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In this dissertation, we consider the design of broadcast and secure multi-party

computation (MPC) protocols in the presence of adversarial faults.

Secure multi-party computation is the most generic problem in fault-tolerant

distributed computing. In principle, a multi-party computation protocol can be

used to solve any distributed cryptographic problem. Informally, the problem of

multi-party computation is the following: suppose we have n parties P1, P2, . . . , Pn

where each party Pi has a private input xi. Together, the parties want to compute

a function of their inputs (y1, y2, . . . , yn) = f(x1, x2, . . . , xn). However, some parties

can be corrupted and do not execute a prescribed protocol faithfully. Even worse,

they may be controlled by an adversary and attack the protocol in a coordinated

manner. Despite the presence of such an adversary, a secure MPC protocol should

ensure that each (corrupted) party Pi learn only its output yi but nothing more.

Broadcast in the presence of adversarial faults is one of the simplest special

cases of multi-party computation and important component of larger protocols. In



short, broadcast allows a party to send the same message to all parties, and all

parties to be assured they have received identical messages.

The contribution of this dissertation is twofold. First, we construct broadcast

and secure multi-party computation protocols for honest majority in a point-to-point

network whose round complexities improve significantly upon prior work. In par-

ticular, we give the first expected constant-round authenticated broadcast protocol

for honest majority assuming only public-key infrastructure and signatures. Second,

we initiate the study of broadcast in radio networks in the presence of adversarial

faults. In radio networks, parties communicate through multicasting messages; a

message can only be received by the parties within some radius from the sender.

Feasibility and impossibility results are given, and our bounds are tight.
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Chapter 1

Introduction

In this dissertation, we consider the design of broadcast and secure multi-party

computation (MPC) protocols in the presence of adversarial faults.

Secure multi-party computation is the most generic problem in fault-tolerant

distributed computing. In principle, a multi-party computation protocol can be

used to solve any distributed cryptographic problem. Informally, the problem of

multi-party computation is the following: suppose we have n parties P1, P2, . . . , Pn

where each party Pi has an input xi. Together, the parties want to compute a

function of their inputs (y1, y2, . . . , yn) = f(x1, x2, . . . , xn). However, some parties

are corrupted and malicious. These corrupted parties may not execute a prescribed

protocol faithfully. Even worse, they may be controlled by an adversary and attack

the protocol in a coordinated manner. Despite the presence of such an adversary,

a secure MPC protocol should ensure that each (corrupted) party Pi learn only yi

but nothing more.

Broadcast in the presence of adversarial faults is one of the simplest special

cases of multi-party computation. In short, broadcast allows a party to send the

same message to all parties. It is a useful building block for MPC protocols and

other distributed cryptographic protocols. More formally, the broadcast problem

can be stated as follows: there is a distinguished party, known as the dealer, who
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holds a message m. However, some parties (including the dealer) can be corrupted

by an adversary. Despite this, all honest (i.e., uncorrupted) parties should eventually

output a common message m′. In addition, if the dealer is honest, then m′ should

be equal to m.

In this dissertation, we consider two different kinds of communication models:

point-to-point networks and radio networks. In point-to-point networks, all pairs of

parties communicate through direct links. On the other hand, in radio networks,

parties communicate through a wireless channel. Two parties can communicate

directly only if they are within the transmission range of each other. Furthermore,

every party in the range hears the message being transmitted.

This dissertation is divided into two parts. In the first part, we study the

round efficiency of broadcast and secure multi-party computation protocols in point-

to-point networks under the standard model from the literature. In the second part,

we propose an adversarial model for corruption of parties in radio networks and

study the feasibility of broadcast under this model.

Preliminary version of the work in this dissertation appeared in [KK06, KK07,

Koo04, KBKV06].

1.1 Part One: Round-Efficient Protocols in Point-to-Point

Networks

The round complexity of cryptographic protocols has been the subject of

intense study. Much work has been done on establishing bounds on the round
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complexity of various tasks such as zero knowledge [BCY89, FS89, GK96, BJY97,

HT98, Ros00, CKPR01, PRS02], broadcast (Byzantine agreement) [PSL80, LSP82,

FL82, DS83, Bra87, CC85, FM85, DSS90, BG93, MW94, FM97, GM98, BB98,

BE03], verifiable secret sharing [GIKR01, FGG+06], and secure multi-party compu-

tation [Yao86, BMR90, IK00, GIKR02, KOS03, Lin03, KO04, DI05].

Apart from the fact that these results are of fundamental theoretical impor-

tance, reducing the round complexity of existing protocols is crucial if we ever hope

to use these protocols in the real world. If the best known protocol for a given task

requires hundreds of rounds, it will never be used; on the other hand, if we know (in

principle) that round-efficient solutions are possible, we can then turn our attention

to improving other aspects (such as computation) in an effort to obtain a protocol

that can be used in practice.

In this part, we focus on constructing round-efficient protocols for broadcast

and secure multi-party computation in synchronous point-to-point networks in the

presence of honest majority, i.e., at least half of the parties are honest. In a syn-

chronous network, an execution of protocol takes place in rounds. In each round,

parties send messages to each other depending on the messages they have received

from the previous rounds; the parties also receive the messages being sent to them

within the same round.
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1.1.1 Broadcast

When designing cryptographic protocols, it is often convenient to abstract

away various details of the underlying communication network. As one noteworthy

example, it is often convenient to assume the existence of a broadcast channel which

allows any party to send the same message to all other parties (and all parties to be

assured they have received identical messages) in a single round. In most cases, it

is understood that the protocol will be run in a network where only point-to-point

communication is available and the parties will have to “emulate” the broadcast

channel by running a broadcast protocol. Unfortunately, this “emulation” typically

increases the round complexity of the protocol substantially.

Work has been done on reducing the round complexity of protocols for broad-

cast or the related task of Byzantine agreement (BA) [PSL80, LSP82]. In Byzantine

agreement, each party has an initial input. Eventually, all parties have to output a

common value. The requirement is that if all (honest) parties have the same input

value, then the parties have to output that particular value. In the case of honest

majority, any Byzantine agreement protocol implies a broadcast protocol using one

additional round (in the first round the sender sends its message to all parties, who

then run a Byzantine agreement protocol on the values they received). Note that

Byzantine agreement is not defined if there is an absence of honest majority.

Related Work. The Byzantine agreement problem is introduced by Pease, Shostak

and Lamport [PSL80, LSP82] who show that in a synchronous network with pairwise

authenticated channels and no additional set-up assumptions, BA among n parties
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is achievable if and only if the number of corrupted parties t satisfies t < n/3.

Concerning round complexity, a lower bound of t + 1 rounds for any deterministic

BA protocol is known in this setting [FL82]. A protocol with this round complexity

— but with exponential message complexity — was shown by Pease, et al. [PSL80,

LSP82]. Following a long sequence of works, Garay and Moses [GM98] show a

fully-polynomial BA protocol with optimal resilience and round complexity.

To circumvent the above-mentioned lower bound, researchers beginning with

Rabin [Rab83] and Ben-Or [B83] explored the use of randomization to obtain better

round complexity. This line of research [Bra87, CC85, FM85, DSS90] culminated

in the work of Feldman and Micali [FM97], who show a randomized BA protocol

with optimal resilience t < n/3 that runs in an expected constant number of rounds.

Their protocol requires channels to be both private and authenticated.

To achieve resilience t ≥ n/3, additional assumptions are needed even if ran-

domization is used [KY]. The most widely-used assumptions are the existence of

digital signatures and a public-key infrastructure (PKI); protocols in this setting

are termed authenticated. Implicit in this setting is that the adversary cannot forge

signatures. Pease, et al. [PSL80, LSP82] show an authenticated broadcast protocol

for t < n, and a fully-polynomial protocol achieving this resilience was given by

Dolev and Strong [DS83]. These works rely only on the existence of digital sig-

nature schemes and a PKI, and do not require private channels. Digital signature

schemes can be constructed from one-way functions [NY89, Rom90]; however, the

schemes will only be secure against a computationally bounded adversary; alterna-

tively, if information-theoretic “pseudo-signatures” [PW96] are used, security can
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be obtained even against an unbounded adversary.

The (t+1)-round lower bound for deterministic protocols holds in the authen-

ticated setting as well [DS83], and the protocols of [PSL80, LSP82, DS83] meet this

bound. Some randomized protocols beating this bound for the case of n/3 ≤ t < n/2

are known [Tou84, Bra87, Wai91], but these are only partial results:

• Toueg [Tou84] gives an expected O(1)-round protocol, but assumes a trusted

dealer. After the dealing phase the parties can only run the BA protocol a

bounded number of times.

• A protocol by Bracha [Bra87] implicitly requires a trusted dealer to ensure that

parties agree on a “Bracha assignment” in advance (see [FM85]). Furthermore,

the protocol only achieves expected round complexity Θ(log n) and tolerates

(slightly sub-optimal) t ≤ n/(2 + ǫ) for any ǫ > 0.

• Waidner [Wai91], building on [Bra87, FM85], shows that the dealer in Bracha’s

protocol can be replaced by an Ω(t)-round pre-processing phase during which

a broadcast channel is assumed. The expected round complexity (after the

pre-processing) is also improved from Θ(log n) to Θ(1).

The latter two results assume private channels.

Fitzi and Garay [FG03], building on [Tou84, CKS00, Nie02], give the first full

solution to this problem: that is, they show the first authenticated BA protocol

with optimal resilience t < n/2 and expected constant round complexity that does

not require any trusted dealer or pre-processing (other than a PKI). Even assuming
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private channels, however, their protocol requires specific number-theoretic assump-

tions (essentially, some appropriately-homomorphic public-key encryption scheme)

and cannot be based on signatures alone. Because of its reliance on additional as-

sumptions, the Fitzi-Garay protocol cannot be adapted to the information-theoretic

setting using pseudo-signatures.

Our Contributions

As our main result, in Chapter 3, we extend the work of Feldman and Micali

and show that:

Theorem 1.1.1 Assuming a public-key infrastructure and the existence of signa-

ture schemes, there exists a broadcast protocol tolerating t < n/2 malicious parties

running in expected constant rounds.

For those unfamiliar with the specifics of the Feldman-Micali protocol, we

stress that their approach does not readily extend to the case of t < n/2. In

particular, they rely on a primitive termed graded VSS and construct this primitive

using in an essential way the fact that t < n/3. We take a different approach: we

introduce a new primitive called moderated VSS (mVSS) and use this to give an

entirely self-contained proof of our result.

We suggest that mVSS is a useful alternative to graded VSS in general, even

when t < n/3. For one, mVSS seems easier to construct: we show a generic con-

struction of mVSS in the point-to-point model from any VSS protocol that relies

on a broadcast channel, while a generic construction of this sort for graded VSS

seems unlikely. Perhaps more importantly, mVSS provides what we believe to be a
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conceptually-simpler approach to the problem at hand: in addition to our authen-

ticated broadcast protocol for t < n/2, our techniques give a broadcast protocol (in

the plain model) for t < n/3 that is both more round-efficient than the Feldman-

Micali protocol and also admits a self-contained proof that is, in our opinion, signif-

icantly simpler than that of [FM97]. Moreover, the concept of moderated protocols

proved to be an useful technique in developing round-efficient secure multi-party

computation protocols (see discussion in the next section).

As mentioned earlier, cryptographic protocols are often designed under the

assumption that a broadcast channel is available; when run in a point-to-point

network, these protocols must “emulate” the broadcast channel by running a broad-

cast protocol as a sub-routine. If the original protocol uses multiple invocations of

the broadcast channel, and these invocations are each emulated using a probabilistic

broadcast protocol, subtle issues related to the parallel and sequential composition of

the various broadcast sub-protocols arise; see the detailed discussion in Section 3.3.

Parallel composition can be dealt with using existing techniques [BE03, FG03].

There are also techniques available for handling sequential composition of protocols

without simultaneous termination [BE03, LLR02]; however, it applies only to the

case t < n/3 [BE03] or else is rather complex [LLR02]. As an additional contri-

bution, we show how to extend previous work [BE03] so as to enable sequential

composition when t < n/2 (assuming digital signatures and a PKI) in a simpler and

more round-efficient manner than [LLR02].

The above results, in combination with prior work [BMR90, DI05], yield the

following result:

8



Theorem 1.1.2 Assuming a public-key infrastructure and the existence of signature

schemes, there exists a secure multi-party computation protocol tolerating t < n/2

malicious parties running in expected constant rounds.

A preliminary version of this work appeared in [KK06].

1.1.2 Secure Multi-Party Computation

Secure multi-party computation (MPC) enables a group of parties to evaluate

a function f with the guarantee that each honest party will learn its output and

each corrupted party will only learn its own output but nothing more.

In below, we present the definition of secure computation without abort (the

definition is adapted from [GL05]), which is the standard definition used for the

case of honest majority. There are other (relaxed) definitions of secure computation

(see [GL05]), but we will not consider those here.

Multi-party function evaluation A multi-party computation problem for n par-

ties is cast by specifying a random process that maps vectors of inputs to vectors

of outputs (one input and one output for each party). We denote such process

f : ({0, 1}⋆)n → ({0, 1}⋆)n, where f = (f1, . . . , fn). That is, for a vector of inputs

x̄ = (x1, . . . , xn), the output vector is a random variable (f1(x̄), . . . , fn(x̄)) ranging

over vectors of strings. The output for the ith party (with input xi) is defined to be

fi(x̄).

The security of a multi-party computation protocol is analyzed by comparing

what an adversary (who controls the corrupted parties) can do in the protocol to

9



what it can do in an ideal scenario that is secure by definition. This is formalized by

considering an ideal computation involving an incorruptible trusted party as follows:

Execution in the Ideal Model

1. Inputs: Each party Pi obtains its respective input xi.

2. Send inputs to trusted party: An honest party Pi always sends its input xi to

the trusted party. A corrupted party, on the other hand, may send modified

value x′
i to the trusted party; x′

i can be dependent on the inputs of other

corrupted parties. Let the sequence of inputs obtained by the trusted party

be x̄′.

3. Trusted party answers the parties: The trusted party computes f(x̄′) and

sends fi(x̄
′) to party Pi for every i.

4. Outputs: An honest party always outputs the message that it received from

the trusted party and the corrupted parties output nothing. The adversary

outputs an arbitrary function of the initial inputs of the corrupted parties and

the messages that the corrupted parties received from the trusted party.

Execution in the Real Model: In the real model, the parties execute a protocol Π

to evaluate f . Throughout the execution, the honest parties follow the instructions

of the prescribed protocol, while the corrupted parties may deviate from the protocol

in an arbitrary manner, subject to the choice of the adversary. At the end of

the protocol execution, the honest parties output their prescribed output from Π,

the corrupted parties output nothing and the adversary outputs its view of the
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computation.

Secure MPC: A protocol Π is said to be a secure MPC protocol for the computation

of f if for every adversary for the real model, there exists an ideal-world adversary

such that the following two distributions are indistinguishable:

• The joint output of the honest parties and the real-world adversary in the real

model.

• The joint output of the honest parties and the ideal-world adversary in the

ideal model.

As mentioned earlier, we will focus on studying the round complexity of protocols

for secure multi-party computation. Previous research investigating this aspect has

almost exclusively focused on optimizing the round complexity under the assumption

that a broadcast channel is available. (We survey some of this work later in this

section.) In most settings where MPC might potentially be used, however, only

point-to-point channels are likely to be available and a broadcast channel is not

expected to exist. Nevertheless, as mentioned in the last section, a broadcast channel

can always be emulated by having the parties run a broadcast protocol over the

point-to-point network.

We argue that if the ultimate goal is to optimize round complexity for point-

to-point networks (i.e., where the protocol will actually be run), then the above

may be a poor approach due to the high overhead introduced by the final step of

emulating the broadcast channel. Specifically:

• If the broadcast channel is emulated using a deterministic protocol [GM98,
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DS83], then a lower bound due to Fischer and Lynch [FL82] shows that Ω(t+R)

rounds are needed to emulate R rounds of broadcast in the original protocol

(this is true regardless of how many parties broadcast during the same round)

where t is the number of malicious parties. In particular, this will not lead to

sub-linear-round protocols with optimal security threshold t = Θ(n).

• Using randomized protocols, each round of broadcast in the original protocol

can be emulated in an expected constant number of rounds (see Chapter 3).

Nevertheless, the exact constant is rather high. More problematic is that if

broadcast is used in more than one round of the original protocol, then one

must explicitly handle sequential composition of protocols without simultane-

ous termination. (This is not an issue if broadcast is used in only a single

round.) Unfortunately, this leads to a substantial increase in round complex-

ity. See Section 3.3 for details.

To illustrate the second point, consider the protocols of Micali and Rabin

[MR90] and Fitzi, et al. [FGG+06] (building on [GIKR01]) for verifiable secret shar-

ing (VSS) with t < n/3. The Micali-Rabin protocol uses 16 rounds but only a single

round of broadcast; the protocol of Fitzi, et al. uses three rounds, two of which

involve broadcast. Compiling these protocols for a point-to-point network, using

the result from Chapter 3, the Micali-Rabin protocol runs in an expected 31 rounds

while the protocol by Fitzi, et al. requires an expected 55 rounds! The conclusion

is that optimizing round complexity using broadcast does not, in general, lead to

round-optimal protocols in the point-to-point model.
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This suggests that if the ultimate goal is a protocol for a point-to-point net-

work, then it is preferable to focus on minimizing the number of rounds in which

broadcast is used rather than on minimizing the total number of rounds. This raises

in particular the following question:

Is it possible to construct constant-round protocols for

secure computation that use only a single round of broadcast?

Note that this is optimal in terms of the usage of the broadcast channel for a

constant-round secure MPC protocol, since secure computation of the broadcast

functionality requires a single invocation of the broadcast channel.

Our Contributions

As our main results, in Chapter 4, we show that:

Theorem 1.1.3 Assuming the existence of one-way functions, there is a constant-

round secure multi-party computation protocol tolerating t < n/3 malicious parties

that uses a single round of broadcast.

