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Leishmania are intracellular parasites that reside inside macrophages and induce weak 

innate immune responses. We hypothesize that transgenic parasites that express 

immune response genes could modify the nature of the host response to the parasite. 

We previously generated transgenic parasites that produce interferon gamma 

inducible protein 10 (IP-10). C57BL/6 mice are resistant to wild type L. major 

infection but when infected with IP-10 transgenic parasites they develop large lesions 

in the footpad that do not resolve. Recently it was discovered that nTregs express 

CXCR3, the receptor for IP-10. We hypothesized that IP-10 transgenic parasites 

could actively recruit nTregs and thereby enhance parasite persistence. We found 

higher numbers of CD4+CD25+Foxp3+ cells in the draining lymph nodes of IP-10 

parasites infected mice compared to wild type infected mice. This work suggests that 

IP-10 secreting parasites might recruit a population of regulatory T cells that 

modulates the immune response to the parasite allowing parasite persistence. 
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Chapter 1: Introduction 

 
Leishmaniasis 
 
Leishmaniasis is a parasitic disease caused by the protozoan Leishmania, an obligate 

intracellular protozoan that resides inside macrophages. It is transmitted by sandfly 

vectors of the genus Phlebotomus and Lutzomyia (1). Leishmaniasis causes a 

spectrum of diseases which can widely vary from a small cutaneous lesion to a life 

threatening visceral form. The form of the disease depends largely on the parasite 

species and the immunological status of the host. Leishmaniasis is an increasing 

health problem mostly in tropical countries where 2 million cases are reported 

annually with an estimated 12 million people currently infected worldwide (2). In the 

digestive tract of sand fly vectors, Leishmania spp exist as a flagellated, elongated 

form, called the promastigote. Promastigotes replicate and differentiate into an 

infectious, non-dividing metacyclic form in the sand fly gut. They are deposited into 

the skin of the host when sand fly vectors take blood meals. Promastigotes are taken 

up by macrophages where they differentiate into a non-flagellated, oval-shaped 

intracellular form, the amastigote. Amastigotes are able to resist the harsh acidic 

environment of the phagolysosome (3, 4). They replicate inside phagocytes and 

eventually lyse them. The Leishmania life cycle continues when sand fly vectors take 

up amastigotes during blood meals. The parasite differentiates into promastigotes in 

the sand fly gut (5). 

The disease Leishmaniasis involves the invasion of macrophages by the parasite and 

their subsequent intracellular replication. Leishmania have evolved several evasion 
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strategies that allow them to avoid host cellular killing mechanisms. Their survival 

depends on resisting innate antimicrobial mechanisms of the host and on modulating 

host adaptive immune responses. 

 

Evasion of the host immune response 

Leishmania parasites cause chronic infections in the host to maximize their chances 

of successful transmission by sand fly vectors. Leishmania have evolved a wide 

variety of host adaptations that allow them to avoid their destruction by the immune 

system. Parasites can alter their membrane to avoid insertion of lytic C5b-C9 attack 

membrane complex (6). Promastigotes activate the alternative complement pathway 

with iC3b and C3b deposition that allows parasite uptake by phagocytes via CR3 and 

CR1 receptors (7, 8). Opsonic uptake does not activate NADPH oxidase, allowing 

parasites to enter cells silently. Leishmania can also enter macrophages through a 

silent mechanism similar to the uptake of apoptotic cells (9). In this way they can 

establish their niche inside macrophages without activating them. Two surface 

molecules have been implicated in parasite’s ingestion, a lipophosphoglycan (LPG) 

and a surface protease (gp63). LPG promotes intracellular survival of promastigotes 

by delaying the fusion of the parasite-containing phagosome with the lysosomes (10). 

Gp63 inhibits degradative phagolysosomal enzymes (11).  

Leishmania have also the ability to inhibit protein kinase C (PKC) activation which in 

turn inhibits phosphorylation at several sites of the signaling pathways that lead to the 

oxidative burst (12). Leishmania cause multiple defects in the induction of cell 

mediated immunity establishing chronic infections within the host. Leishmania 

 2 
 



infected macrophages have a reduced class-II-restricted antigen presentation that does 

not permit efficient T cell activation (13). Leishmania infected macrophages are 

unable to produce IL-12 (14), the main inducer of IFN-γ, a pivotal cytokine for Th1 

immune responses against intracellular pathogens. Parasites fail to activate NF-kB, 

essential in the expression of IL-12 and many other inflammatory cytokines (Mosser 

lab unpublished data). It has also been observed that Janus-kinases signal transducers 

and activators of transcription (Jak-STAT) signaling pathways are inhibited in 

parasite infected macrophages (15). 

 

Using a Leishmania model of chronic infection, it has recently been shown that 

natural T reg cells accumulate at sites of infection (16). It has been suggested that 

parasites might manipulate regulatory T cells functions by creating an environment 

that favors their recruitment to the site of infection. In summary, it has been 

postulated that Leishmania are able to evade the host immune responses by inhibiting 

innate anti-microbial killing pathways in macrophages, enter phagocyte silently, 

delay phagosome maturation, impair antigen presentation, fail in activating 

macrophages, and manipulate cells of the adaptive immunity to their benefit to induce 

long term infections within the host. 

 

Chemokines in Leishmaniasis 

Chemokines are a superfamily of small glycoproteins that direct the migration of 

different types of leukocytes from the blood stream into sites of infection and 

inflammation. They also play a critical role in allergic responses, infectious and 
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autoimmune diseases, angiogenesis, inflammation, tumor growth, and hematopoietic 

development (17, 18). Chemokines are divided into four families based on the 

location of the two cysteines present in N-terminal portion of the chemokine protein 

sequence.  The four families include the C, CC, CXC, and CX3C chemokines. They 

mediate their proinflammatory effects by binding to a variety of specific receptors, 

belonging to the G protein-coupled superfamily of seven-transmembrane (serpentine) 

receptors. Chemokines can be produced by a wide variety of cell types in response to 

pathogen associated molecular patterns found in bacteria, parasites, viruses and 

danger signals that are released during inflammatory responses (19). Chemokines 

regulate both the innate and adaptive immunity playing a critical role in the immune 

response to several pathogens (20). 

 

In humans, leishmaniasis can develop into a self-healing localized cutaneous form 

(LCL) or a progressive diffuse cutaneous form (DCL). Chemokines might contribute 

to the development of these different forms of the disease by recruiting different 

subsets of immune cells to the site of infection. High levels of monocyte 

chemoattractant protein 1 (MCP-1/CCL2) and interferon-γ inducible protein 10 (IP-

10/CXCL10) have been found in skin biopsies from LDL patients (21). In contrast, 

MIP-1 alpha/CCL3 expression predominates in lesion of DCL patients, where MCP-1 

expression is much lower. Recently, an important role of MCP-1 was demonstrated 

using an experimental model of leishmaniasis. Transgenic MCP-1-secreting parasites 

are able to recruit restrictive CCR2-positive macrophages to the site of infection. 
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MCP-1 produced by the transgenic parasites helps to activate CCR2-positive 

macrophages, making them particularly adept at killing Leishmania parasites (22). 

 

There is also evidence that L. major downmodulates CCR2 and CCR5 expression in 

DC and their responsiveness to the respective ligands, CCL2 and CCL3, while 

enhancing CCR7 expression and the DC response to its ligand CCL21 (23). It might 

be possible that a different subset of chemokines is expressed among resistant and 

susceptible mice during leishmaniasis. These chemokines could influence the 

recruitment of effector cells deciding on the elimination or survival of the parasite. 

Therefore chemokines are critical key players during the immune response against 

Leishmania. Some of these chemokines and their receptors are shown in Table 1. 

 

IP-10 and Leishmaniasis 

Interferon-γ inducible protein, also known as IP-10 or CXCL10, is a CXC chemokine 

known to bind with high affinity to the CXCR3 receptor expressed on NK cells, 

CD8+ T-cells, and both CD4+ activated and memory T-cells (24). IP-10 has been 

shown to attract Th1 polarized cells (25) and is produced by many different cells 

when activated in response to IFN- γ increasing in turn IFN- γ levels. Previous studies 

have shown that L. major infection upregulates CXCL10 expression in the draining 

lymph nodes of L. major-resistant mice, but not in those of L. major-susceptible mice 

(26). 
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Family Chemokine Receptor Expression profile 
of receptor 

MIP-1a, MCP-4, 
MCP-3, RANTES, 
MIP-5 

CCR1 M, act T, N, Ba, E, 
D 

MCP-1, MCP-2, 
MCP-3, MCP-4, 
MCP-5 

CCR2 M, act T, Ba, D, 
NK 

Eotaxin, Eotaxin-2, 
Eotaxin-3, MCP-2, 
MCP-3, MCP-4, 
RANTES, MIP-5 

CCR3 act T, E, Ba, D 

RANTES, MIP-1a, 
MCP-1 

CCR4 act T, Ba, D 

 
 
 
 
 
CC chemokines 

RANTES, MIP-1a, 
MIP-1b, MCP-2 

CCR5 M, act T, D 

IL-8, GCP-2 CXCR1 N, NK CXC 
chemokines IP-10, MIG, ITAC CXCR3 Act T, NK 

CX3C 
chemokine 

Fracktalkine CX3CR1 M, T, NK 

C chemokine Lymphotactin XCR1 act T, NK 
 

Table 1. Chemokine and their receptors 

Chemokines are divided into subfamilies that bind to different classes of receptor 
expressed on their target cells. Abbreviations: act T, activated T cell; Ba, basophil; D, 
dendritic cell; E, eosinophil;; M, monocyte; N, neutrophil; NK, natural killer cell; T, 
T cell. 
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IP-10 has also been shown to attract natural killer cells (NK) to the site of infection 

and enhance their cytotoxicity in resistant strains (27). In susceptible mice, the 

production of IP-10 is much lower and fewer NK cells migrate to the infection site. 

There is evidence that CCR5 expression in T regs might enable them to preferentially 

migrate into Leishmania infected sites where they could promote long term survival 

of the parasite (28). 

 

These studies would suggest a protective role for IP-10 in experimental leishmaniasis. 

