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Detecting unattended packages in video is a challenging surveillance problem.

The goal is to detect packages and their owners, determine relationships between

them and the environment, and recognize when an owner abandons a package.

Concurrent events and complex interactions create problems for existing motion-

based systems. Errors in target detection and tracking caused by shadows, noise,

and occlusions create additional problems. We present a real-time system that ad-

dresses these issues and recognizes the unattended package event syntactically using

a stochastic attribute grammar. Our system can detect events that occur concur-

rently, are corrupted by target and detection errors, or contain packages hidden

behind other objects such as trash cans.

In this thesis, we review existing motion-based methods, then present our

system and show results on unattended package detection in situations that would

cause motion-based systems to fail.
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Chapter 1

Introduction

Unattended package detection is a well studied problem [1, 12, 18]. Statistical

and syntactic methods have been attempted to aid in the detection of packages and

their attending status. Early methods simply sought to locate the packages [6, 19],

while newer methods [18] assign ownership to the packages and track the owner’s

location to determine when a package is left behind. In this introduction section, we

will first outline the existing methods for unattended package detection, and then

give some background discussion on syntactic pattern recognition – the method used

for this thesis. Lastly, we will present an outline of the thesis.

1.1 Unattended Package Detection

Unattended package detection is a problem that has been gaining attention

in recent years due to security concerns in a variety of public areas. With the

increase in camera surveillance of public areas, online intelligent systems are in high

demand. We would like these systems to be able to identify suspicious events and

alert security personnel to deal with them.

These systems have two advantages over human-monitored security systems.

First, they can ease the workload of security personnel, allowing them to focus on

vital tasks rather than monitoring innocuous video streams. Secondly, intelligent
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systems can often detect scenarios in complex scenses that humans do not notice.

Events unfold over many minutes, and the increased memory and processing power

available on today’s computers allows for tracking and detailed analysis.

1.1.1 Problem Formulation

The unattended package problem seeks to identify packages left behind by

humans in public places and identify their former owners. In order to do this, we

split the problem into several parts: detection and classification of humans and

objects, tracking, establishing relationships among people and objects, checking for

alarm conditions, and sounding an alert when they are satisfied. Previous methods

differ in all but the last step.

Because video data contains many objects acting simultaneously, determining

the relationships amongst them is a difficult task. Existing methods are detailed

in chapter 2 and their disadvantages are described. These solutions are adequate

when simple situations are being recognized, however when multiple events occur

simultaneously involving complex relationships among objects and events, the use

of stochastic attribute grammars can provide better solutions.

We focus primarily on unattended package detection in outdoor environments

to demonstrate the improvements offered by syntactic pattern recognition, shadow

removal, and human gait analysis. Some indoor scenarios are also presented to

illustrate the improvements offered by stochastic syntactic pattern recognition in

handling the noise of the input data.
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1.1.2 Previous Work

Previous work is quite varied: many systems have been proposed to detect and

classify human activity. The previous work that is drawn upon for this thesis can

be divided into three categories: human activity classification, event detection, and

video pre-processing. Several improvements are offered by these works, and their

use in this work is detailed in chapter 3.

Human activity classification systems examine humans in video and classifying

what activity is being performed – often for security applications. Work has been

done in activity classification to identify people carrying objects by examining sil-

houettes in [7]. Additional work in [15] uses cues from the human gait to determine

when a person is carrying an object.

Event detection systems examine multiple objects and infer relationships amongst

them to sound alarms when certain events take place. A variety of techniques have

been used. Finite-state machines were used in [1] to detect unattended packages.

A stochastic context-free grammar and stochastic parser was used in [13] to detect

high-level events in a blackjack game involving multiple players and a dealer. A

stochastic attribute grammar was used for online event detection in a parking lot in

[9].

Video pre-processing consists of methods to clean up input video from noise.

Shadows are a problem in both indoor and outdoor video systems and several meth-

ods exist to alleviate the issue. Moving shadows are removed in [14] using the HSV

color space to separate intensity and chromacity. Vector projections are used to

3



estimate the chrominance distortion for a pixel and threshold shadows in [1].

1.2 Proposed System

In this thesis, we propose a real-time system for recognizing the unattended

package event. We develop a stochastic attribute grammar based on the framework

in [9] and extend it with some original work. Primitive events are extracted from the

video and are parsed for matches in real-time. Multiple event threads are maintained

for events that may be unfolding simultaneously. Production probabilities are used

to represent the certainty of the particular event’s occurrence.

The system is extended to detect unattended packages when the package is

not visible to the camera by analyzing the human gait based on [15] but extended to

work in a real-time system. Video pre-processing algorithms are used to reduce the

effect of moving shadows. Lastly, we expand the primitive extractor and utilize the

expressivity of the attribute grammar to alleviate the affects of unavoidable tracker

errors and noisy input.

Experiments demonstrating the capability of the system are shown in chapter

4.

The system is written in C++ and runs on multiple platforms.

1.3 Outline of Thesis

In Chapter 2 we describe motion-based methods for detecting unattended

packages. In Chapter 3, the proposed system is described and finally in Chapter 4,
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results are shown from experiments using the proposed system.
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Chapter 2

Motion-Based Unattended Package Detection

2.1 Overview

Existing motion-based systems are quite varied in their capabilities. In this

chapter we detail several motion-based approaches that were proposed at the 2006

PETS conference which focused on the unattended package detection problem and

one finite-state machine approach that was proposed in 2003.

Background Subtraction

Classification of Foreground Objects

Tracking of Foreground Objects

Unattended Package Detection

Alarm 

Figure 2.1: Block diagram showing the steps before and after the unattended pack-

age problem.

In our discussions, we do not pay much attention to the background sub-

traction or tracking methods used in these approaches, but rather on the anomaly

detection mechanisms: the steps between tracking and sounding an alert, repre-

sented as the ”classification” and ”unattended package detection” boxes in Figure
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2.1 and expanded in Figure 2.2. Additionally, several of these works use multiple-

camera systems whereas ours is a single-camera system. Throughout we will point

out the enhancements offered by using multiple cameras and refer to Chapter 3

which details how we accomplish similar goals in our single-camera system.

2.2 Motion-Based

The existing works will be compared based on how they accomplish the steps

shown in Figure 2.2 in the unattended package problem. It is assumed that we

get an input of the tracking data obtained by background subtraction and object

tracking in the previous steps which aren’t detailed in this thesis.