Theorem 1.1.4 Assuming the existence of one-way functions and a public-key in-

frastructure, there is a constant-round secure multi-party computation protocol tol-

erating t < n/2 malicious parties that uses a single round of broadcast.

We obtain the above results by using the concept of moderated protocols (see

previous section). Along with the construction of our protocols, we also develop

techniques to minimize the exact round complexity. Of course, the fact that a pro-

tocol uses broadcast in only a single round does not necessarily imply that it yields
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the most round-efficient protocol in a point-to-point setting. For the protocols we

construct, however, this is indeed the case (at least given the results in Chapter 3,

which contain the most round-efficient known techniques for emulating broadcast

over point-to-point channels). For example, using the results from Chapter 3, the

first protocol mentioned above requires 41 rounds (in expectation) when compiled

for a point-to-point network. In contrast, any protocol for t < n/3 that uses broad-

cast in two rounds (even if that is all it does!) will require at least 55 rounds (in

expectation) when run in a point-to-point network. We stress again that the main

issue in moving from one broadcast to two (or more) broadcasts is the significant

overhead in the latter case needed to deal with sequential composition of protocols

that do not terminate in the same round.

A preliminary version of this work appeared in [KK07].

Prior Work. Initial feasibility results showed the existence of unconditionally-

secure MPC protocols in point-to-point networks for t < n/3 (combining [BGW88,

CCD88] with [PSL80]), or for t < n/2 assuming a broadcast channel is available

[Bea91b, RB89, Rab94].

Beaver, Micali, and Rogaway [BMR90] gave the first constant-round protocol

for secure MPC with t < n/2, assuming a broadcast channel and one-way functions.

Damg̊ard and Ishai [DI05] showed a constant-round protocol under the same as-

sumptions that is secure even for adaptive adversaries. As mentioned in the previous

section, using our results, these can both be converted to expected constant-round

protocols in point-to-point networks. We stress that the constant obtained in this

way is rather high, on the order of hundreds of rounds.
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The work of Gennaro, et al. [GIKR01] implies a 3-round MPC protocol with

resilience t < n/4, assuming the existence of one-way functions. We remark that

the resulting protocol only uses broadcast in a single round, and so would yield a

very round-efficient protocol in a point-to-point network; the drawback is that the

resilience is not optimal. In subsequent work [GIKR02], the same authors show that

2-round MPC is not possible (in general) for t ≥ 2. However, they show that certain

functionalities can be securely computed in 2 rounds for t < n/6.

Goldwasser and Lindell [GL05] show various round-efficient secure MPC pro-

tocols for point-to-point networks that do not use broadcast; however, their work

considers weakened security definitions in which fairness and output delivery are not

guaranteed (even when an honest majority exists).

1.2 Part Two: Feasibility of Broadcast in Radio Networks

Much work has focused on the broadcast problem in a fully connected point-

to-point network. (We have surveyed these work in Section 1.1.1). Some research

has also explored the problem when pairwise channels exist only between selected

pairs of parties, or under the assumption of “k-cast channels” shared by all subsets

of parties of size k [FM00, ASS+03, CFF+05].

However, none of these models are appropriate for radio networks in which a

party can communicate only by multicasting a message which is then received by all

parties within some radius r (i.e., the neighbors of the transmitting party). With

recent advancements in wireless technology, deployment of large-scale networks in
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which the sole means of communication is via wireless (radio) transmission is now

possible. Since broadcast can serve as a building block for many applications in

these enviroments, it is of interest to establish the conditions under which it can

be achieved. Yet, as far as we are aware, prior to our work, obtaining broadcast

in radio networks in the presence of malicious parties has not been studied before.

Our work corrects this omission, and provides the first analysis of broadcast in radio

networks.

Our Contributions We study feasibility of broadcast in the following network

model: parties are located on an infinite grid (each grid unit is a 1 × 1 square). In

the absence of collisions, if a party locates at (x, y), P (x, y), multicasts a message

m, then all parties within distance r will receive the message. The parties within

the distance r from (x, y) are known as the neighbors of P (x, y). A collision at

(x, y) occurs when two neighbors P1, P2 of P (x, y) multicast at the same time. In

this case, there is no guarantee as to what message(s) P (x, y) will receive. (The

square grid model has been considered in [KKP01], in the context of minimizing

broadcast latency with crash failures.) We assume there exists a pre-determined

time division multiple access (TDMA) schedule such that if all parties follow the

schedule in carrying out local broadcast, then no collisions will occur.

We introduce the locally-bound fault model – which we believe is a natural

model for the distribution of corruption in radio networks. Under this fault model,

an adversary can corrupt up to t neighbors of any party.

A party corrupted by the adversary is allowed to deviate from the TDMA

schedule, cause message collision and send out spoofed address for a bounded number
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of times. We assume the bound are known in advance by all parties.

As our main result, in Chapter 4, we show the following:

Theorem 1.2.1 In the L∞ metric, if t < 1
2
r(2r + 1), then there exists a protocol

achieves broadcast as long as there is a bound on the number of collisions caused

and spoofed messages sent by each corrupted party.

The above result is tight in two ways. First, it is easy to see that there does

not exist any broadcast protocol in the presence of an adversary capable of causing

unbounded number of collisions. (An adversary can prevent an honest party from

receiving any message by continuously causing collisions.) Second, we show that it

is not possible to tolerate a larger value of t:

Theorem 1.2.2 In the L∞ metric, if t ≥ 1
2
r(2r + 1), broadcast is impossible even

if the adversary cannot cause collisions nor send out spoofed address.

A preliminary version of this work appeared in [Koo04] and [KBKV06]. In

the first paper, we study broadcast assuming the adversary cannot cause collisions

nor send out spoofed address. Feasibility and impossibility results are shown. The

feasibility results are subsequently improved by Bhandari and Vaidya [BV05a], they

give an upper bound that matches the lower bound we gave in [Koo04] (as in [Koo04],

they assume the adversary cannot cause collisions nor send out spoofed address).

In [KBKV06], we show how to achieve the same upper bound as in [BV05a] even if

the adversary is allowed to cause a bounded number of collisions or sending out a

bounded number of spoofed address.
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Related and Subsequent Work. Prior work on broadcast in radio networks

mostly focus on minimizing the broadcast latency assuming the radio networks is

fault-free. As noted in [KKP01], not many results are known about broadcast in

radio networks in the presence of faults. Kranakis, Krizanc and Pelc [KKP01] con-

sider the effect of a passive adversary (a corrupted party will not send any message)

on the broadcast latency.

The initial results in [Koo04] are subsequently improved in [BV05a, Vai05]. In

the above mentioned work, it was assumed that the adversary cannot cause collisions

nor carry out address spoofing. Under this assumption, [BV05a] gave a protocol

that achieves broadcast when t < 1
2
r(2r + 1) for the L∞ metric. An approximate

threshold was also established for the L2 metric (the threshold is shown to be tight

asymptotically). In [BV05b], a sufficient condition for broadcast in general graphs

under the locally bounded adversarial model was described and simpler broadcast

protocols for a grid network (compared to [BV05a]) was presented.

Broadcast in an arbitrary graph was considered in [PP05a]. Upper and lower

bounds for achievability of broadcast were presented based on graph-theoretic pa-

rameters. However, no exact thresholds were established. It was also shown that

there exist certain graphs in which algorithms that work with knowledge of topology

succeed in achieving broadcast, while those lacking this knowledge fail.

Random transient failures were considered in [PP05b]. At each step, each

party may fail with some constant probability p. Tight bounds on p were obtained

concerning the feasibility of broadcast. Random permanent failures in a grid network

have been considered in [BV07], and necessary and sufficient conditions on the
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required transmission range r have been derived.

Achieving consensus in wireless network was studied in [CDG+05], but in a

slightly different model. A single-hop wireless broadcast network consisting of fixed

but a priori unknown collection of parties was considered. Parties can suffer from

crash-stop failures and messages can be lost. Necessary and sufficient conditions

were derived. Recently, Gilbert, et al.[GGN06] extend the result of [CDG+05] to

the case where a party can suffer from Byzantine failure and cause message collisions.
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Part I

Round-Efficient Protocols in Point-to-Point Networks
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Chapter 2

Model, Technical Preliminaries, and Basic Primitives

2.1 Model and Technical Preliminaries

Here, we describe the model that we consider in Part I and state the technical

preliminaries.

We consider the standard synchronous communication model where parties

communicate in synchronous rounds using pairwise private and authenticated chan-

nels. Authenticated channels can be realized using signature schemes if one is will-

ing to assume a public-key infrastructure (PKI). By a PKI in a network of n par-

ties, we mean that prior to any protocol execution all parties hold the same vector

(pk1, . . . , pkn) of public keys for a digital signature scheme, and each honest party

Pi holds the honestly-generated secret key ski associated with pki. Malicious parties

may generate their keys arbitrarily, even dependent on keys of honest parties. For

static adversaries, private channels can be realized using one additional round by

having each party Pi send to each party Pj a public key PKi,j for a semantically-

secure public-key encryption scheme (using a different key for each sender avoids

issues of malleability). For adaptive adversaries, more complicated solutions are

available [BH92, CFGN96] but we do not discuss these further. For simplicity, we

assume unconditional private/authenticated channels with the understanding that

these guarantees hold only computationally if the above techniques are used.
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When we say a protocol tolerates t malicious parties, we always mean that it

is secure against a rushing adversary who may adaptively corrupt up to t parties

during execution of the protocol and coordinate the actions of these parties as they

deviate from the protocol in an arbitrary manner. Parties not corrupted by the

adversary are called honest. For t < n/3 we do not assume any setup, but for

t < n/2 we assume a PKI and secure signature schemes (this is the authenticated

case). Protocols designed under this assumption are termed authenticated protocols.

In the protocol descriptions, we implicitly assume that all parties send a

properly-formatted message at all times (this is without loss of generality, as we

may interpret an improper or missing message as some default message).

When we describe signature computation in authenticated protocols we often

omit for simplicity additional information that should be signed along with the

message. That is, when we say that party Pi signs message m and sends it to Pj, we

implicitly mean that Pi signs the concatenation of m with additional information

including: (1) the identity of the recipient Pj , (2) the current round number, (3) an

identifier for the message (in case multiple messages are sent to Pj in the same

round); and (4) an identifier for the (sub-)protocol (in case multiple sub-protocols

are being run; cf. [LLR06]). This information is also verified, as appropriate, when

the signature is verified.

In some of our protocol constructions we assume a broadcast channel. A

broadcast channel allows any party to send the same message to all other parties

(and all parties to be assured they have received identical messages) in a single round.

As a convenient shorthand, we say that a protocol has round complexity (r, r′) if it
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uses r rounds in total and r′ ≤ r of these rounds invoke broadcast (possibly by all

parties). Notice that if a protocol has round complexity (x, 0), then the protocol

does not require a broadcast channel. When no broadcast is used sometimes we will

just say the protocol uses x rounds.

We use “=” to denote a test for equality, and “:=” to denote variable assign-

ment. We use [n] to denote the set {1, . . . , n}.

The standard definition of broadcast follows.

Definition 1 (Broadcast): A protocol for parties P = {P1, . . . , Pn}, where a dis-

tinguished dealer P ∗ ∈ P holds an initial input M , is a broadcast protocol tolerating

t malicious parties if the following conditions hold for any adversary controlling at

most t parties:

Agreement All honest parties output the same value.

Validity If the dealer is honest, then all honest parties output M . ♦

2.2 Basic Primitives

We now define and construct some basic primitives for constructing the pro-

tocols in Chapter 3 and Chapter 4.

2.2.1 Gradecast

Gradecast, a relaxed version of broadcast, was introduced by Feldman and

Micali [FM97, Def. 11]; we provide a definition which is slightly weaker than theirs
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but suffices for our purposes.

Definition 2 (Gradecast):

A protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer P ∗ ∈ P

holds an initial input M , is a gradecast protocol tolerating t malicious parties if the

following conditions hold for any adversary controlling at most t parties:

• Each honest party Pi outputs a message mi and a grade gi ∈ {0, 1, 2}.

• If the dealer is honest, then the output of every honest party Pi satisfies

mi = M and gi = 2.

• If there exists an honest party Pi who outputs a message mi and the grade

gi = 2, then the output of every honest party Pj satisfies mj = mi and gj ≥ 1.

♦

The following result is due to [FM97] and proved for completeness below:

Lemma 2.2.1 There exists a (3, 0)-round gradecast protocol tolerating t < n/3 ma-

licious parties.

Proof The protocol proceeds as follows:

Round 1 The dealer sends M to all other parties.

Round 2 Let Mi denote the message received by Pi (from the dealer) in the pre-

vious round. Pi sends Mi to all the parties.

Round 3 Let Mj,i denote the message received by Pi from Pj in the previous round.

Each party Pi does the following: if there exists an M∗
i such that |{j : Mj,i =
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M∗
i }| ≥ 2n/3 then Pi sends this M∗

i to all the parties. Otherwise, Pi sends

nothing.

Output determination Let M∗
j,i denote the message (if any) received by Pi from

Pj in the previous round. Each party Pi determines its output as follows: if

there exists an M∗∗
i such that |{j : M∗

j,i = M∗∗
i }| ≥ 2n/3, then Pi outputs

mi := M∗∗
i and gi := 2. Otherwise, if there exists1 an M∗∗

i such that |{j :

M∗
j,i = M∗∗

i }| ≥ n/3, then Pi outputs mi := M∗∗
i and gi := 1. Otherwise, Pi

outputs mi :=⊥ and gi := 0.

Let us now prove that the above protocol satisfies Definition 2. Assume first

that the dealer is honest. Then each honest party Pi receives Mi = M in round 1

and sends this to all parties in round 2. So in round 3, for each honest Pi it holds

that M∗
i = M and so Pi sends this value to all the parties. It follows that any honest

party Pi outputs mi = M and gi = 2.

Before proving the second required property, we show that if any two honest

parties Pi, Pj send a message in round 3 then they in fact send the same message.

To see this, say Pi sends M∗
i in round 3. Then Pi must have received M∗

i from at

least 2n/3 parties in round 2, and so strictly more than n/3 honest parties must

have sent M∗
i in round 2. But this means that Pj receives any value M∗

j 6= M∗
i from

strictly fewer than n− n/3 = 2n/3 parties in round 2, and so Pj either sends M∗
i or

nothing in round 3.

1It will follow from the proof below that at most one such M∗∗

i exists in this case.
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Now assume there is an honest party Pi who outputs a message mi and grade

gi = 2, and let Pj be any other honest party. Pi must have received mi from at

least 2n/3 parties in round 3, and so more than n/3 honest parties sent mi as their

round-3 message. It follows that |{k : M∗
k,j = mi}| ≥ n/3 and so Pj outputs grade

gj ≥ 1. Say there was an mj 6= mi for which |{k : M∗
k,j = mj}| ≥ n/3. Then at

least one honest party sent mj 6= mi as its round-3 message, contradicting what we

have shown in the previous paragraph. So, Pj outputs message mi as required.

Next, we prove an analogue of the above for the case of authenticated gradecast.

Lemma 2.2.2 There exists a (4, 0)-round authenticated gradecast protocol tolerating

t < n/2 malicious parties.

Proof The protocol proceeds as follows:

Round 1 The dealer computes a signature σ of M and sends (M, σ) to all parties.

Round 2 Let (Mi, σi) be the message received by party Pi (from the dealer) in

the previous round. If σi is a valid signature of Mi (with respect to the

dealer’s public key), then Pi sends (Mi, σi) to all other parties; otherwise Pi

sets Mi :=⊥ and sends nothing.

Round 3 Let (Mj,i, σj,i) be the message received by Pi from Pj in the previous

round. If there exists a j such that Mj,i 6= Mi but σj,i is a valid signature of

Mj,i (with respect to the dealer’s public key), then Pi sets Mi :=⊥.
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If Mi 6=⊥, then Pi computes a signature σ′
i of Mi and sends (Mi, σ

′
i) to all

parties. (If Mi =⊥, then Pi sends nothing.)

Round 4 Let (M ′
j,i, σ

′
j,i) be the message received by Pi from Pj in the previous

round. If there exist ℓ ≥ n/2 distinct indices j1, . . . , jℓ and a message M∗ such

that M ′
j1,i = · · · = M ′

jℓ,i
= M∗ and σ′

jk,i is a valid signature of M∗ (with respect

to the public key of Pjk
) for 1 ≤ k ≤ ℓ, then Pi sends (M∗, j1, σ

′
j1,i, . . . , jℓ, σ

′
jℓ,i

)

to all other parties and outputs mi := M∗, gi := 2.

Output determination Assuming Pi has not decided on its output, it proceeds as

follows: If in the previous round Pi received any message (M∗, j1, σ
′
1, . . . , jℓ, σ

′
ℓ)

for which ℓ ≥ n/2, the {jk}
ℓ
k=1 are distinct, and σ′

k is a valid signature of M∗

with respect to the public key of party Pjk
for 1 ≤ k ≤ ℓ, then Pi outputs

mi := M∗, gi := 1. Otherwise, Pi outputs mi :=⊥, gi := 0.

We show the above protocol satisfies Definition 2. If the dealer is honest, then

in round 3 every honest party Pi computes a signature σ′
i of the dealer’s message

M and sends (M, σ′
i) to all other parties. Thus, all honest parties will receive at

least n/2 correct signatures on M in round 4, and every honest party Pi will output

mi = M, gi = 2 in round 4.

Before proving the second required property, we first show that no two honest

parties Pi, Pj send messages (Mi, σ
′
i) and (Mj , σ

′
j) in round 3 with Mi 6= Mj . To see

this, note that in round 3, the message Mi (resp., Mj) is either equal to ⊥ or to the

message sent by the dealer to Pi (resp., Pj) in the first round. So if the dealer sent

a valid signature on the same message to parties Pi, Pj in the first round, the claim
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is obviously true. On the other hand, in any other case at least one of Pi, Pj will

not send any message at all in round 3 (as at least one of mi =⊥ or mj =⊥ will

then hold).

