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Metrology, the measurement of real world metrics, has been investigated ex-

tensively in computer vision for many applications. The prevalence of video cameras

and sequences has led to the demand for fully automated systems. Most of the exist-

ing video metrology methods are simple extensions of still-image algorithms, which

have certain limitations, requiring constraints such as parallelism of lines. New

techniques are needed in order to achieve accurate results for broader applications.

An important preprocessing step and a closely related topic to metrology is cali-

bration using planar patterns. Existing approaches lack flexibility and robustness

when extended to video sequences. This dissertation advances the state of the art

in calibration and video metrology in three directions: (1) the concept of partial

rectification is proposed along with new calibration techniques using a circle with

diverse types of constraints; (2) new calibration methods for video sequences using

planar patterns undergoing planar motion are proposed; and (3) new algorithms to

extend video metrology to a wide range of applications are presented. A fully auto-



mated system using the new technique has been built for measuring the wheelbases

of vehicles.
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Chapter 1

Introduction

1.1 Motivation

Metrology, the field of measuring the geometric attributes of an object, has

been one of the oldest topics in many areas of science and technology and is still

an area of active research. The prevalence of camera applications has motivated

the study of metrology using computer vision techniques [11][22]. Compared to

traditional methods, computer vision techniques have several advantages that can

be summarized as follows: (1) the visualization allows for better interaction between

human and the machine; (2) passive sensing, without affecting the objects being

measured; (3) the equipment is relatively cheap. These advantages make metrology

using cameras an important topic to study with applications in surveillance systems.

Techniques developed for still image metrology have reached maturity after

more than a decade of work. Recently, video metrology has received more attention

[3][33][43] because it has certain advantages over still image metrology:

• Video provides more reliable results

Even a low frame rate video sequence contains hundreds of frames. The volu-

minous information available in a video makes video metrology to be preferred

over image metrology. First, some restrictions imposed on image (e.g . , both
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reference and probe are required to appear concurrently without occlusion)

can be eliminated. Second, because noise can be minimized statistically us-

ing the redundancy in video frames, video metrology does not require high

resolution frames. A moderately priced video camera can provide accurate

measurement results.

• Video leads to easier automation

A video camera can be set and then run twenty-four hours a day without

human intervention, while still image cameras need manual operation (e.g . ,

shutter click). In image-based and video-based processing approaches, points

used for metrology need to be marked. Although automatic detection of fea-

ture points in images is a feasible task, these points in general do not have any

physical interpretation. Thus, the measurement results would be meaningless

without the knowledge of what the points represent. On the contrary, in the

case of a video sequence, point detection and tracking have become more reli-

able. Moreover, contextual interpretation of the detected points is possible in

video sequences.

As a topic in projective geometry, metrology is closely connected to other

topics, such as planar rectification, Euclidean structure reconstruction, motion esti-

mation, etc. Among these topics, camera calibration has the closest tie to metrology

because (1) calibration is a prerequisite step for metrology; and (2) measurement

results can be used for calibration. Thus, research on calibration is important to

metrology.
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1.2 Challenges in Video Metrology

The procedure for video metrology is straightforward: setting up the video

camera, obtaining minimal calibration, detecting/tracking points related to the en-

tity being measured, calculating the relative length, converting the length into the

absolute one using the reference, and estimating the error.

Two types of video cameras are most commonly used in video metrology. A

stationary camera is typically used in surveillance systems; and a camera undergo-

ing planar motion is typically mounted on moving vehicles or planes. A prerequisite

for metrology is minimal calibration [11], which is defined as the combination of

the vanishing line of the reference plane and the vertical vanishing point. Absolute

measurement values can be obtained from a fully calibrated camera [7]. In many

cases, however, the full calibration is not available. Relative measurement results,

i.e. , ratio of the lengths between two line segments, can be obtained using mini-

mal calibration. If the absolute value of one of them is given (called the reference

length), the other one (called the probe) can then be calculated. Before applying

the metrology algorithm, points related to the quantities to be measured should be

extracted from the video sequence using low level techniques. In most cases, more

than one estimate may be obtained. It is necessary to fuse the multiple estimates

and report a single result with error estimation.

Building an automated video metrology system presents several key challenges:

• It is difficult to automatically obtain the minimal calibration. Most existing

camera calibration algorithms emphasize the accuracy of intrinsic parameters,
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while the determination of extrinsic parameters is handled using minimal cal-

ibration. More emphasis is put on robustness of low-resolution or low-frame-

rate sequences rather than accuracy. Moreover, most calibration algorithms

assumes the availability of certain patterns or some prior knowledge of the

image, which may not be available in the video sequence or hard to detect.

• It is possible to track large number of moving points in a video sequence.

However, robust tracking without drift can be obtained only for a few. Fur-

ther, many of the stable tracks may not have geometric significance. It is

extremely important, but very hard, to choose the right points to perform

metric estimation.

• Usually, multiple estimates are obtained from different frames. These esti-

mates have different error covariances. Thus, a final estimate should not come

from a simple mean/medium operation. A method is required to fuse the

results from different frames to obtain an optimal estimate.

• It is difficult to apply the metrology algorithm to a moving camera. Even for

a camera exhibiting planar motion, the vanishing line may occupy different

positions in different frames due to motion jitter. To the best of our knowledge,

there is no discussion about how metrology should work under this situation.
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1.3 Existing Approaches and their Limitations

1.3.1 Calibration

Zhang [55] proposed a simple calibration algorithm using a planar image,

which has been widely adopted in video calibration. This method works well with

a large cluster of planar points. When the scene has little texture, however, this

method may not provide reliable results. Many similar algorithms using circles

[1][8][19][18][26][23][52] rely on detecting one or more ellipses, which is considered

difficult for video sequences.

Another method for calibration uses parallel lines [29]. As there is no general

way to judge whether two lines are parallel, and hence parallel lines are often man-

ually marked. Another issue is that there may not be sufficient number of parallel

lines for reliably estimating the vanishing line. Thus, this method only works on

some carefully selected images or videos.

Several methods have been designed to overcome these limitations. For exam-

ple, Lv et al . [33] extracted the vanishing line of the ground plane using a walking

human and assuming that the height of the human blob is a constant. However,

this approach is not robust [43], as a walking human is not a rigid object. Bose and

Grimson [3] estimated the vanishing point under the assumption that vehicles move

at constant speeds. In most cases, this assumption does not hold.
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1.3.2 Metrology

Existing image-based metrology approaches can be classified into two cate-

gories: parallel lines mensuration and planar rectification. Criminisi et al . [12]

contributed to height estimation in single and multiple views, where the line seg-

ments being compared are constrained to be parallel. Liebowitz and Zisserman [29]

presented an algorithm for planar rectification using the constraints of two line seg-

ments or a fixed angle. Chen and Ip [9] rectified an image using a vanishing line

and circular points and further measured the distances. Wang et al . [9] measured

the on-plane line segments using two set of perpendicular lines.

Existing video-based metrology techniques are simple extensions of image-

based metrology approaches. For example, Bose and Grimson rectified the plane

using a stationary camera and Liebowitz’s method [29]. Liang et al . [28] measured

the height using a purely translated camera, as a direct extension of Criminisi’s

method [11]. The limitations of image-based metrology methods still stand, and

no error estimation is provided. Staffer et al . [43] empirically developed a planar

normalization method for a stationary video. His result is empirical, and there is

no theoretical proof that the result can be improved.

1.4 Contributions

The contributions of this dissertation are categorized into three parts: (1) a

new approach for solving calibration problems; (2) robust calibration methods for

video; and (3) an automatic video metrology algorithm and its system implementa-
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tion.

We present a new calibration method using a circle and different types of

constraints in Chapter 3. An intermediate set of partial rectification problems is

identified using the techniques from the field of group theory. This concept provides

a general solution structure to partial rectification problems with different types of

constraints. The concept is applied to calibration using planar patterns including

a circle. The solution is represented as a curve including all valid mapping centers.

To be more specific, two sets of constraints are studied. The first set involves

distance constraints. Given the distance from a point to the circle, the partial

rectification problem is solved by identifying the fixed points that are eigenvectors of

the homography matrix (Section 4.1). This solution is used to solve problems with

other constraints, such as the line distance constraint, fixed arc angle constraint,

etc. The solution is further extended to incorporate using equal distance constraint,

i.e. , given two points with equal distance to the circle (Section 4.4). The second

set involves angle constraints. We specially deal with the constraint of a pair of

orthogonal lines (Section 5.4). Investigating the properties of the solution curve

allows for the solution to be easily obtained from the original image. As applications,

we propose a new method to fit concentric circles, and a new method for image

registration.

We then discuss new calibration methods for a video sequence when a planar

object moves on the ground. In Section 6.2, we present a two-step calibration algo-

rithm using a line segment moving on the reference plane with fixed length. The first

step obtains a coarse estimate using the assumption of a pin-hole camera model; the
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second step involves recursively tuning the estimate. Another calibration algorithm

uses an ellipse in planar motion (Section 6.3). It also consists of two steps: (1) affine

rectification by equalizing the sizes of the ellipses, and (2) metric rectification by

equalizing the shapes of the ellipses. This algorithm has been generalized to any

planar object moving on the reference plane.

Finally, the design of a metrology algorithm and corresponding system imple-

mentation are discussed in Section 7.3. This problem is solved to a concentric circle

fitting problem accompanied by an error analysis. Based on a technique for fast

wheel center detection, a real-time automated system for wheelbase measurement

of a moving vehicle using a stationary video camera is built (Section 7.5). The

measurement results for wheelbases are used to determine the vehicle sizes. When

applying the algorithm to stationary objects measurement using a camera in planar

motion, the jitter effects need to be removed. A novel method to compare the van-

ishing line between two frames using the plane induced homography is described in

Section 7.7. The method helps to select frames with similar calibration information

for metrology.

1.5 Summary

The overall goal of this dissertation is to investigate video metrology problems,

including feasibility, accuracy, implementation and applications. New calibration

methods are developed to be used in metrology work. A novel algorithm is developed

to achieve high accuracy for video mensuration followed by the implementation of
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a fully automated system.
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Chapter 2

Background

2.1 Notation

In the rest of the dissertation, we use upper case letters to indicate shapes

in the world system (or partially rectified image) and the corresponding lower case

letters for their projected images. For example, p is the image of a world point P.

A line segment joint by two endpoints P and Q is denoted as PQ and its length as

‖PQ‖.

Furthermore, we label the reference plane as R, its vanishing line as L. The

vertical vanishing point is denoted as z.

2.2 Elements of projective geometry

In this section, we introduce some fundamental terminology of projective ge-

ometry, including homogenous coordinates, the vanishing point, the vanishing line,

circular points and pole-polar relationship, etc. .

2.2.1 Homogenous coordinates and projective transformation

A point in a n-dimensional space Rn with coordinates (x1, x2, ..., xn) can be

represented by a length n + 1 sequence as (kx1, kx2, ..., kxn, k), where k is a non-
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zero real number. This representation is called homogenous coordinates. A point’s

homogenous coordinates are not uniquely defined, but with a scaling factor xn+1.

When xn+1 = 0, the point is at infinity.

A projective transformation of projective space Rn is represented by a linear

transformation of homogeneous coordinates:

P′ = H(n+1)×(n+1)P (2.1)

where H is an arbitrary non-singular matrix.

2.2.2 Camera Model

Let P = (X, Y, Z, 1)> be the 3-D homogenous coordinates of a world point and

p = (x, y, 1)> be the 2-D homogeneous coordinates of its projection on the image

plane. They are related by a 3× 4 projection matrix M:

x ∼ MX (2.2)

and M can be written as

M = K(R | v) (2.3)

where K is the 3× 3 upper triangular camera intrinsic matrix; R is the 3× 3 rotation

matrix and v is the 3× 1 translation vector.

2.2.3 Line, conic and their transformations

A line L in a plane is represented by an equation such as ax + by + c = 0, or a

vector (a, b, c)>. A point P lies on the line L if and only if L>P = 0. In homogenous
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coordinates, the intersection of two lines L and L′ can be written as P = L×L′, and

the line passing through two points P and P′ can be written as L = P× P′.

A conic is a curve described by a second-degree equation in the plane, which

is of three main types: hyperbola, ellipse, and parabola. The equation of a conic in

homogeneous coordinates is

ax2
1 + 2bx1x2 + cx2

2 + 2dx1x3 + 2ex2x3 + fx2
3 = 0 (2.4)

or in the matrix form P>CP = 0, where the conic coefficient matrix C is given by

C =




a b d

b c e

d e f




(2.5)

Under the point transformation P′ = HP, a line L is transformed to L′ = H−>L

and a conic C is transformed to C′ = H−>CH−1.

For an ellipse E, we use O(E) to represent its center, and a 2 × 2 matrix E to

represent its shape, such that E = T−>EOT
−1, where

EO =




E11 E12 0

E21 E22 0

0 0 −1




, T =




1 0 O(E)1

0 1 O(E)2

0 0 1




(2.6)

We further use A(E) to represent the area of E.

2.2.4 Vanishing point, vanishing line, and minimal calibration

The image of a point at infinity V∞ is called a vanishing point v∞, which can

be detected as the intersection of the images of a pair of parallel lines. For the
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reference plane

vertical point

vanishing line

camera center

Figure 2.1: Illustration of metrology setup

parallel lines in all directions on a plane, their corresponding vanishing points form

a straight line, which is called the vanishing line [22].

A common metrology setup includes one or more parallel planes, which is

called the reference plane(s). A reference plane generally refers to the ground plane

in surveillance scenarios, denoted as R. In the rest of this work, the vanishing line

always refers to the vanishing line of the reference plane, denoted as L. The vanishing

point for the reference plane’s normal direction is called the vertical (vanishing)

point, denoted as z. Knowledge of the vanishing line and the vertical point (L, z) is

called minimal calibration. An illustration of the setup with minimal calibration is

shown in Figure 2.1.

Given the 3 × 4 camera projective matrix M, the vertical point can be ob-

tained from z = M(0, 0, 1, 0)> = M3. The vanishing line can be written as L =

(M(1, 0, 0, 0)>)× (M(0, 1, 0, 0)>) = M1 × M2.
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Figure 2.2: The pole-polar relationship. The lines lp = cp and lq = cq are the polars

of the points p and q with respect to conic c. The point r is the pole of the line pq

with respect to c. The pole-polar relationship is projective invariant. For a circle C,

OP ⊥ OQ iff Lp ⊥ Lq.

2.2.5 Pole-polar relationship

The relationship between a pole and polar is illustrated in Figure 2.2. Line

l = cp is the polar of the point p with respect to the conic c, and the point p = c−1l

is the pole of l with respect to c [22]. The pole-polar relationship is invariant under

projective transformation. For two points p and q, the intersection between their

polars is the pole of the line pq (see Figure 2.2(b)):

(cp)× (cq) ∼ c−1(p× q) (2.7)

If C is a circle, the center O of C is the pole of the line at infinity L∞; and the

polar of a point at infinity passes though the center O.
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2.2.6 Circular Points

The circular points, denoted as I,J = (1,±i, 0)>, are the pair of points on

the line at infinity through which all circles pass. An absolute conic is defined as

π∞ = IJ> + JI>. The image of absolute conic (IAC) can be written as

ω = K−>K−1 (2.8)

followed the angle between two rays

cos θ =
x1ωx2√

x1ωx1
√

x2ωx2

(2.9)

Thus, IAC is very important to camera calibration and estimation on the Euclidean

Structure (ES).

2.3 Invariants

Invariants are properties of geometric configurations that remain unchanged

under an appropriate class of transformations. The simplest projective invariant —

straight line, is used precisely as the basic feature in vision systems. The cross-ratio

is another example of a projective invariant. Invariants have been used in model

based vision, shape descriptors for 3D objects, etc. [36]. In our research, invariants

are used to localize points and applied to metrology problems.

2.3.1 Invariant Forms

The invariants of the planar projective group have been extensively studied

[36] and many forms have been discovered. Here we give a brief survey of a theory
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(a) (b)

Figure 2.3: Illustration of cross-ratio (a) of points (b) of lines

of invariants.

Cross-Ratio

The cross-ratio of four collinear points is defined by

Cr(P1, P2; P3, P4) =
(P1 − P2)(P3 − P4)

(P1 − P4)(P3 − P2)
(2.10)

Changing the order of the four points on the projective line, six distinct

values of the cross-ratio can be identified within the permutations. If we define

Cr(P1, P2; P3, P4) as τ , the six distinct values are represented as τ , 1
τ
, 1 − τ , 1

1−τ
,

τ−1
τ

, τ
τ−1

respectively [36].

Since points and lines are dual, there exists an identical cross-ratio of lines.

The notations of the lines and angles are shown in Figure 2.3(b). The cross-ratio is

defined as

Cr(L1, L2, L3, L4) =
sin α13

sin α23

sin α24

sin α14

(2.11)

It is also a projective invariant.
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Two-Line-Two-Point

Four coplanar features, namely a pair of lines L1, L2 and a pair of points P1,

P2 define a quantity that remains unchanged under projective transformations:

2L2P(L1, L2, P1, P2) =
L1 • P1

L2 • P1

L2 • P2

L1 • P2

(2.12)

Five-Point

Given a set of five points on a plane, there exist three invariants:

I1(X1, X2, X3, X4, X5) =
M421M532

M432M521

(2.13)

I2(X1, X2, X3, X4, X5) =
M421M531

M431M521

(2.14)

I3(X1, X2, X3, X4, X5) =
M431M532

M432M531

(2.15)

Since I1 = I2I3, only two of the three invariants are independent.

2.3.2 Related Work

The history of invariant theory dates back hundreds of years. The early works

are reviewed in Parshall and Rice’s book [39]. Planar invariants have been used

in metrology, model matching, and recognition. The cross-ratio invariants have

been widely used in metrology algorithms [3][11]. Lourakis et al . [30] proposed

an approach to planar surface matching based on the two-line two-point invariant.

Parameswaran and Chellappa [37] applied the five point determinant invariants to

view-invariant human action recognition.

Burns [4] indicated the non-existence of 3D invariants in general. He also

analyzed the variance of a four point set in perspective projection. Weiss and Ray
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[49] proposed a model based 3-D invariant in a determinant form, and applied it for

object recognition in single images. Parameswaran and Chellappa [38] extended it

to video for human action recognition. Zhu et al . [57] proposed a six point invariant

and applied it for object recognition. Rao et al . [40] discovered that the matrix for

n points in multiple views is constrained by rank at most 3. This property is applied

for action recognition from trajectories.

2.4 Camera Calibration

When representing in homogenous coordinates, the image point and world

point are related by a 3× 4 matrix, which is determined by eight parameters of the

camera. Five among them are intrinsic to the camera itself, the so called intrinsic

parameters. They are scale factors in the x and y coordinate directions αx and

αy, skewness s, and the coordinates of the principle point (u0, v0). The other three

parameters indicate the relative position of the camera to the reference plane. In this

work, the height h, elevation angle θ, and rotation angle φ relative to the reference

plane are adopted.

