
  

 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: CHARACTERIZATION OF CHICKEN CAT-2 

ISOFORMS.   
  
 Sandra Beth Kirsch, Masters of Science, 2007 
  
Directed By: Assistant Professor B. D. Humphrey, Animal 

Science Department, California Polytechnic State 
University, San Luis Obispo 

 Assistant Professor I. Hamza, Department of 
Animal and Avian Science, University of Maryland 

 
 
Lysine and arginine transport is primarily mediated by cationic amino acid transporters 

(CATs) in cells. The chicken CAT-2 (cCAT-2) transcript is alternatively spliced to three 

isoforms. Transcriptional and cellular localization experiments were utilized to study 

their regulation. The mRNA abundance of cCAT-2 isoforms was estimated in body 

tissues, and although differentially expressed, all tissues expressed each cCAT-2 isoform 

gene, indicating that alternative splicing was not tissue-specific. Both cCAT-2A and 

cCAT-2B proteins localized to the plasma membrane and cCAT-2C protein was retained 

in the cytosol.  Chicken CAT-2A functions as a low affinity transporter with specificity 

for lysine and arginine.  Chicken CAT-2B and cCAT-2C transporter functions were not 

detectable.  Our data indicates that CAT-2 transporters are conserved in non-mammalian 

vertebrates, but cCAT-2 isoforms differ in their tissue distribution and transporter 

function from previously characterized CAT-2 transporters.  These results also indicate a 



  

mechanism by which additional dietary lysine and arginine contribute to increased 

protein accretion in muscle tissue.    
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Chapter 1: Introduction 

1.1   Lysine and arginine are essential for the growth and development of chickens 

1.1.1 Lysine and arginine metabolism 

The cationic amino acids lysine and arginine are limiting amino acids required for 

growth.  They are polar, basic to strongly basic, and can act as antagonists (1) with 

indications for increased catabolism of arginine in the presence of excess lysine (2).  

While lysine is an essential amino acid for all animals, avians lack a functional urea cycle 

and, therefore, require arginine in the diet (3). 

Metabolism of lysine and arginine begins with hydrolysis of intact dietary protein 

in the gastrointestinal tract.  Exopeptidases and endopeptidases, such as amino 

peptidases, dipeptidyl peptidases, and carboxypeptidases secreted from epithelial cells in 

the gastrointestinal tract and the pancreas, cleave peptide bonds to allow the absorption of 

free amino acids from the intestinal lumen (4).  Within chickens, absorption of amino 

acids has been observed in the crop, gizzard, proventriculus, small intestine, and colon 

(5).  A balance of absorbable essential amino acids is important for maximum utilization 

of the dietary protein source.  Three gene systems: b0,+
, y+L and y+ are responsible for 

cationic amino acid transport in enterocytes (6-9) and preferentially transport the L- form 

amino acid rather than the D- form amino acid (4).   

Following absorption, amino acids may be used for synthesis of enzymes, 

hormones, muscle tissue or metabolized to other metabolites.  They can also undergo 

deamination or transamination and may be used to generate endogenous non-essential 

amino acids, or their carbon skeletons can enter the Kreb’s cycle for energy production or 

for gluconeogenesis (4).  Excess dietary amino acids are not stored, but rather catabolized 
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for energy (10,11).  In mammals, the ammonia resulting from deamination enters the urea 

cycle for urea synthesis and secretion.  Birds, however, lack the enzymes of the urea 

cycle and excrete nitrogen as uric acid (3,11,12).  Birds also express high levels of 

glutamine synthase in the mitochondria of hepatic and renal cells that functions to fix free 

ammonia to glutamate to form glutamine (3).  In the final step of metabolism, bacteria in 

the colon and ceca recycle nitrogen by breaking it down to uric acid to ammonia, carbon 

dioxide and short chain fatty acids (13,14) and uric acid is secreted. 

 

1.1.2 Lysine and arginine utilization for growth 

Lysine and arginine utilization have been studied primarily at the whole-animal 

level as it pertains to animal health and growth.  A landmark study by Dean and Scott in 

1965 (15) established the “ideal protein concept” in which the ratio of essential amino 

acids to lysine could be used to formulate and evaluate diets.  Since that time, many 

studies have been performed to identify the proper lysine:arginine ratio for increased 

weight gain, food efficiency, breast meat yield, and decreased fat percentage (16).  

Carcass deposition of protein has been directly correlated to the availability of limiting 

amino acids, most commonly lysine, arginine, and methionine (17).  The pectoralis major 

muscle is more sensitive to dietary lysine levels than to dietary levels of neutral amino 

acids, including threonine and valine (18).  Feeding lysine or arginine above NRC 

requirements (19) increases breast meat yield, total carcass weight, and reduces 

abdominal fat percentage (18,20).  In addition, feeding arginine above NRC requirements 

(19) improves growth and feed efficiency during heat stress (21).  
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The majority of dietary amino acids in growing chicks is partitioned towards 

protein accretion (22,23) and chicks from hatch to 14 days of age have significantly 

higher lysine requirements than in later stages of life (24).  Therefore, feed digestability 

and the dietary lysine:arginine ratio has been studied thoroughly to provide growing 

chicks with adequate supplies of these essential amino acids during times when amino 

acid deposition efficiency is at its peak (17,25).  

 

1.1.3 Lysine and arginine utilization for immunity 

In addition to protein synthesis, arginine is utilized by the immune system.  In 

animals, arginine is required by T lymphocytes for proliferation, expression of the T cell 

receptor complex, cell surface peptides, and the generation of memory (26,27).  In times 

of stress due to injury or infectious challenge, arginine may be utilized by inducible nitric 

oxide synthase (iNOS) in macrophages to produce nitric oxide (NO) for pathogen killing, 

or may be used for polyamine synthesis involved in wound healing by arginase 1 (Arg1) 

(28,29).  These enzymes compete for arginine, therefore NO production is dependent on 

arginine availability in addition to regulation by Arg1 (30,31).  In response to pro-

inflammatory cytokines produced by T helper 1 (TH1) cells, such as interleukin-1 (IL-1), 

tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), iNOS converts arginine to NO 

which plays an important role in ridding the body of parasites, bacteria, viruses, and 

cancer cells (32).  Anti-inflammatory cytokines produced by TH2 cells, such as IL-4, IL-

6, IL-10, IL-13, and transforming growth factor- β (TGF-β), up-regulate Arg1 which 

metabolizes arginine to polyamines that are excreted by macrophages at the site of 
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infection and are used by cells to promote wound healing, thereby depleting the available 

arginine pool (26) and helping to down-regulate the local inflammatory response (33,34).     

Lee et al. (35) showed that increased dietary arginine in broiler diets increases the 

heterophil to lymphocyte ratio, resulting in a stronger innate immune response.  Chicks 

fed arginine 25% above NRC recommendations (19) had increased resistance to 

microbial infections and maintained connective tissue integrity during processing (20).  

When comparing dietary arginine requirements, it is apparent that the immune system 

requirement is equal to or exceeds the requirement for growth, and that bird health would 

benefit from increased arginine supplementation (20,21,23,36).       
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1.2  Cationic Amino Acid Transporters 

In the 1960’s, Halvor Christensen demonstrated that the cationic amino acids, 

lysine, arginine, and ornithine share the same transport systems.  At that time, amino acid 

transport studies were conducted in vitro to test substrate specificity by either limiting 

amino acid levels in cell culture media or by treating cells with chemicals known to 

inhibit specific transport systems (37).  A single transport system termed y+ was 

considered to be the major entry route for cationic amino acids in most cells and the y+ 

genes were the first amino acid transporters to be cloned (38-40).  More recently, several 

other transport systems (y+L, b0,+, and B0,+) that also transport cationic amino acids have 

been identified (Figure 1) and their substrate specificity, transport mechanism, and 

sodium dependence have been determined (41,42) (Table 1).   
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Table 1.  Cationic amino acid transporter systems1 

 

System 
Substrate 
specificit

y 

Transport 
mechanism 

Sodium 
dependence 

Gene 
product(s) Tissue distribution 

y+ K, O, R 
uniport; high affinity 

for CAA, low 
affinity for NAA 

independent for 
CAA, dependent 

for NAA 
CAT 1-4 

Widespread, especially 
in liver, skeletal muscle, 

and macrophages 

y+L K, L,  
M, Q, R 

antiport;,efflux of 
CAA, influx of NAA 

and Na+  

independent for 
CAA, dependent 

for NAA 

LC: y+LAT1/2 
HC: 4Fhc 

Basolateral membrane 
of enterocytes and renal 

tubule epithelial cells 

b0,+ K, L, R 
antiport; influx of 
CAA and efflux of 

bulky NAA 
No LC: B0,+AT 

HC: rBAT  

Apical membrane of 
enterocytes and renal 
tubule epithelial cells 

B0,+ A, K, R, 
V 

uniport; influx of 
CAA and small or 

branched NAA  
Yes ATB0,+ Trachea, stomach, and 

glandular tissues 
1 Abbreviations used: CAA, cationic amino acids; NAA, neutral amino acids; LC, light 
chain; HC, heavy chain. 
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Figure 1.  Cationic Amino Acid Transporters. 

The cationic amino acids lysine, arginine, and ornithine are carried by four transporter 

gene families in non-polarized cells.  System y+ transport is mediated by the Cationic 

Amino Acid Transporter genes.  System y+L transport is mediated by the heterodimeric 

protein complex of y+LAT light chain and 4F2hc heavy chain.  System b0,+ transport is 

mediated by the heterodimeric protein complex of b0,+AT light chain and rBAT heavy 

chain.  Na+-dependent system B0,+ is mediated by the ATB0,+ gene.  Neutral amino acids 

(NAA) are also transported by these systems.    
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1.2.1 Four systems transport cationic amino acids 

Systems y+L and b0,+ are heterodimeric amino acid transporters (HATs).  The 

system y+L proteins, y+LAT-1/2, and system b0,+ proteins, b0,+AT, dimerize with unique 

heavy chain glycoproteins that target their sub-cellular localization to the plasma 

membrane (43). System y+L proteins are localized to the basolateral membrane by heavy 

chain 4F2hc while system b0,+ proteins are localized to the apical membrane by heavy 

chain rBAT (9,42).  Together, these HATs mediate the vectorial transport of cationic 

amino acids in polarized cells.  System b0,+ functions in the uptake of cationic amino 

acids into the cell while system y+L functions in the efflux of cationic amino acids from 

the cell (44).  These transport systems are particularly important in cationic amino acid 

absorption in the intestine and reabsorption in the kidney.  System y+L activity has been 

identified in chicken erythrocytes and brush-border membrane vesicles and exhibits both 

high and low transport properties with specificity for neutral, bulky amino acids (45).  

The gene products responsible for mediating system y+L activity in chickens have not 

been cloned, however a candidate y+L gene sequence has been identified in the chicken 

genome (Morris, Kirsch and Humphrey, unpublished).  Torras-Llort et. al. (46) 

determined system b0,+ activity and transport kinetics in chicken erythrocytes.  The 

presence of the rBAT heavy chain has been verified by western blot, however it is not 

known if high and low affinity transporters are expressed (46).   

Sodium-dependent cationic amino acid transport is conducted by system B0,+, a 

glycoprotein with 12 transmembrane (TM) domains (42,46).  Within mammals, this 

system exhibits high affinity for cationic, bulky neutral, and small neutral amino acids 

(44,47).  The system B0,+ protein product ATB0,+ is expressed in glandular tissue in 
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mammals and may also be linked to gastric acid secretions (48).  Research has not been 

conducted on system B0,+ in chickens.   

System y+ is a subfamily of the solute carrier family 7 (SLC7) shown to transport 

via facilitated diffusion (49,50).  System y+ is considered to be the primary entry pathway 

for cationic amino acids in most non-polarized cells (42) and is required for the cellular 

uptake of lysine and arginine (29,51).  In addition, system y+ transport helps to maintain 

the intracellular lysine:arginine balance which is essential for both protein accretion and 

the immune response (39).  System y+ transporters have been characterized in the mouse, 

rat, human, pig, and chicken (52).   

 

1.2.2 Cationic amino acid transporters (CATs) 

System y+ activity is mediated by cationic amino acid transporters (CAT) (Table 

2).  Mouse and human CAT (mCAT and hCAT respectively) proteins are encoded by 3 

genes (CAT 1-3) that produce four isoforms involved in CAA transport (CAT-1, CAT-

2A, CAT-2B, CAT-3). The human genome organization has assigned CAT-1, CAT-2A 

+-2B, and CAT-3 the gene names SLC7A1, SLC7A2 (A+B), and SLC7A3, respectively 

(43).  These mCAT proteins are 70 kDa glycosylated proteins with 14 TM domains (41).  

Mammalian CAT proteins localize to the plasma membrane (43) and are closely related 

to each other with 60% identity at the nucleotide level.  Human CAT-4 has been 

identified based on nucleotide homology with the hCATs.  Human CAT-4 protein 

localizes in the plasma membrane, however, it does not exhibit transport activity for 

cationic, anionic, or neutral amino acids at varying pH levels (43,54).   
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Table 2.  Description of y+ system transporters 
 

Gene name Gene 
Tissue 

Distribution in 
Mammals 

Transport 
properties 

Approximate 
Km 

pH 
sensitivity 

Trans-
stimulation 

SLC7A1 CAT-1 Ubiquitous 
excluding liver 

High 
affinity, low 

capacity 
100-150 µM 

Independent 
between pH 

5.5-8 

Highly 
sensitive 

SLC7A2-A CAT-2A Throughout body, 
highest in liver 

Low affinity, 
high 

capacity 
2-5mM Moderately 

dependent Insensitive 

SLC7A2-B CAT-2B Immune cells  
High 

affinity, low 
capacity 

70-400 µM 
Highly 

dependent 
below pH 5.5 

Highly 
sensitive 

SLC7A3 CAT-3 Brain and 
placenta 

High 
affinity, low 

capacity 
40-165 µM 

Independent 
between pH 

5.5-8 
Sensitive 

SLC7A4 CAT-4 Placenta Not known Not known Not known Not known 
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Expression of mouse and human CAT proteins in Xenopus laevis oocytes and 

mammalian cells has shown that transport of CAAs by CAT-1, CAT-2A, CAT-2B, and 

CAT-3 are similar in their substrate specificity and sodium independence, yet differ in 

their substrate affinities, pH sensitivities, and response to trans-membrane stimulation 

(39).  Mouse and human CAT-1 mRNA is ubiquitously expressed in tissues, excluding 

the liver (28), is pH-independent within a range of 5.5 to 8, is strongly stimulated by 

substrate on the trans- side of the plasma membrane, and exhibits high affinity transport 

(Km of 100-150µM) (44).   

While transport kinetics have not yet been established for chicken cationic amino 

acid transporter-1, Humphrey et. al. (55) quantified CAT-1 isoform mRNA levels in 

chicken tissues that were fed either a lysine adequate or deficient diet.  Chicken CAT-1 

mRNA is highest in the bursa of Fabricius, thymus, gastrocnemius, pectoralis major and 

liver, and absent in the heart and spleen.  Chicken CAT-1 mRNA levels decrease when 

chicks are fed a lysine deficient diet and increase when feed intake is restricted.   

Mouse and human CAT-3 has a slightly lower affinity for CAAs (Km= 40-

165µM) and is less sensitive to trans-membrane stimulation than mCAT-1 (44).  Mouse 

and human CAT-3 is pH independent within a range of 5.5 to 8 and has been identified in 

the brain and placental tissue in humans and rodents (56).   

Chicken CAT-3 is expressed in the bursa, thymus, heart and pectoralis major, and 

is undetectable in the gastrocnemius (52).  Similar to CAT-1, CAT-3 mRNA levels are 

regulated by dietary lysine levels and feed restriction (55).  Transport kinetics have not 

been determined for chicken CAT-3.    
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The mouse CAT-2 primary transcript, located on chromosome 8 (57), is 

alternatively spliced within the same region of the mRNA, at a codon that yields a Ser352 

triplet (Appendix Figure 2) (58) to produce either mCAT-2A or mCAT-2B.  Mouse and 

human CAT-2A is a low affinity transporter (Km=2-5mM) of CAAs and mCAT-2B is a 

high affinity transporter (Km= 70-400µM) of CAAs (41).  Mouse and human CAT-2A 

has moderate pH dependence and is relatively insensitive to trans-membrane stimulation.  

Mouse and human CAT-2B is highly sensitive to trans-membrane stimulation and is pH 

dependent resulting in 50% lower activity at pH 5.5 compared to pH 7.5 (44).  Both 

mCAT-2A and mCAT-2B are integral membrane proteins with 14 TM domains and 

contain intracellular N- and C- termini (59).   

Mouse and human CAT-2A is the predominant isoform expressed in liver and is 

thought to mediate the important role of clearing excess lysine and arginine from the 

portal circulation after a meal (28).  High affinity mCAT-2B was first identified as a T 

cell early activation protein (Tea) in B and T cells (60).  Mouse and human CAT-2B was 

grouped into the y+ transporter family due to high nucleotide homology with mCAT-1, 

sensitivity to trans-stimulation, and substrate specificity for cationic amino acids (42).  