Unattended Package Detection 

Classification of Objects into People and Bags 

Associate People with Bags and vice-versa

Test for alarm conditions 

Figure 2.2: Steps in the Unattended Package Problem.

2.3 Target Classification

The first step in the process is to take the input targets from the tracker

and classify them into people and packages. Most of the works do not place much

emphasis on this step of the problem and use a simple pixel-area threshold as the

classifier.

[1] uses a feature called compactness for classification where compactness
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C = area
perimeter2 . A Bayesian classifier is used to combine measurements from video

channels and classification is based on the Gaussian assumption and MAP quadratic

discriminant functions.

In [18], the velocity and size of a blob is used to compute the likelihood that the

blob is a package based on this distribution P (Bi = 1 |X1:t) ∝ N(si
t, µs, σs)exp(−λvi

t).

Based on this likelihood function, objects with small size and low velocity are se-

lected as packages. Candidates selected using this function must also not be on the

border of the image nor on top of the positions of other candidates. These last two

criteria eliminate tracker errors. After an object is selected as a package, subsequent

frames are compared to the shape of the package from the segment containing the

stationary package. This work determines the owner of packages (human objects)

when certain tracker conditions are met. This is detailed in the next section on

package ownership assignment.

[12] uses an area and height threshold to select package and human objects

using scene calibration and single-view metrology.

2.4 Package Ownership Assignment

Once objects have been classified into humans and packages, we must assign

ownership of the packages by the humans. Once we have assigned ownership to

packages, the conditions of the unattended package event can then be tested in the

next step. In this section we will detail how the various works determine ownership

of packages.
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A video history buffer is maintained for all cameras in [1]. When a new idle

package is detected, this buffer is examined for all cameras. The authors examine the

color histogram of certain areas of all human objects and select the owner based on

the best match. This approach has the advantage that if a package drop is occluded,

the owner can still be selected if the history buffer contains the owner with the

package before the occlusion. However, this does not account for packages that are

dropped behind other objects or packages that are too similar to the background.

In [18], the following observations are made. Before a person drops a package,

the tracker is tracking the person carrying the package. As yet the package is

unseen by the system. When the owner drops the package, one of two situations

occur. Either the tracker remains on the person and a new tracker is created for

the object or the tracker remains on the object and a new tracker is created for the

person. Therefore, when a new package is detected, we check the tracker history for

these situations to identify the owner.

[12] associates the closest human object to a package as its owner. Although

this is a simple calculation, it does not scale well to situations with multiple people

in the scene.

2.5 Alarm Conditions

The final step of the unattended package detection problem involves examining

the relationships determined in the previous steps and testing for alarm conditions.

Most of the existing works use a finite-state machine approach for determining when
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to sound an alert for the unattended package event.

The finite-state machine approach in [1] uses a four-camera system with over-

lapping fields-of-view and combined processing. In this system, when a new package

is detected, the system looks in its history to associate an owner with the package.

The abandoned package state can be described as follows [1]:

abandoned = (v < V0) ∧ (unowned ∨ dist > D) ∧ (∆t > Ta)

The package must have a velocity under a certain threshold V0 and the owner

must be further than a distance D away from it or have no discernible owner. Once

these conditions are met for a certain time period Ta, an alarm is set.

While this system solves the occlusion problem by employing multiple cam-

eras, it is vulnerable to background subtraction and tracker errors: it will fail for

any packages that are similar to the background. False positives will be generated

when the ownership of a package cannot be deteremined. Ownership of packages

is determined by examining a stored frame buffer which can cause problems when

multiple people are in close proximity or in complex scenarios involving package

handoffs. It is also unclear how concurrent events will be handled in such a system:

false positives occurring first may distract the system from true positives.

The finite-state machine put forth in this work provides a good starting point

for how unattended package detection would work in controlled scenarios, however

it is clear that a framework that can express more complex relationships among

events is needed.

Several works from the PETS 2006 conference also use a FSM approach for

detecting unattended packages [12, 18]. Because the requirements for an unattended
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package were fixed in the PETS 2006 conference, the works presented there have

similar approaches. From the requirements of the conference, a package is considered

unattended if its owner is greater than 3 meters away. A warning is announced if the

owner is greater than 2 but less than 3 meters away from the package. [12, 18] and

most of the other papers at PETS 2006 use a homographic transformation to map

video coordinates onto the ground plane and calculate the true distances between

objects.
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Chapter 3

Unattended Package Detection using Stochastic Attributes

3.1 Overview

In this section we present the unattended package system. Relevant back-

ground material is given throughout. This chapter is organized as follows. First,

we briefly discuss the detection and tracking method. Next, we explain primitive

extraction, then pattern specification followed lastly by pattern recognition. A block

diagram of the syntactic pattern recognition process as implemented in our system

is shown in figure 3.1[9]. The system description in this chapter roughly follows this

layout.

Detector Tracker Primitive

Manager

Parser
Input Video

Shadow

Removal

Measurement

Smoothing

Measurements

background

update 

regions

Targets

primitive

events

attributes
Attribute

Grammar

Event Label

        &

Parse Tree

Figure 3.1: Block diagram of the recognition process.
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3.2 Detection and Tracking

Detection and tracking is not the focus of this thesis, but we will go over it

briefly. No tweaking has been done on the detector or tracker [9] for use on the data

in our experiments. We demonstrate the power of the attribute grammar by using

it to correct for detection and tracking errors we encounter.

The first step is to detect the foreground. Pixels are modeled individually using

an adaptive Gaussian background model. Foreground candidates are selected using

a color variance threshold. A timer is used for each pixel to delay foreground objects

from becoming part of the background model. Connected components analysis is

performed on the detected pixels to detect objects (measurements).

Existing targets from the previous frame are associated with the measurements

of the current frame. A bipartite graph and a minimum weight edge covering algo-

rithm [17] is used to associate measurements with targets. The weights in the graph

are set to the Euclidean distance between the targets and the measurements. This

is shown in Figure 3.2 [9]. A Kalman filter with constant velocity motion model is

used to track the target state with the measurement bounding box as update input.

3.2.1 Video Pre-Processing

Once we have bounding boxes from the tracker, we do some video pre-processing

in order to clean up the data for the other components of the system.

