are more algorithmic than behavioral in nature (Mitchell 1996; Duda et al. 2001). 
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Thus, their applicability to actual human decision making is limited due to the intense 

information processing and calculation requirements of their rules. 

 

Despite the importance of learning in the dynamics of route choice behavior, the 

subject has received limited attention from transportation researchers. Horowitz 

(1984) suggests a process where past experienced costs are integrated according to a 

weighted average, and finds that even under this reasonable rule, the system may not 

converge to an equilibrium state. Mahmassani and Chang (1986) examine a myopic 

adjustment and experience-based model of perceived travel time for departure time 

choice. Under the myopic adjustment rule, the perceived travel time is a function of 

the latest day’s outcome exclusively. The experience-based model is similar to the 

average rule suggested by Horowitz (1985). They find that convergence occurs only 

when all users are satisfied with their departure times within a tolerable limit, and 

interestingly that using the experience-based rule does not always lead to 

convergence as expected. Ben-Akiva et al. (1991) propose a model where the updated 

perceived travel time is a weighted average of the historically perceived travel time 

and the time provided by ATIS, where the weight indicates the relative importance of 

historical and information provided travel times. Although all the models previously 

described address travel time perception and updating mechanisms, these models do 

not account for the uncertainty or variance associated with travel times. The variance 

and uncertainty associated with travel time estimates are important, since they may 

significantly affect an individual's sense of a route's reliability. Additionally, the 

above studies assume that personal perceptions and attitudes do not vary with time.  
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To account for both the integration of travel times and the associated uncertainty, a 

Bayesian updating model has been proposed in the transportation literature (Kaysi 

1991, Jha et al. 1998). A Bayesian statistical framework can account for updating 

both the estimate of the mean and variance in light of new information (DeGroot 

1970). Recently, Jha et al. (1998) proposed a Bayesian framework for updating the 

perceived mean travel time and variance in light of experience and information. 

However, their study makes the key assumption that individuals update their 

perceived travel times whenever new information is obtained or new travel times are 

experienced. This assumption may be unreasonable since a cost may be associated 

with each update, making updating every time a new piece of information or 

experience is obtained infeasible. Additionally, individuals may only consider some 

experiences or information as salient or "new," precluding updating every experience. 

Thus, rather than updating any new experience, individuals may learn selectively, 

updating only under certain conditions or triggers. Jha et al. (1998) address the issue 

of updating travel times and the uncertainty associated in a day-to-day context, but do 

not address the mechanisms that trigger updating.  

 

In addition to the perception of travel time uncertainty, risk perceptions also affect 

route choice dynamics. Risk perceptions affect the decision-making process in light 

of perceived uncertainty. Additionally, depending of the risk attitudes of individuals, 

the perceived gains and losses experienced from day-to-day may would differ across 

the population of users in the system. 
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2.3 Risk Perception in Route Choice Models 
 
The effect of risk attitudes have been extensively examined in decision science, 

economic, and psychological studies concerning decision making under uncertainty. 

Decisions under uncertainty require assessment of two attributes: i) the desirability 

(or “value”) of possible outcomes and ii) their respective likelihood of occurrence. 

Under the classical theory of decision making under risk, the utility of each outcome 

is weighted by its probability of occurrence (Von Neumann and Morgenstern 1947; 

Bernoulli (1738) 1954). Expected utility theory (EUT) reflects attitudes toward risk 

through the shape of the decision maker’s utility function. Risk aversion is reflected 

in a concave utility function, while risk seeking is associated with a convex function.  

 

The expected utility model lends itself to be operationalized and thus underlies much 

of the normative application of decision analysis in practice. However, experimental 

studies of actual decision under risk have shown that individuals often violate the 

expected utility model. An alternate perspective is provided by prospect theory and its 

extension to cumulative prospect theory (Kahneman and Tversky 1982). Under 

prospect theory the value function and the weighing function exhibit diminishing 

sensitivity: the marginal impact diminishes with distance from a reference point. This 

function overweighs small probabilities and under-weighs moderate and high 

probabilities, explaining risk attitudes encountered in experimental data (Kahneman 

and Tversky 1979; Payne et al. 1981; Wehrung 1989). Thus, risk is manifested 

through the weighing of objective probabilities. This weighing function has been 

estimated for gains and losses using median data (Kahneman and Tversky 1982). 
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Despite its conceptual attractiveness to behavioral decision theorists, prospect theory 

has not been operational using actual data sets.  

 

The role of risk in travel behavior analysis has also received some, albeit limited, 

attention, particularly in conjunction with the uncertainty or reliability of travel times. 

Early work in the area of reliability examined the impact of congestion on the 

uncertainty of travel time in the context of departure time choice, using simulation 

experiments (Noland and Small 1995; Noland et al. 1998). However, the authors did 

not relate their measure of risk (probability of being late) to explanatory variables, 

and learning (or feedback) effects in the demand component of their simulation were 

also ignored, resulting in constant perception parameters (values of time) across 

iterations. Recently, learning and travel time uncertainty effects were considered in 

simulation experiments also concerning departure time choice (Ettema et al. 2005). 

Learning and adaptation effects were modeled using reinforcement type learning 

rules. Similar to other studies, the authors also show that considering travel time 

uncertainty or variance strengthens the predictive powers of models of user response 

to congestion. However, the study did not include the effect of different user types, 

such as risk takers and avoiders, or optimizers and satisficers.  

  

In the context of route choice decisions, researchers have recently begun to focus on 

the effects of learning, travel time uncertainty, and risk perception. Both early and 

more recent laboratory experiments reveal that learning and uncertainty are 

important, showing that route switching behavior does depend on previously 
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experienced travel time differences and their perceived variances (Mahmassani and 

Liu, 1999; Nakayama et al. 1999; Srinivasan and Mahmassani, 2000;  Mahmassani 

and Srinivasan, 2004; Avineri and Prashker 2003, 2005). Many studies have also 

examined risk and uncertainty in route choice at a more microscopic level, focusing 

on individual attitudes and perceptions, but not examining the system-wide network 

effects. Econometric methods for measuring users’ risk aversion and their application 

to survey data on route choice were recently examined (de Palma and Picard 2005). 

The authors highlight the significance of key socio-economic factors in explaining 

levels of risk aversion but not risk seeking. However, their methodology is consistent 

with situations where individuals tend to over or under evaluate the probability of 

risky events, hence confounding risk aversion and biased perceptions of probabilities. 

Route choice has also been modeled as a one-armed bandit problem (choice between 

a random and safe route), under different information regimes (Chancelier et al. 

2007). Through numerical examples, the authors show that individuals reduce their 

uncertainty about travel times as a function of their risk aversion. More specifically, 

individuals who are risk neutral tend to select the random route and stay with it, while 

individuals who are more risk averse tend to pick the safe route more frequently with 

increasing risk averseness. Interestingly the authors show that users indifferent 

between the safe and random route after experiencing one or the other value learning 

more before settling on a final route choice (convergence). The authors’ approach 

allows study of the individual economic benefits of learning. However, it does not 

consider benefits from the choices of others (through the congestion resulting from 

the collective decisions of users). Although recent studies route choice have examined 
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and addressed travel time uncertainty and risk attitudes, they do not consider the joint 

effects of congestion and more importantly activity scheduling. 

 
 
2.4 Models of Activity Analysis: Space-Time Geography 
 
The origins of activity analysis trace back to Chapin’s theory of activities and urban 

land use (Chapin 1974) and Hägerstand’s space-time prism (Hägerstand 1970). 

Chapin argues that activity patterns arise from an individual’s endogenous propensity 

to participate in activities, further emphasizing the role of an individual’s perception 

of service and facility quality. Hägerstand also believes that activities arise from 

individual propensity to engage in activities, but in contrast emphasizes the 

importance of spatial-temporal constraints (space-time prism) in determining the 

feasibility of an activity pattern (Hägerstand 1970; Burns 1979). The space-time 

prism assumes that activity scheduling arises from exogenous spatial and temporal 

constraints imposed on the individual, while Chapin’s emphasizes endogenous 

factors, such as personal attributes and motivation. Thus, a key difference between 

Chapin’s theory and Hägerstand’s space-time prism lies in the relative focus on the 

type of constraints and factors (endogenous or exogenous) acting on the individual. 

Additionally, in the context of travel behavior analysis, although the space-time prism 

is elegant in its presentation, it may have inspired researchers to focus more on 

revealed travel behavior, while the underlying processes and mechanisms that lead to 

the observed behavior have received less attention.  
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More recently, researchers have revisited Hägerstand’s (1970) conceptual framework 

of time-space geography (the space-time prism), which offers a means of integrating 

the spatial and temporal components of travel-related decisions underlying the 

concepts of travel demand and accessibility. Recker and his collaborators (Recker 

1995; Recker et al. 2001) have taken a mathematical programming approach towards 

modeling the household travel-activity decision-making process in the household 

activity pattern problem (HAPP), similar to the Pick-up and Delivery Problem with 

Time-Windows PDPTW. They develop a new solution process based on dynamic 

programming methods to solve for the HAPP problem. Recker’s empirical 

application of the HAPP modeling approach suggests the potential of activity-based 

modeling approaches for accessing the limits and bounds of travel time and 

accessibility improvements from modifications in a household’s activity pattern. 

However, these models currently place assumptions and restrictions on the behavioral 

and uncertainty aspects of the modeling process, ignoring the stochastic nature of 

both activity participation and travel time. 

 
2.5 Time Allocation and Time Use Models 
 
Alternatively, activity patterns can also be viewed as an allocation problem where an 

individual allocates available time and money to engage in activities and travel, 

subject to income and time constraints. One of the earliest time allocation models 

assumes that individuals maximize utility as a function of time allocated to activities 

and consumption of goods during activities (Becker 1965), capturing the relationship 

between time allocated to work and the potential to consume goods. Although 
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Becker’s model is useful for understanding time and money allocation, spatial factors 

and consequently travel were ignored. A similar model that accounts for travel 

describes mode choice as the allocation of time and money (Truong and Hensher 

1985), but ignoring the complexity of travel in the context of activities. To address 

these issues, Kraan (1996) proposes a more general model that describes the 

allocation of time and money to activities and trips with varying purposes, also 

accounting for associated travel distances and activity frequencies. However, Kraan’s 

model assumes that activity frequency and travel distances are independent, which is 

unrealistic since intuitively the frequency an activity and distance to the activity are 

related. Furthermore, the utility function did not include travel time, precluding 

examination of tradeoffs between travel time and time allocated to an activity.  

 

The previously mentioned models capture the tradeoff between travel and activities, 

but provide no explanation as to why specific origin-destination trips are made. Jara-

Diaz` (1994) proposed a model that attempts to address this issue, by assuming that 

utility is maximized based on time allocated to activities, travel, and trips by specific 

modes, in relation to goods consumed at different locations. Time is allocated to trips 

made by a specific mode, capturing mode choice, and goods can be consumed at 

different destination zones and prices, capturing spatial effects. Also, travel times by 

specific modes are incorporated directly into the utility function. One limitation of 

this and other models is that the decision variables are time allocated to activities, 

mode choice per trip, goods consumed at each destination, work hours, and number of 

trips, precluding examination of decisions concerning the timing of activities and 
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decisions regarding which trips to make. Thus, although these models based on 

microeconomic theory describe and capture the allocation of time and money to 

activities and trips, and their associated tradeoffs, they do not address the temporal 

dimension of individual “scheduling” behavior. Activity patterns or schedules occur 

in both temporal and spatial contexts, and although time allocation models have 

partially addressed the spatial aspects, the order or timing of these activities have not 

been addressed. 

More recently, greater attention has been given to time allocation among 

discretionary versus mandatory and in-home versus out-of-home activities (Kitamura 

et al. 1996; Bhat and Misra 1999; Yamamato and Kitamura 1999). These studies 

analyze the tradeoffs in allocating time to different types of activities. However, these 

studies make no distinction between travel time and duration of out-of-home 

activities. To address this distinction, many researchers have begun investigating 

tradeoffs between time allocation to activities and associated travel times. Meloni et. 

al. (2004; 2007) extended Kitamura’s formulation (1996) by defining an endogenous 

variable for trade-off between trip times and discretionary activities. Despite their 

account of travel times, these allocation models still do not adequately address the 

spatial dimensions of travel and activity patterns. 

 
2.6 Econometric Models of Activity Patterns 

Transportation researchers have for the most part used theoretical and conceptual 

frameworks from other areas and applied these to predicting activity patterns. 
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Transportation work dealing explicitly with travel and activity scheduling falls into 

one of two categories, econometric/utility-based or heuristic/rule-based.  

Econometric or utility-based models rely on the assumption that individuals choose 

an activity pattern or schedule that maximizes their utility. The simplest model 

applies a Multinomial Logit (MNL) to the choice from a set of complete activity 

patterns (Adler and Ben-Akiva 1979). Aside from limitations stemming from the IIA 

property of the MNL, this early model makes other assumptions that are now 

considered behaviorally unrealistic. First, individuals are assumed to determine their 

activity patterns at one point in time, though scheduling is continuous process, 

occurring over different time horizons. Second, individual’s planned and observed 

schedules are assumed equivalent. More realistically, original schedules are modified 

in light of unexpected activities that arise during execution. To address these 

assumptions Nested-Logit models of activity patterns have also been developed 

(Kawakami and Isobe 1989; Bowman and Ben-Akiva 1996; Wen and Koppelman 

1999), differing from one another in the type of choices made in the hierarchical 

decision structures. Nested-Logit models break down the scheduling process into 

partial decisions embedded inside a hierarchical nested decision structure, thus 

assuming that choices made at high levels are influenced by the utility from lower 

level alternatives, operationalized as the “logsum” term. While these models can 

capture a more realistic decision process compared to MNL, a major limitation lies in 

how the temporal aspects, the timing and duration of activities, are represented. For 

example, in Bowman and Ben-Akiva’s model (1996), only four time periods are 

taken into account, limiting the temporal aspect of scheduling captured.  
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To better account for the time dimension and other shortcomings, Bhat et al. 

developed CEMDAP (2004) a comprehensive econometrically based model system 

of complete activity patterns that accounts for choice of type of activity, duration of 

activities, travel time to the activity, and their timings. Despite its completeness in 

modeling individual activity schedules, the model is primarily an econometric model 

system that accounts for observed outcomes, but is limited in explaining the process 

leading to these outcomes.  A utility-based modeling framework that also models 

complete activity schedules is STARCHILD (Recker et al. 1986), which differs from 

other utility-based models by i) focusing explicitly on activities; ii) capturing the 

interrelationship between scheduling decisions and space-time characteristics of the 

transportation and activity systems; and iii) capturing the choice set formation 

process. STARCHILD assumes that individuals generate activity patterns that 

maximize utility, subject to constraints such as the travel availability and temporal 

feasibility. The utility of a pattern is assumed to be composed of utilities for its time-

component parts: i) travel time to the activity; ii) waiting time for the activity to start; 

and iii) actual participation time. An important implication of these assumptions is 

that the disutility from the effort in scheduling activities may exceed the utility from 

combining multiple sojourns into a single trip, implying that the cost of scheduling 

influences the outcome of the scheduling process. This further implies that activity 

scheduling is not simply an optimization problem where travel time is minimized or 

utility is maximized, but a “satisficing” process that results in an acceptable activity 

schedule with acceptable scheduling effort. 
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2.7 Heuristic Approaches to Modeling Activity Scheduling 
 
In contrast to econometric approaches, rule-based or heuristic approaches focus 

explicitly on the sequence of decisions that result during scheduling and are 

implemented as a set of condition-action (IF-THEN) rules. A key assumption of 

SCHEDULER (Garling et al. 1989) is that individuals carry out a heuristic search in 

scheduling activities. An individual first selects a set of activities to perform with the 

high priorities from “long-term memory” (LTM), including space-time information. 

These activities sequenced to satisfy time constraints and minimize distance traveled 

using a “nearest neighbor” heuristic. The schedule is “mentally” executed and 

conflicts are resolved, with higher priority replace low priority activities. Finally, very 

low priority activities fill in open time slots. A slight extension of the SCHEDULER 

model is GISICAS (Kwan 1997), which focuses more on scheduling in a spatial 

context under ATIS. In regards to the scheduling algorithm, GISICAS is similar to 

SCHEDULER, but the difference lies in the spatial search heuristics used, and its use 

of GIS to define feasible opportunity sets with respect to the current locations and the 

immediate spatial-temporal constraints. Another heuristic model is AMOS (Pendyala 

et al. 1998), which simulates the travel decisions of individuals and the schedule 

adaptation process. The adaptation process is viewed as a trial-and-error process in 

which the individual tries several different alternative activity-travel options until 

he/she reaches a satisfactory schedule. The model repeats this experimentation 

process to achieve stability. One obstacle faced by the model is the empirical validity 

of decision rules. One model system that addresses this issue is ALBATROSS 

(Arentze and Timmermans 2000), developed with the objective of elaborating on 
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previous work by deriving the choice heuristic rules from empirical activity diaries. 

Although conceptually appealing, a common concern faced by heuristic/rule-based 

models is the difficulty in calibrating them.  

In recent years there has been a dramatic improvement in operational comprehensive 

activity-based models for travel demand analysis, in addition to analytical studies that 

examine the interrelationship between choices and explanatory variables. Despite an 

improved understanding of the interrelationship between activity-travel choices, the 

issue of dynamic activity generation has been given limited attention. Historically, 

trip and tour-based models predict trip and tour generation as a function of socio-

demographic variables and land use-accessibility measures. Most activity-based 

models have adopted the same approach to modeling activity participation. For 

example, CEMDAP (Bhat et al. 2004) predicts activity generation as a function of 

age, gender, race, income, and other socio-demographic variables, in addition to the 

nature of work schedules and median income of residential zone. Activity generation 

is definitely much more complex. Under the activity generation model developed by 

Habib and Miller (2006), activity generation is synonymous with modeling activity-

agenda formation within an econometric framework, where activity utility is 

composed of a “goal” and “process” components. However, in their model they only 

focus on “goal” utility, precluding analysis of the “process” utility of activities which 

reflects activity scheduling and re-scheduling. The Aurora model, which simulates 

adaptation behavior in scheduling, is one of the few models in which daily activity 

generation is a complex function of history, available time, and time pressure, 

focusing on the underlying behavioral mechanisms (Timmermans, et al., 2001; Joh et 
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al., 2002). However, the model does not capture the effects of socio-demographic 

variables or planning across varying time horizons. Furthermore, the validity of the 

model needs to be tested with real-world data. 

Given the need for models that account for the dynamics of route choice and activity 

scheduling decisions, the next section reviews the literature on dynamic decision 

processes and cognitive mechanisms, focusing on learning behaviors and updating. 

 
2.8 Behavior Dynamics: Decision Processes and Mechanisms 
 
In the transportation literature, most models of travel and activity scheduling 

behavior, cross-sectional or longitudinal, are based on the utility maximization 

paradigm. The validity of this behavioral framework in modeling actual travel-

activity behavior is questionable. First, this framework assumes that individuals 

evaluate all alternatives and select the one with the highest utility. However, the 

repetitive nature of choices in addition to attention conflicts during information 

acquisition, suggests the presence of heuristic search processes in user behavior 

(Chang and Mahmassani 1988; Garling 1998; Mahmassani and Srinivasan 2004). 

Furthermore, evidence exist which suggests inertial and habitual effects, in addition 

to the presence of “transaction” costs for implementing choices, unaccounted for 

under utility maximization (Liu and Mahmassani 1998; Timmermans et al 2001). 

Given the limited number of modeling frameworks that recognize these effects and 

the unexplained variability in existing models, there is a need to better understand the 

cognitive and decision processes underlying observed travel-activity behavior.  
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Models of day-to-day route choice dynamics account for the adjustment in trip-maker 

choices from day-to-day in response to pre-trip information and past experience, 

leading to an inherently more dynamic representation that captures the daily 

adjustment process. Past studies have reported considerable variability in trip-making 

behavior from one day to the next (Hatcher and Mahmassani. 1992; Jou and 

Mahmassani 1998; Srinivasan and Mahmassani 2000). Possible sources of this 

variability include user characteristics, travel time uncertainty, and varying trip 

objectives. Dynamics and rhythms have also been reported in the activity scheduling 

literature. Huff and Hanson (1990) concluded that individual travel-activity patterns 

are characterized temporally by both repetition (routine) and variability (non-routine). 

 

Mahmassani and Chang (1985, 1987) proposed a two-stage framework for analyzing 

day-to-day behavior. During the first stage, the commuter decides whether to switch 

routes and/or departure time on the next day, based on current experience and 

information. Conditional on this decision, in the second stage the user selects a new 

route or determines the magnitude of departure time adjustment. The authors also 

proposed that route choice and departure time decisions are based on bounded-

rational behavioral rules. Under this framework, a user will switch routes only if the 

experienced travel time savings exceeds a pair of indifference bands, relative to travel 

time savings and minimum travel time savings. Similarly, users will adjust departure 

times only if the user arrives outside the corresponding schedule delay indifference 

band. These models were calibrated using data from interactive experiments. Insights 

from these models and experiments are summarized by Mahmassani (1990) as 
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follows: i) indifference bands vary with experienced congestion and information; ii) 

users are more likely to switch departure times over route; iii) users tolerate greater 

schedule delay when facing increasing travel time fluctuations; and iv) impacts of 

unsuccessful experiences are more drastic and longer than successful ones. Many of 

these findings have been independently validated based on travel diary surveys of 

commuters in actual systems (Mahmassani and Jou 1998). Although these studies 

considered the decision to stay or switch routes, they do not address the specific 

choice of which path to take.  

 

From the perspective of route choice, route switching is a byproduct given one’s 

current route choice. Investigations on route choice under ATIS view route choice as 

the net outcome between (i) inertial effects that capture the seemingly inherent 

resistance towards switching and (ii) compliance or propensity towards the best path. 

Inertia reflects lower cognitive effort, information search and processing costs, 

switching costs, in addition to user’s familiarity and habits. Compliance reflects 

preference for more efficient routes, in addition to travel time savings and congestion 

avoidance. Srinivasan and Mahmassani (2000) modeled route selection under real-

time information and investigated inertial and compliance mechanisms. Under their 

framework, a distinction between the decision situation where the current is the best 

path and other situations is made, with compliance meaning switching to the best 

path. The six possible combinations define hypothetical alternatives in a random 

utility model with a nested structure, in which the systematic utility component 

contains four terms corresponding to inertia, compliance, interaction between the two, 
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and a path-specific term. Analysis reveals that both inertia and compliance are 

significant mechanisms underlying route choice behavior. Inertia is negatively 

affected by congestion and travel time delay, while reinforced by information quality. 

Compliance is negatively affected by switching costs, while encouraged by travel 

time savings and information quality (Srinivasan and Mahmassani 2000).  

 

While existing work on commuter dynamics provides some fundamental insights into 

the factors influencing day-to-day dynamics, it also suggests areas for further 

investigation. Additionally, previous work done presents and implements a general 

dynamic framework that can represent a variety of dynamic and stochastic processes. 

One limitation is that dynamic decision processes are not explicitly considered. Also 

additional research is required to extend the simple learning model proposed in this 

framework. The dynamic framework proposed by the authors may be generalized to 

explore cognitive decision processes and behavioral mechanism underlying commuter 

behavior. These mechanisms are naturally affected by perceptions of system 

performance from experience and information, in addition to the updating of these 

perceptions through passive and active learning processes.  

 
 
2.9 Synthesis 
 
This chapter briefly outlines and discusses current research on modeling travel-

activity behavior dynamics, highlighting the deficiencies in existing approaches. 

Additionally opportunities for future investigations are identified.  
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Early studies on day-to-day trip-making dynamics have focused on modeling the 

departure time and route switching decisions of commuters, under a “bounded-

rational” decision framework. Later studies extended these models to account for trip-

chaining and inertial effects and compliance in route selection. These studies have 

identified, specified and estimated indifference thresholds relating to these commuter 

decision dimensions, using empirical data from laboratory-like experiments, in 

addition to field studies. Although valuable insights into complex human behavior 

were gained, these studies did not address the underlying cognitive and decision 

mechanism leading to these observations. More specifically, these models captured 

many psychological aspects, such as response to positive and negative experiences, 

correlation between choices across time, and the role of perceptions, but do not 

explicitly address the mechanisms by which these aspects operate. Furthermore, these 

studies investigated the timing of trips, but not the timing of the actual decisions, 

which play an important role in determining the short-term and long-term 

implications of decision dynamics. 

 

An enormous literature exists on the study of human activity engagement that spans 

several decades, ranging from studies in economics and geography, to sociology and 

transportation. Significant progress towards characterizing the temporal and spatial 

aspects of activities individually by their attributes has been made. These include 

modeling frequency and time allocation associated with activities, in addition to 

associated goods consumption and the interrelationships between travel-activity 

choices. However, understanding the process behind activity scheduling requires a 
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better understanding of the decisions leading to the observed temporal and spatial 

aspects of activities, in addition to related processes, such as activity generation. 

Thus, a better understanding of the decisions behind activity scheduling and 

participation, including their timing in relation to each other, and their role in 

determining the spatial and temporal characteristics of activity patterns, rather than 

individual activity classes, is required.  
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Chapter 3.0 Models of Route Choice Dynamics 
 
Investigating route choice decisions and the interaction of these decisions with the 

traffic system has both scientific and practical motivations. From a scientific 

standpoint, traffic systems are examples of complex nonlinear decisions systems, in 

which users make individual decisions, at times non-cooperatively, but the result or 

outcome of these decisions emerge collectively from the physical interactions of users 

with the system and each other. Understanding user decision processes and their 

interactions quantitatively and describing them mathematically are important from a 

practical standpoint. Traffic congestion and environmental problems affect the quality 

of human life, both of which result from the decisions of network users. Also, route 

choice decisions are essential to the planning and operation of transportation 

networks and systems, in terms of devising strategies and solutions to combat these 

system externalities. Thus, determining effective solutions to these problems relies on 

the ability to understand, predict and influence the space-time characteristics of users, 

which result from their decisions.  