However, the role of IP-10 in immune responses during leishmaniasis is not 

completely understood. There is evidence that exogenous IP-10 markedly enhances 

the responsiveness of macrophages to L. amazonensis infection. (29). In contrast, 

other studies have shown that injections of recombinant IP-10 can cause larger lesions 

in Leishmania infected mice (27). Higher IP-10 plasma levels have also been found in 

patients with visceral leishmaniasis compared to asymptomatic infected individuals, 

which suggests that IP-10 might play a role in disease exacerbation (30). It has been 

demonstrated that regulatory T cells express the IP-10 receptor, CXCR3 (31). We 

hypothesize that IP-10 could recruit a population of regulatory T cells at the draining 

lymph nodes and sites of infection during leishmaniasis. These regulatory T cells 

might control Th1 effector cells and enhance Leishmania survival. 

 

Regulatory T cells 

Regulatory T cells (T regs) are T cells with an immunosuppressive activity that can 

modulate the immune response and maintain homeostasis. Regulatory T  cells can 
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arise from the natural maturation process in the thymus or be induced in the periphery 

when exposed to specific stimulatory conditions (32). Several different types of Tregs 

have been described including naturally arising CD25+CD4+ Tregs, IL-10-secreting 

Tr1 cells, TGF-β-secreting Th3 cells, Qa-1-restricted CD8+ T cells, CD8+CD122+ T 

cells, γ/δ T cells, and NKT cells (33-35). 

 

Natural regulatory T cells have been perhaps the most widely studied in human and 

rodents. They constitutively express CD25, the T cell inhibitory receptor CTLA-4 and 

the glucocorticoid-inducible tumor necrosis factor receptor (GITR). The transcription 

factor Foxp3 is required for natural T regs development and is so far the best marker 

available to identify this cell population (36). Several mechanisms of Treg-mediated 

suppression have been proposed in the literature. They include direct T cell – T cell 

interaction involving TGF-β, Lag3, or CTLA-4, perforin and/or granzyme B-

dependent killing, IL-10-mediated suppression, modification of the function of 

dendritic cells, and IL-2 consumption by Tregs. It seems that more than one 

mechanism of suppression likely operates in vivo. 

 

Recently there has been an increased interest in the role of Tregs in infectious 

diseases and there is evidence that regulatory T cells can prevent clearance of several 

pathogens (37, 38). Natural regulatory T cells have been found to have not only the 

ability to recognize self antigens but also to play a critical role in the outcome of 

microbial infections. They can limit an excessive immune response to pathogens and 

diminish tissue injury. The difference between natural and induced regulatory T cells 
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is still not completely clear. Nevertheless, natural regulatory T cells are generally 

associated with chronic infections which can lead to a detrimental outcome in the 

host. There are other factors such as the infectious dose, stage of infection and the 

immunological status of the host that will also influence the result of the interaction 

between T regs and pathogens. 

 

Natural regulatory T cells and leishmaniasis 

 

After an effective response against pathogens, the immune system needs to limit the 

inflammatory response; otherwise it will result in tissue damage. Although T regs 

preserve host homeostasis by controlling excessive immunopathology, they could 

allow pathogen persistence by controlling effector Th1 cell functions. It has been 

shown that CD4+CD25+ regulatory T cells accumulate at dermal sites of Leishmania 

major infection where they suppress pathogen specific CD4+ T cells (16). 

Leishmania amazonensis infection model provides an example of the control of 

immunopathology driven by T regs. The infection is characterized by natural Tregs 

accumulation at the site of infection which later regulates Leishmania-specific Th1 

cells diminishing immunopathology (39). There is also evidence that the transfer of 

purified natural T regs from an infected donor to a chronically L. major infected 

mouse can result in disease reactivation (40). The mechanisms of how T regs enter 

sites of infection, is not understood. One possible explanation is the expression of 

chemokines triggered by parasite for their advantage. The integrin αEβ7 has 

previously been shown to be expressed at the surface of 25% of the natural Tregs in 
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lymphoid tissues and all T reg in the dermis of L. major infected mice express it (41). 

The expression of αEβ7 (CD103) is positively regulated by TGF-β (42) and exposure 

of T cells to L. major-infected DCs, suggesting that the parasite itself manipulates its 

environment to favor Treg retention. 

 

T regs could exert their immunosuppressive functions in an antigen specific manner. 

It has been shown that T regs proliferate when exposed to L. major infected DC and 

produce high levels of IL-10.  This occurs at the site of infection because T regs in 

other lymphoid organs failed to proliferate in the presence to the antigen (43). This 

suggests that the parasite has evolved different mechanisms to manipulate DC, which 

enhance their persistence in the end. 

 

Learning the mechanisms by which natural Tregs are mobilized and activated, and the 

nature of the antigens they recognize, will be the next step in the design of rational 

approaches to achieve the appropriate balance between protection and pathology 

during infections. 
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CHAPTER 2: MATERIALS AND METHODS 

Animal Studies 

These studies were reviewed and approved by the University of Maryland 

Institutional Animal Care and Use Committee.  C57BL/6 mice were purchased from 

Charles River Laboratories (Wilmington, MA) 

Parasite culture 

Both wild-type and transgenic parasites were grown in 50:50 media [50% Schneider’s 

insect medium (Sigma-Aldrich, St. Louis, MO) supplemented with 20% FBS, 100 

U/ml penicillin, 100 µg/ml streptomycin, and 2 mM glutamine and 50% M199 media 

(Invitrogen, Rockville, MD)].  Transgenic parasites were grown in the presence of 

100 µg/ml nourseothricin (SAT) (WERNER BioAgents, Germany).  

 

Parasites, infection, and parasite quantitation 

Lesion-derived wild-type and transgenic L. major (WHO MHOM/IL/80/Friedlin) 

were isolated from infected mice as previously described (8).  Mice were injected in 

the right hind footpad with 5x105 wild-type or transgenic stationary L. major 

promastigotes. Lesion size was determined using a caliper to measure the thickness of 

the infected footpad and subtracting the thickness of the contralateral uninfected 

footpad as described previously (44).  For ear infections, mice were injected in the 

right and left ears with 1x104 wild-type or transgenic L. major parasites.  Ear lesion 

progression was monitored by measuring the diameter of the lesion using an Absolute 

Digimatic Caliper (Mitutoyo, Ontario, Canada) as previously described (45).   
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RNA isolation 

RNA was isolated from 1x108 wild-type or transgenic L. major  promastigote using 

Trizol RNA prep (Invitrogen).  The RNA was converted to cDNA using the 

Invitrogen manufacturer’s protocol.  Murine IP-10 was amplified from the cDNA 

samples using the following primers:  sense 5’-AAGTGCTGCCGTCATTTTCT-3’ 

and antisense 5’-GTGGCAATGATCTCAACACG-3’.  gp63 was amplified using the 

following primers:  sense 5’-ATCCTCACCGACGAGAAGCGCGAC-3’ and 

antisense 5’-ACGGAGGCGACGTACAACACGAAG-3’. 

Transgenic IP-10 detection 

Costar high-binding ELISA plates (Fisher Scientific) were coated with monoclonal 

goat anti-mouse IP-10 antibody (capture antibody) from the DuoSet IP-10 ELISA kit 

(R&D systems, Minneapolis, MN).  Wild-type and transgenic parasites (5x106) were 

added to the ELISA plate wells for 24 hours.  The following day, the parasites were 

washed away and the IP-10 ELISA was completed according to the manufacturer’s 

protocol using biotinylated anti-mouse IP-10 detection antibody, streptavidin-

horseradish peroxidase (HRP), and HRP substrate. 

Cytokine measurement 

For cytokine analysis, cells from lymph nodes were incubated for 72 h at 37°C, 5% 

CO2
 at a concentration of 5 x 105 cells in 200 µl RPMI 1640 containing 10% FCS, 10 

mM Hepes, L-glutamine, and penicillin/streptomycin in round-bottom 96-well plates 

in the presence of 20 µg/ml of freeze-thaw Leishmania soluble antigen (SLA) 

prepared from stationary phase promastigotes. IL-10, IFN-γ and IL-4 were measured 
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from supernatants of SLA stimulated lymphocytes for 72 hours by sandwich ELISA. 

Capture (clone JESS-2A5) and detection (clone JES513E3) anti-IL-10, capture (clone 

R4-6A2) and detection (clone XMG1.2) anti-IFN-γ antibodies and capture (clone 

11B11) and detection (clone BVD6-24G2) anti-IL-4 antibodies (BD Pharmingen, San 

Diego, CA) were used. 

Isolation of cells from infected mouse ears 

Ears infected with wild-type or IP-10 transgenic parasites were excised, soaked in 

70% ethanol, and air-dried for 5-10 minutes.  The ears were then split into ventral and 

dorsal portions and placed in liberase (5mg/mL) (Roche, Indianapolis, IN) diluted 

1:100 in RPMI for 2 hours at 37 ºC as previously described (45). The ears were put 

into a 50 μM medicon homogenizer (BD biosciences) with 1 ml PBS and 

homogenized in BD’s Medimachine (BD biosciences) for 2 minutes.  The liquefied, 

homogenized ears were then passed through a 50 μM syringe filcon filter (BD 

biosciences) and centrifuged at 300g for 10 minutes.  The cells isolated from the ears 

were then resuspended in PBS containing 5% FBS and 5mM EDTA and labeled with 

antibodies for flow cytometry. 

 

Isolation of cells from Lymph Nodes 

Footpad and ears draining lymph nodes were removed from wild type and IP-10 

infected C57BL/6 mice at 3, 4, 5, 6 and 7 weeks post infection. Lymph nodes were 

smashed and passed through a cell strainer, washed with PBS and centrifuged at 300g 

for 5 minutes. The cells isolated from the ears were then resuspended in PBS 

containing 5% FBS and 5mM EDTA and labeled with antibodies for flow cytometry. 
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Flow Cytometry 

Cells isolated from ears and lymph nodes were labeled with the following antibodies: 

PercP-Cy5 conjugated anti-mouse CD4 (clone L3T4) (BD Pharmigen), FITC 

conjugated anti-mouse CD25 (clone PC61.5), PE conjugated anti-mouse Foxp3 

(clone NRRF-30) (eBioscience, San Diego, CA) and PE conjugated anti-mouse 

CXCR3 (R&D). The isotype controls used were rat IgG2a (eBR2a), rat IgG1 (BD 

Pharmigen), and rat IgG2b (BD Pharmigen). Before staining, lymph node or dermal 

cells were incubated with an anti-Fc III/II receptor mAb (2-4G.1) in PBS containing 

5% FBS and 5mM EDTA. The staining of surface and intracytoplasmic markers was 

performed sequentially: the cells were stained first for their surface markers, followed 

by a permeabilization step and staining for Foxp3. For each sample, 200,000 cells 

from total were acquired for analysis. The data were collected using CellQuest Pro 

software (BD Biosciences) and a flow cytometer (FACSCalibur; BD Biosciences). 