13



t1

t1

t2

t1t1t4

t3

t5

m1

mDtN

m5

m4

m3

m2

Figure 3.2: Tracking graph showing associations between measurements and targets.

Dotted lines connect recently dissociated measurements and targets.
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3.2.1.1 Measurement Smoothing

Before processing the target information we get from the tracker, we apply

smoothing on much of it. We simply use a linear combination of the previous and

current values for the next state value, eg. Xn = αXn−1 +(1−α)Xn. This prevents

outlying tracker data from having a large impact on the trajectory of the object.

We also smooth the trunk width ratios which are described in section 3.4.1.1.

3.2.1.2 Shadow and Highlight Detection

In video systems, particularly those with human subjects, moving shadows and

highlights (reflections) are often a problem because they differ from the background

enough that they often show up as foreground objects. Because the background

subtraction algorithm used in our system was not set up to handle shadows, we

used a method that was presented in [1] and [8], tweaked it to our purposes and

added it to the detection system.

The idea of this method is that a color pixel can be said to differ from its

expected value (the background model) in terms of its brightness distortion and its

chromacity distortion. Because moving shadows and reflections are cast by moving

objects, namely people, they are similar in chromacity but different in brightness.

Pixels that have a lower brightness are considered shadows and pixels with a higher

brightness are considered highlights. In our system we simply check the absolute dif-

ference so that both shadows and highlights are removed from further consideration.

This step was inserted into the system before the pixel variance is measured. We

15



simply classify the pixels as either shadow, highlight, or don’t care. The pixels clas-

sified as shadows and highlights are removed from being considered as foreground

pixels and all remaining pixels are classified as background or foreground using the

model detailed previously.

To measure the pixel’s distortion, we consider the geometric relationship be-

tween the expected pixel (background model) and the pixel under consideration,

shown in Figure-3.3. The expected chromacity line is the line made by the back-

ground pixel in RGB space. The angle between the expected and measured pixel

values is the chromacity distortion of the pixel. In order to compute the bright-

ness distortion of the current pixel, we project it onto the expected chromacity line.

The distance from where the project lies on the line to the expected value is the

brightness distortion. If the chromacity distortion is below some threshold and the

brightness distortion is greater than some threshold, then we classify the pixel as

shadow or highlight.

Red

Green

Blue

Expected Value

Measured

Value

BG

Highlight

Shadow

Figure 3.3: Shadow and highlight pixel classification model [1].
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3.3 Pattern Specification

Pattern specification is the first step in any pattern recognition process. We

must first specify what patterns we are trying to locate amongst the received signals.

Once the pattern is specified, we can search the input signal for the pattern to

identify its occurrence. This section will cover the various tools that we use to

specify the patterns syntactically.

3.3.1 Grammars and Languages

Grammars are a fundamental construct of syntactic pattern recognition. A

grammar with respect to a written language is a set of rules to indicate the proper

formation of sentences. The grammar specifies what elements of speech (nouns,

verbs, adjectives, etc.) make up a properly-formed sentence and in what order

they may appear. Sentences that do not match the rules of the grammar are not

considered correct and therefore are not members of the language. The language is

the set of all strings that are generated by the grammar, and is referred to as L(G).

In syntactic pattern recognition, a common method to recognize patterns is

to define one or more grammars, each for a pattern class we are trying to match.

Signals that match the pattern class are members of the corresponding language.

Formally, a grammar is a set G = (VN , VT , P, S) of non-terminal symbols,

terminal symbols, productions, and a start symbol respectively. Symbols are the

building blocks that make up the pattern. Non-terminal symbols are made up of

other non-terminal symbols and terminal symbols, while terminal symbols are the
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lowest building block in the pattern. In the case of written languages, clauses (eg.

noun or verb clauses) are non-terminal symbols and are made up of terminal symbols

(words, punctuation, etc). A start symbol is simply a symbol that can start off a

rule in the grammar. The productions are the rules that specify how to construct

a properly formed sentence. Beginning with the start symbol, non-terminals are

expanded and when the sentence contains only terminal symbols, a complete well-

formed sentence has been derived.

An example grammar is shown below [5]:

< sentence >→< nounphrase >< verbphrase >

< nounphrase >→< article >< noun >

< verbphrase >→< verb >< adverb >

< article >→ the

< noun >→ girl

< verb >→ walks

< adverb >→ gracefully

3.3.2 Properties of Grammars

There are several properties of grammars that, if satisfied, make the grammar

more useful for pattern recognition.

Context-free grammars have the property that all non-terminals can be re-

placed regardless of where they appear in the string. Restrictions are placed on the

productions of context-free grammars. The right side of productions in a context-
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free grammar must be a non-empty string of terminals and non-terminals [5]. The

left side of the productions must be a single non-terminal.

Another type of grammar, which is a subset of the context-free grammar is

the finite-state, or regular grammar. Productions in a regular grammar must be of

the form: A → aB or A → b where A, B are non-terminals and a,b are terminals

[5]. This form ensures that the strings generated by the grammar are finite.

As we will see in section 3.5, these properties are essential in the pattern

recognition process.

3.3.3 Advanced Grammars

While grammars offer the ability to express complex patterns, sometimes ad-

ditional expressivity is required. For example, the primitive extractor (detailed in

section 3.4) can recognize when certain events occur, but it has no knowledge about

other events that occur, either in the past or the future. Additionally, we may

be only interested in a certain subset of events based on another attribute which

the primitive extractor does not have access to–such as location of other objects or

landmarks in the scene. In order to capture patterns that are based on complex

relationships, we require a mechanism to record and examine them. This section

describes two tools that allow more complex expressivity.
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3.3.4 Attribute Grammars

One method to allow for more expressivity is the attribute grammar, an exten-

sion of the traditional grammar discussed in the last section. An attribute grammar

specifies semantic rules for the productions which restrict the situations in which

a match can occur to times when those rules are met. For example, we can place

constraints on productions based on the spatial locations where the primitives occur

(in a video).

We need to specify the following for the attribute grammar [9]:

• SD, the semantic domain consisting of a set of types (eg. integers or coor-

dinates) and a set of functions oprating on the types (eg. distance, location

proximity tests for coordinates)

• AD, a set of attributes associated with each symbol occuring in the produc-

tions.