Say a value M∗ is certified if, in round 4, an honest player holds (M∗, j1, σ′
1,

. . . , jℓ, σ′
ℓ) with ℓ ≥ n/2, distinct {jk}

ℓ
k=1, and σ′

k a valid signature of M∗ with

respect to the public key of party Pjk
for 1 ≤ k ≤ ℓ; in this case, we say the

parties {Pjk
}ℓ

k=1 certify M∗. Note that any certified value is certified by at least one

honest party. Since any honest parties who sign a message in round 3 sign the same

message, as argued in the previous paragraph, it follows that at most one value is

certified.

Now, say there is an honest party Pi who outputs some message mi and gi = 2.

It follows easily that any honest party Pj who did not output gj = 2 immediately

in round 4 will output gj = 1 (and hence we have gj ≥ 1). Since, as we have

just argued, at most one value can be certified, it follows that all honest parties

output mi.

We remark that it is possible to construct authenticated gradecast protocol for

t ≥ n/2 [GKKO]. However, we do not need this result here. On the other hand, it

is impossible to achieve gradecast for t ≥ n/3 without any setup assumption. This

follows directly from the impossibility proof for broadcast when t ≥ n/3 as given

in [PSL80, LSP82].
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2.2.2 Verifiable Secret Sharing (VSS)

Verifiable Secret Sharing (VSS)[CGMA85] extends the concept of secret shar-

ing [Bla79, Sha79] in the sense that it considers the presence of malicious parties,

rather than just honest-but-curious parties.

Definition 3 (Verifiable secret sharing): A two-phase protocol for parties P =

{P1, . . . , Pn}, where a distinguished dealer P ∗ ∈ P holds initial input s, is a VSS

protocol tolerating t malicious parties if the following conditions hold for any adver-

sary controlling at most t parties:

Validity Each honest party Pi outputs a value si at the end of the second phase

(the reconstruction phase). Furthermore, if the dealer is honest then si = s.

Secrecy If the dealer is honest at the end of the first phase (the sharing phase), then

at the end of this phase the joint view of the malicious parties is independent

of the dealer’s input s.

Reconstruction At the end of the sharing phase the joint view of the honest parties

defines a value s′ (which can be computed in polynomial time from this view)

such that all honest parties will output s′ at the end of the reconstruction

phase. ♦

2.2.2.1 The Case of t < n/3

While VSS protocols tolerating t < n/3 malicious parties are known in the

literature (cf. [GIKR01, FGG+06]), we present a new VSS protocol below that can
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be used to optimize the round complexity of protocols constructed in Chapter 3 and

Chapter 4.

Lemma 2.2.3 There exists a VSS protocol tolerating t < n/3 malicious parties such

that the round complexity of its sharing phase is (7, 1) and the round complexity of

its reconstruction phase is (1, 0).

Proof The VSS protocol due to Gennaro, et al. [GIKR01] uses 3 rounds of broad-

cast in the sharing phase. Below, we give a VSS protocol that uses only 1 round

of broadcast in the sharing phase. On a high level, our protocol is obtained by

applying two modifications to the protocol in [GIKR01]:

• Instead of using a ‘random pad’ technique to detect inconsistent shares —

which invokes one round of broadcast — we use a different method that does

not require broadcast at all.

• After the above step, two rounds of broadcast still remain. We devise a way for

parties to postpone the first broadcast (and then combine it with the second)

without affecting the progress of the protocol.

Let F be a finite field with s ∈ F, |F| > n, and [n] can be mapped injectively

to F. When the we say the dealer is disqualified this means that execution of the

protocol halts, and all honest parties output some default value (0, say) in the

reconstruction phase.

Sharing Phase
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Round 1 The dealer P ∗ chooses a random bivariate polynomial F ∈ F[x, y] of

degree at most t in each variable with F (0, 0) = s. The dealer sends to Pi the

polynomials gi(x)
def
= F (x, i) and hi(y)

def
= F (i, y).

Round 2 Pi sends hi(j) to Pj .

Round 3 Let h′
j,i be the value Pi received from Pj . If h′

j,i 6= gi(j), then Pi sends

“complain(i, j)” to the dealer.

Round 4 If the dealer receives “complain(i, j)” from Pi in the last round, then the

dealer sends “complain(i, j)” to Pj .

Round 5 For every ordered pair (i, j), parties Pi, Pj, and the dealer P ∗ do the

following:

• If Pi sent “complain(i, j)” to the dealer in round 3, then Pi sends “(Pi,

i,j) : gi(j)” to all parties; else Pi sends “(Pi, i, j): no complaint” to all

parties.

• If Pj received “complain(i, j)” from the dealer in round 4, then Pj sends

“(Pj , i, j) : hj(i)” to all parties; else Pj sends “(Pj, i, j): no complaint”

to all parties.

• If the dealer received “complain(i, j)” from Pi in round 3, then the dealer

sends “(P ∗, i, j) : F (j, i)” to all parties; else, the dealer sends “(P ∗, i, j):

no complaint” to all parties.

Round 6 A party forwards all the messages it received in last round to all parties.
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Round 7 The dealer does the following:

• For every ordered pair (i, j), if in round 6 the dealer received messages

of the form “(Pi, i, j) : X” and “(P ∗, i, j) : Y ,” with2 X 6= Y , each from

t + 1 different parties, then the dealer broadcasts the polynomials gi(x)

and hi(y).

• Similarly, for every ordered pair (i, j), if in round 6 the dealer received

messages of the form “(Pj , i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y ,

each from t + 1 different parties, then the dealer broadcasts the polyno-

mials gj(x) and hj(y).

In parallel with the above, all parties Pk do the following (in round 7):

• For every message m Pk received in round 5, Pk broadcasts m.

• For every ordered pair (i, j), if in round 6 Pk received messages of the

form “(Pi, i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y , from t+1 different

parties, then Pk broadcasts b′k,i

def
= hk(i) and c′k,i

def
= gk(i).

• Similarly, for every ordered pair (i, j), if in round 6 Pk received messages

of the form “(Pj, i, j) : X” and “(P ∗, i, j) : Y ,” with X 6= Y , from t + 1

different parties, then Pk broadcasts b′k,j

def
= hk(j) and c′k,j

def
= gk(j).

Output determination Parties decide on their output as follows:

1. A party Pi is said to announce a message m if, in round 7, at least n− t

parties broadcast that they received m from Pi in round 5.

2Note that X or Y can be field elements or the string “no complaint.”
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2. A party Pi is unhappy if Pi announced a message of the form “(Pi, i, j) :

Y ,” the dealer announced a message of the form “(P ∗, i, j) : X,” and

X 6= Y .

Similarly, Pi is unhappy if Pi announced a message of the form “(Pi, j, i) :

Y ,” the dealer announced a message of the form “(P ∗, j, i) : X,” and

X 6= Y .

3. A party Pi that is not unhappy becomes sad if, in round 7, for some

unhappy party Pj, the dealer broadcasts polynomials gj(x) and hj(y),

and Pi broadcasts b′i,j and c′i,j with gj(i) 6= b′i,j or hj(i) 6= c′i,j.

We remark that since broadcast is invoked in round 7, all parties agree

on whether a party is unhappy or sad.

4. The dealer is disqualified if any of the following conditions hold:

(DQ.1) There exists an ordered pair (i, j) such that the dealer does not

announce a message of the form “(P ∗, i, j) : X.”

(DQ.2) There exists an unhappy party Pi such that the dealer does not

broadcast gi(x) or hi(y) in round 7.

(DQ.3) The number of unhappy and sad parties exceeds t.

Note that all parties agree whether a dealer is disqualified.

5. A party that is neither unhappy nor sad is said to be happy. If the dealer

has not been disqualified, then a happy party Pi keeps the polynomials

gi(x) and hi(y) that it received from the dealer in the first round. An

unhappy party Pi takes the polynomials broadcasted by the dealer in
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round 7 as gi(x) and hi(y). (We do not define what sad parties do, since

it is not hard to see that if the dealer is not disqualified then all sad

parties are malicious.)

Reconstruction Phase

Round 1 If Pi was happy by the end of the sharing phase, then Pi sends si := gi(0)

to all parties; otherwise, Pi sends nothing.

Output determination Party Pi proceeds as follows: if Pj was happy by the

end of the sharing phase, let sj be the value Pj sent to Pi in the previous

round; otherwise, set sj := gj(0) (where gj(x) is the polynomial broadcast

by the dealer in round 7 of the sharing phase). Let g(y) be the degree-t

polynomial resulting from applying Reed-Solomon error-correction [RS60] to

(s1, s2, . . . , sn). Output g(0).

We begin our analysis of the protocol with two observations:

(Ob. 1) If an honest party Pi sends a message m to all parties in round 5, then Pi

will be considered as announcing m by the end of round 7.

(Ob. 2) If a (possibly malicious) party Pi announces a message m, then every honest

party received m from at least t + 1 different parties in round 6.

If an honest party Pi sends a message m to all parties in round 5, then all honest

parties receive it. Since all honest parties broadcast this information in round 7 and

there are at least n − t of them, (Ob. 1) holds. If a party Pi announces a message

m, then, by definition, in round 7 at least n− t parties broadcast that they received
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m from Pi in round 5. At least n − t− t ≥ t + 1 of them are honest. These ≥ t + 1

parties forward m to all parties in round 6. Hence (Ob. 2) holds.

We now prove secrecy. For the rest of this paragraph, assume the dealer is

honest. We claim that the information the malicious parties have about the dealer’s

secret s by the end of the sharing phase consists entirely of the polynomials sent

to the malicious parties by the dealer in round 1; secrecy then follows since F is a

degree-t bivariate polynomial and there are at most t malicious parties. To prove the

claim, we first show that no additional information is leaked in rounds 2 through 6.

Let Pi and Pj be two honest parties. Pi will not send “complain(i, j)” to the dealer

in round 3. Hence, regarding the pair (i, j), parties Pi, Pj and the dealer send “no

complaint” to other parties in round 5. Therefore no information about F (j, i) is

revealed in rounds 2 through 6. Next, we show that round 7 does not leak any

additional information. Suppose Pi is honest, and consider an arbitrary Pk. If Pi

sends “(Pi, i, k) : X” (resp., “(Pi, k, i) : X”) to all parties in round 5 for some string

X, then the dealer sends “(P ∗, i, k) : X” (resp., “(P ∗, k, i) : X”) to all parties in

round 5 (for the same X). In round 6, for any Y 6= X, an honest party receives

at most t copies of “(Pi, i, k) : Y ” or “(P ∗, i, k) : Y ” (resp., “(Pi, k, i) : Y ” or

“(P ∗, k, i) : Y ”) from the malicious parties. Hence no honest Pj broadcasts hj(i) or

gj(i) in round 7. Similarly, the dealer does not broadcast gi(x) or hi(y) in round 7.

Next we prove the validity and reconstruction properties. In fact, we will prove

something stronger: we show that by the end of the sharing phase, if the dealer

has not been disqualified (notice that an honest dealer will never be disqualified),

then there exists a degree-t bivariate polynomial F ′(x, y) such that Pi holds the
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polynomials gi(x)
def
= F ′(x, i) and hi(y)

def
= F ′(i, y), and, if the dealer is honest, then

F ′(0, 0) = s. Note that if the above holds, every honest party sends si = gi(0) =

F ′(0, i) to all other parties in the reconstruction phase. Since n > 3t and there are

at most t “bad” shares in {s1, s2, . . . , sn}, Reed-Solomon error-correction recovers

the polynomial g(y) = F ′(0, y) and hence all honest parties output g(0) = F ′(0, 0).

Recall that if the dealer is disqualified, then a default value is shared.

In the case of an honest dealer, the dealer will never be disqualified and an

honest party will never be unhappy or sad. It follows readily that each Pi holds the

polynomials gi(x)
def
= F (x, i) and hi(y)

def
= F (i, y). Hence the validity property holds

for the case of an honest dealer.

Next we consider the case of a malicious dealer who is not disqualified.

We first show that for any honest Pi, Pj that are not unhappy, hj(i) = gi(j).

Assume the contrary. Then Pi sends “complain(i, j)” to the dealer in round 3 and

announces “(Pi, i, j) : gi(j)” in round 5 (following (Ob. 1)). Depending on the

actions of the dealer, Pj announces “(Pj, i, j) : hj(i)” or “(Pj, i, j) : no complaint”.

No matter what the dealer announces regarding the pair (i, j), at least one of Pi, Pj

becomes unhappy. (Note that a non-disqualified dealer has to announce something

regarding (i, j) due to (DQ. 1).) This contradicts the assumption that both Pi and

Pj are not unhappy.

We now use the following claim [FM97, Lemma 2]:

Claim 2.2.4 Let x1, x2, . . . , xt+1 be distinct elements in F, and Q1(y), . . . , Qt+1(y)

be polynomials of degree at most t. Then there exists an unique bivariate polynomial
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F (x, y) of degree at most t in both variables such that F (xi, y) = Qi(y) for i =

1, . . . , t + 1.

Let H be the set of honest players that are happy. If the dealer is not disqual-

ified, there are at least 2t + 1 happy parties at the end of the sharing phase (due to

(DQ. 3)) and at least t + 1 of them are honest. Hence |H| ≥ t + 1.

Without loss of generality, assume P1, . . . , Pt+1 ∈ H. By Claim 2.2.4, there

exists a unique bivariate polynomial F ′(x, y) of degree at most t in both variables

such that F ′(i, y) = hi(y) for i ∈ [t + 1]. Before continuing, note that (using

Claim 2.2.4 again) there exists an F ′′(x, y) such that F ′′(x, i) = gi(x) for i ∈ [t + 1].

But then for any i, j ∈ [t + 1], we have F ′(i, j) = hi(j) = gj(i) = F ′′(i, j) and so in

fact F ′ = F ′′. Now consider a happy honest party Pi such that i /∈ [t + 1]. Since

hi(j) = gj(i) and gi(j) = hj(i) for any j ∈ [t + 1], it follows that F ′(x, i) = gi(x)

and F ′(i, y) = hi(y) .

Let us now prove that F ′(x, i) = gi(x) and F ′(i, y) = hi(y) for all honest

parties Pi. There are three cases to consider:

1. If Pi ∈ H then it is shown as above.

2. If Pi is unhappy, then due to (DQ. 2) the dealer must have broadcasted gi(x)

and hi(y). For any Pj ∈ H, following (Ob. 2) and the definition of unhappy, Pj

broadcasts b′j,i = hj(i) = F ′(j, i) and c′j,i = gj(i) = F ′(i, j). Since Pj does not

become sad, gi(j) = b′j,i = F ′(j, i) and hi(j) = c′j,i = F ′(i, j). Since |H| ≥ t+1

and gi(x), hi(y) are polynomials of degree t, it follows that gi(x) = F ′(x, i)

and hi(y) = F ′(i, y).
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3. The final case is that Pi is sad. We show that no such (honest) party exists.

To see this, consider a party Pj ∈ H. Because Pi and Pj are both not unhappy,

we have hi(j) = gj(i) = F ′(i, j). Since |H| ≥ t+1 and hi(y) is a polynomial of

degree at most t, we conclude that hi(y) = F ′(i, y). Similarly, gi(x) = F ′(x, i).

We have already shown (in the second case, above) that for all polynomials

gk(x) and hk(y) broadcast by the dealer in round 7 where Pk is unhappy, we

have gk(x) = F ′(x, k) and hk(y) = F ′(k, y). Thus, for all such polynomials gk

and hk we have hi(k) = F ′(i, k) = gk(i), gi(k) = F ′(k, i) = hk(i) and so Pi

should not be sad.

The reconstruction property follows.

2.2.2.2 The Authenticated Case (t < n/2)

We prove an analogue of the previous section for the case of authenticated

VSS. We remark that VSS protocols tolerating t < n/2 malicious parties without

assuming a PKI are known in the literature (cf. [Rab94, CDD+99]). However the

protocol we give below can be used to optimize the round complexity of protocols

constructed in Chapter 3 and Chapter 4. We also remark that it follows from the

definition VSS is impossible for t ≥ n/2 (even for the authenticated case).

Lemma 2.2.5 There exists an authenticated VSS protocol tolerating t < n/2 mali-

cious parties such that the round complexity of its sharing phase is (5, 1) (i.e., the

sharing phase requires five rounds of interaction and one of the five rounds uses
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broadcast) and the round complexity of its reconstruction phase is (1, 0).

Proof We assume a finite field F with s ∈ F, |F| > n, and [n] can be mapped

injectively to F. If the dealer is disqualified then execution of the protocol halts,

and all parties output some default value in the reconstruction phase. Finally, we

say an ordered sequence of values (v1, . . . , vn) ∈ F
n is t-consistent if there exists a

polynomial f of degree at most t such that f(i) = vi for 1 ≤ i ≤ n.

The following protocol is adapted from [CDD+99]. The round complexity of

the sharing phase is (4, 2) and the round complexity of the reconstruction phase is

(1, 0). Later, we will show how to modify the protocol so that the round complexity

of the sharing phase becomes (5, 1).

Sharing Phase

Round 1 The dealer chooses a random bivariate polynomial F ∈ F[x, y] of degree

at most t in each variable with F (0, 0) = s. Let ai,j = bi,j
def
= F (i, j). The

dealer sends to party Pi the values a1,i, . . . , an,i and bi,1, . . . , bi,n, along with a

digital signature on each such value.

Round 2 If Pi receives all values (with valid signatures) from the dealer as specified

in round 1, and (a1,i, a2,i, . . . , an,i) and (bi,1, bi,2, . . . , bi,n) are both t-consistent,

then Pi computes signature σj,i on (j, i, aj,i), and sends (aj,i, σj,i) to party Pj

for all 1 ≤ j ≤ n, else Pi sends “Complaint: dealer” to all other parties.

Round 3 If Pi sent “Complaint: dealer” to all other parties in round 2, then Pi

broadcasts “Complaint: dealer”; else if Pi received “Complaint: dealer” from
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Pj, or Pi did not receive a valid signature σi,j (with respect to the public key

of Pj) on (i, j, ai,j) from Pj, then Pi broadcasts bi,j, as well as the signature of

the dealer on bi,j (in this case, we say the value bi,j has been made public).