All data was analyzed using FlowJo PC V7.2.1. The lymphocytes from ears and 

lymph nodes were identified by their CD4 expression. 

 

Intracellular IL-10 staining 

To examine IL-10 expression in leukocytes from lymph nodes, we used in vitro 

restimulation of cells incubated with 10 ng/ml PMA and 500 ng/ml ionomycin for 6 h 

in the presence of monensin (Golgistop) (BD Bioscience). Stimulated cells were 

labeled with the following antibodies: PercP-Cy5 conjugated anti-mouse CD4 (clone 

L3T4), FITC conjugated antimouse CD25 (clone PC61.5) and PE conjugated 

antimouse IL-10 (clone JES5-16E3) (BD Biosciences and eBioscience, San Diego, 
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CA). The isotype controls used (all obtained from BD Biosciences) were rat IgG2a 

(eBR2a), rat IgG1 (R3-34), and rat IgG2b (A-95-1). Staining and analysis was done 

as described above. 

 

Real-time PCR 

Real-time PCR was performed on draining lymph nodes from ear infections. Lymph 

nodes were passed through a cell strainer and cells were placed into TRIzol. RNA 

was quantified by spectrophotometry, and cDNA was generated using the 

ThermoScript kit from Invitrogen according to the manufacturer's instructions. Real-

time PCR was performed for IL-10 using the following primer sets from IDT DNA: 

IL-10 forward, 5'-AAGGACCAGCTGGACAACAT-3'; IL-10 reverse, 5'-

TCTCACCCAGGGAATTCAAA-3'; The hypoxanthine phosphoribosyl-transferase 

(HPRT) gene was used as a housekeeping gene for normalization with the primers 5'-

AAGCTTGCTGGTGAAAAGGA-3' (forward) and 5'-

TTGCGCTCATCTTAGGCTTT-3' (reverse). Dissociation curves were performed for 

every run, and data were only analyzed if the curve showed a single peak. Samples 

from all primer sets were also run on a gel initially to ensure single band products. 

 

rIP-10 injection 
 
For in vivo chemokine treatment, each mouse was injected with recombinant IP-10 

(Cedarlane) (100 pg in 30μl containing 5X105 wild type parasites) in the right footpad 

and a subsequent injection of 1 ng in 10 ul at day 3 post infection. 
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Chapter 3: DIFFERENCES IN THE PATHOGENICITY 
OF IP-10 TRANSGENIC AND WILD TYPE PARASITES 
INFECTED MICE 
 
 
We hypothesized that a chemokine secreting transgenic parasite would be able to 

modify the host immune response to the parasite and attract a novel population of 

immune cells that may have an altered ability to control parasite replication or 

persistence. IP-10 transgenic infected mice developed a hypervirulent phenotype with 

larger lesions compared to wild type infected mice. We wanted to confirm differences 

in the pathogenicity of IP-10 transgenic and wild type parasites using both the 

footpad and ear model of infection. Subsequently we want to investigate the 

molecular mechanisms of this observation. 

 

Previous Data 

IP-10 secreting parasites were previously generated in our lab (22). C57BL/6 mice 

are resistant to Leishmania major infection. This resistance has been associated with a 

strong Th1 type cytokine response to the parasite. We had previously demonstrated 

that C57BL/6 mice infected in the footpad even with a high number of wild type 

parasites (5X106) develop lesions that peak between the fourth and the fifth week and 

then resolve after seven weeks post infection. In contrast C57BL/6 mice infected with 

IP-10 transgenic L. major parasites develop larger lesions. We have shown previously 

that C57BL/6 mice infected with 5x106 IP-10 transgenic parasites developed large 

lesions, with the mean swelling of 5.07 ± 0.38 mm on day 31 post-infection (Figure 

1A) (Sean Conrad’s doctoral thesis, 2006) compared to mice infected with wild-type 
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L. major, which had a mean peak swelling of 1.83 ± 0.13 mm. This hypervirulent 

phenotype in C57BL/6 mice infected with transgenic IP-10 parasites correlated with 

higher number of parasites in the footpad (5.39x108 ± 3.24x108), local lymph node 

(1.1x106 ± 5.6x105), and spleen (6250 ± 551) compared to mice infected with wild-

type parasites; foot (5.93x106 ± 4.8x106), lymph node (2x104 ± 1.1x104), and spleen 

(50 ± 9) (Figure 1B).  

 

Current data 

Footpad model of infection 

Previous work in our lab demonstrated that IP-10 transgenic parasites cause larger 

lesions in C57BL/6 mice (Sean Conrand’s doctoral thesis, 2006). We wished to 

determine the molecular mechanisms of the difference in pathogenicity between L. 

major wild type and IP-10 transgenic parasite infections in mice.  

 

RNA was extracted during different culture passages of IP-10 transgenic parasites to 

confirm their IP-10 mRNA expression (Fig 2A). Transgenic parasites expressed IP-10 

mRNA in every passage and no expression was detected in wild type parasites as 

expected. In addition, transgenic L. major IP-10 were capable of secreting low levels 

of IP-10 (35 pg), while the wild-type parasites secreted no IP-10 protein (Fig 2B). 

 

C57BL/6 mice were infected with different amounts of IP-10 transgenic parasites to 

confirm that hypervirulent phenotype was generated regardless of the number of 

parasites used for infection. Mice (5 mice per group) were infected in the right  
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Fig. 1 IP-10 transgenic parasites are hypervirulent 
 
(A) C57BL/6 mice were infected with 5x106 Lm-WT (closed circles) or Lm-TgIP-10 
(open triangles) and lesion development was measured at weekly intervals.  Parasite 
burdens were quantitated on day 31 post-infection for C57BL/6 mice infected with 
Lm-WT (solid bars) and Lm-TgIP-10 (open bars). (Sean Conrad’s doctoral thesis, 
2006). 
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Fig. 2 Transgenic parasites express IP-10 mRNA and protein.  

(A) Total RNA was isolated from wild-type and transgenic IP-10 promastigotes. 
Murine IP-10 was amplified from the cDNA of different culture passages (p) of IP-
10 transgenic parasites, but not from the cDNA of wild-type L. major.  The gene 
gp63 was amplified from the cDNA as a loading control.  (B) A total of 5x106 of 
IP-10, or wild type parasites were added to ELISA plates coated with monoclonal 
goat anti-mouse IP-10 antibody.  After 24 hours, levels of IP-10 production were 
determined relative to rIP-10. 
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footpad with a low dose, 1x104 parasites and then followed for 49 days post infection. 

IP-10 infected mice developed significantly larger lesions with a mean swelling of 5.3 

+ 0.7 mm at day 49 post infection (P < 0.05). In contrast, wild type infected mice 

developed lesions with a mean diameter average of 3.63 + 0.16 mm (Fig 3A). 

Differences in lesion size began to develop by day 21 and lesions from IP-10 

transgenic infected mice were significantly larger by day 35 and persisted through 

day 42 post infection (P < 0.05). Using a standard dose of 5x105 parasites, the 

hypervirulent phenotype was also observed with a mean swelling of 3.8 ± 0.08 mm in 

the IP-10 transgenic compared to wild type infected mice with a mean swelling of 3.1 

± 0.19 mm at day 28 post infection (Fig 3B). In this case, differences in lesion size 

was evident by day 21 when lesions from IP-10 transgenic infected mice were already 

significantly larger and persisted through day 49 post infection (P < 0.05). 

 

Ear model of infection 

We wanted to reproduce the hypervirulent phenotype of IP-10 transgenic parasites in 

the ear infection model. This model allows us to more easily isolate cells at the site of 

infection and analyze differences in cell populations within the lesion. IP-10 

transgenic parasites also generated larger lesions compared to wild type infected 

mice, but this phenotype was not as significant as the one observed in the footpad 

model. The ear model of infection is technically more challenging compared to the 

footpad model. It is difficult to accurately inject the small volume of parasites in the 

ear and to measure small differences in lesion size. Furthermore, lesions in infected 

ears tend to become necrotic which is also hard to measure. Therefore there is more  
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Fig. 3 IP-10 transgenic parasites caused larger lesions in footpads from C57BL/6 
mice regardless of parasite dose. 
 
(A) C57BL/6 mice (5 per group) were infected with 1x104 wild type (red line) or IP-
10 transgenic parasites (blue line) in the right foot pads and lesion development was 
measured at weekly intervals for 42 days (*, p<0.05) (B) C57BL/6 mice (5 per group) 
were infected with 5x105 wild type (red line) or IP-10 transgenic parasites (blue line) 
in the right foot pads and lesion development was measured at weekly intervals for 49 
days (*, p<0.05). 
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variability in the phenotype using this model of infection. C57BL/6 mice (3 mice per 

group) were infected in both ears with 1x104 IP-10 transgenic or wild type parasites. 

Two experiments were used to compare wild type versus IP-10 parasites phenotype in 

infected ears. In the first experiment, IP-10 transgenic infected mice had significantly 

larger ear lesions by day 28 post infection with a mean diameter average of 2.6 ± 0.5 

mm compared to wild type infected mice with a mean swelling of 1.33 ± 1 mm (P < 

0.05) (Fig 4A). Although this difference was significant by day 28, it became smaller 

at day 35 post infection and the phenotype was not sustained during later time points.  

In the second experiment, IP-10 transgenic infected mice had a trend towards larger 

lesions starting at 28 days post infection and persisted through at all later times post 

infection. There was a significant difference at day 42 post infection when IP-10 

transgenic infected mice had a mean diameter average of 3.9 ± 0.4 mm compared to 

2.83 ± 0.7 mm in the wild type infected ears (P < 0.05) (Fig 4B). The phenotype for 

the ear model of infection was more variable than the footpad model. This variability 

may be due to the technical challenges of the model. Therefore we can not conclude 

from these results that IP-10 trangenic parasite can induce a hypervirulent phenotype 

in the ears of C57BL/6 mice. 

 

Reconstruction of hypervirulent phenotype in wild type infected mice 

We wanted to reconstruct the hypervirulent phenotype observed in footpads of IP-10 

infected mice by infecting C57BL/6 mice with wild type parasites along with 

recombinant IP-10 (rIP-10). Mice (3 per group) were infected in the right footpad 

with 5x105 wild type, IP-10 transgenic and wild type parasites along with 100 pg of  
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Fig. 4 IP-10 transgenic parasites caused larger lesions in infected ears from 
C57BL/6 mice. 
 