Calibration includes two parts: determine the intrinsic parameters or the cal-

ibration matrix

K =




αx s u0

0 αy v0

0 0 1




and extrinsic parameters.
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2.4.1 Calibrate Camera Using Planar Patterns

Zhang [55] presented an algorithm to calibrate a camera using the homography

matrices among different views of a planar pattern. This algorithm contains two

steps:

1. Define

vij = (hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi1hj3 + hi3hj1, hi3hj2 + hi2hj3, hi3hj3)
>

and solve for a 1× 6 vector b by



v>ij

(vii − vjj)
>


 b = 0 (2.16)

2. Compute B = K−>K−1 by setting b = (B11, B12, B22, B13, B23, B33)
>

3. Extract the intrinsic parameters from B:

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − (B2
13 + v0(B12B13 −B11B23))/B11

αx =
√

λ/B11

αy =
√

λB11/(B11B22 −B2
12)

s = −B12α
2
xαy/λ

u0 = sv0/αy −B13α
2
x/λ (2.17)

The last step actually is a Cholesky factorization.

Zhang’s algorithm requires at least three images from one planar pattern,

which are not always available. Under the pin-hold camera assumption (i.e. , no
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(a) (b)

(c) (d)

Figure 2.4: Patterns used for calibration. (a) concentric circles [25]. (b) coplanar

circles [20]. (c) a circle and multiple lines passing through the center of the circle

[51]. and (d) a circle and two sets of parallel lines [9].

skewness, unit aspect ratio, and coincidence of the principal point and the image

center), the only unknown intrinsic parameter is the focal length f . The homography

matrix can be written as

H =




f 0 0

0 f 0

0 0 1




(
Hx Hy H0 + λHz

)
(2.18)

Using the property Hx • Hy = 0, f can be calculated from H.

2.4.2 Related works

Subsequent to Zhang’s work, the interest in calibration using planar patterns

has been reignited. Meng et al . [34] calibrated a camera using a circle and multiple

lines passing through its center. Yang et al . [52] published a method to calibrate
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a camera using three co-centered circles. Calibration using concentric circles was

first proposed by Fremont et al . [16]. The features of this pattern were further

investigated by Kim et al . [26], Gurdjos et al . [18] and Abad et al . [1], respectively.

Jiang and Quan [23] demonstrated a practical algorithm to detect concentric circles.

In all of the above solutions, the key step is to localize the projected common

center of the two concentric circles. The solutions can be grouped into two main

approaches: (1) recursively detect the midpoints of chords using the cross-ratio, and

(2) solve the projected center of the concentrate circles as a degenerate circle of the

linear combination between the two concentric circles. Another pattern being widely

used is coplanar circles, which was first proposed by Wu et al . [51]. They discussed

an approach to detect the vanishing line using two planar circles using different

relations among the circles. Chen et al . [8] presented a complicated method to

calibrate a pin-hole camera using multiple coplanar circles. Gurdjos et al . [20] later

proposed a simpler solution using the concept of family of circles.

Calibration using spheres has also received some attention. Agrawal and Davis

[2], Daucher et al . [13], Ying and Zha [53], and Zhang et al . [54] investigated this

problem, respectively.

Zhang [56] also proposed a calibration method using one-dimensional objects

for calibration. Cao and Foroosh [5] extended this method using a trapezoid. Cao

and Shah [6] calibrated a camera using two vertical lines and their shadows. Gurdjos

et al . [19] used confocal conics for calibration.
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2.5 Metrology

Metrology in image and videos has been studied as an interesting problem

with many applications. It has two components: spatial localization and dimension

determination. The spatial localization component estimates an object’s position

relative to the environment, for example, the ball’s position with respect to the goal

post can be used to determine whether a goal has been scored in a soccer game

[41]. Since the object’s location changes with time, generally multiple concurrent

views are needed. The dimension determination component estimates the distance

between two points on the same object [11]. It has received more attention because

the results generally can be used to recognize or identify the object itself. As the two

points are invariant relative to the object in the world system, evidences occurred

using multiple frames always improve the measurement results.

Metrology requires less calibration information compared to 3D reconstruction

problems. A common setup includes one or more parallel reference planes. In

stationary surveillance scenarios, the reference plane generally refers to the ground.

Minimal calibration [12], defined as the combination of the vanishing line of the

reference plane and the vertical vanishing point, is assumed to be available. The

objective is to estimate the ratio of lengths between two parallel line segments in

the world system. If one of them has a standard known length, the length of other

can be calculated from it.
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2.5.1 Categories

From the properties of objects, metrology can be categorized into rigid ob-

ject metrology and non-rigid object metrology. Common examples of rigid objects

include paintings, buildings, and vehicles. It is relatively simple to measure rigid

objects since the distance between two points on the object remains constant in

the video. Measuring a non-rigid objects is not only a geometry problem, but also

related to other issues such as selecting points or frames relatively invariant to the

length. For example, to accurately measure the height of a walking human in a

video, recognizing the human pose is important.

From the relationship of the line segment to the reference plane, there are

three types of metrology one can consider: length, height, and others. Length

metrology measures the line segments lying on or parallel to the reference plane;

Height metrology measures the line segments perpendicular to the reference plane,

or the distance from a point to the reference plane. Some other geometric properties,

such as size (which is weakly defined), 2D radius [43] have been considered also, but

just for approximate normalization rather than for accurate results.

The task of metrology arises in many contexts: single view metrology, multiple

view (normally two views) metrology, and video metrology. Single view and multiple

view metrology, also known as image metrology, have been well studied [11]. Since

only limited information can be derived from a single image or multiple images,

many assumptions have to be made, for example, the parallel relationship between

two lines, etc. Also, it needs manual steps such as endpoint localization of line
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segments.

Due to the ubiquitous presence of video cameras, video metrology has recently

received a lot of attention. In contrast to still image-based metrology, it has the

potential to be a fully automated system. It does not require the parallel assump-

tion either. Video metrology can further be classified as single stationary video

metrology, multiple video metrology, and moving video metrology.

2.5.2 Applications

Metrology has a wide spectrum of applications.

Metrology can be a preprocessing step for recognition. For example, the height

of a walking human excludes a large number of candidates from a gallery in a

recognition system. It can also be used for classification. For example, different

types of vehicles may have very different ratios between their height and length

(sedan vs. SUV); or very different ratios between their total length and wheel base

(sedan vs. hatchback). In our experiments using a single video (Section 7.5.4), we

further show that metrology can be used to determine the vehicle category (compact,

mid-size, or full-size).

Detecting abnormal events is an essential issue for a surveillance system. Ab-

normal object sizes may also belong to abnormal events. For example, a height of a

vehicle larger than normal generally implies that something has been added to the

top of the vehicle.

In a driver assistance system (DAS), it is important to distinguish people from
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vehicles in real time. The size of the object is a good feature for this task. Also,

properly detecting the distance from one vehicle to another objects prevents collision

and accidents, which belongs to the topic of metrology.

Metrology has applications in sports too. In a soccer game, for example,

whether a goal is scored or not is not easy to determine when the view is blocked by

the player’s body at that moment. Estimating the ball’s position at each frame can

be done using metrology algorithms. Metrology can resolve any disputes that may

arise. one can think of similar applications in other sports like tennis and cricket.

Metrology also helps to solve other computer vision problems. For example, in

a tracking system, the size/height of an object can be treated as a feature. When two

objects overlap and separate from each other, this feature can be used to maintain

tracking.

2.5.3 Related Work

It was realized early on that the ratio of two line segments can be recovered

when the camera’s parameters (intrinsic and extrinsic) are known. To simplify the

problem, sometimes many common assumptions have been made, such as: unit

aspect ratio, zero skew and coincidence of principal point and the image center.

Caprile and Torre, in their classical work [7], developed an algorithm to compute

the focal length and projection matrix using the properties of vanishing points from a

single view. Liebowitz and Zisserman [29] presented a two-step algorithm to rectify

the perspective images of planes. The first step is to estimate the vanishing line
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from two detected vanishing points, and transform the image from projective to

affine. Using three constraints, they transformed the image from affine to metric.

Triggs [46] presented a systematic error analysis. Criminisi, et al . [12] considered

the estimation of height from an uncalibrated image using projective geometry and

the cross-ratio, which have become popular in height metrology. In a subsequent

work [11], they extended this work to multiple reference planes. Given two sets of

perpendicular lines, Wang et al . [48] measured the line segments on the reference

plane without rectification. Moons et al . [35] presented an algorithm for recovering

the 3D affine structure from two perspective views taken by a camera undergoing

pure translation. In the context of video metrology, Stauffer et al . [43] built a linear

model to normalize object size in a video. Finally, Bose and Grimson [3] rectified

the plane by tracking objects moving on a straight line at a constant speed.
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Part II

IMAGE CALIBRATION USING A CIRCLE AND OTHER CONSTRAINTS
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Chapter 3

Partial Rectification

3.1 Introduction

Camera calibration [15][22] has received much attention over the last decade.

The increased popularity of the zoom lenses and frequent adjustment of the camera

settings demand camera calibration to be performed fast and conveniently. Due to

the improved quality of the imaging system, unwanted nonlinear distortions (e.g . ,

radial distortion) can be ignored, which enables the use of simple planar patterns for

calibration. Triggs [46] and Zhang [55] have developed point-based self-calibration

methods using a planar pattern from multiple views. Accurate calibration using this

technique requires the points to be spread on the image plane. A common mode of

failure for point-based method is when the point correspondences are poor or feature

points are occluded. Recently, many rectification algorithms using planar patterns

that include lines and circles have been reported [8][9][17][20][23][25][34][47][52]. The

camera can then be directly calibrated from the rectification result. These algo-

rithms claim additional robustness as lines and conics can be accurately detected

even when they are partially occluded.

Each of the existing rectification algorithm deals with a special planar pattern.

Thus, a disadvantage of these algorithms, is that their utility is limited, i.e. , whether

any of these algorithms work in the real world depends on whether the corresponding
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pattern appears or not.

In this chapter, we identify an intermediate set of partial rectification problems.

These problems are common to most rectification/calibration algorithms. The basic

concept is to treat the given pattern as a set of independent constraints, and then

rectify the plane by combining the solutions for each constraints. This concept is ap-

plied to planar patterns including a circle. We introduce the term “mapping center”

as the solution for these partial rectification problems and set up the rectification

system. Two types of examples will be illustrated in the next two chapters.

3.2 Partial Rectification

Metric rectification, also referred as rectification, recovers the shapes of the

planar objects from their images. The recovered geometric properties include ratio

of lengths, angles, etc. The term “rectification” has been extended to recovering

a portion of geometric properties. For example, affine rectification only recovers

parallelism by mapping the vanishing line to the line at infinity. In other words, the

line at infinity is fixed during the homography transformation between the original

plane and the recovered image.

To distinguish the original and extended concepts of the term “rectification”,

we use another term “partial rectification” to represent the extended concept. For-

mally, a “partial rectification” is defined as a set of transformations, any of which

recovers one or more geometric properties of the plane or a given pattern. As an

example, affine transformation recovers parallelism in all directions, and so it is one
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kind of partial rectification. A weaker partial rectification may only recover the par-

allelism in a special direction, whose corresponding set of transformation matrices

maps one vanishing point to the point at infinity. More examples will be discussed

in next two chapters.

3.2.1 View from Group Theory

To clarify partial rectification and its solution properties, we study it from a

group theory viewpoint. Projective transformations form a group P , i.e. , it satisfies

P × P → P . Similarity Gsim is a subgroup of projective Gsim ⊂ P , which keeps all

the geometric properties invariant (except for absolute length).

The set the transformations that keeps any one (or more) geometric property

invariant form a subgroup Ginv ⊂ P . Using affine as an example, the invariant

is the line at infinity. Thus, affine transformations form a subgroup Gaff ⊂ P :

Gaff × Gaff → Gaff . Another example is a set of transformations that keep a

unit circle C = diag(1, 1,−1) fixed: Gcir = {H|H−>CH−1 = C}. It is obvious that

Gcir × Gcir → Gcir, thus it is a subgroup of P .

Let h0 be the homography matrix from the world plane to the image plane.

The solution to a metric rectification problem is a matrix H satisfying H×h0 ∈ Gsim.

We define a subset S ∈ P satisfying S × h0 = Gsim. Obviously H can be obtained as

any element of S. On the contrary, since Gsim has been well studied, S can be also

easily obtained from H as S = Gsim × H. Thus, we may redefine S as the solution to

the metric rectification problem. The solution is actually a right coset of Gsim in P :
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Ssim,h0 = Gsim × h−1
0 .

Similarly as described for metric rectification, for any arbitrary partial rectifi-

cation problem, a corresponding subgroup can be determined, such that the solution

becomes a right coset of the subgroup: Gpartial: S × h0 = Gpartial. The geometric

invariant corresponding to the subgroup is nothing but the geometric property to

be recovered in the partial rectification problem. For example, a partial rectifica-

tion problem is to recover a circle from its projection, e.g . , an ellipse. We let the

projected circle be transformed to the unit circle C. Thus the partial rectification

problem corresponds to the subgroup Gcir. The solution of this partial rectification

becomes Gcir × h−1
0 . The subgroup is not uniquely defined. In the above example,

we may use any circle C′ to replace the unit circle C, and the solution is determined

only up to a similarity transformation.

We now highlight a nice property of partial rectification. Let there be two

partial rectification problems with solution S1 and S2 respectively. We have S1×h0 =

G1 and S2 × h0 = G2. It is easy to prove that (S1

⋂S2)× h0 = (G2

⋂G2). Thus, the

intersection of the solutions is also a solution for a new partial rectification problem,

which recovers both geometric properties of the two previous partial rectification

problems.

Given multiple independent geometric properties in a pattern, no transfor-

mations keep them all invariant except for similarity transformations. We design

several partial rectification problems, so that for each geometric property, it is re-

covered by at least one of the problems. Thus, the intersection of all the solutions

of these partial rectification problems transforms the projected pattern to a pattern
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Figure 3.1: Illustration of the homography transformation groups defined by partial

rectifications. P : group of all the projective transformations. Gsim: subgroup cor-

responding to similarity, which keeps all the geometric properties. Gcir: subgroup

that keeps a unit circle C fixed. G1,2: subgroups keeps another geometric property

besides keeping C fixed. Gsim = G1

⋂G2.

keeping all the independent geometric properties, which means it is the solution to

the metric rectification problem.

Although the concept of partial rectification suggests a general solution for

rectification, there are still two problems to be solved before its real application: first,

how to obtain the solutions of the partial rectification problems; and second, how

to calculate the intersection of two sets. In the rest of this chapter, we concentrate

on the latter for the case when a circle is contained in the pattern. Examples of

solutions for the first problem will be discussed in the next two chapters.
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Figure 3.2: Different rectification for the same conic when choosing different map-

ping centers

3.3 Partial Rectification Using a Circle

Now we consider a specific category of partial rectification problems, which

recover a projected circle. i.e. , those transformations convert a given ellipse c into a

circle. Under this, we first investigate the number of additional geometric properties

that are needed for metric rectification, which is answered through an analysis of

the Degrees of freedom (DoF). A general projective transformation has eight DoFs

while similarity has four (two translation, one rotation and one scaling). The four

additional DoFs require four independent constraints to remove the distortion of an

image. To enforce a general conic of the format ax2 + bxy + cy2 + dx + ey + f = 0

be a circle, two conditions are naturally provided: a = c and b = 0. Thus, two

additional constraints are needed. If each partial rectification provides one more

constraint, metric rectification can be done from two partial rectifications problems.

The relationships among the partial rectification problems is shown in Figure 3.1
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3.3.1 Mapping center

Lemma 1. Circle rectification. Given an ellipse (projected circle) c and a point

o inside c, there is a unique matrix H (up to a similarity) that transforms o to a

point O and c to a circle C centering at O.

Proof. Existence: Without loss of generality, let o be the origin (0, 0, 1)>. We

represent the ellipse c and the transformation matrix H as

c =




A B D

B C E

D E F




H =




a 0 0

b c 0

d e f




It is easy to verify that

H =




√
A + d2 − b2 0 0

(B + de)/c
√

C + e2 0

−D/f −E/f
√−F




(3.1)

satisfies the requirement. Transforming using this matrix, it is seen that O =

(0, 0, 1)> is the origin, and C is a unit circle centering at O.

Uniqueness: Assume that there are two matrices H1 and H2 both satisfying

the requirement. Matrix H2H
−1
1 maps a circle C1 and its center O1 to a circle C2 and

its center O2 respectively. Because L∞ = C1O1 and L∞ = C2O2 as mentioned in the

last section, the line at infinity is fixed during the transformation H2H
−1
1 . Thus, H1

and H2 are related by an affine transformation. Because a circle remains invariant,

it is a similarity transformation.

We call the point o a mapping center because it is mapped to the center of

35



v

s

t

l
1

l
2

Figure 3.3: An example for partial rectification. The constraint is a pair of parallel

lines, and the solution is the image of diameter st.

the circle in the rectified plane. For a valid solution, the mapping center is always

inside the projected circle.

3.3.2 Solution Using Mapping Center

Given a conic (ellipse) c as a projected circle, the rectification matrix H is de-

termined by the mapping center o. Therefore the rectification problem is equivalent

to finding the mapping center o. Because o can be any point inside c, it has two

degrees of freedom. Rectification can be also viewed as reducing the Dofs from two

to zero by incorporating additional constraints. The partial rectification problem

with a circle reduces the Dofs by one. In general, because there is still one remaining

Dof, the solution to a partial rectification problem is a curve or several curves on

which the mapping center resides.

To illustrate this concept, we provide a simple example shown in Figure 3.3.
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The constraint is the projection of a pair parallel lines, and the corresponding partial

rectification problem is to rectify a projected circle c and to parallelize the given

lines l1 and l2. The solution is obtained as follows: v = l1× l2 is the vanishing point.

Let l = cv be the polar of v with respect to c. It passes through the mapping center.

Denote the two intersections of c and l as s and t. Because the mapping center is

inside c, the solution is st, a line segment on l inside c.

Given a projected circle with more than two constraints, the plane can be

fully rectified as follows: (1) Obtain the solution curve for the partial rectification

problem from each constraint. (2) Calculate the intersection(s) of all the curves.

The true mapping center satisfies all the constraints and lies at the intersection. (3)

Obtain the homography matrix using Lemma 1 and rectify the pattern.

3.3.3 Ambiguity and Solution in Multiple Constraints

Generally, two curves may have more than one intersection. The solution

of two partial rectification problems may not be unique. Except when the planar

image is cut by the corresponding vanishing line, none of the intersections can be

rejected. Thus, ambiguity may arise when there are only two constraints, which can

be removed by multiple (≥ 3) constraints.

If there are more than three constraints, however, in real case the solution

curves may not pass through a common point due to noise. Under this situation, we

use the point with minimum sum of the distance as the mapping center. A better

approach is to assume that each constraint is independent of each other (which may
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not hold in most cases); analyze the perturbation of each solution due to noise; and

estimate the point with highest probability to be the mapping center.