 
3.1 Objectives of Route Choice Models 
 
This chapter presents models of route choice dynamics in traffic networks. The three 

dynamic mechanisms investigated and modeled in this chapter address the following 

behavioral aspects of day-to-day route choice decisions: i) travel time uncertainty 

perception; ii) travel time learning and iii) risk perception.  

 
The route choice decision model presented in this study consists of two main 

components: i) a route selection component; and ii) a travel time perception and 
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learning component. Risk and uncertainty perception are captured within the second 

component. Three behavioral learning perspectives are examined: i) Bayesian 

inference; ii) reinforcement; and iii) belief (epistemic). Furthermore, the models 

presented also seek to capture the effect of risk attitudes on day-to-day traffic flows. 

Under the decision making framework in this study, users with different risk attitudes 

vary in their weighing of objective probabilities, in a manner similar to Prospect 

Theory (Tversky and Fox 1995). Results from simulation experiments conducted to 

investigate the system implications of the behavioral assumptions invoked by these 

models are presented in the next chapter. This chapter focuses primarily on presenting 

the models and discussing their behavioral implications. 

 
The models presented aim to capture the interdependence between users’ travel time 

perception and learning/updating mechanisms (behavioral dynamics), and the day-to-

day evolution of traffic flows. These individual (user) level models are embedded 

inside a microscopic (agent-based) simulation framework to investigate their 

collective effects on the day-to-day behavior of traffic flows. Experiments are 

conducted using this simulation model to examine the effect of (i) travel time 

perception updating/learning, (ii) updating trigger/terminate mechanisms, and (iii) 

risk attitudes on traffic flow evolution and other dynamic system properties, 

particularly convergence. This study extends past efforts by (i) introducing and 

comparing alternative formulations for the travel time perception and 

updating/learning process, (ii) investigating the mechanisms that trigger and terminate 

updating, (iii) investigating users’ perceived uncertainty in the network, (iv) capturing 

users’ risk attitudes in the learning process, and (v) capturing the effect of all the 
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above on the day-to-day network dynamics, in particular convergence. The simulation 

experiments provide an exploratory analysis on how different learning rules affect 

individual travel time perception over time, and the role of risk attitudes in 

perception, that may subsequently aid in designing experiments carried out in an 

interactive collaborative decision-making type laboratory, with actual users.  

 
The remaining sections of this chapter specify the key elements and components of 

the modeling framework. A description of the simulation experiments performed, 

followed by presentation and discussion of key results, are found in the next chapter. 

 
3.2 Route Choice Modeling Framework  
 
Network traffic flow results from the interaction between users, their evaluation of 

past experiences, the resulting travel decisions, and the supply-side characteristics of 

the network. This section presents a route choice decision making framework that 

models and captures route selection, travel time learning/updating, and risk 

perception. Specifically, this framework consists of models of different mechanisms 

by which users integrate past with current experiences, and a mechanism that 

describes the weighing of objective probabilities. The detailed specifications of these 

models are presented in following sections.  

 
3.2.1 Route Choice Decision Process  
 
For a given day, an individual’s route choice yields an outcome or experience (travel 

time) that is a function of both the individual’s decision and those of other users in the 

system. The experience is integrated with past experiences through a travel time 

learning mechanism, consequently updating users’ perceptions of system 
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performance (network travel times). Based on the acceptability of the current travel 

time in light of past experiences, the individual will decide to switch routes or remain 

with the currently chosen one. Acceptability is based on the individual’s current 

perception of travel time, which depends on travel times experienced over a number 

of days, and the individual’s risk attitudes. Based on the perceived travel times and 

associated uncertainty, an individual weighs the chance of perceived success or 

failure resulting from switching routes. The success or failure is perceived, since 

individuals may be unsure of the accuracy of their own judgment. In the context of 

this study, the travel time uncertainty that users perceive arises from endogenous 

judgment errors, which affect the perceived error resulting from the stochastic 

behavior of the system. The day-to-day route choice decision process is illustrated in 

Figure 3.1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: Route Choice Decision Process: Information Flows, Decision Flows, and 
Influence from Observed and Unobserved Components 
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For a given day d, user n experiences a travel time de,
kn,T  along chosen path k in the 

network. Due to endogenous perception errors, this quantity may not be identical to 

the objective travel time. Based on an updating/learning mechanism, the user updates 

his perceived (updated) network travel times with the new experienced travel times. 

A route switching and consequently selection decision is made for the following day 

(d+1) based on perceived travel times and individual risk attitudes. Users begin using 

a network with an initial perception of the travel times and with associated 

uncertainty. This initial perception could represent the user’s “best guess” of travel 

times, influenced by past experiences, information or other personal rules. The next 

section defines the different components of the perceived travel times, namely the 

updated and experienced travel times, both of which are perceived with judgment 

error. 

 
3.2.2 Travel Time Perception 
 
In this study, route switching decisions are made on the basis of perceived route 

travel times that vary across individuals and are updated in light of travel times 

experienced from day-to-day. Perception error is assumed to arise from endogenous 

factors that affect the user’s judgment of the accuracy of this travel time. Thus, the 

updated perceived travel time resembles a “learned” travel time or travel time in 

“memory” that is updated as new travel times are experienced. Perceived travel times 

are updated based on travel time experiences on a particular day d and all days since 

the last update (d = 0, 1, 2, …, D-1). The updated perceived travel time can be stated 

as follows:   
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NnK,k , T u
kn,

u
kn,

u
kn, ∈∈∀+= ετ ,                (3.1) 

 
where  
 

u
kn,T : updated perceived travel time for person n on route k  

u
kn,τ : mean updated perceived travel time  

u
kn,ε : associated judgment error that is distributed Normal ~ N(0, u

kn,σ )  
 
Consequently, u

kn,T  is distributed Normal ~N( u
kn,τ , u

kn,σ ), with the distribution varying 

across routes and individuals. As individuals experience new travel times, u
kn,τ  and 

u
kn,σ  are updated accordingly through a learning mechanism, such as Bayesian 

updating or reinforcement learning. These learning mechanisms are described and 

discussed in section 3.4. Similar to u
kn,T , the perceived experienced travel time also 

consists of a mean and associated error, as follows: 

 
NnK,k , T de,

kn,
de,
kn,

de,
kn, ∈∈∀+= ετ ,                 (3.2) 

 
 
where  
 

de,
kn,T : perceived experienced travel time for person n on route k  
de,
kn,τ : mean perceived experienced travel time  
de,
kn,ε : associated judgment error, distributed Normal ~ N(0, de,

kn,σ )  
 
 

Consequently, de,
kn,T  is distributed Normal ~ N( de,

kn,τ , de,
kn,σ ), with the distribution varying 

across each route for each individual, and also varying across individuals. In this 

study de,
kn,τ  is assumed to be the objective (actual) travel time on a particular route. 

Also the perceived experienced travel time is assumed to have the same error as the 
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updated perceived travel time ( de,
kn,σ = u

kn,σ ). Behaviorally, this implies that individuals 

perceive their experienced travel times with the same error as the travel time they 

learn or update in memory, implying further that the uncertainty associated with the 

travel time judgments in memory carries over and influences the perception of 

experienced travel times. Thus, the experienced route travel time perceived by users 

reflects or is correlated with past experienced travel times for a particular route. 

 
Experienced travel times are integrated with perceived travel times in memory 

through learning mechanisms. Additionally, individuals make route switching 

decisions (and consequently route choices) based on these perceived travel times, in 

conjunction with risk attitudes that affect the perception of gains and losses among 

routes in the choice set. Both learning mechanisms and risk attitudes play important 

roles in individuals’ route choices across time. The following sections present and 

describe the route switching and learning mechanisms, used in this study.  

 
3.3 Route Switching Mechanism 
 
In this study, users base their day-to-day route choice decisions on perceived travel 

times for the best and currently chosen routes. Consider a user n who selects route k 

on day d, resulting in a perceived experienced travel time for the route de,
kn,T . Given 

the perceived best travel time d
bestn,T  on day d, the user makes a route choice decision 

for the next day (d+1) based on the difference between the perceived current and best 

travel times. If the difference is acceptable, the user will stay on the current path for 

the next day; otherwise, the user will switch to the route with the best perceived travel 

time. Thus, acceptability or tolerance is defined on the basis of the difference between 
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the current and best travel times. A mechanism for incorporating the concept of a 

"tolerance threshold" is stated as follows:  

 
Dd 1,2,..., 0,TTT d

bestn,
d

currentn,
d

savingsn, =≥−= ,                (3.3) 
 
Alternatively, the difference can be expressed in relative terms, as: 
 

Dd 1,2,..., 0,
T

TT
T d

bestn,

d
bestn,

d
currentn,d

savingsn, =≥
−

= ,                (3.4) 

 

⎪⎩

⎪
⎨
⎧ ≥Δ≥

=
otherwise0

0T1 d
savingsn, nd

ndδ ,                             (3.5) 

 
 
where 
 

ndδ : a binary indicator for route switching (0 = stay; 1 = switch)  

ndΔ : acceptability or tolerance threshold for travel time savings  
 
 

Travel time savings as defined in Equation 3.3 or 3.4 are essentially the same 

behaviorally. However, Equation 3.4 is more plausible since it implies that users 

perceive travel time difference relative to a reference point (the best travel time 

d
bestn,T ) rather than as an absolute difference, as implied by Equation 3.3. The 

threshold ndΔ  defines the percent improvement over the current travel time to 

warrant switching routes. From the perspective of travel time sensitivity, users that 

are very sensitive to travel time differences have smaller ndΔ values compared to 

users insensitive to travel time differences, leading to a greater propensity towards 

switching. The travel time savings threshold ndΔ  for user n on day d can be modeled 

as: 
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( )d

currentn,T⋅=Δ ndnd η                              (3.6) 
 
 
where 
 
ηnd : relative indifference threshold, as a fraction of current travel time d

currentn,T   

 
 
Behaviorally, Equations 3.3 to 3.6 state that individuals with small values of ηnd (and 

consequently Δnd) are less tolerant of small travel time differences compared with 

individuals with large values. If ηnd takes a value of zero, then individuals are 

intolerant of any difference in travel times and will switch for even the smallest travel 

time difference, which is behaviorally implausible. A person’s inherent travel time 

difference sensitivity (ηnd and Δnd) may reflect judgments confidence and perceived 

feedback from experiences, in addition to inherent user preferences, destination 

activity conditions, and risk attitudes. The expressions above are similar to the 

earliness and tardiness thresholds for arrival and departure times used by Mahmassani 

and Chang (1986). The tolerance thresholds (ηnd and Δnd) reflect a number of factors 

including individual attitudes and preferences, and thus should vary across the 

population over time. However, since the focus of this study is on the mechanisms for 

the perception and updating of the travel times, and not the switching mechanisms, 

ηnd is assumed to be equal for all users and fixed across time. Nonetheless, the actual 

threshold value Δnd (Eq. 3.6) varies with the person since the experienced perceived 

travel times are different across the population. A similar switching model has been 

used extensively in various simulation studies (Mahmassani and Jayakrishnan 1991), 

and empirically verified in several laboratory experiments dealing with route 
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switching behavior of commuters under information received from ATIS 

(Mahmassani and Stephan 1988; Mahmassani and Liu 1999), though those other 

studies did not explicitly address the perception dimension.  

 
 
3.4 Travel Time Learning Mechanisms 
 
In the route choice context, learning is defined as the integration of new with past 

experiences and information. Information availability plays an important role in 

determining the feasibility of different learning mechanisms in different information 

environments and conditions (Camerer 2003).  In addition to relating experiences 

with current choices, learning processes may also lead to changes in the uncertainty 

perceived by individuals, and consequently their risk perceptions over time.  

 

In the context of day-to-day route choice, individuals update their perceived travel 

times in memory u
kn,T  with new experienced travel times ne,

kn,T  through different 

learning mechanisms. Recall from the previous section that the perceived travel time 

(experienced or updated) for a route k consists of a mean kn,τ  and associated random 

error u
nkε  distributed Normal (0, nkσ ). Thus, perceived travel times can be viewed as 

distributed Normal with a mean nkτ  and variance nkσ . In this study, learning 

mechanisms seek to update both parameters (the mean and variance) associated with 

the updated travel time u
nkT , given new travel times experiences. Several generic 

theories of learning or information updating have been proposed in the psychology, 

game theory, and machine learning literature, such as reinforcement, belief, 
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sophisticated (anticipatory), directional, Bayesian inference, and Boltzmann-type 

learning, each with different information requirements. In this study, three types of 

learning are considered: i) Bayesian inference; ii) reinforcement; and iii) belief 

(epistemic). Each of these learning types is presented next in the context of day-to-

day route choice and discussed. (Note: hereafter the subscripts n for individual and k 

for route are dropped for convenience and clarity of exposition). 

 
3.4.1 Bayesian Learning 
 
Perceived updated travel times are updated in light of trip experiences for a particular 

day d and all days since the last update. The current discussion focuses on learning 

(updating) mechanisms for integrating travel time experiences with perceived travel 

times. The first model considers concepts from Bayesian statistical inference. Under 

Bayesian learning, the mean and variance (moments) of a distribution are updated 

given new samples. In the context of day-to-day travel time perception, Bayesian 

learning can be applied to the learning of perceived travel times in a network, where 

the mean perceived (updated) travel time u
nkτ  and variance u

nkσ  are updated given new 

travel times experienced each day. The distributions of both the updated perceived 

travel time u
kn,T  and experienced travel times de,

kn,T  are assumed to be normally 

distributed with a known variance. Under Bayesian learning, the posterior distribution 

of u
kn,T  (post-updating), in light of experienced travel times de,

kn,T  (the sample) is 

assumed normally distributed with the following parameters (mean, variance, and 

weights) (DeGroot 1970): 

 
( ) ( ) ( )ed

nkT1 ⋅−+=′ βτβτ u
nk

u
nk                  (3.7) 
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where u

nk
′τ  and u

nk
′σ  are the posterior mean and variance, respectively, of the updated 

perceived travel time; u
nkτ  and u

nkσ  are the prior mean and variance of the perceived 

travel time; de,
kn,T  and ed

nkσ  are the sample mean and variance of the experienced travel 

times (sample) on day d, where the sample consists of all travel times not integrated 

prior to day d; and Ds is the number of experienced travel times in this sample. If the 

number of experiences is less than three (Ds ≤ 3), u
nk

′σ  is assumed to be equal to u
nkσ . 

To appreciate the behavioral implication of Bayesian statistical updating, define a 

measure α called “confidence” which is the inverse of the variance. The above 

expressions (Eq. 3.7 thru 3.9) can now be written as:  
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u
nknk 1 σα =  and   ed

nk
e
nk 1 σα =                      (3.12 and 3.13) 

 

The above expressions convey several key behavioral implications. First, as the 

variance of users’ perceived travel times increases ( u
nkσ and ed

nkσ  increase in value), 
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“confidence” decreases (Eq. 3.12 and 3.13). Conversely, as the variance of the error 

terms decrease, the confidence in the mean travel times ( u
nkτ  and ed

nkτ ) increases. 

Second, according to Equation 3.10, the posterior updated perceived travel time is the 

weighted average of the prior updated perceived travel time and the sample mean of 

experienced perceived travel times, where the weights are proportional to the 

posterior confidence α and the perceived experienced travel time sample confidence 

(Ds· e
nkα ). This leads to three important properties: (i) with every perceived 

experienced travel time, the variance associated with the updated perceived travel 

time will always decrease (since ed
nkσ  and Ds are always positive) and thus confidence 

always increases; (ii) the greater the number of travel times experienced, the greater 

the confidence associated with the distribution of the posterior updated perceived 

travel time nkα′ ; and (iii) as the confidence associated with the posterior distribution 

of the updated perceived travel time nkα  increases such that e
nknk αα >> , new 

experienced travel times no longer affect the users’ updated perceived travel times. 

The second point further suggests that a trade-off exists between the frequency of 

updates and the number of experienced travel times before updating. Thus, an 

individual may either experience small samples of travel times and update frequently, 

or experience large samples and update less frequently, in order to reach a particular 

confidence level.  

 
3.4.2 Reinforcement Learning 
 
Under reinforcement learning, alternatives or routes are “reinforced” by their 

previous positive payoffs, possibly “spilling over” to similar alternatives (routes with 
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overlapping links) (Erev et al. 1999). In terms of perceived travel times defined 

previously, a reinforcement type learning rule for updating the mean and variance can 

be expressed as: 
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where u
nk

′τ  and u
nk

′σ  are the posterior mean and variance of the updated perceived 

travel time; u
nkτ  and u

nkσ  are the prior mean and variance of the perceived travel time. 

Unlike Bayesian learning where both positive payoffs and losses can potentially be 

integrated, reinforcement learning only considers positive payoffs when updating. 

Thus, in the case of reinforcement learning, +ed
nkT  and +ed

nkσ  are the sample mean and 

variance of the experienced travel times, where the sample consists of travel times not 

integrated that were below a reference travel time (payoff) on day d; and dC′  is the 

number of experienced travel times in this sample. C is the sum of all previous dC′ . If 

the number of experiences is less than three ( dC′ ≤ 3), u
nk

′σ  is assumed to be equal to 

u
nkσ . Additionally, φ  is a parameter reflecting the weight placed on past payoffs. 

 
Under reinforcement learning strategies, individuals update their perceptions based 

only on their own experiences, requiring information on received payoffs from their 
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own actual behavior only (Roth and Erev 1993). In the context of day-to-day route 

choice, travel times for a particular route are updated only when the route is selected 

and an improved travel time is obtained relative to a reference travel time, thus 

“reinforcing” the (positive) perception of the travel time for a particular route. This 

further suggests that the reference point an individual selects plays a crucial role in 

reinforcement learning, since it determines which experiences are perceived as 

positive payoffs (gains). According to the expressions above (Eqs. 3.14 to 3.16), 

reinforcement learning is also governed by the parameter φ  ( 10 ≤≤ φ ) which 

determines the “strength of memory” or “rate of forgetting.” As φ  increases in 

magnitude, the rate of forgetting decreases and past payoffs have greater influence on 

current travel time perceptions. The expression above also suggests that as the 

number of payoffs experienced (travel time gains) exceeds the sample size (C >> 

dC′ ), the weight placed on previous payoffs increases, independent of the strength of 

memory (value of φ ). Finally, both C and dC′ are a function of the frequency of 

updating, suggesting that under reinforcement learning, a tradeoff exists between the 

rate of learning or degree of experimentation and the perception of travel times.  

 
3.4.3 Belief Learning 
 
Belief learning assumes that individuals form and update “beliefs” about the choices 

of other individuals and act or behave according to these beliefs (Crawford 1995). 

One example of belief learning in game theory is fictitious play, where individuals 

keep track of the relative frequency with which other individuals make choices. The 

relative frequencies are the “beliefs” individuals use to make their next choices. In 
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general, belief learning strategies assume that individuals formulate beliefs about 

other individuals’ choices and base their own choices on these beliefs, thus requiring 

information on these choices’ payoffs. In the context of day-to-day route choice, this 

learning rule can be expressed as: 
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where u

nk
′τ  and u

nk
′σ  are the posterior mean and variance of the updated perceived 

travel time; u
nkτ  and u

nkσ  are the prior mean and variance of the perceived travel time. 

Similar to Bayesian learning, both positive payoffs (gains) and losses can potentially 

be integrated under belief learning, as opposed to reinforcement learning which only 

considers positive payoffs. Thus, in the case of belief learning, ed
NkT  and ed

Nkσ  are the 

sample mean and variance of the experienced travel times for a route k, where the 

sample consists of travel times experienced by other users on that route; and dkC′  is 

the number of experienced travel times (across persons and times) in this sample; C is 

the sum of all previous dkC′ . If the number of experiences is less than three ( dkC′ ≤ 3), 

u
nk

′σ  is assumed to be equal to u
nkσ . Additionally, similar to reinforcement learning,φ  

is a parameter reflecting the weight placed on past experiences (strength of memory). 
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Belief learning is similar to reinforcement learning in that a weighted average 

between past and current experiences is taken. The main departure lies in the source 

and type of information used to update past experiences. Belief learning uses 

experiences from all other users, whereas reinforcement focuses exclusively on the 

user’s own experiences. Thus, belief requires the perceived gains and losses by all 

other users, while reinforcement requires only the payoffs of the user of interest. 

Furthermore, in reinforcement learning, updating only occurs for chosen routes, since 

only personal experiences are used. Under belief learning, travel times for all routes 

can potentially be used for updating depending on the behavior of other users in the 

system of interest. This suggests that under belief learning, users may increase their 

confidence in network perceived travel times, since they are accounting for travel 

time experiences on routes not taken. Similar to reinforcement learning, φ  suggests a 

trade-off between “strength of memory” and frequency of learning or sample size. In 

the game theory literature, many studies have shown that heterogeneity in beliefs 

across individuals lead to different equilibria in coordination games (Van Huyck et al. 

1991). The adaptive dynamics in coordination games have been shown to produce 

results similar to experiments with belief learning models (Crawford 1995; Ho and 

Wiegelt 1996; Battalio et al 1999). Recently, Helbing et al. (2004) have shown that 

day-to-day route choice resembles coordination games, and that over time players 

learn to take turns on a two-link network. These studies suggest that belief learning 

can lead to coordinated system states. However, these studies used relatively small 

numbers of players, such that keeping track of the payoffs and actions of other 

players is practical.  
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3.4.4 Conceptual Comparison of Learning Models  
 
The section provides a conceptual comparison of the three learning models previously 

discussed. The models are discussed in terms of the weights placed on past and 

current experiences or information, and sources of information.  

 
The main departure for Bayesian learning from other learning rules is the weight 

placed on past experiences, particularly on recently sampled experienced travel times. 

Whereas reinforcement and belief learning assume that the weight placed on historic 

experiences is a characteristic of the individual (total number of experiences), 

Bayesian learning provides a statistical basis for determining these weights, as a 

function of the parameters (variance) of the sample. If “confidence” is assumed to be 

the inverse of variance, then as variance increases, confidence decreases. Conversely, 

as variance associated with the updated travel time decreases, confidence increases. 

As noted previously, three important resulting properties are: i) with every 

experienced travel time, the variance associated with the updated travel time always 

decreases and confidence always increases (since Ds and ed
nkσ  are always positive); ii) 

as the number of experienced travel time increases, the confidence associated with the 

posterior travel time in memory increases; and iii) as the confidence associated with 

the posterior travel time in memory increases such that the confidence in memory is 

much greater than that of the sample, the effect of newly experienced travel times 

decreases.  

 
Interestingly, Bayesian, belief, and reinforcement learning share two common 

properties: i) updated travel times are a weighted average of the prior travel time in 
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memory and the travel times recently experienced; and ii) these weights exhibit a 

trade-off between frequency of updates and size of each update sample. The point of 

departure between the different rules is the source of experiences used in learning. 

Reinforcement only updates with travel times from individual choices that can be 

viewed as gains (decrease in travel time). Belief learning allows travel times 

experienced by other individuals in the population. Bayesian learning does not 

specify the source of the sample (how the sample is constructed or taken). These 

similarities and differences suggest that, in the context of day-to-day route choice, 

these three rules may yield similar sensitivity to frequency of update, but may lead to 

different results when the sources of experience differ. Furthermore, all else being 

equal, Bayesian learning may lead to a different rate of convergence compared to 

belief and reinforcement learning since its weights are a function of the actual travel 

times experienced (through the use of sample variance) and not just the frequency of 

choice.   

 
3.5 Travel Time Learning Trigger Mechanisms 
 
The preceding discussion on learning models addressed the updating of perceived 

travel times in light of past experiences. However, the timing and frequency of 

updating was not addressed. Furthermore, previous studies have assumed that 

updating occurs with every new experience (Jha et al. 1998). This assumption may be 

unreasonable if costs are associated with both updating and experiencing a new route, 

in which case a trade-off may exist between the number of updates and experiences, 

and the corresponding gains in confidence. Additionally, users may have different 
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perception thresholds for “new” experiences, suggesting selectivity in their updating 

behavior.  

 
Three trigger mechanisms are described hereafter, based respectively on the number 

of days elapsed since the last update (time-based), the relative difference in travel 

times and the achieved confidence level.  Both of the latter two mechanisms are 

event-driven on the basis of exogenous or endogenous variables, respectively.     

 
1) Number of Days. Under this mechanism, updating is based on the number of 

elapsed days, leading to a periodic updating process. This trigger can be expressed as: 
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ndπ                                                   (3.21) 

 
 
where πnd is a binary variable that indicates updating and takes a value of 1 for every 

Mn
th day, and 0 otherwise for individual n;  Mn is an integer constant; d is the day 

number. Thus, updates occur more frequently for low values of Mn, and less 

frequently for high values. Consequently, the number Mn of travel times experienced 

between updates is small for low values of and large for high values. Although 

updating periodically or every fixed number of days seems behaviorally implausible, 

with the exception of updating every day, investigating the system behavior under 

this rule provides useful insights into the effect of varying the length of time between 

updates. Understanding this effect is important to understanding the effect of other 

mechanisms, since other more elaborate triggering mechanisms derive their effect 
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partly or wholly from varying the frequency of updates, and consequently the time 

period between updates.   

 

A more realistic trigger mechanism may be based on experiences rather than a fixed 

time period, i.e. event-based rather than time-based. A mechanism based on 

experienced travel times is described next. 