• R, a set of attribute evaluation rules. These assign inherited attributes to

non-terminal symbols.

• C, a set of semantic conditions associated with each production which are

evaluated based on the terminals in a production.

Semantic rules are specified for each production in the form of attributes.

There are two types of attributes: inherited and synthetic. Each terminal symbol

gets an attribute value (synthetic) from the primitive extractor. As non-terminal

symbols are expanded, they are assigned attributes (inherited) based on the at-
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tributes of the terminals they contain and the rules specified in the grammar. These

rules make up the set R in the list above.

The advantage of attribute grammars is that they allow us to represent more

complex scenarios involving interactions between objects and properties.

3.3.4.1 Handling Concurrent Events

In video systems, multiple events may be unfolding simultaneously. If we

are to capture these events, we need to make special allowances to handle them.

Otherwise, the beginning of a second event will cause the first to go unnoticed.

The method, described in [9], defines an attribute called the thread consistency

id (tid) for each symbol. This attribute serves to describe the relationships between

symbols. For example, in our case of detecting a person leaving an unattended

package, we want to ensure that the alert is only triggered when the person who

drops the package leaves the scene–not when some other person leaves. When new

symbols are seen, they can be placed in the correct event thread based on their tid.

This will be discussed later in section 3.5.

An example production is A → B0C1DNE1. The subscript of a symbol speci-

fies which other symbol in the production must have a matching id. A subscript of

N is a wildcard, indicating that there are no restrictions on the id of that symbol.

The left hand side of the production is index 0 and the right hand side begins

with index 1. Thus, in the above production, the following relationships must hold

for a match to be made:
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• B.id=A.id

• C.id=B.id

• E.id=B.id

3.3.5 Stochastic Grammars

The grammars we have covered so far work well in ideal situations. However,

when our input data is noisy, we can make use of statistics to pick out the patterns

from the noise.

Stochastic grammars are meant to solve either of two problems:

• noisy data, when one string can be generated by multiple grammars (repre-

senting multiple pattern classes)

• some grammars may generate unwanted strings that aren’t a part of the pat-

tern class. Stochastic grammars allow us to assign these strings low probabil-

ities.

Stochastic grammars are defined the same as traditional grammars, with changes

only in the set of productions, PS. PS contains productions of the form αi
pij→ βij.

where αi and βij are non-terminals and non-terminals or terminals, respectively.

The probabilities pij must satisfy the rule that for all αi
pij→ βij,

∑ni
j=1 pij = 1. This

insures that the sum of the probabilities of all productions with the same left hand

side add up to 1.

As a string is generated using a series of productions, the overall probability
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that a string is in the language is calculated by multiplying successive production

probabilities pij.

The probabilities pij are determined using a-priori knowledge or observations of

the probabilities of seeing certain strings and the above rule. Using this knowledge,

we can create the stochastic grammar that will increase our likelihood of recognition

in noisy data.

3.3.5.1 Generating Production Probabilities

Using a-priori knowledge of the output symbols, we can generate the produc-

tion probabilities for a stochastic grammar that will generate the strings at the rates

that are consistent with the evidence.

The simplest way to come up with the production probabilities is if we have

a set of strings in L(G) and the probabilities that they occur. Using the strings

we can create a grammar for the language. Knowing that production probabilities

multiply and that all productions probabilities for a given non-terminal must add

up to 1, we have a set of linear equations to solve for the production probabilities.

If the string probabilities of occurrence are not known, the production proba-

bilities can be estimated using a sample of strings in the language and the theory of

Markov processes[5]. Given a stochastic grammar with productions Ai → ηj, and a

set of strings St ⊆ L(G), we estimate pij as p̂ij = nij∑
j

nij
where nij =

∑
xk∈St

fkNij(xk)

,Nij(xk) is the number of times that the production Ai → ηj is used in parsing xk

and fk is the probability of seeing string xk. Therefore, nij is the expected number
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of times that the production Ai → ηj is used in parsing all the sample strings in St.

3.4 Primitive Extraction

To do syntactic pattern recognition [5] on video, we need a means of generat-

ing a string of terminal symbols (primitives) from a video signal. In our grammar,

primitive symbols represent events such as ”person appears”, ”person stops walk-

ing”, and ”object appears”. We need a mechanism for extracting these events from

the video and generating the symbols to be processed in the recognition step.

The tracker, which was detailed in section 3.2, sends the bounding boxes to

the primitive extractor. There are two types of targets in the situations we are

examining: humans and objects. A simple area threshold is used to distinguish

between humans and objects. When the target is first seen, the appropriate ”appear”

symbol is generated.

Attributes of the tracked objects are measured and recorded and symbols are

generated when these attributes change in pre-defined ways. For example, we track

an object’s velocity and position. Hysteresis thresholds are used for velocity so

once a human crosses a certain high velocity threshold, we can generate the symbol

”person starts”. If the person later crosses a low velocity threshold, we generate the

symbol ”person stops”.

We also use hysteresis thresholds for target area to classify targets as human

or object. If an object crosses the opposite threshold, one of the target transition

symbols is generated. Lastly, if gait analysis picks up periodicity changes, a drop or
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pickup symbol is generated. This is described in detail in section 3.4.1.1.

A string of such primitive events can then be examined for the patterns we

are interested in.

The primitive symbols used in our grammar are listed in Table 3.1. As part of

the attribute grammar, attributes are stored along with each primitive symbol and

are shown in the third column of the table. The attributes are:

• ID - Contains the target identification number of the object generating the

symbol

• Location - Contains the spatial location in the video where the symbol was

generated

• Related ID - Contains a target identification number of another object that is

related to the one generating the symbol. This is used for objects to associate

them with their owners. The ID attribute takes the value of the object and

the Related ID attribute takes the value of the owner. In the case of an object

pickup, the reverse is true for the human symbol.

When an object appears or disappears, we check the previous bounding boxes for

overlap. If the box overlaps with a past box of a person, then we assign ownership

of the object to the person in the related ID attribute above.

Several semantic conditions can be specified in the grammar. Semantic con-

ditions are functions that are applied to attributes and if their conditions are met,

then the production can be matched with the input string. This is an extension of

the traditional grammar in which all information must be encoded in the symbols
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Table 3.1: Table of Primitive Symbols and their attributes.