3.3.4 Solutions for Existing Partial Rectification

3.3.4.1 A Line l Passing Through the Circle’s Center

Meng, et al . have discussed the pattern with multiple lines passing through

the center of a circle [34]. This problem can be considered as a collection of partial

rectification problems. Each problem is the image of a line passing through the

center of the circle, and the solution is the corresponding diameter of the circle.

3.3.4.2 A Vanishing Point v

Denote the polar line of the vanishing point v as l = cv. l is the line passing

through the mapping center.

When the vanishing line lv is given [9], the solution is its pole point x = c−1lv.

Actually this is a metric rectification problem and x is the mapping center.

3.3.4.3 A Coplanar Circle

The mapping center can be estimated using Gurdjos’ method [18].

3.3.5 Performance under noise

Generally speaking, the projected circle should be robust because it is obtained

from multiple detected points. Thus, in the performance analysis, the circle is always
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assumed to be noise free, which works well except when the projected circle in the

image plane is very small. Based on this assumption, the rectification performance

only relies on the accuracy of the detected mapping center. In the rectified image, it

only relies on the distance from the detected mapping center X to the ground truth

O, denoted as dx = ‖OX‖.

Because the detected mapping center X is on the calculated solution curve S,

if S does not pass through O, X cannot be coincident to O. Actually, dx cannot be

smaller than the distance from O to S, denoted as ds. We use ds to indicate the

performance of the solution.

It should be noted that even two solution curves with small ds do not guarantee

an accurate mapping center.

An inverse problem is to study how the points on the plane are affected by

inaccurate mapping center. As shown in Figure 3.4 (a), the mapping center X (in

red circle) is perturbed by a small amount in x direction from O (in blue cross).

The displacements of points on the plane δP are displayed in arrows.

Discompose δP into two components, the one in radial direction δPr and the

one in angular direction δPa, which are shown in (b) and (c) respectively. For the

points close to the x-axis, their displacements are mainly from the radial direction;

for the points close to the y-axis, their displacements are mainly from the angular

direction.
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Figure 3.4: Rectification performance when mapping center is disturbed. (a) Arrow

plot. Perturbation in (b) angular direction (c) radial direction
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Chapter 4

Constraints Related to Lengths

In planar calibration problems, a typical constraints come from metrology, i.e. ,

the ratio between two lengths. In this chapter we discuss the partial rectification

problem in the presence of such constraints.

4.1 Point Distance Constraint

A circle naturally provides a length: its radius, which can be used as the

reference length. Unlike other line segments, the center of the circle, served as

one of the endpoint of the radius, is not marked on the image. The other lengths

come from a point on that plane. A single point does not contain any dimensional

information, but its relative position with respect to the circle can be used. Rather

than using “inside” or “outside” to represent the relationship between the point and

the circle, the metric information derived by defining the distance from the point to

the circle as the distance of the point to the center is used. Using the distance as a

constraint, we address the following partial rectification problem:

Problem 1. Given an ellipse c as the image of a circle under projective transfor-

mation, a point p not on the ellipse and a positive number dP (dP > 1 when p is

outside c, dP < 1 otherwise), partially rectify the plane such that c is transformed

to a circle C, p to a point P, and ‖OP‖ = dP r, where O is the center of the circle C
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and r is the radius of the circle. ‖OP‖ is defined as the distance from the point P

to the circle C.

Without loss of generality, we assume r = 1 to simplify the derivation.

4.1.1 An Arbitrary Mapping Center Solution

An arbitrary mapping center in the solution set for Problem 1 can be obtained

as:

Solution 1. Arbitrarily draw a line from p intersecting c at two points u and v as

shown in Figure 4.1. Select the point x satisfying

x =
(dP + 1)up + (dP − 1)vp− 2dP uv

2dP p− (dP − 1)u− (dP + 1)v
(4.1)

Using x as the mapping center, the corresponding transformation converts c to the

unit circle C and p to a point P, and the distance from P to C is dP .

Proof. Let points O, U, V and P be the points x, u, v and p after the transformation

respectively.

Since O, U, V and P are collinear, the cross ratio does not change:

‖PU‖
‖PV‖ =

‖PU‖
‖PV‖

‖OV‖
‖OU‖ =

‖pu‖
‖pv‖

‖xv‖
‖xu‖ = −dP + 1

dP − 1
(4.2)

which leads to PO
UV

= dP /2. Thus, the distance is recovered.

4.1.2 Corresponding Subgroup (Approach One)

Without loss of generality, the partially rectified pattern can be viewed as

follows: A unit circle C and a point P at the x-axis with distance dP to the circle.
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Figure 4.1: Illustration for obtaining an arbitrary solution for Problem 1.
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Figure 4.2: Illustration for the corresponding subgroup solution for Problem 1,

approach one.

The transformation of the corresponding subgroup keeps the pattern fixed. It is

re-stated as follows:

Problem 2. Given a unit circle C = diag(1, 1,−1) and a point P = (d, 0, 1)>, find

the valid mapping centers such that during the corresponding transformations both

C and P remain fixed.

A simpler version of Problem 2 is to acquire the mapping centers on the x-axis,

denoted as X = (x, 0, 1)>. Let the circle C intersect the x-axis as A = (1, 0, 1) and

B = (−1, 0, 1). After transformation, A′ and B′ are still on the circle and on the

x-axis. There are two cases to consider:
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Case 1: A′ = A and B′ = B. Because P′ = P, there are three collinear points

fixed during a transformation, thus the line is point wise fixed. Especially we have

X = X′ = O. It is a trivial transformation.

Case 2: A′ = B and B′ = A. The cross ratio of the four collinear points X, P,

A, and B are invariant, written as

AP

BP

BX

AX
=

BP

AP

AO

BO
(4.3)

Or

(d− 1)

(d + 1)

(x + 1)

(x− 1)
=

(d + 1)

(d− 1)

(0− 1)

(0 + 1)
(4.4)

By solving (4.4), we have

x =
2d

d2 + 1
(4.5)

Because P and C are fixed, the polar line of P with respect to C is also fixed.

Denote the polar as Lp, and let it intersect the x-axis at Q and intersect the circle

at M and N respectively. After the transformation, Q′ is still on the x-axis and M

and N still at the unit circle. Thus, these three points are fixed. The line Lp is point

wise fixed during the transformation. We then have the following observation:

Lemma 2. The point (1/d, y, 1)> is fixed during a transformation corresponding to

the mapping center (2d/(d2 + 1), 0, 1)>, where y can be any number.

Let us return to Problem 2 and consider the mapping center not on the x-axis.

Let X = (x, y, 1)> and denote θ = tan−1(y/x). Draw the perpendicular PR of OX,

as shown in Figure 4.2. ‖OR‖ = d cos θ. From Lemma 2, we have

‖OX‖ =
2d cos θ

d2 cos2 θ + 1
(4.6)
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Figure 4.3: Configuration of the subgroup for Problem 1. M and N are the tangent

points and can be obtained as the intersection points between the unit circle C and

P’s polar line Lp. P, M and N are fixed points during the transformation in the

subgroup

which leads to

x =
2d cos2 θ

d2 cos2 θ + 1
(4.7)

y = x tan θ (4.8)

To keep P fixed, the mapping center should satisfy (d2 + 1)x2− 2dx + y2 = 0. That

is the solution of the mapping center.

4.1.3 Corresponding Subgroup (Approach Two)

As mentioned above, P is fixed during the transformation. M and N, the two

intersections between the polar of P and the circle C are also fixed. When P is outside

C, as shown in Figure 4.3, denote ∠MON as 2ψ. The coordinates of the three points

are M = (cos ψ, sin ψ, 1)>, P = (1/ cos ψ, 0, 1)>, and N = (cos ψ,− sin ψ, 1)>. When

P is inside C, the three points can be represented using the same format, except that
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ψ becomes a complex number. The following derivation holds for both cases.

Denote the transformation matrix as H. The equation of fixed P becomes

P ∼ HP, i.e. , P is the eigenvector of H. For the same reason, M and N are also the

eigenvectors of H. The three points are not collinear, so the three eigenvectors are

independent. Let em, ep and en be the three corresponding eigenvalues of M, P and

N. H can be written as

H = VDV−1 (4.9)

where

V = (M P N) =




cos ψ 1/ cos ψ cos ψ

sin ψ 0 − sin ψ

1 1 1




(4.10)

D = diag(em, ep, en) =




em 0 0

0 ep 0

0 0 en




(4.11)

Because the unit circle is transformed into itself, we have C = H−>CH−1. Using

(4.9) and that D is symmetric (D> = D), this condition becomes

C = (VDV−1)−>C(VDV−1)−1 = V−>D−1V>CVD−1V−1 (4.12)

which can be further simplified as

D−1(V>CV)D−1 = (V>CV) (4.13)
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Let A = V>CV. Simple manipulations yield

A =




0 0 −2 sin2 ψ

0 tan2 ψ 0

−2 sin2 ψ 0 0




(4.14)

where A is a symmetric antidiagonal matrix. Since D−1AD−1 = A, the corresponding

parameters require

ep = ±1 (4.15)

emen = 1 (4.16)

Letting e = em

ep
, e+ = e + 1

e
, and e− = e − 1

e
, the transformation matrix H can be

written as

H ∼




e+ cos2 ψ − 2 −e− cos ψ sin ψ −(e+ − 2) cos ψ

e− cos ψ sin ψ −e+ sin2 ψ −e− sin ψ

(e+ − 2) cos ψ −e− sin ψ −e+ + 2 cos2 ψ




(4.17)

The mapping center X = (xt, yt, 1)> is transformed to the center of the circle,

i.e. , the origin O = (0, 0, 1)>. Using O = HT, the following two conditions are

obtained

(e+ cos ψ − 2

cos ψ
)xt − e− sin ψyt = e+ − 2 (4.18)

e− cos ψxt − e+ sin ψyt = e− (4.19)

By solving e from (4.19) and removing e from (4.18), the equation for the curve of

X is obtained as

xt(xt(1 + cos2 ψ)− 2 cos ψ) + y2
t cos2 ψ = 0 (4.20)
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Using d = 1/ cos ψ, the final result can be written as

1 + d2

d2
x2 − 2

d
x +

y2

d2
= 0 (4.21)

Thus same results are obtained from both approaches.

4.1.4 Geometric Properties of The Solution Curve

Denote the left hand side of Equation (4.21) as f(x, y). Equation (4.21) can

be written as f(x, y) = 0. Obviously this curve is a conic. To be more specific, it

is an ellipse. Denote it as E. Due to symmetry, E is symmetric with respect to the

x-axis. It is also easy to verify that E passes through the origin O: f(0, 0) = 0. That

is because the origin O itself should always be a valid mapping center.

The intersections between the circle C and E can be obtained by solving x2 +

y2 = 1 and (4.21). When P is outside C, two double intersections are obtained: M(2)

and N(2), i.e. , E is tangent C at M and N. This phenomenon can be explained as

follows. When P is outside C, draw a line intersect C and very close to M. Let the

intersection be U and V. There must be a point X in the segment UV to satisfy

(4.1), i.e. , using X as the mapping center, the corresponding transformation keeps

P fixed. Thus, M can be as close to E as we want. In other words, E passes through

M. At the same time, any mapping center to keep the distance cannot be outside

C, which leads to the conclusion that E is not outside C. Then E is tangent to C at

both M and N. When P is inside C, E is tangent to C at complex points. In the real

image, E is inside C.

Theorem 1. Given a circle C and a point P, denote the polar P as Lp = CP,
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(a) P is outside C (b) P is inside C

Figure 4.4: The curve E as the solution for Problem 2. (a) When P is outside C, E

is a part of ellipse tangent to C; (b) otherwise, E is the whole ellipse totally inside C

and let M and N be the two intersection points between C and Lp (may not be real

points). All the mapping centers that keep C and P fixed during the transformation

form a curve E, which is an ellipse passing through the original point O and tangent

(intersect twice) to C at two points M and N.

Further analysis shows that, when P is inside C, E separates C into two regions.

The inner region of E contains P. For any point in the inner region as the mapping

center, the distance from transformed P to O is shorter than d; and for any point

in the outer region as the mapping center, the transformed distance is greater than

d. When P is outside C, E separates C into three regions. Using any point in the

region inside E as the mapping center, the transformed distance is greater than d;

for a point in other two regions, the transformed distance is smaller than d.
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4.1.5 General Solution and Validation

Using the results given above, the solution curve e on the original image can

be obtained as follows:

1. Find an arbitrary solution to partially rectify the pattern. Denote the corre-

sponding matrix as H.

2. On the new pattern, calculate the ellipse E passing through the center of the

partially rectified circle and tangent to the circle at the tangent point of the

line from the point.

3. Transform the ellipse E back to the original image e = H−1E

Since any ellipse is determined by five boundary points, an alternative ap-

proach is described below:

1. Arbitrarily find five mapping centers as special solutions.

2. Fit an ellipse e using the five mapping centers.

However, not every point on e can be a valid mapping center. When p is

outside c, they are required to be on the same side of the vanishing line, which

means that the point p and the mapping center x must be on different sides of the

line lp, where lp = cp is the polar of p with respect to c. Thus, the valid mapping

center is just an arc (a part) of e.
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4.1.6 Perturbation Analysis

The perturbation analysis is performed on the world plane. When the point P

moves a small amount to P′ = P+δP, the corresponding dislocation of the mapping

center is studied.

Because the perturbation on the angular direction δPa does not change the

distance from P to O, it has no effect to ds. Thus, only the radial component δPr is

considered. A simple calculation yields ds = δPr/‖(d2
P − 1)‖. The sensitivity of the

solution to the input, defined as δPr/ds, is ‖(d2
P − 1)‖.

It is easy to see that when dP = 1, i.e. , P on C, the sensitivity is infinity.

Thus, a tiny change in P in the radial direction results in infinite displacement of

the mapping center. Actually, the point on the circle contains no information and

so should not be considered as a constraint. The mapping center is sensitive to the

points close to the circle’s boundary. Thus, when dP ∼ 1, the performance of the

solution curve may be not good.

4.2 Metric rectification using two distance constraints

Problem 3. Given an ellipse c as the image of a circle, two points p1,2 and two

positive numbers d1,2, rectify the plane such that c is transformed to a unit circle C,

p1,2 to points P1,2, to satisfy ‖OP1‖ = d1, ‖OP2‖ = d2, where O is the center of the

circle C.

The solution to this problem is obvious: solve two partial rectification problems

using the independent distance constraints. The solution then is the intersections
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of the two solution curves.

4.2.1 Uniqueness analysis

Generally, two ellipses may have zero to four intersection points. We now

analyze the uniqueness of the solution. For time being, when the two ellipses e1 and

e2 are tangential at one point, we treat that point as intersecting at the same points

twice, i.e., two intersections. There are three cases to study.

• Case 1, both p2 and p2 are inside c.

Choose any point on the line segment p1 and p2 (which is always inside c as the

mapping center) to transform the pattern. p1 and p2 transform to opposite side

of the center of the circle. We discuss this problem using this configuration.

Without loss of generality, we assume p1 to be along the positive half of the

x-axis and p2 along the negative direction. e1 and e2, the two solution curves

to the corresponding partial rectifications, are ellipses symmetric to the x-

axis. Their intersections are also symmetric to the x-axis, so the number of

solutions is a even number: 0, 2, or 4. Because the centers of e1 and e2 are

along the positive and negative halves of the x-axis, there are at most two

intersections. Since there exists at least one intersection as the ground truth,

there are two valid solutions. These two solutions are symmetric to the x-axis

on this configuration.

• Case 2. p1 is inside c and p2 is outside c.

Select a point that is on the line segment of p1p2 and inside c. Transform the
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pattern using it as the mapping center. The configuration becomes similar to

case 1, so there are two solutions.

• Case 3. Both points are outside c.

The relationship of the solution curve is studied in the rectified image, i.e., the

two curves already intersect at the center of the circle. Each solution curve is

a minor arc (less than 180 degree) of the ellipse, which means that the number

of intersections is no more than two. Based on how the four points m1, n1,

m2, and n2 are ordered on the rectified circle c, there are three subcases:

– sequence m1n1m2n2: Under this case, the line segment p1p2 intersects c.

The number of intersections is even. Since the two curves intersect at the

original point, there are two intersections.

– sequence m1m2n2n1: Under this case, p1p2 intersects c at its extension

line. For the same reason, there are two valid mapping centers.

– sequence m1m2n1n2: Under this case, the line p1p2 does not intersect c.

The number of intersections is odd, which leads to one.

We summarize the results as follows. When the line p1p2 intersects c, there

are two valid solutions; otherwise, there is one solution.

4.2.2 Equal angles in two-solution cases

When there are two solutions, denote the mapping centers as s and t. Let Ps
1,2

be the two points after rectification using s; Pt
1,2 be the two points using t. The
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Figure 4.5: Illustration of the three subcases when both two points P1,2 are outside

C. Red Os relate P1 and blue 4s relate P2

angles after two rectifications have the following relation: ∠Ps
1OPs

2 +∠Pt
1OPt

2 = 2π.

Proof. Since there are two mapping centers, as proved above, the line p1p2 intersects

c. Select a point on p1p2 and inside c as the mapping center to transform the pattern.

We prove the above property on the transformed configuration.

The whole image is symmetric to the line p1p2, which leads to the result that

the two mapping centers s and t are also symmetric to p1p2. Thus, the two rectified

angles ∠Ps
1OPs

2 and ∠Pt
1OPt

2 are equal.

4.2.3 Experiments

An image taken at the Google headquarters is processed. The signpost is

rectified using the outer loop of the second “o” in “Google” and ten detected feature

points, as shown in Figure 4.6 (c). The distances from the feature points to the circle

are measured from a standard Google logo image displayed in Figure 4.6 (a). One

ellipse is calculated as the trace of the mapping center from each distance constraint.

The mapping center is detected as the point with the minimum sum of distance to

the ten ellipses. Figure 4.6 (b) illustrates the outer loop of the “o” in blue color, ten
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(a) (b)

(c) (d)

Figure 4.6: Rectification of the signpost in front of Google’s headquarter. (a) Google

logo, feature points marked as red cross (b) Trace of the mapping center from each feature

point (c) Original image (d) Rectified signpost
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ellipses as traces from each constraint in red color and the detected mapping center

by the blue cross. The rectified image is shown in Figure 4.6 (d). The error in the

estimates of the right angles of the signpost in the rectified image is within 3◦.

4.3 Line distance constraint

Just as a dual problem, the partial rectification problem relating to line dis-

tance constraint is addressed as:

Problem 4. Given an ellipse c, a line l that is not tangent to the ellipse and a

positive number dL (dL 6= 1), partially rectify the plane such that c is transformed

to a unit circle C, l to a line L, and the distance from the center of the circle to the

line equals dL: ‖OL‖ = dL, where O is the center of the circle C. ‖OL‖ is defined

as the distance from the line L to the circle C.