 
2) Difference in Experienced Travel Time. Updating here is based on the difference 

between the perceived experienced travel time and the mean updated travel time, 

relative to the updated travel time.  
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where πnd is the indicator that equals 1 if updating is “triggered” and occurs on day d, 

and 0 otherwise; Δnd is a threshold that defines if an experienced travel time de,
nkT  is 

“salient” relative to u
nkτ  the mean perceived updated travel time; This mechanism is 

similar to the route switching mechanism (Eq. 3.4), the key difference being that the 

comparison for this mechanism is the mean perceived updated travel time and 

experienced travel time, making an inter-day versus intra-day comparison. Under this 

mechanism, users update selectively, only for salient travel times, measured as the 

relative difference between the experienced and perceived updated travel times. 

Behavioral decision theorists share this view of integrating experiences, which 

theorizes that individuals do not integrate all experiences, but focus only on a few 
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defining “gestalt” characteristics (Ariely and Zauberman 2000). Their view is that in 

combining experiences, individuals only extract salient features, such as the 

maximum and minimum values. The mechanism above is consistent with this view, 

since only when travel times are very different in magnitude from the learned travel 

time does updating occur. A high value of Δnd corresponds to a very “selective” 

individual who only integrates rarely, while a low value of Δnd corresponds to an 

individual who integrates frequently. Although Δnd is assumed to be the same across 

the population, each individual has a different cutoff or threshold since it is based on 

(Δnd × u
nkτ  ) and u

nkτ  varies across the population. In this study, this issue was not 

considered because the focus is on the effect of updating and perception mechanisms 

on network performance and not necessarily the effect of threshold values. 

 
The above two mechanisms are both trigger mechanisms for initiation of the updating 

process. Termination of the process also deserves attention. If a cost is associated 

with each update, individuals are unlikely to update endlessly. A terminating 

mechanism based on the confidence for the learned travel time is described next. 

 
3) Confidence of updated (learned) travel time. Under this mechanism, updating 

occurs until the confidence in the travel times for all routes in the network has 

reached a desired level. Any updating that occurs after the desired level is reached 

will only improve the confidence, since confidence always increases with each update 

regardless of the sample size (by nature of rules for updating the variance). This 

trigger can be expressed as: 
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where πnd is the indicator that equals 1 if updating occurs on day d, if the confidence 

of the perceived travel time is below the desired level for user n, and 0 otherwise; λn 

is a relative threshold interpreted as the variance of the perceived travel time over a 

segment of unit travel time. According to the above mechanism (Eq. 3.23), updating 

occurs as long as the confidence in travel time perceptions for a route is below a 

desired level ( ) 1
n

−⋅ u
nkτλ . The expression u

nkτλ ⋅n  gives the variance that corresponds to 

the desired confidence level. The motivation behind a confidence-based learning 

mechanism is that confidence in the perceived (learned) travel time may be a good 

indicator of “familiarity” with a traffic network. Once an individual reaches a certain 

level of familiarity, learning ceases and he/she may become insensitive to new travel 

times. Thus, the mechanism above may serve as a model for describing the time 

required for an individual, from when he/she first enters a network, to become a 

regular commuter. Additionally, individuals may have different confidence 

requirements for different routes used for different purposes. To reflect this, the above 

mechanism could be modified such that learning ceases when the confidence on an 

individual route, rather than for all routes, reaches a desired level.  

 
A behavioral issue closely related to learning and uncertainty perception is risk 

perception. Risk perception concerns the perception of uncertainty as it relates to the 

likelihood of an outcome. The issue of travel time uncertainty perception that arises 

from endogenous error in judgment has been examined and discussed in previous 
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sections. The next section discusses the mechanism by which this uncertainty relates 

to the perceived likelihood of gains and losses in route choice decisions over time. 

 
 
3.6 Risk Perception Mechanism 
 
Decision making in environments with uncertainty requires the evaluation of the 

desirability (gains and losses) of outcomes and their likelihood of occurrence. Day-to-

day route choice decisions may be framed as a decision based on perceived 

differences between routes with respect to an experienced travel time that may be 

shorter or longer than the updated mean perceived travel time u
nkτ , or other reference 

point. From the perspective of probability and statistics, for a particular route k, an 

individual n perceives a travel time distributed with a mean u
nkτ  and variance u

nkσ , 

which are updated as new experiences are acquired over time (learning). The 

mechanism by which users evaluate perceived travel times for routes in a network is 

presented and discussed in this section.  

 

The classical framework for decision making under uncertainty is expected utility 

theory (EUT) which states that individuals weigh the utility of each outcome by its 

probability of occurrence (von Neumann and Morgenstern 1947). Under EUT, risk 

attitudes are explained through the shape (concavity or convexity) of an individual’s 

utility curve, where gains and losses are mapped through a utility function u(x), and x 

is the value (payoff or outcome) of pursuing an alternative (choice). Although the 

EUT framework has dominated decision making under risk in microeconomics and in 

normative decision analysis, experimental studies have consistently revealed 
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behaviors that are not compatible with EUT (Kahneman and Tversky 1979; Payne et 

al. 1981; Wehrung 1989). In particular, these experimental studies suggest that 

individuals tend to under-weigh outcomes that are merely probable in comparison 

with outcomes that are obtained with certainty, depending on whether the outcome is 

a gain or loss.  

 
An alternative theory to account for these inconsistencies is Prospect Theory (PT). 

Under prospect theory, the prospect of a lottery is determined by taking the sum of 

the values of alternative outcomes weighted by their subjective probabilities of 

occurrence, and a choice is made based on these prospects; this is done in two phases. 

A lottery is defined as a probability distribution on a finite set of gains and losses. 

The first phase is an “editing” phase where outcomes of lotteries are coded as gains or 

losses relative to some reference point. The issues of reference point selection will be 

discussed later in this section. However, for the purpose of the current discussion, the 

reference point is taken as the perceived best travel time d
bestn,T  on day d, mentioned in 

Section 3.3. In the second phase, these gains and losses are evaluated using a value 

function v(.) for the travel time differences and a weighing function Ω(.) for their 

objective probabilities (which returns the corresponding subjective probabilities), 

which jointly determine attitudes towards risk. Under Prospect Theory, individuals in 

general exhibit four different patterns of risk aversion and risk seeking behaviors 

(Kahneman and Tversky 1979, 1992; Tversky and Fox 1995): i) risk seeking for gains 

and ii) risk aversion for losses of low probabilities; and iii) risk aversion for gains and 

iv) risk seeking for losses of high probability.  
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The EUT and PT decision-making frameworks are similar in structure, since they 

both involve a weighted sum of the outcome values weighted by their likelihood of 

occurrence, but very different in content and interpretation. The main difference is 

that under PT, gains and losses are evaluated differently, both with regard to their 

value and respective probability of occurrence— subjective probabilities in PT do not 

necessarily obey the basic rules of probability.  Different risk attitudes arise due to the 

asymmetric weighing of probabilities for gains and losses. Thus, in environments 

where individuals constantly update their distributions of travel time for a given route 

(learning), under the PT model of decision making, individual risk attitudes and 

consequently uncertainty play a more pronounced role in determining individual route 

choice, leading routes with greater travel times to be chosen due to less associated 

uncertainty or variance. 

 
A mechanism by which individuals perceive the likelihood of outcomes is proposed 

in this study. Assuming that the perception of outcome likelihoods is correlated with 

risk attitudes, the mechanism presented addresses the role of risk attitudes in route 

choice decisions with perceived travel times. Under this mechanism, individuals are 

assumed to under-weigh or over-weigh the probability of gains and losses, 

independent of whether the probability is high or low. Individuals who under-weigh 

probabilities of gains and overweigh probabilities of losses, independent of the 

magnitude of these gains and losses are viewed as risk-averse. Risk seeking 

individuals would exhibit the converse, under-weighing probabilities of losses and 

overweighing probabilities of gains, independent of their magnitudes. In this study, a 

probability weighing function (Eq. 3.25) that weighs objective probabilities in this 
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matter is used, along with the following value function (Eq. 3.26). The risk 

mechanism investigated in this study is specified as follows:  
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where, 

S(k) is the “score” (analogous to the prospect) of choosing route k; 

kTΔ  is the difference between an anticipated travel time for route k and the reference 

point, taken as the best travel time ( a
k

d
bestn, TT − ); 

( )+Δ kTE  is the expected gain for kTΔ >0, and consequently a
k

d
bestn, TT > ; 

( )-
kTE Δ  is the expected gain for kTΔ <0, and consequently a

k
d

bestn, TT < ; 

α and λ are parameters that determine the shape of the value function (Eq. 3.26); 

π is a parameter between [0, 1] that determines the position of the infliction point of 

the probability weighing function (Eq. 3.25). 

 
In this study, the score (similar to the prospect) of switching to a route k is determined 

according to Equation 3.24, as the weighted sum of the value of a gain and the value 
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of a loss. These values are weighted by their respective perceived probability of 

occurrence, which are the objective probabilities weighted subjectively according to 

Equation 3.25.  

 
The probability weighing is governed by the parameter π which varies with risk 

attitude, and magnitudes of losses vs. gains. A risk averse individual would have a 

low π for losses (low πloss), resulting in an overweighing of probabilities, and a high π 

for gains (πgain), resulting in an under-weighing of probabilities, where πgain and πloss 

sum to one (πgain + πloss = 1). Risk seekers would exhibit the converse. A plot of the 

weighing function (Eq. 3.25) for varying πloss and consequently πgain is shown below 

in Figure 3.2. In this study the value function (Eq. 3.26) is assumed to be concave for 

gains and convex for losses, determined by the shape parameter α. Note that the 

marginal impact from gains and losses diminishes with distance from a reference 

point. Given that the shape parameter λ is positive, the function is steeper for losses 

compared to gains.  
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Figure 3.2: Weighing functions for a risk averse individual (πloss=0.25; πgain = 0.75) 
 
 
 
3.7 Reference Travel Time Selection 
 
Previously, learning mechanisms for integrating experiences with memory were 

presented. Additionally, risk and choice mechanisms for describing route choices 

based experienced and updated travel times under uncertainty were described. A key 

parameter in all the mechanisms presented is the reference travel time used. For 

example, in the route switching mechanism (Section 3.3) the best travel time 

(candidate route for switching) was compared to the experienced travel time; thus, the 

reference travel time in this case is the experienced travel time. If the route with the 

best travel time was better beyond a threshold, then the individual selects that route.  

Three alternative reference travel times are as follows: 
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whereφ  is a weighing parameter. The expressions above imply different types of 

route choice behavior. Under Equation 3.27, individuals base their day-to-day route 

choice ONLY on the updated perceived travel time, which is updated over time. 

Thus, although individuals may experience extremely long travel times for a route k 

on a particular day d, the individual would not switch routes if this experience has 

little impact on the updated travel time, perhaps due to many experiences of short 

travel times. Equation 3.29 is the converse of this choice behavior and states that 

individuals will act (switch routes) based on experienced travel time for that day 

unless updating occurs on that day, in which case the updated travel time would be 

used. This is the switching mechanism implied in Section 3.3.  

 
3.8 Concluding Remarks 
 
In this chapter, mechanisms for day-to-day route switching, travel time learning, and 

risk perception were presented. These mechanisms allow an investigation of the 

dynamics of route choice decisions from day-to-day. Perceived travel times, either 

experienced or updated, are assumed to consist of a mean and variance. Learning 
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mechanisms were presented to examine the updating of these parameters in light of 

new travel experiences. Additionally, recognizing the cost incurred from each update, 

triggering mechanisms for updating were also presented to capture the timing of 

updating decisions. Finally, a mechanism for weighing objective probabilities of 

travel time gains and losses was presented.  This study assumes that risk taking 

behavior is reflected through these weights. The next chapter presents simulation 

experiments that show the system implications of the different behavioral 

mechanisms presented in this chapter. 
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Chapter 4.0 Experiments of Day-to-Day Route Choice 
 
This chapter describes the system features and related details of the simulation 

experiments, principal factors investigated, and specific properties and performance 

descriptors considered in this investigation. The individual level decision mechanisms 

presented in the previous chapter are embedded inside an agent-based simulation 

framework to allow examination of their relationship with system behaviors over 

time, such as traffic flow evolution. The motivation behind conducting these 

experiments is two-fold. First, these simulation experiments relax the existence of an 

equilibrium state, commonly assumed in planning practice, allowing the individual 

behavioral rules to drive the network flows from day-to-day. Although no concrete 

conclusions about the existence of an equilibrium state in “real” networks can be 

made, these experiments allow insights into how reasonable this assumption is given 

behaviorally plausible user behaviors. Second, these experiments also illustrate the 

importance of latent user attributes, such as perceived travel time uncertainty and risk 

attitudes, in influencing the behavior of traffic networks. Due to their latent nature, 

empirical investigations on the effects of these attributes are limited. Thus, these 

experiments seek to contribute to the body of knowledge about them. 

 

The next section gives a description of the system used in the simulation experiments. 

The second section presents the experimental factors examined in these experiments. 

The final section presents the results and discusses their implication on day-to-day 

route choice behavior in traffic networks. 
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4.1 System Features 
 
The network used for this study, shown in Figure 4.1, consists of 9 nodes and 12 

links. Link cost-flow functions clink = clink(flink) were used with a linearly varying cost 

beyond the value elink · caplink, according to the following expressions for link l:  
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where  
 

0t min
l ≥  is the zero-flow travel time;  

0bl ≥ defines the slope of the curve; 

0capl ≥  is the link capacity; 

1e0 l ≤≤  defines the under saturation limit.  

 

Links located near the center of the network have smaller capacities compared with 

links on the border, and thus their cost-flow functions are more sensitive to varying 

flows. Links along the border have larger free flow times compared with the links in 

the center. Nodes 1, 4, 5, 8, and 9 are origins and destinations and all possible OD 

pairs are connected. Parameter values, OD pairs and base demand values are given in 

Tables 4.1 and 4.2. 
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Figure 4.1: Network used in Simulation Experiment 
 

 

 

Table 4.1: Link Characteristics and Parameters 
 

link tmin capacity b e 
1 20 360 0.10 0.95 
2 12 360 0.10 0.95 
3 12 360 0.10 0.95 
4 30 360 0.10 0.95 
5 12 180 0.15 0.95 
6 12 180 0.15 0.95 
7 10 150 0.15 0.95 
8 10 150 0.15 0.95 
9 15 240 0.12 0.95 
10 15 240 0.12 0.95 
11 15 240 0.12 0.95 
12 15 240 0.12 0.95 
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Table 4.2: OD Demand 
 

O-D Routes Demand
1-8 6 60 
1-9 2 40 
9-8 2 10 
1-5 1 10 
5-8 1 10 
1-4 1 10 
4-8 1 10 

 
 

In order to initiate the dynamics of the system, travel times for the initial iteration are 

specified according to the initial loading pattern, using the cost-flow functions. 

Consequently, the initial mean updated travel time is set to the initial travel time, and 

the variance set to β· u
0τ . β is interpreted as the initial variance of the perceived travel 

time over a segment of unit travel time and is the same for all users. Thus, a large β 

indicates that the initial overall level of uncertainty is high in the system, which is 

realistic for systems with many "new" users. u
0τ  is the initial travel time in memory. 

Note also that users' perceived travel times are generated by drawing (using Monte-

Carlo simulation) from their respective normal distributions described in the last 

section. Users are loaded randomly across ODs and subsequently paths. Different 

probabilistic loading patterns could also be used. Other specifics that have been 

varied across simulations are discussed next.  

 
4.2 Experimental Factors 
 
The modeling elements investigated in the first set of simulation experiments for 

investigating travel time perception updating and updating triggering mechanisms can 
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be grouped into four categories: a) tolerance level for route switches; b) updating 

mechanisms; c) total usage level; and d) initial confidence.  

 
The experimental factors investigated in the simulations relating to learning and risk 

attitudes can be grouped broadly into two categories: a) factors relating to learning 

and information integration mechanisms and b) factors relating to risk and route 

switching mechanisms. Furthermore, two scenarios were considered for experiments 

concerning risk attitudes. Under the first scenario every user in the population made 

route choice decisions using Equations 3.24 to 3.26, thus weighing the objective 

probabilities of outcomes subjectively. Under the second scenario, users only 

considered travel time differences between the best and current route within a 

tolerance threshold (similar to earlier experiments with trigger mechanisms) and 

switched routes independently of the perceived probability of success (travel time 

reduction). With respect to risk and route switching, two factors examined were: a) 

individual perception risk attitudes reflected through the degree of under or 

overweighing; and b) the relative percentage of risk seekers and avoiders. Three types 

of learning mechanisms used in this simulation are: a) Bayesian; b) reinforcement; 

and c) belief. A summary of experimental factors considered in these experiments are 

shown  in Table 4.3.  

 
4.2.1 Travel Time Perception Experimental Factors 
 
Tolerance Levels. As mentioned in the last section, users switch routes only when the 

difference between the travel time on the best and current route exceed a tolerance 

level reflected in the parameter Δnd (Eq. 3.3 to 3.5). Simulations were run for Δnd = 
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0.30 and 0.50. As Δnd
 
value, users have greater tolerance for differences between the 

best and current travel times, and thus the system should in general converge with 

greater ease, all other factors being equal. All users are assumed to have the same Δn
 

value. Although this may seem restrictive, recall that individuals use (Δnd × u
nkτ ) to 

determine their switching decisions, and since all individuals experience different 

travel times, the actual tolerance level varies across a population.  

 
Total Usage. The total number of users for each OD pair is fixed for a given 

simulation. Past simulation studies have shown that networks under higher congestion 

or usage levels tend to experience greater difficulty in reaching convergence of flows 

in the network. The base usage level was set at V = 180, however simulation runs 

were made for 2V, 3V, and 4V.  

 
Updating Mechanisms. Simulations are performed for all three mechanisms described 

in the previous section. For the first mechanism, which is based on the number of 

days between updates (Mn), simulation runs were made for Mn = 0, 1, 3, 5, 7, 10, and 

14. For the second mechanism, sensitivity to the threshold value was investigated. 

Simulation runs were made for u
ndΔ

 
= 0.07 and 0.90. A low value indicates a situation 

where nearly every travel time is considered salient and thus updating takes place 

nearly every day, similar to a Mn = 1. However, for experiments that vary Mn, the 

travel times for all the paths were updated, while for experiments that vary u
ndΔ

 
only 

the chosen path was updated. Thus, a low u
ndΔ

 
corresponds to a more selective 

situation than Mn = 1. For the final mechanism, which is based on the confidence of 

the perceived updated travel time, λn was set to λn
 
= 0.05 and 0.90. The actual 
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confidence threshold used is ( ) 1
n

−⋅ u
nkτλ . Thus, as λn

 
increases, the required confidence 

level decreases, and updating stops sooner compared to a low value of λn. Recall that 

in Bayesian updating confidence values always increase with every new sample.  

 
Initial Confidence. The initial confidence reflects the overall uncertainty in travel 

time perception for the system. The initial confidence was set through the parameter 

β, discussed at the end of Section 3.1, which is interpreted as the initial variance of 

the perceived travel time over a segment of unit travel time. Thus a high value for β 

indicates a high initial variance and lower confidence, and consequently users' 

perceived travel times will vary greatly initially. Under a Bayesian updating scheme, 

the variance will decrease with each update. Although less uncertainty in the 

perceived travel times is positive from the perspective of the individual user, this 

might not necessarily lead to faster convergence from the perspective of the system. 

For a low initial confidence, the system may converge more slowly or not at all 

compared to a high initial confidence level. The experiment results shed additional 

light on these complex interactions.  

 
4.2.2 Risk and Learning Experimental Factors 
 
According to the route switching mechanism presented in Eqs. 3.24 to 3.26, the route 

with the maximum “score” on day n is chosen. As previously discussed, the score is 

the weighted sum of expected gains and losses, weighted by their subjective 

probabilities (Eq. 3.25). Values are evaluated based on travel time differences from a 

reference point and determined according to Eq. 3.26. Additionally, the reference 

point for the decision to switch routes (Eq. 3.4) was set to either i) the updated travel 
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time ( u
nkτ ), ii) the experienced travel time ( de,

nkT ), or iii) a weighted average of the 

two, evaluated according to Equations 3.27 to 3.29.  

 
Risk Attitudes. The key parameters governing this risk mechanism are a) the 

concavity and convexity of the value function for gains and losses determined by αn in 

Eq. 3.25 and b) the degree to which individuals over and under weigh objective 

probabilities associated with gains and losses reflected through the parameters loss
nπ  

and gain
nπ  that determine the inflection points in the probability weighing function for 

gains and losses, where 0≤ αn, loss
nπ , gain

nπ ≤1. Due to the symmetric nature of the 

weighing function assumed in this study (Eq. 3.24), only the loss
nπ  for risk adverse 

individuals needs to be specified to determine gain
nπ  for risk adverse and risk seeking 

individuals, as previously discussed.  Thus, loss
nπ  and gain

nπ determine the degree of 

risk attitude (level of aversion and seeking) for all individuals. According to prospect 

theory, risk adverse individuals over weigh probabilities of losses ( loss
nπ < 0.5) and 

under weigh probabilities of gains ( gain
nπ > 0.5), with the reverse for risk seekers. 

These parameters were normally distributed around the means lossπ and α. The 

following values for these two parameter were used: lossπ = {0.10, 0.2, …,0.5}; α = 

0.3. Additionally the percentage of risk seekers in the population (γrisk · total number 

of users) were varied by setting γrisk = {0, 0.1, 0.2, …, 1}. 

 
Learning Related Factors. Simulations are performed on all three learning 

mechanisms previously described. The main parameter governing the reinforcement 
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and belief learning mechanisms is the weight φ ∈[0,1] placed on historical 

experiences, as shown in Equations 3.14 to 3.20. The parameter φ  reflects an 

individual’s memory strength or the degree he retains past experiences. As φ  

increases, the greater and individual’s memory, and the more weight placed on 

historical experiences.  In this study φ  was allowed to vary normally across the 

population for experiments related to risk attitudes, with a mean 0.5 and a variance of 

βφ  where β is the variance associated with a unit of φ . 

 

Population Factors. In addition to the factors described previously, two population 

related factors were also considered: 

 

1. Population Level. Five different population levels were considered in this study for 

each OD (a set number of users was assigned to each OD). The base case was 100 

users corresponding to a population factor of 1 (V = 1). Other population levels 

considered were: V = {1, 1.5, 2, and 3}. Previous studies have shown that 

convergence is harder to obtain at higher levels of population. 

 

2. Initial Uncertainty. Additionally, different levels of initial uncertainty were also 

considered. Uncertainty is measured by the initial beta used to determine the initial 

variance of travel time. Three different values were considered: β = {1, 2, and 3.}.  
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All simulation and corresponding parameter values are summarized in Table 4.3. 

Table 4.3: Experimental Factors Considered 
 

 
 
 
 
4.3 Performance Measures and Properties 
 
Three principle types of descriptors are considered: 

1. Day-to-day flow pattern of traffic, in particular convergence. Convergence is 

reached when users have stopped switching routes for the remainder of the 

simulation. For cases where a strict convergence is unattainable, a plot of the day-to-

day flow is shown to facilitate a qualitative analysis.   

 

2. Number of days until convergence. The number of days till convergence is the 

number of days from the start of the simulation till convergence is reached. For cases 

where a strict convergence is unattainable, number of days till convergence is the 

number of days till the flows on all paths change within an acceptable tolerance level 

till the end of the simulation run.   

 

ii) Degree of Risk Attitude (      and       )     

Factors Relating to Experiments 
Considering Risk Attitudes Factors Common to All Experiments 

i) Percentage of Risk Seekers and Avoiders
lossπgainπ

i) Demand Level (V) 

ii) Initial Uncertainty (variance - β ) 

iii) Perceived Travel Times 

iv) Learning Mechanisms 
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3. Day-to-day deviation of travel times from the user equilibrium travel times. 

Deviation from the user equilibrium travel times of determined and monitored from 

day-to-day as through the simulation run.  

 

4.4 Simulation Results 
 
First, simulation results from the experiments investigating travel time perception and 

updating are presented and discussed. Next, results from simulations relating to risk 

and learning are presented and discussed. 

 
4.4.1 Travel Time Perception and Updating  
 
The results of different simulation runs, each corresponding to a different 

combination of assumptions regarding the factors discussed in the previous section, 

are presented and discussed in this section. For each case, the system was simulated 

for a period of 80 days. First the effect of varying inter-update periods on 

convergence is examined, as well as the effects of varying the initial confidence, 

usage level, and route switching threshold Δnd. Second, the effect of selective 

updating on convergence are examined, in particular selectivity in the integrated 

travel times.  Finally, the effect of terminating the updating process at different 

confidence levels is examined. 

 

For each simulation, the state of each link after 80 days was recorded as one of three 

outcomes: convergence to a steady state C, regular oscillatory pattern, or no 

convergence NC. These outcomes are summarized in Table 4.4 for varying inter-

update periods. The number of days after which steady state or oscillations were 
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obtained is indicated (number in parentheses), along with the number of updates 

(number in brackets). The values for other parameters are also presented. 

 

Varying Inter-Update Periods. The results in Table 4.4 reveal several important 

trends. First, although lower perception uncertainty is desirable from an individual 

user perspective, it may delay or preclude system convergence. For initial β = 0.5 

(low uncertainty, high confidence) and 5.0 (high uncertainty, low confidence) the 

system experienced greater difficulty converging compared to initial β = 1.0. 