(A) C57BL/6 mice (3 mice per group) were infected with 1x104 wild type (red line) 
or IP-10 transgenic parasites (blue line) in both ears and lesion development was 
measured at weekly intervals for 42 days (*, p<0.05.) (B) Second experiment 
replicate (3 mice per group) with 1x104  wild type (red line) or IP-10 transgenic 
parasites (blue line) in both ears (*, p<0.05). 
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rIP-10. Lesion development was followed for 35 days post infection. IP-10 infected 

mice developed significantly larger lesions with a mean swelling of 1.88 ± 0.7 mm at 

day 35 post infection compared to wild type infected mice with a mean diameter 

average of 1.15 ± 0.15 mm (Fig 5). Interestingly wild type infected mice that received 

rIP-10 also developed larger lesions with a mean swelling of 2.1 ± 0.5 mm at day 35 

post infection. Wild type infected mice along with rIP-10 injection resembled the 

hypervirulent phenotype observed in IP-10 transgenic infected mice. This phenotype 

was identical during 21 days post infection and a more hypervirulent phenotype was 

observed at latter time points in the group with rIP-10. After day 28 post infection, 

lesions in wild type infected mice start to plateau but lesions in IP-10 transgenic and 

wild type along with rIP-10 infected mice were still increasing. IP-10 either secreted 

by transgenic parasites or injected during footpad infection with wild type parasites 

caused larger lesions in C57BL/6 mice.  

 

Discussion 

This preliminary data shows that IP-10 transgenic parasites cause larger lesions in the 

footpad model of infection. Regardless of the infection dose, IP-10 transgenic 

parasites caused a hypervirulent phenotype in L. major resistant mice. This finding 

was consistent in both experiments and we found significant differences between the 

two groups with larger lesions in IP-10 infected footpads.  Results in the ear model 

were more variable and therefore we can not make the same conclusion. This might 

have been the result of the higher variability in the ear model. Lesions from L. major 

infected ears tend to last for longer periods of time than footpad lesions in C57BL/6  
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Fig. 5 Reconstruction of hypervirulent phenotype in wild type infected mice. 

C57BL/6 mice (3 per group) were infected with 5x105 wild type (red line), IP-10 
transgenic parasites (blue line) or wild type with rIP-10 (yellow line) in the right 
footpad and lesion development was measured at weekly intervals for 35 days. 
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mice. Differences in pathogenicity could have been more evident in later time points 

in the ear model. We can not exclude also intrinsic differences between the footpad 

and the ear model of infection. It might be possible that the infection process is 

different according to the infection site. Inflammatory cells might be recruited 

differently in the footpad compared to the ear which might influence the phenotype. 

We were able to reconstruct the phenotype observed in IP-10 transgenic infection in 

mice infected with wild type parasites along with an injection of rIP-10. Lesion sizes 

in mice infected with IP-10 transgenic and rIP-10 injected with wild type parasites 

were very similar. It seems that both the secreted IP-10 and injected rIP-10 can cause 

a hypervirulent phenotype in the footpad. Lesions in IP-10 transgenic and rIP-10 

injected with wild type infected mice appeared to be increasing during days 28 and 35 

post infection when wild type infected mice started to resolve them. This finding 

suggests that IP-10 can generate larger lesion in mice in the footpad model of 

infection. From these results we observed that IP-10 transgenic parasites caused more 

pathology in resistant mice and decided to further investigate this finding. 
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Chapter 4: MICE INFECTED WITH IP-10 TRANSGENIC 
PARASITES HAVE HIGHER NUMBERS OF FOXP3+ 
CELLS IN LYMPH NODES COMPARED TO WILD TYPE 
INFECTED MICE. 
 
 

Based on differences in the pathogenicity of IP-10 transgenic versus L. major wild 

type parasites in the footpad and ear models of infection, it seems plausible that a 

chemokine secreting parasites might attract immune cells to the lesion site and 

draining lymph nodes that could modify the host response. We hypothesized that IP-

10 secreting transgenic parasites were able to attract regulatory T cells to the site of 

infection and local lymph nodes in infected mice. Regulatory T cells express CXCR3, 

the IP-10 receptor that might allow T cells to migrate preferentially or be retained for 

longer periods of time at infected dermal sites and draining lymph nodes. Regulatory 

T cells could control Th1 immune responses, diminishing T helper cells effector 

functions allowing an enhanced persistence of the parasite. The hypervirulent 

phenotype could be the result of an increased parasite survival assisted by natural 

regulatory T cells. If so, this would suggest that parasites might be able to evolve a 

sophisticated mechanism of using cells of the adaptive immune response to their 

advantage. 

 

Footpad model of infection 

C57BL/6 mice (5 per group) were infected in the right footpad with 5x105 wild type 

or IP-10 transgenic parasites. Popliteal lymph nodes were removed and cells were 

isolated at 3, 4, 5 and 6 weeks post infection. Cells from each lymph node of the 5 
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different infected mice were pooled together and cells were stained for T cells 

extracellular markers, CD4 and CD25, and the intracellular marker Foxp3, and 

analyzed by flow cytometry. We used these 3 markers to compare percentages in wild 

type versus IP-10 infected mice populations of CD4+ CD25+ T cells, Foxp3+ cells 

from CD4+ CD25+ cells and CD4+ CD25+ Foxp3+ cells (from total population). All 

data were uniformly analyzed using the same gates in both groups as shown in Fig 6. 

This figure is an example of how we compared cells percentages between the two 

groups at each time point post infection. After gating on CD4+ cells, we compared 

CD4+ CD25+ percentages from wild type (7%) versus IP-10 (7.4%) infected mice. 

We then compared Foxp3+ cells from the CD4+CD25+ double positive population, 

wild type (16.5%) versus IP-10 (23.5%) infected mice. Lastly, we compared CD4+ 

CD25+ Foxp3+ T cells from the total population from wild type (0.32%) versus IP-10 

(0.44%) infected mice. We also compared percentages of Foxp3+ T cells from CD4+ 

T cells between the two groups. They showed the same pattern as CD4+ CD25+ 

Foxp3+ cells from total population (data not shown). We hypothesized that mice 

infected with IP-10 parasites will recruit higher numbers of Foxp3+ cells from CD4+ 

CD25+ cells and CD4+ CD25+ Foxp3+ T cells from total populations of lymph nodes 

compared to wild type infected mice. 

 

We found similar numbers of CD4+ CD25+ T cells in both IP-10 and wild type 

infected mice and only at day 21 the percentage of CD4+ CD25+ T cells in IP-10 

transgenic was slightly higher (9.7%) than in wild type mice (8.1%). At day 28 we 

found the opposite, wild type infected mice had a higher percentage of CD4+ CD25+  

 28 
 



Wild type

IP-10
Transgenic

CD4+ CD4+CD25+ CD4+CD25+Foxp3+

28%
16.5% (0.32%)7%

25%
7.4% 23.5%(0.44%)

 

 

 
Fig. 6 Flow cytometry analysis in lymph nodes 
 
C57BL/6 mice were infected in the right footpad with 5x105 wild type (top) or IP-10 
transgenic (bottom) parasites. Popliteal lymph nodes were removed and cells from 
each lymph node were pooled and stained for CD4, CD25 and Foxp3 markers. All 
data were analyzed using the same gates. In this example from day 35 post infection, 
we compared CD4+ CD25+ percentages from wild type (7%) versus IP-10 (7.4%) 
infected mice. We then compared Foxp3+ cells from the CD4+CD25+ double positive 
population, wild type (16.5%) versus IP-10 (23.5%) infected mice. Lastly, we 
compared CD4+ CD25+ Foxp3+ T cells from the total population from wild type 
(0.32%) versus IP-10 (0.44%) infected mice. 
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T cells (12.5%) compared to IP-10 infected mice (8.5%) (Fig. 7A). Differences in the 

percentage of Foxp3+ cells from CD4+ CD25+ cells were fairly small, 12.8% and 

11.4% in IP-10 transgenic and wild type mice respectively (Fig 7B) at day 21 post 

infection. At day 28 post infection, percentages of Foxp3+ cells from CD4+ CD25+ T 

cells and CD4+ CD25+ Foxp3+ cells were slightly higher in wild type infected mice. 

Nevertheless, we observed a dramatic increase in the percentage of Foxp3+ T cells 

(15.2%) from CD4+CD25+ population (or 0.21% from total population) in lymph 

nodes from IP-10 transgenic infected mice compared to 5.9% (or 0.06% from total 

population) at day 42 post infection (Fig. 7B and 7C). It seems that IP-10 secreting 

parasites are able to attract CD4+CD25+Foxp3+ cells to the draining lymph nodes in 

infected mice after 5 weeks post infection and this recruitment becomes significant at 

6 weeks post infection. During early stages of infection, we did not observe an 

evident difference in the number of Foxp3+ cells between wild type and IP-10 

transgenic infected mice. Nevertheless, there was a considerable difference at day 42 

post infection between the two groups. These results might suggest that IP-10 

transgenic parasites could recruit Foxp3+ cells at late stages of infection.  

 

Ear model of infection 

 

Analysis of lesion sites 

C57BL/6 mice (3 mice, 6 ears and lymph nodes per group) were infected in both ears 

with 1x104 wild type and IP-10 transgenic parasites. Cells were isolated from the 

lesions and lymph nodes from infected mice in two experiment replicates. Cells from  
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Fig 7 Higher Foxp3+ cells were found in the popliteal lymph nodes from mice 
infected with IP-10 transgenic parasites at late stages of  infection. 
 
C57BL/6 mice (5 per group) were infected in the right footpad with 5x105 wild type 
(red bars) or IP-10 transgenic (blue bars) parasites. Popliteal lymph nodes were 
removed at 3, 4, 5 and 6 weeks post infection and cells were stained for CD4, CD25 
and Foxp3 markers. Percentages of CD4+ CD25+ T cells (A), Foxp3+ cells from CD4+ 
CD25+ cells (B) and CD4+ CD25+ Foxp3+ cells (from total population) (C) were 
compared between IP-10 transgenic and wild type infected mice by flow cytometry 
analysis. 
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infected ears were isolated, pooled and stained for the same markers used in the 

footpad model of infection. All data were uniformly analyzed using the same gates as 

shown in Fig 8. This figure is an example of how we compared cells percentages 

between the two groups at each time point post infection. After gating in CD4+ cells, 

we compared CD4+ CD25+ percentages from wild type (17.4%) versus IP-10 (18.9%) 

infected mice. We then compared Foxp3+ cells from the CD4+CD25+ double positive 

population, wild type (12.5%) versus IP-10 (17.5%) infected mice. Lastly, we 

compared CD4+ CD25+ Foxp3+ T cells from the total population from wild type 

(0.05%) versus IP-10 (0.04%) infected mice. 