Round 4 If a party Pj broadcast a complaint in round 3, then the dealer broadcasts

~aj = (a1,j, . . . , an,j), ~bj = (bj,1, . . . , bj,n).

For any party Pi that did not broadcast a complaint in round 3,

1. If a party Pj broadcast a complaint in round 3, then then Pi broadcasts

aj,i and bi,j with the dealer’s signature on these two values.

2. If a party Pj broadcasts a value bj,i (with a valid signature from the dealer

on bj,i) in round 3, then Pi broadcasts aj,i and the signature of the dealer

on aj,i.

The dealer is disqualified if any one of the following conditions hold:

1. If there exists a party Pj that broadcast a complaint in round 3, but the

dealer did not respond to it in round 4; or the dealer did respond but

either ~aj or ~bj broadcasted by the dealer is not t-consistent, or aj,j 6= bj,j.

2. There exists a pair (i, j) such that each of ai,j and bi,j has been broad-

casted by the dealer in round 4 or has been broadcasted by a party along

with the dealer’s signature on the value, and ai,j 6= bi,j.

Note that all parties agree on whether a dealer is disqualified.

Reconstruction Phase
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Round 1 For every j such that Pi has a valid signature σi,j (with respect to the

public key of Pj) on (i, j, bi,j), party Pi sends (bi,j , σi,j) to all other parties.

Note that for all other j, party Pi has already broadcast bi,j (with the dealer’s

signature) in round 3 of the sharing phase.

Output determination For each 1 ≤ j ≤ n, party Pi verifies the signatures on

the values received from Pj in the previous round, and disqualifies Pj if any

of the signatures are invalid.

Now, for each Pj which is not yet disqualified, party Pi has values ~bj
i

def
=

(bj,1, . . . , bj,n) (each of these values was either received from Pj in the previous

round or was broadcast by Pj in round 3 of the sharing phase). If ~bj
i is not

t-consistent, Pi disqualifies Pj.

Let Hi be the set of non-disqualified parties, from the perspective of Pi. For

each j ∈ Hi, party Pi interpolates ~bj
i to obtain a polynomial f ′

j(y) of degree at

most t (recall that ~bj
i is t-consistent). Next, Pi interpolates the {f ′

j(y)}j∈Hi
to

obtain bivariate polynomial F ′(x, y) of degree at most t in both variables (the

proof below will show that this is possible). Output F ′(0, 0).

We first prove secrecy of the above protocol. If the dealer is honest, no honest

party will send “Complaint: dealer” in step 2. Furthermore, if both Pi, Pj are honest,

then Pj will receive a valid signature σj,i (with respect to the public key of Pi) on

(j, i, aj,i) from Pi. Hence the value of aj,i will not be broadcast in step 3 nor step 4.

It follows that the information the adversary has about s by the end of the sharing

phase consists entirely of the values sent to the corrupted parties by the dealer in
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round 1. Secrecy follows since F is a bivariate polynomial of degree at most t in

both variables.

We next prove validity. It is easy to see that an honest dealer is never disqual-

ified. Let Pi, Pj be two parties that remain honest throughout the entire execution.

The vector ~bj
i (in the reconstruction phase) matches the values sent by the dealer in

round 1 and furthermore Pj ∈ Hi; thus, Pi recovers f ′
j(y) = F (j, y) for every honest

Pj. For any malicious Pk ∈ Hi, the value bk,j that Pi holds was either signed by

Pj (in round 2), or broadcast by Pj (in round 4), and so bk,j = F (k, j). Since this

holds for at least t + 1 honest parties Pj and ~bk
i is t-consistent (else k 6∈ Hi), we

conclude that Pi recovers f ′
k(y) = F (k, y) in this case as well. So interpolating the

{f ′
j(y)}j∈Hi

yields F (x, y) (interpolation can be done since |Hi| ≥ t + 1), and the

output of Pi is the dealer’s secret F (0, 0).

Finally, we prove reconstruction. The case of an honest dealer has been proven

above. The case when the dealer is disqualified is obvious, so consider a (corrupted)

dealer who is not disqualified.

Let U be the indices of a set of t + 1 parties who are honest at the end of

the sharing phase. For an honest party Pi, let ~bi = (bi,1, . . . , bi,n) denote the values

that Pi will “effectively” send to other parties in the reconstruction phase (note

that some of these values may, in fact, already have been broadcast). Let f ′
i(y) be

the result of interpolating ~bi (this is well-defined since ~bi is t-consistent for honest

Pi), and let F ′(x, y) be the result of interpolating {f ′
i(y)}i∈U . We will show that

regardless of the actions of the adversary in the reconstruction phase, each honest

party outputs F ′(0, 0).
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By construction of F ′, we have bi,k = F ′(i, k) for i ∈ U . We claim that

ak,i = F ′(k, i) for i ∈ U . Let g′
i(x) be the result of interpolating ~ai = (a1,i, . . . , an,i)

(again, this is well-defined since ~ai is t-consistent for Pi honest). Note that for j ∈ U

we have g′
i(j)

def
= aj,i = bj,i or else the dealer would have been disqualified. So g′

i(x)

agrees with F ′(x, i) on t + 1 points and hence these polynomials must be identical,

proving the claim.

Applying a similar argument (using the fact that, for Pi honest and j ∈ U ,

we have bi,j = ai,j = F ′(i, j) or else the dealer is disqualified), we see that for any

honest Pi the vector ~bi interpolates to f ′
i(y) = F ′(i, y). Furthermore, it is easy to see

that if Pi, Pj remain honest then Pi ∈ Hj. For any corrupted Pk ∈ Hj and honest

Pi, the value bk,i that Pk sends to Pj in the reconstruction phase was either signed

by Pi (in round 2) or broadcast by Pi (in round 4), and so bk,i = F ′(k, i). Since this

holds for at least t + 1 honest parties Pi and ~bk
j is t-consistent (else k 6∈ Hj), we

conclude that Pj recovers f ′
k(y) = F ′(k, y) in this case as well. So interpolating the

{f ′
i(y)}i∈Hj

yields F ′(x, y) (interpolation can be done since |Hj| ≥ t + 1), and the

output of Pj is F ′(0, 0).

Reducing the number of broadcasts: The sharing phase of the above protocol

uses two rounds of broadcast. Basically, they are used in the following manner:

1. In round 3, if certain conditions hold, then Pi broadcasts some message x.

2. In round 4, if Pi broadcasts some particular message y in round 3, then Pj

broadcasts some message z.
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Call the above protocol Π. We construct an authenticated VSS protocol Π′

such that the round complexity of its sharing phase is (5, 1). The first two rounds

(of the sharing phase) of Π′ are the same as that of Π. The third round of the

sharing phase of Π is replaced by two rounds in Π′:

Round 3 If Pi is supposed to broadcast x in round 3 of the sharing phase of Π,

then Pi sends x to all parties, along with a signature on x.

Round 4 If Pk receives x with a valid signature from Pi, then Pk forwards x (with

the signature of Pi on x) to all parties.

The fifth (last) round of Π′ proceeds as follow:

Round 5 If Pj receives at least one copy of y (with a valid signature of Pi on y)

in round 4 (of Π′), then Pj broadcasts (Pi, y, z). If Pk receives x from Pi in

round 3 (with a valid signature of Pi on x), then Pk broadcasts (Pi, x).

To determine if the dealer is disqualified by the end of the sharing phase of Π′,

we use the same conditions as that of Π but we consider the set of broadcast values

as follows:

• If at least t+1 parties broadcast (Pi, x) in round 5 of Π′, then Pi is considered

to have broadcast x in round 3 of Π.

• If, in round 5 of Π′, at least t + 1 parties broadcast (Pi, x) and Pj broadcasts

(Pi, x, z), then Pj is considered to broadcast z in round 4 of Π.

• If, in round 5 of Π′, at least t + 1 parties broadcast (Pi, y) but party Pj does

not broadcast (Pi, y, z) (even if it is supposed to), then Pj is considered to
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broadcast a default value z in round 4 of Π. (It follows from our discussion

below that Pj must be corrupted.)

The reconstruction phase of Π′ is the same as that of Π. To claim that Π′ is

a VSS protocol, we first note that

• In Π, if an honest party Pi is supposed to broadcast x in round 3, then in Π′,

Pi sends x to all parties (with a signature on x) in round 3, and in round 5 at

least t + 1 honest parties broadcast (Pi, x).

• In Π, if an honest party Pj is supposed to broadcast z in round 4 after Pi

broadcast y in round 3, then in Π′, if t+1 parties broadcast (Pi, y) in round 5,

since at least one of these t+1 parties is honest, Pj will receive at least 1 copy

of y (with a valid signature of Pi on y) in round 4 and thus it will broadcast

(Pi, y, z) in round 5.

Also, note that in round 5 of the sharing phase of Π′, some party Pj may

broadcast (Pi, y, z) but less than t+1 parties broadcast (Pi, y). However, the message

(Pi, y, z) does not have any effect on the output determination as the honest parties

ignore it. Notice that this can happen only when Pi is corrupted (Pj may or may

not be honest). Validity and reconstruction then follow from the proof of Π. To

claim secrecy, we simply observe that if the dealer is honest, then no honest party

is going to send “Complaint: dealer” in round 2. Thus, no additional information

is revealed to the adversary during round 3 to round 5 of the sharing phase of Π′.

We now get an authenticated VSS protocol such that the round complexity of

its sharing phase is (5, 1).
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Chapter 3

Expected Constant-Round Broadcast Protocols

In this chapter, we construct expected constant-round broadcast protocols for

both the case t < n/3 (where we do not make any setup assumption) and the

case t < n/2 (the authenticated setting, where a PKI is available). We develop

both protocols in parallel so as to highlight the high-level similarities in each. In

Section 3.1, we introduce a variant of VSS (see Def. 3) called moderated VSS, and

we show how to construct protocols for moderated VSS without invoking broadcast,

by using VSS and gradecast (see Def. 2) as primitives. In Section 3.1.1, we define

oblivious leader election and construct the corresponding protocols from moderated

VSS. In Section 3.2, we construct broadcast protocols from oblivious leader election.

As mentioned in the Introduction, if a probabilistic broadcast protocol is used

to emulate multiple invocations of a broadcast channel, then subtle issues related to

the parallel and sequential composition of the various broadcast sub-protocols arise.

We discuss these issues and show how to handle them in Section 3.3.

3.1 Moderated VSS

We introduce a variant of VSS called moderated VSS, in which there is a dis-

tinguished party (who may be identical to the dealer) called the moderator. Roughly

speaking, the moderator “simulates” a broadcast channel for the other parties dur-
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ing the sharing phase. At the end of the sharing phase, parties output a boolean flag

indicating whether or not they trust the moderator. If the moderator is honest, all

honest parties set this flag to 1. Furthermore, if any honest party sets this flag to 1

then the protocol achieves all the properties of VSS. A formal definition follows.

Definition 4 (Moderated VSS): A two-phase protocol for parties P = {P1, . . . , Pn},

where there is a distinguished dealer P ∗ ∈ P who holds an initial input s and a

moderator P ∗∗ ∈ P (who may possibly be the dealer), is a moderated VSS proto-

col tolerating t malicious parties if the following conditions hold for any adversary

controlling at most t parties:

Output Requirement Each honest party Pi outputs a bit fi at the end of the

first phase (called the sharing phase), and a value si at the end of the second

phase (called the reconstruction phase).

Completeness If the moderator is honest during the sharing phase, then each

honest party Pi outputs fi = 1 at the end of this phase.

Soundness If there exists an honest party Pi who outputs fi = 1 at the end of the

sharing phase, then the protocol achieves VSS; specifically: (1) if the dealer is

honest then all honest parties output s at the end of the reconstruction phase,

and the joint view of all the malicious parties at the end of the sharing phase

is independent of s, and (2) the joint view of the honest parties at the end

of the sharing phase defines an efficiently-computable value s′ such that all

honest parties output s′ at the end of the reconstruction phase. ♦
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We stress that if all honest parties Pi output fi = 0 at the end of the sharing

phase, then no guarantees are provided; e.g., honest parties may output different

values at the end of the reconstruction phase, or the malicious parties may learn the

dealer’s secret in the sharing phase.

The main result of this section is the following, which holds for any t < n/2:

Theorem 3.1.1 Assume there exists a VSS protocol Π tolerating t malicious par-

ties, such that the round complexities of its sharing phase and its reconstruction

phase are (s, sb) and (r, 0), respectively. Furthermore, assume there exists a grade-

cast protocol tolerating t malicious parties with round complexity (g, 0). Then, there

exists a moderated VSS protocol Π′ tolerating t malicious parties with the round

complexities of the sharing phase and reconstruction phase being (s + (2g − 1)sb, 0)

and (r, 0), respectively.

Proof We show how to “compile” Π so as to obtain the desired Π′. Essentially,

Π′ is constructed by replacing each broadcast in Π with two invocations of grade-

cast: one by the party who is supposed to broadcast the message, and one by the

moderator P ∗∗. In more detail, Π′ is defined as follows: At the beginning of the

protocol, all parties set their flag f to 1. The parties then run an execution of Π.

When a party P is directed by Π to send message m to P ′, it simply sends this

message. When a party P is directed by Π to broadcast a message m, the parties

run the following “broadcast emulation” subroutine:

1. P gradecasts the message m.

2. The moderator P ∗∗ gradecasts the message it output in the previous step.
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3. Let (mi, gi) and (m′
i, g

′
i) be the outputs of party Pi in steps 1 and 2, respectively.

Within the underlying execution of Π, party Pi will use m′
i as the message

“broadcast” by P .

4. Furthermore, Pi sets fi := 0 if either (or both) of the following conditions

hold: (1) g′
i 6= 2, or (2) m′

i 6= mi and gi = 2.

Party Pi outputs fi at the end of the sharing phase, and outputs whatever it is

directed to output by Π at the end of the reconstruction phase.

It is easy to see that the round complexities of the sharing phase and recon-

struction phase of Π′ are (s + (2g − 1)sb, 0) and (r, 0), respectively. We now prove

that Π′ is a moderated VSS protocol tolerating t malicious parties. We first show

the completeness property, that is, if the moderator is honest during the sharing

phase then no party Pi ever sets fi := 0 when it is honest. To see this, note that if

P ∗∗ is honest then g′
i = 2 each time the broadcast emulation subroutine is executed.

Furthermore, if Pi outputs some mi and gi = 2 in step 1 of that subroutine then,

by definition of gradecast, P ∗∗ also outputs mi in step 1. Hence m′
i = mi and fi

remains 1.

To show the soundness property of moderated VSS, we first note that the

reconstruction phase of Π does not use broadcast. Thus the reconstruction phase of

Π′ is the same as that of Π. Now consider any execution of the broadcast emulation

subroutine during the sharing phase of Π′. We show that if there exists an honest

party Pi who holds fi = 1 upon completion of that subroutine, then the functionality

of broadcast was achieved (in that execution of the subroutine). It follows that if Pi
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holds fi = 1 at the end of the sharing phase, then Π′ provided a faithful execution

of all broadcasts during the sharing phase of Π and so the functionality of VSS is

achieved.

If Pi holds fi = 1, then g′
i = 2. (For the remainder of this paragraph, all

variables are local to a particular execution of the broadcast emulation subroutine.)

Since g′
i = 2, the properties of gradecast imply that any honest party Pj holds

m′
j = m′

i and so all honest parties agree on the message that was “broadcast.”

Furthermore, if the “dealer” P (in the broadcast emulation subroutine) is honest

then gi = 2 and mi = m. So the fact that fi = 1 means that m′
i = mi = m, and so

all honest parties use the message m “broadcast” by P in their underlying execution

of Π.

By applying the above theorem to the VSS protocol of Lemma 2.2.3 (resp.,

the authenticated VSS protocol of Lemma 2.2.5) and the gradecast protocol of

Lemma 2.2.1 (resp., the authenticated gradecast protocol of Lemma 2.2.2), we ob-

tain:

Corollary 3.1.2 There exists a moderated VSS protocol tolerating t < n/3 mali-

cious parties with round complexity of the sharing phase and reconstruction phase

being (12, 0) and (1, 0) respectively.

Corollary 3.1.3 There exists an authenticated moderated VSS protocol tolerating

t < n/2 malicious parties with round complexity of the sharing phase and recon-

struction phase being (12, 0) and (1, 0) respectively.
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3.1.1 From Moderated VSS to Oblivious Leader Election

In this section, we construct an oblivious leader election (OLE) protocol based

on any moderated VSS protocol. The following definition of oblivious leader election

is adapted from [FG03]:

Definition 5 (Oblivious leader election): A two-phase protocol for parties P1, . . . ,

Pn−1, Pn is an oblivious leader election protocol with fairness δ tolerating t malicious

parties if each honest party Pi outputs a value vi ∈ [n], and the following condition

holds with probability at least δ (over random coins of the honest parties) for any

adversary controlling at most t parties:

There exists a j ∈ [n] such that (1) each honest party Pi outputs vi = j,

and (2) Pj was honest at the end of the first phase.

If the above event happens, then we say an honest leader was elected. ♦

If the adversary is static, then we can define an oblivious leader election pro-

tocol as a single-phase protocol: with constant probability, all honest parties output

a common value j such that Pj is honest. However, if the adversary is adaptive,

then the adversary can corrupt Pj as soon as the value of j is known. Thus, in our

definition, we only require Pj to be honest up to a certain point (i.e., the end of the

first phase).

Intuitively, in our construction of OLE, a random coin ci ∈ [n4] is generated for

each party Pi. This is done by having each party Pj select a random value cj,i ∈ [n4]

and then share this value using moderated VSS with Pi acting as moderator. The

cj,i are then reconstructed and ci is computed as ci =
∑

j cj,i mod n4. An honest
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party then outputs i minimizing ci. Since moderated VSS (instead of VSS) is used,

each party Pk may have a different view regarding the value of the {ci}. However:

• If Pi is honest then (by the properties of moderated VSS) all honest parties

reconstruct the same values cj,i (for any j) and hence compute an identical

value for ci.