Behaviorally, this implies that systems where the overall travel time perception error 

is low (mostly regular commuters) or high (mostly new commuters) have greater 

difficulty converging. A plausible explanation is that at very low initial perception 

uncertainty (β = 0.5) users may not be experiencing a wide range of travel times 

(because perception error is low in general). Under a Bayesian updating model for a 

stationary process, perception error becomes smaller with each update. Thus, as users 

continue to update, the experienced travel times are only marginally different across 

users. If all users perceive the same travel times, they will switch to the shortest path 

every day and the system will not converge, similar to an all-or-nothing assignment. 

At very high initial perception uncertainty (β = 5.0), although updating decreases 

perception error from day-to-day, the decrease may not be fast enough for travel 

times to become consistent, and thus flows do not converge. The mean updated travel 

time may have stopped varying from day-to-day, but the associated uncertainty is still 

relatively high such that users still perceive very different travel times and continue 

switching.  
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Table 4.4: System State after 80 Simulation Days for Different Inter-Update Periods 

                                        
Exp# Usage β Day(s) Δn  1 2 3 4 5 6 7 8 9 10 11 12 
                    
                                    

1 3V 0.5 0 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
2 3V 0.5 1 0.3  NC NC NC NC C(15)[15] C(22)[22] C(22)[22] NC NC C(10)[10] C(2)[2] C(22)[22] 
3 3V 0.5 3 0.3  C(5)[1] C(5)[1] C(5)[1] C(4)[1] C(5)[1] C(4)[1] C(9)[3] C(5)[1] C(9)[3] C(9)[3] C(5)[1] C(10)[3] 
4 3V 0.5 7 0.3  NC NC NC C(4)[0] NC NC NC NC NC NC NC NC 
5 3V 0.5 10 0.3  NC NC NC C(4)[0] NC NC NC NC NC NC NC NC 
6 3V 0.5 20 0.3  NC NC NC C(4)[0] NC NC NC NC NC NC NC NC 
                    
7 3V 1 0 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
8 3V 1 1 0.3  C(35)[35] C(24)[24] C(35)[35] C(35)[35] C(24)[24] C(35)[35] C(7)[7] C(22)[22] C(7)[7] C(24)[24] C(24)[24] C(24)[24] 
9 3V 1 3 0.3  C(7)[2] C(3)[1] C(7)[2] C(7)[2] C(3)[1] C(7)[2] C(6)[2] C(3)[1] C(6)[2] C(6)[2] C(3)[1] C(6)[2] 
10 3V 1 5 0.3  C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] C(5)[1] 
11 3V 1 7 0.3  C(8)[1] C(6)[0] C(8)[1] C(8)[1] C(6)[0] C(8)[1] C(14)[2] C(6)[0] C(7)[1] C(14)[2] C(6)[0] C(14)[2] 
12 3V 1 10 0.3  C(10)[1] C(10)[1] C(10)[1] C(10)[1] C(10)[1] C(11)[1] C(11)[1] C(11)[1] C(11)[1] C(11)[1] C(11)[1] C(11)[1] 
13 3V 1 14 0.3  C(15)[1] C(14)[1] C(15)[1] C(15)[1] C(14)[1] C(15)[1] C(14)[1] C(14)[1] C(13)[0] C(14)[1] C(14)[1] C(14)[1] 
14 3V 1 20 0.3  C(21)[1] C(21)[1] C(21)[1] C(21)[1] C(21)[1] C(21)[1] C(21)[1] C(18)[0] C(21)[1] C(21)[1] C(18)[0] C(21)[1] 
                    

15 3V 5 0 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
16 3V 5 1 0.3  C(4)[4] C(4)[4] C(4)[4] C(3)[3] C(4)[4] C(4)[4] C(4)[4] C(4)[4] C(4)[4] C(2)[1] C(4)[4] C(4)[4] 
17 3V 5 3 0.3  O(11) O(11) O(11) O(8) O(11) O(12) O(15) C(17) C(17) C(17) C(17) C(17) 
18 3V 5 7 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
19 3V 5 10 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
20 3V 5 20 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
                    

21 3V 1 3 0.5  C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] C(3)[1] 
22 3V 1 7 0.5  C(7)[1] C(6)[0] C(7)[1] C(7)[1] C(6)[0] C(7)[1] C(7)[1] C(2)[0] C(7)[1] C(7)[1] C(2)[0] C(7)[1] 
23 3V 1 10 0.5  C(9)[0] C(6)[0] C(9)[0] C(9)[0] C(6)[0] C(9)[0] C(10)[1] C(2)[0] C(10)[1] C(10)[1] C(2)[0] C(10)[1] 
24 2V 5 3 0.3  C(6)[2] C(6)[2] C(6)[2] C(6)[2] C(6)[2] C(6)[2] C(8)[2] C(8)[2] C(7) C(8)[2] C(8)[2] C(8)[2] 
25 2V 5 10 0.3  C(12)[1] C(12)[1] C(12)[1] C(12)[1] C(12)[1] C(19)[1] C(20)[1] C(19)[1] C(20)[1] C(20)[1] C(19)[1] C(20)[1] 
26 4V 5 3 0.3  NC NC NC NC NC NC NC NC NC NC NC NC 
27 4V 5 10 0.3   NC NC NC NC NC NC NC NC NC NC NC NC 

Days Between Updates 
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Second, all other factors being the same, as the number of days between updates 

increases, the number of days till convergence decreases initially then increases, and the 

number of updates required for convergence decreases (Figs. 4.2 and 4.3; Table 4.4).  
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Figure 4.2: Days until Convergence vs. Inter-update Period Usage = 3V, β = 1, Δn = 0.30 
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Figure 4.3: Updates until Convergence vs. Inter-update Period; Usage = 3V, β = 1, Δi = 0.30 
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These trends are a consequence of Bayesian updating as expressed through Equations 3.7 

to 3.9. As the period between updates increases, users obtain a larger sample of 

experienced travel times. This has two effects: (i) the mean value will stabilize more 

rapidly since the variability of the means across samples decreases with increasing 

sample size N; and  (ii) the variance will decrease more rapidly for each update with a 

larger N. Thus, as the number of days between updates increases, the number of updates 

till convergence decreases (Fig. 4.3). However, the corresponding number of days till 

convergence does not decrease monotonically (Table 4.4, Experiments 7-14). Initially if 

the samples are small (short inter-update period) the number of updates required for 

convergence is high, since the information content associated with each update is limited 

to a single new observation. For large samples (long inter-update periods), the number of 

updates until convergence is small enough that the total number of days is actually less 

(Fig 4.3). The analysis suggests that an “optimum” level of new information content 

might contribute to faster system convergence following major system changes. The 

“optimum” level of information would be the amount of information that yields the 

minimum point on the curve in Figure 4.2, assuming that providing information affects 

the route switching propensity of individuals. Although Figure 4.3 only shows trends for 

two links, the same trend was found for all links, as Table 4.4 indicates.  

 
Third, lower usage levels generally exhibit greater propensity towards convergence 

compared to higher usage levels, and systems are more likely to converge at high 

tolerable differences between the best and current travel times in route choice decisions 

compared to low tolerable differences (Table 4.4). Both these trends confirm prior 
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findings obtained under very different assumptions and learning mechanisms 

(Mahmassani and Chang 1986; Cascetta and Cantrella 1991). As expected, if users are 

willing to accept larger differences between the best and current travel times (not switch) 

then the chance of convergence would be greater. Convergence is less likely at high 

usage levels (4V) principally because the travel times are more sensitive to flow 

fluctuations the more congested the system is, as captured in the link flow-cost functions 

(and would be predicted by virtually all standard queuing or traffic flow models). 

 

Selective Updating of Experienced Travel Times. Under the second updating rule (Eq. 

3.22), users are only updating when experienced with travel times that differ from their 

expected values by a certain relative threshold u
ndΔ , which is the percent difference 

between the mean updated travel time u
nkτ  and de,

nkT  the perceived experienced travel time. 

Thus, a high u
ndΔ  would reflect a very selective individual. Figures 4.4 through 4.11 show 

the evolution of path flows and travel times for two OD pairs over time for two different 

u
ndΔ  values: 0.07 (unselective user) and 0.90 (selective).  
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Figure 4.4: Flow vs. Time for OD Pair 2; Usage = 3V, β = 1, Δnd = 0.5, and for  u

ndΔ  = 0.07 
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Figure 4.5: Flow vs. Time for OD Pair 2; Usage = 3V, β = 1, Δnd = 0.5, and for  u

ndΔ  = 0.90 
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Figure 4.6: Travel Time vs. Time for OD Pair 2; Usage = 3V, β = 1, Δnd = 0.5, and 
u
ndΔ  = 0.07 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Travel Time vs. Time for OD Pair 2; Usage = 3V, β = 1, Δnd = 0.5, and u

ndΔ  = 0.90 
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Figure 4.8: Flow vs. Time for OD Pair 3; for Usage = 3V, β = 1, Δnd = 0.5, and 
u
ndΔ  = 0.07   

  
 

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80

Time

Fl
ow

Route 9
Route 10

 

Figure 4.9: Flow vs. Time for OD Pair 3; for Usage = 3V, β = 1, Δnd = 0.5, and u
ndΔ  = 0.90 
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Figure 4.10: Travel Time vs. Time for OD Pair 3; for Usage = 3V, β = 1, Δnd = 0.5, and
u
ndΔ  = 0.07 

  
 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Travel Time vs. Time for OD Pair 3; for Usage = 3V, β = 1, Δnd = 0.5, and 
u
ndΔ  = 0.90 
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system with individuals who update almost every travel time experienced is less likely to 

converge than a system with selective individuals. Another aspect of the update process that 

can help understand this phenomenon is that the perceived experienced travel times are 

drawn from a Gaussian distribution, and thus, while selective individuals update less 

frequently (because their travel times are located at the tails) than unselective individuals, 

their updates will generally be more efficient in terms of moving the updated mean in the 

right direction. The figures above depict the convergence for two OD pairs with two paths 

each. Since four of the seven OD pairs in the network have only one path, convergence for 

these pairs is not meaningful since there is no choice. For the one OD pair with four paths, 

convergence was obtained but with many more iterations than pairs with only two paths. 

Also from the plots of travel times over iterations, one can see that the final traffic flow state 

is not close to a user-equilibrium. 

 
Terminating Based on Confidence. The last rule examined is a termination mechanism for 

updating. According to this rule, updating occurs every day until the confidence reaches a 

certain level for all paths, determined by λn, the variance of the perceived travel time over a 

segment of unit travel time (Eq. 3.23). Recall also that the actual confidence threshold used is 

( ) 1
n

−⋅ u
nkτλ . Thus, as λn increases, the required confidence level decreases, and updating stops 

sooner compared to a low value of λn. Furthermore, in Bayesian updating, confidence values 

always increase with every new sample. Figures 4.12 through 4.19 show the evolution of 

path flows and travel times for OD pairs 2 and 3 for two different λn values: 0.05 and 0.90. 

All other parameters being equal, the system is more likely to converge at a low λn than at a 

high λn, which exhibits the “flip-flop” effect. As expected, a system with users that stop 

learning early is less likely to converge than a system with users that keep learning and 
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integrating new information. Premature termination of the learning process results in 

generally greater dispersion of the perceived travel times, independent of the user’s 

experience in the system, yet with no corresponding reduction in the user’s propensity to 

switch paths as actual travel time variability subsides. This behavior does not seem 

particularly plausible or consistent with actual observation, and argues in favor of learning 

models that recognize that perceptions evolve in conjunction with the user’s experience and 

behavior.  

  

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80

Time(days)

Fl
ow

Route 7
Route 8

 
 

Figure 4.12: Flow vs. Time for OD Pair 2 for Usage = 3V, β = 5, Δnd = 0.30, and λnd = 0.05   
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Figure 4.13: Flow vs. Time for OD Pair 2 for Usage = 3V, β = 5, Δnd = 0.30, and λnd = 0.90 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14: Travel Time  vs. Time for OD Pair 2 for Usage = 3V, β = 5, Δnd = 0.30, and λnd = 
0.05   
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Figure 4.15: Travel Time vs. Time for OD Pair 2 for Usage = 3V, β = 5, Δnd = 0.30, and λnd = 0.90 
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Figure 4.16: Flow vs. Time for OD Pair 3 for Usage = 3V, β = 5, Δnd = 0.30, and λnd = 0.05   
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Figure 4.17: Flow vs. Time for OD Pair 3 for Usage=3V, β=5, Δnd =0.30, and λnd =0.90 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.18: Travel Time vs. Time for OD Pair 3 for Usage = 3V, β = 5, Δnd = 0.30, and λnd = 0.05   
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Figure 4.19: Flow vs. Time for OD Pair 3 for Usage=3V, β=5, Δnd =0.30, and λnd =0.90 
 
 
 
 
4.4.2 Risk and Learning  
 
The results from the simulation experiments relating to risk and learning are presented and 

discussed in this section, with respect to four factors. First the effects of varying demand 

levels and initial perception of uncertainty under Bayesian, reinforcement, and belief learning 

mechanisms are presented. The next set of experiments considers the effects of varying mean 

πloss values and different percentages of risk seekers and avoiders within the population. The 

third section considers the effects of varying initial travel time perception of uncertainty 

(variance) on the convergence of the system. Finally the effects of different reference travel 

times on convergence are examined.  
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Varying Demand Levels. In traffic systems, demand levels fluctuate over time, due to latent 

demand for travel and time-varying activity patterns. Past studies have shown that as demand 

levels increase, there is less propensity towards convergence (Mahmassani 1984; Chen and 

Mahmassani 2004). In the first set of experiments conducted in this study, demand levels 

were varied across different learning mechanisms. Demand levels are varied by increasing 

the base demand level (180 users according to Table 4.2) through a demand factor (V). Thus, 

V = 1 corresponds to the base demand level, while V = 2 corresponds to an increase in 

demand by a factor of two. The results from these experiments are show  in Table 4.5. 
 
 
Table 4.5: Number of Iterations until Convergence for Different Demand Levels (V); V = 
demand level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In these experiments, convergence was reached when flows change by two or less users from 

iteration to iteration. Under Bayesian and reinforcement learning, lower usage levels show a 

greater propensity towards convergence compared to high levels, confirming past results, but 

under different learning mechanisms. However, under a belief learning mechanism that 

updates using averages of experienced travel times across all users on a particular route, 

convergence appears less sensitive to demand levels. High demand levels show less 

7 NC NC V = 3.00 

7 NC 15 V = 2.00 

7 61 10 V = 1.50 

7 16 11 V = 1.00 

Belief *Reinforcement Bayesian 
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propensity towards convergence principally because the travel times are more sensitive to 

flow fluctuations the more congested the system is, as captured in the link flow-cost 

functions (and would be predicted by virtually all standard queuing or traffic flow models). 

Under belief learning, since users update using travel times averaged across all user 

experiences for a particular route, the effects of travel time fluctuation or variation across 

users may be reduced, leading to similar travel time perceptions across all users on a 

particular route, all else being equal. Finally, strict convergence under reinforcement learning 

was more difficult to obtain, relative to other learning mechanisms. One plausible 

explanation is that reinforcement is a selective updating mechanism that leads to updating 

only for experienced travel time gains (choices that lead to a reduction in travel times). Thus, 

under reinforcement learning, updating may occur less frequently and with smaller samples 

of experience in general compared to other learning mechanisms. One assumption of the 

learning rules used in this study is that with each update, the confidence increases (variance 

decreases), leading to perceived travel time distributions that become tighter around the mean 

with each update. Thus new experiences (travel times) have less an impact on users’ travel 

time perceptions. Under reinforcement learning since updating only occurs for travel time 

gains, the perceived travel time uncertainty (variance) may not decrease at the same rate as 

other mechanisms, thus leading to slower convergence compared to Bayesian and belief 

learning. 

 

Varying Initial Uncertainty. Experiments were also conducted to examine the effects of the 

initial uncertainty, determined by the value of β, under each of the three learning rules. These 

results are shown  for two demand levels (V=1 and V=2).  
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Table 4.6: Number of Iterations until Convergence for Different Initial Perceived Error (β); β = 
Variance Associated with a Unit of Travel Time for Two Demand Levels. 
 
 

 Bayesian Reinforcement Belief 
Beta=1 11 16 7 
Beta=2 13 22 7 
Beta=3 15 38 7 

 

 

 Bayesian Reinforcement Belief 
Beta=1 15 NC 7 
Beta=2 16 NC 7 
Beta=3 16 NC 7 

 

The results above indicate that under Bayesian and Reinforcement learning, as the initial 

uncertainty increases, convergence in traffic flows is more difficult to obtain. One possible 

explanation for this is that given that users have a higher perceived uncertainty or judgment 

error, more new experiences are required to decrease this perception error. In general, 

reinforcement takes more time until convergence relative to Bayesian since, since the travel 

time experiences sampled under reinforcement learning only consists of travel time “gains” 

(reduction in travel time).  Under belief learning, since users update using travel times 

averaged across all user experiences for a particular route, the effects of travel time 

fluctuation or variation across users may be reduced, leading to similar travel time 

perceptions across all users on a particular route, all else being equal. Finally, similar to the 

results in Table 4.5, higher demand levels lead to more difficulty with respect to 

convergence. 

 
Risk Attitudes. Under a decision process that takes into account users’ perceptions of 

uncertainty, risk attitudes play important roles in the evaluation of travel time likelihoods for 

Demand: V=1 

Demand: V=2 
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route choices. The parameter πloss indicates the position of the inflection point in Equation 

3.26, indicating the degree to which users’ subjectively overweigh or under-weigh 

probabilities. The set of experiments that examined the effects of risk attitude levels and the 

proportion of risk seekers and avoiders in the population, show that risk attitudes do affect 

the convergence of traffic systems. The results for Bayesian and belief learning mechanisms 

under a decision process that takes into account risk attitudes are presented in Figures 4.20 

and 4.21.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.20: Number of iterations until convergence as the mean πloss increases, for different 
percentages of risk seekers in the population: Belief Learning Experiments 
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Figure 4.21: Number of iterations until convergence as the mean πloss increases, for different 
percentages of risk seekers in the population: Belief Learning Experiments 
 
 

Figure 4.20 shows that under Bayesian learning, as the mean degree of risk attitudes in the 

population become more extreme (πloss increases, leading to extremely risk averse and risk 

seeking individuals in the population), the propensity towards convergence is greater, relative 

to a lower πloss. Furthermore, a high percentage of risk seeking individuals (90%) increases 

the propensity towards convergence under Bayesian learning, compared to a low percentage 

(10%). In the risk mechanism proposed in this study, risk seekers would under-weigh 

probabilities of losses and over weigh probabilities of gains. Thus, risk seekers may have a 

higher propensity towards switching to routes with larger perceived variances, unless the 

travel time gain between the current and alternative routes is huge. Risk avoiders on the other 

hand show greater propensity towards staying on routes with lower variances, despite the 
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possibility of a travel time gain for switching. One consequence of the Bayesian learning rule 

is that as users gain travel time experiences over time, their perceived variance decreases, 

thus users’ perceived travel times are insensitive to new experiences. One plausible 

explanation for the higher propensity towards convergence exhibited by systems with more 

risk seekers relative risk avoiders is that risk seekers switch at a greater frequency due to 

their propensity towards routes with huge variances, relative to risk avoiders, thus reducing 

their perceptions of travel time uncertainty at a greater rate compared to risk avoiders.  

 
The results for belief learning (Fig. 4.21) show that although a system with a low percentage 

of risk seekers has a greater propensity towards convergence than one with a high percentage 

of risk seekers, the difference in propensities is less relative to the results from a Bayesian 

learning rule. Under belief learning perceived travel times are updated using averaged travel 

times across all users choosing the same route. Thus, the effects of travel time fluctuations or 

variation across users is reduced, leading to similar travel time perceptions across all users of 

a particular route, all else being equal, leading to a greater propensity towards convergence, 

compared to systems where individuals are perceiving different travel times. 

 
Initial Perceived Variance (β) and Risk. In addition to examining risk attitudes, the effects of 

initial perceived travel time variance (β) or uncertainty were examined. The parameter β 

indicates the initial dispersion the perceived travel times. Thus, a higher β indicates greater 

initial perceived variance in the travel times (low confidence). The number of iterations until 

convergence for different percentages of risk seekers in the population and different values of 

initial perceived travel time variance are presented  in Figures 4.14 and 4.15 for different 

initial values (β) for perceived travel time uncertainty.  
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Figure 4.22 Number of iterations until convergence as the number of risk seeking individuals 
in the population increases, for different initial perceived variances (β): Bayesian Learning 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.23 Number of iterations until convergence as the number of risk seeking individuals 
in the population increases, for different initial perceived variances (β): Belief Learning 
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show that if the initial perceived variance is too low (low β), the system has a lower 

propensity towards converging since additional learning has marginal effects on the 

perceived variance (Chen and Mahmassani 2004). One plausible explanation for this 

difference is that risk attitudes are explicitly considered in this study. Some users may be 

very risk seeking, thus switching routes for any small probability of a travel time gain. Thus, 

a low perceived travel time variance may not have a pronounced effect since some risk 

seeking individuals would be switching in any case. Also, note that a low percentage of risk 

seeking users in the population does not necessarily indicate the absence of extremely risk 

seeking behaviors (high πloss), since the values for πloss are drawn from a normal distribution. 

Thus, for any percentage of risk seeking users there would be users with a high degree of risk 

seeking behavior (high πloss). 

 

Finally, under Bayesian learning, as the percentage of users who are risk seeking increases, 

convergence appears easier to obtain. Also, convergence is easier to obtain under belief 

learning compared to Bayesian learning overall. These results are consistent with those 

observed in Figures 4.14 and 4.15. The effects of varying initial perceived travel time 

variance may be reduced due to the presence of risk seeking (and risk avoiding) users in the 

system that may switch routes or stay despite small probabilities of gains or losses. 

 
Reference Travel Time. Finally, the effects of perceived travel times, more specifically the 

selection of a reference travel time affects convergence were examined. Perceived travel 

times refer the weight placed on travel times in memory and experienced travel times, when 

updating does not occur (Eqs. 3.27-3.29). These results show that as users place more weight 

on updated travel times, the propensity towards convergence increases, compared to users 
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who place more weight on recently experienced travel times. These results are shown  in 

Figure 4.16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24: Number of iterations until convergence as the percentage of risk seekers 
increases, for different types of perceived travel time, under Bayesian learning 
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weighed more in an individual’s perceived travel time, convergence is more difficult to 

obtain.  
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Under the assumption that users that weigh their travel times from updated travel times more 

compared to experienced travel times have a higher propensity towards choosing the same 

route day-to-day. Also, as users choose (sample) the same route more frequently from day-

to-day, their confidence in the perceived travel time for that route increases (variance 

decreases), and thus future experienced travel times will have less an impact. As users rely or 

place more weight on their updated travel times, their route choice behavior becomes more 

consistent from day-to-day, as shown in Figure 4.16. 

 
4.5 Concluding Remarks 
 

This study investigated the effect of different perception and learning mechanisms on the 

day-to-day behavior of traffic flows. Travel time perception and learning mechanisms were 

modeled using Bayesian statistical inference concepts, and were embedded in a microscopic 

(agent-based) simulation framework to investigate their collective effects on the day-to-day 

behavior of traffic flows. This study extended past work on travel time perception and 

learning by considering the travel time perception and learning process, the triggering and 

terminating mechanisms which govern it, and the effect of the above on the day-to-day 

dynamic behavior of a traffic network, in particular convergence. It represents a first step 

towards understanding the mechanisms behind the dynamics of route choice behavior, and 

thus is primarily exploratory in nature. 

 
The results indicate that individuals’ perception of path travel times resulting from 

endogenous judgment error and the mechanisms for integrating them with past experiences 

both greatly affect the convergence of the system. Through the experiments conducted in this 

study, several important effects were observed. First, individuals’ overall travel time 
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perceptions strongly influence convergence of the traffic system. When the overall travel 

time perception error is low (mostly regular commuters) or high (mostly new commuters), 

system convergence is difficult to attain. Second, all other factors being the same, as inter-

update period increases, the number of days till convergence decreases initially and then 

increases, and the number of updates required for convergence decreases. Additionally, the 

results suggest that an “optimum” level of new information content might contribute to faster 

system convergence. Third, a system with individuals that update almost every travel time 

experienced is less likely to converge than a system with selective individuals. Finally, 

premature termination of the learning process results in generally greater dispersion of the 

perceived travel times, independent of the user’s experiences, yet with no corresponding 

reduction in the user’s propensity to switch paths as actual travel time variability subsides. 

Overall these findings indicate that the perceived confidence associated with experienced 

travel times is an important factor in route choice decisions and should not be ignored. 

Additionally, these findings call into question the behavioral assumptions invoked in 

deterministic and stochastic equilibrium assignment models, in particular fixed and 

homogenous perception parameters, and have important implications for dynamic network 

performance models. Finally, note that convergence was a desired criterion in this paper, 

which assumes a fixed demand level. Under variable demand convergence is still sought. 

Although the system may not be at a strict user equilibrium (UE) state, there still exists a 

unique solution at which all users have minimized their “perceived” travel times. It can be 

shown that the equivalent mathematical program for variable demand is strictly convex and 

thus has one stationary point, which is a minimum (Sheffi 1985). Additionally, note that the 
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link-cost functions used in this paper were two-piece and thus discontinuous. This may be 

problematic since convergence is not guaranteed.   

 
This study also examines the role of risk attitudes and individual perceptions of travel time 

on the day-to-day behavior of traffic flows. In this study a decision making mechanism in 

which risk attitudes are reflected through the subjective probability weights for gains and 

losses is used to examine the role of risk attitudes and travel time uncertainty on day-to-day 

route choice dynamics. Additionally, three learning types are considered: i) Bayesian; ii) 

reinforcement; and iii) belief. These learning and risk mechanisms are modeled and 

embedded inside a microscopic (agent-based) simulation framework to study their collective 

effects on the day-to-day behavior of traffic flows. Additionally, we also examined the role 

of risk seekers in driving system-wide properties of traffic networks over time. 