Mouse and human CAT-2B is expressed in immune cells and has been intensively 

studied due to its role in transporting arginine for use as a substrate for nitric oxide 

synthesis (47).  Genetic ablation of mCAT-2 affects both splice variants, since these 

isoforms arise from alternative splicing of the same gene (51,61).  Knockout mCAT-2 

mice lack expression of mCAT-2A in the liver, and do not result in the upregulation of 

other CAT mRNAs (52).  It remains to be determined how these mice will respond to a 

diet high in CAAs.  CAT-2-/- mice also lack mCAT-2B expression in dendritic cells, 
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resulting in increased activation due to the absence of NO that suppresses dendritic cells 

(47,62).        

 

1.2.3 Chicken CAT-2 

Chicken total CAT-2 mRNA is expressed by many tissues with highest levels in 

the pectoralis major and liver, two tissues involved in amino acid homeostasis and protein 

accretion (28).  Chicken CAT-2 (cCAT-2) sequences were identified by RT-PCR and 

RACE molecular cloning strategies (Morris, Kirsch, and Humphrey, unpublished) using 

primers in Appendix Table 1.  The cCAT-2 gene is located on chromosome 4 (57) and is 

alternatively spliced to form cCAT-2A, cCAT-2B, and a novel transcript cCAT-2C.  

Chicken CAT-2A, -2B, and -2C have 100% nucleotide homology in the coding regions 

of exons 2-6 and 9-12, but differ in the use or deletion of exon 7 or 8 (Figure 2; Appendix 

Figure 1).  The cCAT-2A isoform contains exon 8 while the transcript encoded by cCAT-

2B contains exon 7.  The cCAT-2C isoform contains neither exon 7 or 8, resulting in a 

shift in the reading frame and formation of a premature termination codon.   
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Figure 2.  The genomic structure of chicken CAT-2 and alternatively spliced 

isoforms. 

Diagram of (A) the genomic structure of the chicken CAT-2 (cCAT-2) gene, and 

alternatively spliced transcripts of (B) cCAT-2A, (C) cCAT-2B, and (D) cCAT-2C 

isoforms.  Exon 1 and the region upstream of the ATG translational start site in exon 2 

(white boxes) are part of the 5’ UTR.  Coding exons are numbered 2 through 13 (black 

boxes).    
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 Chicken CAT-2A has an open reading frame consisting of 1965 base pairs 

and is predicted to encode a 654 amino acid protein with a molecular weight of 76 kDa. 

Chicken CAT-2A shares 78%, 81% and 78% nucleotide homology with human 

(GenBank accession # AAB62810), mouse (# AAA37350) and rat (# NP_072141) CAT-

2A, respectively (Appendix Figure 3).  Chicken CAT-2B has an open reading frame 

consisting of 1968 base pairs and is predicted to encode a 655 amino acid protein with a 

molecular weight of 76 kDa.  Chicken CAT-2B shares 85%, 83% and 84% nucleotide 

homology with human (# NM_001008539), mouse (# M62838) and rat (# RNU53927) 

CAT-2B, respectively (Appendix Figure 4).  The cCAT-2C isoform has an open reading 

frame of 1828 base pairs and is predicted to encode a 358 amino acid protein with a 

molecular weight of 40 kDa.   Hydropathy plot analysis of predicted cCAT-2 isoform 

amino acid sequence was performed with TopPred software (63) (Figure 3).  The cCAT-

2A and cCAT-2B proteins are predicted to contain 14 TM domains, while the cCAT-2C 

protein is predicted to contain 8 TM domains.  The N-terminus and C-terminus are 

predicted to be located intracellularly for all cCAT-2 proteins. 

While human, mouse, and rat have 4, 5, and 6 predicted N-glycosylation sites, 

respectively, only two sites are located on an extracellular loop.  Mammalian CAT-2A 

and mCAT-B contain Asn227, 239 on the third extracellular loop (64,65), both of which 

have been shown to be glycosylated (66).  This confirms the predicted 14 TM model of 

topology for mCAT-2 proteins.  The cCAT-2 proteins also contain a predicted N-linked 

glycosylation site on the third extracellular loop, however it is located at Asn233 (65), 

which has not been examined for glycosylation (Figure 3; Appendix Figure 2).   
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Figure 3.  Predicted transmembrane orientation of cCAT-2 isoforms.   

TopPred prediction of transmembrane domains and orientation for (A) cCAT-2A, (B) 

cCAT-2B, and (C) cCAT-2C proteins.  Membrane spanning regions are predicted to 

contain 20 amino acid residues.  Transmembrane region 8 and the intracellular loop 4 

contain the divergent region between cCAT-2 isoforms.  Arrows indicate glycosylation 

site at Asn233.  Dashed line in (C) indicates an alternate orientation for the C-terminal 

residues of cCAT-2C.  Abbreviation: LL, loop length. 
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             Studies by Closs et al. (49) identified that the 42 amino acid region that is 

divergent between mCAT-2A and mCAT-2B confers the transporter affinity.  CAT-1 

chimeras containing either the mCAT-2A or mCAT-2B divergent region resulted in 

transport characteristics for mCAT-2A and mCAT-2B, respectively (49).  Habermeirer et 

al. (59) showed that low affinity transport by mCAT-2A is due to Arg369 and Ser381 while 

high affinity transport by mCAT-1, -2B, and -3 is due to Glu369 and His381 or Asn381.  

Mutation of mCAT-2A Arg369 to Glu369 results in an intermediate Km between high and 

low affinity transport, while mutation of both residues, Arg369 to Glu369 and Ser381 to 

His381 or Asn381, results in a low affinity Km value.    

Chicken CAT-2A and cCAT-2B differ by 42 amino acid residues due to 

alternative splicing of exons 7 or 8.  These residues are located within transmembrane 

region 8 and intracellular loop 4 (Figure 3A & B).  Within this alternatively spliced 

region, hCAT-2A and cCAT-2A have 82% nucleotide identity, and hCAT-2B and cCAT-

2B have 92% nucleotide identity.  The residues conferring low affinity amino acid 

transport of hCAT-2A, Arg369 and Ser381, are conserved in cCAT-2A (Figure 6A).  This 

indicates that cCAT-2A may also function as a low affinity amino acid transporter.  The 

residues conferring transport activity in hCAT-2B, Glu369 and Asn381, are not entirely 

conserved in cCAT-2B (Figure 6B).  The Asn381 is conserved, but Glu369 is replaced by 

Lys369.  This substitution results in a change in amino acid charge and may result in 

transport properties of cCAT-2B that differ from hCAT-2B.  When comparing cCAT-2B 

peptide sequence to the peptide sequence of hCAT-2B, cCAT-1 and cCAT-3, all 

presumed to be high affinity transporters, the Glu369 residue is conserved in all but cCAT-

2B (Appendix Figure 5), also indicating that cCAT-2B may not function as a high 
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affinity transporter of the CAA.  Chicken CAT-2C, which is predicted to produce a 

truncated protein, does not appear to contain an amino acid binding domain due to 

exclusion of exon 7 and 8.  
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Figure 4.  Amino acid alignment of divergent regions between cCAT-2A and cCAT-

2B. 

Comparison of predicted amino acid sequence between human and chicken CAT-2A and 

CAT-2B within the domain that confers the unique transport properties of these proteins.  

Amino acid sequences are aligned using the tBLASTx program.  Numbers above 

alignments correspond to amino acid residues in the region of variation between cCAT-

2A and cCAT-2B.  Blue boxes indicate the residues that confer transport properties. * 

indicates identical residues.  / indicates change in residue that does not result in change in 

charge.  + indicate change in residue that results in a positively charged residue.    
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            Mammalian CAT-2A and mCAT-2B mRNA expression is induced by stress.  In 

times of surgery or fasting, skeletal muscle protein is catabolized and provides the major 

proportion of plasma amino acids (21).  During these times, mCAT-2A mRNA 

expression is induced in skeletal muscle, presumably to release CAAs from skeletal 

muscle into the plasma (28,67).  High affinity transporter mCAT-2B is an inducible 

isoform involved in arginine uptake for NO production, and is expressed in activated 

lymphocytes, macrophages, and other cell types (68).  Mammalian CAT-2B expression 

has been induced in macrophages in the presence of lipopolysaccharide and IFN-γ (28).   

 

1.3  Regulation of cationic amino acid transporter (CAT) genes 

It was previously shown the mCAT-2 transcription is initiated by multiple 

promoters.  The 5’ untranslated region (UTR) contains 4 exons and 5 possible promoter 

regions extending over 18kb from the AUG translational start site (69).  These exon 

regions contain several classical promoter and regulatory elements, including TATA-

boxes, (G+C)-rich sites, and CAAT boxes.   Promoter usage was not correlated to stress 

response, nor was alternative splicing due to promoter usage (28).   

The cCAT-2 5’ UTR (Figure 4) contains 5 exons extending over 61 kb from the 

start codon.  The 5’ UTR exons are alternatively spliced, resulting in three promoter 

regions.  Within the exons, TATA-boxes and TATA-less putative promoters were 

identified as well as activating transcription factor-4 (ATF-4) and CCAAT/enhancer 

binding protein (C/EBP) that are sensitive to availability of amino acids.  Promoter usage 

differs by tissue, however promoter usage is not responsible for alternative splicing of 

cCAT-2 isoforms (Morris, Kirsch and Humphrey, unpublished).   
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Figure 5.  The chicken CAT-2 5’ untranslated region. 

Five non-coding exons (1A, 1B, 1C, 1D, and 1E) and four exon combinations (UTR1, 

UTR2, UTR3, and UTR4) have been identified 5’ of the AUG start site of cCAT-2.  

Lines between boxes indicate introns.  5’UTR sequences beginning with either exon 1A, 

1C, or 1D suggest the presence of 3 distinct transcriptional start sites for cCAT-2. 
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 The mCAT-2 transcript contains a short (4.5 kbp) and long (8 kbp) 3’ UTR.  

Presence of the long 3’ UTR increases mCAT-2 transcript nuclear retention.  Through 

unknown mechanisms, this transcriptional inhibition results in cleavage to the short 

message for nuclear export and allows translation to occur (47,72).  The presence of this 

3’ UTR transcript modification indicates that mouse CAT-2 is post-transcriptionally 

regulated (28).   

The presence of a short, 526bp, and long, 1.4 kbp, 3’ UTR transcript for cCAT-2 

(Figure 5) indicates that it may function similar to the mouse CAT-2 3’ UTR.  Within the 

long region of cCAT-2 there are several adenosine-uracil rich elements (ARE) that are 

characteristic of unstable mRNA, while no AREs are present in the short 3’ UTR (Morris, 

Kirsch and Humphrey, unpublished).  

Many studies have shown that mCAT-1 transcription, mRNA stability, and 

translation are increased in mice and rats fed an amino acid deficient diet (47).  In 

addition, microRNA-122 binds to the 3’ UTR of mCAT-1 and prevents mCAT-1 protein 

accumulation by increased mRNA degradation.  Amino acid deprivation relieves this 

inhibition, resulting in increased mCAT-1 protein expression (71).  Studies remain to be 

conducted on the effects of diet on gene regulation in chickens. 
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Figure 6.  The chicken CAT-2 3’ untranslated region.   

The 3’ untranslated region of chicken CAT-2 contains a short 526 bp fragment (gray box) 

and a long 1416 bp fragment (both gray and empty boxs).  The coding exons of the 

primary transcript are shown as black boxes.  Lines between exons denote introns.   
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 In the current study we have cloned the cCAT-2 splice variants cCAT-2A, cCAT-

2B, and cCAT-2C and quantitated their relative mRNA abundance in chicken tissues.  

We have induced cCAT-2 isoform protein expression by transient and stable transfection 

of mammalian cells to determine their sub-cellular localization, transporter kinetics, and 

transporter specificity.  By characterizing the cCAT-2 isoforms, we have taken the first 

steps toward understanding the genes involved in the regulation of lysine and arginine 

utilization in chicken tissues. 
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Chapter 2: Materials and Methods 

 2.1  Animals and tissue sampling 

Male Ross broiler hatchlings (Gallus gallus domesticus) were provided ad libitum 

access to water and a corn-soybean meal diet prepared according to the National 

Research Council recommendations for a young growing broiler chick (19).  Chicks were 

raised in a Petersime Brooder battery (Petersime Incubator Co., Gettysburg, OH) located 

in an environmentally controlled room (25°C; 18h light:6 h darkness).  At two weeks 

posthatch, chicks were euthanized by CO2 overdose, and the bursa of Fabricius, 

gastrocnemius, heart, liver, pectoralis major, and thymus were collected and frozen 

between aluminum plates in liquid nitrogen (n=4/tissue).  All tissue samples were stored 

at -80°C prior to analysis.  All animal procedures were approved by the University of 

Maryland Institutional Animal Care and Use Committee. 

 

2.2  RNA Isolation and Reverse Transcription   

Total RNA was isolated from tissue samples using NucleoSpin RNA II Total 

RNA Isolation Kit (Macherey-Nagel, Easton, PA; #740933.10). Optical density 

absorbance at 260 nm was used to quantify total RNA concentrations.  Total RNA was 

reverse transcribed to cDNA using the iScript Select cDNA Synthesis Kit (Bio-Rad, 

Hercules, CA; #1708896) and oligo (dT)15 primers according to the manufacturer’s 

protocol.  For cloning, total RNA (500 ng) was reverse transcribed from heart and 

pectoralis major collected from chicks 14 days old.  For quantitative real-time PCR, total 
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RNA (200 ng) was reverse transcribed from day 14 bursa of fabricius, gastrocnemius, 

heart, liver, pectoralis major, thymus as described above.  

 

2.3  Polymerase Chain Reaction (PCR) and Cloning 

Pectoralis major and heart RT reactions were used to amplify cCAT-2 isoform 

open reading frames (ORF) by PCR.  PCR reactions (50µl) utilized 20 mM Tris-HCl, 50 

mM KCl, 0.2 mM dNTP’s, 300 nM of cCAT-2 ORF primer pair 1 (Appendix Table 1), 1 

µl of the RT product and 0.1 U Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, 

CA; #10966-018).  Thermal cycling parameters were 94°C for 2 min followed by 30 

cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 1 min, and a final extension step of 72°C 

for 8 min. PCR products containing CAT-2 isoforms were cloned into the pCR 2.1-

TOPO vector using the TOPO TA cloning kit (Invitrogen, Carlsbad, CA; #K4500-01) 

and sequenced (Genewiz, Inc. South Plainfield, NJ) using M13 and gene specific primers.  

Sequencing verified that cCAT-2A and cCAT-2C had been cloned from pectoralis major 

while cCAT-2B had been cloned from heart.  Plasmids containing cCAT-2A, cCAT-2B 

or cCAT-2C were renamed to pCR-cCAT-2A, pCR-cCAT-2B and pCR-cCAT-2C, 

respectively.  The ORF for cCAT-2A, cCAT-2B and cCAT-2C were amplified from 

pCR-cCAT-2A, pCR-cCAT-2B and pCR-cCAT-2C plasmid, respectively, using 

Platinum Taq DNA Polymerase and cCAT-2 ORF primer pair 2 (Table 1) that contained 

an added Kozak sequence on the sense primer and deleted stop codon on the anti-sense 

primer to allow for expression of a C-terminal V5 epitope for cellular localization studies.  

The cCAT-2A, cCAT-2B and cCAT-2C PCR products were cloned in-frame into 

pcDNA5/FRT/V5-His-TOPO mammalian expression vector (Invitrogen, Carlsbad, CA; 
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#K6020-01) to generate pcD-CAT-2A, pcD-CAT-2B and pcD-CAT-2C, respectively.  

Expression vectors were validated by sequencing (Genewiz, Inc., city, state) with T7, 

BGH and cCAT-2 specific primers. 

 

2.4  Quantitative Real-Time PCR  

Quantitative real-time PCR analysis of cCAT-2A, cCAT-2B, cCAT-2C and β-

actin mRNA abundance in bursa of Fabricius, gastrocnemius, heart, liver, pectoralis 

major, and thymus was performed with an iCyclerIQ Multicolor Real-Time PCR 

Detection System (Bio-Rad, Hercules, CA).  Reactions utilized the IQ SYBR Green 

Supermix (Bio-Rad, Hercules, CA; #170-8884), 1 µl of 1:2 diluted RT product and 300 

nM of each cCAT-2 isoform specific primer (Table 1).  Thermal cycling parameters were 

1 cycle at 95°C for 3 min, 45 cycles of 95°C for 15 s, annealing temperatures as 

described in Table 1 for 30 s and 72°C for 1 min.  Melting curve analysis was performed 

after each PCR run to confirm product specificity.  Melting curve parameters were 1 

cycle at 95°C for 1 min, 1 cycle at 55°C and then the temperature was increased 0.5°C/10 

s to 95°C while continuously monitoring fluorescence.  The 2-ΔCt equation was utilized to 

determine the relative fold-change in mRNA abundance (73,74).  The relative fold-

change in tissue cCAT-2A, cCAT-2B and cCAT-2C mRNA abundance was normalized 

to each tissue’s β-actin mRNA abundance. For tissue cCAT-2 isoform mRNA analysis, 

normalized values were expressed relative to each tissue’s cCAT-2B mRNA abundance 

or the abundance of each isoform in the bursa. 
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2.5  Cell culture  

The chicken liver hepatocellular carcinoma cell line (LMH, #CRL-2117), human 

embryonic kidney cell line (HEK 293 T cell, #CRL-11268), and Chinese hamster ovary-

K1 cell line (CHO-K1, #CCL-61) were obtained from American Type Culture Collection 

(Rockville, MD).  The human embryonic kidney Flp-In cell line (293 FLP-IN, #R75007) 

was obtained from Invitrogen.  LMH cells were grown in 0.1% gelatin-coated cell culture 

dishes with complete medium (LMH-CM) consisting of Waymouth’s medium with 10% 

fetal bovine serum (FBS) and 1% pen/strep (Invitrogen, Carlsbad, CA; #15140-163).  