 

In the first experiment, we found comparable numbers of CD4+CD25+ cells in lesions 

from IP-10 transgenic and wild type infected mice except at day 35 post infection 

when we observed a higher percentage in the wild type (18.3%) compared to IP-10 

(11.2%) infected ears. However this difference was reversed at day 42 post infection 

when we found 12.8% of CD4+CD25+ cells in the IP-10 compared to 9.7% in the wild 

type lesions (Fig. 9A). We also observed higher percentages of Foxp3+ T cells from 

CD4+CD25+ cells in IP-10 transgenic infected mice from lesions at 4, 5 and 6 weeks 

post infection. The largest difference was observed at day 35 with 11.8% of Foxp3+ 

cells from CD4+CD25+ cells in IP-10 transgenic infected ears compared to 4.3% in 

the wild type (Fig. 9B and 9C). There was a similar trend in both IP-10 and wild type 

infected ears showing the highest percentage of CD4+CD25+ and Foxp3+ cells from 

CD4+CD25+ T cells at day 28 post infection with a progressive decline in cell  
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Fig. 8 Flow cytometry analysis in lesions from ears 
  
C57BL/6 mice were infected in both ears with 1x104 wild type (top) or IP-10 
transgenic (bottom) parasites. Cells were removed, pooled and stained for CD4, 
CD25 and Foxp3 markers. All data were analyzed using the same gates. This figure is 
an example of how we compared percentages between the two groups at each time 
point post infection. In this example from day 28 post infection, we compared CD4+ 
CD25+ percentages from wild type (17.4%) versus IP-10 (18.9%) infected mice. We 
then compared Foxp3+ cells from the CD4+CD25+ double positive population, wild 
type (12.5%) versus IP-10 (17.5%) infected mice. Lastly, we compared CD4+ CD25+ 
Foxp3+ T cells from the total population from wild type (0.05%) versus IP-10 
(0.04%) infected mice. 
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Fig. 9 Higher Foxp3+ cells were found in the lesions from mice infected with IP-10 
transgenic parasites. (First experiment) 
 
C57BL/6 mice (3 per group) were infected in both ears with 1x104 wild type (red 
bars) or IP-10 transgenic parasites (blue bars). Cells were isolated from infected ears 
at 4, 5 and 6 weeks post infection and stained for CD4, CD25 and Foxp3 markers. 
Percentages of CD4+ CD25+ T cells (A), Foxp3+ cells from CD4+ CD25+ cells (B) 
and CD4+ CD25+ Foxp3+ cells (from total population) (C) were compared between 
IP-10 transgenic and wild type infected mice by flow cytometry analysis. 
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numbers from this time point until day 42 post infection. In this first experiment we 

observed more Foxp3+ cells in the IP-10 transgenic group than in the wild type 

infected one, especially evident after 5 weeks post infection. IP-10 secreting parasites 

might be able to actively recruit natural regulatory T cells at the site of infection. 

Nevertheless we only observed a tendency of higher numbers of Foxp3+ cells in the 

IP-10 transgenic infected ears in this model of infection. There was a 3 fold 

difference at day 35 post infection between the two groups. Whether this finding is a 

direct consequence of IP-10 acting needs to be further assessed. 

 

In the second experiment, there were more CD4+ CD25+ cells in the IP-10 infected 

ears after 4, 5 and 6 weeks post infection. Differences were more evident at 4 and 5 

weeks post infection with 24% versus 18.5% and 16% versus 10.8% from IP-10 

transgenic and wild type infected ears respectively (Fig. 10A). Percentages of 

CD4+CD25+Foxp3+ cells from total population were similar in IP-10 transgenic and 

wild type infected mice from lesions after 4 and 5 weeks post infection (Fig. 10B). 

However, there was a clear difference in the number of CD4+CD25+Foxp3+ cells at 

day 42 post infection in the IP-10 infected mice (0.02% from total population) with 

no CD4+CD25+Foxp3+ cells found at this time point in wild type infected ears (Fig. 

10B). Differences in this second experiment were not consistent with the previous 

experiment. We observed higher numbers of Foxp3+ cells at the lesions of mice 

infected with IP-10 parasites only at day 42 post infection in the second experiment 

whereas the difference between groups was more evident at day 35 post infection in  
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Fig. 10 Higher Foxp3+ cells were found in the lesions from mice infected with IP-
10 transgenic parasites at late stages of infection. (Second experiment) 
 
C57BL/6 mice (3 per group) were infected in both ears with 1x104 wild type (red 
bars) or IP-10 transgenic (blue bars) parasites. Cells were isolated from infected ears 
at 4, 5 and 6 weeks post infection and stained for CD4, CD25 and Foxp3 markers. 
Percentages of CD4+ CD25+ T cells (A), Foxp3+ cells from CD4+ CD25+ cells (B) 
and CD4+ CD25+ Foxp3+ cells (from total population) (C) were compared between 
IP-10 transgenic and wild type infected mice by flow cytometry analysis 
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the first experiment. These discrepancies might be related to the variability observed 

in the phenotype in the two experiments (Fig 4). However the higher number in 

Foxp3+ cells at day 42 post infection correlates with the significant larger lesion in IP-

10 transgenic infected mice found in the second experiment. It might be possible that 

larger differences occurred after 42 days post infection. These results can only 

suggest a trend of higher numbers of Foxp3+ cells in infected ears with IP-10 

transgenic parasites compared to wild type parasites. 

 

Analysis of draining lymph nodes 

Cells from retromaxillar lymph nodes of infected mice were also isolated and 

analyzed by flow cytometry using the same markers. In the first experiment, 

percentages of CD4+CD25+ cells were higher in lymph nodes from IP-10 compared to 

wild type infected mice. This difference was more evident at day 28 post infection 

(Fig. 11A). We also found higher percentages of Foxp3+ cells from CD4+CD25+ cells 

in lymph nodes from IP-10 transgenic compared to wild type infected mice after 4 

and 5 weeks post infection. The largest difference was observed at day 35 post 

infection when the percentage of Foxp3+ cells from CD4+CD25+ cells in IP-10 

infected mice was 8.1% compared to 3% in the wild type infected mice (Fig. 11B and 

11C). At day 42 post infection, percentages of Foxp3+ cells from CD4+CD25+ cells in 

IP-10 and wild type infected mice were not significantly different. These results 

correlate well with the results from the first experiment in the lesion sites where the 

largest difference in the number of Foxp3+ cells from CD4+CD25+ cells in IP-10 

transgenic mice was also observed at day 35 post infection. 
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Fig. 11 Higher Foxp3+ cells are found in retromaxillar lymph nodes from mice 
infected with IP-10 transgenic parasites. (First experiment) 
 
C57BL/6 mice (3 per group) were infected in both ears with 1x104 wild type (red 
bars) or IP-10 transgenic (blue bars) parasites. Retromaxillar lymph nodes were 
removed at 4, 5 and 6 weeks post infection and cells were stained for CD4, CD25 and 
Foxp3 markers. Percentages of CD4+ CD25+ T cells (A), Foxp3+ cells from CD4+ 
CD25+ cells (B) and CD4+ CD25+ Foxp3+ cells (from total population) (C) were 
compared between IP-10 transgenic and wild type infected mice by flow cytometry 
analysis. 
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In the second experiment, percentages of CD4+CD25+ cells in lymph nodes from IP-

10 and wild type infected mice were similar, except at day 42 post infection when we 

observed 10.5% in the IP-10 compared to 7.5% in the wild type (Fig. 12A). However, 

we also found higher percentages of Foxp3+ cells from CD4+CD25+ cells in IP-10 

transgenic compared to wild type infected mice after 3, 4 and 5 weeks of infection. 

Differences were more evident at day 28 post infection with 30.3% in the IP-10 

compared to 22% in the wild type (Fig. 12B and 12C). Percentages of 

CD4+CD25+Foxp3+ cells became comparable in both groups by day 42 post infection. 

 

Analysis of CXCR3+ cells in popliteal lymph nodes 

CXCR3 is the receptor of IP-10 expressed in T cells and NK cells. Both activated 

CD4+CD25+ T cells and regulatory T cells express it. We found similar numbers of 

CD4+CD25+ T cells, or activated T cells in both IP-10 transgenic and wild type 

infected mice but higher numbers of Foxp3+ cells were observed in mice infected 

with IP-10. We wanted to assess CXCR3 expression in lymph nodes from infected 

mice in both groups. We hypothesize that lymph nodes from mice infected with IP-10 

parasites could have higher CXCR3 expression which might correlate with higher 

number of natural regulatory T cells found in IP-10 transgenic mice. We infected 

C57BL/6 mice (3 per group) with 5x105 parasites in the right footpad. Cells from 

popliteal lymph nodes were pooled and stained for T cells extracellular markers, CD4 

and CD25 and CXCR3 and analyzed by flow cytometry. 
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Fig. 12 Higher Foxp3+ cells are found in retromaxillar lymph nodes from mice 
infected with IP-10 transgenic parasites. (Second  experiment) 
 
C57BL/6 mice (3 per group) were infected in both ears with 1x104 wild type (red 
bars) or IP-10 transgenic (blue bars) parasites. Retromaxillar lymph nodes were 
removed at 4, 5 and 6 weeks post infection and cells were stained for CD4, CD25 and 
Foxp3 markers. Percentages of CD4+ CD25+ T cells (A), Foxp3+ cells from CD4+ 
CD25+ cells (B) and CD4+ CD25+ Foxp3+ cells (from total population) (C) were 
compared between IP-10 transgenic and wild type infected mice by flow cytometry 
analysis. 
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We found comparable numbers of activated T cells, CD4+CD25+ T cells in both 

group at weeks 3, 4 and 5 post infection (Fig 13A). However we observed slightly 

higher numbers of CD4+CD25+CXCR3+ T cells in lymph nodes from mice infected 

with IP-10 transgenic mice compared to wild type parasites at days 21, 28 and 35 post 

infection (Fig 13B).  Although there were similar numbers of activated T cells in both 

groups, these results might suggest that IP-10 transgenic parasites could recruit higher 

numbers of natural regulatory T cells to the draining lymph nodes with higher 

expression of CXCR3 and Foxp3 markers. 