 

The results show that explicitly considering risk attitudes and their effect on an individual’s 

perception of uncertainty does influence the convergence of traffic flows in a network. Risk 

attitudes affect route choice decisions by influencing how individuals perceive uncertainty 

and how uncertainty relates to route travel times experienced in the decision making process. 

The results show that the presence of risk seekers and avoiders may affect the route 

switching frequency of users, thus affecting the spread of users across route from day-to-day. 

More specifically, the results show that the percentage of risk seekers in the population 

affects the rate of convergence, possibly by affecting the rate of sampling taken by 

individuals and by adding variability in travel times for individuals who are not risk seeking. 

Additionally, for Bayesian learning, any mechanism that affects the rate of sampling will 

affect the rate of convergence. Convergence under Bayesian learning is a function of both the 
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perceived travel times and the perceived dispersion of these travel times. Risk attitudes affect 

the weight placed on the likelihood of gains and losses.  

 

Reinforcement learning describes how travel times experienced are integrated, but does not 

explicitly say anything about how uncertainty changes over time. There is no assumption in 

reinforcement learning that individuals perceive less dispersion in travel times as more 

experiences are gained. Thus, unlike a system with Bayesian learners, convergence is in 

general more difficult to achieve. Additionally, since reinforcement learners only update 

travel time gains, the rate of sampling from day-to-day may not be high enough to lead to 

convergence. One assumption of the learning rules used in this study is that the propensity 

towards convergence increases as users’ perceived confidence in travel times increases 

(perceived variance decreases). Although belief learning faces the same issue, since it 

considers experiences of all users, this may serve to lead a system to faster convergence 

compared to reinforcement learning. 

 

Finally, these results show that there are system-wide properties that are common to all cases, 

regardless of learning rule or the explicit consideration of risk attitudes. First as demand 

levels increase, convergence is more difficult to achieve. Second, as individuals rely more on 

their updated travel times when they are making route choice decisions, less switching 

among routes occurs and individuals choose a particular route more consistently. Since 

updated travel times only change with updating learning, they vary less over time with long 

travel times experienced. 
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Chapter 5.0 Models of Activity Scheduling Dynamics 
 
Demand management strategies, such as telecommuting, demand peak spreading, congestion 

pricing, and advanced traveler information systems, have continued to evolve and gain 

momentum in the policy arena. However, assessing and evaluating the effectiveness of these 

strategies requires a better understanding and analysis of travel behavior over longer time 

frames that extend beyond the peak traffic periods. 

 
The need to better understand travel behavior has led to the development of activity-based 

approaches for analyzing travel, characterized by an improved theoretical basis underlying 

demand forecasting methods and improved policy sensitivity from developed models 

(Kitamura 1988; Ettema and Timmermans 1997; McNally 2000). This class of approaches 

recognizes that travel results from the need to participate in activities over space and time. 

Under this behavioral paradigm, travel is an integral component of a time-continuous activity 

pattern or schedule, viewed as a sequence of activities; it results from the interdependent 

choices of which activities to participate in, where, for how long, and in what sequence 

(which may include choices of start and finish times), along with travel choices such as mode 

and route choices. 

 

Although the forecasting capabilities of travel demand models have improved significantly, 

researchers increasingly realize that an improved understanding of travel behavior and 

activity patterns requires more than a better account for observed outcomes; it requires better 

models of the processes and mechanisms operating behind these behaviors (Pas 1985). Many 

researchers have recognized the need for in-depth research into the scheduling process 

underlying observed activity schedules, and the importance of the “rescheduling” process in 
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understanding the dynamics or behavioral changes over time that could result from the 

demand management measures mentioned previously (Axhausen and Garling 1992; 

Axhausen 1998; Doherty and Miller 2000). Additionally, a better understanding of individual 

activity scheduling dynamics (such as rescheduling) may lead to improved insight into the 

scheduling of unplanned activities, an issue ignored in previous studies. Furthermore, 

empirical evidence suggests that activity scheduling is highly dynamic, occurring over 

varying time horizons, with significant amounts of revision and continuous re-planning, even 

during execution (Doherty and Miller 2000; Miller and Roorda 2003). Recognizing that 

observed travel patterns are the result of an (unobserved and latent) underlying activity 

scheduling decision process, a need exists for models that adequately capture this dynamic 

process. 

 

Past research suggests that experiences from past activity participation decisions may 

influence current decisions (Hirsh et al. 1986; Hanson and Huff 1988; Hamed and Mannering 

1993; Doherty and Miller 2000). However, due to the limited availability of data beyond 

single day activity-trip diaries, the focus of past research on activity choice is on modeling 

observed complete schedules at the end of the day (Bowman and Ben-Akiva 1996; Wen and 

Koppelman 1999). Past research has also shown that there is significant day-to-day 

variability in travel-activity behavior based on the analysis of variability in multi-day travel-

activity behavior (Kitamura 1988; Pas 1988). For example, Hanson and Huff (1988) show 

that a one-week record of travel does not capture behavior over the long-term, such as a five-

week period. Activity-travel data collected over a period of time are still rare, but two recent 

datasets are Mobidrive (2002) collected over a six-week period, and the CHASE (2000) data 

set which looks more at adjustments made to schedules over time. Longitudinal observations 



 

 109 
 

of individual activity behavior would allow estimation of dynamics models. Very few 

examples of dynamic disaggregate choice models exist in the activity-based literature. Hirsh 

et al. (1986) estimate a parametric model of dynamic scheduling for weekly shopping 

behaviors. Jou and Mahmassani (1998) looked at trip chaining in commuter trips, but not the 

actual scheduling of activities beyond the commute trip. A model of the dynamics of activity 

scheduling would allow researchers to address several questions regarding the state-

dependency and heterogeneity of scheduling behavior, including the relationship between 

planned and executed schedules. 

 
5.1 Objectives of Modeling Activity Scheduling Dynamics 
 

The main objective of the present study on activity scheduling dynamics is to provide a 

theoretical and conceptual framework for modeling the temporal aspects of the activity 

scheduling process, including activity participation decisions. The main perspective from 

which the scheduling and participation process is viewed is that of a queuing system, with the 

individual as a “server” that conducts or engages in activities that arise over time (“arrivals”). 

The scope of the process considered in the modeling framework includes both static long-

term (strategic) and dynamic short-term (tactical) aspects of activity scheduling and 

participation.  

 
The modeling framework presented seeks to address and account for the effects of the 

following aspects and factors in the scheduling and participation decisions of individuals 

over time: (i) unplanned activities arising during schedule execution; (ii) planned activities 

arising prior to executing a schedule; and (iii) activities that have arrived but not scheduled or 
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serviced (queued). This modeling framework extends previous work on activity scheduling 

by (i) further considering the individual scheduling process, (ii) accounting for the 

interrelationship between the static (long-term) and dynamic (short-term) aspects of activity 

scheduling, and (iii) considering the role of “latent” activities waiting in queue on activity 

schedules and activity participation over time.  

 
The next section presents concepts for activity classification and the characteristics of 

different activity classes used in this study. The following sections present and discuss the 

conceptual and modeling framework for activity scheduling. The following chapter presents 

results from simulation experiments as well as an operational model, estimated with actual 

data, which reflects the main concepts from the modeling framework presented in the current 

chapter. 

 
 
5.2 Activity Classification and Characteristics 
 

Different disciplinary perspectives have proposed different approaches to classifying 

personal activities. Economists typically focus on identifying and differentiating between 

market and non-market activities. Sociologists, in turn, divide personal activities into 

individual vs. social, or work vs. leisure. In the transportation area, a classification approach 

should differentiate between travel and non-travel related activities (Harvey, 2003). 

Yamamoto and Kitamura (1999) classified activities into two categories: mandatory, if an 

individual must execute that activity, vs. discretionary, if an individual has a choice to be 

engaged in it. In general, activities that are fixed in space and time have scheduling priority 

over those that are free in space/time. Mandatory activities have priority over discretionary 
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ones even if free in space/time (Kawakami and Isobe, 1990). Furthermore, Huff and Hanson 

(1990) concluded that individual travel-activity patterns are characterized temporally by both 

repetition (routine) and variability (non-routine). These concepts are applied in the 

framework presented in this study.  

 

Activities are first differentiated into mandatory (or compulsory) and discretionary activities. 

In the short-term, individuals typically have no choice over participating in mandatory 

activities; their durations and frequencies are fixed. For example, work and medical 

appointments are mandatory activities since there is no choice in the short-term (such as 

within a day), over participating in them, only in the long-term (over a month or year). On 

the other hand, individuals typically have a choice over participating in discretionary 

activities in the short-term, such as leisure and maintenance activities. For example, a person 

may choose to shop for groceries or read a book with varying frequency over the course of a 

day or week (short-term). Maintenance activities are similar to mandatory activities, in the 

sense that they need to be completed, but with more flexibility in relation to frequency or 

timing. Resting and eating are both activities that are mandatory, but there is some flexibility 

over how often and when they can occur. Due to this relative flexibility, maintenance 

activities are considered to be discretionary activities in this study. A final type of activities 

that arises over time consists of emergency activities. Similar to mandatory activities, 

individuals have no choice over participation, but decisions are typically made in the short 

term soon after such emergencies arise. Their frequency is also lower compared to other 

activity types, but other attributes, such as their duration, have greater variability.  
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For the purpose of this study, all activities fall into one of two main categories: mandatory or 

discretionary, with maintenance and leisure activities falling under discretionary, and 

emergency under mandatory. From the perspective of the scheduling time frame used in this 

study, mandatory activities can be viewed as scheduled, and discretionary as unscheduled, 

reflecting differences in the timing of their participation decisions. This suggests that 

mandatory activities are scheduled prior to inserting unscheduled discretionary activities into 

the schedule. Thus, individuals initially begin each day with a “skeletal schedule” with 

mandatory activities scheduled and fixed, such as work and medical appointments. As the 

day progresses, discretionary activities are inserted depending on their feasibility both 

temporally and spatially. Since discretionary activities can potentially be impulse-driven or 

unplanned, they may exert greater influence on travel-activity patterns compared to other 

more routine activities, since the former exhibits greater uncertainty in time and space. The 

general classification of activities used is shown in Figure 5.1. 

 

 

 

 

 

 
Figure 5.1 Activity Classification 
An important characteristic of some maintenance and leisure activities is that they may be 

interrupted for another activity of significantly higher priority or preference, and resumed 

again when the higher priority activity is completed. For example, when reading for leisure 

or cleaning, individuals may stop momentarily to run a quick errand, and return to reading or 
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cleaning when finished. Despite their relevance for investigating activity scheduling, over 

time, “overlapping” activities are not pursued beyond the conceptual level in this study. 

 

5.3 The Activity Scheduling Decision Process 
 

This section presents an overview and conceptual description of the activity scheduling 

decision process modeled and investigated in this study. The components of the modeling 

framework for this process are given in the later sections of this chapter. Simulation and 

statistical estimation results relating to this model are presented in the following chapter. 

 
Activity scheduling can be viewed as an activity queuing/service process, where the system 

consists of a single server (the individual) that services (conducts) activities that arrive 

according to a generation process. This queuing system can further be characterized as a 

priority queuing system with vacations and preemptions, reflecting the inherent preferences 

and scheduling perspectives of the individual.  

 
At the start of a scheduling period, such as a day or week, an activity schedule is still in 

“skeletal” form, with intervals of time devoted to mandatory activities. From the perspective 

of a queuing system, these mandatory time intervals can be viewed as vacation intervals 

devoted to (planned) mandatory activities, during which the individual is unavailable to 

engage in unplanned non-mandatory activities. As the schedule is executed over time, new 

activities may arise. Depending on the availability and possibly preferences of the individual, 

activities may need to “wait in a queue” before being dealt with. An individual may be 

unavailable to deal with an activity due to current participation in a mandatory activity 
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(vacation interval) or other type of activity. Preferences influence the importance (priority) 

with which an individual views an activity. For example, an individual may view emergency 

activities as very important, thus never placing them in queue. Viewing activity scheduling as 

a queuing process allows for many intuitive behavioral scheduling decisions to be explained 

and possibly described quantitatively. For example, participating in high-stress activities 

(medical emergency) over currently engaged activity can be viewed as preemption. 

Furthermore, activities changing priority groups, such as from discretionary to mandatory, 

can be viewed as switching or “jockeying” between priority classes, possibly due to time-

varying stress levels. A more specific and detailed conceptual framework of activity 

scheduling is presented next. 

 

5.3.1 Activity Scheduling: Conceptual Framework  
 

As previously explained, individual activity scheduling is conceptualized as a single server 

queuing system with the individual as a server that needs to service activities that arise 

according to some arrival process. Consider the “flow” or movement of activities and the 

schedule adjustments in response to their (activities) movements that occur over time for a 

person. At the beginning of a scheduling period, before executing the schedule, a person 

begins with a planned schedule with intervals of time devoted to mandatory activities. 

Assuming that the start and end times of mandatory intervals are inflexible, discretionary 

activities are only pursued outside these intervals. As the person executes the schedule over 

time, two events may occur: i) new activities may be generated (arrive), requiring either a) 

adjustments to the schedule (insertions, deletions, shifts) or b) changes in the activity queue; 

ii) old (existing) discretionary activities may require adjustment, resulting in adjustments to 
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the current schedule. This framework assumes that these adjustments occur only in the 

discretionary periods, since mandatory activities are likely fixed in time and space. This 

process, depicted in Figure 5.2, continues as the person executes the schedule and new 

information or activities are generated, until the end of the horizon of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Activity Scheduling Process 
 

The framework consists of two main components: (i) an activity generation process and (ii) 

an activity scheduling/participation process. The activity generation process determines the 

arrival pattern of activities, characterized by arrival times and frequencies. The order and 

duration of activity participation is governed by a decision process based on activity 

attributes and individual preferences. This decision process can vary in complexity. For 

example, an individual may use a simple rule, such as first-come-first-serve (FCFS) rule, or 

more elaborate (and realistic) rules based on individual stress and time use preferences. 
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Alternatively, this process may also be strategic/long-term (overall utility maximization) or 

tactical/heuristic (LIFO, SIRO, etc) in nature. An activity queue forms when the number of 

activities generated exceeds the capacity of the individual to accommodate them, with 

capacity being a function of personal attributes and abilities.  

 
The conceptual framework presented above addresses several aspects of activity scheduling 

behavior that have not been adequately captured in previous studies, including i) the 

relationship between activity generation and participation behavior ; ii) the role of latent 

activities; iii) the movement or flow of activities and the adjustment of schedules over time; 

and iv) the interrelationship between planned and executed schedules. For example, at times 

it may be necessary to generate and pursue a second activity as a complement or follow up to 

a prior activity, or specifically generate an activity to mitigate the effects of queued activities. 

Additionally, generating new activities during execution may also lead to adjustments to the 

planned schedule. Finally, within this conceptual framework, unplanned activities with high 

priority, such as medical emergencies or the onset of a new sale, may preempt any existing 

activity. 

 
5.4 Activity Scheduling: Modeling Framework 
 

Application of the above conceptual framework towards understanding activity scheduling 

behavior and evaluating transportation planning policies requires mathematical models that 

can capture these behaviors. Additionally, these models should be feasible and made 

operational with reasonable data requirements. The remaining sections of this chapter 

provide a modeling framework for describing these behaviors quantitatively. The following 
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chapter will address the issues related to making the framework operational within an 

econometric model estimation framework. 

 

5.4.1 The Concept of Stress 
 

To make the above framework operational, the concept of activity stress is introduced as a 

driving motivation for the scheduling behaviors described previously. The concepts of stress 

and time pressure are not new concepts in psychological studies of decision making over 

time.  They are adapted in this study to the activity scheduling context. 

 
Stress plays an important role in the relationship between environmental and psycho-social 

influences, and health (Dougall and Baum 2001). Due to its latency, multiple dimensions, 

and varying contexts of use, the construct of “stress” has been difficult to define. The 

classical definition of stress is the condition under which environmental demands exceed an 

individual’s adaptive capacity, resulting in physiological and psychological changes (Selye 

1980). Since environmental demands can refer broadly to a number of activities and events 

occurring at different temporal scales, past and current methods for measuring stress exertion 

have varied, but typically involve qualitative methods coupled with basic statistical analysis, 

such as regression or factor analysis (Cohen, Kessler, and Gordon, 1995). Additionally, there 

have also been studies that examine stress from a biological perspective that link 

physiological data, commonly blood pressure, to stress and health (Matthews et al., 1986).  

 
Past and recent methods for measuring stress and its relationship to changing environmental 

demands have also relied primarily on qualitative methods, such as checklists and interviews, 

due to the latent and multidimensional nature of stress. Additionally, statistical methods, such 
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as factor analysis have also been used to examine the relationship quantitatively. Although 

these methods have been effective in looking at stress in static contexts as a function of 

environmental demands, they are ill-suited for looking at dynamic situations where the 

interest is on how stress changes over time from day-to-day or within-day. Although many 

studies have examined daily and within-day stress, these studies have only applied methods 

used for episodic stress analysis (interviews and checklists) to a shorter time frame, 

inadequately capturing the volatile behavior of stress over time (Eckenrode and Bolger, 

1995). Additionally, these methods have underutilized or ignored stress data from a 

biological perspective. 

 
Furthermore, research in psychology has shown that the perceived consequences from 

engaging in an activity affect how activity choices are made (Garling et al 1996; Garling et al 

1999). Time pressure is known to lead to adverse consequences for the quality of judgment, 

decision making, and problem solving (Edland and Svenson 1993). Additionally, time 

pressure has also been found to lead to psychological and physiological stress, with possible 

long-term health effects (Lundberg 1993, 1996). 

 
 
5.4.2 Activity Scheduling: Mechanisms 
 

Given an understanding of the concept of stress and pressure, in particular the factors that 

influence and characterize it, models of activity scheduling mechanisms can now be 

developed. This study focuses on the mechanisms for activity scheduling and participation 

that characterize scheduling dynamics. Although the mechanisms behind activity generation 

are also important, as shown in the conceptual framework previously presented, they are 
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addressed only to a limited degree in this study, to focus more on the dynamics of 

scheduling.  

 

The first mechanism examined considers the decision to participate in an activity r at time t, 

either existing and already in queue (an old activity) or recently generated (a new activity). In 

making this decision, the individual evaluates several factors, including i) attributes of the 

activity; ii) attributes of the schedule, including the activity queue; and iii) personal attributes 

and abilities. An activity participation mechanism based on the concept of activity stress is as 

follows: 

 

⎪⎩

⎪
⎨
⎧ ===∀≥≥

=
otherwise0

N1,...,n A,,...,1r T,1,..., t    0 AST1 nt
r
ntr

nt

α
δ                    (5.1) 

 

where r
ntδ is an activity participation indicator (1 = participate; 0 = not participate) for person 

n, activity r, and at time t;  ASTr
nt is the stress associated with activity r at time t; and ntα  is 

the stress threshold for activity participation. According to the expression above (Eq. 5.1), if 

the stress of an activity r exceeds the stress threshold ntα , person n will participate in activity 

r, otherwise, the activity would remain in queue. Following the previous discussion on 

activity stress and time pressures, the perceived stress of an activity and activity stress 

threshold are defined as follows: 
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nt
r
ntntnnt )Z,S,X(  μα += f , N1,...,n A,,...,1r T,1,..., t ===∀                    (5.3) 

 

where nX are person specific attributes; ntS are schedule-related attributes; r
ntZ are activity 

specific attributes, and r
ntε  and ntμ  are associated errors that may result from observation or 

measurement, or unobserved variations in taste. This rule is similar to other boundedly 

rational rules, based on Simon’s (Simon 1955) notion of satisficing, developed for other 

travel decisions such as departure time or route switching (Mahmassani and Chang 1986).  

The parameter αtn is the stress threshold and can be viewed as the amount of stress an 

individual can tolerate; it may also represent an exogenous level of aspiration. Depending on 

the value of αtn, different scheduling behaviors are exhibited. A high value of αtn may 

indicate a person very tolerant of stress. Such a person would only participate in activities 

with high associated stresses, compared to a person with a low αtn, who has less tolerance to 

stress and is willing to participate in any activity. Thus, this threshold reflects the inherent 

preferences and attitudes of the person n, which may be a function of the schedule, activity or 

person specific attributes.  

 

Similar to the decision to participate in an activity, a model of activity scheduling decisions 

may also be expressed as: 
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where r
ntθ  is an activity scheduling indicator (1 = schedule; 0 = do not schedule);  ASTr

nt is 

the stress associated with activity r, as described previously; ntω  is a stress threshold 

associated for scheduling; and ntυ  is the corresponding error. If the stress of an activity r 

exceeds the threshold ntω , person n will schedule the activity r, otherwise, the activity would 

remain in queue or be ignored. Similar to ntα , the threshold ntω  would also vary with person 

specific attributes nX , schedule-related attributes ntS , and activity specific attributes r
ntZ .  

 
These two mechanisms appear to be behaviorally very similar and nearly identical. First, 

both mechanisms are based on Simon’s concept of satisficing, such that person n will pursue 

the action (participate or schedule) if the stress of activity r exceeds the corresponding 

threshold. Second, in both cases the thresholds are a function of person, activity, and 

schedule specific attributes. The main difference between these two mechanisms (Eq. 5.1 and 

5.4) lies in the behavioral implications and interpretation of their associated thresholds ( ntω  

and ntα ). The first mechanism (Eq. 5.1) addresses activity participation, which typically 

occurs over a shorter time horizon compared to scheduling decisions. Prior to actually 

participating in an activity, an individual may still “change his mind”. In contrast, scheduling 

decisions typically occur over longer time horizons on a more strategic level. Thus, the first 

mechanism would reflect more short-term perceptions and factors, while the second 

mechanism would reflect long-term aspirations. This difference also carries over to the 

interpretation of the thresholds. While the ntω threshold may reflect more strategic long-term 

objectives, such as the frequency of the activity or overall schedule flexibility, ntα  would 
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reflect more myopic factors. By measuring and estimating both of these thresholds jointly, 

one could examine the interrelationship between long and short-term scheduling decisions 

and associated dynamics. Analyses similar to those conducted in studies examining the 

relationship between pre-trip and en-route switching models (Mahmassani and Liu, 1999) 

could be carried out with the necessary activity scheduling data. The next section describes 

the different latent measures used in more detail. 

 

5.4.3 Activity Scheduling: Latent Measures and Quantities 
 

In the activity scheduling process, the decision to schedule and participate in activities that 

arise during schedule execution is driven by the stress of the activities in relation to a stress 

threshold that reflects the stress tolerance of a person. To provide further behavioral 

modeling insight into the measure of stress, this section takes a closer look at the composition 

of activity stress. Define the stress of an activity as a tradeoff between the utility from 

pursing, either participating or scheduling, an activity and the stress from not pursuing it, 

expressed as follows (Note: From this point forward, pursuing an activity refers to either 

participating or scheduling the activity): 

 

 −+ += rtrt
r
nt UUAST ,  A,...,1r T,1,..., t ==∀                      (5.6) 

 

where  ASTr
nt  is the stress from pursuing an activity r at time t; +

rtU  is utility from pursuing 

the activity and −
rtU  is the stress from not pursuing. Depending on the behavior of interest, 
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 ASTr
nt  may indicate a person’s net (or overall) inclination towards placing or leaving an 

activity in queue, or completely ignoring it if scheduled. Under this perspective +
rtU  is 

interpreted as the potential utility derived from the activity itself, while −
rtU  is the stress 

incurred from placing an activity in queue, and thus ignoring the activity. Details with respect 

to the composition and contributing factors of these two values are described and discussed 

next. 

 
The utility +

rtU  derived from a specific activity r for person at time t may be further 

decomposed into utilities from the time components of the activity, attributes of the person n, 

endogenous attributes of the activity, which includes the effect of activity r on other activities 

k ≠ r. Temporally, three interval durations are associated with an activity r: i) Drt the duration 

of the activity; ii) Wrt the duration spent waiting to engage in the activity after if it has been 

scheduled, and iii) Qrt the duration of time waiting in queue before the activity was 

scheduled. Each activity pattern or schedule can be viewed as a sum of these segments for 

each activity, with the total time Trt associated with activity r at time t given as: 

 

 Trt = Dr + Wrt + Qrt, A,...,1r T,1,..., t ==∀                           (5.7) 

 

where Dr  is the time spent participating in activity r; Wrt is the waiting time for activity r; 

and Qrt is the time activity r spent in queue before being scheduled. Aside from the time 

components Trt of an activity, the utility of an activity may also be affected by intrinsic 

activity attributes, time-varying activity attributes, and attributes that relate the activity to 
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other activities, either in queue or scheduled. The utility for engaging in an activity can be 

expressed as follows: 

 

 )X,Z,T(U rtrtrt f=+ , A,...,1r T,1,..., t ==∀                      (5.8) 

  

 ( )rtrtrt H,RZ f= , A,...,1r T,1,..., t ==∀                      (5.9) 

 

where, Trt is the total time associated with an activity r at time t; Zrt are attributes, static and 

time-varying, of activity r and possibly the schedule if scheduling decisions are considered; 

Rrt are the time-varying attributes of activity at time t; Hit are the static attributes that relate 

activity r with other activities; and X are the attributes of the person. As stated previously, 

time components of an activity include the duration of the activity, the duration of the wait 

prior to the activity (after it is scheduled), and the amount of time spent in queue before the 

activity was scheduled. Intrinsic attributes of an activity r include attributes that do not vary 

with time, such as activity type, as well as time-varying attributes. For example, the level of 

priority of an activity may change with time. Examples of attributes that relate an activity to 

other activities include the relative degrees of complementary and of substitutability.  