HEK 293 T cells were grown in complete medium (HEK-CM) containing DMEM 

medium with 10% FBS, 1% pen/strep and L-glutamine (200mM).  CHO-K1 cells were 

grown with complete medium (CHO-CM) containing Ham’s F-12 medium with 10% 

FBS, 1% pen/strep and L-glutamine (200mM).  Non-transfected 293 FLP-IN cells were 

maintained in media (293 non-trans CM) containing DMEM with 10% FBS, 1% 

pen/strep, L-glutamine (200mM) and Zeocin (100µg/ml; Invitrogen, Carlsbad, CA; 

#R250-01).  Stably transfected 293 FLP-IN cells were maintained in complete media 

(293-CM) containing DMEM with 10% FBS, 1% pen/strep, L-glutamine (200mM) and 

hygromycin B (100µg/ml; Invitrogen, Carlsbad, CA; #10687-010).  All cell cultures were 

maintained on 10 cm cell culture dishes at 37°C and 5% CO2. 

 

2.6. Transient Transfection 

Prior to transfection, LMH, HEK 293 T, or CHO-K1 cells were plated at a density 

of 1 x 105 cells in a 6-well plate (Corning, Corning, NY; #3576) and grown to 90% 

confluency.  Cells were chemically transfected in Opti-MEM (Invitrogen, Carlsbad, CA; 
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#31985-062) using 4 μl of Lipofectamine 2000 (Invitrogen, Carlsbad, CA; #11668-027) 

and 1.5 μg of cCAT-2 isoform expression vector DNA, empty vector (pcDNA5/FRT/V5-

His/CAT; Invitrogen, Carlsbad, CA; #K6020-01), or pECFP-Golgi (Clonetech, Mountain 

View, CA; #632464) marker according to the manufacturer’s protocol.  Transfected cells 

were incubated at 37°C and 5% CO2 for 5-8 h.  Following transfection, media was 

decanted and cells were grown for 48 h in their respective CM. 

 

2.7.  Stable Transfection 

293 FLP-IN cells were grown in 293 non-trans CM to 75% confluency prior to 

transfection.  FLP-IN cells were chemically co-transfected with Opti-Mem (Invitrogen, 

Carlsbad, CA; #31985-062) using 10 μl of Lipofectamine 2000 (Invitrogen, Carlsbad, 

CA; #11668-027) and 12 μg of DNA from FLP-IN expression vector pcDNA5/FRT/V5-

His-TOPO (Invitrogen, Carlsbad, CA; #K6020-01) containing the cCAT-2 cDNA or 

pcDNA5/FRT/V5-His/CAT control vector and Flp recombinase expression plasmid 

pOG44 (Invitrogen, Carlsbad, CA; #V6005-20) for 5-8 h according to the manufacturer’s 

protocol.  Following transfection, medium was decanted and cells were grown in DMEM 

with 10% FBS, 1% pen/strep and L-glutamine (200mM) for 48 h and then replated in 

293-CM at 30% confluency.  Two weeks following transfection, single cell colonies were 

harvested using clonal rings and 0.25% Trypsin-EDTA (Invitrogen, Carlsbad, CA; 

#25200-056) and were cultured in 293-CM.  Stable expression of each gene of interest 

was verified by western blot using an anti-V5 antibody (Immunology Consultants 

Laboratory, Newberg, OR; #RV5-45A-Z), β-gal staining (Invitrogen, Carlsbad, CA; 
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#K1465-01) and zeocin sensitivity (Invitrogen, Carlsbad, CA; # R250-01) according to 

manufacturer’s instructions.  Stable cells were maintained at 37°C and 5% CO2 . 

 

2.8.   Immunoblotting 

Transfected cells were collected in Delbucco’s Phosphate Buffered Saline 

(DPBS) using cell scrapers (Fisher Scientific, Pittsburgh, PA; #08-773-2) and centrifuged 

at 14,000 x g for 15 min at 4°C.  Cell pellets were lysed in membrane-stabilizing buffer 

(MS; 210mM mannitol, 70mM sucrose, 5mM Tris-HCl, pH 7.5, and 1mM EDTA) 

containing protease inhibitor cocktail III (Calbiochem, San Diego, CA; #539134) for 10 

min at 4ºC according to the method of Krisnamurthy et al. (75).  Total protein was 

centrifuged 100 x g at 4°C for 5 min to collect nuclei.  The supernatant was collected and 

treated with a solution of DNase buffer and 1U/μL RNase-free DNase (Fisher Scientific, 

Pittsburgh, PA; #BP3223-1) for 20 min at 25ºC.  Protein concentration was determined 

using the Bradford Assay Dye Concentrate (Bio-Rad, Hercules, CA; #500-0006).  Protein 

samples (25 μg) were treated with 4 M urea in H2O for 10 min and 100 mM DTT for 3 

min and then electrophoresed under reducing conditions on 4% stacking and 10% 

resolving gels containing 8 M urea.  Protein was transferred to nitrocellulose membrane 

(Bio-Rad, Hercules, CA; #162-0112) at 0.07 amps using a semi-dry transfer cassette.  

Blots were blocked in 5% skim milk in 0.05% DPBS-Tween for 1 h at 25°C and probed 

with a 1:500 dilution of monoclonal rabbit anti-V5 (Immunology Consultants Laboratory, 

Newberg, OR; # RV5-45A-Z) followed by a 1:10,000 dilution of goat anti-rabbit IgG 

conjugated to horseradish peroxidase (Pierce Biotechnology, Rockford, IL; #31460) in a 

5% skim milk in 0.05% DPBS-Tween solution for 1 h at 25°C or 16 h at 4°C.  As a 
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control, blots were probed with a 1:5000 dilution of monoclonal mouse anti-tubulin 

(Sigma, St. Louis, MO; #T6199) followed by a 1:10,000 dilution of goat anti-mouse IgG 

conjugated to horseradish peroxidase (Pierce Biotechnology, Rockford, IL; #31430).  

Secondary antibodies were detected using SuperSignal West Pico Luminal Enhance for 

Horseradish Peroxidase (Pierce Biotechnology, Rockford, IL; #34078).  All images were 

captured using Quality One Software Version 4.5.2 on a Chemidoc XRS (Bio-Rad, 

Hercules, CA; #170-8070).    

 

2.9  Immunofluorescence confocal microscopy 

At indicated times post-transfection, transfected cells were washed with DPBS 

(pH 7.4) and incubated with serum-free DMEM containing wheat germ agglutinin 

conjugate Alexa Fluor 633 (8 μg/mL; Invitrogen, Carlsbad, CA; #W21404) for 5 min at 

25ºC.  Cells were washed with DPBS, fixed with 4% paraformaldehyde in DPBS (pH 

7.4) for 40 min, quenched with 0.1 M ethanolamine (pH 7.4) for 10 min and 

permeabilized with 0.2% Triton X-100 in DBPS for 10 min.  Transiently transfected cells 

were blocked for 1 h with SuperBlock Blocking Buffer (Pierce Biotechnology, Rockford, 

IL; #37515) and incubated with 1:750 diluted anti-V5-FITC Antibody (Invitrogen, 

Carlsbad, CA; #R963-25) in Superblock Blocking Buffer for 1 h at 25ºC.  Stably 

transfected cells were blocked for 1 h with SuperBlock Blocking Buffer at 25ºC and 

incubated overnight with 1:750 diluted anti-V5-FITC antibody in SuperBlock Blocking 

Buffer at 4ºC.  Following incubation with primary antibody, cells were washed with 0.5% 

Tween 20 in DPBS and stained with 100 nM 4´,6-diamidino-2-phenylindole (DAPI) 

dilactate for 3 min (Invitrogen, Carlsbad, CA; #D3571) according to the manufacturer’s 



 32 
 

instructions.  Coverslips containing transfected cells were mounted on glass slides using 

Prolong Antifade (Invitrogen, Carlsbad, CA; #P7481) and were viewed using a Zeiss 

LSM 510 confocal microscope with an Argon laser at 488 nm, a HeNe laser at 543 nm,  

and a HeNe laser at 633 nm using the Laser Scanning Microscope LSM 510 software 

version 3.2 SP2 (Zeiss, Thornwood, NY). 

 

2.10  Amino acid transport kinetics  

CHO cells were plated at a density of 1 x 105 cells/well and were transiently 

transfected as described previously and incubated for 48 h in CHO-CM at 37°C and 5% 

CO2.  Stably transfected 293 FLP-IN cells were plated at a density of 4 x 104 cells/well 

and maintained in 37°C and 5% CO2 with 293-CM for 16 h.  Cells containing pcD-CAT-

2A, pcD-CAT-2B, pcD-CAT-2C or empty vector were washed and incubated at 25°C for 

3 min with transport buffer (TB) pH 7.5 containing 140 mM choline chloride, 10 mM 

HEPES, 1 mM CaCl2, 1 mM MgCl2, 5 mM KCl, and 15 mM L-leucine.  Cells  received 

fresh TB containing 10 mM, 6 mM, 3 mM, 1 mM, 500 μM, or 50 μM, L-lysine or L-

arginine with either 5μCi/ml L-[4,5-3H(N)]-lysine monohydrochloride (92 Ci/mmol; 

Perkin Elmer, Waltham, MA; #NET376001MC) or  5µCi/ml of L-[2,3,4-3H(N)]-arginine 

monohydrochloride (58 Ci/mmol; Perkin Elmer, Waltham, MA; #NET1123250UC) and 

were incubated at 37°C and 5% CO2 for 0, 7, 21, or 35 min.  Transport was stopped by 

washing cells with ice-cold TB and cells were lysed with 1% SDS in DPBS (pH 7.4).  

Lysed cell extracts in Ultima Gold Liquid Scintillation Cocktail (Perkin Elmer, Waltham, 

MA; #6013329) were used to determine radioactivity incorporated into cells.  Total cell 
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protein was determined by the BCA protein assay (Pierce, Rockford, IL; #23225), and all 

samples were normalized to the protein concentration of each cell lysate.  Velocity of 

lysine or arginine transport was expressed as pmol/mg protein/min based upon transport 

at 21 min.  Velocity of transport for cells expressing the empty vector was subtracted 

from velocity of cells expressing pcD-CAT-2 isoforms.  The Km for each isoform was 

determined by setting transporter velocity as a function of substrate concentration using 

GraphPad Prism version 5.00 software (Graph Pad, San Diego, CA).   

 

2.11  Transporter specificity assay 

Cells stably transfected with pcD-CAT-2A or empty vector were plated at a 

density of 2 x 104 cells/well and maintained in 293-CM for 16 hours at 37°C and 5% 

CO2.  Cells were washed and incubated in TB for 5 min at 25°C and then received fresh 

TB with 5μCi/ml L-[4,5-3H(N)]-lysine monohydrochloride, 7 mM L-lysine, and either 5- 

or 35-fold molar excess concentrations of L-lysine, L-arginine, L-glutamate, L-glutamine 

L-glycine, L-histidine, L-methionine, L-phenylalanine, L-serine or L-valine for 20 min at 

37°C and 5% CO2.  Transport was stopped by aspirating transport medium and washing 

cells with ice-cold TB, and cells were then lysed with 1% SDS.  Total protein content and 

radioactivity measurements were conducted as described for the transport kinetic studies.  

Velocity of L-[4,5-3H(N)]-lysine monohydrochloride transport in 5- and 35-fold molar 

excess treatments were expressed relative to transport velocity in 7 mM L-lysine controls.  

Specificity of each transport protein was determined by comparing the differences 

between transporter velocity with and without additional amino acid, as measured by 

pmol/mg protein/minute. 
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2.12  Data Analysis 

Statistical analysis for real-time PCR and transport kinetic studies were performed 

using one-way ANOVA with Student-Newman-Keuls post-test using GraphPad InStat 

version 3.06 for Windows (GraphPad Software, San Diego, CA).  Sequence analysis was 

conducted using ClustalW multiple-alignment software (76) and BoxShade multiple-

alignment shading software.   
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Chapter 3: Results 

3.1   Tissue cCAT-2 isoform mRNA abundance 

 Quantitative real-time PCR analysis was performed to determine the relative 

abundance of cCAT-2 isoform mRNA in bursa of Fabricius, gastrocnemius, heart, liver, 

pectoralis major, and thymus.  The mRNA abundance of cCAT-2 isoforms did not differ 

(p>0.05) in the bursa (Figure 7A), heart (Figure 7C), and thymus (Figure 7F). The 

mRNA abundance of cCAT-2 isoforms was differentially expressed in the gastrocnemius 

(Figure 7B), liver (Figure 7D), and pectoralis major (Figure 7E).  In all of these tissues, 

the cCAT-2A isoform had the greatest mRNA abundance (p<0.05) while cCAT-2B and 

cCAT-2C mRNA abundance were similar (p>0.05).  In the heart, cCAT-2B mRNA 

abundance was 2-fold greater than cCAT-2C (p<0.05; Figure 7C).  

To compare mRNA abundance of cCAT-2 isoforms between tissues, the mRNA 

abundance of each isoform in each tissue was normalized to β-actin mRNA levels and 

was normalized relative to respective cCAT-2 isoform mRNA levels in the bursa, which 

had the lowest expression (Figure 8A-C).  Chicken CAT-2A mRNA abundance was 

greatest in the gastrocnemius, liver, and pectoralis major (p<0.05; Figure 8A).  Chicken 

CAT-2B mRNA abundance was greatest in the liver (p<0.05; Figure 8B).  Chicken CAT-

2C mRNA abundance was greatest in the gastrocnemius, pectoralis major, and liver 

(p<0.05; Figure 8C). 
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Figure 7.  Quantitative real-time PCR analysis of cCAT-2 isoform mRNA 

abundance by tissue.    

Chicken CAT-2 isoform mRNA abundance in the (A) bursa of Fabricius, (B) 

gastrocnemius, (C) heart, (D) liver, (E) pectoralis major, and (F) thymus was quantified 

by real-time PCR.  Values were normalized to tissue β-actin mRNA abundance and 

expressed relative to the tissue cCAT-2B mRNA level.  Graph bars not sharing common 

superscripts are significantly different, p<0.05.  Values are means ± SEM, n=4.  
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Figure 8.  Quantitative real-time PCR analysis of cCAT-2 isoform mRNA 

abundance by isoform.   

Quantitative real-time PCR analysis of (A) CAT-2A, (B) CAT-2B, and (C) CAT-2C in 

two-week old broiler chick tissues.  Data are normalized to β-actin and expressed relative 

to the respective cCAT-2 isoform mRNA abundance in the bursa of Fabricius.  Graph 

bars not sharing common superscripts are significantly different, p<0.05.  Values are 

means ± SEM, n=4, of mRNA expression.  
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3.2  Transient expression of cCAT-2 isoform protein  

Preliminary localization studies with cCAT-2A and cCAT-2C utilized the chicken 

LMH and mammalian HEK 293 cell lines.  In both cell types, cCAT-2A protein was 

localized to the plasma membrane (Figures 9A &10A), and cCAT-2C protein localized to 

the cytoplasm (Figures 9B & 10B).  These cell types, however, proved difficult for image 

analysis by confocal microscopy due to the columnar growth of LMH cells and the low 

transfection efficiency of HEK 293 cells (<5%).  As a result, CHO-K1 cells were used 

due to their morphology and higher transfection efficiency (10-15%).   

Cellular localization of cCAT-2 isoforms was determined by 

immunocytochemistry in transiently transfected CHO-K1 cells.  Chicken CAT-2A 

protein localized to the plasma membrane, as confirmed by colocalization with a plasma 

membrane marker (Figure 11A).  A small amount of cCAT-2A protein also localized to 

the perinuclear space, indicative of the golgi.  Chicken CAT-2B localized to the 

cytoplasm juxtaposed to the plasma membrane (Figure 11B).  Chicken CAT-2C protein 

localized throughout the cytoplasm (Figure 11C) and control protein, chloramphenicol 

acetyltransferase, localized throughout the cell (Figure 11D). 
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Figure 9.  Localization of chicken CAT-2A and CAT-2C in LMH cells.   

LMH cells were transiently transfected with (A) pcD-CAT-2A and (B) pcD-CAT-2C and 

labeled by immunocytochemistry using an anti-V5-FITC conjugated antibody.  This cell 

type has poor morphology and difficult image capturing due to the columnar growth 

pattern.  Localization of cCAT-2A and cCAT-2C proteins differ.   

 

(A)   cCAT-2A (B)  cCAT-2C(A)   cCAT-2A (B)  cCAT-2C
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Figure 10.  Localization of chicken CAT-2A and CAT-2C in HEK 293 cells.   

HEK cells were transiently transfected with (A) pcD-CAT-2A and (B) pcD-CAT-2C and 

labeled by immunocytochemistry using an anti-V5-FITC conjugated antibody.  This cell 

type had poor adherence to cell culture dish surface during staining procedure and low 

transfection efficiency.  Localization of cCAT-2A and cCAT-2C proteins differ.   