Denote the point P as the pole of L: P = C−1L, we have ‖OP‖ = 1/dL. The

distance constraint from a line to a circle becomes a distance constraint from a point

to a circle. Since the polar-pole relation is invariant to projective transformation,

the image of P can be obtained from p = c−1l. Problem 4 has been successfully

reduced to Problem 1.

4.4 Equal Distance Constraint

A common situation is that the distance from a given point to a circle is

unknown; however, it is known that there are two points at same distance to a circle
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(due to symmetry or other reasons). The partial rectification problem for this case

is stated as:

Problem 5. Given an ellipse c, two points p1,2 which are both outside or inside the

ellipse, partially rectify the plane such that c is transformed to a unit circle C, p1,2

to points P1,2, such that the two distances from p1,2 to the center of the circle C are

equal, i.e. , ‖OP1‖ = ‖OP2‖, where O is the center of the circle C.

This problem can be solved using the solution to Problem 1

4.4.1 Corresponding subgroup approach

Let the pattern be already partially rectified, i.e. , ‖OP1‖ = ‖OP2‖. Let L∠ be

the angle bisector of ∠P1OP2. We claim that the part of the line L∠ inside the circle

C is the subgroup of the mapping centers, which can be proved using the symmetry:

• For all points X ∈ L∠ and inside C as the mapping center, the rectified image

satisfies ‖OP1‖ = ‖OP2‖.

Proof. Since ‖OP1‖ = ‖OP2‖, line L∠ passes through the circle’s center O.

P1 and P2 are symmetric to L∠. Because X is on the line L∠, without loss

of generality, we assume that L∠ is fixed during the transformation. Thus P1

and P2 are still symmetric to the line L∠ after transformation, so ‖OP1‖ =

‖OP2‖

• As the mapping center, if a point X satisfying the equal distance constraint,

it must be on the line L∠.
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Figure 4.7: Illustration of the contradiction when the mapping center X is not on

the symmetric axis. E1,2 are the solutions for OP1,2 = d respectively

Proof. Suppose there exists a mapping center X that satisfies the equal dis-

tance constraint but not on L∠ (as shown in Fig. 4.7), we prove that con-

tradiction occurs below. Denote the equal distance after the transformation

using X as the mapping center is d0.

Let Y be the symmetric point of X with respect to L∠. As a result, if Y is used

as the mapping center, the two distances from the points to the circle will also

be d0. Let the ellipse E1 be the solution for the partial rectification problem

‖OP1‖ = d0. It must pass through both X and Y, two points at different sides

of the line L∠. E1 must intersect L∠. Denote (one of) the intersection point

as Z. Due to symmetry, E2, the solution for ‖OP2‖ = d0, also passes through

Z. Thus, there are three points X, Y and Z. As the mapping center, either

X, Y or Z will transform the pattern such that two distances from P1,2 to the

circle is d0. As discussed above, there are at most two solutions, resulting in

a contradiction. Thus, all points satisfying the equal-distance constraint are
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on line L∠.

4.4.2 General solution

A special solution for Problem 5 can be easily achieved: arbitrarily select a

positive number d0 (d0 > 1 if both points are outside c and d0 < 1 otherwise); let

d1 = d0 and d2 = d0 and solve Problem 5.

Because two points determine a line, an alternative way to solve Problem 5 is

described as below:

1. Arbitrarily select d1 (d1 > 1 when both p1,2 are outside c and d1 < 1 other-

wise). Denote the mapping center to satisfy the constraint ‖OP1‖ = d1 and

‖OP2‖ = d1 as x1.

2. Arbitrarily select d2 6= d1 and obtain the mapping center x2.

3. The part of the line x1x2 inside c is the solution for the problem

4.4.3 Invariant among the pattern

Given an equal-distance constrained pattern, neither the distance d nor the

angle φ = ∠P1OP2/2 is known. As discussed above, when d is known, the pattern

can be rectified and φ has a unique solution; on the other hand, when φ is known,

we have shown that d can also be obtained. There is an invariant during the partial

rectified transformation.

Let P1 = (m,n, 1)>, P2 = (m,−n, 1)>. Denote their midpoint as M =

(m, 0, 1)>. The solution curve for the equal-distance constraint lies on the x-axis.
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Assume that M and P1 are mapped to M′ = (m′, 0, 1) and P′1 = (m′, n′, 1) respec-

tively by a mapping center X = (m, 0, 1)>. We compute the distance d′ = ‖OP′1‖ =

√
m′2 + n′2.

Denote the two intersection points of the line XP and the unit conic C as

A = (xa, ya, 1)> and B = (xb, yb, 1)>. Straightforward computations show that ya

and yb are the two roots of a quadratic function:

((m−X)2 + n2)y2 + 2(m−X)ny + n2(X2 − 1) = 0 (4.22)

Using Vieta’s formulas [14], it can be shown that ya and yb satisfy

ya + yb =
2(X −m)n

(m−X)2 + n2
(4.23)

yayb =
n2(X2 − 1)

(m−X)2 + n2
(4.24)

After transformation, A′B′ becomes a diameter of the circle. Using the cross

ratio

PA

PB

OB

OA
=

P′A′

P′B′
O′B′

O′A′ (4.25)

which is

(0− ya)(n− yb)

(0− yb)(n− ya)
=

(d′ − 1)(0 + 1)

(d′ + 1)(0− 1)
(4.26)

From (4.26), d′ can be solved as

d′ =
n(ya − yb)

n(ya + yb)− 2yayb

(4.27)

Using (4.23) and (4.24), d′2 − 1 can be written as

d′2 − 1 =
n2((ya + yb)

2 − 4yayb

(n(ya + yb)− 2yayb)2
− 1 (4.28)

=
(m−X)2 − n2(X2 − 1)− (mX − 1)2

(mX − 1)2
(4.29)

= (X2 − 1)
1−m2 − n2

(mX − 1)2
(4.30)

60



The distance from M′ to O can be achieved by setting n = 0 in (4.30):

m′2 − 1 = ‖OM′‖ = (X2 − 1)
1−m2

(mX − 1)2
(4.31)

Since d′2 = m′2 + n′2, n′ can be solved as

n′2 = (d′2 − 1)− (m′2 − 1) = (X2 − 1)
n2

(mX − 1)2
(4.32)

It leads to the following equation

m′2 +
1−m2

n2
n′2 = 1 (4.33)

It is a quadratic curve centering at O and passing through (1, 0, 1)>. An invariant

can be described as

c =
1

d2 sin2 φ
− tan2 φ (4.34)

where c = (1−m2)/n2 can be obtained from any partially rectified image.

4.4.4 Perturbation Analysis

Assume that the equal-distance d and the angle 2φ = ∠P1OP2 are known. Let

the detected mapping center at the x-axis and fix P1 on the y-axis. The perturbation

of X1 only comes from the noisy P2. Furthermore, as stated above, the angular

direction noise does not affect the result, the perturbation d = OX only comes from

the component on the radial direction δP2r.

If X′ denotes the projection of X to OP2, we have d′ = OX′ = d sin(2φ). As

proved above, δP2r = d′‖d2
P − 1‖. The solution curve of this problem is the bisector

of ∠P1OP2 passing through X. Thus, ds = d cos φ. Finally, the sensitivity can be

represented as 2 sin(φ)‖d2
P − 1‖.
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The performance is not only affected by the distances of points, but also by the

angle. It should be noted that although dP and φ are related in a pattern, neither

of them is known. Thus, sensitivity studies can only be done after the pattern is

rectified.

4.4.5 Detection of Center for Concentric Circles

Center detection from projected concentric circles is always considered an im-

portant and interesting problem [18][23][26][25]. The accuracy of the detection di-

rectly relates to the accuracy of pattern rectification, and subsequent calibration.

The problem can be described as follows:

Problem 6. Given two sets of points: pi (i = 1, 2, ..., m) and qj (j = 1, 2, ..., n) on

two projected concentric circles cp and cq respectively, detect the projected center of

the concentric circles.

Using the solution of Problem 5, a natural solution for the fitting problem can

be obtained as described below:

1. Fit the conic cp using pi (i = 1, 2, ...,m).

2. For any two points (qj1, qj2) ∈ {qj}, which should be at same distance from

cp, solve the partial rectification problem using the equal-distance constraint

and obtain the solution line l1,2.

3. Calculate the point x with minimum sum of distance to all the solution lines,

which is the projected center.
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This method can also be used for fitting projected concentric circles. By

analyzing the degree of freedoms, it can be easily seen that fitting two concentric

circles requires eight points. Jiang et al . [24] have proved that the task can be done

using four points on each circle. Our algorithm considers the case when five points

lie on one circle (denoted as c0) while the other three on the other circle (denoted

as c). We first fit c0 using the five points on it. For each pair of points (p1, p2) on

c, because they are of the equal-distance to c0, a line can be drawn as the solution

for equal-distance constraint. The intersection of two lines is the common center of

the concentric circles. This algorithm can be extended to multiple points.

Many existing concentric circles detection algorithms [1][18][26] fit the circles

independently, which may result in poor performance when part of either circle is

occluded. Another set of solutions [23] detects the four intersections of a line and

the two circles, and then estimates the center using the cross ratio. We compare

our method with a representative algorithm from the latter class.

4.4.6 Experiments

We use synthetic data to detect the center of concentric circles and compare

our results with Jiang’s algorithm [23]. Two concentric circles with radii ratio 1:2

are drawn on a plane. The region between the circles are colored in black. The

projected black ring is blurred using a Gaussian filter.

Jiang’s method is first used and the detection results are shown in Figure 4.8

(a). To be fair, same points on the conics are used in our method. The lines are
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Figure 4.8: Comparison of center detection algorithms. (a) Jiang’s method [24]. (b)

Our method, dotted lines are the solutions for equal constraints. (c) comparison

in zoomed-in image. black ◦: ground truth; blue ¦: our detection results; red ¤:

Jiang’s detection in each round, starting from red one.

shown in Figure 4.8 (b). A zoomed-in plot in Figure 4.8 (c) shows that under noisy

environment, Jiang’s method does not always converge to the ground truth, and is

worse than ours. We ran both methods in different 100 images and the statistical

results are presented in Table 6.2. It can be seen that the results using Jiang’s

method do not converge to the ground truth, and our result is generally better than

theirs.

64



Table 4.1: Statistical performance comparison between Jiang’s method and ours,

measured by the distance between the detected center and of concentric circles and

the ground truths in pixels.

Jiang’s method
Our Method

round 1 2 3 4 5 6

mean 7.18 1.72 1.56 1.51 1.71 2.07 1.50

median 7.06 1.60 1.43 1.32 1.45 1.74 1.16

std 0.26 1.16 0.98 0.98 1.23 1.43 1.19
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Chapter 5

Constraints Related to Angles

Besides (relative) length, an angle between two lines is another important

quantity in measurements. Zero and right angles commonly appear in the real

world and have been used for various projective geometry topics [22]. This chapter

discusses the role of a known angle as a constraint, stated as:

Problem 7. Given a conic (ellipse) c, two lines lp and lq, and an angle value

0 < θ < π/2, partially rectify the pattern such that c is converted to a circle C, and

the angle between the transformed two lines Lp and Lq is θ.

5.1 Two Special Cases

To learn some intuitive appreciation of the solution, we consider two special

cases for study. Denote the intersection of Lp and Lq, i.e. , the vertex of the angle

as R.

5.1.1 Case 1: Two Edges Tangent to The Circle

When Lp and Lq are both tangent to C, denote the tangent points as M and

N respectively. It is obvious that OR bisects ∠MRN, i.e. , ∠MRO = θ/2. OR =

1/ sin(θ/2). This case reduces to a distance constraint discussed in the last chapter.
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5.1.2 Case 2: Vertex on the Circle

When R is on the circle C, let the two edges intersect C at M and N. Denote

the intersection of two tangent lines from M and N as S. It easily follows that

∠MRN = θ ⇒ ∠MON = 2θ ⇒ ∠MSN = π − 2θ. Thus the problem is reduced to

case 1.

Specially, when θ = π/2, MN is the diameter of the circle, that is, O on MN.

Thus, the solution is MN.

5.2 Problem Reduction

Let the projected circle angle be o. The poles of lp and lq with respect to c be

p and q respectively. On the partially rectified image, we have POQ = π− θ. Thus,

the problem can be rewritten as

Problem 8. Given a conic (ellipse) c, two points p and q, and an angle value

0 < θ < 2π, partially rectify the pattern such that c is converted into a circle C, and

POQ = π−θ, where O is the circle center and P and Q are transformed from p and

q respectively.

5.3 Identify the Subgroup

Without loss of generality, the rectified circle is assumed to be the unit circle,

P and Q are located on the two lines passing through the origin: Lop : x cos(α) =

y sin(α) and Loq : x cos(β) = y sin(β) respectively.
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Denote the homography matrix as

H =




a b c

d e f

× × ×




(5.1)

Assume P = (rp cos α, rp sin α, 1)>, Q = (rq cos β, rq sin β, 1)>. After transfor-

mation, P′ is on Lop. Mathematically,

HP =




arp cos α + brp sin α + c

drp cos α + erp sin α + f

×



∼ P′ =




r′p cos α

r′p sin α

1




(5.2)

which leads to

arp cos α + brp sin α + c

drp cos α + erp sin α + f
=

cos α

sin α
(5.3)

Similarly, HQ ∼ Q′ leads to

arq cos β + brq sin β + c

drq cos β + erq sin β + f
=

cos β

sin β
(5.4)

Because the circle is fixed during the transformation: H−>CH−1 ∼ C. Using

C = C>, the condition can be written as HCH−> ∼ C, or



a2 + b2 − c2 ad + be− cf x

ad + be− cf d2 + e2 − f 2 x

× × ×



∼




1 0 0

0 1 0

0 0 −1




(5.5)

Compare each corresponding element, two more constraints can be obtained as:

a2 + b2 − c2 = d2 + e2 − f 2 (5.6)

ad + be− cf = 0 (5.7)
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Let the mapping center be T = (x, y, 1)>, which is mapped to O. We have HT = O:

ax + by + c = 0 (5.8)

dx + ey + f = 0 (5.9)

There are six equations, which can be solved by removing a,b,c,d,e and f ,

leading to an equation relating x and y, which is the solution curve.

5.4 Solution for Right Angles

The solution for arbitrary θ is complex. In man-made environments, right

angles appear much more frequently. This section discusses the solution when θ =

π/2.

In the rectified pattern, let P = (X, 0, 1)> lie on the x-axis and Q = (0, Y, 1)>

on the y-axis. Equations (5.3) and (5.4) become

dX + f = 0 (5.10)

bY + c = 0 (5.11)

Using them to cancel c and f , (5.6) and (5.7) become

a2 + b2 − b2Y 2 = d2 + e2 − d2X2 (5.12)

ad + be− bdXY = 0 (5.13)

and x, y can be solved from (5.8) and (5.9) as:

x = b
eY − dX

ae− bd
, y = d

aX − bY

ae− bd
. (5.14)
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Finally

x(x−X) + y(y − Y ) = −(ad + be)
(aX − bY )(eY − dX)

(ae− bd)2

= −XY bd
(aX − bY )(eY − dX)

(ae− bd)2
= −XY xy (5.15)

5.4.1 Geometric Properties of the Solution

The solution of this partial rectification problem is

f(x, y) = x2 + XY xy + y2 −Xx− Y y = 0 (5.16)

It represents a quadratic curve, which can either be an ellipse, a parabola, or a

hyperbola, depending on whether ‖XY ‖ is smaller, equal, or greater than 2, respec-

tively. The shapes of the curves under different conditions are illustrated in Figure

5.1. Specifically, when the line PQ is tangent to the circle C, i.e. , 1/X2 +1/Y 2 = 1,

f(x, y) = 0 degenerates to two lines: the line Xx + Y y = 1 is the line PQ; and the

line x/X + y/Y = 0 passes through O and the other tangent points from P and Q

as shown in Figure 5.1 (k). It corresponds to the solution obtained for the special

case 2. The first special case is displayed in Figure 5.1 (d).

The curve f(x, y) = 0 possesses an interesting geometric property. In partic-

ular, it passes through the following interesting points:

• The origin O as f(0, 0) = 0. This is because the pattern has already been

partially rectified before transformation.

• The two points P and Q as f(X, 0) = f(0, Y ) = 0. A geometric explanation

when P is inside the circle C can be provided as follows: The transformation
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(j) XY > 2, 1/X2 + 1/Y 2 < 1 (k) XY > 2, 1/X2 + 1/Y 2 = 1 (l) 1/X2 + 1/Y 2 > 1

Figure 5.1: Solution curve in different cases. (a) :P inside C; (b)(d):P on C; others:P

outside C. (a)-(c):Q inside C; (d)(e):Q on C; others:Q outside C. (a)-(f): XY < 2;

(g)-(i): XY = 2; (j)-(l): XY > 2. (j):1/X2 + 1/Y 2 < 1; (k):1/X2 + 1/Y 2 = 1;

(l):1/X2 + 1/Y 2 > 1
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corresponding to the mapping center P maps P to P′ = O, which is on the x

axis. For any arbitrary Q′, rotating the coordinate can always make it to lie on

the y-axis, while keeping P′ and C fixed. Thus, the mapping center P satisfies

the constraint and should be on the solution curve. An identical argument

can be made for Q.

• The intersection points of the two lines and the circle. The intersections of

the curve f(x, y) = 0 and C must satisfy

x2 + XY xy + y2 −Xx− Y y = 0

x2 + y2 = 1 (5.17)

By subtracting (5.16) from (5.17), we have (Xx− 1)(Y y− 1) = 0. Since Lp is

Xx = 1 and Lq is Y y = 1, the intersections are on Lp and Lq, i.e. , they are

the intersections of the lines and the circle.

Because the pole-polar relationship does not change in projective transforma-

tions, finally we conclude:

Solution 2. The solution for Problem 7 when θ = π/2 is a quadratic curve passing

through all the four intersection points between lines lp,q and the given conic c (which

may not be of real coordinates) and the two poles p and q of the line lp,q with respect

to c.

In general, it is enough to determine a quadratic curve when six distinct points

are known. When one of the poles, for example, the point P is on the circle, there

are only four distinct points. However, f(x, y) = 0 is now a tangent to C at P,
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giving enough conditions to solve for the curve. When both poles are on the circle,

it becomes the special case 1.

5.4.2 Validity of the Solution

For a coplanar pattern, any image point t and the conic c are on the same

side of the vanishing line. For a line segment ab, if both two endpoints are on the

side of c, obviously any point on the line segment are also on the side of c. Thus

only the two endpoints a and b need to be considered. As discussed in the last

chapter, the mapping center and either endpoint should be on the different sides of

the corresponding polar line, which leads to three cases:

• The line segment is inside the circle. The mapping center can be anywhere

inside the circle.

• a is outside c and b is inside c. The mapping center can not be in the circular

segment region Ra formed by c and the polar la = ca.

• Both a and b are outside c. Two circular segments Ra and Rb are restricted.