• If Pi is dishonest but there exists an honest party Pj such that Pj outputs

fj = 1 in all invocations of moderated VSS where Pi acts as the moderator,

then (by the properties of moderated VSS) all honest parties compute an

identical value for ci.

Relying on the above observations, we devise a way such that all honest parties

output the same i (such that Pi is furthermore honest) with constant probability.

Theorem 3.1.4 Assume there exists a moderated VSS protocol tolerating t mali-

cious parties. Then there exists a OLE protocol with fairness δ = n−t
n

− 1
n2 tolerating

t malicious parties. Specifically, if n ≥ 3 and t < n/2 then δ ≥ 1/2. In addition,

the round complexity of phase 1 (resp., phase 2) of the OLE protocol is equal to

the round complexity of the sharing phase (resp., the reconstruction phase) of the

moderated VSS protocol.

Proof Each party Pi begins with trusti,j = 1 for j ∈ {1, . . . , n}.

Phase 1 Each party Pi chooses random ci,j ∈ [n4] for 1 ≤ j ≤ n. The following is

executed n2 times in parallel for each ordered pair (i, j):
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All parties execute the sharing phase of a moderated VSS protocol

in which Pi acts as the dealer with initial input ci,j, and Pj acts as

the moderator. If a party Pk outputs fk = 0 in this execution, then

Pk sets trustk,j := 0.

Upon completion of the above, let trustk
def
= {j : trustk,j = 1}.

Phase 2 The reconstruction phase of the moderated VSS protocol is run n2 times

in parallel to reconstruct the secrets previously shared. Let ck
i,j denote Pk’s

view of the value of ci,j. (If a reconstructed value lies outside [n4], then ck
i,j is

assigned some default value in the correct range.) Each party Pk sets ck
j :=

∑n
i=1 ck

i,j mod n4, and outputs j ∈ trustk that minimizes ck
j .

We prove that the protocol satisfies Definition 5. Following execution of the

above, define:

trusted =















k :
there exists a Pi that was honest at the end of phase 1

for which k ∈ trusti















.

If Pi was honest in phase 1, then i ∈ trusted. Furthermore, by the properties of

moderated VSS, if k ∈ trusted then for any honest Pi, Pj and any 1 ≤ ℓ ≤ n, we

have ci
ℓ,k = cj

ℓ,k and hence ci
k = cj

k; thus, we may freely omit the superscript in this

case. We claim that for k ∈ trusted, the coin ck is uniformly distributed in [n4].

Let c′k =
∑

ℓ :Pℓ malicious in phase 1 cℓ,k mod n4 (this is the contribution to ck of the

parties that are malicious in phase 1), and let Pi be a party that was honest in

phase 1. Since k ∈ trusted, the properties of VSS hold for all secrets {cℓ,k}
n
ℓ=1 and

thus c′k is independent of ci,k. (If we view moderated VSS as being provided uncon-
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ditionally, independence holds trivially. When this is instantiated with a protocol

for moderated VSS, independence follows from the information-theoretic security of

moderated VSS [KLR06].) It follows that ck is uniformly distributed in [n4].

By union bound, with probability at least 1 − 1
n2 , all coins {ck : k ∈ trusted}

are distinct. Conditioned on this event, with probability at least n−t
n

the party with

the minimum cj among the set trusted corresponds to a party which was honest in

phase 1. This concludes the proof.

Combining Theorem 3.1.4 with Corollaries 3.1.2 and 3.1.3, we obtain:

Corollary 3.1.5 There exists a OLE protocol with fairness 2/3 tolerating t < n/3

malicious parties, with the round complexities of phase 1 and phase 2 being (12, 0)

and (1, 0) respectively. (Note that when n < 4 the result is trivially true.)

Corollary 3.1.6 There exists an authenticated OLE protocol with fairness 1/2 tol-

erating t < n/2 malicious parties, with the round complexities of phase 1 and phase 2

being (12, 0) and (1, 0) respectively. (Note that when n < 3 the result is trivially

true.)

3.2 From Oblivious Leader Election to Broadcast

In this section, we construct broadcast protocols from oblivious leader election.

In section 3.2.1, we give the construction for the case t < n/3. In section 3.2.2, we

give the construction for the authenticated setting (t < n/2). We note that our

protocols do not provide simultaneous termination (i.e., parties may terminate the
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protocol at different rounds). The round complexity of a protocol is defined to be

the round in which the last honest party terminates.

3.2.1 The Case of t < n/3

We consider the unauthenticated case (i.e., t < n/3) in this section. We

construct a broadcast protocol for binary values based on oblivious leader election.

This also serves as a warmup for the authenticated case.

Theorem 3.2.1 If there exists a OLE protocol with fairness δ tolerating t < n/3

malicious parties and the round complexities of phase 1 and phase 2 are (r1, 0) and

(1, 0) respectively, then there exists a broadcast protocol tolerating t malicious parties

that terminates in (expected) max{6, r1} + 1 + 6/δ rounds.

Proof We first describe a binary broadcast protocol that terminates in (expected)

1+(1+1/δ)(6+r1) rounds. Later, we will show how to improve its round complexity

to (expected) max{6, r1} + 1 + 6/δ rounds.

Each party Pi uses two local binary variables: exitBAi and use leaderi. Both

variables are initially set to false.

Step 1 The dealer sends its input bit b to all parties. Let bi be the bit Pi receives

from the dealer.

Step 2 Each Pi sends bi to all parties. Let bj,i be the bit Pi receives from Pj. (When

this step is run at the outset of the protocol, a default value is used if Pi does

not receive anything from Pj . In subsequent iterations, if Pi does not receive

anything from Pj then Pi leaves bj,i unchanged.)
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Step 3 Each party Pi sets Sb
i := {j : bj,i = b} for b ∈ {0, 1}. If |S0

i | ≥ t + 1, then

Pi sets bi := 0. If |S0
i | ≥ n − t, then Pi sets exitBAi := true.

Each Pi sends bi to all parties. If Pi receives a bit from Pj, then Pi sets bj,i to

that value; otherwise, bj,i remains unchanged.

Step 4 Each party Pi defines Sb
i as in step 3. If |S1

i | ≥ t + 1, then Pi sets bi := 1.

If |S1
i | ≥ n − t, then Pi sets exitBAi := true.

Each Pi sends bi to all parties. If Pi receives a bit from Pj, then Pi sets bj,i to

that value; otherwise, bj,i remains unchanged.

If exitBAi = false, then Pi sets use leaderi := true.

Step 5 Each party Pi defines Sb
i as in step 3. If |S0

i | ≥ t + 1, then Pi sets bi := 0.

If |S0
i | ≥ n − t, then Pi sets use leaderi := false.

Each Pi sends bi to all parties. If Pi receives a bit from Pj, then Pi sets bj,i to

that value; otherwise, bj,i remains unchanged.

Step 6 Each party Pi defines Sb
i as in step 3. If |S1

i | ≥ t + 1, then Pi sets bi := 1.

If |S1
i | ≥ n − t, then Pi sets use leaderi := false.

Each Pi sends bi to all parties. If Pi receives a bit from Pj, then Pi sets bj,i to

that value; otherwise, bj,i remains unchanged.

Step 7 All parties execute the OLE protocol; let ℓi be the output of Pi. Each

Pi does the following: if use leaderi = true, then Pi sets bi := bℓi,i. If

exitBAi = true, then Pi outputs bi and terminates; otherwise, Pi goes to step

2.
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We refer to an execution of step 2 through 7 as an iteration. First we claim

that if an honest Pi sets exitBAi := true in step 3 or 4 of some iteration, then

all honest parties Pj hold bj = bi by the end of step 4 of that same iteration.

Consider the case when Pi sets exitBAi := true in step 3. (The case when Pi sets

exitBAi := true in step 4 is exactly analogous.) This implies that |S0
i | ≥ n− t and

hence |S0
j | ≥ n− 2t ≥ t + 1 and bj = 0. Since this holds for all honest players Pj, it

follows that in step 4 we have |S1
j | ≤ t and so bj remains 1.

Next, we show that if — immediately prior to any given iteration — no honest

parties have terminated and there exists a bit b such that bi = b for all honest

Pi, then by the end of step 4 of that iteration all honest parties Pi hold bi = b

and exitBAi = true. This follows easily (by what we have argued in the previous

paragraph) once we show that there exists an honest party who sets exitBAi := true

while holding bi = b. Consider the case b = 0 (the case b = 1 is exactly analogous).

In this case |S0
i | ≥ n − t in step 3 for any honest Pi. Thus, any honest Pi sets

exitBAi := true and holds bi = 0 by the end of this step.

Arguing exactly as in the previous two paragraphs, one can similarly show:

(i) If — immediately prior to any given iteration — there exists a bit b such that

bi = b for all honest Pi, then by the end of step 5 of that iteration all honest parties

Pi hold bi = b, exitBAi = true, and use leaderi = false (and hence all honest

parties output b and terminate the protocol in that iteration). (ii) If an honest party

Pi sets exitBAi := true in some iteration, then all honest parties Pj hold bj = bi

and use leaderj = false by the end of step 6 of that iteration. (iii) If an honest

party Pi sets use leaderi := false in some iteration, then all honest parties Pj
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hold bj = bi by the end of step 6 of that same iteration.

Next, we show that if an honest party Pi outputs bi = b (and terminates) in

some iteration, then all honest parties output b and terminate by the end of the

next iteration. Note that if Pj fails to receive bi from Pi, then Pi,j is unchanged;

thus, if Pi terminates with output bi = b, it can be viewed as if Pi keeps on sending

bi = b in the next iteration. (In particular, note that Pi must have sent bi = b in

step 6.) Hence it suffices to show that by the end of the (current) iteration, bj = b

for all honest parties Pj . But this is implied by (ii), above.

Finally, we show that if an honest leader1 Pℓ is elected in step 7 of some

iteration, then all honest parties Pi terminate by the end of the next iteration.

By (i), it is sufficient to show that bi = bℓ,i = bℓ at the end of step 7 of the current

iteration. Consider two sub-cases: if all honest Pj hold use leaderj = true then

this is immediate. Otherwise, say honest Pi holds use leaderi = false. By (iii),

bℓ = bi at the end of step 6, and hence all honest parties Pj have bj = bi by the end

of step 7.

If the OLE protocol elects an honest leader with probability δ, then the ex-

pected number of iterations until a leader is elected is therefore at most 1/δ, and the

expected number of iterations is at most 1+1/δ. Steps 2–6 of each iteration require

only one round each, while in step 7 of an iteration the two phases of an OLE proto-

col are run. Thus the above protocol terminates in (expected) 1 + (1 + 1/δ)(6 + r1)

rounds.

1This implies that Pℓ was uncorrupted in step 6 of the iteration in question.
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We can, however, do better. The key observation is that the first phase of the

OLE protocol can be carried out in advance of step 7, and in particular can be carried

out in parallel with steps 1–6. (A similar observation was made in [Fel88].) Even

more, we can run multiple invocations of the first phase of the OLE protocol and

“save them” until needed. Applying these ideas, we obtain the following broadcast

protocol:

1. Run ℓ
def
= ⌈r1/6⌉ executions of the first phase of the OLE protocol. These

are scheduled so that the final 6 rounds coincide with steps 1–6 of the first

iteration.

2. For the remainder of the protocol, continually run ℓ parallel executions of

the first phase of the OLE protocol in parallel with the “main” protocol.

These parallel executions will terminate every r1 rounds, just as the ℓ previous

executions get “used up.”

We now have a broadcast protocol that terminates in (expected) max{6, r1}

+1 + 6/δ rounds.

Ben-Or and El-Yaniv [BE03] showed how to transform a binary broadcast

protocol into a (multi-valued) broadcast protocol. While their solution is simple, it

incurs overhead on the round complexity. On the other head, parallel composition

(see Section 3.3) can be used to transform a binary broadcast protocol into a (multi-

valued) broadcast protocol without using any additional rounds (though the solution

is more complicated). In combination with the above theorem and Corollary 3.1.5,

we now have:
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Corollary 3.2.2 There exists a broadcast protocol tolerating t < n/3 adaptive cor-

ruptions that terminates in (expected) 22 rounds.

3.2.2 The Authenticated Case (t < n/2)

We consider the authenticated case (t < n/2) in this section.

Theorem 3.2.3 If there exists an authenticated OLE protocol with fairness δ tol-

erating t < n/2 malicious parties and the round complexities of phase 1 and phase

2 are (r1, 0) and (1, 0) respectively, then there exists a broadcast protocol tolerating

t malicious parties that terminates in (expected) max{7, r1} + 8 + 7/δ rounds.

Proof We start by constructing a broadcast protocol that terminates in (ex-

pected) 1 + (2 + 1/δ)(7 + r1) rounds. Later, we show how to improve its round

complexity to (expected) max{7, r1} + 8 + 7/δ rounds.

Let V be the domain of possible input values, let φ ∈ V be some default value

and let ⊥ be some special value that is not in V . Each Pi begins with an internal

variable Iteration lefti set to ∞. To avoid having to say this every time, we make

the implicit requirement that if Iteration lefti 6= ∞ then the value of vi is “locked”

and remains unchanged (i.e., even if the protocol description below says to change

it).

We say that Pi has a (valid) certificate for v if v ∈ V and there exist k > n/2

distinct indices j1, . . . , jk such that Pi holds σj1,i, . . . , σjk,i which are valid signatures

on v with respect to the public keys of Pj1 , . . . , Pjk
. In this case, we will also call

(v, j1, . . . , jk, σj1,i, . . . , σjk,i) a certificate for v.
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Step 1 The dealer sends its input value to all parties. Let vi be the value Pi receives

from the dealer.

Step 2 Party Pi computes a signature σi of vi and sends (vi, σi) to all parties.

Step 3 Let (vj,i, σj,i) be the message received by party Pi from Pj. If these mes-

sages yield a certificate for vi, then Pi sends a certificate for vi to all parties.

Otherwise Pi sends nothing and sets vi :=⊥.

Step 4 If in the previous round Pi received a valid certificate for some v∗ 6= vi, then

Pi sets vi :=⊥.

If vi 6=⊥, then Pi computes a signature2 σ′
i of vi and sends (vi, σ

′
i) to all parties.

Step 5 Let (vj,i, σ
′
j,i) be the message received by party Pi from Pj (if any) in the

previous round. If these messages yield a certificate for vi, then Pi sends a

certificate for vi to all parties and sets Iteration lefti := 1; otherwise Pi sends

nothing and sets vi :=⊥.

Step 6 If in the previous round Pi received a valid certificate on some value v∗,

then Pi sends a certificate on v∗ to all parties and sets vi := v∗. Otherwise, Pi

sends nothing and sets vi :=⊥.

Step 7 If in the previous round Pi received a valid certificate on some value v∗,

then Pi sends v∗ to all parties; otherwise, Pi sends ⊥ to all parties. Let v∗
j,i be

the value Pi received from Pj in this round.

2The current round number is also signed to distinguish this signature from others.
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Step 8 All parties execute the OLE protocol; let ℓi be the output of Pi. If vi =⊥

and v∗
ℓi,i

6=⊥, then Pi sets vi := v∗
ℓi,i

. If vi = v∗
ℓi,i

=⊥, then Pi sets vi :=

φ. If Iteration lefti = 0, then Pi outputs vi and terminates the protocol. If

Iteration lefti = 1, then Pi sets Iteration lefti := 0 and goes to step 2. If

Iteration lefti = ∞, then Pi goes to step 2.

We refer to an execution of steps 2 through 8 as an iteration. We first claim

that if — immediately prior to any given iteration — there exists a value v such that

vi = v for all honest Pi and no honest parties have yet terminated, then all honest

parties will terminate and output v by the end of the following iteration. (This in

particular proves the correctness of the protocol for the case of an honest dealer.)

To see this, note that in this case all honest parties Pi compute a signature σi of

v and send (v, σi) to all parties in step 2. In step 3, the messages received by an

honest party yield a certificate for v, thus all honest parties send a certificate for v

to all parties. In step 4, an honest Pi receives a valid certificate for v, it computes

a signature σ′
i of v and sends (v, σi) to all parties. In step 5, the messages received

by an honest party yield a certificate for v, and an honest Pi sets Iteration lefti := 1.

Thus all honest parties will terminate and output v by the end of the next iteration.

Now consider the first iteration in which an honest party Pi sets Iteration lefti

:= 1 (in step 5). We claim that, by the end of that iteration, vj = vi for all honest

Pj and no honest parties will have yet terminated. The claim regarding termination

is immediate since honest parties do not terminate until the iteration following

the one in which they set Iteration left := 1 (and we are considering the first such
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iteration). As for the first property, we make an observation that at any given step

there is at most one value v ∈ V for which some honest party has a certificate on v

(otherwise, some honest party must have signed two different values; but this cannot

occur). It then follows that any honest party Pj setting Iteration leftj := 1 in this

iteration must also hold vj = vi. For an honest party Pj holding Iteration leftj = ∞

after step 5, since Pi sends a certificate for vi to all parties (in step 5) the earlier

observation again implies that Pj sets vj := vi in step 6. Since vj = vi 6=⊥ (else Pi

would not have set Iteration lefti := 1), Pj will not change the value of vj in step 8.

This establishes the claim, and implies that if any honest party terminates then all

honest parties terminate with the same output.

To complete the proof that the above protocol is a broadcast protocol, we show

that if an honest leader Pℓ is elected in some iteration then all honest parties will

hold the same value v by the end of that iteration. By what we have argued in the

previous paragraph, we only need to consider the case where Iteration lefti = ∞ for

all honest Pi in step 8. If vi =⊥ for all honest Pi by the end of step 6, the claim is

immediate since every honest Pi will change their value of vi to the honest leader’s

value (or φ, as appropriate) in step 8. Otherwise, vi 6=⊥ by the end of step 6 for

some honest party Pi. By the observation mentioned earlier, every honest party Pj

holds vj ∈ {vi,⊥} by the end of step 6. Furthermore, Pℓ receives a valid certificate

on vi from Pi in step 6 and so (again using the earlier observation) sends v∗
ℓ = vi to

all parties in step 7. Hence every honest party Pj holds vj = vi by the end of that

iteration.
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If the OLE protocol has fairness δ, then the expected number of iterations

until an honest leader is elected is therefore at most 1/δ, and the expected number

of iterations is 2 + 1/δ. Steps 2-7 of each iteration require one round each, while in

step 8 of an iteration the two phases of an OLE protocol are run. Thus the above

protocol terminates in (expected) 1 + (2 + 1/δ)(7 + r1) rounds.