 

(A)  cCAT-2A (B)  cCAT-2C(A)  cCAT-2A (B)  cCAT-2C
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Figure 11.  Immunocytochemistry of cCAT-2 isoform proteins in transiently 

transfected CHO-K1 cells.   

Cells were transfected with (A) pcD-CAT-2A, (B) pcD-CAT-2B, (C) pcD-CAT-2C, or 

(D) control vector.  Wheat germ agglutinin plasma membrane marker (pink) and anti-V5-

FITC antibody (green) identified subcellular localization of cCAT-2 isoforms and control 

proteins.  Localization of cCAT-2A, cCAT-2B and cCAT-2C proteins differ. 
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           Chicken CAT-2 isoform protein expression was determined by western blot 

analysis of supernatant and nuclear fractions (Figure 12A).  The predicted molecular 

weight of each V5 epitope-tagged protein is 76kDa for cCAT-2A and cCAT-2B, 40kDa 

for cCAT-2C, and 28kDa for chloramphenicol acetyltransferase control.  Chicken CAT-

2A protein was detected in the supernatant fraction at the predicted molecular weight.  

Bands for cCAT-2B protein were detected in both the supernatent and pellet fractions at 

250, 75 and 50 kDa.  Chicken CAT-2C protein was detected at 37 kDa in the supernatant 

fraction.  Control bands were detected at the predicted molecular weight of 40 kDa. 



 45 
 

Figure 12.  Immunoblot analysis of cCAT-2 isoform proteins from CHO-K1 cell 

fractions and stable cell lines.   

Chicken CAT-2 proteins were extracted from transiently transfected CHO cells 48 h after 

transfection or stably transfected 293 Flp-In cells. Samples include cCAT-2A, A; cCAT-

2B, B; cCAT-2C, C; control (chloramphenical acetyltransferase), R; and non-transfected 

cells, N. (A) Proteins were extracted from transiently transfected cells using hypotonic 

lysing solution and were separated into supernatent and pellet fractions by differential 

centrifugation.  (B) Protein was extracted from transiently transfected and stably 

transfected cells using a hypotonic lysing solution.  Total protein extract was centrifuged 

at 100 x g for 5 minutes to separate nuclei and supernatant fractions.  All samples were 

treated with 4M urea, 100mM DTT, and Laemmli-SDS sample buffer and resolved using 

SDS-PAGE gel containing 8 M urea.  
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3.3  Stable expression of cCAT-2 isoform proteins 

Due to the low transfection efficiency, variable protein expression level in 

transfected cells, and questions concerning degradation of the proteins that arose while 

using transiently transfected cells, it was decided to conduct stable transfection with pcD-

CAT-2A, pcD-CAT-2B, pcD-CAT-2C, or empty vector.  In Flp-In 293 cells, 

recombination of the cCAT-2 or control genes occurs singly in a transcriptionally active 

genomic locus and uniformly in all cells.  As a result, the cCAT-2 and control proteins 

are expressed at low levels within all cells.  Stably expressed cCAT-2A and cCAT-2B 

localize to the plasma membrane as well as in cytoplasmic vesicles and the golgi (Figure 

13A & B).  Chicken CAT-2C protein localizes to the golgi with very low levels in the 

cytoplasm (Figure 13C) and cells stably expressing the positive control protein, 

chloramphenicol acetyltransferase, show localization of protein throughout the cytoplasm 

and golgi (Figure 13D).   

 Western blot analysis of stable cCAT-2 isoform cells detected cCAT-2 isoform 

protein at the predicted molecular weight in supernatant fractions (Figure 12B).  Protein 

expression of cCAT-2A was 25-fold and 40-fold higher than cCAT-2B and cCAT-2C 

respectively, as measured by relative brightness of each band.  Relative intensity was 

calculated by measuring the brightness of anti-V5 antibody labeled bands compared to 

the brighness of anti-tubulin bands per mm2 (Figure 12C) using Quantity One software 

(Bio-Rad, Hercules, CA). 
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Figure 13.  Immunocytochemistry of cCAT-2 isoform proteins in stably transfected 

293 Flp-In cells.   

Cells were transfected with (A) pcD-CAT-2A, (B) pcD-CAT-2B, (C) pcD-CAT-2C, or 

(D) control vector.  Plasma membrane marker (red), ECFP-trans-golgi marker (blue) and 

anti-V5-FITC antibody (green) identified subcellular localizion of cCAT-2 isoforms and 

control.  Localization of cCAT-2A, cCAT-2B and cCAT-2C proteins differ. 
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3.4  Function of cCAT-2 isoforms 

Uptake of [3H]-L-lysine was time- (Figure 14) and concentration- (Figure 15A) 

dependent in CHO-K1 cells transiently transfected with cCAT-2A, indicating that cCAT-

2A transport is saturable.  The Km and Vmax for L-lysine by cCAT-2A transfected CHO-

K1 cells were 2.644 ± 1.379 mM and 11.93 ± 2.152 pmol/mg protein/min, respectively 

(Figure 15B).  In contrast, CHO-K1 cells transiently transfected with either cCAT-2B or 

cCAT-2C did not transport enough L-lysine to be detected during the time frame or 

amino acid concentration in which these experiments were performed (Figure 16A & B).  
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Figure 14.  L-lysine uptake by CHO-K1 cells transiently expressing chicken CAT-

2A is time dependent.   

CHO-K1 cells were transiently transfected with chicken CAT-2A expression vector 

(filled circles) and 24 h later were cultured in transport buffer containing 6 mM L-[4,5-

3H(N)]-lysine monohydrochloride for 0-60 minutes. CHO-K1 cells transfected with 

empty vector were used as controls (open circles).  Transport of L-lysine is time 

dependent and reaches saturation by 60 minutes. L-[4,5-3H(N)]-lysine 

monohydrochloride in cell lysates was quantified using a β-scintillation counter and 

normalized to protein concentrations.  Each data point represents the mean ± SEM, n=3. 

* indicates significant difference between cCAT-2A and empty vector (p<0.05).  
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Figure 15.  L-lysine uptake by CHO-K1 cells transiently expressing chicken CAT-

2A is concentration dependent.   

CHO-K1 cells were transiently transfected with chicken CAT-2A expression vector 

(filled circles) and 24 h later were cultured in transport buffer containing 100 µM , 1 mM, 

3 mM, 6 mM, or 10 mM L-[4,5-3H(N)]-lysine monohydrochloride for 30 min.  CHO-K1 

cells transfected with empty vector were used as a control (open circles).  (A) Transport 

of L-lysine is concentration dependent in cells expressing cCAT-2A and control. (B) 

Transport of L-lysine by CHO cells transiently transfected with cCAT-2A, the subtracted 

difference, has a Km=2.644 ± 1.379 mM as determined by Michaelis-Menton Kinetics 

and non-linear regression analysis. L-[4,5-3H(N)]-lysine monohydrochloride in cell 

lysates was quantified using a β-scintillation counter and normalized to protein 

concentrations. Each data point represents the mean ± SEM, n=3.  * indicates significant 

difference between cCAT-2A and empty vector (p<0.05).  
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Figure 16.  L-lysine is not transported by CHO-K1 cells transiently expressing 

chicken CAT-2B and CAT-2C.   

CHO-K1 cells were transiently transfected with (A) chicken CAT-2B expression vector 

(filled triangles) and 24 h later were cultured in transport buffer containing 10 µM, 50 

µM, 100 µM, 250 µM, 500 µM, 750 µM, or 1 mM L-[4,5-3H(N)]-lysine 

monohydrochloride for 18 minutes and (B) chicken CAT-2C expression vector (filled 

diamonds) and 24 h later were cultured in transport buffer containing 10 µM, 50 µM, 100 

µM, 500 µM, 1mM, or 5mM L-[4,5-3H(N)]-lysine monohydrochloride for 18 min.  

Chicken CAT-2B and cCAT-2C did not transport L-lysine. L-[2,3,4-3H(N)]-arginine 

monohydrochloride in cell lysates was quantified using a β-scintillation counter and 

normalized to protein concentrations. Each data point represents the mean ± SEM, n=3.   
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 Transport of [3H]-L-lysine in stable cCAT-2A cells was concentration dependent 

with a Km of 7.982 ± 1.655 mM and a Vmax of 12.79 ± 1.175 pmol/mg protein/min 

(Figure 17A & B).  Uptake studies with [3H]-L-arginine showed a Km of 6.520 ± 1.876 

mM and a Vmax of 11.47 ± 1.358 pmol/mg protein/min (Figure 18A & B).   Transport of 

[3H]-L-lysine by stable cells expressing cCAT-2B and transport of [3H]-L-lysine and 

[3H]-L-arginine by stable cells expressing cCAT-2C was not detectable during the time 

frame and amino acid concentrations in which these experiments were performed (Figure 

19A & B, Figure 20A & B). 

 



 56 
 

Figure 17.  L-lysine uptake by 293 Flp-In cells stably expressing chicken CAT-2A is 

concentration dependent.   

293 Flp-In cells were stably transfected with chicken CAT-2A expression vector (filled 

circles) and were cultured in transport buffer containing 50 µM, 500 µM, 1 mM, 3 mM, 6 

mM, 10 mM, or 20 mM L-[4,5-3H(N)]-lysine monohydrochloride for 20 min.  293 Flp-In 

cells stably expressing empty vector were used as a control (open circles).  (A) Transport 

of L-lysine was concentration dependent in cells expressing cCAT-2A and control. (B) 

Transport of L-lysine by cCAT-2A has Km=7.982 ± 1.655 mM and Vmax= 12.79 ± 1.175 

pmol/mg protein/min as determined by Michaelis-Menton Kinetics and non-linear 

regression analysis.  L-[4,5-3H(N)]-lysine monohydrochloride in cell lysates was 

quantified using a β-scintillation counter and normalized to protein concentrations. Each 

data point represents the mean ± SEM, n=3.  * indicates significant difference between 

cCAT-2A and empty vector (p<0.05).  
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Figure 18.  L-Arginine uptake by 293 Flp-In cells stably expressing chicken CAT-2A 

is concentration dependent.   

293 Flp-In cells were stably transfected with chicken CAT-2A expression vector (filled 

circles) and were cultured in transport buffer containing 50 µM, 500 µM, 1 mM, 3 mM, 6 

mM, 10 mM, or 20 mM L-[2,3,4-3H(N)]-arginine monohydrochloride for 20 min.  293 

Flp-In cells stably expressing empty vector were used as a control (open circles) (A) 

Transport of L-arginine was concentration dependent in cells expressing cCAT-2A and 

control. (B) Transport of L-arginine by cCAT-2A has Km=6.520 ± 1.876 mM and 

Vmax=11.47 ± 1.358 pmol/mg protein/min as determined by Michaelis-Menton Kinetics 

and non-linear regression analysis.  L-[2,3,4-3H(N)]-arginine monohydrochloride in cell 

lysates was quantified using a β-scintillation counter and normalized to protein 

concentrations. Each data point represents the mean ± SEM, n=3.  * indicates significant 

difference between cCAT-2A and empty vector (p<0.05).  
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Figure 19.  L-Lysine is not transported by 293 Flp-In cells stably expressing chicken 

CAT-2B.  

293 Flp-In cells were stably transfected with chicken CAT-2B expression vector (filled 

triangles) and were cultured in transport buffer containing 10 µM, 50 µM, 250 µM, 500 

µM, 750 µM, 1 mM, 3 mM, 6 mM, 10 mM, or 20 mM L-[4,5-3H(N)]-lysine 

monohydrochloride for 20 min.  293 Flp-In cells stably expressing empty vector were 

used as control (empty triangles).  (A) Transport of L-lysine was not significantly 

different from controls (open triangles).  Transport of L-[4,5-3H(N)]-lysine 

monohydrochloride by cCAT-2B is shown compared to transport of L-[4,5-3H(N)]-lysine 

monohydrochloride by cCAT-2A (filled circles).   (B) Transport of L-lysine does not 

increase with increasing concentration. L-[4,5-3H(N)]-lysine monohydrochloride in cell 

lysates was quantified using a β-scintillation counter and normalized to protein 

concentrations. Each data point represents the mean ± SEM,n=3.   
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Figure 20.  L-lysine and L-arginine are not transported by 293 Flp-In cells stably 

expressing chicken CAT-2C 

293 Flp-In cells were stably transfected with chicken CAT-2C expression vector (filled 

diamonds) and were cultured in transport buffer containing 50 µM, 500 µM, 1 mM, 3 

mM, 6 mM, 10 mM, or 20 mM (A) L-[4,5-3H(N)]-lysine monohydrochloride or (B) L-

[2,3,4-3H(N)]-arginine monohydrochloride for 18 min.  cCAT-2C transport of L-lysine or 

L-arginine does not significantly differ from transport by control cells.  L-[2,3,4-3H(N)]-

arginine monohydrochloride in cell lysates was quantified using a β-scintillation counter 

and normalized to protein concentrations. Each data point represents the mean ± SEM, 

n=3.   
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3.5  Chicken CAT-2 transporter specificity 

Transport specificity was determined by measuring [3H]-L-lysine uptake by stable 

cCAT-2A cells in transport buffer containing competitor amino acids differing in their R-

group.  Specificity assays for cCAT-2B and cCAT-2C were not performed since cells 

stably expressing these isoforms did not result in transport of L-lysine.  As expected, 5-

fold or 35-fold molar excess of L-lysine or L-arginine in the transport buffer decreased 

[3H]-L-lysine uptake (p<0.05).  A 35-fold molar excess of histidine and methionine also 

inhibited [3H]-L-lysine uptake (p<0.05).  No significant inhibition of [3H]-L-lysine 

uptake was observed in treatments containing 5-fold excess of histidine or methionine 

and 5-fold and 35-fold molar excess of glutamate, glutamine, glycine, phenylalanine, 

serine, or valine (p>0.05) (Figure 21). 
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Figure 21.  Chicken CAT-2A transport specificity   

Stable chicken CAT-2A or empty vector control cells were cultured in transport buffer 

containing L-[4,5-3H(N)]-lysine monohydrochloride and 5-fold (gray bars) or 35-fold 

(white bars) molar excess of L-lysine, L-arginine, L-glutamate, L-glutamine, L-glycine, 

L-histidine, L-methionine, L-phenylalanine, L-serine, or L-valine.  Transport was 

expressed as a percentage relative to L-lysine uptake with transport buffer containing 7 

mM L-lysine (control; black bars) and was normalized to cell lysate protein 

concentrations.  Bars represent means ± SEM, n=3.  * indicates significant difference 

between control treatment and treatment with other amino acids (p<0.05). 
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Chapter 4: Discussion 

Lysine and arginine acquisition and transport from the plasma membrane to 

subcellular locations are critical processes for providing the cationic amino acids to all 

tissues for body processes and protein synthesis.  Similarity between hCAT-2A and 

hCAT-2B protein structure and predicted amino acid sequence with chicken CAT-2 

isoforms suggested that cCAT-2A and cCAT-2B would function as high- and low-

affinity transporters, respectively.  Direct functional analysis, however, was required to 

test the hypothesis that the cCAT-2 isoforms function as cationic amino acid transporters.  

Evidence from this work, including tissue distribution, cellular localization, transport 

kinetics and transport specificity supports the hypothesis that cCAT-2A functions as a 

low affinity transporter.  Surprisingly, these studies showed that despite its subcellular 

localization pattern and sequence similarity to hCAT-2B, cCAT-2B does not transport 

lysine or arginine.  Chicken CAT-2C neither localizes to the plasma membrane nor 

transports lysine or arginine, and therefore may be an example of non-productive 

alternative splicing to regulate functional cCAT-2 isoforms.   

Alternative splicing of genes is often regulated in a temporal or tissue-specific 

fashion to give rise to different isoforms in different tissues or life stages (78).  While 

mCAT-2A mRNA is primarily expressed in the liver, cCAT-2A mRNA is expressed in 

all tissues examined in these studies and was highest in muscle and liver.  Following a 

meal, transporters in the liver remove excess amino acids from the portal circulation in 

order to maintain a plasma cationic amino acid concentration of 45-60 µM (79).  

Increased expression of cCAT-2A would enable the liver to remove excess amino acids 

from the portal circulation after a meal rich in protein (49).  Based upon cCAT-2A 
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mRNA expression in chicken tissues, skeletal muscle (e.g. gastrocnemius and pectoralis 

major) and liver would be the primary tissues absorbing lysine and arginine post-

prandially while immune tissue (e.g. bursa of Fabricius and thymus) would be the least.  

In addition, the high levels of cCAT-2A mRNA expressed in skeletal muscle may be 

required to supply rapidly developing muscles with sufficient quantities of lysine and 

arginine required for optimal protein synthesis (18,20).  In the liver, high levels of cCAT-

2A mRNA may permit this tissue to catabolize lysine when requirements for protein 

synthesis have been met (80).  Unlike mCAT-2A, cCAT-2A mRNA was expressed in all 

tissues examined, and may be due to the bird’s requirement for both lysine and arginine.  