Target Type Primitive Symbol Synthetic Attribute(s)

Human Appear ID, Location

Human Disappear ID,Location

Object Appear ID, Location, Related ID

Object Disappear ID,Location, Related ID

Human Starts ID, Location

Human Stops ID, Location

Human Human-Object Transition (Tracker Error) ID, Location

Object Object-Human Transition (Tracker Error) ID, Location

Human Drop (Gait Analysis) ID, Location

Human Pickup (Gait Analysis) ID, Location

26



themselves. Parameters to these functions are primitive symbols or contextual ob-

jects. Contextual objects are pre-defined areas in the scene such as entrances, exits,

and walkways. The conditions are:

• Equal - Check for equality of two attributes. This is used for package ownership

assignment to ensure that the object dropped was left by the person we are

tracking.

• Near - Checks for spatial proximity of two objects using the location attribute.

• Not Inside - Evaluates to true if one object is not inside another object. The

second parameter is usually one of the pre-defined objects or areas (part of

the scene).

• Inside - The opposite of the above condition.

3.4.1 Error Correction

Tracking and detection is not perfect, and errors can lead to missed or false

detections in an unattended package system. The systems detailed in chapter 2 are

vulnerable to these problems. Our system circumvents these errors by novel use of

the attribute grammar.

Potential errors include:

• Detection - Moving shadows showing up as foreground objects. This can trick

the system into classifying shadows as objects dropped by the human that is

casting them.
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• Detection - Dropped objects cannot always be seen by the detector. Lighting

issues, small objects, or objects dropped out of the camera’s view can all cause

this problem. This can cause a problem with the system because the object is

never a target.

• Tracking - Incorrect transitions when a package is dropped. Occurs when the

human target ID number stays on the dropped object and a new target ID

number is given to the person. This can cause confusion in the system because

the human is appearing after the object (with a higher target ID number).

Our methods to combat these unavoidable errors are detailed below.

3.4.1.1 Gait Analysis

Work in [15] used video to examine the human gait for patterns that indicate

when someone is carrying an object. Locations at various heights are specified and

the detection points at these heights in the bounding boxes are examined as the

person walks across the camera’s viewing area. This process is shown in Figure 3.4

for a person walking across the viewing area while carrying a briefcase in one hand.

We tracked the detection at 10%, 20%, 80%, and 90% of the bounding box height.

The patterns extracted from these heights, referred to as Human Gait DNA, are

shown in Figure 3.5. The patterns go from top to bottom of the person as they

go left to right in the diagram. The patterns on the left are from the trunk and

arms, those on the right are from the legs. Asymmetry in any of the patterns,

corresponding to limbs, may indicate that a person is carrying something. The
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work in [15] was meant for walking trials, eg. a person walks across the screen and

a classification is made.

(a) Bounding

Box

(b) Detection

Figure 3.4: Example Gait Analysis Trial.

Figure 3.5: Example Gait DNA Patterns.

In order to catch a person leaving an unattended package behind some occlu-

sion in a real-time video system where trials do not occur, we used a similar idea

and created a real-time algorithm for detecting the transition between carrying and

not-carrying that indicates a package has been dropped. The first consideration is

that this algorithm only works when the person is walking within 45 degrees of a

perpendicular trajectory: it depends highly on seeing the side profile of the person.

We compute the angle at which the person is walking and only proceed if they are

walking within the acceptable range. This would be solved in a real system with

multiple cameras providing more views.

In a package drop scenario in the ideal case the person’s arm swing will remain
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constant while holding the package and transition into a periodic motion after the

package is dropped. To track this in a real-time system, we divide the blob in half

and track the width of the torso as the person moves throughout the scene. Using

a fixed buffer of past bounding box widths, we compute a variance on this data at

each frame. We track the changes in this trunk width variance throughout the video.

Ideally we would see a variance transition as shown in figure 3.6. The trunk widths

have a low variance while the person is holding the object and a gradual transition

to a higher variance occurs after they drop the object. Note that the width of the

transition is dependent on the length of the video buffer used for storing past trunk

width values. If the person bends down to drop the object, we expect to see a spike

in the variance while they drop the object, and a gradual return to a steady variance

higher than that of carrying while they walk away unencumbered. In reality, the

data we get appears as follows. In Figure 3.7 we show the trunk widths as the person

goes across the viewing area and drops a briefcase around frame 80. In Figure 3.8

we show how the variances of this sequence change as computed over a fixed-frame

window. In order to detect the peak seen in the figure, we perform a linear regression

on the variance sequence and threshold the slope. If the slope is over a certain value

we generate a primitive event for package drop. This is shown in Figure 3.9.

3.4.1.2 Tracking Errors

As mentioned previously, incorrect transitions in the tracker may occur when

a package is dropped. When the person drops the object, the human target ID
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Drop Point
Stop/Start

Buffer Size
Carrying Not  Carrying

Figure 3.6: Ideal transition from carrying to not carrying after dropping an object.

The drop point is shown in the figure.

Figure 3.7: Trunk widths from a video with a package drop at frame 80.

Figure 3.8: Trunk width variances across a video sequence containing a package

drop at frame 80.
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Figure 3.9: Trunk width variance transition during a package drop and best-fit line.

number stays on the dropped object and a new target ID number is given to the

person. This can cause confusion in the system because the human is appearing

after the object (with a higher target ID number). This situation is demonstrated

in Figure 3.10.

Tracker ID 1 Tracker ID 1

Tracker ID 2

Tracker ID 1

(a) Normal Tracking
Tracker ID 1 Tracker ID 1

Tracker ID 1

Tracker ID 2

(b) Tracker ID 1 stays on the object, not the person

Figure 3.10: Showing the correct tracking and the tracking error when the bounding

box stays on the object and not the person.

In order to combat this, we continuously classify the targets as human or

object using hysteresis and allow for transitions in case the tracker has swapped two
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targets. We have also encoded this into a rule in the attribute grammar to catch

situations in which the tracker swaps two targets after a package drop. The primitive

manager catches the swap and issues the correct classifications. This swap is also

advantageous because it is a good indication that a package drop has occurred.

Below we show the rule that allows this transition to be recognized. We can

see that a person must appear, followed by a person to object transition and the

birth of a new object and person nearby. The results of this situation are seen in

section 4.8.