The intersection between la and lb is the pole of ab, denoted as pab. There are

three subcases:

– Line ab does not intersect c. The two circular segments shares common

region.

– Line segment ab intersect c. The two circular segments are separated.

– The extension of ab intersect c. It is same as b inside c.
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Figure 5.2: Illustration for the validity of solutions for a planar pattern. Due to the

appearance of ∠srt, the shaded area is not valid. The valid solution is constrained

to lie on the solid red curve.

Figure 5.2 illustrates an example of the region of validity. Let ∠srt be the

detected angle, where s, r, and t are the detected endpoints and corners. Let lr, ls,

lt be the corresponding polars. Each provides an invalid arc region formed by itself

and the conic. Thus, the mapping center is constrained to lie in the unshaded area.

5.4.3 Synthetic Data Experiments

We compare our calibration method with a point-based method discussed in

[44] using synthetic images. A pinhole camera model (i.e. , with zero skewness, unit

aspect ratio and coincidence of the principle point and the image center) is assumed.

In the first experiment, we use a pattern including a concentric square and a circle.

Assuming that the coordinates of detected points are integers, we obtain the edges

and fit the lines and conic as shown in 5.3 (a).

To analyze the performance improvement due to adding a circle, we fix the size

of square as one and change the radius of the circle from 0.1 to 3.9. Homography

matrices are obtained using three methods: method I is the point-based method,

which maps the corners of the square to (±1,±1, 1)>; method II estimates the

74



−25 −20 −15 −10 −5 0 5 10 15 20 25

−25

−20

−15

−10

−5

0

5

10

15

20

25

(a) (b)

Figure 5.3: Illustration for synthetic data setup when focal length f = 50, camera

height h = 5, elevation angle θ = 45◦ and rotation angle φ = 45◦. (a) Detected

integer points in gray pixels, and fitted circle and square in black curves. (b) Solution

curves obtained using orthogonal line constraints from four corners shown in different

colors.

mapping center using the projected circle and four orthogonal lines constraints from

the corners of the square; method III is similar to method II but uses two parallel

lines constraints instead.

Figure 5.4 illustrate a typical result from these three methods when φ = 45◦

and θ = 30◦, 45◦, 60◦. Because methods II and III exhibited very similar performance

and can hardly be distinguished from each other, results from method III are not

plotted. In the figure, method II is worse than method I when the radius of the circle

r is small, due to the poor fitting of the projected circle. However, when r increases

to a number comparable to the length of the square, our method outperforms the

point-based one since intuitively more information is used. Incrementing the circle

size does not always increase the calibration performance, because when the circle
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Figure 5.4: Evaluation of methods I (straight line) and II (line with symbols) to

estimate (a) focal length, (b) elevation angle, and (c) rotation angle, vs. the circle’s

radius. f = 50, φ = 45◦, and h = 5. red: θ = 30◦; green: θ = 45◦; blue: θ = 60◦.

Ground truth values are plotted in black solid lines.

is large enough, the algorithm is affected by the inaccuracy of the square.

In another experiment, we use a checkerboard pattern and a large circle with

the diameter same as the side length of the chessboard as shown in Figure 5.5 (a).

Method I uses 9 × 9 corners of the chessboard for point correspondence. Method

II uses the circle and four constraints from the boundary corners. Figure 5.5 (b)

presents the focal length estimates obtained from both methods vs. φ, when θ = 45◦.

Method II uses only four constraints but achieves similar performance as method I.

5.4.4 Real Image Experiments

Images of size 512×768 are taken by a Pentax DSLR camera. Lines and conics

are retrieved from the edges of the images. A school traffic sign was taken as the

first image (see Figure 5.6 (a)). The head of the girl is used as a circle and lines

extracted from the boundary of the sign are used. It provides three constraints from
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Figure 5.5: Evaluation of the two methods. (a) Image plane. Method I using the

points of a checkerboard, shown in red dots; Method II using a circle and four

corners of the checkerboard as right angles, shown in solid blue curves. The solution

curves are indicated as black dotted curves. (b) Estimated focal length vs. rotation

angle φ when θ = 45◦. ground truth: f = 50.
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Table 5.1: Error in the right angles of the chessboard appearing on the rectified

image in degree (◦). Each value corresponds to an appropriate angle on Figure 5.6

1.58 0.84 0.41 -0.09 -0.49 -1.31 -1.24

2.10 1.36 0.93 0.43 0.03 -0.79 -0.72

- - 1.13 0.62 0.23 - -0.52

- - - 0.81 0.42 - -

edges: (i) orthogonal between left and bottom, (ii) orthogonal between right and

bottom, and (iii) parallel between left and right. The corresponding solutions for

the partial rectification problem are shown in red, green and gray color in Figure 5.6

(b). The common intersection of the three curves rectifies the image well. However,

using only two of them leads to an ambiguity (see Figure 5.6 (d)).

The second image contains parts of two books and an occluded compact disk

on a chessboard. The image is rectified using the CD boundary as a circle and

a corner of each book as a right angle. The orthogonal lines appearing on the

chessboard are used only to evaluate the rectification results. The errors of right

angles in degree are shown in Table 5.1. They are around 1◦.
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Figure 5.6: Experiments for planar Euclidean Structure. (a)-(d) School sign. (a)

detected circles and lines on the original image. (b) zoomed solution curves with

unzoomed on upper right. (c) rectified image using o as the mapping center. (d)

rectified images using ambiguous mapping centers 1-3. (e)-(g): Desk plane. (e)

detected circles and lines on the original image. (f) solution curves (g) rectified

image and the right angles for evaluation.
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Figure 5.7: Illustration of the invariant deduction

5.5 Invariants of the Partially Rectified Pattern

5.5.1 Approach 1

We investigate the properties of the partial rectified pattern. Let the line

PQ intersect C at two points M and N (see Figure 5.7). OD is perpendicular to

PQ at D, as shown in Figure 5.7. Using the property of right angle triangles, we

have ‖OD‖ = XY/
√

X2 + Y 2, ‖PD‖ = X2/
√

X2 + Y 2 and ‖QD‖ = Y 2/
√

X2 + Y 2.

Thus, the cross ratio of M, N, P and Q is written as

Cr(M, N; P, Q) =
DP−DM

DP + DN

DQ−DN

DQ + DM

=
r2 −

√
r2(X2 + Y 2)−X2Y 2

r2 +
√

r2(X2 + Y 2)−X2Y 2
(5.18)

where r is the radius of the circle. The cross-ratio is invariant to projective trans-

formation, I(P, Q) = (1 − (X/r)2)(1 − (Y/r)2) is a constant. In other words, in a

partially rectified pattern where r = 1, MP×MQ× NP× NQ is a constant.
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5.5.2 Approach 2

P and Q are constrained to lie on the x axis and y axis respectively. The

distances from them to center, X and Y , are not fixed. Since Y changes with X,

the relationship between X and Y is to be recovered. We will show there is an

invariant relating X and Y .

Let P map to P′ = (X ′, 0, 1)> and Q′ = (0, Y ′, 1)> using a mapping center

X = (m,n, 1)>. From (4.30), we have

X ′2 − 1 = (X2 − 1)
1−m2 − n2

(mX − 1)2
(5.19)

Y ′2 − 1 = (Y 2 − 1)
1−m2 − n2

(nY − 1)2
(5.20)

Since X is on the solution curve E, m and n satisfy m2+XY mn+n2−Xm−Y n = 0,

leading to

(mX − 1)(nY − 1) = 1 + mnXY −mX − nY = 1−m2 − n2 (5.21)

We have

(X ′2 − 1)(Y ′2 − 1) = (X2 − 1)(Y 2 − 1) (5.22)

Thus, there is an invariant c:

c = (X2 − 1)(Y 2 − 1) (5.23)

Please note that
√

X2 − 1 represents the length of the tangent line from X to the

circle C. It is seen that the product of the two lengths of tangent lines is invariant.

Both approaches achieve similar results. The first one is more concise but

limited to the points inside the circle.
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5.5.3 Application

If a pattern contains a circle and multiple pairs of orthogonal lines, each pair

corresponds to a unique invariant value. Thus the pair wise correspondence between

two views can be obtained by comparing their corresponding invariant values. This

can be used for image registration.

Actually, even if the two lines are not orthogonal, an invariant can still be

calculated. Given multiple lines, each invariant from two lines can be calculated.

Thus, two images can be registered by matching the intersections with same/similar

invariants.

5.5.4 Experiments

The third experiment shows a multiple view image registration example using

the geometric invariant reported in Section 5.5. Figure 5.8 presents two views of a

CD on a chessboard. In each image, the 9×9 grids of the chessboard are detected and

81 intersections by orthogonal lines are to be matched. We use I2 = sign(I)/
√I

as the indicator because it approximately reflects the distance from the line to

the circle. We calculate the distance of each pair between two views and rank

them. A ranked image is shown in Figure 5.8 (b), where the diagonal is very bright,

showing that correct matching always receives high ranks. The Cumulative Match

Characteristics (CMCs) of the experiment in rank 1, 2, 3, 5 and 8 are 20, 41, 52, 73

and 79 respectively. 97.5% corners can be matched well within 10% of the total 81

corners.
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(a) (b)

Figure 5.8: Experiments for image registration. (a) two images. (b) match value

for each pair of corners

Table 5.2: Cumulative Match Characteristics (CMCs) of the matching of corners

between two chessboard images

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 8

20 41 52 64 73 79
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Part III

VIDEO CALIBRATION FOR OBJECTS IN PLANAR MOTION
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Chapter 6

Video Camera Calibration Using Objects in Planar Motion

6.1 Introduction

Due to the prevalence of video applications in computer vision, video camera

calibration has become increasingly important. Instead of deriving intrinsic param-

eters, e.g . , the characteristic of camera itself, video camera calibration focuses more

on extrinsic parameters, e.g . , the relation of the video sensor to the environment.

We study planar motion, which is mostly observed in video sequences. It happens

in two scenarios: (1) a stationary camera acquiring images of objects moving on the

ground, (such as in surveillance applications) or (2) when a camera is in a planar

motion (such as a camera mounted on vehicles in a driver assisted system).

Theoretically, all the planar calibration methods can be used to calibrate a

video camera undergoing planar motion. However, there are many disadvantages

in such approaches. The point-based self-calibration methods proposed by Zhang

[55] requires reliable point detection such as SIFT [31], Harris Corner [21] and point

tracking [42]. Furthermore, the points should be distributed on the image plane to

obtain an accurate result. Circle-based calibration methods [8][9][17][20][23][25][34][47][52]

rely on detecting ellipses. Either point- or circle-based algorithms often suffer from

the failure of low level feature detection, tracking or matching, especially in low

quality videos. Another approach is through 3-D reconstruction, e.g . , planar fac-
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torization [27]. However, it is also susceptible to errors in feature tracking.

In this chapter, we study the video (minimal) calibration problem. We pursue

the calibration method using a minimum number of ground points detected and

reliably tracked, and discuss blob calibration when no point can be tracked.

6.2 Calibration Using Line Segment

Let there be a line segment MN moving on the reference plane, generating

images mtnt for frame t = 1, 2, ..., T . Using the constraint that the length of the

segment ‖MtNt‖ is a constant, the vanishing line is estimated from the given seg-

ments mtnt.

6.2.1 Algorithm for Pin-hole Camera Model

We first use a simplified camera model by assuming unit aspect ratio, zero

skew, and coincidence of the principal point and the image center. Under this

condition, the vanishing line is determined by one intrinsic parameter, the focal

length f , and two extrinsic parameters, the elevation angle θ and the rotation angle

φ. The transform matrix from the reference plane to the image plane can be written

as:

H =




f cos(φ) f sin(φ) cos(θ) 0

−f sin(φ) f cos(φ) cos(θ) 0

0 − sin(θ) h




(6.1)
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where h is the height of the camera and does not affect the position of the vanishing

line. The vanishing line can be calculated as

L = (sin(φ) sin(θ) cos(φ) sin(θ) f cos(θ))> (6.2)

Since the inverse homography matrix can be written as H−1 = SAP, where S,

A and P are similarity, affine, and perspective transform matrices respectively, with

structure as [29]

A =




1
β
−α

β
0

0 1 0

0 0 1




, P =




1 0 0

0 1 0

L(1) L(2) L(3)




(6.3)

Simple matrix computations show that

APH ∼




cos φ+α sin φ
β

sin φ cos θ−α cos φ cos θ
β

0

− sin φ cos φ cos θ 0

0 0 h cos θ




(6.4)

By comparison, α and β can be represented as

α = − cos(φ) sin(φ) sin2(θ)

cos2(θ) cos2(φ) + sin2(φ)
, β =

cos(θ)

cos2(θ) cos2(φ) + sin2(φ)
(6.5)

If the vanishing line L is known, φ can be obtained using tan(φ) = L(1)/L(2).

P can be applied to the endpoints of the line segments and make it an affine, denoted

as m′
tn
′
t. For any two given frames t1 and t2, using the fact that the lengths of

segments are equal, Liebowitz et al . [29] has proved the following constraint of α

and β: in 2D complex space with α and β as real and imaginary axes respectively,

the point (α, β) lies on a circle with center (cα, 0) and radius r:

cα =
δxt1δyt1 − δxt2δyt2

δy2
t1 − δy2

t2

, r =

∣∣∣∣
δxt2δyt1 − δxt1δyt2

δx2
t1 − δy2

t2

∣∣∣∣ (6.6)
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where δxi = xp,i − xq,i, δyi = yp,i − yq,i (i = t1, t2).

Using (6.5), cos2 θ satisfies the function below

x2 cos2 φ((cα cos φ− sin φ)2 − r2 cos2 φ) + x(2 cos2 φ sin2 φ(cα cos φ− sin φ)(cα sin φ + cos φ) + 1)

+ sin2 φ((cα sin φ + cos φ)2 − r2 sin2 φ) = 0 (6.7)

Factoring the left side provides

(x cos2 φ+sin2 φ)(x((cα cos φ−sin φ)2−r2 cos2 φ)+(cα sin φ−cos φ)2−r2 sin2 φ)) = 0

(6.8)

because cos2 θ ≥ 0, x cos2 φ+sin2 φ is always positive. Finally, we solve for cos2 θ as

cos2 θ = − cos2 φ− r2 sin2 φ + 2cα cos φ sin φ + c2
α sin2 φ

sin2 φ− r2 cos2 φ− 2cα cos φ sin φ + c2
α cos2 φ

(6.9)

From (6.9), we conclude that θ can be solved using a pair of nonparallel equal

length segments given the vanishing line. Any pair of line segments appearing in

the video can be used to estimate θ, and the values from different pairs should

be the same in noise free condition, if the position of the vanishing line is correct.

Otherwise, these values will be far from the ground truth and different from each

other. Using the variance of θ obtained from multiple pairs of line segments, we

arrive at a coarse estimation algorithm summarized below.

1. Select those line segments pairs, which are unlikely to be parallel in the world

system.

2. For any possible vanishing line, estimate cos2 θ from each pair and calculate

the variance var(cos2 θ).

3. Choose the vanishing line with smallest var(cos2 θ)
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6.2.2 Algorithm for General Camera Model

As proved, the vanishing line is the polar line of the image of the center with

respect to the image of the circle. Thus, the estimation of the vanishing line can be

refined from a starting point L0 using the following steps:

1. Let the iteration number p = 0

2. Parallel move the wheel base in frames mini using Lp so that one of their end

points shares the common point o and the other becomes ki.

3. Fit an ellipse E though ki.

4. Estimate the vanishing line, denoted as Lp+1.

5. Repeat steps 2-4 until the vanishing line position converges.

The first algorithm requires a pin-hole camera, while the second one removes

this constraint but needs a starting point. These two algorithms can be combined by

applying the first algorithm (using the pin-hole camera assumption) to get a good

initial estimate and then using the second algorithm to refine the result.

6.2.3 Experiment

To evaluate this method, an experiment using synthetic data is designed. Sev-

eral line segments of unit length are randomly distributed on a 200 × 200 region

on the reference plane. A pin-hole camera of f = 1000 is used, which is located

with height 250 and elevation angle 75◦. Figure 6.1 (a) shows a sample image of
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the line segments and the vanishing line. Gaussian distributed noise is applied to

all the endpoints. The vanishing line is represented using two parameters: d, the

distance from the origin to the vanishing line, and φ, the direction of the vanishing

line. Figure 6.1 (b) displays the logarithm of the variance of cos2 θ on the vanishing

line space. The variance reaches a minimum when the vanishing line is closed to the

ground truth.

We then study how many line segments are needed to obtain a stable estima-

tion of the vanishing line. Four groups experiments, ten in each, are designed. In

each group, 10, 20, 40 and 80 line segments are used respectively. The estimation

results using d cos(φ), d sin(φ) are shown in Figure 6.1 (c), and the corresponding

values of θ is in Figure 6.1 (d). Generally robust results can be obtained using

roughly 20 line segments.

6.3 Calibration Using an Ellipse

Let et (t = 1, 2, ..., T ) be the images of an ellipse that is moving on the ground.

We present a method to rectify the plane by transforming all et to same size and

shape. The rectification method contains two steps: (1) affine rectification by equal-

izing the ellipses area, and (2) metric rectification by equalizing the ellipses shape.

The rectification result directly leads to calibration.
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Figure 6.1: Experiments using synthetic data for vanishing line estimation: (a) A

sample of the images of wheelbases and the vanishing line (b) log mesh plot of the

variance of calculated θ. Very high values are trunked to include the minimum

value. The minimum value is marked as ◦, which is close to the ground truth in

cross mark (×). (c) Feet of perpendicular to the vanishing lines using 10, 20, 40 and

80 frames, ten times respectively. The cross mark (×) is the ground truth value.

(d) The estimation of θ using different number of frames. The ground truth value

is 70◦.
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6.3.1 Area of an Ellipse

To illustrate this approach, a lemma is first introduced:

Lemma 3. The area of an ellipse E equals π divided by the square root of the

determinant of its 2× 2 shape matrix A(E): A(E) = π/
√
‖E‖

Proof. Let m and n be the semi-major and semi-minor axes respectively, the area

of the ellipse can then be written as [14] A(E) = πmn. The two eigenvalues of E are

em = 1/m2 and en = 1/n2. Thus we have A(E) = π/
√

(emen) = π/
√
‖E‖.

Lemma 3 directly leads to the following Corollary:

Corollary 1. The area ratio between two ellipses is invariant to affine transforma-

tion.

Proof. Disregarding translation, an affine transformation can be written as a 2× 2

matrix A:

E′ = A−>EA−1 (6.10)

The area of the transformed ellipse becomes

A(E′) = π/
√
‖A−>EA−1)‖ = π/

(√
‖A−>‖

√
‖E‖

√
‖A−1‖

)
= ‖A‖A(E) (6.11)

The area ratio change during the translation does not relate to the ellipse. Thus, the

area ratio between two ellipses does not change during an affine transformation.
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6.3.2 Affine Rectification: From Projective to Affine

Based on Corollary 1, removal of projective distortion can be achieved by

equalizing the areas of the projective ellipses.