Our studies showed that cCAT-2A localizes to the plasma membrane and 

mediates low affinity, high velocity transport of lysine and arginine.  The cellular 

localization and transport properties of cCAT-2A for lysine and arginine are similar to 

mCAT-2A (66) and indicates that the function of this transporter is conserved in 

chickens.  Transport of lysine and arginine was also examined in cells stably expressing 

cCAT-2A due to the increased uniformity and intensity of cCAT-2A expression 

compared to transient expression.  This is the first report of a CAT-2 stable cell line in 

any species, and kinetic studies with mouse and human CAT-2A primarily utilized 

Xenopus oocytes or cells transiently expressing mouse and human CAT-2A (42).  The 

affinity constant for cCAT-2A differed between stable and transient expression of cCAT-

2A, with cells stably expressing cCAT-2A having a higher Km than in cells transiently 

expressing cCAT-2A. The Km of cells transiently expressing cCAT-2A (Km=2.644 ± 

1.379mM) was similar to that of mCAT-2A while the Km of cells stably expressing 

cCAT-2A (Km=7.982 ± 1.655mM) was higher.  The maximum velocity of cCAT-2A 
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transport for lysine and arginine did not differ between transient and stable expression.  

The difference in Km between transient and stable cCAT-2A expression may be due to 

the uniform expression of cCAT-2A in stable cells.  Stable expression of cCAT-2A 

resulted in a much lower coefficient of variation compared to transient expression of 

cCAT-2A (20.7% Vs. 52.15%) and indicates that stable expression increased the 

accuracy of transport measurements and represents a more accurate estimate of cCAT-2A 

affinity.  Regardless of stable or transient expression, cCAT-2A exhibited transport 

properties of a low affinity, high capacity transporter similar to mouse and human CAT-

2A (42).   

Transporter specificity studies showed that cCAT-2A preferably transports lysine 

and arginine, and transport of these amino acids is inhibited by the presence of 35-fold 

molar excess of histidine and methionine, or 175mM of histindine and methionine, at 

physiological pH, as has previously been shown in mammals (40).  Although transport of 

lysine was inhibited at 175mM concentration of histidine and methionine, plasma 

concentrations of these amino acids are within the micromolar range (81,82) and 

therefore it is unlikely that these levels would ever be present in order to inhibit lysine 

and arginine transport.   Histidine is another basic amino acid at physiological pH that has 

been shown to be transported with low affinity by the CAT transporters (40).  It is not 

clear whether inhibition by methionine is due to a direct competitive transport, which is 

unlikely due to the lack of inhibition in cells treated with 5-fold molar excess, or due to 

the transient and/or reversible decrease in function of cCAT-2A in the presence of high 

concentrations of this amino acid.  The former scenario could be tested by incubating 

cells expressing cCAT-2A with [3H] L-methionine to determine the amount of 
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radioactivity incorporated into the cells.  The latter could be tested by pre-treating cells 

expressing cCAT-2A with 35-fold molar excess of L-methionine, followed by incubation 

with L-lysine and tritiated L-lysine to test for lysine uptake inhibition.  Regardless, 

cCAT-2A is specific for cationic amino acids and competition for transport is 

physiological limits restricted to either lysine or arginine. 

Unlike mammalian and chicken CAT-2A, the tissue distribution and functional 

properties of cCAT-2B differed markedly from mCAT-2B.  While mCAT-2B is only 

expressed in activated macrophages, cCAT-2B mRNA was expressed in all chicken 

tissues and was highest in the liver.  Though not examined in these studies, splenic 

macrophages and the avian HD11 macrophage cell line do not express cCAT-2B mRNA 

(Laing and Humphrey, unpublished).  These cCAT-2B mRNA expression patterns 

indicate that cCAT-2B is not likely to play an important role, if any, in supplying 

activated macrophages with arginine for NO synthesis.  Activated chicken macrophages 

produce NO and require extracellular arginine for NO synthesis (80).  Therefore, other 

arginine transport systems, such as other system y+ or y+L genes, may be responsible for 

providing chicken macrophages with arginine for NO synthesis. 

In addition to the divergence of the affinity-conferring residues Glu369 to Lys369 in 

the region specific to cCAT-2B and hCAT-2B, transport between these homologues also 

differed.  Transient expression of cCAT-2B did not result in lysine transport and this was 

thought to be due to the localization of cCAT-2B inside of the plasma membrane.  Stable 

expression of cCAT-2B resulted in cCAT-2B localizing to the plasma membrane, yet 

lysine transport still did not occur.  Taken together, these data suggest that cCAT-2B is 

not a lysine transporter.  However, mCAT-2B does not transport substrate unless 



 71 
 

stimulated by bacterial LPS or proinflammatory cytokines, such as interleukin-1β and 

tumor necrosis factor-α (39,42), and transport by cCAT-2B may also have a similar 

requirement.  Additionally, cCAT-2B protein expression was 25-fold lower than cCAT-

2A protein expression, so perhaps cCAT-2B protein levels permitted amino acid uptake 

that were below the limit of detection.  Conversely, cCAT-2B may transport other amino 

acids due to a modified amino acid binding site.  It is surprising that cCAT-2B does not 

transport lysine, however in humans the system y+ gene CAT-4 is also localized to the 

plasma membrane, yet does not transport lysine or arginine (54).  However, no 

conclusions can be made concerning the ability of cCAT-2B to function as amino acid 

transporter without additional functional analysis of cCAT-2B transport with other amino 

acids.  

Results presented by Auboeuf et al. (83) showed that 75% of all known human 

transcripts are subject to alternative splicing in a translated region of mRNA. One-third of 

alternative splicing events, however, result in the production of a transcript with a 

premature translation-termination codon (PTC) that are targeted for degradation by the 

nonsense-mediated mRNA decay pathway (NMD).  Chicken CAT-2C has a PTC and is 

degraded by NMD as shown by increased mRNA stability in the presence of 

cycloheximide (Morris, Kirsch, and Humphrey, unpublished).  These characteristics 

indicate the cCAT-2C transcript may be involved in regulated unproductive splicing and 

translation (RUST) (84) and consequently may delay or limit the transcription of cCAT-

2A and cCAT-2B isoforms.  A similar form of regulation has been observed for  

fibroblast growth factor 2 (FBGR-2) isoforms which include a spliced variant missing 

two exons.  In the presence of this spliced variant, transcription of other functioning 
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isoforms are repressed in a cell-type dependent manner, and the variant is degraded by 

the NMD pathway (85).  The data from our experiments suggest that rather than 

functioning to transport cationic amino acids, transcription of the cCAT-2C isoform may 

regulate the expression of cCAT-2A and cCAT-2B isoforms in tissues. 

Our results establish distinct properties for all three chicken CAT-2 isoforms.  

The structural as well as functional similarities between chicken and mammalian CAT-

2A proteins demonstrate that these carriers are highly conserved across species, and 

indicate a significant physiological function.  While the structure of cCAT-2B is 

conserved, the function differs from mammalian CAT-2B, and additional experiments are 

required to elucidate the exact function of this isoform.  Finally, the splice variant cCAT-

2C is not conserved in mammals, and may play a role in post-transcriptional regulation of 

functional cCAT-2 isoforms.     
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Figure 22.  Model of CAT function in the chicken 

 

CAT-2A

CAT-2B

CAT-2B

Transcription: 

CAT-2A

CAT-2C

?

lysine
arginine

CAT-2A

CAT-2B

CAT-2B

Transcription: 

CAT-2A

CAT-2C

?

lysine
arginine



 74 
 

Chapter 5: Conclusion 

5.1  Summary 

Our studies have shown that a major transporter involved in cationic amino acid 

transport is conserved between mammals and non-mammalian vertebrates.  Chicken and 

human CAT-2 show high nucleotide homology, possess 5’ and 3’ UTR regions that are 

similar in size and type of regulatory motifs, and maintain an alternative splicing 

mechanism.  Tissue mRNA expression of cCAT-2A differed from mCAT-2A as it was 

expressed throughout the body, and functional analysis indicated that this may be due to 

lack of CAA transport by other cCAT-2 isoforms.  Chicken CAT-2A was also highly 

expressed in both the liver and muscle tissues, which are sites of high amino acid 

requirement for production animals.  Overall, cCAT-2A has similar functional properties 

to mammalian CAT-2A, including low affinity transport and high specificity for L-lysine 

and L-arginine.  Chicken CAT-2B mRNA expression and transport properties varied 

greatly from mCAT-2B.  Primarily, cCAT-2B did not transport CAAs, and this may be 

due to a modified amino acid residue in the amino acid binding site.  In addition, cCAT-

2B, which is expressed in all tissues and is not expressed in macrophages, may not play a 

role in nitric oxide synthesis, which is a major function of mCAT-2B.  Finally, since 

cCAT-2C does not localize to the plasma membrane, does not transport CAAs, contains a 

premature termination codon, and is degraded by the NMD pathway, this isoform may 

participate in RUST and may function to post-transcriptionally regulate transcription of 

functioning cCAT-2A and cCAT-2B isoform proteins.   
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5.2  Future Studies 

Many additional studies should be conducted to further elucidate the biochemical 

and physiological function of cCAT-2 isoforms.  First, the N- and C- terminal 

transmembrane orientation of cCAT-2A and cCAT-2B could be determined.  

Glycosylation of the endogenous cCAT-2A or cCAT-2B peptide could be examined by 

treating the protein with N-glycosidase.  Since cCAT-2A and cCAT-2B have one 

common glycosylation site that is predicted to be extracellular, a shift in protein 

molecular weight for both cCAT-2A and cCAT-2B following N- glycosidase treatment 

of intact cells would indicate that the glycoslyation site is extracellular and is common to 

both isoforms.  An additional experiment which would test N- and C-terminal orientation 

of cCAT-2A or cCAT-2B around the membrane would require the expression of cCAT-

2A/B fused to a fluorophore, such as GFP.  Using the fluorescence protease protection 

assay (FPP) technique, incubation of the cells expressing cCAT-2-GFP with protease K, 

followed by cleavage of the GFP signal would indicate extracellular ends, while absence 

of cleavage would indicate intracellular ends (86).   

Second, it would be interesting to compare the transport of cells transiently and 

stably expressing hCAT-2A to determine whether the type of transfection alters the Km, 

as was seen for transient and stable expression of cCAT-2A.  In addition, cCAT-2A and 

cCAT-2B should be tested for transport while transiently expressed in Xenopus oocytes, 

without the contribution of endogenous transporters, and with treatments of other tritiated 

amino acids.  As long as cCAT-2 isoforms are being expressed in Xenopus oocytes it 

would be easy to determine whether cCAT-2A functions via facilitated diffusion, as has 

been shown in human, mouse, and rat CAT-2A(43).  If no change in transporter function 
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is noted for uptake of [3H] L-lysine in transport buffer containing choline chloride or 

sodium chloride, transport is Na+ independent and therefore the transporters functions via 

facilitated diffusion as has been shown for mouse and human CAT transporters.   

Third, cCAT-2A response to an amino acid deficient diet induced stress state 

would be very interesting to study in regards to promoter regulation, mRNA expression 

of cCAT-2 isoforms in tissue, and change in response of chicken CAT-2A mRNA 

expression at different life stages.  In addition, lysine levels have been directly correlated 

to protein accretion (87), so it would be interesting to determine if cCAT-2A expression 

in muscle could also be correlated to protein accretion.  Muscle protein synthesis, as 

measured by incorporation of stable isotope tracers (13C) of amino acids in biopsied 

muscles, could be linearly related to cCAT-2A expression, although a time delay in 

protein synthesis would be expected. 

Finally, cCAT-2C should be further examined for its role in RUST and in 

regulation of transcription of cCAT-2A and cCAT-2B.  In order to test this mechanism 

mRNA expression of cCAT-2C in chicks fed high levels of lysine and arginine with an 

amino acid sufficient diet and an amino acid deficient diet should be compared.  In these 

studies I would expect cCAT-2C mRNA expression to be regulated by availability of 

CAAs and be several-fold greater in chickens fed excess amino acids compared to 

chickens fed a diet deficient in amino acids, as has been shown to be the case in 

spermidine N-acetyltransferase (88).   
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5.3  Implications 

We have shown that, while the CAT-2 cationic amino acid transporters are 

conserved between mammalian and non-mammalian vertebrates, many differences 

remain.  Results from these studies indicate that the differing requirement for CAAs, in 

mammals and chickens, may be due to a difference in use of these amino acids by body 

tissues.  As a result, the cCAT-2 transporters have adapted to provide these amino acids 

as required.  Using the knowledge gathered from these experiments, additional lysine and 

arginine in the diet would positively impact protein accretion, and would be transported 

by cCAT-2A.  In regards to animal health, cCAT-2 isoforms are not directly involved in 

nitric oxide production in macrophages, and therefore the presence of other cationic 

amino acid transporters should be examined in macrophages.  Finally, cCAT-2 plays an 

important role in transporting lysine and arginine from the extracellular environment into 

cells, and the substrate they provide can be used for protein synthesis or catabolized as an 

energy source.  
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Appendix 
 
Appendix Figure 1.  Nucleotide alignment of chicken CAT-2A, CAT-2B and CAT-
2C 
 
cCAT-2A    1 ATGTTGCCCTGTGGACCAGCTTTGACCTTTGTTCGGTGCCTGGTGCGTAAGAAGAATATC 
cCAT-2B    1 ATGTTGCCCTGTGGACCAGCTTTGACCTTTGTTCGGTGCCTGGTGCGTAAGAAGAATATC 
cCAT-2C    1 ATGTTGCCCTGTGGACCAGCTTTGACCTTTGTTCGGTGCCTGGTGCGTAAGAAGAATATC 
 
 
cCAT-2A   61 AAGGGGGAAGGTCTTGAGGACTCGTTGTGCCGATGCTTATCTACGCTGGACCTTATAGCA 
cCAT-2B   61 AAGGGGGAAGGTCTTGAGGACTCGTTGTGCCGATGCTTATCTACGCTGGACCTTATAGCA 
cCAT-2C   61 AAGGGGGAAGGTCTTGAGGACTCGTTGTGCCGATGCTTATCTACGCTGGACCTTATAGCA 
 
 
cCAT-2A  121 CTGGGAGTTGGAAGTACCCTTGGTGCTGGTGTCTATGTGCTTGCTGGAGAAGTTGCCAAA 
cCAT-2B  121 CTGGGAGTTGGAAGTACCCTTGGTGCTGGTGTCTATGTGCTTGCTGGAGAAGTTGCCAAA 
cCAT-2C  121 CTGGGAGTTGGAAGTACCCTTGGTGCTGGTGTCTATGTGCTTGCTGGAGAAGTTGCCAAA 
 
 
cCAT-2A  181 TCTGATTCTGGACCTAGCATTGTTGTTTCCTTCCTCATTGCTGCCCTGGCATCTGTGATG 
cCAT-2B  181 TCTGATTCTGGACCTAGCATTGTTGTTTCCTTCCTCATTGCTGCCCTGGCATCTGTGATG 
cCAT-2C  181 TCTGATTCTGGACCTAGCATTGTTGTTTCCTTCCTCATTGCTGCCCTGGCATCTGTGATG 
 
 
cCAT-2A  241 GCAGGTCTCTGCTATGCTGAGTTTGGTGCTCGCGTTCCCAAGACTGGTTCTGCATATTTG 
cCAT-2B  241 GCAGGTCTCTGCTATGCTGAGTTTGGTGCTCGCGTTCCCAAGACTGGTTCTGCATATTTG 
cCAT-2C  241 GCAGGTCTCTGCTATGCTGAGTTTGGTGCTCGCGTTCCCAAGACTGGTTCTGCATATTTG 
 
 
cCAT-2A  301 TATACTTACGTAGCTGTTGGTGAACTGTGGGCCTTTATCACTGGTTGGAATCTCATTTTA 
cCAT-2B  301 TATACTTACGTAGCTGTTGGTGAACTGTGGGCCTTTATCACTGGTTGGAATCTCATTTTA 
cCAT-2C  301 TATACTTACGTAGCTGTTGGTGAACTGTGGGCCTTTATCACTGGTTGGAATCTCATTTTA 
 
 
cCAT-2A  361 TCCTATGTTATAGGTACCTCGAGTGTAGCAAGAGCCTGGAGTGGCACCTTTGATGAACTT 
cCAT-2B  361 TCCTATGTTATAGGTACCTCGAGTGTAGCAAGAGCCTGGAGTGGCACCTTTGATGAACTT 
cCAT-2C  361 TCCTATGTTATAGGTACCTCGAGTGTAGCAAGAGCCTGGAGTGGCACCTTTGATGAACTT 
 
 
cCAT-2A  421 CTTGGAAAACAGATCAGTCACTTCTTCAAAACCTACTTCAAAATGAATTACCCTGGTCTG 
cCAT-2B  421 CTTGGAAAACAGATCAGTCACTTCTTCAAAACCTACTTCAAAATGAATTACCCTGGTCTG 
cCAT-2C  421 CTTGGAAAACAGATCAGTCACTTCTTCAAAACCTACTTCAAAATGAATTACCCTGGTCTG 
 
 
cCAT-2A  481 GCAGAGTATCCTGACTTCTTTGCCGTATTCCTTATATTGCTCTTATCAGGTCTGCTATCA 
cCAT-2B  481 GCAGAGTATCCTGACTTCTTTGCCGTATTCCTTATATTGCTCTTATCAGGTCTGCTATCA 
cCAT-2C  481 GCAGAGTATCCTGACTTCTTTGCCGTATTCCTTATATTGCTCTTATCAGGTCTGCTATCA 
 