 

Discussion 

These results show that IP-10 transgenic infected mice recruit higher numbers of 

CD4+CD25+Foxp3+ cells to the lesion sites and their draining lymph nodes compared 

to wild type infected mice. This seems to be a late event in footpad infections and an 

earlier event in the ear model of infection. A higher percentage of Foxp3+ cells was 

found at day 42 post infection in the foot pad model of infection while in the ear 

model was found between day 28 and 35. Higher numbers of Foxp3+ cells were found 

in both ears and retromaxillar lymph nodes in the first experiment. We observed a 3 

fold increase in the percentage of Foxp3+ cells from CD4+CD25+ cells in the draining 

lymph nodes of infected ears at day 35 post infection. Results were also consistent 

between the first and the second experiments from retromaxillar lymph nodes of  
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Fig. 13 Higher CXCR3+ cells are found in the popliteal lymph nodes from mice 
infected with IP-10 transgenic parasites.  
 
C57BL/6 mice (3 per group) were infected in the right footpad with 5x105 wild type 
(red bars) or IP-10 transgenic (blue bars) parasites. Lymph nodes were removed at 3, 
4, and 5 weeks post infection and cells were stained for CD4, CD25 and CXCR3 
markers. Percentages of CD4+ CD25+ T cells (A) and CD4+ CD25+ CXCR3+ cells (B) 
were compared between IP-10 transgenic and wild type infected mice by flow 
cytometry analysis. 
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infected mice. There were higher numbers of Foxp3+ cells during weeks 4 and 5 post 

infection in both experiments. Results were less consistent between ear experiments; 

however higher numbers of Foxp3+ cells were also found but at different time points 

post infection. Higher numbers of Foxp3+ cells from CD4+CD25+ cells were found in 

ear lesions at weeks 4 and 5 post infection in the first experiment and at week 6 in the 

second one. Although there were not dramatic differences between IP-10 transgenic 

and wild type infected mice, we observed a similar trend in all experiments. Higher 

numbers of Foxp3+ cells were found in IP-10 transgenic mice compared to wild type 

infected mice. This might suggest that IP-10 parasites could recruit or retain 

regulatory T cells in these areas and the hypervirulent phenotype could result from 

natural regulatory T cells immunosuppressive responses.  

 

We also found higher expression of CXCR3 in draining lymph nodes from IP-10 

infected mice. There was a correlation in the expression of Foxp3 and CXCR3 in 

lymph nodes from infected footpads. Higher numbers of Foxp3+ cells and CXCR3+ 

were found after day 35 postinfection. It might be plausible that IP-10 actively 

recruits or retains for longer periods natural regulatory T cells at the draining lymph 

nodes. These cells which express more Foxp3 and CXCR3 might enhance L. major 

survival in resistant mice and cause a hypervirulent phenotype.  
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Chapter 5:  CYTOKINE EXPRESSION PATTERNS IN 
DRAINING LYMPH NODES OF WILD TYPE VERSUS 
IP-10 TRANSGENIC INFECTED MICE.  

 
We found higher numbers of CD4+CD25+Foxp3+ cells at the dermal sites and 

draining lymph nodes in IP-10 transgenic infected mice compared to the wild type 

after 4, 5 and 6 weeks post infection. Both the footpad and ear models of infection 

showed higher numbers of Foxp3+ cells in IP-10 infected mice. We wanted to identify 

and compare the cytokine expression in lymph node cells from these infected mice.  

We hypothesized that regulatory T cells that migrated or are retained longer at 

draining lymph nodes have high IL-10, but low IFN-γ and low IL-4 expression. 

Higher percentages of CD4+CD25+IL-10+ cells might be found in IP-10 transgenic 

infected mice and these might correlate with higher numbers of Foxp3+ cells found in 

lymph nodes and lesions. We used the ear model of infection to assess IL-10 

expression in retromaxillar lymph nodes at 3, 4, 5 and 6 weeks post infection by flow 

cytometry.  Intracellular staining was performed in PMA and ionomycin stimulated 

cells in vitro and the percentages of IL-10+ cells from CD4+CD25+   and 

CD4+CD25+IL-10+ cells from total population were compared between IP-10 and 

wild type infected mice. All flow data was uniformly analyzed and the same gates 

were used to assess CD4+CD25+IL-10+ cells as illustrated in fig 14. This figure is an 

example of how we compared cells percentages between the two groups at each time 

point post infection. After gating on CD4+ cells, we compared CD4+ CD25+ 

percentages from wild type (6.5%) versus IP-10 (7.4%) infected mice. We then  
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Fig. 14  IL-10 intracellular staining in lymph nodes  
 
Retromaxillar lymph nodes were removed and cells from lymph nodes were pooled 
and stained for CD4, CD25 and IL-10. All data were analyzed using the same gates. 
This figure is an example of how we compared cells percentages between the two 
groups at each time point post infection. In this example from day 42 post infection, 
we compared CD4+ CD25+ percentages from wild type (6.5%) versus IP-10 (7.4%) 
infected mice. We then compared IL-10+ cells from the CD4+CD25+ double positive 
population, wild type (3.2%) versus IP-10 (7%) infected mice. Lastly, we compared 
CD4+ CD25+ IL-10+ T cells from the total population from wild type (0.05%) versus 
IP-10 (0.12%) infected mice.
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compared IL-10+ cells from the CD4+CD25+ double positive population, wild type 

(3.2%) versus IP-10 (7%) infected mice. Lastly, we compared CD4+ CD25+ IL-10+ T 

cells from the total population from wild type (0.05%) versus IP-10 (0.12%) infected 

mice. We assessed IL-10 expression in two separate experiments.   

 

In the first experiment, we observed an increased percentage of IL-10+ cells from 

CD4+CD25+ cells in retromaxillar lymph nodes from IP-10 transgenic infected mice 

compared to the wild type infected mice at every time point post infection. The 

highest number of IL-10+ cells was found after 4 weeks post infection, with 4% in the 

IP-10 infected mice compared to 2.8% in the wild type (Fig. 15A and 15B). In the 

second experiment, we observed the highest percentage of IL-10+ cells from 

CD4+CD25+ and CD4+CD25+IL-10+ cells at 6 weeks post infection, with 3.2% of IL-

10+ cells in the wild type compared to 7% in IP-10 transgenic infected mice (Fig. 16A 

and 16B). These results correlate well with the higher number of CD4+CD25+Foxp3+ 

cells found draining lymph nodes of IP-10 transgenic infected mice. Higher numbers 

of natural regulatory T cells found in mice infected with IP-10 transgenic parasites 

might exert their immunosuppressive functions through an IL-10 dependent 

mechanism.  

 

We also measured IL-10, INF-γ and IL-4 expression by ELISA from supernatants of 

soluble leishmania antigen (SLA) stimulated cells for 72 hours. We used both the 

footpad and the ear models of infection to assess cytokine expression in lymph nodes 

from IP-10 and wild type infected mice. In the footpad group we found higher levels  
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Fig. 15 Higher IL-10+ cells were found in retromaxillar lymph nodes from IP-10 
transgenic infected mice. (First experiment) 
 
C57BL/6 mice (3 per group) were infected in both ears with 1x104 wild type (red 
bars) or IP-10 transgenic (blue bars) parasites. Retromaxillar lymph nodes were 
removed at 3, 4 and 6 weeks post infection and cells were stained for CD4, CD25 and 
IL-10 markers. Percentages IL-10+ cells from CD4+ CD25+ cells (A) and CD4+ 
CD25+ IL-10+ cells (from total population) (B) were compared between IP-10 
transgenic and wild type infected mice by flow cytometry analysis
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Fig. 16 Higher IL-10+ cells were found in retromaxillar lymph nodes from IP-10 
transgenic infected mice. (Second experiment) 
 
C57BL/6 mice (3 per group) were infected in both ears with 1x104 wild type (red 
bars) or IP-10 transgenic (blue bars) parasites. Retromaxillar lymph nodes were 
removed at 4, 5 and 6 weeks post infection and cells were stained for CD4, CD25 and 
IL-10 markers. Percentages IL-10+ cells from CD4+ CD25+ cells (A) and CD4+ 
CD25+ IL-10+ cells (from total population) (B) were compared between IP-10 
transgenic and wild type infected mice by flow cytometry analysis. 
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of IL-10 at day 21 post infection from the popliteal lymph node in the IP-10 infected 

mice (Fig. 17A). This difference became less evident at day 28 and at day 35 when 

levels of IL-10 were the same in both IP-10 and wild type infected mice. IFN-γ levels 

followed a similar pattern with higher levels in the IP-10 infected mice at day 21 but 

similar levels at day 28 and 35 post infection (Fig. 17B). IL-4 was only detected at 21 

days post infection in the wild type infected group and no expression was detected for 

the IP-10 infected mice. No IL-4 was detected at later time points (Fig. 17C). 

 

Using the ear model of infection we isolated cells from retromaxillar lymph nodes 

and stimulated them with SLA for 72 hours. We found higher IL-10 expression at day 

35 and 42 post infection in the IP-10 compared to wild type infected mice (Fig. 18A). 

No differences were found in IFN-γ expression at day 35 post infection between both 

groups and levels were very low (Fig. 18B). However, IFN-γ expression was 

significantly higher in wild type infected mice at day 42 post infection compared to 

IP-10 transgenic infected mice. IL-4 expression was low in general. This is to be 

expected in C57BL/6 mice which induce a Th1 response to these parasites. There was 

higher IL-4 in the wild type infected mice at day 35 post infection, with no detectable 

levels in the IP-10 infected mice. The opposite was observed at day 42 post infection 

when low levels of IL-4 were detected in IP-10 infected mice and no levels were 

detected in wild type (Fig. 18C).  

We also examined cytokine induction in draining lymph nodes from IP-10 and wild 

type infected mice by RT-PCR. We used the ear model of infection and isolated 

mRNA from lymph nodes. Cells were harvested into TRIzol and in vivo cytokine  
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Fig. 17 Cytokine expression in lymph nodes from IP-10 transgenic and wild type 
infected footpads. 
 