 

Although +
rtU  represents the utility of derived from a specific activity r, it can be broken 

down further into positive benefit and negative transaction cost components: 
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where B
rtU  is the positive benefit component and C

rtU  is the negative transaction cost 

component. The focus of the following discussion is on the negative cost component, since 

the positive benefit results from the actual participation of an activity. The individual incurs 

transaction costs from fitting an activity into an existing schedule. For example, fitting an 

activity into an existing schedule may involve shifting already scheduled activities forward or 

backward in time, or deleting them completely. Even if there is sufficient space in the 

existing schedule, disutility is still incurred since the flexibility of the schedule might 

decrease. Thus, disutility results from any temporal change to the activities of an existing 

schedule, resulting from actions such as shifting, deleting, and placing an activity in queue. 

Shifting refers to changing the activity start and end times, possibly to accommodate new 

activities. Deletion refers to removing an activity from an existing schedule without placing it 

back into the queue. Finally, schedule transaction costs may also include changes in 

aggregate and latent schedule characteristics such as flexibility and efficiency. Given these 

components of scheduling, transaction costs, C
rtU  can be expressed as follows: 

 

 ( )AG
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where TR
rtC  is the component that reflects costs from scheduling adjustments made to an 

existing schedule; and AG
rtC  is the component that reflect the cost from changes in schedule 

attributes, such as flexibility and efficiency, induced by scheduling activity r;  

 
The activity stress incurred −

rtU  from keeping activities in queue, or ignoring them 

completely, can be viewed as a cost the person incurs for not pursuing an activity.  Activity 
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stress can be viewed as a kind of disutility incurred from an activity that is left unscheduled 

in queue. The person is assumed to be aware of all activities in queue. However, if the person 

makes no effort to schedule or participate in the activity, or these attempts have been 

unsuccessful, the activity induces stress (or pressure) on the person, the magnitude of which 

naturally depends on activity attributes. Also, this stress may vary with time as the deadline 

for completing the activity approaches. For example, consider a paper assignment for a 

student. Initially when the paper is assigned no effort may be made by the individual to 

schedule its completion, and the activity (write paper) may be placed in queue. However, as 

the deadline for submitting the paper approaches the activity may gain importance and cause 

stress on the individual. Thus, the stress an activity carries is a function of both intrinsic and 

temporal activity attributes, as well as attributes of the individual. The stress from an activity 

can be expressed in a similar fashion to +
rtU  as: 

 )X,Z,T(U rtrtrt f=− , A,...,1r T,1,..., t ==∀                   (5.12) 

 

 ( )rtrtrt H,RZ f= , A,...,1r T,1,..., t ==∀                   (5.13) 

 

where, Trt is the total time associated with an activity r at time t; Zrt are attributes, both static 

and time-varying, of activity r and possibly the schedule if scheduling decisions are 

considered; Rrt are the time-varying attributes of activity at time t; Hrt are the static attributes 

that relate activity r with other activities; and X are the attributes of the person. Examples of 

activity attributes that affect the amount of stress production are the number of participants or 

its inherent priority. If an activity requires a large number of participants it is likely to cause 
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more stress in queue, since keeping it unscheduled also imposes stress on other participants. 

Likewise, an activity with a high priority imposes stress on the individual if it is left 

unscheduled in queue. Examples of temporal activity attributes that affect stress are the 

amount of time the activity has been in queue and the time until the activity is unavailable. 

Intuitively, the longer a high priority activity is left in queue, the more stress it imposes. 

Similarly, as the time until an activity is unavailable decreases, the stress the activity imposes 

on the individual is likely to increase. For example, as a paper submission deadline 

approaches (the available time for writing the paper decreases) it imposes more stress as a 

function of the available time.  

5.5 Concluding Remarks 
 

This chapter presented conceptual and modeling frameworks for investigating the dynamics 

of activity scheduling decisions over time. The perspective from which activity scheduling is 

viewed is that of a single-server queuing system in which the individual is a server that 

schedules and conducts/engages in arriving activities. Two decisions were examined, namely 

activity scheduling and participation, where the former represents a more long-term planning 

type decision, while the latter occurs over the short-term. This modeling perspective allows 

for many realistic scheduling behaviors not addressed in previous models, such as the 

interaction between long-term and short term activity scheduling decisions, the effects of 

latent activities generated but never participated or scheduled, and the effects of unplanned, 

possible emergency type activities. 

 
To make this framework operational, the concept of activity stress and pressure was 

developed and characterized. Stress and time pressure have been investigated in the 
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psychology and health literature, and have been shown to influence the activity choices of 

individuals. Due to its latent nature, several challenges exist in measuring activity stress in 

either the dynamic or static sense. Consequently, several existing approaches to measuring 

stress over varying timeframes have relied on qualitative methods. Under the modeling 

framework presented in this chapter, stress plays an important driving motivation for activity 

scheduling and participation decisions. Thus, the degree to which the modeling framework 

presented can be made operational depends on the measurement of stress and time pressure, 

and their observed effects on activity schedules over time.  These concepts are 

operationalized in the next chapter using actual activity/travel survey data. 
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Chapter 6.0 Activity Scheduling Dynamics: Simulation 
Experiments and Threshold Estimation 
 
The purpose of this chapter is two-fold: i) first, simulation experiments are conducted to 

explore the range of behavioral insights that can be obtained from the modeling framework 

previously presented; and ii) second, the activity participation threshold presented in the 

previous chapter is estimated econometrically using empirical data from a travel-activity 

diary, illustrating the degree to which this modeling framework can be made operational. In 

particular, with respect to the first goal, simulation experiments are carried out for a single-

server queuing system to explore the relationship between different scheduling rules and 

“service” (performance) measures, such as the length of the activity queue and the waiting 

time. These experiments also permit insight into the relationship between formal queuing 

theory and individual activity scheduling. Additionally, in order to assess the degree to which 

the modeling framework can be made operational, a simple specification of the activity 

participation stress threshold presented in the previous chapter is estimated using a dataset 

consisting of one day observations of individual activity schedules.  

 
6.1 Simulation Modeling of Activity Scheduling 
 
The development of and rationale for the theoretical and conceptual model itself, placed 

against the backdrop of previous contributions to activity scheduling and the growing body 

of contributions to activity-based travel demand modeling and forecasting approaches, was 

presented in the preceding chapter. In this chapter, the activity stress measures previously 

described are put into an operational format to explore the range of behavioral insights 

permitted and illustrate its amenability towards being operational. 
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The next section briefly revisits some of the relevant conceptual aspects of the queuing 

model of activity scheduling presented in the previous chapter. The next section also 

discusses details related to the simulation model used to conduct the numerical experiments, 

and is followed by discussion of the simulation results.  

 
6.1.2 Basic Logic of the Simulation Model 
 
A discrete-event simulation for an M/G/1 queuing systems was developed for evaluating the 

individual activity scheduling process under different activity service and selection rules. The 

simulation model consists of two basic events, an activity arrival and a completed activity 

departure, that alter the state of the system. 

  
For the simulation developed in this study, a next-event time advance approach is used to 

advance the simulation clock. According to the next-event time advance approach the 

simulation clock is initialized to zero and the times of occurrence for future events are 

determined. The simulation clock is advanced to the time of the most imminent (first) of 

these future events. In light of the most imminent event occurring, the state of the system is 

updated, and the times of occurrence for future events are also updated. The process of 

advancing the clock from one event to the next is continued until a stopping condition is 

satisfied, in the context of this study a set number of completed activities. Note that 

successive jumps in the simulation clock are variable in size (duration).  

 
In this study, activities are assumed to belong to a class k that is assumed to experience inter-

arrival times Ak1, Ak2, … that are independent and identically distributed (IID) exponential 

random variables. This study does not implement the distinction between strategic and 
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tactical decisions. Thus, all activities picked for service are assumed scheduled and engaged 

in the order of their service. After arriving, activities are serviced according to the scheduling 

rule defined in the next two subsections. Service times (activity durations) for these activities 

are generated for each activity class k, Sk1, Sk2, …, independently of the inter-arrival times. 

An arriving activity that finds the individual busy participating in another activity joins the 

activity queue and waits its turn to be serviced. Upon completing an activity, the individual 

then selects the next activity to service from the queue (if any) according to the scheduling 

rules defined in later subsections. This process continues iteratively until a stopping 

condition is reached. 

 
6.1.3 Stress Index for Simulation Experiments 
 
In this study the amount of stress experienced from activities in queue are considered as a 

measure of an activity’s potential for leaving the queue, leading to person n deciding to 

schedule/participate the activity. Stress is generally defined as follows: 

 
( ) ( ) ( )rvrttinvrttvc

r
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vtinvtvc1 ββββ +++=                         (6.2) 

 
 ASTr

nt  is the stress from pursuing an activity r at time t; Rrt are the time-varying attributes of 

activity at time t; Hrt are the time-invariant (static) attributes that relate activity r with other 

activities; rε  is a random term distributed Normal ~ N(0,1) that reflects the unobserved stress 

contributing attributes of activity r; cβ  is a constant (0 ≤ cβ ≤ 1) that reflects the inherent 
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stress of an activity; and tvβ , tinvβ , and vβ  are weights placed on the time-varying, time-

invariant, and random term respectively, each weight between one and zero (0 ≤ tvβ , tinvβ , 

vβ ≤ 1). 

 
In this study, the primary time varying activity attribute considered is the duration of time an 

activity spends in queue at time q
rtT . To capture the perception of q

rtT  with respect to other 

activities in queue the following two transforms of q
rtT  are used: 
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where α1 and α2 are shape parameters for Equation 6.4, set to α1=5 and α2=1.5 in this study; 

AQ is the total number of activities in queue.  According to the first expression, Equation 6.3, 

the contribution of the time an activity spends in queue to its stress increases with the length 

of its time in queue, relative to the activity with the longest wait time in queue. Thus, the 

activity with the longest wait time in queue, max( q
rtT ), contributes the most amount of stress. 

The first expression states that in general, the stress contribution from an activity in queue 

will increase monotonically with its time in queue. Unlike Equation 6.3, the second 

expression permits the stress contribution of an activity to decrease with a long enough wait 
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time in queue; thus stress does not increase monotonically with time waiting in queue. In the 

context of activity scheduling behavior, Equation 6.4 implies that the longer an activity 

remains in queue, the greater the amount of stress the individual will experience from it, but 

after reaching a maximum stress level, stress would decrease either steeply or gradually over 

time. This stress behavior is plausible since the “salience” of an activity in queue may 

diminish over time, past a critical amount of time. For example, if an activity has an 

inflexible deadline, as time approaches the deadline and the activity is still not completed 

(still in queue), the stress will increase. However, after a deadline has passed, the stress from 

not completing the activity (leaving it in queue) may decrease, as the appeal of the activity or 

urgency for completing it decreases.  

 
Aside from time-varying attributes, this study also considered time invariant activity 

attributes that contribute to activity stress. The main time invariant attribute considered in 

this study is the expected duration of the activity s
rtT .  To scale s

rtT  to fall between one and 

zero, while preserving the order of magnitude, the following expression was used: 

 
( ) ( )γγ s

rt
*s

rt Texp11T −⋅−=                                    (6.5) 

 
where γ is a scale parameter. According to Equation 6.5, as the expected activity duration s

rtT  

increases, its stress contribution *s
rtT  increases sharply initially and then gradually. 

Additionally, the stress contribution approaches a maximum value as s
rtT  approaches infinity. 

Behaviorally, this functional form suggests that at low expected activity durations, 

individuals are extremely sensitive to small changes in duration time and consequently stress 
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changes sharply for each additionally unit of time. The low sensitivity of the stress 

contribution *s
rtT  at high expected duration values is consistent with past studies on framing 

effects on individuals’ perceptions of values and costs (Kahneman and Tversky 1979). For 

very high expected durations, an additional unit time is insignificant relative to the duration, 

and thus the corresponding change in stress would also be small.  

 

6.1.4 Scheduling/Participation Rule 
 
The previous section discussed different measures of stress and attributes of the activities in 

queue that contribute to the stress an individual perceives from the activity.  In this study, one 

scheduling rule was used based on the maximum stress. Under this mechanism, activities in 

queue are selected based on the activity that provides the maximum reduction of stress. 

Consequently, this results in the activity that exerts the largest amount of stress to be chosen. 

This mechanism can be expressed as follows: 
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where ηrt is a binary variable that indicates scheduling/participation and takes a value of 1 if 

activity r is selected and removed from queue at time t, and 0 otherwise. Behaviorally, the 

mechanism above states that an activity will be selected for scheduling/participation at time t 

if the stress relief it brings is the greatest relative to all activities in queue. One assumption 

made in the rule above is that at any time t, all activities in queue are considered for 

participation; however, this may be an unrealistic assumption. If all activities in queue have 

very low stress levels (as indicated by their stress indices), then an individual will unlikely 
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schedule/participate in an activity if the cost associated with removing the activity outweighs 

the amount of stress relief it brings. Furthermore, individuals likely consider multiple 

objectives when forming a schedule. For example, an individual might participate in 

activities to maximize the amount of stress relief, while minimizing the loss in time 

flexibility of the schedule. Such a rule would need to be multi-objective in its formulation, 

and is not within the immediate scope of the present investigation. 

 
6.1.5 Experimental Factors 
 
The experimental factors investigated in this simulation study can be grouped into two main 

categories: a) attributes of activity classes; and b) parameters and functional forms of stress 

and indices. 

Attributes of Activity Classes: Class attributes considered in this study are the mean inter-

arrival time, the mean service time, and inherent priority.  

Parameters of the Stress Index and Functional Forms of Stress Measures:   Different 

functional forms of stress (Eqs. 6.1 to 6.5) were considered, and their parameters or weights 

varied, as discussed in section 6.2.  

 

6.1.6 Scheduling Process Performance Measures 
 

The following performances measures were investigated using simulation experiments: 

1. Expected Average Delay. The expected average delay in queue for a total of Ak activities 

of class k in the simulation ( )kk Ad  is the average of all delays experienced by activities in 

the same class. Delay is defined as the time an activity must wait in queue before being 
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serviced. For a given simulation run resulting in activity service delays Dk1, Dk2, …, 
kAk,D  an 

estimator of ( )kk Ad  is expressed simply as the statistical mean: 

∑
=

⋅=
kA

1r
kr

k
kk D

A
1  )A(d                         (6.7) 

which is an average of the Ak Dkr’s that are observed in the simulation. Note that delay can 

also take on a zero value and are counted in the average, since an individual with many zero 

delays may have a light activity load or may indicate an individual which can process many 

tasks quickly. Alternatively, the expected average delay for all activities in queue is also 

calculated. 

 

2. Expected Number of Activities in Queue. The expected number of activities in queue, 

denoted by q(n), is taken over continuous time; however it is approximated as a weighted 

average, defined as follows: 

 

( ) ∑
∞

=

⋅=
0i

ipinq                          (6.8) 

 

( )nTTp ii =                           (6.9) 

 

( ) ...TTTnT 210 +++=                       (6.10) 
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where q(n) is the weighted average (over a total of n activities observes) over possible values 

of i (number of activities in queue); pi is the observed portion of time during the simulation 

that there were i activities in queue; Ti is the total simulation time in which there were i 

activities in queue. 

 
3. Expected Utilization of an Individual. The expected utilization of an individual indicates 

the level of “activity congestion” the individual experiences for activities. The expected 

utilization of an individual is the expected portion of time during the simulation (between 

time 0 and T(n)) that the individual is busy (not idle) denoted by u(n). From a single 

simulation run, u(n) can be computed similarly to the q(n) as a weighted average and 

expressed as: 

 
( )nTTu(n) B=                        (6.11) 

 
Where TB is the total amount of time the individual is busy during the simulation, and T(n) is 

the total time of the simulation needed to observe a total of n activities. 

 
6.2 Simulation Experiments of Activity Scheduling 
 

In this section the results of different simulation runs, each corresponding to a different 

combination of assumptions regarding the factors discussed in the previous section, are 

presented and discussed. For each case, the system was simulated until 10,000 completed 

activities were reached. First the effect of varying the weight values (βs) in the stress index 

previously defined in Equation 6.1 was examined. Second, the effect of different stress index 
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functional forms and parameters was examined. Finally, the effect of preemptive 

“emergency” activities was examined. 

6.2.1 Varying Weights 
 
The first set of simulation runs considered only one activity class. Equation 6.3 was used to 

determine the stress contribution from the waiting time in queue. The weights in Equation 6.1 

were varied, such that in each case, only one weight was set to one and all other to zero. The 

following results were obtained. 

 

Table 6.1: Mean Inter-arrival Time = 5 mins; Mean Activity Duration = 4 mins  

 
cβ =1 

(Const) 
tvβ =1  

(Time-Varying) 
tinvβ =-1 

(Time Invariant) 
vβ =1 

(Random)
Average Delay in Queue 14.6 14.6 7.26 14.5 
Average Number in Queue 2.96 2.96 1.47 2.94 
Average Number in System 3.77 3.77 2.28 3.75 
Fraction Spent > 4.5 mins 0.82 0.82 0.66 0.73 
Fraction Time Queue > 1 0.51 0.51 0.39 0.51 
Utilization 0.81 0.81 0.81 0.81 
Simulation Time (mins) 49295.7 49295.7 49295.7 49295.7 
Activities Completed 10000 10000 10000 10000 

 
 
Note that when all activities have the same priority, the simulation model resorts to the FCFS 

rule to select activities. Thus in the case where cβ =1 and all other weights equal zero, the 

simulation would follow a FCFS rule (since every activity has a stress of one). The results in 

Table 6.1 reveal that an individual who chooses activities based on the shortest activity 

duration ( tinvβ  = -1) in case of a single activity class, experiences shorter delays compared to 

an individual who chooses activities based on arrival priority ( cβ  = 1) or time spent in queue 

in queue ( tvβ  = 1).  Thus, by always picking the shorter duration activity first, the individual 

can more quickly turn attention towards activities in queue, reducing the delays queued 
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activities experience. Additionally, both cases ( cβ  = 1; tvβ  = 1) yield results equivalent to 

steady-state results for an M/M/1 queue with a mean inter-arrival time of five minutes (1/λ = 

5) and a mean service time of four minutes (μ = 4). As mentioned earlier, in the case where 

cβ =1 and all other weights equal zero, the simulation would follow a FCFS rule, since every 

activity has a stress of one. In the case where tvβ  = 1, by selecting the activity with the 

longest time in queue, the individual is implementing a rule similar to FCFS. In general, if 

there is already a queue existing, the activity that has the longest wait time in queue is the 

activity that arrives the earliest. Service according to a random term ( vβ  = 1) distributed 

Normal ~N(0,1) yields results very similar the first two cases ( tinvβ  = -1; tvβ  = 1), but not 

strictly equivalent. These results are consistent with the result from queuing theory that states 

the mean wait time is independent of the service discipline, so long as the latter is not based 

on the service time, such as the SEPT (shortest expected processing time) rule (Larson and 

Odoni 1981).  

 
Although a direct comparison of the actual values in the Table 6.1 and 6.3 is not possible, 

since different mean arrival rates and mean service rates were used for the two cases, the 

general trends in each table can still be examined. The parameters for each activity class are 

shown in Table 6.2. Table 6.3 shows that in the context of more than one activity class (k = 

5) the results are similar to the case with a single class (Table 6.1). If an individual chooses to 

service activities based on the shortest expected duration first ( tinvβ  = -1), the average delay 

experienced by the activities is less than if service occurred according to the other three cases 

( cβ  = 1; tvβ  = 1; vβ  = 1). Similarly, for the same case, the individual performs better with 
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respect to the other performance measures. Since no definite trends could be determined from 

varying the weights over different components, these results are not shown in the table. 

  
Although the results are similar to those obtained from queuing theory, the behavioral 

implications in the context of activity scheduling are worth noting. First, only under the ideal 

condition that an individual completes activities in an order based on expected duration is the 

average delay time minimized. Realistically, individuals do not base their activity 

participation decisions only on the duration, but on other activity attributes such as time in 

queue, location, priority, and many others. Thus, a more realistic stress function would be 

one with varying weights across the different components (for example cβ  = 0.1; tvβ  = 0.4; 

tinvβ  = 0.3; vβ  = 0.2). Although this suggests that individuals select activities for 

participation in a suboptimal manner, there may be short periods where an individual tries to 

finish activities with a short duration first before pursuing ones with a longer duration.  

 

 

 
Table 6.2: Simulation Parameters of Different Activity Classes 
 

Activity Class  k 1 2 3 4 5 
Mean Interarrival Time (mins) μinterarrival 40 25 30 30 70 
Mean Duration Time (mins) μduration 1 2 4 4 10 
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Table 6.3:  Multi-class Case 
 Activity Class 1 2 3 4 5 All Classes 

cβ = 1 Average Delay in Queue 9.88 7.7 5.95 3.88 3 6.39 
  Average Number in Queue 0.26 0.31 0.19 0.13 0.04 0.93 

tvβ = 0 Average Number in 
System 0.45 0.59 0.49 0.42 0.29 1.45 

  Fraction Spent > 4.5 mins 0.36 0.43 0.55 0.55 0.76 0.5 

tinvβ = 0 Fraction Time Queue > 1 0.06 0.07 0.04 0.02 0 0.2 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 

cβ = 0 Average Delay in Queue 5.14 5.08 5.07 4.74 5.08 5.01 
  Average Number in Queue 0.13 0.21 0.16 0.16 0.07 0.73 

tvβ = 1 Average Number in 
System 0.33 0.49 0.46 0.45 0.32 1.25 

  Fraction Spent > 4.5 mins 0.34 0.43 0.57 0.58 0.79 0.52 

tinvβ = 0 Fraction Time Queue > 1 0.02 0.04 0.03 0.03 0.01 0.18 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 

cβ = 0 Average Delay in Queue 2.97 3.22 3.68 3.58 5.21 3.55 
  Average Number in Queue 0.08 0.13 0.12 0.12 0.07 0.52 

tvβ = 0 Average Number in 
System 0.27 0.41 0.41 0.41 0.32 1.03 

  Fraction Spent > 4.5 mins 0.25 0.36 0.52 0.54 0.77 0.46 

tinvβ = -1 Fraction Time Queue > 1 0.01 0.02 0.02 0.02 0.01 0.13 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 

cβ = 0 Average Delay in Queue 5.4 5.09 5.29 4.86 4.99 5.13 
  Average Number in Queue 0.14 0.21 0.17 0.16 0.07 0.75 

tvβ = 0 Average Number in 
System 0.34 0.49 0.46 0.46 0.32 1.26 

  Fraction Spent > 4.5 mins 0.31 0.39 0.55 0.56 0.78 0.49 

tinvβ = 0 Fraction Time Queue > 1 0.02 0.04 0.03 0.03 0.01 0.18 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 1 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 
 
 
 
 
 
 



 

 142 
 

6.2.2 Alternative Functional Form for Time-Varying Attributes 
 

In the set of experiments shown in Table 6.5, Equation 6.4 was used to compute the stress 

contribution from an activity in queue as function of its time in queue. Comparing the results 

in Table 6.4 with results in Table 6.5 shows that altering the functional form of the stress 

contribution from an activity’s queue time, as suggest by Equations 6.3 and 6.4, has no effect 

on the performance measures. One explanation for this result is that both Equations 6.3 and 

6.4 increase monotonically as the time in queue increases, over a wide range of time values, 

for the time spent in queue. Since selection is based on choosing the activity with the larger 

relative stress compared to other activities, the actual scale or magnitude of an activity’s 

stress does not matter, so long as the relative order of stress is preserved. Although Equation 

6.4 does not allow stress to increase monotonically over all values of time in queue, for 

parameters (α1=5; α2=1.5), the decrease in stress occurs for very large values of time in 

queue.  
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Table 6.4: Experiments using Equation 6.3 for Capturing Stress Contribution from Time in 
Queue 

 Activity Class 1 2 3 4 5 All Classes 

cβ = 0 Average Delay in Queue 5.14 5.08 5.07 4.74 5.08 5.01 
  Average Number in Queue 0.13 0.21 0.16 0.16 0.07 0.73 

tvβ = 1 Average Number in 
System 0.33 0.49 0.46 0.45 0.32 1.25 

  Fraction Spent > 4.5 mins 0.34 0.43 0.57 0.58 0.79 0.52 

tinvβ = 0 Fraction Time Queue > 1 0.02 0.04 0.03 0.03 0.01 0.18 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 

cβ = 0 Average Delay in Queue 5.14 5.08 5.07 4.74 5.08 5.01 
  Average Number in Queue 0.13 0.21 0.16 0.16 0.07 0.73 

tvβ = 1 Average Number in 
System 0.33 0.49 0.46 0.45 0.32 1.25 

  Fraction Spent > 4.5 mins 0.34 0.43 0.57 0.58 0.79 0.52 

tinvβ = 0 Fraction Time Queue > 1 0.02 0.04 0.03 0.03 0.01 0.18 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 
 

Table 6.5: Experiments using Eq.6.4 for Capturing Stress Contribution from Time in Queue 
(α1=5;2=1.5) 

 Activity Class 1 2 3 4 5 All Classes 

cβ = 0 Average Delay in Queue 2.97 3.22 3.68 3.58 5.21 3.55 

  
Average Number in 
Queue 0.08 0.13 0.12 0.12 0.07 0.52 

tvβ = 0 Average Number in 
System 0.27 0.41 0.41 0.41 0.32 1.03 

  
Fraction Spent > 4.5 
mins 0.25 0.36 0.52 0.54 0.77 0.46 

tinvβ = -1 Fraction Time Queue > 1 0.01 0.02 0.02 0.02 0.01 0.13 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 

cβ = 0 Average Delay in Queue 2.97 3.22 3.68 3.58 5.21 3.55 

  
Average Number in 
Queue 0.08 0.13 0.12 0.12 0.07 0.52 

tvβ = 0 Average Number in 
System 0.27 0.41 0.41 0.41 0.32 1.03 

  
Fraction Spent > 4.5 
mins 0.25 0.36 0.52 0.54 0.77 0.46 

tinvβ = 1 Fraction Time Queue > 1 0.01 0.02 0.02 0.02 0.01 0.13 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 
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6.2.3 Preemptive Activities 
 
The final set of simulation experiments looked at the effect of emergency activities with 

preemption privileges. The class with preemption privileges is class k=5. Under preemption, 

an activity with a high priority can immediately enter service, thus preempting all other 

activities. The only exception occurs when the individual is already servicing an emergency 

activity, in which case the latter activity has to wait. An example of such occurrence is shown 

in Table 6.6. Note that the Average Delay in Queue, even for the emergency activity class, is 

never zero, since an emergency activity may need to wait for a previous emergency activity 

to finish before entering service. Overall, the results in Table 6.6 show that if an activity class 

has preemptive privileges (i.e. emergency activities) the performance measure for the 

preemptive class will improve, but other classes have reduced levels (they get worse). Thus, 

the greater the degree of preemption of an individual’s activity class, the more adverse is the 

effect for other activity classes without preemption privileges.  
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Table 6.6: Experiments with Preemptive Activities (in the red box) (α1=5; α2=1.5) 
  1 2 3 4 5 All Classes 

cβ = 0 Average Delay in Queue 5.14 5.08 5.07 4.74 5.08 5.01 
  Average Number in Queue 0.13 0.21 0.16 0.16 0.07 0.73 

tvβ = 1 Average Number in 
System 0.33 0.49 0.46 0.45 0.32 1.25 

  Fraction Spent > 4.5 mins 0.34 0.43 0.57 0.58 0.79 0.52 

tinvβ = 0 Fraction Time Queue > 1 0.02 0.04 0.03 0.03 0.01 0.18 
  Utilization 0.03 0.08 0.13 0.14 0.15 0.51 

vβ = 0 Simulation Time (mins) 68388.89 68388.89 68388.89 68388.89 68388.89 68388.89 
  Activities Completed 1783 2786 2221 2263 947 10000 

cβ = 0 Average Delay in Queue 13.72 13.57 12.64 13.24 3.93 12.29 
  Average Number in Queue 0.35 0.54 0.41 0.41 0.05 1.76 

tvβ = 1 Average Number in 
System 0.59 0.86 0.74 0.74 0.55 2.33 

  Fraction Spent > 4.5 mins 0.42 0.5 0.62 0.64 0.61 0.56 

tinvβ = 0 Fraction Time Queue > 1 0.07 0.1 0.08 0.08 0 0.24 
  Utilization 0.03 0.08 0.13 0.15 0.15 0.54 

vβ = 0 Simulation Time (mins) 70055.51 70055.51 70055.51 70055.51 70055.51 70055.51 
  Activities Completed 1754 2726 2202 2254 1064 10000 
 
 
 
6.3 Concluding Remarks for Simulation Experiments 
 

Numerical experiments were carried out using a simulation model of an M/G/1 queuing 

system to explore the range of behavioral insight from an operational form of the modeling 

framework presented in the preceding chapter. Simulation experiments were conducted to 

explore the relationship between different scheduling rules and “service” measures, such as 

the length of the activity queue and the waiting time. These experiments also permit insight 

into the relationship between formal queuing theory and activity scheduling.  