 
cCAT-2A  541 TTTGGAGTAAAAGAATCTGCATGGGTGAATAAAATTTTCACCGCTATTAACATCTTGGTT 
cCAT-2B  541 TTTGGAGTAAAAGAATCTGCATGGGTGAATAAAATTTTCACCGCTATTAACATCTTGGTT 
cCAT-2C  541 TTTGGAGTAAAAGAATCTGCATGGGTGAATAAAATTTTCACCGCTATTAACATCTTGGTT 
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cCAT-2A  601 CTACTCTTCGTTATGATTTCTGGTTTTGTGAAAGGAGATGTTGACAACTGGAGAATAAGT 
cCAT-2B  601 CTACTCTTCGTTATGATTTCTGGTTTTGTGAAAGGAGATGTTGACAACTGGAGAATAAGT 
cCAT-2C  601 CTACTCTTCGTTATGATTTCTGGTTTTGTGAAAGGAGATGTTGACAACTGGAGAATAAGT 
 
 
cCAT-2A  661 GAAGAATATCTCATAAACCTTTCTGAAATAGCAGAGAATTTTTCATCCTACAAGAATGTG 
cCAT-2B  661 GAAGAATATCTCATAAACCTTTCTGAAATAGCAGAGAATTTTTCATCCTACAAGAATGTG 
cCAT-2C  661 GAAGAATATCTCATAAACCTTTCTGAAATAGCAGAGAATTTTTCATCCTACAAGAATGTG 
 
 
cCAT-2A  721 ACAAGTATATATGGGAGTGGTGGCTTTATGCCATATGGTTTCACGGGAACATTGGCTGGT 
cCAT-2B  721 ACAAGTATATATGGGAGTGGTGGCTTTATGCCATATGGTTTCACGGGAACATTGGCTGGT 
cCAT-2C  721 ACAAGTATATATGGGAGTGGTGGCTTTATGCCATATGGTTTCACGGGAACATTGGCTGGT 
 
 
cCAT-2A  781 GCTGCAACCTGTTTTTATGCTTTTGTAGGATTTGACTGCATTGCAACAACTGGAGAAGAG 
cCAT-2B  781 GCTGCAACCTGTTTTTATGCTTTTGTAGGATTTGACTGCATTGCAACAACTGGAGAAGAG 
cCAT-2C  781 GCTGCAACCTGTTTTTATGCTTTTGTAGGATTTGACTGCATTGCAACAACTGGAGAAGAG 
 
 
cCAT-2A  841 GTCAGGAATCCTCAGAAAGCCATACCCATAGGAATTGTGGTGTCCTTGCTTGTCTGCTTC 
cCAT-2B  841 GTCAGGAATCCTCAGAAAGCCATACCCATAGGAATTGTGGTGTCCTTGCTTGTCTGCTTC 
cCAT-2C  841 GTCAGGAATCCTCAGAAAGCCATACCCATAGGAATTGTGGTGTCCTTGCTTGTCTGCTTC 
 
cCAT-2A  901 ATGGCCTATTTTGGAGTCTCAGCTGCACTGACTCTTATGATGCCATATTATCTGCTAGAT 
cCAT-2B  901 ATGGCCTATTTTGGAGTCTCAGCTGCACTGACTCTTATGATGCCATATTATCTGCTAGAT 
cCAT-2C  901 ATGGCCTATTTTGGAGTCTCAGCTGCACTGACTCTTATGATGCCATATTATCTGCTAGAT 
 
 
cCAT-2A  961 GAGAAAAGTCCTCTGCCAGTAGCATTTGCATATGTTGGATGGGGTCCTGCAAAATATGTT 
cCAT-2B  961 GAGAAAAGTCCTCTGCCAGTAGCATTTGCATATGTTGGATGGGGTCCTGCAAAATATGTT 
cCAT-2C  961 GAGAAAAGTCCTCTGCCAGTAGCATTTGCATATGTTGGATGGGGTCCTGCAAAATATGTT 
 
 
cCAT-2A 1021 GTAGCAGTGGGATCCCTCTGTGCTTTGTCTACAAGTCTTCTCGGCTCTATGTTCCCCTTG 
cCAT-2B 1021 GTAGCAGTGGGATCCCTCTGTGCTTTGTCTACAAGTCTTCTTGGATCCATTTTCCCAATG 
cCAT-2C 1021 GTAGCAGTGGGATCCCTCTGTGCTTTGTCTACAAG------------------------- 
 
 
cCAT-2A 1081 CCCCGAATTGTGTTTGCCATGGCACGTGATGGTTTACTCTTTAGTTTTCTTGCCAAAGTG 
cCAT-2B 1081 CCACGTGTAATCTATGCTATGGCGAAGGATGGGTTGCTTTTCAAATGTCTAGCTCAAATC 
cCAT-2C 1056 ------------------------------------------------------------ 
 
 
cCAT-2A 1141 AGT---AAGAGGCAGGCACCACTTTTGGCCACCTTGACAGCAGGGGTCATCTCTGCTATT 
cCAT-2B 1141 AATTCCAAAACGAAGACCCCACTAGTTGCTACTCCATCGTCTGGTGCAGTAGCAGCTATT 
cCAT-2C 1056 -------------------------------------------------------CTATT 
 
 
cCAT-2A 1198 ATGGCATTTCTGTTTGACCTAAAGGCTTTAGTGGACATAATGTCTATTGGCACACTTCTT 
cCAT-2B 1201 ATGGCATTTCTGTTTGACCTAAAGGCTTTAGTGGACATAATGTCTATTGGCACACTTCTT 
cCAT-2C 1061 ATGGCATTTCTGTTTGACCTAAAGGCTTTAGTGGACATAATGTCTATTGGCACACTTCTT 
 
 
cCAT-2A 1258 GCTTATTCACTTGTGGCAACCTGTGTCCTCATTCTTAGGTACCAACCCAGTTTAACCTAT 
cCAT-2B 1261 GCTTATTCACTTGTGGCAACCTGTGTCCTCATTCTTAGGTACCAACCCAGTTTAACCTAT 
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cCAT-2C 1121 GCTTATTCACTTGTGGCAACCTGTGTCCTCATTCTTAGGTACCAACCCAGTTTAACCTAT 
 
 
 
cCAT-2A 1318 GAGCAACCCAAATATTCTCCAGAAAAAGCAACCTTGGCTGCATCAAAAAGAGAATCTGCA 
cCAT-2B 1321 GAGCAACCCAAATATTCTCCAGAAAAAGCAACCTTGGCTGCATCAAAAAGAGAATCTGCA 
cCAT-2C 1181 GAGCAACCCAAATATTCTCCAGAAAAAGCAACCTTGGCTGCATCAAAAAGAGAATCTGCA 
 
 
cCAT-2A 1378 GTAAGTGAATCACAGATAAATATGATACAGGAGAGCCACTTCAGTCTTCAGACTCTGATT 
cCAT-2B 1381 GTAAGTGAATCACAGATAAATATGATACAGGAGAGCCACTTCAGTCTTCAGACTCTGATT 
cCAT-2C 1241 GTAAGTGAATCACAGATAAATATGATACAGGAGAGCCACTTCAGTCTTCAGACTCTGATT 
 
 
cCAT-2A 1438 AATCCATCCAGTTTACCTACAGAACAGACTGCAACTACTGTTAACTGTTTTGTGGGTCTG 
cCAT-2B 1441 AATCCATCCAGTTTACCTACAGAACAGACTGCAACTACTGTTAACTGTTTTGTGGGTCTG 
cCAT-2C 1301 AATCCATCCAGTTTACCTACAGAACAGACTGCAACTACTGTTAACTGTTTTGTGGGTCTG 
 
 
cCAT-2A 1498 CTAGCTTTCTTGGTTTGTGGCTTGAGTGCTCTCACTACATATGGGACTCATTTCATTGCT 
cCAT-2B 1501 CTAGCTTTCTTGGTTTGTGGCTTGAGTGCTCTCACTACATATGGGACTCATTTCATTGCT 
cCAT-2C 1361 CTAGCTTTCTTGGTTTGTGGCTTGAGTGCTCTCACTACATATGGGACTCATTTCATTGCT 
 
 
cCAT-2A 1558 AACTTGGAGCCCTGGAGTATTTGCCTTCTTGCTACATTGGTGGTGTCCTTCATAGTTACC 
cCAT-2B 1561 AACTTGGAGCCCTGGAGTATTTGCCTTCTTGCTACATTGGTGGTGTCCTTCATAGTTACC 
cCAT-2C 1421 AACTTGGAGCCCTGGAGTATTTGCCTTCTTGCTACATTGGTGGTGTCCTTCATAGTTACC 
 
 
cCAT-2A 1618 ATTCTCCTCATCCAAAGGCAGCCGCAGAACCAGCAGAAAGTGGCCTTTATGGTTCCATTA 
cCAT-2B 1621 ATTCTCCTCATCCAAAGGCAGCCGCAGAACCAGCAGAAAGTGGCCTTTATGGTTCCATTA 
cCAT-2C 1481 ATTCTCCTCATCCAAAGGCAGCCGCAGAACCAGCAGAAAGTGGCCTTTATGGTTCCATTA 
 
 
cCAT-2A 1678 TTGCCATTTTTACCATCACTCAGTATCCTGGTAAATATTTATCTAATGGTACAATTAAGT 
cCAT-2B 1681 TTGCCATTTTTACCATCACTCAGTATCCTGGTAAATATTTATCTAATGGTACAATTAAGT 
cCAT-2C 1541 TTGCCATTTTTACCATCACTCAGTATCCTGGTAAATATTTATCTAATGGTACAATTAAGT 
 
 
cCAT-2A 1738 GCAGACACTTGGATCAGGTTTAGCATCTGGATGGCACTTGGTTTCATTATTTATTTTACT 
cCAT-2B 1741 GCAGACACTTGGATCAGGTTTAGCATCTGGATGGCACTTGGTTTCATTATTTATTTTACT 
cCAT-2C 1601 GCAGACACTTGGATCAGGTTTAGCATCTGGATGGCACTTGGTTTCATTATTTATTTTACT 
 
cCAT-2A 1798 TATGGCATCAGGCACAGTCTTGAAGGTCGTCACAGCGATGGAGATGGAGATTCTTGTTCC 
cCAT-2B 1801 TATGGCATCAGGCACAGTCTTGAAGGTCGTCACAGCGATGGAGATGGAGATTCTTGTTCC 
cCAT-2C 1661 TATGGCATCAGGCACAGTCTTGAAGGTCGTCACAGCGATGGAGATGGAGATTCTTGTTCC 
 
 
cCAT-2A 1858 GAAAATAGTGGGCTGCAAGAAAAGAACCCTGTGGAAGAAGTGGATGAACCTGAAAATGCA 
cCAT-2B 1861 GAAAATAGTGGGCTGCAAGAAAAGAACCCTGTGGAAGAAGTGGATGAACCTGAAAATGCA 
cCAT-2C 1721 GAAAATAGTGGGCTGCAAGAAAAGAACCCTGTGGAAGAAGTGGATGAACCTGAAAATGCA 
 
 
cCAT-2A 1918 AATGAAAGTGATAAATTTCTTGCACGTGAAAGGACAAGTGAATGTTAA 
cCAT-2B 1921 AATGAAAGTGATAAATTTCTTGCACGTGAAAGGACAAGTGAATGTTAA 
cCAT-2C 1781 AATGAAAGTGATAAATTTCTTGCACGTGAAAGGACAAGTGAATGTTAA 
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352 

Appendix Figure 2.  Peptide alignment of chicken CAT-2A, CAT-2B, and CAT-2C 
 
cCAT-2A    1 MLPCGPALTFVRCLVRKKNIKGEGLEDSLCRCLSTLDLIALGVGSTLGAGVYVLAGEVAK 
cCAT-2B    1 MLPCGPALTFVRCLVRKKNIKGEGLEDSLCRCLSTLDLIALGVGSTLGAGVYVLAGEVAK 
cCAT-2C    1 MLPCGPALTFVRCLVRKKNIKGEGLEDSLCRCLSTLDLIALGVGSTLGAGVYVLAGEVAK 
 
 
cCAT-2A   61 SDSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVAVGELWAFITGWNLIL 
cCAT-2B   61 SDSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVAVGELWAFITGWNLIL 
cCAT-2C   61 SDSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVAVGELWAFITGWNLIL 
 
 
cCAT-2A  121 SYVIGTSSVARAWSGTFDELLGKQISHFFKTYFKMNYPGLAEYPDFFAVFLILLLSGLLS 
cCAT-2B  121 SYVIGTSSVARAWSGTFDELLGKQISHFFKTYFKMNYPGLAEYPDFFAVFLILLLSGLLS 
cCAT-2C  121 SYVIGTSSVARAWSGTFDELLGKQISHFFKTYFKMNYPGLAEYPDFFAVFLILLLSGLLS 
 
 
cCAT-2A  181 FGVKESAWVNKIFTAINILVLLFVMISGFVKGDVDNWRISEEYLIDLSEIAENFSSYDYV 
cCAT-2B  181 FGVKESAWVNKIFTAINILVLLFVMISGFVKGDVDNWRISEEYLIDLSEIAENFSSYDYV 
cCAT-2C  181 FGVKESAWVNKIFTAINILVLLFVMISGFVKGDVDNWRISEEYLIDLSEIAENFSSYDYV 
 
 
cCAT-2A  241 TSIYGSGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVVSLLVCF 
cCAT-2B  241 TSIYGSGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVVSLLVCF 
cCAT-2C  241 TSIYGSGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVVSLLVCF 
 
 
cCAT-2A  301 MAYFGVSAALTLMMPYYLLDEKSPLPVAFAYVGWGPAKYVVAVGSLCALSTSLLGSMFPL 
cCAT-2B  301 MAYFGVSAALTLMMPYYLLDEKSPLPVAFAYVGWGPAKYVVAVGSLCALSTSLLGSIFPM 
cCAT-2C  301 MAYFGVSAALTLMMPYYLLDEKSPLPVAFAYVGWGPAKYVVAVGSLCALSTSYYG----- 
 
 
cCAT-2A  361 PRIVFAMARDGLLFSFLAKLS-KRQAPLLATLTAGVISGIMAFLFDLKALVDIMSIGTLL 
cCAT-2B  361 PRVIYAMAKDGLLFKCLAQINSKTKTPLVATLSSGAVAGIMAFLFDLKALVDIMSIGTLL 
cCAT-2C  356 -----------------------------------------------------ISV---- 
 
 
cCAT-2A  420 AYSLVATCVLILRYQPSLTYEQPKYSPEKATLAASKRESAVSESQINMIQESHFSLQTLI 
cCAT-2B  421 AYSLVATCVLILRYQPSLTYEQPKYSPEKATLAASKRESAVSESQINMIQESHFSLQTLI 
cCAT-2C      ------------------------------------------------------------ 
 
 
cCAT-2A  480 NPSSLPTEQTATTVNCFVGLLAFLVCGLSALTTYGTHFIANLEPWSICLLATLVVSFIVT 
cCAT-2B  481 NPSSLPTEQTATTVNCFVGLLAFLVCGLSALTTYGTHFIANLEPWSICLLATLVVSFIVT 
cCAT-2C      ------------------------------------------------------------ 
 
 
cCAT-2A  540 ILLIQRQPQNQQKVAFMVPLLPFLPSLSILVNIYLMVQLSADTWIRFSIWMALGFIIYFT 
cCAT-2B  541 ILLIQRQPQNQQKVAFMVPLLPFLPSLSILVNIYLMVQLSADTWIRFSIWMALGFIIYFT 
cCAT-2C      ------------------------------------------------------------ 
 
 
cCAT-2A  600 YGIRHSLEGRHSDGDGDSCSENSGLQEKNPVEEVDEPENANESDKFLARERTSEC 
cCAT-2B  601 YGIRHSLEGRHSDGDGDSCSENSGLQEKNPVEEVDEPENANESDKFLARERTSEC 
cCAT-2C      ------------------------------------------------------- 
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Appendix Figure 3.  Peptide alignment of CAT-2A from chicken, human, rat, and mouse 
 
cCAT-2A    1 ----------------------------------------MLPCGPALTFVRCLVRKKNI 
hCAT-2A    1 MKIETSGYNSDKLICRGFIGTPAPPVCDSKFLLSPSSDVRMIPCRAALTFARCLIRRKIV 
rCAT-2A    1 ----------------------------------------MIPCRAVLTFTRCLIRRKIV 
mCAT-2A    1 ----------------------------------------MIPCRAVLTFARCLIRRKIV 
 
cCAT-2A   21 KGEGLEDS-LCRCLSTLDLIALGVGSTLGAGVYVLAGEVAKSDSGPSIVVSFLIAALASV 
hCAT-2A   61 TLDSLEDTKLCRCLSTMDLIALGVGSTLGAGVYVLAGEVAKADSGPSIVVSFLIAALASV 
rCAT-2A   21 TLDSLEDSKLCRCLTTMDLIALGVGSTLGAGVYVLAGEVAKADSGPSIVVSFLIAALASV 
mCAT-2A   21 TLDSLEDSKLCRCLTTVDLIALGVGSTLGAGVYVLAGEVAKADSGPSIVVSFLIAALASV 
 