As in the proof of Theorem 3.2.1, we can do better by executing the first phase

of the OLE protocol in advance of step 8, and then running multiple invocations

of the first phase of the OLE protocol and “saving them” until needed. We then

obtain the following broadcast protocol:

1. Run ℓ
def
= ⌈r1/7⌉ executions of the first phase of the OLE protocol. These

are scheduled so that the final 7 rounds coincide with steps 1–7 of the first

iteration.

2. For the remainder of the protocol, continually run ℓ parallel executions of

the first phase of the OLE protocol in parallel with the “main” protocol.

These parallel executions will terminate every r1 rounds, just as the ℓ previous

executions get “used up.”

Thus, we now have a broadcast protocol that can terminate in (expected)

max{7, r1} + 8 + 7/δ rounds.

In combination with the above Theorem and Corollary 3.1.6, we now have:

Corollary 3.2.4 There exists an authenticated broadcast protocol tolerating t < n/2

adaptive corruptions that terminates in (expected) 34 rounds.
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3.3 Parallel and Sequential Composition

Suppose we have a protocol Π that is designed under the assumption that a

broadcast channel is available; when run in a point-to-point network, one approach

is to replace each invocation of the broadcast channel in Π with an invocation of an

expected constant-round (authenticated) broadcast protocol bc; i.e., to set Π′ = Πbc.

However, there are two subtle problems with this approach that must be dealt with:

Parallel composition. In protocol Π, all n parties may access the broadcast

channel in the same round; this results in n parallel executions of bc in protocol

Πbc. Although the expected round complexity of each execution of bc is constant,

the expected number of rounds for all n executions of bc to terminate may no longer

be constant.

A general technique for handling this issue is proposed by [BE03]; their solution

is somewhat complicated. In our case, however, we may rely on an idea of Fitzi and

Garay [FG03] that applies to OLE-based protocols such as ours. The main idea is

that when multiple broadcast sub-routines are run in parallel, only a single leader

election (per iteration) is required for all these sub-routines. Using this approach,

the expected round complexity for n parallel executions will be identical to the

expected round complexity of a single execution.

Sequential composition. A second issue is that protocol bc does not provide

simultaneous termination. (As noted in [LLR02], this is inherent for any expected

constant-round broadcast protocol.) This may cause problems for sequential execu-

tions of bc within Πbc, since subsequent executions of bc may not have all honest
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parties starting at the same round. As an example of what can go wrong, assume

some protocol Π (that relies on a broadcast channel) requires some party Pi to

broadcast values in rounds 1 and 2. Let bc1, bc2 denote the corresponding invoca-

tions of broadcast within the composed protocol Πbc (which runs in a point-to-point

network). Then, because honest parties in bc1 do not terminate in the same round,

honest parties may begin execution of bc2 in different rounds. But security of bc2

is no longer guaranteed in this case!

At a high level, we can fix this by making sure that bc2 remains secure as

long as all honest parties begin execution of bc2 within a certain number of rounds.

Specifically, if honest parties are guaranteed to terminate bc1 within g rounds of

each other, then bc2 should remain secure as long as all honest parties start within

g rounds. We now show how to achieve this for an arbitrary number of sequential

executions of bc, without blowing up the round complexity too much.

Let rc(Π) denote the (expected) round complexity of a protocol Π.3 The

staggering gap of Π is defined as follows:

Definition 6 A protocol Π has staggering gap g = gap(Π) if any honest parties

Pi, Pj are guaranteed to terminate Π within g rounds of each other.

We begin with the following result by Lindell, et al. [LLR02, Lemma 3.1]:

Lemma 3.3.1 Let bc be a protocol for (authenticated) broadcast with staggering

gap g and expected round complexity r. Then for any constant c ≥ 0 there exists a

3Recall that the round complexity of a run of a protocol having a non-zero staggering gap is

the round in which the last honest party terminates.
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protocol Expand′c(bc) which achieves (authenticated) broadcast as long as all honest

parties begin execution of Expand′

c(bc) within c rounds of each other. Expand′c(bc)

has expected round complexity (2c + 1) · r and staggering gap c + g · (2c + 1).

Next, we prove the following lemma:

Lemma 3.3.2 Let bc be a protocol for (authenticated) broadcast. Then for any

constant c ≥ 0 there exists a protocol Expandc(bc) which achieves the same security

as bc as long as all honest parties begin execution of Expandc(bc) within c rounds of

each other. Furthermore,

rc (Expandc(bc)) = (2c + 1) · rc(bc) + 1,

and the staggering gap of Expandc(bc) is 1 (as long as all honest parties begin exe-

cution within c rounds of each other).

This result holds unconditionally for the case of t < n/3 malicious parties, and

under the assumption of a PKI and secure digital signatures for t < n/2. 4

Proof We describe protocol Expandc(bc). Each party Pi executes Expand′c(bc).

When Pi terminates execution of Expand′

c(bc) with output vi, it sends “exit, vi”

to all parties (along with a signature of this message in the authenticated case).

Furthermore, at every round (including during execution of Expand′c(bc)), Pi does

the following:

Unconditional case: If there exists a value v such that Pi has received “exit, v”

from t + 1 distinct parties, then Pi sends “exit, v” to all parties.

4We note that our solution for the unconditional case is very similar to the solution by Ben-Or

and El-Yaniv [BE03], we include it for the sake of completeness.
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If Pi has received “exit, v” from 2t + 1 distinct parties (possibly including

itself), then it terminates Expandc(bc) with output v (even if its execution of

Expand′c(bc) has not yet completed).

Authenticated case: If there exists a value v such that Pi has received valid sig-

natures from t+1 distinct parties (possibly including itself) on “exit, v,” then

Pi forwards “exit, v” along with these t + 1 signatures to all parties and ter-

minates Expandc(bc) with output v (even if its execution of Expand′c(bc) has

not yet completed).

We first show that Expandc(bc) has staggering gap 1. Let round k be the first

round in which some honest party Pi terminates Expandc(bc) with output v. Then:

Unconditional case: When Pi terminates Expandc(bc) in round k, it has received

2t+1 copies of “exit, v,” at least t+1 of which are from honest parties. Hence

all honest parties have received at least t + 1 copies of “exit, v” by round k

and have sent “exit, v” by round k + 1. Since there are at least 2t + 1 honest

parties, it follows that all honest parties receive 2t +1 copies of “exit, v” (and

hence terminate Expandc(bc)) by round k + 1.

Authenticated case: When Pi terminates Expandc(bc) in round k, it has received

t + 1 valid signatures on “exit, v” which it forwards to all parties. Hence all

honest parties receive the forwarded signatures in round k + 1 and terminate

by that round.

To conclude the proof, we show that Expandc(bc) achieves (authenticated)
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broadcast. It is easy to see that all honest parties output the same value. Further-

more, note that no honest party terminates Expandc(Π) until some honest party

has terminated Expand′

c(Π). Since Expand′

c(bc) achieves (authenticated) broadcast,

when the dealer is honest any honest players who run Expand′c(bc) to completion

will output the dealer’s message (in Expand′c(bc)). It follows that when the dealer is

honest all honest players will output the dealer’s message (in Expandc(bc)).

We remark that this proof does not apply to arbitrary protocols (rather, we

have explicitly stated the lemma only for protocols achieving broadcast) since we

use the fact that all honest parties should terminate with identical outputs.

We claim that combining the above two lemmas give a solution. To see this,

suppose we want to sequentially compose protocols bc1, . . . , bcℓ, each having stag-

gering gap g. We simply run ℓ sequential executions of bc′i = Expand1(bci) instead.

Each bc′i has staggering gap 1, meaning that honest parties terminate within 1 round

of each other. From the above lemma, each bc′i+1 is secure as long as honest parties

begin execution within 1 round of each other, so things are ok.

Applying this technique to compile a protocol Π (which uses a broadcast chan-

nel in each of its rc(Π) rounds) to a protocol Π′ (running in a point-to-point network),

we obtain

rc(Π′) = rc(Π) · (3 · rc(bc) + 1) .

In particular, if Π is a constant-round protocol and bc is an expected constant-round

broadcast protocol, then Π′ runs in an expected constant number of rounds.
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Chapter 4

Round-Efficient Secure Multiparty Computation

In this chapter, we construct constant-round secure multiparty computation

protocols that use only one round of broadcast. In Section 4.2, we consider the

case t < n/3 under the plain model (i.e., no setup assumption). In Section 4.3, we

consider the authenticated case t < n/2. Throughout the chapter, we assume the

existence of one-way functions.

4.1 Techniques and Overview

We give a high-level overview of the main techniques we use. Call (a, b, c),

where a, b, and c are elements of some field, a random multiplication triple if a

and b are uniformly distributed, each of a, b, c is shared among the parties,1 and

c = ab. Following the results in [BMR90, Bea91a, DI05], assuming the existence

of one-way functions, if in a “setup phase,” the parties share their inputs along

with sufficiently-many multiplication triples, then the parties can carry out secure

multiparty computation in a constant number of rounds without using any further

invocations of broadcast. Our task is thus reduced to showing how to perform the

necessary setup using only a single round of broadcast.

To achieve this, we use the concept of moderated protocols as introduced in

1For now, we do not specify the exact manner in which sharing is done.
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Section 3.1. Recall that in such protocols, there is a distinguished party Pm known as

the moderator. Given a protocol Π, designed under the assumption of a broadcast

channel, the moderated version of Π is a protocol Π′ that does not require any

invocation of broadcast and has the following properties (roughly speaking):

• At the end of Π′, each party Pi outputs a binary value trusti(m).

• If the moderator Pm is honest, then each honest party Pi outputs trusti(m) = 1.

This represents the fact that each honest party Pi “trusts” the moderator Pm.

• If any honest party Pi outputs trusti(m) = 1, then Π′ achieves the functionality

of Π.

In Section 3.1, we have shown how to compile a VSS protocol into its moder-

ated version, while increasing the overall round complexity by at most a constant

multiplicative factor. (For t < n/3, the compilation does not require any assump-

tions; for n/3 ≤ t < n/2, the compilation assumes a PKI and digital signatures.) It

is not hard to verify that the proof extends for more general classes of functionalities.

Let Πi denote some constant-round protocol, designed assuming a broadcast

channel, that shares the input value of party Pi as well as sufficiently-many multi-

plication triples. Such protocols are constructed in, e.g., [BGW88, Rab94, Bea89,

GRR98, CDD+99, DI05]. We compile Πi into a moderated protocol Π′
i where Pi

acts as the moderator. Now consider the following protocol that uses broadcast in

only a single round:

1. Run protocols {Π′
i}

n
i=1 in parallel. Recall that Pi is the moderator in Π′

i.
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2. Each party Pi broadcasts {trusti(1), . . . , trusti(n)}.

3. A party Pi is disqualified if |{j : trustj(i) = 1}| ≤ t; i.e., if t or fewer players

broadcast trustj(i) = 1. If Pi is disqualified, then a default value is used as

the input for Pi.

4. Let i∗ be the minimum value such that Pi∗ is not disqualified. The set of

random multiplication triples that the parties will use is taken to be the set

that was generated in Π′
i∗ .

Analyzing the above, note that if Pi is honest and there exists an honest majority,

then at least t + 1 parties broadcast trustj(i) = 1. Hence an honest Pi is never

disqualified. On the other hand, at least one of the parties that broadcast trustj(i
∗) =

1 must be honest. The properties of moderated protocols discussed earlier thus imply

that Π′
i∗ achieves the functionality of Πi∗ . Since Πi∗ is assumed to securely share

sufficiently-many multiplication triples, it follows that the above protocol securely

shares sufficiently-many multiplication triples. A similar argument shows that the

inputs of all non-disqualified parties are shared appropriately. We conclude that

the above protocol implements the necessary setup phase using only one round of

broadcast.

In a naive compilation of Πi to Π′
i (following Section 3.1), each round of broad-

cast in Πi is replaced by six rounds in Π′
i for the case t < n/3, and eight rounds

for the authenticated case t < n/2. Proceeding directly thus yields secure MPC

protocols with relatively high round complexity: after all, existing constructions

of protocols Πi achieving the needed functionality do not attempt to minimize the
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number of rounds of broadcast. In the subsequent sections, we present instead a

new set of protocols that minimize their use of broadcast. Furthermore, our imple-

mentation of the setup phase deviates from the above simplified approach in order

to further optimize the round complexity of the final protocol.

4.2 The Case of t < n/3

Roadmap Using the VSS protocol given in Section 2.2.2.1, we can generate two

random values a and b: (i) each party Pi picks two random values ai and bi, shares it

using the sharing phase of the VSS protocol (ii) the parties reconstruct the values a1,

. . . , an, b1, . . . , bn and compute a
def
=

∑

i ai and b
def
=

∑

i bi. However, the properties

guaranteed by a VSS protocol are not strong enough to share random multiplication

triples. In Section 4.2.1, we extend the definitions of VSS to what we call VSS with

2(3)-level sharing and construct protocols that satisfy the extended definitions. In

Section 4.2.2, using VSS with 2(3)-level sharing, we construct a protocol that shares

random multiplication triples. Finally, in Section 4.2.3, we implement the setup

phase using one round of broadcast and then we show a constant-round secure

multiparty computation protocol without additional invocation of broadcast.

4.2.1 Generalized Secret Sharing and VSS

Throughout, we assume a finite field F of characteristic 2 which contains all

values s we are interested in, [n] (interpreted appropriately) as a subset. We start

by defining different levels of secret sharing.
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Definition 7 (1-level sharing): We say a value s has been 1-level shared if there

exists a polynomial Fs(x) with degree at most t such that (1) Fs(0) = s and (2) party

Pi holds the share si
def
= Fs(i). In this case, we say that Fs(x) 1-level shares s, or

alternatively, s is 1-level shared by Fs(x).

Note that if sa, sb are 1-level shared by the polynomials Fsa
(x) and Fsb

(x)

respectively, then for any publicly-known α, β ∈ F the value αs + βs′ is 1-level

shared as well. To see this, observe that αFsa
(x) + βFsb

(x) is a polynomial with

degree at most t, αFsa
(0) + βFsb

(0) = αsa + βsb and each Pi can compute the value

αFsa
(i) + βFsb

(i).

Definition 8 (2-level sharing): We say a value s has been 2-level shared if

(1) There exists a polynomial Fs(x) of degree at most t that 1-level shares s.

(2) For i ∈ [n], the value si
def
= Fs(i) has been 1-level shared by the polynomial

Fsi
(x).

(3) Each honest party Pi knows the polynomial Fsi
(x).

♦

Note that if s has been 2-level shared, then s has been 1-level shared as well.

Definition 9 (3-level sharing): We say a value s has been 3-level shared if

(1) There exists a polynomial Fs(x) of degree at most t that 1-level shares s.

(2) For i ∈ [n], the value si
def
= Fs(i) has been 2-level shared; in particular, this

implies si is 1-level shared by a polynomial Fsi
(x).

74



(3) Each party Pi knows the polynomial Fsi
(x).

♦

Note that if s has been 3-level shared, then s has been 2-level shared as well.

Also note that if both sa, sb have been 3-level shared, then for any publicly-known

α, β ∈ F the value αs+βs′ is 3-level shared as well. We now generalize the definition

of VSS (cf. Definition 3) as follows:

Definition 10 (Generalized verifiable secret sharing): A two-phase protocol for

parties P = {P1, . . . , Pn}, where a distinguished dealer P ∗ ∈ P holds initial input s,

is a VSS protocol with 2-level (resp., 3-level) sharing tolerating t malicious parties

if the following conditions hold for any adversary controlling at most t parties:

Validity By the end of the first phase, some value s′ is 2-level (resp., 3-level) shared.

Moreover, if the dealer is honest then s′ = s.

Secrecy If the dealer is honest during the first phase (the sharing phase), then at

the end of this phase the joint view of the malicious parties is independent of

the dealer’s input s.

Reconstruction All honest parties will output s′ at the end of the reconstruction

phase. ♦

Next, we construct VSS protocols with 2(3)-level sharing. If s is 1-level shared,

and t < n/3, then the parties can reconstruct s in one round: each party Pi sends

Fs(i) to all other parties, and then each party obtains the polynomial Fs(x) (and

hence s
def
= Fs(0)) by applying Reed-Solomon error-correction [RS60] to the received
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values. Therefore, we focus on constructing the sharing phase of the VSS protocols.

We first construct a VSS protocol with 2-level sharing; then, based on this protocol,

we construct a VSS protocol with 3-level sharing.

Lemma 4.2.1 There exists a VSS protocol with 2-level sharing tolerating t < n/3

malicious parties such that the round complexity of its sharing phase is (7, 1).

Proof We observe that the VSS protocol given in Lemma 2.2.3 is in fact a VSS

protocol with 2-level sharing, as long as a default value s′ is 2-level shared when

the (corrupted) dealer is disqualified. Secrecy follows directly from the definition

of VSS. We now argue validity. Following the proof in Lemma 2.2.3, by the end

of the sharing phase, as long as the dealer has not been disqualified, there exists

a bivariate degree-t polynomial F ′(x, y), such that each Pi holds the polynomials

gi(x)
def
= F ′(x, i), hi(y)

def
= F ′(i, y). Hence the value F ′(0, 0) is 2-level shared since:

• Each Pi knows F ′(0, i) = gi(0), so F ′(0, 0) is 1-level shared by the polynomial

F ′(0, y)

• For i ∈ [n], the value F ′(0, i) has been 1-level shared by the polynomial gi(x) =

F ′(x, i), as each Pj knows the value gi(j) = F ′(j, i) = hj(i)

• Pi knows the polynomial gi(x)

Moreover, if the dealer is honest, then F ′(0, 0) = s. Thus validity holds.