 

The results show that if selection is based on choosing the activity with the larger relative 

stress compared to other activities, the actual scale or magnitude of an activity’s stress does 
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not matter, so long as the relative order of stress is preserved. This result further suggests that 

under any rule where activities are selected based on the magnitude of stress relative to all 

other activities in queue, the performance of the individual (how queue length, average 

waiting time, etc…) will not matter so long as the order of preference is preserved.  

 
6.4 Estimation of a Stress Threshold for Activity Participation 
 
To illustrate the degree to which the modeling framework presented in the previous chapter 

can be made operational, a stress threshold for activity participation over the time period of a 

day was statistically estimated using actual data from a travel activity survey. In the next 

section a more precise definition of the activity participation problem previously presented is 

given. The following section presents an econometric model formulation of activity 

participation, based on the concept of "activity stress" discussed in the previous chapter. The 

remaining sections present and discuss the estimation results, including their behavioral 

interpretation and implications. 

 
6.4.1 Definition of the Activity Participation Problem 
 
In this section, attention is restricted to the activity participation problem. The model 

estimation methodology can be readily applied to scheduling decisions. However, due to data 

limitations, estimating a scheduling stress threshold for scheduling decisions is not possible, 

since only observation of the final executed schedule were available. 

 
Assume that on a given day d, a person n begins with a "skeletal" activity schedule composed 

of intervals devoted to mandatory activities, and all remaining intervals devoted to 

discretionary activities. These mandatory activities are assumed to be scheduled and fixed, in 

terms of start and stop times, following the description of mandatory activities given in other 
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studies. Although discretionary activities may also be scheduled at the beginning of the day, 

since their start and stop times are more flexible relative to mandatory activities, they are not 

included in the skeletal schedule. At the start of each discretionary interval p, the person 

continues to make activity participation decisions pt
nδ  until the next mandatory period is 

reached, where t is a subscript that denotes the tth decision of interval p. At each decision, the 

person decides whether or not to pursue a queued activity ( pt
nδ =1) or not ( pt

nδ =0). This 

process continues until the end of the day is reached, or until all discretionary intervals are 

completed. A sample schedule evolution for a person with two discretionary time periods 

(P=2), two decisions in the first period (T1=2) and four in the second period (T2=4), is shown 

in Figure 6.1. Specifically, the schedule states at the beginning and end of the day, in 

addition to the end of each discretionary interval, are shown. 

 

 
 
 
 
 
  
 
 
 
 
 
 
Figure 6.1 Activity Participation Process 
 
 
6.5 Econometric Model Formulation of Stress Thresholds 
 
The development of simulated maximum-likelihood estimation procedures for dynamic 

kernel logit (mixed-logit) and probit models (Train 2001; Srinivasan and Mahmassani 2006) 
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has relaxed many limitations, such as time dependence and substitution patterns. These 

procedures are amenable towards estimating an activity participation model based on the 

concept of a stress-threshold over time. This section develops an econometric model of 

activity participation over time based on the concept of a stress threshold.  

 
6.5.1 Model Estimation Framework 
 
Notation 
 
Let n be the subscript to denote the person, n= 1,…,N. 

Let t represent the decision stage in the discretionary interval p, t =1,…,Tp. 

Let p be the discretionary interval index, p=1,…,P. 

Let pt
nδ  represent the queued activity participation decision indicator for person n at stage t, 

and in interval p. 

Let pt
nU represent the corresponding utility of participating in one more queued activity. 

Let pt
nV  be the systematic component of queued activity participation utility pt

nU . 

pt
nε , pt

nτ represent the multivariate normal (MVN) and logistic error components of pt
nU . 

ε  is the vector of pt
nε  across decisions; τ is the vector of pt

nτ  across decisions. 

 

Behavioral Framework 

At each decision stage t, person n has two mutually exclusive actions available (binary 

choice): i) participate in one more queued activity; ii) not participate in a queued activity. 

Decision stages are assumed to occur before each opportunity to participate in a queued 

activity, such as the end of a pervious activity. We also assume that activities cannot overlap. 

Thus, starting another activity while participating in the first activity is not permitted. A 
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sequence of binary choices is easily represented as a set of Tp dummy variables for each of 

the p intervals (p=1…,P):  

 

⎪⎩

⎪
⎨
⎧

−
=

otherwise1

activity queuedin  eparticipat1
pt
nδ                     (6.12) 

 
Denote this sequence by Cn ={ 11

nδ , …, 11T
nδ ,…, p1

nδ ,..., ppT
nδ ,..., P1

nδ ,..., PPT
nδ }.            (6.13) 

 
For a given discretionary interval, at each decision stage t, the person will participate in one 

more queued activity if pt
n

pt
nU α> . Otherwise, if pt

n
pt
nU α≤ , the person n has chosen to 

participate in a non-queued activity instead of a queued activity. Furthermore, pt
nU  will be a 

utility function representing the utility assigned to participating in one more queued activity 

at stage t in period p; pt
nα  is the tolerable stress level or the expected net value of continuing 

to participate in queued activities; pt
nα  may also represent a totally exogenous level of 

aspiration. Defining the net utility of participating in one more activity as pt
nU , this threshold 

for participating in queued activities is taken as 0 without loss of generality. Then the 

decision rule for participating in queued activities may be stated as: 

 
0Upt

n
pt
n >δ   t∀                       (6.14) 

 
At any given stage t the probability that the person will participate in a queued activity is:  

 
( ) ( )0UPrUPr pt

n
pt
n

pt
n

pt
n >=> δα t∀ .                     (6.15) 

 
Although calibrating a sequence of binary decisions as mutually independent decisions is 

simpler, the actual presence of auto-correlation, state-dependence and heterogeneity effects 
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may lead to inconsistent estimates and erroneous inferences. Thus, the modeling framework 

must allow for specifying and testing these effects. To accomplish this, dynamic models are 

generally calibrated using a Mixed-Logit or (MNP) Probit estimation framework. However, 

these frameworks become computationally difficult with increasing number of alternatives 

and/or durations.  

 

6.5.2 Dynamic Mixed (Kernel) Logit Formulation 
 
To overcome computational difficulties typically associated with the MNP framework, a 

dynamic kernel logit (DKL) approach is used in this study. As with other random utility 

models, the utility for participating in a queued activity consists of systematic and random 

components. Assume that the systematic component is defined as a function of experiences 

captured through the attributes of the activity queue and schedule, including individual 

activities, short-term experiences reflected in the activity attributes at the current time period, 

decision maker attributes, and a set of unknown parameters to be estimated. The random 

component is composed of a normal error-term which is correlated across repeated decision 

instances of a given individual, and an independent and identically distributed logistic error-

term as shown below: 

 
pt
n

pt
n

pt
n

pt
n VU τε ++=                       (6.16) 

 
Let: 
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 ~τ ′ i.i.d logistic ( ) ( )I,0,0 2
ll σ=Σ  

( )222
l 3μπσ = ,  

I is a PP PTPT × unit matrix; and  

μ is the logit scale parameter (set to 1).  

 
For decisions to participate in one more queued activity or not, for a given period p with Tp 

decision stages for person n, the probability or likelihood of an observed sequence of 

decisions is: 

 

L(Cn)=Pr{ 11
nδ , …, 11T

nδ ,…, p1
nδ ,..., ppT

nδ ,..., P1
nδ ,..., PPT

nδ } 

      = { }P1,...,p,T1,...,t,δPr P
pt
n ==     (6.17) 
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Rewriting and substituting gives: 
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Conditioning on ε gives:  
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By conditioning on ε, pt
nε  is known and can be treated as deterministic. For a given ε the 

conditional deterministic utility pt
nW  is given by: 
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Simplifying gives: 
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The probability expression on the right-hand side is written as: 
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The choice probability for a person n is: 
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Assuming that there are N independent observations in the sample, the likelihood of 

observations for this sample can be expressed as: 
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The log-likelihood is expressed as: 
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6.5.3 Estimation Procedure 
 
The likelihood in Equation 6.25 involves the computation of a PTP dimensional MVN 

integral, and is computed using Monte Carlo simulation. The desired likelihood (Eq.6.25) is 

the expected value of the function h(ε). Thus, this likelihood is estimated as the average of 

the function h(ε) over several draws from the MVN distribution of ε. The parameters that 

maximize the simulated log-likelihood are determined through non-linear optimization 

techniques as shown in Figure 6.2.  

 
The maximum simulated log-likelihood estimator is consistent. However, the estimator's bias 

only vanishes with increasing number of Monte-Carlo draws (Revelt and Train, 1998). These 
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draws are generated using independent pseudo-random sequences. The covariance matrix of 

coefficient estimators was estimated using the negative expectation of the inverse of the 

Hessian matrix (matrix of second partial derivatives of the likelihood function with respect to 

the parameters, evaluated numerically). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: Mixed-Logit Estimation Procedure 
 
 
 
 
 
 
 
 
 

Initialize Estimated 
Parameters θ(0); 

Iteration Count = 0 

Monte-Carlo Simulated Likelihood 
Function Computation 
 
a. For each observation, draw R   vectors 
of MVN error terms 
 
b. For each draw compute the product of 
logit probabilities (kernel function) 
 
c. Compute the multidimensional integral 
by averaging the product of logit 
probabilities over the R draws 
 
d. Aggregate the likelihood in step c 
across all observations 

Function 
Maximum? 

Stop

BFGS Quasi-Newton 
Procedure 
 
1. Direction finding 
 
2. Step-size computation 
 
3. Hessian updating 
 
4. Compute parameters 
θ(I+1) for next iteration 

Set I = 1+1
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6.5.4 Data Assembly 
 
This section describes the data assembly procedure used in this study. The (BATS) 2000 Bay 

Area Travel Survey was used for estimating the activity participation stress tolerance 

threshold previously described., The key information needed to estimating this threshold 

from observed activity schedules are the i) activities completed over the schedule execution 

period (past decisions), in this case a day, and ii) state of the queue at the time of 

participation decisions (anticipated work load). Similar information would be needed to 

model activity scheduling decisions. However, due to the lack of observed data on these 

decisions, they could not be included. Other socio-demographics and travel-related data may 

also be used. The expected arrival rate was estimated based on socio-demographic attributes 

and used as an instrumental variable in the threshold model. 

 
Data assembly begins with classifying the activities into mandatory and discretionary 

activities, and then further distinguishing the latter into activities that appear in queue and  

"impulse" activities. First, four types of activities were considered mandatory in this study: i) 

sleep; ii) work; iii) work-related; and iv) medical/health appointments. The last three were 

considered mandatory due to the fixed nature of their start and stop times in the time frame of 

a day. Although sleep may be regarded as more of a discretionary or maintenance activity, it 

was considered mandatory due to the repetitive nature of its position in a person's schedule 

(at the beginning and end of the day). All other activities were regarded as discretionary 

activities, and were further grouped into queued and non-queued activities. Queued activities 

included: i) meals; ii) personal service; iii) out-of-home shopping; and iv) household 

chores/personal care. Note that the general modeling framework presented previously could 
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still be applied in conjunction with more elaborate classifications, such as one that considers 

salient attributes of activities.    

 
Participation decisions were taken to occur at the end of each discretionary activity, queued 

or non-queued, or at the end of a mandatory interval. Thus at each decision, the person makes 

the binary choice to participate in a queued activity or not. The number of queued activities 

completed was calculated at each decision to be a running total of the number of completed 

activities that were considered as "queued."  

 
Finally, due to the large number of observations in the data set (116,773 decisions), 

observations were further segmented by the number of decisions a person makes in a day. 

For simulated-maximum likelihood estimation procedures, given such a huge number of 

decisions would have been infeasible in regards to computation time. Thus, a subset of 

observations consisting of persons who made five, six, seven, and eight decisions in a day 

were taken from the original set of observations, and used for estimation. The next section 

describes specification of the systematic component of the utility function. More specifically, 

a method for accounting for the generation of new activities, and thus, the changing state of 

the activity queue with each decision, is presented next. 

 
 
6.5.5 Model Specification Issues 
 
In this study, the net utility for participating in one more queued activity, during schedule 

execution, is given as: 

 
pt
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The main determinant of the stress an individual experiences is the activity queue as it 

evolves over time. This stress is assumed to increase and decrease as activities flow in and 

out of the activity queue, or the composition of activities in the queue changes. To reflect 

this, the systematic component of the net utility function is specified to reflect the flow of 

activities, and is expressed as: 

 
( )β,X,QV nnpt

pt
n f=             (6.30) 

 
 

G
npt

C
npt1-tp,n,npt QQQQ +−=            (6.31) 

 
 
where 
 

nptQ  is the state of the activity queue at time t. 

C
nptQ  is the total number of queued activities completed at time t. 

G
nptQ  is the total number of queued activities generated at time t. 

Xn are person-specific attributes. 

β is a vector of parameters to estimate. 

 
At the initial time (t=0), the state of the queue is assumed to be the total number of activities 

observed for that day, based on the observed completed activity schedules. Since activities 

generated during schedule execution are not observed, the following specification for the 

number of activities generated up to time t is used: 

 
 

A
1-tnp,n

G
npt TQ ×= λ             (6.32) 
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where λn is the mean arrival rate of queued activities per unit time, and A
1-tnp,T is the duration 

since the last activity arrival. The mean arrival rate λn is determined using an instrumental 

variable approach. Implementing this approach, λn is determined through a Poisson 

regression on a series of exogenous variables. The values of λn predicted by the Poisson 

regression are then used in estimating the model in Eq. 6.28. The instrumental variable 

approach has been used successfully in the analysis of discrete/continuous data (Dubin, J., 

and D. McFadden 1984; Train 1986). Since the parameter λn is nonnegative, a convenient 

parameterization is given by: 

 
( )βλ nXexp ′=n             (6.33) 

 
 
The motivation for the Poisson regression was to obtain a proxy for the number of queued 

activities generated over a time interval, using the instrumental variable approach. This 

approach addresses possible endogeneity issues that may arise from not accounting for 

generated activities over time. To further illustrate this issue, consider the case where only 

the total number of queued activities observed for a day is used as a proxy for the queue size 

throughout the day; thus the total number of queued activities over a day is assumed constant 

over time. This is illustrated in Table 6.7 for the example shown in Figure 6.1. 
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Table 6.7: Activities Completed and Left in Queue for the example in Figure 6.1. 
 
 

Time Completed Left in Queue 

1 0 4 

2 1 3 

3 2 2 

4 3 1 

5 4 0 

6 4 0 
 
 
 
Under this proxy (total number of observed queued activities in the day), there is endogeneity 

between the number completed and the number left in queue. This occurs since more 

realistically, the total number of queued activities would vary over the day. One solution to 

this issue is to determine the number of queued activities generated at each decision. Thus to 

accomplish this, the mean arrival rate (activities per unit time) is estimated using a Poisson 

regression (Eqs. 6.32 and 6.33), and is multiplied by the time elapsed since the last queued 

activity was generated. Although this study assumes a constant rate of activity generation 

over time, a dynamic time varying rate could also be estimated given longitudinal activity 

data, and possibly individuals’ needs and goals over time. This expected rate was used as an 

instrument for determining the number of activities generated since the last generated 

activity. 
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Response and Preference Heterogeneity 
 
Heterogeneity refers to the variability in the propensity of individuals to select an action, in 

this case to participate in a queued activity, and responsiveness to independent variables. 

Heterogeneity in this study is accommodated in two ways. Observed heterogeneity is 

accounted for by variations in preference sensitivity (intrinsic bias) and response sensitivity 

to exogenous factors among different user (market) segments. Unobserved preference 

heterogeneity is incorporated by a person-specific error term across choice instances, 

reflecting unobserved intrinsic bias towards participating in a queued activity. Unobserved 

response heterogeneity is represented through the use of random coefficients for a subset of 

important variables. This assumes that the response of a person to values taken by 

explanatory variables varies across the population. Accordingly, the parameters of the 

systematic specification (for a subset of variables) are assumed to be random variables across 

the population with a mean parameter βk and a standard deviation ζβk. 

 

6.6 Estimation Results and Discussion 
 

This section presents the results from estimated models of stress thresholds for activity 

participation described in the preceding section. The primary goal of these results is to i) 

illustrate the amenability of the activity scheduling framework previously presented, towards 

being operational; ii) show evidence in support of the concept of “activity stress” in empirical 

data; and iii) provide further insight into the activity scheduling process. Data for estimation 

was obtained from the Bay Area Travel Survey (BATS) 2000, which is an activity-travel 

survey for two days (per person), not necessarily from the same year. Due to the size of the 
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entire dataset (64,755 day-observations), and the implications for simulation-based 

econometric models, the models presented in this paper were estimated on a sub-sample of 

observations consisting of six, seven, and eight decisions per day. These levels were selected 

since they gave the highest number of observations, relative to other levels (one, two, three, 

etc… decision per day). To illustrate the similarities in the results across sub-samples, a 

pooled model was estimated distinguishing between the four levels, to allow direct 

comparison of the estimated coefficients of the model.  

 
The first set of results show estimated parameters from Poisson regression models based on 

counts of the number of queued activities observed over the period of a day (1440 minutes), 

for the entire sample (64,755 day-observations). The second set of results compares the 

estimated parameters and implications for a pooled dataset consisting of six, seven, and eight 

decisions per day, under the assumption of independent decisions. The third set of results is 

from model estimated on the different sub-samples, for a mixed-logit model. In both sets, the 

estimated parameters as they relate to stress and attributes of the activity queue (activities 

generated and completed) are discussed. 

 

6.6.1 Activity Arrival Rate Models 
 
This section presents the estimated arrival rates (Eq. 6.33) based on the entire sample of day-

observations, using a Poisson regression.  Two models were estimated. The first model 

regresses the count of queued activities per day against a constant only; the second model 

regresses the count of queued activities per day against socio-economic attributes, such as 

gender, age, and if the day was a weekend. 
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Table 6.8: Poisson Regression: Model 1 is with a constant only; Model 2 is with socio-
economic variables. 

   Model  1 Model  2 

Var # 
Variable 

Description Mean Value Coefficient t-stat Coefficient t-stat 
1 Constant   1.20 556.59 1.08 231.26 

       
2 Gender (0/1) 0.48     -0.14 -31.61 
3 Age > 30 (0/1) 0.68     0.24 50.06 
4 Weekend (0/1) 0.13     0.07 11.85 

  Log-Likelihood     -133809.80   -131915.00 
  Sample Size     64755   64755 
 
 
Based on the results above, the mean arrival rate is 3.32 activities per day. Activities included 

in the estimation of the arrival rate include all non-recreational discretionary activities. The 

results show that activities arrive at a higher rate for individuals over the age of thirty and on 

weekends. Also, males seem to experience lower arrival rates relative to females. These 

results suggest that persons over the age of thirty may experience higher stress relative to 

younger persons, due to a higher arrival rate of activities, given the same activity scheduling 

abilities. Similarly, according to the estimation results above, activities arrive at a much 

higher rate during the weekend, compared to the weekday, undoubtedly reflecting the fact 

that mandatory (work) activities occupy a much larger portion of the user’s service capacity 

on weekdays.  

 
These results are based on observed counts of queued activities over the period of a day, and 

thus they only reflect these observations. Conceivably, activities can be generated at a higher 

rate than actually observed. As a result, the expected arrival rate (3.32 activities per day) may 

actually be higher. The purpose of the Poisson regression was to obtain a proxy for the 

number of queued activities generated over a time interval, using the instrumental variable 

approach. This is important to ensure that no endogeneity exists in the dataset, when 
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considering the state of the queue and the number of activities completed. The next two 

sections presents results from using this proxy as an instrument in estimating the pressure or 

stress towards participating in queued activities. 

 
6.6.2 Evidence of Activity Stress and Pressure 
 
To investigate the presence of stress and pressure in activity scheduling and participation, the 

stress threshold previously described was estimated only with indicator variables indicating 

the number of activities completed and the number of activities in queue. Socio-demographic 

variables are considered in later models. First a model using a pooled sample with all 

numbers of decisions per day (5-8) was estimated under the assumption of independent 

observations to examine differences in estimation results arising from differences in the 

number of decisions an individual makes in a day. Next, a mixed-logit model was estimated 

to relax some of the assumptions from the previously estimated models regarding 

homogeneity in response. The results are discussed in relation to their implication on activity 

stress and pressure over time. 

 
Repeated Binary-Logit Model 
 
This section presents estimation results under the assumption of independent error terms for 

the model previously presented. The motivation behind estimating a model under the 

independence assumption is that it allows estimation on a pooled sample, and permits a direct 

comparison between the segments based on the number of decisions made in a day. These 

estimation results are shown in Table 6.9. The results indicate that in general, as the number 

of activities completed increases, the stress or propensity towards participating in more 

queued activities decreases from a reference point of zero, independent of the number of 
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decisions observed on a particular day (Fig. 6.3).  Furthermore, as the number of queued 

activities increases, taken from a reference point of zero, the stress decreases slightly then 

increases with each additional queued activity (Fig. 6.3).  From the figures , it can be seen 

that the general trend of stress as a function of activities completed and activities left in 

queue is the same regardless of the number of decisions made per day.  