 
cCAT-2A   80 MAGLCYAEFGARVPKTGSAYLYTYVAVGELWAFITGWNLILSYVIGTSSVARAWSGTFDE 
hCAT-2A  121 MAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLILSYVIGTSSVARAWSGTFDE 
rCAT-2A   81 MAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLILSYVIGTSSVARAWSGTFDE 
mCAT-2A   81 MAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLILSYVIGTSSVARAWSGTFDE 
 
 
cCAT-2A  140 LLGKQISHFFKTYFKMNYPGLAEYPDFFAVFLILLLSGLLSFGVKESAWVNKIFTAINIL 
hCAT-2A  181 LLSKQIGQFLRTYFRMNYTGLAEYPDFFAVCLILLLAGLLSFGVKESAWVNKVFTAVNIL 
rCAT-2A  141 LLNKQIGQFFKTYFKMNYTGLAEYPDFFAVCLVLLLAGLLSFGVKESAWVNKFFTAINIL 
mCAT-2A  141 LLNKQIGQFFKTYFKMNYTGLAEYPDFFAVCLVLLLAGLLSFGVKESAWVNKFFTAINIL 
 
 
cCAT-2A  200 VLLFVMISGFVKGDVDNWRISEEYLIDLSEIAENFSSYDYVTSIYGSGGFMPYGFTGTLA 
hCAT-2A  241 VLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPS-ENGTSIYGAGGFMPYGFTGTLA 
rCAT-2A  201 VLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPS-ENGTSIYGAGGFMPYGFTGTLA 
mCAT-2A  201 VLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPS-ENGTSIYGAGGFMPYGFTGTLA 
 
 
cCAT-2A  260 GAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVVSLLVCFMAYFGVSAALTLMMPYYLL 
hCAT-2A  300 GAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVCFMAYFGVSAALTLMMPYYLL 
rCAT-2A  260 GAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVCFMAYFGVSAALTLMMPYYLL 
mCAT-2A  260 GAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVCFMAYFGVSAALTLMMPYYLL 
 
 
cCAT-2A  320 DEKSPLPVAFAYVGWGPAKYVVAVGSLCALSTSLLGSMFPLPRIVFAMARDGLLFSFLAK 
hCAT-2A  360 DEKSPLPVAFEYVGWGPAKYVVAAGSLCALSTSLLGSMFPLPRILFAMARDGLLFRFLAR 
rCAT-2A  320 DEKSPLPVAFEYVGWGPAKYVVAAGSLCALSTSLLGSMFPLPRILFAMARDGLLFRFLAR 
mCAT-2A  320 DEKSPLPVAFEYVRWSPAKYVVSAGSLCALSTSLLGSMFPLPRILFAMARDGLLFRFLAR 
 
 
cCAT-2A  380 LSKRQAPLLATLTAGVISGIMAFLFDLKALVDIMSIGTLLAYSLVATCVLILRYQPSLTY 
hCAT-2A  420 VSKRQSPVAATLTAGVISALMAFLFDLKALVDMMSIGTLMAYSLVAACVLILRYQPGLSY 
rCAT-2A  380 VSKRQSPVAATMTAGVISAVMAFLFDLKALVDMMSIGTLMAYSLVAACVLILRYQPGLCY 
mCAT-2A  380 VSKRQSPVAATMTAGVISAVMAFLFDLKALVDMMSIGTLMAYSLVAACVLILRYQPGLCY 
 
 
cCAT-2A  440 EQPKYSPEKATLAASKRESAVSESQINMIQESHFSLQTLINPSSLPTEQTATTVNCFVGL 
hCAT-2A  480 DQPKCSPEKDGLGSSPRVTSKSESQVTMLQRQGFSMRTLFCPSLLPTQQSASLVSFLVGF 
rCAT-2A  440 EQPKYTPEKDILESCTNATSKSESQVTMLQGQGFSLRTLFNPSALPTRQSASLVSFLVGF 
mCAT-2A  440 DQPKYTPEKETLESCTNATLKSESQVTMLQGQGFSLRTLFSPSALPTRQSASLVSFLVGF 
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cCAT-2A  500 LAFLVCGLSALTTYGTHFIANLEPWSICLLATLVVSFIVTILLIQRQPQNQQKVAFMVPL 
hCAT-2A  540 LAFLVLGLSVLTTYGVHAITRLEAWSLALLALFLVLFVAIVLTIWRLPQNQQKVAFMVPF 
rCAT-2A  500 LAFLIAGLSILTTYGVQAIARLEAWSLALLALFLVLCAAVILTIWRQPQNQQKVAFMVPF 
mCAT-2A  500 LAFLILGLSILTTYGVQAIARLEAWSLALLALFLVLCVAVILTIWRQPQNQQKVAFMVPF 
 
 
cCAT-2A  560 LPFLPSLSILVNIYLMVQLSADTWIRFSIWMALGFIIYFTYGIRHSLEG--RHSDGDGDS 
hCAT-2A  600 LPFLPAFSILVNIYLMVQLSADTWVRFSIWMAIGFLIYFSYGIRHSLEGHLRDENNEEDA 
rCAT-2A  560 LPFLPAFSILVNIYLMVQLSADTWVRFSIWMVLGFLIYFAYGIRHSLEGNPRDEEEDEDV 
mCAT-2A  560 LPFLPAFSILVNIYLMVQLSADTWIRFSIWMALGFLIYFAYGIRHSLEGNPRDEEDDEDA 
 
 
cCAT-2A  618 CSENS-GLQEKNPVEEVDEPENANESDKFLARERTSEC 
hCAT-2A  660 YPDNVHAAAEEKSAIQANDHHPRNLSSPFIFHEKTSEF 
rCAT-2A  620 CPDNVNAAAEEKSAMQANDHHQRNLSLPFILHEKTSEC 
mCAT-2A  620 FSDNINAATEEKSAMQANDHHQRNLSLPFILHEKTSEC 
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Appendix Figure 4.  Peptide alignment of CAT-2B from chicken, human, rat, and mouse 
 
cCAT-2B    1 MLPCGPALTFVRCLVRKKNIKGEGLEDS-LCRCLSTLDLIALGVGSTLGAGVYVLAGEVA 
hCAT-2B    1 MIPCRAALTFARCLIRRKIVTLDSLEDTKLCRCLSTMDLIALGVGSTLGAGVYVLAGEVA 
rCAT-2B    1 MIPCRAVLTFTRCLIRRKIVTLDSLEDSKLCRCLTTMDLIALGVGSTLGAGVYVLAGEVA 
mCAT-2B    1 MIPCRAVLTFARCLIRRKIVTLDSLEDSKLCRCLTTVDLIALGVGSTLGAGVYVLAGEVA 
 
 
cCAT-2B   60 KSDSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVAVGELWAFITGWNLI 
hCAT-2B   61 KADSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLI 
rCAT-2B   61 KADSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLI 
mCAT-2B   61 KADSGPSIVVSFLIAALASVMAGLCYAEFGARVPKTGSAYLYTYVTVGELWAFITGWNLI 
 
 
cCAT-2B  120 LSYVIGTSSVARAWSGTFDELLGKQISHFFKTYFKMNYPGLAEYPDFFAVFLILLLSGLL 
hCAT-2B  121 LSYVIGTSSVARAWSGTFDELLSKQIGQFLRTYFRMNYTGLAEYPDFFAVCLILLLAGLL 
rCAT-2B  121 LSYVIGTSSVARAWSGTFDELLNKQIGQFFKTYFKMNYTGLAEYPDFFAVCLVLLLAGLL 
mCAT-2B  121 LSYVIGTSSVARAWSGTFDELLNKQIGQFFKTYFKMNYTGLAEYPDFFAVCLVLLLAGLL 
 
 
cCAT-2B  180 SFGVKESAWVNKIFTAINILVLLFVMISGFVKGDVDNWRISEEYLIDLSEIAENFSSYDY 
hCAT-2B  181 SFGVKESAWVNKVFTAVNILVLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPS-EN 
rCAT-2B  181 SFGVKESAWVNKFFTAINILVLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPS-EN 
mCAT-2B  181 SFGVKESAWVNKFFTAINILVLLFVMVAGFVKGNVANWKISEEFLKNISASAREPPS-EN 
 
 
cCAT-2B  240 VTSIYGSGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVVSLLVC 
hCAT-2B  240 GTSIYGAGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVC 
rCAT-2B  240 GTSIYGAGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVC 
mCAT-2B  240 GTSIYGAGGFMPYGFTGTLAGAATCFYAFVGFDCIATTGEEVRNPQKAIPIGIVTSLLVC 
 
 
cCAT-2B  300 FMAYFGVSAALTLMMPYYLLDEKSPLPVAFAYVGWGPAKYVVAVGSLCALSTSLLGSIFP 
hCAT-2B  300 FMAYFGVSAALTLMMPYYLLDEKSPLPVAFEYVGWGPAKYVVAAGSLCALSTSLLGSIFP 
rCAT-2B  300 FMAYFGVSAALTLMMPYYLLDEKSPLPVAFEYVGWGPAKYVVAAGSLCALSTSLLGSIFP 
mCAT-2B  300 FMAYFGVSAALTLMMPYYLLDEKSPLPVAFEYVRWSPAKYVVSAGSLCALSTSLLGSIFP 
 
 
cCAT-2B  360 MPRVIYAMAKDGLLFKCLAQINSKTKTPLVATLSSGAVAGIMAFLFDLKALVDIMSIGTL 
hCAT-2B  360 MPRVIYAMAEDGLLFKCLAQINSKTKTPIIATLSSGAVAALMAFLFDLKALVDMMSIGTL 
rCAT-2B  360 MPRVIYAMAEDGLLFKCLAQINSKTKTPIIATLSSGAVAAVMAFLFDLKALVDMMSIGTL 
mCAT-2B  360 MPRVIYAMAEDGLLFKCLAQINSKTKTPVIATLSSGAVAAVMAFLFDLKALVDMMSIGTL 
 
 
cCAT-2B  420 LAYSLVATCVLILRYQPSLTYEQPKYSPEKATLAASKRESAVSESQINMIQESHFSLQTL 
hCAT-2B  420 MAYSLVAACVLILRYQPGLSYDQPKCSPEKDGLGSSPRVTSKSESQVTMLQRQGFSMRTL 
rCAT-2B  420 MAYSLVAACVLILRYQPGLCYEQPKYTPEKDILESCTNATSKSESQVTMLQGQGFSLRTL 
mCAT-2B  420 MAYSLVAACVLILRYQPGLCYDQPKYTPEKETLESCTNATLKSESQVTMLQGQGFSLRTL 
 
 
cCAT-2B  480 INPSSLPTEQTATTVNCFVGLLAFLVCGLSALTTYGTHFIANLEPWSICLLATLVVSFIV 
hCAT-2B  480 FCPSLLPTQQSASLVSFLVGFLAFLVLGLSVLTTYGVHAITRLEAWSLALLALFLVLFVA 
rCAT-2B  480 FNPSALPTRQSASLVSFLVGFLAFLIAGLSILTTYGVQAIARLEAWSLALLALFLVLCAA 
mCAT-2B  480 FSPSALPTRQSASLVSFLVGFLAFLILGLSILTTYGVQAIARLEAWSLALLALFLVLCVA 
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cCAT-2B  540 TILLIQRQPQNQQKVAFMVPLLPFLPSLSILVNIYLMVQLSADTWIRFSIWMALGFIIYF 
hCAT-2B  540 IVLTIWRLPQNQQKVAFMVPFLPFLPAFSILVNIYLMVQLSADTWVRFSIWMAIGFLIYF 
rCAT-2B  540 VILTIWRQPQNQQKVAFMVPFLPFLPAFSILVNIYLMVQLSADTWVRFSIWMVLGFLIYF 
mCAT-2B  540 VILTIWRQPQNQQKVAFMVPFLPFLPAFSILVNIYLMVQLSADTWIRFSIWMALGFLIYF 
 
 
cCAT-2B  600 TYGIRHSLEG--RHSDGDGDSCSENS-GLQEKNPVEEVDEPENANESDKFLARERTSEC 
hCAT-2B  600 SYGIRHSLEGHLRDENNEEDAYPDNVHAAAEEKSAIQANDHHPRNLSSPFIFHEKTSEF 
rCAT-2B  600 AYGIRHSLEGNPRDEEEDEDVCPDNVNAAAEEKSAMQANDHHQRNLSLPFILHEKTSEC 
mCAT-2B  600 AYGIRHSLEGNPRDEEDDEDAFSDNINAATEEKSAMQANDHHQRNLSLPFILHEKTSEC 
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Appendix Figure 5  Peptide alignment of the 42 amino acid region that differs between 
cCAT-2B as compared to cCAT-1 and cCAT-3  
 
 
cCAT-2B    357 IFPMPRVIYAMAKDGLLFKCLAQINSKTKTPLVATLSSGAVA 
cCAT-1     356 MFPMPRIIYAMAEDGLLFKFLAKVNDKRKTPVIATVTSGAVA 
cCAT-3     349 MFPMPRVIYAMAEDGLLFRSLSRMNKRTKTPLLATIASGIVA 
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Appendix Table 1.  Primer sequences for RT-PCR and real-time PCR analysis of 
chicken CAT-2 isoforms and β-actin mRNA1 

 
Target Accession 

number2 
Orientation Primer Sequence (5’→3’) Annealing 

Temp (°C) 
Product 
size (bp) 

ORF CAT-2 
 

 Forward ATGTTGCCCTGTGGA
CCA 

55 1965 (2A) 

 
 

 Reverse TTAACATTCACTTGT
CCTTTCACG 

 1968 (2B) 

cCAT-2C 
ORF 

 Forward CCCAAGCTTGCCACC
ATGTTGCCCTGTGGA
CCA 

56 1100 

 
 

 Reverse TCCCCGCGGTCAAAC
AGAAATGCCATAGCT 

  

cCAT-2d 
TOPO 

 Forward CACCATGATGCCCTG
TGGACCA 

56 1965 (2A) 

 
 

 Reverse ACATTCACTCGTCCT
TTCACG 

 1968 (2B) 

cCAT-2C 
TOPO 

 Forward CACCATGTTGCCCTG
TGGACCA 

58 1077 

  Reverse AACAGAAATGCCAT
AATAGCTTGTAG 

  

cCAT-2A3 

 
 Forward TGCTTTCTGTACAAG

TCTTCTCG 
55 165 

 
 

 Reverse AATGCCATAATACCA
GAGATGACC 

  

cCAT-2B3 

 
 Forward CCTTGCTTGTCTGCTT

CATGG 
58 272 

 
 

 Reverse CTTCGTTTTGGAATT
GATTTGAGC 

  

cCAT-2C3 

 
 Forward ACTGCATTGCAACAA

CTGGA 
55 251 

 
 

 Reverse GCCATAATAGCTTGT
AGACAAAGCA 

  

β-actin 
 

NM_205518 Forward CCCCAGCCATGTATG
TAGCC 

55 199 

 
 

 Reverse TCTGTCAGGATCTTC
ATGAGGTAG 

  

β2-M 
 

Z48921 Forward TGGAGCACGAGACC
CTGAAG 

59 161 

  Reverse TTTGCCGTCATACCC
AGAAGTG 

  

1 Abbreviations: β2-M, β2-microglobulin; bp, base pair; CAT, cationic amino acid 
transporter. 
2 GenBank accession numbers.  
3Primers used for Real-Time PCR amplification 
 

 



 88 
 

References 
 
1. Fisher, C. (1998). Lysine: Amino acid requirements of broiler breeders. Poult Sci, 

77: 124-33. 

2. Boorman, K. N., and Fisher, H. (1966). The arginine-lysine interaction in the 

chick. Br Poult Sci, 7: 39-44. 

3. Vorhaben, J. E., and Campbell, J. W. (1972). Glutamine synthetase. A 

mitochondrial enzyme in uricotelic species. J Biol Chem, 247: 2763-7. 

4. Pond, W. G., D. C. Church, K. R. Pond. (1995) Basic Animal Nutrition and 

Feeding, fourth Ed., John Wiley & Sons, New York, NY 

5. Lerner, J. (1984). Cell membrane amino acid transport processes in the domestic 

fowl (Gallus domesticus). Comp Biochem Physiol A, 78: 205-15. 

6. Chillaron, J., Roca, R., Valencia, A., Zorzano, A., and Palacin, M. (2001). 

Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am 

J Physiol Renal Physiol, 281: F995-1018. 

7. Gilbert, E. R., Li, H., Emmerson, D. A., Webb, K. E., Jr., and Wong, E. A. 

(2007). Developmental regulation of nutrient transporter and enzyme mRNA 

abundance in the small intestine of broilers. Poult Sci, 86: 1739-53. 

8. Sloan, J. L., and Mager, S. (1999). Cloning and functional expression of a human 

Na(+) and Cl(-)-dependent neutral and cationic amino acid transporter B(0+). J 

Biol Chem, 274: 23740-5. 

9. Verrey, F., Meier, C., Rossier, G., and Kuhn, L. C. (2000). Glycoprotein-

associated amino acid exchangers: broadening the range of transport specificity. 

Pflugers Arch, 440: 503-12. 