Note that any transformation matrix H can be decomposed into a product

of two matrices: H = PA [29], where A is an affine matrix and P is related to the

vanishing line l∞ = (l1, l2, l3)
>:

P =




1 0 0

0 1 0

l1 l2 l3




(6.12)

Since an affine transformation does not change the area ratio, without lose of gen-

erality, the projective matrix is simplified to be P, which is uniquely determined by

the vanishing line.

6.3.2.1 Removing Translation and Skewness

To this end, we investigate the area of an ellipse under a given projective

transformation. Without loss of generality, we assume the corresponding vanishing

line is parallel to the x-axis for the simplicity of illustration: l∞ = (0, 1,−l)>. First,

notice that

Lemma 4. If e′ is an ellipse affine transformed from e by translating and skewing

parallel to the vanishing line (as shown in Figure 6.2), then A(E′) = A(E).

Proof. Consider an affine matrix A(s, t) translating and skewing the ellipse along

93



the vanishing line

 d
q

 d
st

 d
p

s’t’

p’

q’

o’

e’

s
t

p

q

o

e

Figure 6.2: Given the vanishing line, an upright ellipse e′ can be used for area ratio

comparison instead of e. st and pq are the parallel and orthogonal axes of e. dp, dq

and dst are the distances from p, q and s (t) to the vanishing line l∞ respectively.

the x direction of the format:

A(s, t) =




1 s t

0 1 0

0 0 1




(6.13)

From



1 0 0

0 1 0

0 1 −l







1 s t

0 1 0

0 0 1




=




1 s t/l

0 1 0

0 1 −l




=




1 s + t/l −t/l

0 1 0

0 0 1







1 0 0

0 1 0

0 1 −l




(6.14)

We have, PA(s, t) = A(s+t/l,−t/l)P. In other words, let e′ = A(s, t)−>eA(s, t)−1,

we have E′ = A(s + t/l,−t/l)−>eA(s + t/l,−t/l)−1. Thus, A(e′) = A(e) and

A(E′) = A(E). The area ratio change of e′ and e is the same.

Below, we assume that the ellipse is upright, i.e. , its axes are orthogonal and

parallel to the vanishing line.

94



 d

 d
mn

c

m nm’ n’

z

s t

the vanishing line  l∞

Figure 6.3: Calculation of the transformed parallel axis.

6.3.2.2 Transformation of Axes

Lemma 5. Let PQ and ST be two line segments orthogonal and parallel to the

vanishing line respectively: pq ⊥ l∞, st ‖ l∞. After transformation P, their lengths

become

PQ =
l

dpdq

pq, ST =
1

dst

st (6.15)

where the definitions of d∗ are illustrated in Figure 6.2.

The proof directly comes from the fact that P(x, y, 1)> ∼ (x/(y − l), y/(y −

l), 1)>.

Below we calculate the two axes of an ellipse E after transformation. Some

geometric notations are illustrated in Figure 6.3. Assuming that the shape of e is

e = diag(r2s2, r2/s2), where r and s are two parameters relating the area and the

shape of ellipse, respectively.

The axis of E orthogonal to the vanishing line, denoted as PQ ⊥ L∞, is trans-

formed from pq, the axis of e. Using dp = d − rs, dq = d + rs, and pq = rs, we
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have

PQ =
lrs

(d− rs)(dc + rs)
=

lrs

d2 − s2r2
(6.16)

The parallel axis of E, denoted as MN, is not transformed from st, the axis of

e, but a line segment mn. Draw the perpendicular cz of l∞ from the center of e.

Because z is the vanishing point, mz and nz are tangents to the ellipse e.

We draw a co-centered supplementary circle e′ with radius r2/s2 (see Figure

6.3). Denote the intersections between line mn and circle e′ are m′ and n′. Obviously

m′z and n′z are tangents of the circle e′. Furthermore, mn = m′n′/s2. Calculations

show that dmn = d− s2r2/d and mn =
√

s2r2 − (s2r2/d)2/s2.

MN =

√
s2r2 − (s2r2/d)2/s2

d− s2r2/d
=

r

s
√

d2 − s2r2
(6.17)

The area of ellipse E is proportional to the product of the two axes:

A(E) ∝ MN • PQ =
lr2

(d2 − s2r2)3/2
(6.18)

6.3.2.3 Calculate s and r with Respect to a Given Direction θ

We remove the assumption that the vanishing line is parallel to the x axis and

let it be in an arbitrary direction θ, as in l∞ : x cos θ + y sin θ + l = 0. To estimate l

from the area ratio, we first calculate s, r, and dc of each ellipse with respect to the

direction θ.

Denote the shape of e as e = (a, b; b, c). r represents the area of e and is

independent of θ:

r4 = ‖e‖ = ac− b2 (6.19)
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.

If we draw two lines lt1 and lt2 tangent to e and in the direction θ, the distance

between the two lines will be 2sr. In other words, lines x cos θ + y sin θ± sr = 0 are

tangent to ax2 + 2bxy + cy2 = 1. Solve them using ∆ = 0

sr =

√
a sin2 θ − 2b cos θ sin θ + c cos2 θ

ac− b2
(6.20)

which can be simplified using (6.19)

s = r
√

a sin2 θ − 2b cos θ sin θ + c cos2 θ (6.21)

6.3.2.4 Estimation of Vanishing Lines from the Given Area Ratio of

Two Ellipses

For two ellipses e1 and e2, after transformation P, their area ratio becomes

A(E1) : A(E2) =
r2
1(d

2
2 − s2

2r
2
2)

3/2

r2
2(d

2
1 − s2

1r
2
1)

3/2
(6.22)

Let dc be the distance from the center of the ellipse to the line passing through

the origin along the direction θ: lox cos θ + y sin θ = 0. For a given area ratio value

α, the vanishing line satisfies

((l − dc2)
2 − s2

2r
2
2) = β1/3((l − dc1)

2 − s2
1r

2
1) (6.23)

where β = (αr2
2/r

2
1)

2 is the change of the area ratio.

6.3.2.5 Solve the Area Ratio Constraint

Since it is easy to transform one of the ellipses into a circle, without loss of

generality, we assume that e1 = C = diag(1, 1,−1) is a unit circle centered at the
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origin, and e2 = e. The solution in (6.23) then becomes

(l − (xc cos θ + yc sin θ))2 − a sin2 θ − 2b cos θ sin θ + c cos2 θ

ac− b2

= β(l2 − 1) (6.24)

where (xc, yc) is the center of e). Using the pole of the vanishing line v = (x, y, 1)> =

C−1l∞ to represent the solution, we have

(1− (xc cos θ + yc sin θ)
√

x2 + y2)2

−(a′ sin2 θ − 2b′ cos θ sin θ + c′ cos2 θ)

−β + (1− β)(x2 + y2) = 0 (6.25)

where a′ = a/t, b′ = b/t, c′ = c/t and t = ac − b2. Substituting cos θ and sin θ by

x/
√

x2 + y2 and y/
√

x2 + y2, (6.25) leads to the solution to this problem:

(x2
c − c′ + β)x2 + 2(xcyc + b′)xy + (y2

c − a′ + β)y2

−2xcx− 2ycy + (1− β) = 0 (6.26)

Equation (6.26) represents a conic. For any point v on the conic, using its polar

line lv = Cv as the vanishing line, the corresponding transformation makes the two

converted ellipses to have the desired area ratio α.

6.3.2.6 Properties of The Solution

We study the properties of the curve represented by (6.26). Not surprisingly,

the curve passes through the origin x = 0; y = 0 when β = 1, which indicates that

the line at infinity is a (trivial) solution to keep the area ratio unaltered.
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Equation (6.26) can be rewritten as

(x0x− 1)2 + (y0y − 1)2 − 1− (a′y2 − 2b′xy + c′x2) + β(x2 + y2 − 1) = 0 (6.27)

Irrespective of the value of β, the curve always passes through four fixed points

determined by the following two equations:

(x0x− 1)2 + (y0y − 1)2 − 1− (a′y2 − 2b′xy + c′x2) = 0 (6.28)

(x2 + y2 − 1) = 0 (6.29)

Equation(6.29) suggests that these points lie on the unit circle C. We further in-

vestigate the polar line corresponding to each fixed point. First of all, it is tangent

to the circle C, so satisfying l = 1. Substituting it into (6.24) and using (6.19), we

know that the polar line satisfies

xo cos θ + yo sin θ ± sr = 1 (6.30)

The polar line is also tangent to the ellipse e, i.e. , it is the common tangent line

of the two ellipses. Remembering this polar line is the vanishing line, we interpret

this property as follows: when the vanishing line approaches the ellipse, the area

of the transformed ellipse grows. When the vanishing line becomes tangent to the

ellipse, the area becomes infinity. If the vanishing line is a common tangent to the

two ellipses, the area ratio is infinity over infinity, which can be any value. Thus we

have

Theorem 2. For transformation that makes the area ratio of two ellipses a given

value, their corresponding poles of the vanishing lines lie on a conic, which passes
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(a) (b) (c) (d)

Figure 6.4: Solutions curves under four conditions. Solid circles are the circles whose

area to be equalized. The one with plus mark is a unit circle. The dashed curve

is the solution curve, and only the solid part is valid. Dotted lines are common

tangents of the two circles.

through all the (real/complex) common tangent points.(see Figure 6.4 for illustra-

tion)

A conic can be determined by five points. Except for the four fixed points, the

fifth point fully determines the final area ratio of the ellipses after transformation.

6.3.2.7 Validation of The Solution

To guarantee that a vanishing line does not intersect the circle C, the pole

of the vanishing line must be inside C. The pole is also constrained because both

ellipses should be on the same side of the vanishing line.

Using two circles (one is the unit circle) as examples, the solution curves in

different conditions are shown in Figure 6.4: the common tangent lines pass through

the intersections between the solution curve and the unit circle.
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6.3.2.8 Affine Rectification

Based on Theorem 2, we can affinely rectify a plane using three ellipses with

same areas: (1) Arbitrarily select one of the ellipses and transform it into a circle.

(2) Calculate the curves for given area ratio 1 using (6.26). (3) Affinely rectify the

plane using the vanishing line as the polar of the intersection of two curves.

Because two curves may intersect at more than one point, this method leads

to multiple solutions.

6.3.3 Metric Rectification: From Affine to Metric

Now we discuss an approach to metrically rectify the plane by equalizing the

shape of three ellipses of the same area.

Denote the trace of E T (E). As we know

T (E) = em + en =
1

m2
+

1

n2
(6.31)

Using Lemma 3, the two semi axes m and n are the two roots of the following

quadratic equation:

x2 − x
√
T A2/π2 + 2A/π +A/π = 0 (6.32)

Thus, we have

Theorem 3. The shape of the ellipse of fixed area is determined by the trace of its

shape matrix.

Disregarding translation, rotation, and scaling, which do not change the met-

ric properties except for the absolute lengths, in this section we assume that (1) all
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Figure 6.5: (a) Affine transformation keeps the area of an ellipse constant. (b) Ex-

amples of three ellipses with equal areas cannot be simultaneously affine transformed

into same shapes

the ellipses are centered at the origin; (2) the origin is invariant to the affine trans-

formation; and (3) the transformation does not change the ellipse’s area. Without

loss of generality, we use a 2× 2 matrix A to indicate the affine matrix that affects

the shape of the ellipse

A =




1/t s

0 t


 (6.33)

Let the shape be E = (a b; b c). After applying the transformation, it becomes:

E′ = A−>EA−1 =




t 0

−s 1/t







a b

b c







t −s

0 1/t




=




at2 b− ast

b− ast as2 − 2sb/t + c/t2


 (6.34)

The trace of the shape of new ellipse is T (E′) = a(s2 + t2)− 2bs/t + c/t2.
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Given multiple ellipses Ei (i = 1, 2, 3, ..., n) of the same area, converting them

into ellipses of same shape is done be equalizing their traces after transformation:

T (E′) = ai(s
2 + t2) − 2bis/t + ci/t

2 = T0, where T0 is a constant to be determined.

When n ≥ 3, this problem can be solved by solving (s2t2+t4, st, t2T0) from the linear

equations and further computing s and t from them. Because T0 and t4 are required

to be positive, not every three ellipses of same area can be affine transformed into

the same shape. Figure 6.5 (b) displays such a case.

6.3.4 Calibration using synthetic data

We use an ellipse with semi-axes 2.5 and 1 fixed at the origin (this enables

to easy visual evaluation of the rectified image) and two identical ellipses randomly

drawn in a 5 × 5 square. A camera with a focal length of 150 and elevation angle

70◦ is applied. We assume that the detected points on the ellipses all have integer

coordinates, and ellipses are fitted using them, which introduces noise. A sample

image is shown Figure 6.6 (a). To evaluate the results, we select two sets of parallel

lines and a circle, as shown in Figure 6.6 (b). The angles between the rectified

parallel lines Ax and Ay are calculated, which indicates the quality of the affine

rectification. The ratio between the lone and short axes of the recovered circle

indicates the quality of the metric rectification. Finally, the focal length is estimated.

The experiment was repeated 100 times and the results are displayed in 6.6 (c) and

(d). The standard deviation of the focal length is 30.3, which is not small. However,

when the number of ellipses increases, the performance improves significantly. Table
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Table 6.1: Statistics of the calibration performance

# of ellipses used 3 5 7 9

STD of the focal length 30.34 20.64 10.64 8.33

6.1 shows the standard deviation of the estimated focal length vs. the number of

ellipses used.

6.4 Rectification Using Arbitrary Shape

Based on the theory above, we address a calibration method using an arbitrary

shape in planar motion. It is based on a basic intuition: any region can be fitted

into an ellipse shape. Given a planar shape moving on the plane, generating a

blob in each frame, we fit an ellipse to the blob and use the ellipse for rectification.

Obviously, the fitted ellipse may not be optimal after rectification. We design a

recursive rectification method to improve accuracy:

1. Detect the object blob by background subtraction [50] or other methods.

2. Select the largest blob as the reference.

3. Fit each blob region by an ellipse.

4. Calculate the curve of poles from each ellipse with respect to the reference

ellipse.

5. Select the point with minimum sum of square of distances to the curves as the

pole of vanishing line.
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6. Rectify the plane, and recalculate the blobs on the rectified plane.

7. Repeat steps 3-6 until the refitted .

6.4.1 Experiments

6.4.1.1 Synthetic Leaf Data

We use two leaf shapes to rectify a projected plane. Using the width of original

image as a unit, in each experiment one leaf is arbitrarily placed in a 4×3 rectangle

three times. The camera is placed at height 1 with an elevation angle 75◦. After

rectification, the area of the normalized blobs is set as π. Typical resulting images

are shown in Figure 6.7.

In the first experiment, the leaf’s shape is hard to perceive from the three

projected blobs. Although the quality of fit is poor (much smaller compared to what

is should be), the result is satisfactory. After rectification, the vanishing line is 540

unit away from the origin, far from the image region. In the second experiment, a

palmate shaped leaf is used. The image appears to be more challenging to rectify

because (1) one blob is projectively distorted significantly and (2) one blob contains

only 300 pixels and the petiole is missing. In the first round, the estimate is no good

enough, but another round of rectification provides improved result. The distances

from the origin to the vanishing line in each ground are 51, 461, 974 and 1122,

respectively. The projective distortion is removed step by step.
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6.4.1.2 Stationary Video

Using a web camera (PHILIPS DMVC 300K/37L), we captured a video se-

quence from a tall building looking at streets. The camera transmits one 480× 640

frame per second. A total of 6 frames containing a vehicle as a planar object mov-

ing on the ground plane are used for rectification. Figure 6.8 shows the rectification

result. Although the vehicle is not a real planar object, the rectification still works

quite well especially for the removal of projective distortion.

6.4.1.3 Camera undergoing Planar Motion

The last sequence comes from a camera in planar motion. The same camera

moved along a long table and captured the images of a tennis racket cover placed on

the ground. An intensity threshold is chosen to extract the black part of the cover as

a planar object. Varying the threshold from 25/255 to 75/255 does not significantly

change the obtained mask. Altogether 14 frames are used. The rectification results

are shown in Figure 6.9.

6.4.2 Application

We have presented a method to detect the center of concentric circles. Now

we present another method, which can also be used to detect projected concentric

circles in some cases. Let there be two coplanar circles Cp = diag(1, 1,−1) and

Cq = diag(1, 1,−r2) (0 < r < 1) with common center O at origin. The area ratio

between the two circles is r2. Using a point P = (x, y, 1)> as the mapping center,
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based on (6.22), the area ratio after transformation is written as

A(c2) : A(c1) = r2 (d2 − 1)3/2

(d2 − r2)3/2
(6.35)

where d2 = 1/(x2 + y2). From (6.35) we draw two conclusions: (1) using any point

other than the common center O as the mapping center, the transformed area ratio

always becomes smaller; and (2) the transformed area ratio is only related to the

distance from the mapping center to the center. In other words, all the mapping

centers that transformed the area ratio into a value v < r2 lie on a circle, which

is also centered at O. Interpreted from another point of view, the common center

of the concentric circles is inside the solution curve for any given area ratio value.

This observation leads to a new method to detect the center of a set of projected

concentric circles:

1. Fit the two ellipses cp and cq using the given information (cq inside cp).

2. Using the center of cq as the mapping center, calculate the corresponding area

ratio rqp after transformation.

3. Using rqp as the area ratio constraint, obtain the corresponding solution curve

cqp, which should be an ellipse inside cq.

4. Replace cq with cqp and repeat step 2, until cq converges.

5. Rectify the pattern and repeat from step 1.

107



Table 6.2: Performance comparisons among Jiang’s center of concentric circles de-

tection method [23], and our method using equal distances constraint (Section 4.4.5,

denoted as ‘Dist’), and this method (denoted as ‘Area’)

Jiang’s Dist Area

round 1 2 3 4 5 6 1 2 3

mean 7.18 1.72 1.56 1.51 1.71 2.07 1.50 5.62 0.23 0.25

median 7.06 1.60 1.43 1.32 1.45 1.74 1.16 5.69 0.23 0.26

std 0.26 1.16 0.98 0.98 1.23 1.43 1.19 0.78 0.08 0.07

6.4.3 Experiments

Using synthetic data, we first analyze the speed of this algorithm. Two pro-

jected concentric circles are shown in Figure 6.10 (a). The area of inner circle and

the distance between the detected center and the ground truth vs. the number of

iterations are plotted in Figure 6.10 (b) and (c). The inner circle converges expo-

nentially to the center.