PACKAGEDROP → T PERAPP0 PERSTART1 T PEROBJ1 T OBJAPP1 T PERAPPN PERSTART5 T DISAPPEAR5

X0.ID := X1.ID, Near(X3.LOC, X5.LOC)

3.4.1.3 Shadows

Another tracking problem was shadows that are similar in size to objects. In

order to filter out moving shadows, we applied a velocity threshold so that for a

target to be considered an object, it must have a velocity below a certain amount.

Some shadows, particularly in indoor environments, appear with a low velocity

when humans are stationary. These will not be filtered out by the above method.

In order to remove these situations, we use the capabilities of stochastic attribute

grammars to assign low probabilities to these situations.

Below we show the rule that allows this situation to be recognized. It is similar

to the package drop rules except the object must disappear before the person and

it must disappear inside the field of view. If this happens, we will assign it a low
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probability and therefore not consider it a true package drop. If the final probability

of an event is below a certain threshold, we consider it ”unlikely”. An example of

this can be seen in section 4.5.

PACKAGEDROP → T PERAPP0 PERSTART1 T OBJAPPN T DISAPPEAR3 T DISAPPEAR1

X0.ID := X3.ID, Equal(X1.ID, X3.RID), NotInside(X5.LOC, FOV )

3.4.1.4 Proposed System

The stochastic attribute grammar that we created for the unattended package

scenario is presented in Table 3.2. Productions are shown along with their proba-

bilities, attributes and required conditions. Inherited attributes are shown in the

third column along with semantic conditions that must be met for the rule to be a

match.

Using the grammar we detect two events, package drop and package pickup.

More effort is devoted to package drop detection, but the basic functionality is there

for detecting package pickup. The pickup event is recognized if an object appears,

a person appears, and the object disappears with the related ID of the person.

There are several intermediate non-terminal states that reflect the status of

the people in the scene which are used in the formulation of higher-level events.

PERSTOP and PERSTART are finite-states which represent the current state of a

person. If a person starts, stops, and starts again, they can still be considered in

the PERSTART state due to its formulation below. With PERSTART we assign
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the location of the symbol to be the most recent starting point. This is used in

subsequent productions. PERDROP is also a non-terminal symbol that is similar

to the PERSTART state. It allows a drop to occur if a person’s gait flags a drop,

pickup, and another drop.

There are five different productions that specify the package drop scenario.

We will now describe the significance of each.

• The first production covers the simplest case in which a person appears, a

package dropped by that person appears, and the person then disappears

outside the field of view of the camera.

• The second production is the same as the first except the package disappears

before the owner. This can be explained by one of two things: We have

been fooled by a shadow object or the person who dropped the object picked

it up and concealed it. Both cases are not package drops so we assign this

production a low probability.

• The next two productions cover the situations in which the object cannot be

segmented and gait analysis takes over. The first case applies the restriction

that the drop should occur near the person’s last stopping point and they must

disappear outside the field of view. If these conditions are not met, the next

production will be satisfied and we assign that a slightly lower probability.

• The last is the most complex of the productions. This covers the case when the

tracker swaps target IDs on a package drop. This allows for the reclassification
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by the primitive extractor and requires the misclassification to occur near the

creation of the new person to assign the proper package ownership.
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x in L(G1)?

x in L(Gn)?

x in L(G2)? x in L(Gj)x

recognizersinput decision

Figure 3.11: Block diagram of the recognition process.

3.5 Pattern Recognition

The first two sections covered pattern specification and primitive extraction.

After the pattern has been specified and we have assembled a string of primitives,

we can search for patterns using the methods detailed in this section. The most

common method for syntactic pattern recognition is to construct a grammar for

each pattern class and check the input string against each one. If the string is

generated by the grammar, it is a member of the pattern class. In the case of a

stochastic grammar, we select the grammar with highest probability, as described

in section 3.5.5.

A block diagram of this process is shown in Figure 3.11.
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S t a r t

S t a r t
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Lo i t e r

In i t i a l  S ta te

D i s a p p e a r

S 0 S 1

D i s a p p e a r

Figure 3.12: Discrete Finite Accepter for Loitering Scenario.

3.5.1 Previous Methods

3.5.1.1 Discrete Finite Accepters

In the case of regular or finite languages, discrete finite accepters (DFAs) may

be used to test language-membership of a string. DFAs, formally (Q, Σ, S,M, F ),

consist of a finite number of states, an input alphabet, a start state, a set of state-

transitions, and a set of accepted states (a subset of all states) respectively. Starting

at the first symbol in the input string and beginning at the start-state, we trace

through the automata. If at the end of the string we are in an accepted state, then

the string is a member of the language.

By definition, A language L is called regular if and only if there exists some

deterministic finite accepter M such that L=L(M) [11].

An example DFA is shown in Figure 3.12 that examines strings of events

used to determine if a person is loitering. Input symbols are: Appear, Stop, Start,

Disappear. The state with double circles represents the accepted ”loitering” state.
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3.5.1.2 Stochastic Automata

If we have a stochastic finite-state grammar we can create a stochastic finite-

state automata that accepts strings that are members of the language [5].

We define the stochastic automata as follows: As = (Σ, Q, M, Π0, F ) where Σ

is the set of input symbols, Q is the set of internal states, M is the set of transition

matrices (one for each input in Σ), Π0 is the initial state distribution, F ⊆ Q is the

set of final states.

Given a stochastic grammar Gs = (VN , VT , PS, S) defined previously, we can

define the elements of the stochastic automata As as follows:

• Σ = VT

• Q = VN∪T, R where T and R are terminating and rejection states respectively.

• Π0,i =






1 : i = S

0 : otherwise

• F = T

• M is determined using the stochastic productions.

3.5.2 Parsing

DFAs are a sufficient solution when using a regular language without con-

current events. However, when examining more complex grammars like attribute

grammars, or when events occur concurrently, DFAs are not sufficient. In these

cases, we need a fast method to determine if the input string can be generated by
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S

A B

a B

b

b

Figure 3.13: Derivation tree for a sentence in the grammar: VT = {a, b}, VN =

{A, B}, P = {A → aB, A → a, B → b}.

the pattern grammar. This process is called parsing, and it will also determine the

sequence of primitives that was used to derive the input string or the ”derivation

tree” – an example of which is seen in Figure 3.13. There are multiple parsing

algorithms with varying runtime-efficiencies that are detailed below.