We now move on to construct a VSS protocol with 3-level sharing:

Lemma 4.2.2 There exists a VSS protocol with 3-level sharing tolerating t < n/3

malicious parties such that the round complexity of its sharing phase is (8, 1).
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Proof The idea of our construction is as follows: using the sharing phase of a VSS

protocol with 2-level sharing, the dealer shares the secret s, as well as n values g1,

. . . , gn such that gi = fs(i) for all i ∈ [n], where fs(x) is the polynomial that 1-level

shares s. To enable Pi to reconstruct the polynomial Fgi
(x) that 1-level shares gi,

each party Pj sends its share Fgi
(j) to Pi afterwards, then Pi applies Reed-Solomon

error correction to reconstruct the polynomial. If the dealer is honest, then s would

have been 3-level shared. However, a corrupted dealer can cheat by sharing a value

gi 6= fs(i). To prevent this from happening, the parties reconstruct the values

{gi − fs(i)} and check if all of them are equal to 0. Note that this is possible since

both gi and fs(i) have been 1-level shared.

We give the protocol specification below. When we say the dealer is disqualified

we mean that execution of the protocol halts, and a default value s′ is 3-level shared

(via some default polynomials). We use the VSS protocol Π given in Lemma 4.2.1 as

a building block for the following reason: the dealer gets to choose the polynomial

that shares the secret prior to any message exchange. This enables us to run the

n + 1 invocations of the sharing phase in parallel.

Step 1 The dealer shares s using the sharing phase of the VSS protocol Π. Let fs(y)

be the polynomial that 1-level shares s. The dealer shares g1
def
= fs(1), . . . , gn

def
=

fs(n) using n additional invocations of the sharing phase of Π.

Step 2 If the dealer is disqualified in any invocation of the sharing phase in the

previous step, then it is disqualified. Otherwise, s, g1, . . . , gn have been 2-

level shared. Let fsi
(x) be the polynomial that 1-level shares fs(i), and let
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gi(x) be the polynomial that 1-level shares gi. For 1 ≤ j ≤ n, each Pi sends

di,j
def
= fsj

(i) − gj(i) to all parties; Pi also sends gj(i) to Pj .

Output determination Let d1(x), . . . , dn(x) be the degree-t polynomials result-

ing from applying Reed-Solomon error-correction to {d1,1, . . . , dn,1}, . . . , {d1,n,

. . . , dn,n}. If there exists a j ∈ [n] such that dj(0) 6= 0, then the dealer is dis-

qualified. We note that all parties have the same view on {dj(0)} since both

fsi
(0) and gi(0) have been 1-level shared. Otherwise, Pi computes the polyno-

mial gi(x) by applying Reed-Solomon error-correction to the shares it received.

We first observe that the round complexity of the sharing phase of the above

protocol is (8, 1): The round complexity of step 1 is (7, 1) and step 2 takes one

round.

We first prove secrecy. For the rest of this paragraph, assume the dealer is

honest. Following the secrecy property of the underlying VSS protocol with 2-level

sharing, if Pi is honest, then the adversary does not learn any new information

about fs(i) when the dealer shares gi
def
= fs(i) using VSS. On the other hand, if Pi

is corrupted, then the adversary already knows the value of fs(i) and thus it does

not learn any additional information when the dealer shares gi. Hence the view of

the adversary remains independent of s after step 1. If the dealer is honest, then

di(0) = 0. Learning the polynomial di(x) in step 2 does not give the adversary any

additional information about gi.

Next, we prove validity. It is easy to see that an honest dealer will not be

disqualified. Thus the value s is 3-level shared. Now consider a dealer who is not
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disqualified (the case of a disqualified malicious dealer is trivial). In this case, d1(0)

= . . . = dn(0) = 0. Hence fsi
(0) = gi for all i. Thus fs(0) has been 3-level shared

since:

• fs(0) is 1-level shared by the polynomial fs(x).

• For i ∈ [n], gi = fs(i) has been 2-level shared.

• Let gi(x) be the polynomial 1-level sharing gi. Pi knows the polynomial gi(x)

as Pi reconstructs it in the output determination step.

4.2.2 Generating Random Multiplication Triples

In this section, we construct a (17, 3)-round protocol for generating random

multiplication triples. (We describe the protocol for generating one such triple, but

it can be parallelized to generate as many as needed.) Specifically, at the end of the

protocol there will exist three values a, b, c such that:

1. a, b, and c are 1-level shared.

2. c = ab.

3. Given the view of the adversary, a and b are uniformly distributed in F.

We then use a technique from [FGG+06] to reduce the round complexity of the

protocol to (11, 3).

We start by recalling the following technical lemma concerning multiplication

of shares [GRR98]:
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Lemma 4.2.3 Let A(x), B(x) be two polynomials of degree at most t, and α1, . . . ,

α2t+1 ∈ F distinct elements. Then A(0) · B(0) =
∑2t+1

i=1 βi · A(αi) · B(αi) for some

constants β1, . . . , β2t+1 ∈ F.

On a high level, our protocol proceeds as follows:

1. Two random values a and b are shared among the parties such that the view

of the adversary is independent of a and b.

2. Let A(x) and B(x) be the polynomials that 1-level shares a and b respectively.

Pi shares the product of A(i) and B(i) and proves that the sharing is done

correctly. The method we use for proving is adapted from [BGW88]. The

high level idea is as follows: A(x)B(x) is a polynomial of degree 2t. Suppose

Pi shares a random polynomial F
(t)
i (x) of degree t with the leading coefficient

same as that of A(x)B(x). Then G
(t)
i (x)

def
= A(x)B(x) − F

(t)
i (x)xt is a poly-

nomial of degree 2t − 1; moreover, A(0)B(0) = G
(t)
i (0) and each honest party

Pj knows the value of G
(t)
i (j). Repeating the above process t − 1 times, we

will get a degree−t polynomial G
(1)
i (x) such that G

(1)
i (0) = A(0)B(0) and each

honest party Pj knows the value G
(1)
i (j).

However, if Pi is corrupted, then G
(1)
i (x) may not be a degree−t polynomial.

For instance, the leading coefficient of F
(t)
i (x) may not be equal to that of

A(x)B(x). To prevent the above from happening, Pi is required to share a

degree−t polynomial Gi(x) = G
(1)
i (x). Again, if Pi is corrupted, these two

polynomials may not be the same. But each honest party Pj can check if

Gi(j) is equal to G
(1)
i (j). If Gi(j) = G

(1)
i (j) for all honest Pj , and since the
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degree of G
(1)
i (x) is at most 2t, it then follows that Gi(x) = G

(1)
i (x).

3. Following Lemma 4.2.3, c has been shared as well.

We now give the details:

Step 1 Each party Pi shares two random values a(i) and b(i) using the sharing phase

of a VSS protocol with 3-level sharing.

Step 2 Let a =
∑

i a
(i) and b =

∑

i b
(i). Note that both a and b have been 3-level

shared. Let A(x) and B(x) be the polynomials that 1-level share a and b

respectively. Notice that ai
def
= A(i) and bi

def
= B(i) have been 2-level shared,

and Pi knows the polynomial Ai(x) (respectively Bi(x)) that 1-level shares ai

(respectively bi). Let Di(x)
def
= Ai(x)Bi(x) = aibi + c1x + · · · + c2tx

2t. Each

Pi acts as the dealer in t + 1 (parallel) invocations of the sharing phase of the

VSS protocol in Lemma 4.2.1, but with the following modifications on how Pi

picks the random bivariate polynomials in the first round:

• In the 1st invocation, Pi picks the random bivariate polynomial such

that the coefficient of yt is equal to c2t. Let F
(t)
i (x, y) be the bivariate

polynomial chosen by Pi, and let D
(t)
i (y)

def
= F

(t)
i (0, y)

def
= rt,0 +rt,1y+ · · ·+

rt,t−1y
t−1 + c2ty

t.

• In the 2nd invocation, Pi picks the random bivariate polynomial such

that the coefficient of yt is equal to (c2t−1−rt,t−1). Let F
(t−1)
i (x, y) be the

bivariate polynomial chosen by Pi, and let D
(t−1)
i (y)

def
= F

(t−1)
i (0, y)

def
=

rt−1,0 + rt−1,1y + · · · + rt−1,t−1y
t−1 + (c2t−1 − rt,t−1)y

t.
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• In the 3rd invocation, Pi picks the random bivariate polynomial such that

the coefficient of yt is equal to (c2t−2−rt,t−2−rt−1,t−1). Let F
(t−2)
i (x, y) be

the bivariate polynomial chosen by Pi, and let D
(t−2)
i (y)

def
= F

(t−2)
i (0, y)

def
=

rt−2,0 + rt−2,1y + · · · + rt−2,t−1y
t−1 + (c2t−2 − rt,t−2 − rt−1,t−1)y

t.

· · ·

• In the tth invocation, Pi picks the random bivariate polynomial such that

the coefficient of yt is equal to ct+1−rt,1−rt−1,2−· · ·−r2,t−1. Let F
(1)
i (x, y)

be the bivariate polynomial chosen by Pi, and let D
(1)
i (y)

def
= F

(1)
i (0, y)

def
=

r1,0 + r1,1y + · · · + r1,t−1y
t−1 + (ct+1 − rt,1 − rt−1,2 − · · · − r2,t−1)y

t.

• In the (t + 1)th invocation, Pi picks the random bivariate polynomial

F
(0)
i (x, y) with the restriction that D

(0)
i (y)

def
= F

(0)
i (0, y) = Ai(y)Bi(y) −

∑t

ℓ=1 yℓD
(ℓ)
i (y) ( Ai(y)Bi(y) −

∑t

ℓ=1 yℓD
(ℓ)
i (y) is a polynomial of degree

at most t, see Claim 4.2.4).

Step 3 For 0 ≤ ℓ ≤ t, let d
(ℓ)
j,i

def
= D

(ℓ)
i (j). Following the protocol specification in

Lemma 4.2.1, Pj knows these values; moreover, these values have been 1-level

shared. Let aj,i and bj,i be the 1-level shares held by Pj with respect to the

value ai and bi. Both aj,i and bj,i have been 1-level shared since ai and bi have

been 2-level shared. If the following equality does not hold:

d
(0)
j,i = aj,ibj,i −

t
∑

ℓ=1

jℓd
(ℓ)
j,i ,

then Pj broadcasts “complaint Pi”.

Step 4 For each Pj that broadcasts “complaint Pi”, the parties reconstruct the
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following values:

d
(0)
j,i , aj,i, bj,i, d

(1)
j,i , . . . , d

(ℓ)
j,i

The reconstruction is possible since all the above values have been 1-level

shared. The parties verify if the complaint by Pj is valid. If the complaint is

valid, then Pi is disqualified.

Output Determination Let T be the set of non-disqualified parties with the 2t+1

smallest identifier. It follows from Claim 4.2.5 that such T exists. It follows

from Claim 4.2.6 that for all Pi ∈ T , aibi has been 2-level shared. Following

Lemma 4.2.3, c = ab has been 2-level shared.

We first compute the round complexity of the above protocol. Step 1 invokes

the sharing phase of a VSS protocol with 3-level sharing. From Lemma 4.2.2, the

round complexity of this step is (8, 1). The round complexity of step 2 is (7, 1).

Step 3 requires one round of broadcast and step 4 requires one round of interaction.

Thus the round complexity of the above protocol is (17, 3).

We now proceed to analyze the above protocol.

Claim 4.2.4 Ai(y)Bi(y) −
∑t

ℓ=1 yℓD
(ℓ)
i (y) is a polynomial of degree at most t.

Proof We have:
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Ai(y)Bi(y) −
t

∑

ℓ=1

yℓD
(ℓ)
i (y)

= aibi + c1y + . . . + c2t−2y
2t−2 + c2t−1y

2t−1 + c2ty
2t

− rt,0y
t + rt,1y

t+1 + . . . + rt,t−2y
2t−2 + rt,t−1y

2t−1 + c2ty
2t

− rt−1,0y
t−1 + rt−1,1y

t + . . . + rt−1,t−1y
2t−2 + (c2t−1 − rt,t−1)y

2t−1

− rt−2,0y
t−2 + rt−2,1y

t−1 + . . . + rt−2,t−1y
2t−3 + (c2t−2 − rt,t−2 − rt−1,t−1)y

2t−2

− . . .

− r1,0y + r1,1y
2 + . . . + r1,t−1y

t + (ct+1 − rt,1 − rt−1,2 − . . . − r2,t−1)y
t+1

= (ct − rt,0 − rt−1,1 − . . . − r1,t−1)y
t

+ (ct−1 − rt−1,0 − rt−2,1 − . . . − r1,t−2)y
t−1

+ . . . + (c2 − r2,0 − r1,1)y
2 + (c1 − r1,0)y + aibi

Claim 4.2.5 If Pi remains honest by the end of the protocol, then Pi will not be

disqualified.

Proof It follows directly from the protocol specification.

Claim 4.2.6 If Pi is not disqualified, then D
(0)
i (0) = aibi and thus aibi has been

2-level shared.

Proof We will show that D
(0)
i (y) = Ai(y)Bi(y) −

∑t

ℓ=1 yℓD
(ℓ)
i (y). It then follows

that D
(0)
i (0) = Ai(0)Bi(0) = aibi. Assume D

(0)
i (y) 6= Ai(y)Bi(y) −

∑t
ℓ=1 yℓD

(ℓ)
i (y).
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Since Ai(y)Bi(y)−
∑t

ℓ=1 yℓD
(ℓ)
i (y) is a polynomial of degree at most 2t and D

(0)
i (y)

is a polynomial of degree at most t, and there are at least 2t+1 honest parties, there

must exist an honest party Pj such that D
(0)
i (j) 6= Ai(j)Bi(j) −

∑t

ℓ=1 jℓD
(ℓ)
i (j). Pj

will broadcast “complaint Pi” in step 3. All parties will reconstruct D
(0)
i (j), D

(1)
i (j),

. . . , D
(t)
i (j), Ai(j), Bi(j) in step 4 and find that the complaint by Pj is valid. Pi

will be disqualified.

Following the above two claims, by the end of the protocol, there exist three

values a, b, and c such that c = ab and all three values have been 2-level shared.

What is left is to show that a, b are both randomly distributed from the view of the

adversary.

Claim 4.2.7 a and b are uniformly distributed given the view of the adversary.

Proof Note that if Pi is honest, then by the secrecy of VSS, the view of the

adversary is independent of a(i) and b(i) in step 1. Hence, a(j) and b(j) shared by a

malicious party Pj are independent of a(i) and b(i). (This is so as a(j) and b(j) can be

reconstructed from the view of the adversary.) It follows that a and b are randomly

distributed after step 1.

We now show that the view of the adversary remains independent of a and

b throughout steps 2 – 4. The proof in Lemma 4.2.1 can be directly adapted to

show that, in step 2, in the first t invocations of the sharing phase of VSS in which

an honest Pi acts as the dealer, the view of the adversary is independent of the

coefficient of yt of the corresponding bivariate polynomials. Thus the adversary

does not gain any information in the first t invocations. Now consider the last
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((t+1)th) invocation. We claim that the view of the adversary remains independent

of F
(0)
i (0, 0) = Ai(0)Bi(0) after this invocation. If Pi is honest, then F

(0)
i (0, y) =

Ai(y)Bi(y)−
∑t

ℓ=1 yℓD
(ℓ)
i (y). After the (t+1)th invocation, the only information the

adversary learns about F
(0)
i (0, y) are the shares held by corrupted parties Pj (i.e.,

F
(0)
i (0, j)). However, the adversary can compute the value F

(0)
i (0, j) = Ai(j)Bi(j)−

∑t

ℓ=1 jℓD
(ℓ)
i (j) solely based on its view in the first t invocations. Thus the claim

holds.

In step three, an honest party will never complain against another honest

party. Hence the adversary does not learn any additional information in step four.

The round complexity of the above protocol is (17, 3). We can apply a tech-

nique from [FGG+06] to modify the protocol such that the round complexity is

reduced to (11, 3):

• In step 2 of the above protocol, Pi acts as the dealer in t+1 (parallel) invoca-

tions of the sharing phase of the VSS protocol in Lemma 4.2.1 except that Pi

picks the t + 1 random bivariate polynomials {F
(k)
i (x, y)} according to some

specified constraints.

• In the modified protocol, in step 1, Pi acts as the dealer in t + 1 (parallel)

invocations of the sharing phase of the VSS protocol in Lemma 4.2.1 with the

modification that Pi picks the t+1 random bivariate polynomials {R
(k)
i (x, y)}

completely at random; in step 2, Pi picks the t + 1 random bivariate polyno-

mials {F
(k)
i (x, y)} according to the specified constraints of the above protocol
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and broadcasts the bivariate polynomials {F
(k)
i (x, y) − R

(k)
i (x, y)}. Note that

a party can compute its shares of {F
(k)
i (x, y)} solely based on its shares of

{R
(k)
i (x, y)} and the bivariate polynomials {F

(k)
i (x, y) − R

(k)
i (x, y)}.

In the modified protocol, the adversary does not gain any additional informa-

tion. On the other hand, the round complexity of step 2 is now (1, 1) (instead of

(7, 1)). Thus, we have the following lemma:

Lemma 4.2.8 There exists a protocol with round complexity (11, 3) tolerating t <

n/3 malicious parties that generates random multiplication triples.

4.2.3 Constant-Round MPC using One Round of Broadcast

In Section 4.2.3.1, we show how to implement the setup phase using one round

of broadcast. Based on this result, in Section 4.2.3.2, we show how to construct a

constant-round MPC protocol with round complexity (O(1), 1).