We then compare the results to Jiang’s method using the same set of test

synthetic images described in Section 4.4.5. The results on each round are listed

in Table 6.2. It can be seen that this method outperforms Jiang’s method and our

method derived from equal distance constraint described in Section 4.4.5.
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Figure 6.6: Synthetic experiment. (a) Three projected identical ellipses are shown

in solid curve. The black ellipse is fixed and others are randomly drawn. Dashed

curves are the two solution curves to equalize the area ratio between the red/blue

and the black ellipse. The dashed black line is the estimated vanishing line, while

the gray solid line is the ground truth. (b) Rectified results (solid curves) compared

with the ground truth (dashed curve). Two sets of parallel lines of a square and one

solid circle are used for evaluation. The magnified histogram of two angles between

the two sets of parallel lines is shown in (c), and (d) two axes ratio of the big circle

(above, ground truth 1) and focal length estimation (below, ground truth value 150).
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(a) (b)

(c) (d) (d) (d)

(e) (f)

(g) (h)

Figure 6.7: Synthetic data for projected leaves. (a)-(d): set 1, (e)-(h): set 2. (a)(e):

leaf images in database. (b)(f): projected blobs with fitting ellipses in solid curves,

curves of poles in dashed curve. (c)(g) first round rectification result. re-fitted

ellipses are shown as dotted lines. (d) ‘false alarms’ (h) result after second round

rectification.
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(a) (b)

(c) (d)

Figure 6.8: Rectification of a stationary video using a moving vehicle. (a) a sample

frame when a car is turning. (b) masks of the cars. (c) curves of poles. (d)

rectification result.
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(a) (b)

(c) (d)

Figure 6.9: Rectification of a video in planar motion using a tennis racket. (a) a

sample frame. (b) selected masks and all the fitted ellipses. (c) rectification result

of (a). (d) rectification result of another frame.
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Figure 6.10: Experiment with synthetic data for detection of the center of concentric

circles. (a) the image, (b) the area of ellipse, (c) the detected error in distance
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Part IV

VIDEO METROLOGY
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Chapter 7

Video Metrology Using a Stationary Camera

7.1 Introduction

Existing image metrology algorithms are limited in that they rely on the com-

parison of parallel line segmentations. Video metrology directly based on image

metrology inherits this limitation. Actually, with multiple frames this limitation

can be overcome. Thus, the video metrology problem we investigate in this chapter

can be addressed as:

Problem 9. Given a length on the reference plane in multiple frames as a reference,

accurately estimate the length of another line segment on the reference plane using

multiple frames.

First we show how the solution is derived. Then we describe our implementa-

tion of a wheelbase metrology system using a stationary video camera followed by

its performance evaluation. Finally, we discuss how metrology works using a camera

in planar motion.

7.2 Two Lemmas

The difficulty of this problem is due to the complex relationship between the

reference and probe line segments, because both of them are scattered all over the
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Figure 7.1: Illustration of Lemma 6.

image plane. To overcome it, two lemmas relating to the line segments on the

reference plane are provided with perturbation analysis.

Lemma 6 enables the metrology in 1-D space, which is stated as:

Lemma 6. Given four collinear points m, n, p and q in the image plane, denote v

as the vanishing point along this direction (see Fig. 7.1). The ratio between the two

line segments ‖MN‖ and ‖PQ‖ can be written as:

r =
‖MN‖
‖PQ‖ =

dp

dm

dq

dn

(dm − dn)

(dp − dq)
(7.1)

where dt ≡ ‖vt‖ for t = m, n, p and q.

Lemma 6 can be easily proved using the cross-ratio [36]. When ‖MN‖ = ‖PQ‖

and all the other points are known, Lemma 6 can also be used to localize q:

dq =
dmdndp

dmdp + dmdn − dndp

(7.2)
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7.2.0.1 Perturbation Analysis

To analyze the accuracy of (7.1) under noisy conditions, we take the log oper-

ation both sides:

ln r = ln dp + ln dq + ln (dm − dn)− ln dm − ln dn − ln (dp − dq) (7.3)

and then take the derivative. Denote the small disturbance of the distance from any

point t as δt, the perturbation of the ratio then becomes

δr

r
=

1

dm − dn

(
dn

dm

δm − dm

dn

δn)− 1

dp − dq

(
dp

dq

δq − dq

dp

δp) (7.4)

Using Lemma 7, one can parallel move a line segment to a given point, on the

image plane, which is stated as:

Lemma 7. Given a line segment mn and a point o, let mn and mo intersect the

vanishing line L at points p, q respectively. Denote the intersection point of lines

nq and op as k (see Fig. 7.2). In the world system, OK is parallel to MN and

‖OK‖ = ‖MN‖.

Proof. Because p and q are vanishing points, OP and MN are parallel, and NQ

and MN are also parallel. Thus, MNKO forms a parallelogram. We have ‖OK‖ =

‖MN‖.

Following Lemma 7, the homogeneous coordinate of k is obtained as:

k ∼ (m× n× L× o)× (m× o× L× n) (7.5)

Using the properties of cross product: a × (b × c) = (a · c)b − (a · b)c and

a× a = 0, we simplify (7.5) as:
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Figure 7.2: An illustration of Lemma 7. mn is parallel moved to ok, where o is given

and k is unknown. p and q are two points on the vanishing line.

k ∼ (m× n× L× o)× (m× o× L× n)

= ((nhm −mhn)× o)× ((ohm −mho)× n)

= (ohm −mho)((nhm −mhn)× o · n)− n((nhm −mhn)× o · (ohm −mho)

= hohnm(m× n · o)− hnhmo(m× n · o) + hohmn(n× o ·m)

where hm = m · L, hn = n · L and ho = o · L. Because (m × n) · o = (m × n) · o =

(n× o) ·m = det(|mno|), k can be further represented using dot products:

k ∼ (n · L)(o · L)m− (m · L)(n · L)o− (o · L)(m · L)n (7.6)

7.2.0.2 Perturbation Analysis

By forcing the third element of each point coordinate to be 1, (7.6) can be

written as:

((n·L)(o·L)−(m·L)(n·L)−(o·L)(m·L))k = (n·L)(o·L)m−(m·L)(n·L)o−(o·L)(m·L)n

(7.7)
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By taking the dot product of L on both sides of (7.7), we have

1

k · L +
1

m · L =
1

o · L +
1

n · L (7.8)

By taking the cross product of L on both sides of (7.7) and using (7.8), we have

k× L
k · L +

m× L
m · L =

o× L
o · L +

n× L
n · L (7.9)

Draw a line L⊥ perpendicular to the vanishing line L in Fig. 7.2. Denote the

distance from any point t to the lines L and L⊥ as ht and gt respectively. The

geometric interpretation of (7.8) and (7.9) is

1

hk

+
1

hm

=
1

ho

+
1

hn

(7.10)

gk

hk

+
gm

hm

=
go

ho

+
gn

hn

(7.11)

Denote the disturbance of a point t along the direction of L and L⊥ as δgt and δht

respectively (t = m, n. We assume that o has no disturbance). From (7.10) and

(7.11), the perturbations along the direction of L and L⊥ are represented as

δgk =
hk

hn

δgn +
hk(gm − gk)

h2
m

δhm − hk

hm

δgm − hk(gn − gk)

h2
n

δhn (7.12)

δhk =
h2

k

h2
n

δhn − h2
k

h2
m

δhm (7.13)

7.3 Measure On-plane Line Segments

In this section, we present an algorithm for measuring on-plane line segments

and supporting perturbation analysis.
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7.3.1 Reference Lengths in Three Frames

To illustrate the key idea of our algorithm, we first provide a simplified problem

as an example with its solution and corresponding perturbation analysis.

Problem 10. Given the reference length ‖MN‖ = 1 on the reference plane in three

frames as mini (i = 1, 2, 3), estimate the length ‖OP‖ of any line segment op on the

reference plane.

We analyze the problem both in the image plane and show the corresponding

picture in the world system. First, to make the reference lengths and the probe

share a common endpoint, we parallel move mini so that mi is mapped to o, and

ni to point ki. In the world plane, ‖OKi‖ = ‖MiNi‖ = 1. Thus, the three points

Ki (i = 1, 2, 3) determine a unit circle C centering at O. Let K0 be the intersection

point between C and OP. The radius ‖OK0‖ = 1. If k0, the image of K0, is known,

‖OP‖ can be measured using Lemma 6. Thus, the key to solving this problem is

to determine the image of C, which is an ellipse denoted as E. To determine an

ellipse requires at least five points on the ellipse. Three points ki (i = 1, 2, 3) on E

can be obtained using Lemma 7. Because the center o is given, we can extend kio

through o and localize point ki+3 on the extension line, so that ‖Ki+3O‖ = 1. This

operation provides the other three points. The ellipse E then can be fitted using ki

(i = 1, 2, ..., 6).

We summarize the algorithm as follows:

1. Parallel move mini to oki using Lemma 7.
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Figure 7.3: Illustration of Problem 10 and its solutions. Red, green and blue line

segments are the reference lengths and the black segment is the probe.

2. Extend kio through o. Localize ki+3 on the extension line using Lemma 6,

such that ‖Ki+3O‖ = ‖KiO‖ = 1.

3. Fit an ellipse E passing through all the six points ki (i = 1, 2, ..., 6).

4. Obtain the intersection between E and op, which is denoted as k0.

5. Calculate r = ‖OP‖ : ‖OK0‖ using Lemma 6 as the metrology result.

7.3.2 Perturbation Analysis

We analyze the perturbation of K0 introduced by disturbance of Ki. Without

loss of generality, O is assumed to coincide with the image center. The parameter

vector E = (a b c d e)> represents the ellipse E satisfying ax2+bxy+cy2+dx+ey+f =

0. The coordinates of Ki is denoted as (xi, yi) and its coefficient vector are defined

120



as vi = (x2
i xiyi y2

i x y)>. Let G = (v1 v2 v3 v4 v5)
>, the ellipse can be solved as

E = −fG−1u (7.14)

where u = (1 1 1 1 1)>.

Suppose the disturbance at each point K is (δx, δy), the corresponding distur-

bance of the coefficient matrix is δG. From (7.14), the perturbation of the ellipse

becomes

δE = −G−1 δG E (7.15)

Using the condition v0E = −f , the perturbation to the coefficient vector of K0

becomes

δv0E = v0 G−1 δG E (7.16)

Define r0 =
√

x2
0 + y2

0 as the distance from K0 to O, and represent δv0 as δr0v0/r0,

the perturbation of r0 is

δr0 = r0 v0 G−1 δG G−1 u (7.17)

To further simplify (7.16), we assume that both the reference and probe lengths

are much shorter than the distance from point O to the vanishing line L, which

leads to d = e = 0. The parameters of the ellipse are simplified into a 3 × 1 vector

E = (a b c) and the coefficient vector of Ki becomes vi = (x2
i xiyi y2

i ). G−1 can be

expressed as:

G−1 =




− y2y3

(x1y2−x2y1)(x3y1−x1y3)
− y3y1

(x2y3−x3y2)(x1y2−x1y2)
− y1y2

(x3y1−x1y3)(x2y3−x3y2)

x2y3+x3y2

(x1y2−x2y1)(x3y1−x1y3)
x3y1+x1y3

(x2y3−x3y2)(x1y2−x1y2)
x1y2+x2y1

(x3y1−x1y3)(x2y3−x3y2)

− x2x3

(x1y2−x2y1)(x3y1−x1y3)
− x3x1

(x2y3−x3y2)(x1y2−x1y2)
− x1x2

(x3y1−x1y3)(x2y3−x3y2)




(7.18)
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δG G−1 u is the same order of the disturbance. Denote ti = yi/xi, (i = 0, 1, 2, 3). We

have

v0G
−1 = (

x2
0

x2
1

(t2 − t0)(t3 − t0)

(t2 − t1)(t3 − t1)

x2
0

x2
2

(t3 − t0)(t1 − t0)

(t3 − t2)(t1 − t2)

x2
0

x2
3

(t1 − t0)(t2 − t0)

(t1 − t3)(t2 − t3)
) (7.19)

In (7.19), the denominator is related to the angle of ∠KiOKj, which is denoted by

ηij. Then we have

‖v0G
−1‖ ∼ mini ‖η0i‖

mini,j ‖ηij‖ (7.20)

7.3.3 Reference and Probe Lengths in Multiple Frames

In general case, both the reference and the probe lengths appear in multiple

frames. Problem 9 can be formalized as

Problem 11. Given a reference length ‖MN‖ = 1 in multiple frames mini (i =

1, 2, ...f) and a probe line segment ST also in multiple frames sjtj (j = 1, 2, ...g),

determine the length l of ST.

We first select an arbitrary point o on the image plane and parallel move mini

to opi, and sjtj to oqj. We then localize pi+f on opi so that ‖OPi‖ = ‖OPi+f‖ and

repeat the same steps to localize qj+g.

Now Consider the lengths of the new line segments in the world system:

‖OPi‖ = 1 (i = 1, 2, ...2f), ‖OQj‖ = l (j = 1, 2, ...2g). Denote O’s coordinate as

(xO, yO). Pi and Qi are on two concentric circles Cp : (x− xO)2 + (y− yO)2− 1 = 0

and Cq : (x− xO)2 + (y − yO)2 − l2 = 0 respectively. Define a trivial circular conic
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centered at O with zero radius as

C0 =




1 0 −xO

0 1 −yO

−xO −yO x2
O + y2

O




(7.21)

The two circles can be written as

Cp = C0 −




0 0 0

0 0 0

0 0 1




, Cq = C0 − l2




0 0 0

0 0 0

0 0 1




(7.22)

Denoting the 3× 3 homography matrix from the world reference plane to the

image plane as H, the image of a circle C is known as an ellipse: E = H−>CH−1. The

image of concentric circles is of the form

Ep = E0 − L Eq = E0 − l2L (7.23)

where E0 = H−>C0H
−1 and L = H−>diag(0, 0, 1)H−1. We analyze L and E0 respectively.

Let the vanishing line be expressed as L = (L(1) L(2) L(3)). H−1 can be

written as

H−1 = α




h11 h12 h13

h21 h22 h23

L(1) L(2) L(3)




(7.24)

Thus,

L = α2




L(1)L(1) L(1)L(2) L(1)L(3)

L(1)L(2) L(2)L(2) L(2)L(3)

L(1)L(3) L(3)L(3) L(3)L(3)




(7.25)
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Since E0 stands for a trivial ellipse at point o = (xo, yo), it is of the form

a0(x−xo)
2+b0(x−xo)(y−yo)

2+c0(y−yo)
2 = 0 (we ignore the restriction b2 < 4ac).

Ellipse Ep and Eq can then be written as

a0(x− xo)
2 + b0(x− xo)(y − yo) + c0(y − yo)

2 − α2vL = 0 (7.26)

a0(x− xo)
2 + b0(x− xo)(y − yo) + c0(y − yo)

2 − β2vL = 0 (7.27)

where β = αl, v = (x2 xy y2 x y 1), and

L = (L(1)2 2L(1)L(2) L(2)2 2L(1)L(3) 2L(2)L(3) L(3)2)>

Define e = (a b c α2 β2)> and vectors with components

up = ((x− xo)
2 (x− xo)(y − yo) (y − yo)

2 v(p)L 0 )

uq = ((x− xo)
2 (x− xo)(y − yo) (y − yo)

2 0 v(q)L)

The coefficient matrix is M = (up1 up1 . . . upf uq1 . . . uqg)
>, and Problem 11 is reduced

to solving a linear fitting problem:

Me = 0 (7.28)

The nontrivial least square solution is:

e = argmin‖Me‖ subject to ‖e‖ = 1

which can be solved by performing the Singular Value Decomposition (SVD): M =

USV> where e is the singular vector corresponding to the smallest singular value of

M [22].
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Figure 7.4: Poorly fitted ellipse is improved significantly by adding one more point.

The red ellipse is fitted by red (noisy) line segments; the blue ellipse is fitted by

both red and blue line segments. The dashed black ellipse is the ground truth.

After determining α2 and β2, the length of the probe line segment is calculated

directly as

l =
√

β2/α2 (7.29)

This method also works for measuring the length of multiple line segments on

the reference plane by estimating α, β, and γ, etc.

7.3.4 Performance in Noisy Environments

Perturbation analysis for the case of multiple frames is very difficult. Intu-

itively, a poorly fitted ellipse may be improved significantly by adding one more point

along a “decent” direction (Fig. 7.4). When there are enough reference lengths, the

references inducing large perturbation errors can be ignored. The perturbation of

the result using a triple of reference lengths {i, j, k} is denoted as δli,j,k. The pertur-

bation using multiple lengths is lower than any of them δl < δli,j,k. We approximate

the total perturbation as the lowest value from the triples: δl = mini,j,k δli,j,k
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During the measuring procedure, we assume that the disturbances of end-

points of the input line segments are independent and identically distributed. The

perturbation of ki due to the input noise can be derived using (7.7). After fitting

the ellipses using ki, we decompose each perturbation vector into two components:

one tangent to the ellipse and the other normal to the ellipse, denoted as ti and ni

respectively. Since ti does not affect the fitting result, only ni is considered. The

algorithm is modified as follows:

1. Fit the two ellipses using M as described before.

2. Calculate the perturbation of each reference and probe lengths along with the

normal direction of the fitted ellipses.

3. Estimate the total perturbation of each probe, denoted as ni.

4. Refit the two ellipse using a new matrix M′, where each row of M′ is constructed

by the row of M multiplies a factor fi ∼ 1/ni.

This algorithm actually gives a weight to each point during fitting, that is,

inversely proportional to the effect of perturbation. Since the effect of perturbation

is estimated based on fitting ellipses, an Expectation-Maximization (EM) algorithm

may be applied: the E-step is invoked for estimating the errors from the ellipses;

and the M-step for fitting the ellipses to minimize the errors. However, experiments

have shown that the EM algorithm may not be necessary as the results after one

iteration are usually acceptable.
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Figure 7.5: Synthetic data for metrology algorithm. (a) Traces of wheelbases from

two vehicles. (b) Mean of metrology error. red ◦: result using rectification; green ¤:

our ellipses fitting metrology algorithm without perturbation analysis; blue 4: our

metrology algorithm with perturbation analysis (weighted) (c) Standard deviation

of metrology result.

7.4 Synthetic Data Experiments

We illustrate the effectiveness of our metrology algorithm using synthetic data.

7.4.1 Metrology Algorithm

We first evaluate the performance of our method and compare it to the rec-

tification method using synthetic data. Two sets of images of wheelbases lying on

the reference plane are simulated. As shown in Fig. 7.5 (a), each set contains two
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main directions. The ratio between the two wheelbases is 1.60.

The noisy input data is generated by adding independent and identically dis-

tributed Gaussian random noise to all the endpoints of the line segments. Three

methods are used to measure the ratio of the two sets of wheelbases. The tradi-

tional method first rectifies the image using the Liebowitz’s method [29], calculates

the lengths in the rectified image and then compares the means of the two sets. The

rectification algorithm contains a step to estimate the common intersection points

of multiple circles on the α − β plane, which is achieved by minimizing the sum of

distances from that point to all the circles (The distance from one point to a circle

is defined as the difference between the distance from the point to the circles center

and the circle’s radius). The second method is our unweighted concentric-ellipses

fitting algorithm. The last one considers noise analysis and uses the weight. We

tried different levels of noises and for each level, ten sets of data are independently

generated. The mean of relative error of each method versus the noise level is plotted

as shown in Fig. 7.5 (b). Both of our methods outperformed traditional rectification

method. Weighted fitting achieves best result among all the methods. Fig. 7.5 (c)

plots the standard deviation of the metrology results.