Popliteal lymph nodes were incubated for 72 h at 37°C, 5% CO2

 at a concentration of 
5 x 105 cells in 200 µl of RPMI 1640 containing 10% FCS, 10 mM Hepes, L-
glutamine, and penicillin/streptomycin in round-bottom 96-well plates in the presence 
of 20 µg/ml of freeze-thawed Leishmania antigen prepared from stationary phase 
promastigotes. IL-10 (A), IFN-γ (B) and IL-4 (C) were measured from supernatants 
of SLA stimulated lymphocytes for 72 hours by sandwich ELISA.  
 

 

 50 
 



5 weeks 6 weeks
IF

N
-γ

 p
g/

m
l

0

5000

10000

15000

20000

25000
Wild type 
IP-10 transgenic

5 weeks 6 weeks

IL
-1

0 
pg

/m
l

0

1000

2000

3000

4000
Wild type
IP-10 transgenic 

A B

 

5 weeks 6 weeks

IL
-4

 p
g/

m
l

0

20

40

60

80

100

120

140

160

180

200
Wild type  
IP-10 transgenic 

C 

 

 

 

 

Fig. 18 Cytokine expression in retromaxillar lymph nodes from IP-10 transgenic 
and wild type infected mice. 
 
Retromaxillar lymph nodes were incubated for 72 h at 37°C, 5% CO2

 at a 
concentration of 5 x 105 cells in 200 µl of RPMI 1640 containing 10% FCS, 10 mM 
Hepes, L-glutamine, and penicillin/streptomycin in round-bottom 96-well plates in the 
presence of 20 µg/ml of freeze-thawed Leishmania antigen prepared from stationary 

phase promastigotes. IL-10 (A), IFN-γ (B) and IL-4 (C) were measured from 
supernatants of SLA stimulated lymphocytes for 72 hours by sandwich ELISA.  
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mRNA levels were determined using real-time PCR and normalized to HPRT. Data 

are expressed as relative changes (fold) compared to uninfected lymph nodes, which 

were normalized to 1. We detected very low levels of mRNA IL-10 expression in 

both wild type and IP-10 infected mice. IP-10 transgenic parasites induced slightly 

more IL-10 mRNA than wild type parasites at 4 and 5 weeks post infection (Fig. 

19A). 

 

Discussion 

These results showed that IP-10 transgenic infected mice had higher numbers of 

CD4+CD25+IL-10+ cells in the draining lymph nodes compared to the wild type 

infected mice. Higher numbers of IL-10+ cells were found at day 28, 35 and 42 post 

infection in IP-10 infected mice when higher numbers of Foxp3+ cells were also 

found. This might suggest that natural regulatory T cells that are recruited to draining 

lymph nodes in infected mice, express IL-10 and this could in part enhanced parasite 

survival. We also found higher numbers of IL-10+ cells at the lesion sites in the ears 

which also correlates with higher numbers of Foxp3+ cells (data not shown). Higher 

IL-10 expression was also found in the supernatants of SLA stimulated cells from IP-

10 infected mice at day 35 and 42 post infection in draining lymph nodes from 

infected ears. There were very small IL-10 relative fold changes in cells from both 

infected groups compared to uninfected lymph nodes detected by RT-PCR. We 

observed slightly higher IL-10 mRNA expression in lymph nodes from mice infected 

with IP-10 transgenic parasites than wild type parasites. There was only one relative  
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Fig. 19 Cytokine induction by RT-PCR 
 
Real-time PCR was performed for IL-10 on draining lymph nodes from mice infected in 
both ears. Cells were placed into TRIzol and RNA was quantified by spectrophotometry. 
cDNA was generated using the ThermoScript kit from Invitrogen according to the 
manufacturer's instructions. In vivo cytokine mRNA levels were determined using real-
time PCR and normalized to HPRT. Data are expressed as relative changes (fold) 
compared to uninfected lymph nodes, which were normalized to 1. 
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fold change difference in IL-10 induction between IP-10 and wild type infected mice 

at day 35 post infection.  These results showed a higher expression of IL-10 in mice 

infected with IP-10 transgenic parasites compared to wild type infected mice. The 

opposite was found for IFN-γ in the ear model of infection. Higher IFN-γ was found 

in wild type infected mice at day 42 post infection with a much lower expression in 

the IP-10 infected mice. This might explain the fact that C57BL/6 mice start 

controlling L. major infection at day 42 in the ear model (Fig 4B). IL-4 was not 

detected in lymph nodes from IP-10 infected mice, which indicates that the 

hypervirulent phenotype shown in mice infected with IP-10 parasites is not due to an 

excessive Th2 immune response. The hypervirulent phenotype might be the result of 

the accumulation of higher numbers of Foxp3+ IL-10+ cells with a lower IFN-γ 

expression at the lesion sites and draining lymph nodes. These Foxp3+cells might use 

an IL-10 dependent mechanism to downregulate Th1 immune response which could 

explain larger lesions observed in IP-10 infected mice. IL-10 has been shown to play 

a crucial role in the failure of the infected host to clear L. major infection. There is a 

balance between IL-10 and IFN-γ producing cells at the ears and lymph nodes of 

infected mice. This balance might be modified in the presence of IP-10 secreting 

parasites which could skew the immune response towards immunosuppression and an 

enhanced survival of the parasite. 

 

Natural regulatory T cells might also be retained for longer periods at the lesion sites 

and draining lymph nodes in mice infected with IP-10 secreting parasites. It is 

plausible that these regulatory T cells are actively recruited or retained by their 
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expression of CXCR3 receptor. We have shown higher expression of CXCR3 

receptor in lymph nodes from mice infected with IP-10 transgenic parasites in spite of 

similar numbers of activated T cells in both infected groups. Lymph nodes from IP-10 

infected mice have also higher numbers of Foxp3+ cells and IL-10+ cells. This could 

suggest that L. major parasites that secrete IP-10 could recruit Foxp3 expressing 

regulatory T cells by their CXCR3 receptor. These cells express IL-10 and could 

employ this immunosuppressive cytokine to aid parasite survival. This suggests a 

novel mechanism developed by the parasite to evade the host response and 

manipulate cells of the adaptive immunity for their benefit. 

 

 

 55 
 



APPENDIX 1:  GENERATION OF VIRULENCE 
PROTEIN A (VAP-A) TRANSGENIC LEISHMANIA 
MAJOR. 
 
Leishmania major enters macrophages silently and fails to engage toll like receptors.  

L. major fails to induce TNF-α, IL-12 or nitric oxide and therefore can not activate 

macrophages (14). In contrast, the intracellular bacteria, Rhodococcus equi, can 

induce cytokine production and activate macrophages. Rhodococcus equi express a 

molecule called virulence protein A (VapA) that has previously been shown to be a 

TLR-2 agonist (47). We wanted to generate L. major transgenic parasites that can 

activate the toll like receptor (TLR) pathway to examine a new macrophage activation 

mechanism. Activated macrophages release a wide array of mediators including 

reactive oxygen and nitrogen species, hydrolytic enzymes, bioactive lipids, and 

cytokines such as tumor necrosis factor alpha (TNF-α). These mediators are 

important for the killing of intracellular pathogens. We generated transgenic parasites 

that express VapA in their surface. We hypothesized that transgenic parasites 

expressing VapA would ligate TLR2 in macrophages and subsequently induce the 

production of TNF-α and nitric oxide. These parasites were engineered using a 

technique called Gene Splicing by Overlapping Extension PCR (SOE-PCR).  In SOE-

PCR, three different PCR products were created in separate PCR reactions and used 

together as templates to generate a hybrid SOE PCR product (Fig 22A). Activation of 

macrophages by VapA transgenic parasites was examined by measuring TNF-α and 

nitric oxide production. 
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Transgenic parasites express VapA mRNA and protein. 

RNA was extracted from two different VapA transgenic clones to confirm their VapA 

mRNA expression. Transgenic parasites expressed VapA mRNA. No expression was 

detected in wild type parasites as expected (Fig 20A). In addition, VapA protein 

expression in transgenic parasites was detected by Western Blotting (Fig 20B). 

 

VapA transgenic parasites failed to induce TNF-α production. 

Bone marrow derived macrophages (BMM ) were primed with IFN-γ for 16 hours 

and subsequently stimulated with LPS or infected with different rations of wild type 

or VapA transgenic parasites. Supernatants were collected 24, 48 and 72 hours post 

infection and TNF-α concentrations were determined by ELISA. VapA transgenic 

parasites were not able to induce TNF-α production in infected BMM  at any given 

multiplicity of infection (MOI) (Fig 21A). They behaved similarly to wild type 

parasites which were also unable to induce TNF-α production. In contrast, LPS or 

rVapA stimulated cells induced high levels of TNF-α. These results suggest that 

VapA transgenic parasites were not able to ligate TLR-2. We know that transgenic 

parasites express VapA but we did not assess whether VapA expression was confined 

to the surface of the parasite or not. Expression of foreign genes in Leishmania is 

challenging and we can not be sure that proteins are expressed correctly. VapA could 

have been folded differently and therefore would have been unable to ligate TLR2. 
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Fig 20. Transgenic parasites express VapA 
 
Total RNA was isolated from wild-type and transgenic VapA parasites during 
promastigote development. VapA was amplified from the cDNA of transgenic 
parasites, but not from the cDNA of wild-type L. major.  The gene gp63 was 
amplified from the cDNA as a loading control. (B) Equal amounts of whole parasites 
lysates were subject to electrophoresis on 15% SDS-PAGE and VapA protein 
expression was detected by Western Blotting. 
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VapA transgenic parasites failed to induce nitric oxide 

Nitric oxide (NO) is a key immune mediator that is produced by activated 

macrophages. We measured NO production in cells infected with wild type or VapA 

transgenic parasites. Bone marrow derived macrophages (BMM ) were primed with 

IFN-γ for 16 hours and subsequently stimulated with LPS or infected with live, heat 

killed parasites and parasites opsonized with C5 deficient serum. Supernatants were 

collected 24, 48 and 72 hours post infection and NO production was determined. 