 
 

 
 
Figure 6.3: Stress as a Function of Queued Activities Completed (top) and Left in Queue 
(bottom) 
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Table 6.9: Estimation Results for Repeated Binary Logit Decisions, Segmented by Number of Decisions per Day 
Var # Variable Description Coefficient t-stat Var # Variable Description Coefficient t-stat

1 Alternative specific constant (for participation) 1.2597 4.1790 Specific to 7 Decisions

Number of Queued Activities Completed Number of Queued Activities Completed
(Indicator, baseline = not completed) (Indicator, baseline = not completed)

2 Completed 1 queued activity previously (0/1) -1.3046 -24.8910 18 Completed 1 queued activity previously (0/1) 0.2090 2.3170
3 Completed 2 queued activity previously (0/1) -0.0569 -1.4720 19 Completed 2 queued activity previously (0/1) -0.0282 -0.4270
4 Completed 3 queued activity previously (0/1) -0.0747 -1.9080 20 Completed 3 queued activity previously (0/1) 0.0257 0.3980
5 Completed >3 queued activity previously (0/1) -0.0083 -0.1670 21 Completed >3 queued activity previously (0/1) -0.1109 -1.6650

Number of Activities in Queue Number of Activities in Queue
6 1 Activity in Queue (0/1) -2.7398 -8.0260 22 1 Activity in Queue (0/1) -0.8991 -1.4710
7 2 Activities in Queue (0/1) 2.5717 15.6900 23 2 Activities in Queue (0/1) 0.5289 0.8640
8 3 Activities in Queue (0/1) 1.0403 27.8150 24 3 Activities in Queue (0/1) -0.5538 -6.6100
9 >3 Activities in Queue (0/1) 1.3429 41.4700 25 >3 Activities in Queue (0/1) 0.2668 5.3420

Specific to 6 Decisions Specific to 8 Decisions

Number of Queued Activities Completed Number of Queued Activities Completed
(Indicator, baseline = not completed) (Indicator, baseline = not completed)

10 Completed 1 queued activity previously (0/1) -0.0413 -0.5010 26 Completed 1 queued activity previously (0/1) 0.1095 1.2570
11 Completed 2 queued activity previously (0/1) 0.0805 1.3720 27 Completed 2 queued activity previously (0/1) 0.0340 0.4500
12 Completed 3 queued activity previously (0/1) -0.0445 -0.7600 28 Completed 3 queued activity previously (0/1) 0.0255 0.3440
13 Completed >3 queued activity previously (0/1) -0.0746 -1.1430 29 Completed >3 queued activity previously (0/1) -0.1736 -2.4330

Number of Activities in Queue Number of Activities in Queue
14 1 Activity in Queue (0/1) -0.9131 -2.0340 32 3 Activities in Queue (0/1) -1.0653 -12.4840
15 2 Activities in Queue (0/1) 0.7605 1.6940 33 >3 Activities in Queue (0/1) 0.3352 5.4970
16 3 Activities in Queue (0/1) -0.2565 -4.0400
17 >3 Activities in Queue (0/1) 0.0693 1.5160 Log-Likelihood -52069.58

Sample Size 116773
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Table 6.10: Estimation Results for Pooled Sample with no Distinction with respect to 
Number of Decisions Made 

 
  Pooled  Model 

Var # Variable Description Coefficient t-stat 
1 Alternative specific constant (for participation) 1.2954 4.2860 
        
  Number of Queued Activities Completed     
  (Indicator, baseline = not completed)     
2 Completed 1 queued activity previously (0/1) -1.2600 -37.5880 
3 Completed 2 queued activity previously (0/1) -0.0511 -2.1620 
4 Completed 3 queued activity previously (0/1) -0.1061 -4.5520 
5 Completed >3 queued activity previously (0/1) -0.2346 -10.6040 
        
  Number of Activities in Queue    
  (Indicator, baseline = not true)    
6 1 Activity in Queue (0/1) -2.9745 -8.9060 
7 2 Activities in Queue (0/1) 2.7310 18.6500 
8 3 Activities in Queue (0/1) 0.7586 28.0410 
9 >3 Activities in Queue (0/1) 1.2994 75.7720 
        

 Log-Likelihood Value -52585.60    
 

 
 Sample Size 116773  

 
 
 

 
 
Figure 6.4 Stress as a Function of Activities in Queue and Activities Completed 
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Additionally, a pooled model that did not differentiate between numbers of decisions 

made per day was also estimated. These estimation results are presented in Table 6.10, 

with stress plotted in Figure 6.4. These results show a similar trend, the sample was 

segmented between the numbers of decisions made per day.  

 

Overall, these results show that activity stress varies with the state of the queue and the 

activity schedule, with these states represented by the number of activities generated and 

completed respectively. The shape of the curves in the figures above indicate that in 

general, stress decreases with more completed activities, independent of the number of 

decisions made per day. This is behaviorally intuitive, since more activities completed 

indicates more activities leaving the queue, which translates into less pressure, assuming 

the arrival rate of activities does not exceed the particiaption rate of activities by a large 

margin. Similarly, the figures above also indicate that as the number of activities in queue 

increases, the stress experienced with each additional activity also increases. 

Furthermore, from the figures above, stress from activities in queue seem to be more 

sensitive to the actual number of activities (two activities in queue, three activities in 

queue, etc.), relative to stress relief resulting from completing activities. The stress from 

activities in queue seem to decrease initially then continually increase. This may reflect 

the fact that individuals prefer to have one activity waiting in queue over no activities at 

all, which indicates a completely idle person. These results are obtained under the 

asusmption that each activity is homogenous and exerts the same amount of stress or 

provides the same amount of stress relief, independent of activity type, duration, or other 

criteria. However,  more realistically activities may vary in the amount of stress they 
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provide, depending on their characteristics. For example, stress from an activity may 

actually oscilate over time. The next section provides a results from a mixed logit model 

estimation. The motivation of the mixed-logit estimation was to relax the assumptions of 

the previous indepdent binary decision model, specifically with respect to the response 

from individuals across the population to the queue and activity schedule states. 

 
Repeated Mixed-Logit Model 
 
This section presents results from a mixed-logit estimation of activity participation. These 

results are shown in Table 6.11. Recall that the total sample size was too large 

(N=116,773) to estimate feasibly using simulated-maximum likelihood procedures. Thus, 

this sample was segmented by the number of decisions made per day. The results below 

are for two different segements: six and seven decisions per day. In these models, 

response and preference heterogeneity were also allowed. The coefficents on the 

indicators for completing one activity in queue and for having one activity in queue were 

assumed to be normally distributed across the popultion to capture variations in response 

(stress) to schedule and activity queue states. Furthmore, unobserved random preference 

heterogenity was accounted for as well.  

 
Similar to previous findings, the estimation results below indicate that stress or 

propensity towards participating in activities increases with more activities in queue. 

Also, stress decreases with completion of more queued activities, but with a less steep 

slope. One possible explanation is that individuals are more sensitive to stress associated 

with activities still in queue, relative to activities completed, suggesting that the former 

plays a stronger role in defining and motivating individual schedules over time. 
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Furthermore, these results suggest that stress is a latent variable that builds or 

accumulates over time. Thus, to better account for its effects, longitudinal data on 

individuals’ actual schedules as they evolve over time, including their needs and goals, 

may be required.  The results also suggest the presence of “dynamics” underlying these 

scheduling decisions, leading to the accumulation and release of stress over time. These 

results are based on observed schedules at the end of the day. Given a richer data set that 

accounts for not only the final outcome of decisions, but also the scheduling decisions 

made during the day, the dynamics of this process may be captured more completely. 

Finally the estimated results also indicate that the only significant variation in reponse to 

the state of the queue occurs when the first (one) activity is completed, indicated by 

significance of the standard deviation ζ2. This further suggests that only in response to 

completed activities is there variation across the population.  

 

 

 

 

 

 

 

 

 

 

 



 

 170 
 

Table 6.11: Mixed-Logit Estimation Results 
 

 
  # Decisions 6 # Decisions 7 
Var # Variable Description Coefficient t-stat Coefficient t-stat 

1 Alternative specific constant (for participation) -0.7652 -0.9728 2.8794 2.4583 
            
  Number of Queued Activities Completed         
  (Indicator, baseline = not completed)         
2 Completed 1 queued activity previously (0/1) -1.3096 -19.8725 -1.0439 -12.0822 
3 Completed 2 queued activity previously (0/1) 0.0192 0.4315 -0.0927 -1.6947 
4 Completed 3 queued activity previously (0/1) -0.1305 -2.9392 -0.0716 -1.3612 
5 Completed >3 queued activity previously (0/1) -0.1011 -2.2417 -0.2023 -4.1711 
           
  Number of Activities in Queue       
6 1 Activity in Queue (0/1) -1.6628 -1.8715 -5.3582 -4.0927 
7 2 Activities in Queue (0/1) 3.3453 7.9955 3.1896 5.3851 
8 3 Activities in Queue (0/1) 0.7936 15.1740 0.5306 6.8288 
9 >3 Activities in Queue (0/1) 1.4127 43.3344 1.6167 39.9185 
          

  Unobserved preference and response heterogeneity 
parameters         

10 Person-specific error standard deviation (ζ1) 0.0153 0.1453 -0.1545 -0.3599 
11 Standard Deviation for var#2 (ζ2) -0.1831 -2.4060 -0.3362 -3.7606 
12 Standard Deviation for var#6 (ζ3) 0.0208 0.1921 -0.1252 -0.2606 
            
  Log-Likelihood Value -14494.2742    -12223.8516   

  Sample Size 32394    26621   
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Figure 6.5: Stress as a Function of Activities Completed (top) and in Queue (bottom) 
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6.6.3 Estimation Results Related to Socio-Demographic Factors 
 
To examine the effects of socio-demographic variables on the stress threshold, variables 

that indicate the number of queued activities completed were interacted with socio-

demographic variables. In addition, an indicator variable was introduced to indicate 

whether the observation falls on a weekend or weekday. These results are shown in Table 

6.12.   

 
With respect to gender effects, males appear to perceive a greater disutility towards 

participating in more queued activities (Figure 6.6) after completing one or more 

activities, relative to females. Although the difference in disutility perceived by males 

relative to females is insignificant after completing three or more activities, males 

initially perceive greater disutility relative to females. Additionally, the results also 

suggest that the curve is steeper for males, thus for every additional activity in queue 

completed, males experience a disutility that rises more sharply compared to females. 

With respect to the stress threshold, it suggests that males are more content with 

completing fewer activities relative to females, who experience less disutility having 

completed the same number of activities from queue. 

 

With respect to age effects, older individuals (> 30 years of age) perceived significantly 

less disutility after completing one or two queued activities, though his effect decreases in 

magnitude after completing three or more activities (Figure 6.7). In regards to the stress 

threshold, these results suggest that older individuals are more tolerant of activity stress 

than younger individuals. 
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Finally with respect to weekday versus weekend, the results indicate that individuals 

perceive more disutility in completing additional queued activities on weekends, 

suggesting less inclination towards completing more activities on weekends, relative to 

weekdays (Figure 6.8). One possible explanation for this is that weekends are typically 

perceived as "free" time. Since queued activities considered in this study were mostly on 

the "maintenance" side, individuals would in general be less favorable towards 

participating in many of these activities, such as going to the bank, on the weekends 

compared to weekdays. This suggests a further investigation that would look more at 

queued activities that are recreational and leisurely in nature.  
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Figure 6.6: Gender Differences in Perceived Disutility 
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Figure 6.7: Age Differences in Perceived Disutility 
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Figure 6.8: Weekend vs. Weekday Differences in Perceived Disutility 
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Table 6.12: Gender, Age, and Weekend Effects 
 
    Pooled  Model 
Var # Variable Description Coefficient t-stat 

1 Alternative specific constant (for participation) 2.6079 94.7740 
        
  Number of Queued Activities Completed     
  (Indicator, baseline = not completed)     
2 Completed 1 queued activity previously (0/1) -1.5130 -35.9410 
3 Completed 2 queued activity previously (0/1) -0.2075 -4.7270 
4 Completed 3 queued activity previously (0/1) -0.1427 -3.2460 
5 Completed >3 queued activity previously (0/1) -0.0176 -0.3950 
        

  Number of Queued Activities Completed Interacted 
with Sex (0/1)     

  (Indicator, baseline = Female)     
6 Completed 1 queued activity previously × Sex (0/1) -0.1241 -3.8110 
7 Completed 2 queued activity previously × Sex (0/1) -0.0922 -2.0520 
8 Completed 3 queued activity previously × Sex (0/1) -0.0357 -0.8110 
9 Completed >3 queued activity previously × Sex (0/1) -0.0090 -0.2180 
        

  Number of Queued Activities Completed Interacted 
with Age (0/1)     

  (Indicator, baseline = < 30 years old)     
10 Completed 1 queued activity previously × Age (0/1) 0.6368 19.0560 
11 Completed 2 queued activity previously × Age (0/1) 0.0812 1.7590 
12 Completed 3 queued activity previously × Age (0/1) -0.0806 -1.7510 
13 Completed >3 queued activity previously × Age (0/1) -0.2797 -6.0590 
        

  Number of Queued Activities Completed Interacted 
with Weekend (0/1)     

  (Indicator, baseline = Unemployed/Retired/Non-Student)     
14 Completed 1 queued activity previously × Weekend (0/1) -0.4060 -10.3120 
15 Completed 2 queued activity previously × Weekend (0/1) 0.0588 1.0700 
16 Completed 3 queued activity previously × Weekend (0/1) 0.0816 1.4670 
17 Completed >3 queued activity previously × Weekend (0/1) 0.1321 2.4160 
        
  Log-Likelihood Value -58767.78   

  Sample Size 116773   
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6.7 Concluding Remarks related to Threshold Estimation 
 
This study presented a model of activity scheduling based on the concept of a single-

server queue. Depending on person-specific attributes that affect the individual’s ability 

to complete activities, an activity queue may build and exert stress or pressure on the 

individual. As activities leave the queue, stress is released, though may accumulate again 

as more activities arise. To make this framework operational, the concept of stress was 

introduced as a motivator for scheduling decisions. The decision to participate in an 

activity is governed by a threshold that reflects the preferences and other endogenous 

characteristics of the individual, and possibly other external aspirations. In this study, the 

stress tolerance threshold was estimated to illustrate the degree to which this modeling 

framework can be made operational. Furthermore, an instrumental variable for 

accounting for activities generated was also used to capture the generation of activities 

over time, and to overcome endogeneity issues from assuming that the activity queue size 

is fixed over time. 

 
The estimation results indicate that as the number of activities increases in the queue, 

more stress is perceived by the individual, and thus there is more pressure or propensity 

to participate in queued activities. Similarly, as activities are completed, and hence 

removed from the queue, the individual perceives his/her stress to decrease. These results 

hold regardless of the number of decisions made during a day. Accounting for response 

and preference heterogeneity also gives similar results. Overall, these results suggest the 

presence of underlying dynamics that govern the accumulation and release of stress over 

time. Future studies should further consider these dynamics, preferably with a richer 

longitudinal dataset. Future studies should also consider scheduling decisions, in addition 
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to participation decisions, and the relationship between activities scheduled and actually 

completed. Additionally, by formulating the activity scheduling process as a queuing 

system, it may allow future investigation into the “economics” of activity participation 

over time, with respect to interrelationships between the numbers of activities generated 

(demand), and the abilities of the individual to complete activities (supply), as reflected 

by the evolving state of the queue. 
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Chapter 7.0 Conclusions 
 

The study of human decision making in traffic systems continues to be a challenging area 

of study, promising new opportunities for the efficient management of these systems and 

improvement to the quality of urban life. This study investigated the decision 

mechanisms underlying the dynamics of route choice and activity scheduling decisions. 

With respect to route choice dynamics, the main objective was to model and understand 

mechanisms related to travel time perception, learning, and risk attitudes, and to explore 

their implications on system performance over time. This objective was accomplished 

through performing experiments using a network performance model, in this case an 

agent-based simulation model of individual experience given the collective effects arising 

from the interaction of the agents’ route choice decisions. With respect to activity 

scheduling decisions, the main goal was to examine the range of behavioral insights 

obtained from a modeling framework that viewed the individual scheduling process as a 

single-server queuing system. The concept of "activity stress" was introduced to allow 

the framework to be operational. This study presented numerical experiments on this 

framework using a discrete event simulation of an M/G/1 queuing system. Furthermore, 

an operational model of activity participation was presented.  

 

7.1 Main Contributions 
 
This study led to several contributions in the area of travel behavior research. First, this 

research served to advance theories of individual learning in the dynamics of user 

behavior, in particular by introducing a new perspective on activity scheduling dynamics, 
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that of a queuing system. Additionally, this study augmented previous theories of route 

choice dynamics by explicitly considering learning processes with statistical and 

cognitive dimensions, and risk perceptions in a stochastic dynamic environment. This 

study also provided further consideration of trigger mechanisms, in both route choice 

learning dynamics and activity scheduling, with similar theoretical behavioral constructs, 

such as cumulative pressures and thresholds. Methodologically, this study went further 

than previous works in implementing micro-level rules for learning, and perception 

updating in context of traffic networks, to examine dynamic system properties, and build 

towards day-to-day analysis tools. 

 

With respect to route choice dynamics, this study contributed extensively, in terms of 

breadth, to our understanding of both decision mechanisms and system dynamics, 

covering the following areas: i) the perception of uncertainty and risk; ii) the updating 

process for these perceptions; iii) the effect of both at a system performance level. 

Additionally, deeper insight was gained into i) the reasonableness of assumptions 

regarding an equilibrium state in networks, under plausible user behaviors; and ii) the 

day-to-day route choice process of users under different learning types. Finally, this study 

allowed for a better understanding of the timing of learning and updating, suggesting the 

need to examine the tradeoffs between the respective value of time savings, learning, and 

perceived uncertainty. 

 

With regard to activity scheduling dynamics, this study provided a behavioral 

perspective, that of a single-server queuing system, that allowed an understanding of the 
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role of “latent” activities generated and the relationship between planned and executed 

activity schedules. This study also introduced the concept of “activity stress” and a means 

to capture its effects through an operational model. Finally, with respect to the 

conventional analysis of observed activity schedules, this study calls into question 

assumptions about differences between activities generated and those completed. 

 

7.2 Route Choice Dynamics 
 

In this study, mechanisms for travel time perception, travel time learning, and risk 

perception were presented. These mechanisms were used in an investigation of the 

dynamics of route choice decisions from day-to-day. Perceived travel times, either 

experienced or updated, are assumed to consist of a mean and variance. Learning or 

updating mechanisms were also presented to examine the updating of perceived travel 

times in light of new travel experiences. Also, recognizing that a cost may be incurred 

from each update, triggering mechanisms for updating were also presented to account for 

the timing of updating decisions. Finally, risk attitudes were accounted for in the route 

choice decision process through a mechanism for weighing objective probabilities of 

travel time improvements, assuming that risk taking behavior is reflected through these 

weights. Simulation experiments were conducted to study the system performance 

implications of these different behavioral mechanisms. 

 

To investigate travel time perception and learning, mechanisms related to these behaviors 

were modeled using concepts from Bayesian statistics, and were embedded in a 

microscopic (agent-based) simulation framework to investigate their collective effects on 
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the day-to-day behavior of traffic flows. This study extended past work by further 

considering the perception and learning process, the triggering and terminating 

mechanisms which govern it, and the effect of the above on the day-to-day dynamic 

behavior of a traffic network, in particular convergence.  

 

First, the results indicate that individuals’ perception of travel times and the mechanisms 

for integrating them with past experiences both greatly affect the convergence of the 

system. Several important effects were observed. When the overall travel time perception 

error is low (mostly regular commuters) or high (mostly new commuters), system 

convergence was more difficult to attain. Second with respect to the time until 

convergence, all other factors being the same, as inter-update period increases, the time 

until convergence decreases initially and then increases, and the number of updates 

required for convergence decreases. This result suggests that an “optimum” level of new 

information content might contribute to faster system convergence. Third, a system with 

users that update almost at every travel time experienced is less likely to converge than a 

system with selective users.  

 

Overall these results indicate that the perceived confidence (or error) associated with 

experienced travel times is an important factor in route choice decisions and should not 

be ignored. Additionally, these findings call into question the behavioral assumptions 

invoked in deterministic and stochastic equilibrium assignment models, in particular 

fixed and homogenous perception parameters, and have important implications for 

dynamic network performance models.  
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Finally, note that convergence was a desired criterion in this study, which assumed a 

fixed demand level; however, under variable demand convergence is still sought. 

Although the system may not be at a strict user equilibrium (UE) state, there still exists a 

unique solution at which all users have minimized their “perceived” travel times. It can 

be shown that the equivalent mathematical program for variable demand is strictly 

convex and thus has one stationary point, which is a minimum (Sheffi 1985). 

Additionally, note that the link-cost functions used in this paper were two-piece and thus 

discontinuous, possibly being problematic since convergence is not guaranteed.   

 

With respect to route choice, this study also examines the role of learning rules other than 

Bayesian learning, and risk attitudes in the day-to-day behavior of traffic flows. In this 

study a mechanism that assumes risk attitudes are reflected through the subjective 

probability weights for gains and losses is used to examine the role of risk attitudes on 

day-to-day route choice dynamics. Additionally, these three learning types are 

considered: i) Bayesian; ii) reinforcement; and iii) belief.  

 

First, the results show that explicitly considering risk attitudes does influence the 

convergence of traffic flows in a network. Risk attitudes affect route choice decisions by 

influencing the perception of uncertainty and how this uncertainty relates to route travel 

times experienced in the decision making process. The presence of risk seekers and 

avoiders may affect the route switching frequency of users, thus affecting the spread of 

users across route from day-to-day. The results show that the percentage of risk seekers 
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in the population affects the rate of convergence, possibly by affecting the rate of 

sampling taken by individuals and by adding variability in travel times for individuals 

who are not risk seeking. The results also indicate that under Bayesian learning, any 

mechanism that affects the rate of sampling will affect the rate of convergence. 

Convergence under Bayesian learning is a function of both the perceived travel times and 

the perceived dispersion of these travel times.  

 

Reinforcement learning describes how travel times experienced are integrated, but does 

not explicitly say anything about how uncertainty changes over time. Since reinforcement 

learners only update travel time gains, the rate of sampling from day-to-day may not be 

high enough to lead to convergence. One assumption of all the learning rules used is that 

the propensity towards convergence increases as users’ perceived confidence in travel 

times increases (perceived variance decreases). Under belief learning, since it considers 

experiences of all users, the system may go towards a faster convergence compared to 

reinforcement learning. 

 

Finally, these results show that there are system-wide properties that are common to all 

cases, regardless of learning rule or the explicit consideration of risk attitudes. First as 

demand levels increase, convergence is more difficult to achieve. Second, as individuals 

rely more on their updated travel times when they are making route choice decisions, less 

switching among routes occurs and individuals choose a particular route more 

consistently. Since updated travel times only change with updating or learning, they vary 

less over time with long experienced travel times. 



 

 184 
 

 

7.3 Activity Scheduling Dynamics 
 

Numerical experiments were conducted using a simulation model of an M/G/1 queuing 

system to explore the range of behavioral insights that might be gained from a modeling 

framework that views the individual as a server in a queuing system, with activities 

arriving and forming a queue. Simulation experiments were carried out to explore the 

relationship between different scheduling rules and “service” (performance) measures, 

such as the length of the activity queue and the waiting time. These experiments also 

permit insight into the relationship between formal queuing theory and activity 

scheduling. The results show that if selection is based on choosing the activity with the 

larger relative stress compared to other activities, the actual scale or magnitude of an 

activity’s stress does not matter, so long as the relative order of stress is preserved.  

 
A model of activity participation was also estimated using observed activity schedules. 

This model was estimated under a discrete choice framework, where individuals made 

repeated binary decisions about participating in one more queued activities. The 

estimation results indicate that individuals do experience stress when completing 

activities over time or when the activity queue grows. Specifically, as individuals 

complete more activities, and as the number in queue decreases, they have less 

inclination towards pursuing more queued activities. The opposite occurs when activity 

queues grow in size, with stress increasing with each additional activity. This further 

suggests that as individuals complete more activities in queue, their tolerance for stress 

increases if no new activities are added. However, since more activities are generated 
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over time, stress does not constantly decrease, but may vary with the evolving states of 

the queue and activity schedule. The results further indicate that socio-demographic 

variables may lead to variations in the perception of activity stress over time.  

 
7.4 Application and Implication of Results 
 
The applications and implications of this study in the area of travel demand management 

and travel behavior analysis are numerous, specifically for evaluating user behavior over 

the short term, in response to real-time information and new information communication 

technologies within transportation systems. Given the rapid spread and development of 

new personal real-time information communication devices, individuals continually 

expand their spatial and temporal boundaries for activities and consequently travel. Thus, 

understanding and improving activity patterns and related travel decisions within this 

growing complex dynamic information-rich environment requires models that can 

capture important aspects of these decisions, such as learning, information processing, 

and risk anticipation.  

 
The models developed and presented in this study are amenable to capturing the 

dynamics that individual route choice and activity scheduling face within these dynamic 

environments. In this study the route choice models captured the dynamics of decisions 

with respect to learning, uncertainty perception, and risk perception, all of which play 

important roles in the integration of current with past experiences, in addition to the 

anticipation of future outcomes. Thus, the route choice model presented in this study 

permits an evaluation of the effects from real-time information on individual behaviors 

over time. Similarly, viewing activity scheduling as a queuing process permits evaluation 
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of real-time activity information on activity scheduling decisions occurring over time 

frames shorter than a day. In general the models developed in this study have wide 

applications for the understanding and evaluation of user behaviors in transportation 

systems, where users are faced with continuous real-time information, possibly through 

new technologies and shared experiences with other users. 

 
7.5 Future Research Directions 
 
Several directions for future research are suggested to extend and expand the findings of 

this study. With respect to route choice dynamics, due to the lack of empirical data on 

day-to-day route choices, the results in this study could only be exploratory in nature, 

relying on simulation. Future studies should further consider validation of the results 

shown in this study, using empirical data of day-to-day route choice decisions. 

Furthermore, closer examination of the validity of assumptions made with respect to the 

decision mechanisms, such as the weighing of objective probabilities could be 

accomplished using psychological experimentation.  

 
With respect to activity scheduling, although both a conceptual framework and 

operational model were presented, significant additional work should be done on the 

rescheduling aspects of activity scheduling. Due to the lack of data on the schedule 

adjustment process, these dynamic aspects of activity scheduling could not be explored 

beyond a simulation approach. Future research should also consider the interrelationship 

between planned schedules and executed schedules.  
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