7.5 System Implementation

In this section, we present a real-time wheelbase measuring system using a

stationary camera. The configuration of the system is presented in Figure 7.6.
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Figure 7.6: Flow chart of the wheelbase measuring system

7.5.1 Wheels Detection and Tracking

After background subtraction [50], we estimate the vehicle’s direction of mo-

tion using optical flow. We attach a system of skew coordinates to the moving

vehicle (x′, y′), where x′ is along the direction of motion and y′ is vertical, as shown

in Fig. 7.7. Since each tire of a vehicle is black and the wheel cover is silver or gray,

even a simple intensity filter can separate the wheel cover from the tire well. To

detect the wheels, we preset a low threshold ti and remove pixels whose intensity is

lower than the threshold from the foreground vehicle mask. As we gradually raise

the threshold and keep removing the low intensity pixels from the mask, the whole

mask breaks into pieces step by step. The procedure stops when two similar blobs

appear at the bottom (with low coordinate y′). These two blobs are treated as

the mask of wheel covers. The centers of the blobs are used as the detected wheel

centers. The final threshold value is denoted as t.

A similar method is used to track the wheels. To speed up the operation, the

initial threshold of the frame f is set as the threshold from the frame f − 1 after
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Figure 7.7: Skew coordinate using vehicle’s moving direction.

subtracting a small amount tif = tf−1− δf . The detected region also focuses on the

previous wheel center location plus the shift of the vehicle center. The tracking is

performed in real time.

7.5.2 Minimal Calibration

Treating the line connecting the detected wheel centers as the wheel-base, we

estimate the vanishing line using the method presented in Chapter 6.

7.5.3 Indoor Video Experiments

Two radio controlled toy Mitsubishi Lancer cars with green color were used

in our experiment. The larger car is scaled to 1:6 and the small one to 1:16. Each

frame has 480× 640 pixels and the frame rate is 20 frames/second.

Sample frames are shown in Fig. 7.8 (a). Figure 7.8 (b) illustrates the mask

after removing the low intensity pixels. Samples of the tracked wheels are shown in
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Figure 7.8: Indoor sequence (a) a sample frame with number 4190 (b) mask after

removing the pixel with intensity lower than 0.00, 0.05, 0.10, 0.15 respectively (c)

sample of retrieved wheels from one vehicle. Same color indicates a pair (one front,

one rear) from one frame (d) endpoints after parallel moving of two vehicles, red for

the larger toy car, green for the smaller toy car, ’+’ indicates the common endpoint.
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Table 7.1: Wheel base metrology results

Year/Make/Model Size/Category Ground Truth(In.) Metrology result(In.)

2004 Hyundai Elantra compact sedan 102.7 102.83± 1.75

2001 Honda Civic compact sedan 103.1 103.47± 2.77

2004 Toyota Camry midsize sedan 107.1 108.02± 2.45

2004 Ford Explorer Large SUV 113.8 115.04± 2.32

Fig. 7.8 (c). Fig. 7.8 (d) shows the endpoints of the wheelbases after parallel move

and fitting steps have been performed.

Our video metrology result shows that the two wheelbases ratios are 39.2%.

Actual measurement shows that the larger toy car’s wheelbase is 41.90 cm and the

smaller one is 16.75 cm and the ratio is 40%. Our solution has an error of 1.95%.

Compared to the ratio claimed by the toy producer (1/16 : 1/6 = 0.375) with 6.25%

error, it is far better.

7.5.4 Outdoor Video Experiments

The video sequences were captured using cameras located more than 25 feet

above the ground. Four types of vehicles were imaged, which include a 2004 Toyota

Camry, 2001 Honda Civic, 2004 Huyndai Elantra and 2004 Ford Explorer. The

frame rate is 20 frames/second and each frame has 480 × 720 pixels. The sample

frames are shown in Fig. 7.9 (a)-(d). Samples of detected wheels are shown in

Fig. 7.10 (e).

Using the fitted ellipses, we can estimate the error of each of the line segments,
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(a) (b)

(c) (d)

Figure 7.9: Sample frames from outdoor sequences. (a) Toyota Camry (b) Honda

Civic (c) Hyundai Elantra (d) Ford Explorer

and then calculate the variance of the input noise from it. Then the probability

distribution of the measuring result can be achieved, which is presented in Fig. 7.11.

The measuring result and error estimate are displayed in Table 7.1. Although Civic

and Elantra are not distinguishable, the Camry vehicle can be separated from them.

The Explorer is different from Camry also. Thus the result can be used to determine

the vehicles class.
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Figure 7.10: Sample of detected wheels. The detected wheel centers are indicated

by white crosses

7.6 Measure All Line Segments

We briefly discuss how to measure the line segments that do not lie on the

reference plane, given a line segment on the reference plane as a reference. Since the

reference lengths can be freely parallel moved on the reference plane, the problem

can be restated as:

Problem 12. Given a reference line segment mini, estimate the length of mipi.

Let Q be the projective point of P onto R. The results of previous section

show that mq can be measured using mn. The metrology of pq can be obtained

using Criminisi’s method [10]. ‖MP‖ can be achieved using the Pythagoras’s rule:

‖MP‖ =
√
‖MQ‖2 + ‖PQ‖2. This problem is simplified to localize the projective

point q on the image plane.
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Figure 7.11: Wheelbase metrology probability plots

7.6.1 Simplified Case

We first study a simplified version of the problem by adding a constraint to

point P:

Problem 13. Given a reference line segment mn, estimate the length of mp, under

the constraint that the plane formed by M, N, and P is perpendicular to the reference

plane R.

Let the lines mn and pz intersect at q, where z is the vertical vanishing point.

Point q is the projective point because (1) the line PQ is perpendicular to R as
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Figure 7.12: Illustration of Theorem 4. Red dashed and blue solid indicate frames

1 and 2 separatively. The black dash dot line is the transformed frame 1

it passes through the vertical vanishing point, and (2) Q lies on the intersection of

plane MNP and plane R.

7.6.2 General Case

To solve problem 12 in general case, at least two frames are required.

Theorem 4. Given reference lengths mini (i = 1, 2) with ‖M1N1‖ = ‖M2N2‖ and

a point q1 on the reference plane R, a point q2 can be localized so that ‖Q2M2‖ =

‖Q1M1‖ and ∠Q2M2N2 = ∠Q1M1N1.

Proof. Draw an ellipse Em so that for any point x on Em, ‖XM2‖ = ‖Q1M1‖; ellipse

En so that for any point x on En, ‖XN2‖ = ‖Q1N1‖. Denote the intersection point

of the two ellipses as q2. We have 4M2N2Q2 ' 4M1N1Q1, thus q2 satisfies the

requirement.

Theorem 4 actually suggests a rotation operation on the reference plane. We

can then obtain q from two frames by rotating frame 1 to 1’ so that m′
1 = m2 and
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(a) side view (b) top view

Figure 7.13: Metrology of the tracked points from reference wheel base

n′1 = n2. The vertical point z then becomes z′. Because q is always on the line pz

during the rotation, the intersection point of z′p′1 and zp2 is q2 = q′1 (see Fig. 7.12).

A metrology method for multiple frames can then be designed.

1. Denote MN’s midpoint as K, find Ki in each frame.

2. Rotate each frame, so that k′i = k0 and m′
in
′
i is parallel to the x-axis. Here k0

can be any fixed point.

3. Localize the point q0 which minimizes the distance to z′ip
′
i:

q0 = argminq dist2(q, z′ip
′
i)

4. Project q0 to z′ip
′
i as q′i.

5. Estimate ‖M′
iP
′
i‖ through q′i and combine the result.

7.6.3 Experiments

We use the same outdoor video sequence to measure several line segments

on the SUV. By tracking feature points on the object using the KLT [32][42][45]

tracker, the geometric properties of an object can be derived. We track the window
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corners and rack crossing points of the Ford Explorer and then measure their spatial

locations using our method. The window corners are assumed to form a vertical

plane passing through the two wheel centers (thus we can use the simplified method)

and the rack points have no such constraint. The initial points are manually selected.

Fig. 7.13 compares our result with the ground truth images from side and

top views. Major errors occur when the tracking points drift away as frames are

processed.

7.7 Frame Selection for Camera in Planar Motion

A camera undergoing planar motion is a camera that moves parallel to the

reference plane at a fixed height h, elevation angle θ, and rotation angle φ. The

vanishing line L is fixed during the planar motion. Stationary objects shot by a

camera in planar motion can be treated as objects in planar motion on the reference

plane shot by a stationary camera. Thus, our metrology algorithm is applicable to

the camera in planar motion.

In reality, the planar motion camera is mounted on a planar motion object,

e.g., a vehicle moving on the reference plane. Under this condition, the height of

the camera is invariant. However, two angles θ and φ may change with the time,

which makes the video jitter and the vanishing line unstable. One solution to this

problem is to select a group of frames with the vanishing lines similar to each other

and use those frames for metrology.

The vanishing line can be represented using two parameters: the distance
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d from the original point o to L and the angle θ of L: L = (sin φ, cos φ, d)>. To

compare the similarity of two vanishing lines, a simple camera model with unit aspect

ratio and zero skew is adopted. Under this condition, we draw a perpendicular from

o to L and denote the foot as f: f = (d cos θ, d sin θ, 1)>. Given a reference vanishing

line L0 and two vanishing lines L1,2 close to L0, we can prove the following property of

the feet: If ‖θ1−θ0‖ ≤ ‖θ2−θ0‖ and ‖φ1−φ0‖ ≤ ‖φ2−φ0‖, then ‖f0f1‖ ≤ ‖f0f1‖ Thus,

the distance of the two feet can be used to indicate the distance of two vanishing

lines. In the rest of this chapter, we use the foot f to represent the vanishing line.

The images from two frames 0, 1 share a fixed line l0,1, which can be calculated

as the only real eigenvector of H>, where H is the homography matrix. If two frames

have the same vanishing line L, it can be calculated as the fixed line among the two

frames. One the other hand, given the vanishing line of frame 0, if l0,1 = L0, then

the vanishing line of frame 1 is the same as 0’s; otherwise, they are different. Based

on this fact, we propose the following criteria to select frames with similar vanishing

lines as frame 0:

1. Set a predetermined distance threshold d0.

2. Obtain the homography matrix H between frame 0 and the query frame.

3. Calculate the real eigenvector of H>, denoted as l.

4. Find the distance d between line l and L0. If d < d0, the the frame is selected.

For frames that have very different vanishing lines, the eigenvectors are dis-

tributed sparsely. Assuming that there are many frames with similar vanishing lines
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as frame 0, their eigenvectors are closes to L0. Thus, when L0 is unknown, it can

be obtained by clustering the eigenvectors.

7.7.1 Synthetic Data Results

Our last experiment is about frame selection. Let the elevation angle and

rotation angle of frame 0 be θ0 = 70◦ and φ0 = 5◦. The two angles of other frames

are perturbed independently by Gaussian noise with standard deviation 5◦. The

camera’s positions are randomly distributed in a square. The vanishing lines of

these frames are shown in Fig. 7.14 (a) and compared with the fixed lines, which

are more sparsely distributed. Select those fixed lines within a distance d0 to L0,

as shown inside the gray circle. The corresponding vanishing lines are marked with

red circles. We have the following observations.

• Selected vanishing lines are comparatively closer to L0, especially in y(θ) di-

rection.

• Selected vanishing lines may not be within the distance of d0 to L0.

• Not all the vanishing lines within the distance of d0 to L0 are selected.

The algorithm is evaluated from three aspects. There are totally 10, 000 frames

involved. First, the distribution of selected vanishing lines is analyzed. Denote the

foot of vanishing line as fx and fy. Fig. 7.14 (b) displayed the standard deviations

(STD) of fx and fy vs. d0. The figure shows that both std(fx) and std(fy) are

roughly proportional to d0, i.e. , there exists a constant α satisfying fx, fy < αd0.
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Figure 7.14: Synthetic data for frame selection. (a) The vanishing lines represented

by feet. the black crosses: the vanishing line of frame 0; the green crosses: the

vanishing lines of other frames; blue dots: fixed lines obtained from the homography

matrices between frame 0 and other frames. red circles: those selected vanishing

lines whose corresponding fixed line is close to the vanishing line of frame 0. (b)

the standard deviations (STD) of the coordinates (x in blue cross and y in red plus)

of the feet of the selected vanishing lines vs. different distance d0 used. (c) The

number of selected frames vs. d0 in 10,000 frames. (d) The ratio of the numbers of

selected frames and all the frames should be selected vs. d0.
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Thus, to select some frames with the vanishing lines within a distance d to L0, we

may just set d0 = d/α. The std(fx) and std(fy) for unselected frames are 33 and

100 respectively. Although std(fx) is slightly smaller than std(fy) for the selected

frames, more vanishing lines far away from L0 in the y direction are filtered out. The

second aspect we analyze is the number of frames we select, which is plotted in (c).

The number of frames is proportional to d2
0. The last question to answer is: for the

vanishing lines within a region d, how many of them are selected? If we assume that

the vanishing lines are uniformly distributed within a circle radius r, which makes

its STD around 0.41r. For each d0, we create an ellipse with the x-axis 2std(fx)/0.41

and the y-axis 2std(fy)/0.41, respectively. The number of the vanishing lines inside

the ellipse denoted as nv can be treated as the number of frames should be selected.

The ratio between the number of actually selected is plotted in (d). Around 20%

frames are selected using this method.

Synthetic data shows that this method works but not perfectly. With a too

small d0, the number of selected frames might be small, which makes the metrology

algorithm unstable; with a too large d0, the vanishing lines of selected frames might

be not close to L0, makes the metrology algorithm not accurate. Thus, a proper

value of d0 should be chosen.

7.7.2 Indoor Video Experiments

The last experiment involves four stationary toy vehicles: silver Cobra, black

Hummer, yellow SVT and blue Silverado. The frame rate is 3 frames/second and
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totally 500 frames are collected. Each frame was saved as a 480× 640 pixels JPEG

file. Eight wheel centers are detected and tracked automatically. Frame 250 is

selected as the reference frame. The homography matrices between each frame

and frame 250 are calculated from the eight registered wheel centers. The vanish-

ing line is obtained in two ways: by using two sets of parallel lines yielding the

result (−0.0098, 1.0000, 259.0464)>; by clustering the eigenvectors providing the re-

sult (−0.0056, 1.0000, 256.2997)>. The two results are close to each other. Using

the threshold d0 = 2, 18 frames among 500 were selected and used for metrology.

The reference frame 250 is shown in Figure 7.15 (a). Figure 7.15 (b) displays

the feet of the eigenvector lines. The red square is the foot of the vanishing line

of frame 250 detected using parallel lines. The blue circle is the cluster center of

the eigenvectors. Frame 330 is shown in 7.15 (c), where no parallel line sets can be

accurately detected. The endpoints of the parallel moved line segments are shown

in Figure 7.15 (d), together with the fitted concentric ellipses with corresponding

colors. The comparison between the metrology results and the ground truth values

are summarized in Table 7.2. From it, the error is around 3%, somewhat larger than

the result from a stationary camera, but still small.
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Figure 7.15: Wheelbase metrology using a planar motion camera

Table 7.2: Wheelbase metrology results for camera in planar motion

Vehicle Color Ground Truth (cm) Metrology result (ratio) error (%)

Silver 41.4 1.000± 0.035 (reference)

Black 21.5 0.540± 0.034 3.83

Yellow 19.2 0.417± 0.020 3.11

Blue 17.8 0.464± 0.021 0.05
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Chapter 8

Summary and Future Research Directions

In this dissertation, we have advanced current calibration and metrology re-

search. The research contributions of this dissertation include a novel point of view

on rectification problems, solutions to different types of constraints, discovery of

invariants, a set of video calibration methods, video metrology algorithm, jitter

removal algorithm, and an automated wheelbase metrology system.

8.1 Summary of Contributions

First, we have presented a new method for calibration using planar patterns

including a circle. We have provided a general solution structure to an intermediate

set of partial rectification problems, so that the calibration problems can be solved

constraint by constraint rather than case by case. We have studied two sets of

constraints based on distance and angle. In the first set, we have solved the partial

rectification problem given the distance from a point to a circle, which is an ellipse

tangent to the intersections between the projected circle and the polar of the point.

We have proved that the solution curve for equal distance constraint is a straight

line. In the second set, we specially deal with the constraint of a pair of orthogonal

lines. The solution curve passes through the two poles and the intersections between

the two lines and the projected circle. We have obtained two byproducts by studying
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the patterns: (1) we have developed a new method to detect the center of concentric

circles, and (2) developed a new method for image registration.

Second, we have presented several new video calibration methods. We have

proposed a two-step method to estimate the vanishing line using a line segment

moving on the reference plane. We have also proposed a method to rectify the plane

using a moving ellipse, which also consists of two steps: (1) affine rectification by

equalizing the sizes of the ellipses, and (2) metric rectification by equalizing the

shapes of the ellipses. This algorithm has been generalized to any planar object

moving on the reference plane. We have developed another algorithm to detect the

center of concentric circles that outperforms existing algorithms.

Finally, we have presented a new algorithm for video metrology. Rather than

directly extending an image-based metrology, our algorithm uses the property of

video and achieves higher accuracy. We have developed a wheelbase measurement

system for surveillance video, and the error in measurement is within 2%. Thus,

this system can determine the vehicle categories.

8.2 Limitations and Future Work

Several open issues and intriguing research questions were identified while con-

ducting this research and performing the experiments. These issues and questions

point to the following future research directions.

1. Automatic derivation of the relationship between lines, points and circles. In

the experiments on calibration using circles, the lines and points forming the
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constraints are identified manually. There are few algorithms to automatically

determine (1) the intersecting angles of two lines (parallel, perpendicular or

not), and (2) the relation of points and the circle, which prohibits our algorithm

to process a single view image automatically. In addition, detecting ellipse is

not trivial. A robust and accurate ellipse detector has to be developed.

2. Solutions to more types of constraints. Several commonly seen constraints in-

cluding equal-distance and right angle constraints have been solved. However,

to build a system applicable in most scenes, we need to be able to include as

many constraints as possible. For example, 30, 45, 60 and 120 degrees angle

constraints appear frequently, and the corresponding solutions have not been

represented in existing approaches.

3. Further study on video calibration using planar objects. We have presented

an interesting and practical video calibration technique using moving planar

objects. However, there are still some challenges left. Theoretically, the re-

cursive method has not been proved to converge to the solution. Practically,

generally observed shapes are approximated as planars. The non-planar effect

should be analyzed for building a robust calibration system.

4. Investigation on video metrology using multiple cameras. Our metrology algo-

rithm can be extended to multiple cameras. New problems, such as camera

setting and calibration, sensors cooperate and fusing, etc. arise, which makes

a good research topic.
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