3.5.2.1 Exhaustive-Search Parsing

The first, and most intuitive parsing algorithm is the top-down approach. This

approach consists of an exhaustive-search derivation of the input string beginning

with the start symbol. Each derivation possibility is traced, and paths are eliminated

when they don’t match the input string.

This method, although simple to implement, has several drawbacks. First,

because it is an exhaustive search, it is computationally inefficient and is not suitable

for real-time parsing. Secondly, the method is not guaranteed to terminate if the

input string isn’t in the language. Clearly, other methods need to be examined.
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Equally exhuastive is the bottom-up approach in which derivation of the start

symbol is attempted beginning with the input string. Like the top-down approach,

this is also computationally inefficient.

3.5.2.2 Earley Parser

Earley proposed a parsing algorithm [3] that could be used to parse arbitrary

context-free grammars with a runtime of O(n3) and O(n2) if the grammar is unam-

biguous [5].

Beginning with the input string, the algorithm maintains a dot location through-

out the parsing process that represents the current status in the input string. At

each iteration, state sets are generated which contain possible productions (states)

that are being considered for the derivation of the input string.

A state is expressed as: i :k X(0) → X(1)...X(j) ◦ X(j + 1)...X(n) where i

represents the index of the state in the current set, k represents the state set from

which the non-terminal X(0) was generated. The symbols to the left of the dot,

X(1) through X(j), are symbols that have already been seen in the input string, and

the symbols to the right of the dot are expected if the state is to match the input

string.

The algorithm is divided into three stages: prediction, scanning, and comple-

tion. The states of the current state set S(i) along with the next input symbol a

are examined. X and Y are nonterminal symbols and α, β, γ are any sequence of

symbols.
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• Prediction: For each state of the form i :j X → α ◦ Y β, add i :i Y → ◦γ to

state set S(i)

• Scanning: For every state of the form i :j X → α ◦ aβ add i+1 :j X → αa ◦β

to S(i + 1).

• Completion: For every state in S(i) of the form i :j X → γ◦ find states in

S(j) of the form j :l Y → α ◦Xβ and add i :l Y → αX ◦ β to S(i).

After these steps have been performed on all the state sets, if in any state

set we have the state P → S◦ where P → S is a start state of the language, the

sentence is generated by the grammar.

3.5.3 Parsing Attribute Grammars

To parse attribute grammars, we can modify the above algorithm as put forth

in [9]. The main change is in storing and examining symbol’s attributes as a part

of the input string.

The changes for each step of the algorithm are, using the notation from the

previous section:

• Prediction: Evaluate the inherited attributes {am} for Y and assign them to

Y in the added state.

• Scanning: Assign all attributes given with the next input symbol a to a in the

added state.
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• Completion: First check for all conditions on the attributes of γ. If these are

satisfied, evaluate all synthesized attributes {am}. In the added state, assign

{am} to X.

3.5.4 Parsing Concurrent Events

To parse concurrent events, we modify the Earley algorithm as in [9]. As

discussed in Section 3.3.4.1, the thread consistency id (tid) is used to separate event

threads.

The following steps are taken, using the same notation as in the previous two

sections, in addition to the above methods:

• Prediction: Check the subscript of Y, d. If it is a wildcard, assign Y a wildcard

tid in the added state. Otherwise, assign Y a tid equal to the tid of the dth

symbol in the string. By the way we define these subscripts, the dth symbol

will be to the left of the dot.

• Scanning: In the scanning phase, the state is either scanned, skipped, or

ignored. Scanning follows the same procedure as above, however if the state

is skipped, we simply copy it directly to the next state set. If the state is

ignored, we do not advance it further. One of the three actions on states is

taken based on the following conditions:

– If the input state is a wildcard, or it refers to an index that is a wildcard,

we do one of two things. If the input symbol a matches the symbol after

the dot, we skip and scan. If not, we simply skip. The skip occurs in
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both conditions because in both cases we are dealing with a wildcard and

do not know if the needed symbol will come later.

– If the input symbol a’s id matches with tid of the previous symbol, do a

scan. This is an exact match.

– Otherwise, ignore the state. This is not a match for the current event

thread.

• Completion: The tid of the last symbol is passed to the completed nonterminal

symbol.

3.5.5 Parsing Stochastic Grammars

The way we parse stochastic grammars depends on how the grammars are set

up to do pattern recognition and what we’d like to accomplish. What is common

in all these methods, however, is that the production probabilities multiply through

the derivation of a string.

The methods as follows can be divided into two categories: those that exploit

the production probabilities to reduce the parsing complexity and those that do not.

The methods that do not seek to reduce runtime simply seek to generate the

probability that the input sentence is in the language generated by the grammar. An

Earley parser that is modified simply to factor and record these probabilities is the

simplest stochastic parser. When a string is parsed, its probability of membership in

the grammar is immediately available. If there are multiple grammars representing

multiple pattern classes, the simplest method is to parse the input string in each
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grammar using the modified Earley parser and select the grammar with the highest

probability. This is known as the stochastic maximum-likelihood recognizer.

However, in our system, because we used low probabilities to filter out unde-

sirable events, we select the grammar with such a probability as the current pattern.

In the absence of this negative likelihood, we select the maximum probability as in

the maximum-likelihood recognizer. When these events occur, such as a shadow

being tracked as an object which then disappears in the field of view, more than

one production may match but this negative production should take precedence.

Because multiple productions with the same right side may exist in stochastic

grammars, parsing becomes a non-determinstic task. Rather than take both paths,

like the previous algorithms propose, the probability information can be used to

construct the syntax-controlling probability (scp) for each production. The scp is a

representation of the probability that the production is the correct one to use and

is based on the expected number of times the production is used in all strings of the

language. By choosing the path with the highest scp, we can reduce the number

of steps needed in the parse and remain consistent with the probabilities of the

language.

The scp, pji, is computed as follows:

pji =
∑

x∈L
p(x)Nji(x)∑

Aj→ηi∈Γηi

∑
x∈L

p(x)Nji(x)

where Nji(x) is the number of times that Aj → ηi is used in the derivation of

the string x. Γηi is the set of all productions with the right side of ηi.
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3.5.6 Alarm Conditions

We recognize two activities in this system: package drop and package pickup.