VapA transgenic parasites were unable to induce NO production in macrophages and 

behaved similarly to wild type parasites (Fig 21B). In contrast, LPS stimulated 

macrophages induced high NO production. These results along with the previous 

experiment suggest that VapA transgenic parasites do not activate macrophages in 

vitro. It is possible that VapA expression is flawed which impede proper ligation with 

TLR. Another possibility might be that transgenic parasites do not express VapA at 

their surface and therefore can not serve as TLR agonist. We can only conclude that 

these VapA transgenic parasites were no able to activate macrophages. 
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Fig 21 VapA transgenic parasites fail to activate macrophages 
(A) BMM   were primed with 100 U/ml IFN-γ for 16 hours. Macrophages were 
either stimulated with 10 ng/ml LPS (E. coli 0127:B8 Sigma, St. Louis, MO) or 
infected wild type or VapA transgenic parasites. Supernatants were collected 48 hours 
post infection and TNF-α concentrations were determined by ELISA. (B) Griess 
reagent was added 1:1 (v:v) to culture supernatants and nitrite content was calculated 
by comparison to a sodium nitrite standard curve by measuring the absorbance at 
550mn. 
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Material and Methods 
 

Gene Splicing by Overlapping Extension (SOE) PCR 

Three different PCR products were created in separate PCR reactions and used to 

generate a hybrid SOE PCR product that begins with a 5’-SmaI restriction site 

followed by the L. major gp63 signal sequence, the 564 bp of the Rhodococcus equi 

Vap A gene and ends the L. major GPI anchor sequence with a 3’- XbaI site.   

 

The first PCR reaction generated a 123 basepair (bp) PCR product that contained a 

5’-SmaI restriction site followed by the L. major gp63 signal sequence and a short 

sequence corresponding to the VapA gene. This fragment was created using the 

following primers: sense 5’-TTCCCGGGATGTCCGTCGA - 3’ and antisense 5’-

TGAAGAGTCTTGGCGTGTGCCCA -3’.  These primers were used along with a 

plasmid template that contained the entire L. major gp63 gene (accession #: Y00647).  

After the gp63 PCR #1 product was generated, it was gel purified using a gel 

extraction kit (Qiagen, Valencia, CA).  The second PCR reaction generated a 564 bp 

PCR product that contains the Rhodococcus equi Vap A gene, followed by a short 

sequence corresponding to the GPI anchor sequence of L. major. This fragment was 

created using the following primers: sense 5’-

ACACGCCAAGACTCTTCACAAGACG - 3’ and antisense 5’-

CTGAGGCCGGCGTTGTGC -3’. After the VapA PCR #2 product was generated, it 

was gel purified using a gel extraction kit (Qiagen, Valencia, CA).  The third PCR 

reaction generated a 198 bp fragment containing the GPI anchor sequence of L. major 

and the sequence corresponding to XbaI restriction site, using the following primers:  
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sense 5’-AACGCCGGCCTCAGAGTTGAG- 3’ and antisense 5’-

TATTTCTAGACTAGAGCGCCACGGCC -3’.  The hybrid PCR product VapA-

SOE was generated with two series of PCR reactions using gp63 PCR #1, VapA PCR 

#2 and GPI PCR #3 as templates (Fig 22A). The final PCR product was purified 

using a PCR purification kit (Qiagen) and ligated into the TA cloning vector, pCRII 

(Invitrogen). 

 

The hybrid PCR product was excised from the TA cloning vector with SmaI and 

XbaI, gel purified, and ligated into the multiple cloning site of the Leishmania 

expression plasmid, pIR1SAT, which was generously provided by Dr. Steven 

Beverley (Washington University, St. Louis, MO) (Fig 22B).  The ligated expression 

plasmid, pIR1SAT-IP-10 was transformed into Max Efficiency DH10B competent 

cells (Invitrogen) by heat-shock method.  The pIR1SAT-IP-10 plasmid was isolated 

from DH10B cells using a plasmid maxi kit (Qiagen), digested with SwaI, and 

transfected into Leishmania parasites to permit integration into the parasite genome.   

 

Transfection of Leishmania 

 

L. major  parasites (1x108 parasites) were resuspended in 400 μl of electroporation 

buffer [21 mM HEPES (pH 7.5), 137 mM NaCl, 5 mM KCl, 0.7 mM Na2PO4, and 6 

mM glucose].  This suspension was mixed with 5 μg of linearized pIR1SAT-IP-10, 

added to a 0.4 cm Gene Pulser cuvette (BIORAD, Hercules, CA), and electroporated 
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(0.5 kV, 0.5 μFd) using BIORAD’s Gene Pulser II.  The cuvette was put on ice for 10 

minutes.  Electroporated parasites were added to blood agar plates containing SAT. 

 

RNA isolation 

RNA was isolated from 1x108 wild-type or transgenic L. major  promastigote using 

Trizol RNA prep (Invitrogen).  The RNA was converted to cDNA using the 

manufacturer’s protocol.  VapA was amplified from the cDNA samples using the 

following primers:  sense 5’-AAGACTCTTCACAAGACGGTTTCTAA-3’ and 

antisense 5’-GGCGTTGTGCCAGCTACCAGA-3’.  gp63 was amplified using the 

following primers: sense 5’-ATCCTCACCGACGAGAAGCGCGAC-3’ and 

antisense 5’-ACGGAGGCGACGTACAACACGAAG-3’.          

 

Western blotting  

Wild type and VapA transgenic parasites were lysed in ice-cold lysis buffer (100 mM 

Tris (pH 8), 2 mM EDTA, 100 mM NaCl, 1% Triton X-100 containing complete 

EDTA-free protease inhibitors from Roche Diagnostics, which included 5 mM 

sodium vanadate, 10 mM sodium fluoride, 10 mM -glycerophosphate sodium, and 5 

mM sodium pyrophosphate). Equal amounts of protein were loaded onto 15% SDS-

polyacrylamide gels, and then transferred to polyvinylidene difluoride membranes. 

Membranes were incubated with primary Abs overnight at 4°C, washed, and 

incubated with secondary Ab with HRP conjugates. The specific protein bands were 
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visualized by using Lumi-LightPLUS chemiluminescent substrate (Roche 

Diagnostics). 

Cytokine measurement  

A total of 3 x 105 BMM  per well were plated overnight in 24-well plates. Cells were 

primed with 100 U/ml IFN-γ for 16 hours (47). Macrophages were either stimulated 

with 10 ng/ml LPS (E. coli 0127:B8 Sigma, St. Louis, MO) or infected wild type or 

VapA transgenic parasites between 1:1 to 1:20 macrophage : parasite ratios. 

Supernatants were collected 24, 48 and 72 hours post infection and TNF-α 

concentrations were determined by a sandwich ELISA using Ab pairs provided by 

BD Pharmingen (G281-2626 and MP6-XT3) according to the manufacturer’s 

instructions. 

Nitric Oxide Determination 

 A total of 3 x 105 BMM  per well were plated overnight in 24-well plates. Cells were 

primed with 100 U/ml IFN-γ for 16 hours. Macrophages were either stimulated with 

10 ng/ml LPS (E. coli 0127:B8 Sigma, St. Louis, MO), or infected wild type and 

VapA transgenic parasites. Macrophages were also infected with opsonized parasites 

with 5% C5 deficient serum and heat killed parasites. Griess reagent was added 1:1 

(v:v) to culture supernatants and nitrite content was calculated by comparison to a 

sodium nitrite standard curve by measuring the absorbance at 550mn as previously 

described (47). 
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Figure 22.  Gene Splicing by Overlaping Extension PCR and pIR1SAT-VapA. 

(A) gp63 PCR#1, VapA PCR#2 and GPI PCR#3 were created in separate PCR 
reactions.  PCR products were used together in a separate PCR reaction to create the 
hybrid PCR product. (B) P1R1SAT contains a multiple cloning site for insertion of the 
VapA-SOE hybrid product.  The multiple cloning site is flanked by genes involved in 
transplicing and polyadenylation.  The plasmid contains a streptothricin (SAT) 
resistance marker.  The plasmid also contains the 5’ and 3’ portions of the L. major 18S 
ribosomal RNA subunit (SSU) for integration into the Leishmania genome. 
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APPENDIX 2: GREEN FLUORESCENT PROTEIN (GFP) 
EXPRESSING LEISHMANIA MEXICANA 

Since its discovery, green fluorescent protein (GFP) (48) has been a useful biological 

marker applied extensively in molecular biology. GFP has found broad use in almost 

all organisms and all major cellular compartments.  GFP has been used as a reporter 

gene, a cell marker and a fusion tag. We introduced a GFP gene into Leishmania 

mexicana genome to generate green parasites which can be used to visualized 

parasites in situ. Viable or fixed GFP expressing Leishmania can be directly 

visualized under the fluorescence microscope without cumbersome labeling 

procedures. Green fluorescent parasites were fixed with 4% paraformaldehyde onto a 

coverslip and L mexicana were visualized under fluorescent microscopy (Fig 23A). 

GFP parasites were also detected by flow cytometry (Fig 23B). 

Generation of GFP transgenic parasites 

A product that begins with a 5’-SmaI restriction site followed by 666 bp of the green 

fluorescent protein (GFP) gene and ends with a 3’-XbaI site was generated by PCR.  

This fragment was amplified from the pmaxGFP™ plamid from Amaxa Biosystems 

nucleofector kit as a template using the following primers: sense 5’- 

CCCCCGGGATGAAGATCGAGT - 3’ and antisense 5’-

GCTCTAGACTATGCGATCGGG-3’.  A standard 50 ul reaction PCR using 45ul of 

Platinum PCR supermix (Invitrogen) with primers and the template was used to 

amplify GFP fragment according to the manufacture’s protocol.  The PCR product 

was purified using a PCR purification kit (Qiagen) and ligated into the TA cloning 

vector, pCRII (Invitrogen). 
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The PCR product was excised from the TA cloning vector with SmaI – XbaI double 

digestion, gel purified, and ligated into the multiple cloning site of the Leishmania 

expression plasmid, pIR1SAT. The ligated expression plasmid, pIR1SAT-GFP was 

transformed into Max Efficiency DH10B competent cells (Invitrogen) by Heat-shock 

method.  The pIR1SAT-GFP plasmid was isolated from DH10B cells using a plasmid 

maxi kit (Qiagen), digested with SwaI, and transfected into Leishmania parasites to 

permit integration into the parasite genome.  Transfection of L. mexicana parasites 

was performed as described above. 
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Fig 23 Green fluorescent protein expressing Leishmania mexicana 
 
(A) GFP parasites were fixed with 4% paraformaldehyde and placed onto a cover 
slip. Parasites were visualized under fluorescent microscopy. (B) GFP parasites were 
detected by flow cytometry.  
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