 89 
 

10. Campbell, J. (1991) Excretory nitrogen metabolism. Environmental and 

Metabolic Animal Physiology. (Prosser, C., Ed.), Wiley-Liss, New York, NY 

11. Singer, M. A. (2003). Do mammals, birds, reptiles and fish have similar nitrogen 

conserving systems? Comp Biochem Physiol B Biochem Mol Biol, 134: 543-58. 

12. Nicholson, D.  in International Union of Biochemistry and Molecular Biology, 

Leeds, England 

13. Karasawa, Y. (1989). Ammonia production from uric acid, urea, and amino acids 

and its absorption from the ceca of the cockerel. J Exp Zool Suppl, 3: 75-80. 

14. Mead, G. C. (1989). Microbes of the avian cecum: types present and substrates 

utilized. J Exp Zool Suppl, 3: 48-54. 

15. Dean, W. F., and Scott, H. M. (1965). The Development of an Amino Acid 

Reference Diet for the Early Growth of Chicks. Poult Sci, 44: 803-8. 

16. Mack, S., Bercovici, D., De Groote, G., Leclercq, B., Lippens, M., Pack, M., 

Schutte, J. B., and Van Cauwenberghe, S. (1999). Ideal amino acid profile and 

dietary lysine specification for broiler chickens of 20 to 40 days of age. Br Poult 

Sci, 40: 257-65. 

17. Sklan, D., and Noy, Y. (2004). Catabolism and deposition of amino acids in 

growing chicks: effect of dietary supply. Poult Sci, 83: 952-61. 

18. Leclercq, B. (1998). Lysine: Specific effects of lysine on broiler production: 

comparison with threonine and valine. Poult Sci, 77: 118-23. 

19. NRC, N. R. C. (1994) Nutrient Requirements of Poultry., 9th ed., National 

Academy Press., Washington, DC 



 90 
 

20. Corzo, A., Moran, E. T., Jr., and Hoehler, D. (2003). Arginine need of heavy 

broiler males: applying the ideal protein concept. Poult Sci, 82: 402-7. 

21. Brake, J., Balnave, D., and Dibner, J. J. (1998). Optimum dietary arginine:lysine 

ratio for broiler chickens is altered during heat stress in association with changes 

in intestinal uptake and dietary sodium chloride. Br Poult Sci, 39: 639-47. 

22. Baker, D. H. (2004). Animal models of human amino acid responses. J Nutr, 134: 

1646S-1650S; discussion 1664S-1666S, 1667S-1672S. 

23. Kidd, M. T. (2004). Nutritional modulation of immune function in broilers. Poult 

Sci, 83: 650-7. 

24. Labadan, M. C., Jr., Hsu, K. N., and Austic, R. E. (2001). Lysine and arginine 

requirements of broiler chickens at two- to three-week intervals to eight weeks of 

age. Poult Sci, 80: 599-606. 

25. Garcia, A. R., Batal, A. B., and Baker, D. H. (2006). Variations in the digestible 

lysine requirement of broiler chickens due to sex, performance parameters, 

rearing environment, and processing yield characteristics. Poult Sci, 85: 498-504. 

26. Bronte, V., Serafini, P., Mazzoni, A., Segal, D. M., and Zanovello, P. (2003). L-

arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends 

Immunol, 24: 302-6. 

27. Ochoa, J. B., Strange, J., Kearney, P., Gellin, G., Endean, E., and Fitzpatrick, E. 

(2001). Effects of L-arginine on the proliferation of T lymphocyte subpopulations. 

JPEN J Parenter Enteral Nutr, 25: 23-9. 



 91 
 

28. Kakuda, D. K., Finley, K. D., Maruyama, M., and MacLeod, C. L. (1998). Stress 

differentially induces cationic amino acid transporter gene expression. Biochim 

Biophys Acta, 1414: 75-84. 

29. McCord, N., Ayuk, P., McMahon, M., Boyd, R. C., Sargent, I., and Redman, C. 

(2006). System y+ arginine transport and NO production in peripheral blood 

mononuclear cells in pregnancy and preeclampsia. Hypertension, 47: 109-15. 

30. Bronte, V., and Zanovello, P. (2005). Regulation of immune responses by L-

arginine metabolism. Nat Rev Immunol, 5: 641-54. 

31. Sung, Y. J., Hotchkiss, J. H., Austic, R. E., and Dietert, R. R. (1991). L-arginine-

dependent production of a reactive nitrogen intermediate by macrophages of a 

uricotelic species. J Leukoc Biol, 50: 49-56. 

32. Bogdan, C. (2001). Nitric oxide and the immune response. Nat Immunol, 2: 907-

16. 

33. Popovic, P. J., Zeh, H. J., 3rd, and Ochoa, J. B. (2007). Arginine and immunity. J 

Nutr, 137: 1681S-6S. 

34. Wu, G., and Morris, S. M., Jr. (1998). Arginine metabolism: nitric oxide and 

beyond. Biochem J, 336 (Pt 1): 1-17. 

35. Lee, J. E., Austic, R. E., Naqi, S. A., Golemboski, K. A., and Dietert, R. R. 

(2002). Dietary arginine intake alters avian leukocyte population distribution 

during infectious bronchitis challenge. Poult Sci, 81: 793-8. 

36. Deng, K., Wong, C. W., and Nolan, J. V. (2005). Long-term effects of early life 

L-arginine supplementation on growth performance, lymphoid organs and 

immune responses in Leghorn-type chickens. Br Poult Sci, 46: 318-24. 



 92 
 

37. White, M. F., and Christensen, H. N. (1982). The two-way flux of cationic amino 

acids across the plasma membrane of mammalian cells is largely explained by a 

single transport system. J Biol Chem, 257: 10069-80. 

38. MacLeod, C. L., Finley, K. D., and Kakuda, D. K. (1994). y(+)-type cationic 

amino acid transport: expression and regulation of the mCAT genes. J Exp Biol, 

196: 109-21. 

39. Closs, E. I., Scheld, J. S., Sharafi, M., and Forstermann, U. (2000). Substrate 

supply for nitric-oxide synthase in macrophages and endothelial cells: role of 

cationic amino acid transporters. Mol Pharmacol, 57: 68-74. 

40. White, M. F. (1985). The transport of cationic amino acids across the plasma 

membrane of mammalian cells. Biochim Biophys Acta, 822: 355-74. 

41. Deves, R., and Boyd, C. A. (1998). Transporters for cationic amino acids in 

animal cells: discovery, structure, and function. Physiol Rev, 78: 487-545. 

42. Closs, E. I. (2002). Expression, regulation and function of carrier proteins for 

cationic amino acids. Curr Opin Nephrol Hypertens, 11: 99-107. 

43. Verrey, F., Closs, E. I., Wagner, C. A., Palacin, M., Endou, H., and Kanai, Y. 

(2004). CATs and HATs: the SLC7 family of amino acid transporters. Pflugers 

Arch, 447: 532-42. 

44. Closs, E. I., Simon, A., Vekony, N., and Rotmann, A. (2004). Plasma membrane 

transporters for arginine. J Nutr, 134: 2752S-2759S; discussion 2765S-2767S. 

45. Vargas, M., and Deves, R. (2001). System y+L-like activities account for high 

and low amino-acid transport phenotypes in chicken erythrocytes. J Membr Biol, 

183: 183-93. 



 93 
 

46. Torras-Llort, M., Torrents, D., Soriano-Garcia, J. F., Gelpi, J. L., Estevez, R., 

Ferrer, R., Palacin, M., and Moreto, M. (2001). Sequential amino acid exchange 

across b(0,+)-like system in chicken brush border jejunum. J Membr Biol, 180: 

213-20. 

47. Closs, E. I., Boissel, J. P., Habermeier, A., and Rotmann, A. (2006). Structure and 

Function of Cationic Amino Acid Transporters (CATs). J Membr Biol, 213: 67-

77. 

48. Kirchhoff, P., Dave, M. H., Remy, C., Kosiek, O., Busque, S. M., Dufner, M., 

Geibel, J. P., Verrey, F., and Wagner, C. A. (2006). An amino acid transporter 

involved in gastric acid secretion. Pflugers Arch, 451: 738-48. 

49. Closs, E. I., Lyons, C. R., Kelly, C., and Cunningham, J. M. (1993). 

Characterization of the third member of the MCAT family of cationic amino acid 

transporters. Identification of a domain that determines the transport properties of 

the MCAT proteins. J Biol Chem, 268: 20796-800. 

50. Kim, J. W., Closs, E. I., Albritton, L. M., and Cunningham, J. M. (1991). 

Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. 

Nature, 352: 725-8. 

51. Nicholson, B., Manner, C. K., Kleeman, J., and MacLeod, C. L. (2001). Sustained 

nitric oxide production in macrophages requires the arginine transporter CAT2. J 

Biol Chem, 276: 15881-5. 

52. Humphrey, B. D., Stephensen, C. B., Calvert, C. C., and Klasing, K. C. (2004). 

Glucose and cationic amino acid transporter expression in growing chickens 



 94 
 

(Gallus gallus domesticus). Comp Biochem Physiol A Mol Integr Physiol, 138: 

515-25. 

54. Wolf, S., Janzen, A., Vekony, N., Martine, U., Strand, D., and Closs, E. I. (2002). 

Expression of solute carrier 7A4 (SLC7A4) in the plasma membrane is not 

sufficient to mediate amino acid transport activity. Biochem J, 364: 767-75. 

55. Humphrey, B. D., Stephensen, C. B., Calvert, C. C., and Klasing, K. C. (2006). 

Lysine deficiency and feed restriction independently alter cationic amino acid 

transporter expression in chickens (Gallus gallus domesticus). Comp Biochem 

Physiol A Mol Integr Physiol, 143: 218-27. 

56. Vekony, N., Wolf, S., Boissel, J. P., Gnauert, K., and Closs, E. I. (2001). Human 

cationic amino acid transporter hCAT-3 is preferentially expressed in peripheral 

tissues. Biochemistry, 40: 12387-94. 

57. Ensembl. (2007), The European Bioinformatics Institute and Genome Research 

Limited, and others 

58. Hammermann, R., Brunn, G., and Racke, K. (2001). Analysis of the genomic 

organization of the human cationic amino acid transporters CAT-1, CAT-2 and 

CAT-4. Amino Acids, 21: 211-9. 

59. Habermeier, A., Wolf, S., Martine, U., Graf, P., and Closs, E. I. (2003). Two 

amino acid residues determine the low substrate affinity of human cationic amino 

acid transporter-2A. J Biol Chem, 278: 19492-9. 

60. MacLeod, C. L., Finley, K., Kakuda, D., Kozak, C. A., and Wilkinson, M. F. 

(1990). Activated T cells express a novel gene on chromosome 8 that is closely 

related to the murine ecotropic retroviral receptor. Mol Cell Biol, 10: 3663-74. 



 95 
 

61. Manner, C. K., Nicholson, B., and MacLeod, C. L. (2003). CAT2 arginine 

transporter deficiency significantly reduces iNOS-mediated NO production in 

astrocytes. J Neurochem, 85: 476-82. 

62. Rothenberg, M. E., Doepker, M. P., Lewkowich, I. P., Chiaramonte, M. G., 

Stringer, K. F., Finkelman, F. D., MacLeod, C. L., Ellies, L. G., and 

Zimmermann, N. (2006). Cationic amino acid transporter 2 regulates 

inflammatory homeostasis in the lung. Proc Natl Acad Sci U S A, 103: 14895-900. 

63. Claros, M.G., von Heijne, G. (1994).  TopPred II: an improved software for 

membrane protein structure predictions. Comput Appl Biosci, 10: 685-686. 

64. Hoshide, R., Ikeda, Y., Karashima, S., Matsuura, T., Komaki, S., Kishino, T., 

Niikawa, N., Endo, F., and Matsuda, I. (1996). Molecular cloning, tissue 

distribution, and chromosomal localization of human cationic amino acid 

transporter 2 (HCAT2). Genomics, 38: 174-8. 

65. R. Gupta, E. Jung. and. S. Brunak. (2004).  Prediction of N-glycosylation sites in 

human proteins. In preparation. 

66. Closs, E. I., Albritton, L. M., Kim, J. W., and Cunningham, J. M. (1993). 

Identification of a low affinity, high capacity transporter of cationic amino acids 

in mouse liver. J Biol Chem, 268: 7538-44. 

67. Biolo, G., Chinkes, D., Zhang, X. J., and Wolfe, R. R. (1992). Harry M. Vars 

Research Award. A new model to determine in vivo the relationship between 

amino acid transmembrane transport and protein kinetics in muscle. JPEN J 

Parenter Enteral Nutr, 16: 305-15. 



 96 
 

68. Nicholson, B., Manner, C. K., and MacLeod, C. L. (2002). Cat2 L-arginine 

transporter-deficient fibroblasts can sustain nitric oxide production. Nitric Oxide, 

7: 236-43. 

69. Finley, K. D., Kakuda, D. K., Barrieux, A., Kleeman, J., Huynh, P. D., and 

MacLeod, C. L. (1995). A mammalian arginine/lysine transporter uses multiple 

promoters. Proc Natl Acad Sci U S A, 92: 9378-82. 

70. Higo K, U. Y., Iwamoto M, Korenaga T (1999). Plant cis-acting regulatory DNA 

elements (PLACE) database: 1999. Nucleic Acids Research, 27: 297-300. 

71. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I., and Filipowicz, 

W. (2006). Relief of microRNA-mediated translational repression in human cells 

subjected to stress. Cell, 125: 1111-24. 

72. Prasanth, K. V., Prasanth, S. G., Xuan, Z., Hearn, S., Freier, S. M., Bennett, C. F., 

Zhang, M. Q., and Spector, D. L. (2005). Regulating gene expression through 

RNA nuclear retention. Cell, 123: 249-63. 

73. Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression 

data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 

Methods, 25: 402-8. 

74. Yuan, J. S., Reed, A., Chen, F., and Stewart, C. N., Jr. (2006). Statistical analysis 

of real-time PCR data. BMC Bioinformatics, 7: 85. 

75. Krishnamurthy, P., Ross, D. D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, 

K. E., Sarkadi, B., Sorrentino, B. P., and Schuetz, J. D. (2004). The stem cell 

marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with 

heme. J Biol Chem, 279: 24218-25. 



 97 
 

76. Chenna, R., Sugawara, H., Koike,T., Lopez, R., Gibson, T. J., Higgins, D. G., 

Thompson, J. D.  (2003).  Multiple sequence alignment with the Clustal series of 

programs. Nucleic Acids Res 31 (13):3497-500 PubMedID: 12824352  

78. Ladd, A. N., and Cooper, T. A. (2002). Finding signals that regulate alternative 

splicing in the post-genomic era. Genome Biol, 3: reviews0008. 

79. Currie, W. (1995) Structure and Function of Domestic Animals, 2 Ed., CRC 

Press, New York 

80. Manangi, M. K., Hoewing, S. F., Engels, J. G., Higgins, A. D., Killefer, J., 

Wilson, M. E., and Blemings, K. P. (2005). Lysine alpha-ketoglutarate reductase 

and lysine oxidation are distributed in the extrahepatic tissues of chickens. J Nutr, 

135: 81-5. 

81. Robbins, K. R., Baker, D. H., and Norton, H. W. (1977). Histidine status in the 

chick as measured by growth rate, plasma free histidine and breast muscle 

carnosine. J Nutr, 107: 2055-61. 

82. Zhan, X. A., Li, J. X., Xu, Z. R., and Zhao, R. Q. (2006). Effects of methionine 

and betaine supplementation on growth performance, carcase composition and 

metabolism of lipids in male broilers. Br Poult Sci, 47: 576-80. 

83. Auboeuf, D., Batsche, E., Dutertre, M., Muchardt, C., and O'Malley, B. W. 

(2007). Coregulators: transducing signal from transcription to alternative splicing. 

Trends Endocrinol Metab, 18: 122-9. 

84. Lewis, B. P., Green, R. E., and Brenner, S. E. (2003). Evidence for the 

widespread coupling of alternative splicing and nonsense-mediated mRNA decay 

in humans. Proc Natl Acad Sci U S A, 100: 189-92. 



 98 
 

85. Jones, R. B., Wang, F., Luo, Y., Yu, C., Jin, C., Suzuki, T., Kan, M., and 

McKeehan, W. L. (2001). The nonsense-mediated decay pathway and mutually 

exclusive expression of alternatively spliced FGFR2IIIb and -IIIc mRNAs. J Biol 

Chem, 276: 4158-67. 

86. Lorenz, H., Hailey, D. W., Wunder, C., and Lippincott-Schwartz, J. (2006). The 

fluorescence protease protection (FPP) assay to determine protein localization and 

membrane topology. Nat Protoc, 1: 276-9. 

87. Rennie, M. J., Bohe, J., and Wolfe, R. R. (2002). Latency, duration and dose 

response relationships of amino acid effects on human muscle protein synthesis. J 

Nutr, 132: 3225S-7S. 

88. Hyvonen, M. T., Uimari, A., Keinanen, T. A., Heikkinen, S., Pellinen, R., 

Wahlfors, T., Korhonen, A., Narvanen, A., Wahlfors, J., Alhonen, L., and Janne, 

J. (2006). Polyamine-regulated unproductive splicing and translation of 

spermidine/spermine N1-acetyltransferase. Rna, 12: 1569-82. 

 

 