When an event is recognized, we are given the production probability along with

a derivation tree of all the primitive symbols that make up the event. This allows

us to associate the owner with the event, which in a real system could be used to

locate the perpetrator.

In a real system, these two events would be monitored for each package and an

alarm would be triggered when package drop is parsed by the grammar and would

go off only if the same object is later involved in a package pickup. When the alarm

goes off an image of the package owner can be displayed for security guards.
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Chapter 4

Experimental Results

4.1 Overview

In this chapter we present experimental results from the attribute grammar

system described in Chapter 3. Several scenarios are shown to emphasize the various

strengths of the stochastic attribute grammar system. These coincide with the five

productions for the package drop scenario and the one pickup scenario.

4.2 System Implementation

We developed this system on a standard PC platform using OpenCV and C++.

We can feed videos to the system and get output streams showing the primitive

events generated and the higher level events recognized.

When a primitive symbol is generated, the video pauses briefly and displays

the event and a box around the target. When a high level event is recognized, the

video pauses showing the event, its probability and all the primitive symbols that

make up the event.

Recognition of the high level event does not interrupt detection of other events

as multiple concurrent event threads are maintained.
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4.3 Experiments

For the experiments we chose several scenarios that demonstrate the capabil-

ities of our attribute grammar system. The data in sets 1,3, and 4 were recorded

from surveillance cameras at the Army Research Laboratory. Data from sets 2 and

5 come from the PETS 2006 conference dataset. The descriptions of each data set

are provided in the following sections along with still image output at key frames.

4.4 Data Set 1

The first production covers the simplest case in which a person appears, a

package appears which was dropped by that person, and the person then disappears

outside the field of view of the camera. The results are shown in Figure 4.1.

4.5 Data Set 2

The second production is the same as the first except the package disappears

before the owner. This can be explained by one of two things: We have been fooled

by a shadow object or the person who dropped the object picked it up and concealed

it. Both cases are not package drops so we assign this production a low probability.

In this data set (Figure 4.2) we see a group of people that enter the scene, create

a shadow which disappears, and then exit the scene. This is recognized by the

grammar and assigned a low probability, indicating that it does not constitute a

true unattended package drop situation.
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(a) Person appears (b) Person stops (c) Person starts

(d) Object detected (e) Person disappears

Figure 4.1: Test 1: Simple Package Drop Scenario.
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(a) Person appears (b) Shadow appears as an object

(c) Shadow disappears (d) Person disappears; negative

production recognized

Figure 4.2: Test 2: Showing a shadow which appears like an object and is removed

from consideration by the negative logic in the grammar.
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4.6 Data Set 3

The next two productions cover the situation in which the object cannot be

seen by the camera and gait analysis takes over. The first case applies the restric-

tion that the drop should occur near the person’s last stopping point and they must

disappear outside the field of view. If these conditions are not met, the next produc-

tion will be satisfied and we assign that a slightly lower probability. In this data set

(Figure 4.3) we see a person dropping a package behind a trash can and the system

recognizes the event.

4.7 Data Set 4

This next data set shows the shadow pre-processing in action (Figure 4.4).

A person appears with a heavy shadow in a bright environment. The shadow is

separated from the person and removed from the event thread of interest. The

unattended package event is then successfully detected.

4.8 Data Set 5

The last is the most complex of the productions. This covers the case when the

tracker swaps target IDs on a package drop. This allows for the reclassification by

the primitive extractor and requires the misclassification to occur near the creation

of the new person to assign the proper package ownership. In this test set, shown in

figure 4.5, the unattended package event is successfully detected and the resulting

string is made up of 37 primitive symbols.
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(a) Person appears (b) Person drops bag (c) Person walks away

(d) Drop transition detected (e) Person disappears

Figure 4.3: Test 3: Person drops package behind a trash can.

53



(a) Person appears with shadow (b) Shadow and person are sepa-

rated

(c) Shadow disappears (d) Object appears (e) Person disappears; drop de-

tected

Figure 4.4: Test 4: Showing shadow detection and removal.
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(a) Person appears (b) Person drops bag

(c) Person attends bag (d) Person leaves bag;

tracking error detected

(e) Object appears; track-

ing error corrected

(f) Person appears (g) Package drop detected

Figure 4.5: Test 5: Complex scenario involving tracking errors which are corrected

by the attribute grammar.

55



4.9 Data Set 6

The pickup event is recognized if we see an object appear, a person appear,

and the object disappear with the related ID of the person. In this test set, shown

in figure 4.6, we see a person leave a package, and then another group of people

congregate around it. This shows how the pickup event can be used to indicate

change in package ownership.

4.10 Conclusion

In conclusion, we have presented a system based on a syntactic representation

of events for recognizing the unattended package event in video. The system can

handle events that are corrupted by tracking and detection errors including occlu-

sions, mis-tracked targets, and shadows. We model the event syntactically using

a stochastic attribute grammar. Targets are tracked and primitive event symbols

are generated which are then used in a multi-threaded recognition system based on

the Earley parser. When an event is detected, we are given the probability of its

membership in the language along with the derivation tree used. This allows us to

judge the likelihood of the event, and also associate all targets that were involved

in the event’s unfolding.

The key advantage of the stochastic attribute grammar is in its expressivity.

As we have demonstrated in this thesis, the expressivity of the attribute grammar

can be used to combat many common problems in computer vision systems. If other

events need to be detected, one can simply modify the rules of the grammar. The
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(a) Object appears (b) Object occluded

(c) Person appears (d) Object changes ID (e) Pickup recognized

Figure 4.6: Test 6: Showing ownership changes detected by the pickup event.
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runtime of the system is another advantage. We can parse and maintain multiple

event threads in real-time.

4.11 Future Work

There is a lot of work to do in this area: not only in improving the methods

described in this thesis, but also extending them to other areas.

The syntactic approach can be used in real-time surveillance systems for moni-

toring public areas where we are interested in locating unattended packages and their

owners. The error conditions corrected for in this thesis are likely to be concerns in

a real-world system, so our framework is practical.

We also see this work extended to develop better trackers based on an ontolog-

ical representation of targets and events. Using scene knowledge we can set up rules

for what can and cannot physically happen in the scene and feed this information

to the tracker to prevent occlusions, target swapping and other errors. This makes

sense based on the human vision system in which we use our knowledge of what is

going on and what is physically possible to model current events.
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