4.2.3.1 Implementing the Setup Phase with One Round of

Broadcast

By running in parallel the VSS protocol in Lemma 4.2.1 and the protocol for

generating random multiplication triples given in Section 4.2.2, we obtain a (11, 3)-

round protocol Πi that simultaneously allows a party Pi to share its input and

generate sufficiently-many random multiplication triples. We remark that, in the

resulting protocol, broadcast is invoked in the 7th, 9th and 10th rounds.
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We now show how to transform Πi into a (21, 1)-round protocol Π′
i with the

following properties:

• By the end of the protocol, all honest parties output a common bit trust(i);

• If Pi is honest, then trust(i) = 1. Moreover, the view of the adversary remains

independent of Pi’s input.

• If trust(i) = 1, then Pi’s input as well as all the random multiplication triples

have been 2-level shared. Furthermore, given the view of the adversary, the

first two components of each multiplication triple (a, b, c) are uniformly dis-

tributed in the field F.

Π′
i proceeds as follows: Each party Pj initializes a binary flag fj to 1. Roughly

speaking, the flag fj indicates whether Pj “trusts” Pi or not. The parties then run

an execution of Πi. When a party P is directed by Πi to send message m to another

party over a point-to-point channel, it simply sends this message. When a party P

is directed to broadcast a message m in the 7th or 9th round of Πi, all parties run

the following “simulated broadcast” sub-routine:

• P gradecasts the message m.

• Pi gradecasts the message it output in the previous step.

• Let (mj , gj) and (m′
j , g

′
j) be the output of party Pj in step 1 and step 2,

respectively. Within the underlying execution of Πi, party Pj will use m′
j as

the message “broadcast” by P . Furthermore, Pj sets fj := 0 if either (or both)

of the following conditions hold: (1)g′
j 6= 2, or (2)m′

j 6= mj and gj = 2.
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In the 10th round of Πi, when a party Pj is directed to broadcast a message m, it

simply broadcasts this message. In addition, Pj broadcasts the flag fj. If fewer

than 2t + 1 parties broadcast fj = 1, then all parties set trust(i) = 0; otherwise, all

parties set trust(i) = 1.

The compilation from Πi to Π′
i is essentially the same as the compilation of VSS

to moderated VSS stated in Section 3.1, except that we retain the last invocation

of broadcast in Πi. The proof of correctness is also similar. We include the proof

below for the sake of completeness.

We now prove that Π′
i achieves the claimed properties. Consider the case

that Pi is honest. No honest party Pj sets fj := 0. To see this, note that if Pi

is honest then g′
j = 2 each time the simulated broadcast sub-routine is executed.

Furthermore, if Pj outputs some mj and gj = 2 in step 1 of that sub-routine then,

by definition of gradecast (see Definition 2), Pi also outputs mj in step 1. Hence

m′
j = mj and fj remains 1. Therefore, at least 2t + 1 parties will broadcast f = 1

, and so Di = 1. The secrecy of the random multiplication triples following readily

from the security of Πi.

To show the third property, assume Di = 1. It implies that there exists at

least one honest party Pj who holds fj = 1 by the end of the protocol. Consider any

execution of the simulated broadcast subroutine. We show that the functionality of

broadcast was achieved in that execution. Since fj = 1, then g′
j = 2. Since g′

j = 2,

the properties of gradecast imply that any honest party Pk holds m′
k = m′

j and so

all honest parties agree on the message that was “broadcast”. Hence Π′
i achieves

the functionality of Π.
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Note that although a malicious Pi can influence the value of trust(i) output

by the parties, the third property of Π′
i implies that the influence is independent of

the values of the multiplication triples being shared.

Using the gradecast protocol in Lemma 2.2.1, two rounds of broadcast in Πi

are replaced by 12 rounds of interactions in Π′
i. Thus the round complexity of Π′

i is

(21, 1).

The following implementation of the setup phase requires (21, 1)-rounds:

1. Run protocols {Π′
i}

n
i=1 in parallel.

2. A party Pi is disqualified if trustj(i) 6= 1. If Pi is disqualified, then a default

value is used as the input for Pi.

3. Let i∗ be the minimum value such that Pi∗ is not disqualified. The set of

random multiplication triples that the parties will use is taken to be the set

that was generated in Π′
i∗ .

4.2.3.2 The MPC Protocol

We start by reviewing the results from [Bea91a, DI05]. Then we show how to

obtain a constant-round MPC protocol using one round of broadcast by combining

their results and the result from the last section.

The following observation is due to Beaver [Bea91a]:

Lemma 4.2.9 Suppose a random multiplication triple (a, b, c) and two values x and

y have been 1-level shared. Then the value x · y can be 1-level shared after one round

of secret reconstruction.
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Proof We include the proof for the sake of completeness. The parties reconstruct

the values dx = x−a and dy = y− b. Then, in a non-interactive manner, each party

can compute its share of dxdy + dxb + dya + c (using its shares of a, b, c). Note that

since c = ab, we have dxdy + dxb + dya + c = xy. (Recall that the characteristic of

the field is 2.)

Assuming the existence of one-way functions, Damg̊ard and Ishai [DI05] give

a multiparty computation protocol with round complexity (O(1), O(1)). We review

their protocol in the Appendix A.1, but on a high level, their protocol ΠDI can be

summarized as follows:

Step 1 (In parallel) Each party shares some values in GF [2] using the sharing phase

of a VSS protocol such that these values will be 1-level shared.

Step 2 Parties compute shares of degree-3 polynomials in the already shared values

(over GF [2]).

Step 3 Based on the shares it obtained in the previous step, a party (locally)

computes some values and send these to other parties.

Step 4 A party constructs its output based on the values it received in the previous

step.

The protocol requires the values shared in step 1 to be in GF [2]. while the

VSS protocols that we have presented assume the values are from GF [2k] where

2k ≥ n. Our VSS protocols can still be used, but with an additional step: to ensure

that each shared value x is equal to 0 or 1, parties reconstruct x2 − x and verify

91



that it is equal to 0 before proceeding to step 2. If the outcome is not zero, then

the corresponding party is disqualified and a default value for x is used.

Let K1 be the total number of bits shared by all parties in step 1 and K2 be

total number of multiplications needed to evaluate the polynomials in step 2. We

now present our MPC protocol:

Step 1 Using the protocol for implementing the setup phase as described in Sec-

tion 4.2.3.1, K1 + K2 random multiplication triples, as well as the required

values as stated in step 1 of ΠDI are 1-level shared.

Step 2 For every value x shared by a Pi, the parties reconstruct x2−x. If x2−x 6= 0,

then Pi is disqualified. If Pi is disqualified, then a default value is used as the

value of x. Following Lemma 4.2.9, this can be done using two rounds of secret

reconstruction and consumes a random multiplication triple.

Step 3 Parties compute shares of degree-3 polynomials in the already shared values

over GF [2k].

Step 4 The parties continue the protocol as specified in step 3 and step 4 of ΠDI.

In the above protocol, step 1 requires 21 rounds and 1 round of broadcast.

Both step 2 and step 3 require 2 rounds. Step 4 requires 1 round. Thus, we have

the following theorem:

Theorem 4.2.10 Assuming the existence of one-way functions, there exists a se-

cure multiparty computation protocol tolerating t < n/3 malicious parties with round

complexity (26, 1).
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Following Corollary 3.2.2, this immediately gives a MPC protocol with (ex-

pected) round complexity (47, 0). However, we can do better. The protocol in

Theorem 4.2.10 does not use broadcast until the 21th round. In Section 3.2.1, we

have made the observation that some components of our broadcast protocol (in

particular, the first phase of an OLE protocol) can be carried out in advance even

before the values to be broadcast are known. This observation allows us to save 6

rounds of interaction. Thus, we have the following corollary:

Corollary 4.2.11 Assuming the existence of one-way functions, there exists a se-

cure multiparty computation protocol tolerating t < n/3 malicious parties with (ex-

pected) round complexity 41.

4.3 The Authenticated Case (t < n/2)

In this section, we assume a PKI and a secure digital signature scheme (which

can be constructed assuming the existence of one-way functions [Rom90]). On a

high level, the construction is similar to the case of t < n/3 with the following

differences:

1. Since t may be greater than n/3, we can no longer apply Reed-Solomon error

correction to reconstruct shared values. Thus, we no longer have the linearity

of VSS for free. To deal with this issue, we use the information checking tool

from [CDD+99]. Roughly speaking, the information checking tool enables us

to construct VSS protocols with linearity; moreover, the shares will be “au-

thenticated” (i.e., a corrupted party will not be able to forge an invalid share),
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so we no longer need error correction for secret reconstruction. Unfortunately,

the protocols as described in [CDD+99] require invocations of broadcast. We

show how to eliminate the usage of broadcast by utilizing the PKI.

2. The presence of a PKI enables us to “catch” a malicious party who cheats more

easily. For instance, if a malicious party Pi sends two contradicting messages

(with valid signatures) to Pj and Pk, then the latter two parties can conclude

that Pi is cheating upon exchange of messages. This allows us to construct

more round-efficient protocols.

3. As in the case of t < n/3 (see Section 4.2.2), in the protocol for sharing

a random multiplication triple (a, b, c), the parties first share two random

numbers a and b and then each party shares aibi (where ai and bi are the

shares held by Pi with respect to a and b) and proves that the correct value

has been shared. In order for the parties to compute their shares of c (by

applying Lemma 4.2.3), there should exist a set of 2t + 1 parties Pi that have

correctly shared aibi. For t < n/3, this condition is always satisfied since there

are at least 2t + 1 honest parties. However, if t < n/2, then in the worst case,

only t + 1 (honest) parties will correctly share the product of their shares.

Hence if a party does not share the product of its shares correctly, then an

additional step is need to make the corresponding shares public.

Roadmap In Section 4.3.1, we define and construct an information checking tool

that does not require broadcasting. In Section 4.3.2, we introduce the notion of

IC-signature (which can be readily constructed from information checking tool).
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Roughly speaking, IC-signature is like standard signature except that it has the

linearity property. Using such notion, in Section 4.3.3, we define and construct VSS

protocols with 2(3)-level sharing and IC-authentication. Shares generated by these

protocols have the linearity property and are “authenticated”. In Section 4.3.4,

using the above VSS protocols, we construct a protocol that generates random

multiplication triples, and then an authenticated MPC protocol that uses one round

of broadcast.

Throughout this section, we assume that each party Pi maintains a set of

binary variables {trusti,j} which are all initialized to 1. Our protocols are designed

such that whenever an honest Pi sets trusti,j = 0, with all but negligible probability,

Pj is malicious. For each triple (i, j, k), we assume that Pi and Pk share a common

secret αi,j,k 6= 0 6= 1 such that the view of the adversary is independent of it if both

Pi and Pk are honest. This can be achieved by having Pi picks and sends a random

value αi,j,k 6= 0 6= 1 to Pk at the beginning.

4.3.1 Information Checking Tool

We start by defining and constructing 2-cast protocol which then we will use

to construct the information checking tool.

Definition 11 (2-cast): A protocol for three parties where there are two receivers

Pi and Pj , and a distinguished sender holds initial input m, is a 2-cast protocol if

the following conditions hold for any adversary:

• All honest parties output the same message m′.
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• If the sender is honest, then m = m′. ♦

Lemma 4.3.1 There exists an authenticated 2-cast protocol with round complexity

(2, 0).

Proof It follows from observation that the following protocol is a 2-cast protocol:

Round 1 The sender signs and sends m to the two receivers Pi and Pj , and then

output m. Let (mi, σi) and (mj , σj) be the message and the signature received

by Pi and Pj respectively.

Round 2 The two receivers exchange the signature and the message they receive

in the first round.

• If mi = mj and σi and σj are both valid signatures of mi and mj , then

the receivers output mi;

• else if σi is a valid signature on mi but σj is not a valid signature on mj ,

then the receivers output mi;

• else if σj is a valid signature on mj but σi is not a valid signature on mi,

then the receivers output mj;

• else the receivers output a default message.

We now move on to present the definition of information checking tool. In an

information checking tool, there are 3 parties, the dealer, the intermediary and the
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recipient. Roughly speaking, the tool is a weaken version of a standard signature

scheme: after receiving a message from the dealer, the intermediary can forward the

message to the recipient and convince the recipient that the message is originated

from the dealer. However, the intermediary will not be able to convince an arbitrary

party (other than the recipient) that it has received such a message from the dealer.

This relaxed definition enables us to construct the tool with linearity property. The

formal definition (adapted from [CDD+99]) is given below.

Definition There are 3 parties, the dealer Pi, the intermediary Pj and the recipient

Pk. An information checking (IC) tool consists of three phases:

1. ICsend: all three parties take part in this phase. Pi hands a secret s to Pj and

some auxiliary data to both Pj and Pk. Pj accepts s or rejects s.

2. ICauth: all three parties take part in this phase. If Pj accepts s in ICsend, then

Pj ensures that (an honest) Pk will accept s in ICreveal.

3. ICreveal: only Pj and Pk take part in this phase. In this phase Pk receives a

value s′ from Pj , along with some auxiliary data. Pk either accepts s′ or sets

trustk,j := 0.

The IC scheme has the following properties:

• Correctness:

– If Pi, Pj and Pk are honest, and Pi has a secret s, then Pi will accept s

in ICSend and Pj will accept s in ICreveal.
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– If Pj and Pk are honest, and Pj accepts s in ICSend, then Pk will accept

s in ICreveal with all but negligible probability.

– If Pi and Pk are honest, then in ICreveal, with all but negligible probabil-

ity, Pk will not accept any value s′ that is different from s.

– If an honest party Pk sets trustk,i = 0 (resp. trustk,j = 0) during the

execution of the scheme, then with all but negligible probability, Pi (resp.

Pj) is corrupted.

• Secrecy: If Pi and Pj are honest, then the view of Pk in the phases ICsend and

ICauth is independent of s.

• Linearity: Suppose Pi, Pj, Pk have executed ICsend and ICauth for two different

values s1 and s2. Pj can reveal βs1 + γs2 to Pk for some known constants β

and γ in ICreveal. ♦

Protocol Construction The protocol below is based on the protocol in [CDD+99].

Here, by utilizing the PKI, we are able to avoid using broadcast and (slightly)

simplify the original protocol.

We say a triple (a, b, c) is αi,j,k-consistent if there exists a degree-1 polynomial

w such that w(0) = a, w(1) = b and w(αi,j,k) = c. In the protocol description below,

we write α for αi,j,k.

ICsend(Pi, Pj , Pk, s, α) (Round Complexity : (1, 0))

1. Pi signs and sends s to Pj ; Pi picks random y, s′, y′, computes z and z′ such

that (s, y, z) and (s′, y′, z′) are α-consistent; Pi sends s′, y, y′ to Pj; Pi sends z
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and z′ to Pk. If Pj receives a valid signature of s, then Pj accepts s else Pj

rejects s.

ICauth(Pi, Pj, Pk, s, α) (Round Complexity : (5, 0))

1. If Pj accepts s in ICsend, then Pj picks a random d and 2-casts (d, s′+ds, y′+dy)

to Pi and Pk else Pj 2-casts (Not taking part) and exits this phase.

2. If Pi detects that Pj has cheated in step 1, then Pi 2-casts (s, y) to Pj and

Pk; Pk adjusts the value of z such that (s, y, z) are α-consistent; else if (s′ +

ds, y′ + dy, z′ + dz) is not α-consistent, then Pk sets trustk,i := 0.

3. If Pj detects that Pi has cheated in step 2, then Pj sends s (along with a

signature of Pi on s) and y to Pk; if that happens, then Pk adjusts the value

of z such that (s, y, z) is α-consistent.

ICreveal(Pj, Pk, s, α) (Round Complexity : (1, 0))

1. Pj sends (s, y) to Pk; if trustk,j = 0, then Pk will always reject; else if trustk,i =

0, then Pk will always accept; else Pk accepts or sets trustk,j := 0 depending

on whether (s, y, z) is α-consistent.

Proof of Correctness We now move on to prove that the above protocol is indeed

an information checking tool.

• Correctness:

– If Pi, Pj and Pk are all honest, then it is easy to see that Pj will accept s

in ICsend and Pk will accept s in ICval.
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– If Pj and Pk are honest, and Pj accepts s in ICsend, then there are four

possible cases:

1. Pi does not 2-cast anything in step 2 of ICauth and (s′ + ds, y′ +

dy, z′ + dz) is α-consistent.

2. Pi does not 2-cast anything in step 2 of ICauth and (s′ + ds, y′ +

dy, z′ + dz) is not α-consistent.

3. Pi 2-cast (s̄, ȳ) in step 2 of ICauth and (s̄ 6= s or ȳ 6= y).

4. Pi 2-casts (s, y) in step 2 of ICauth phase.

Following the descriptions of the protocol, an honest Pk will always accept

what an honest Pj sent it in ICval for case (2) and case (4). For case (3),

an honest Pj will send (s, y) with a valid signature from Pi on s to Pk in

step 3. Pk will adjust the value of z accordingly. Hence Pk will accept

s in ICval. For case (1), Pk will not accept s if and only if (s, y, z) is

not α-consistent. We claim that if (s, y, z) is not α-consistent, then the

probability that (s′ + ds, y′ + dy, z′ + dz) is α-consistent is negligible over

random choice of d. Assume there exists two values a and b such that a 6=

b, both (s′+as, y′+ay, z′+az) and (s′+bs, y′+by, z′+bz) are α-consistent.

Then (s, y, z) is α-consistent too. Hence if (s, y, z) is not α-consistent,

there exists at most one value of d such that (s′ + ds, y′ + dy, z′ + dz) is

α-consistent. The claim then follows.

– If Pi and Pk are honest, then note that the view of Pj during ICsend and

ICauth is independent of α. If Pk accepts a value s′ 6= s, then it means

100



that a malicious Pj has guessed the value of α correctly. However, even if

multiple IC protocols can be executed between the triple (Pi, Pj, Pk) using

the same value α, a malicious Pj can only have one chance of guessing

the right value of α (Pk will set trustk,j := 0 if Pj makes a wrong guess).

Hence Pk will only accept s′ 6= s with a negligible probability.

– It follows from the above proof that if Pk is honest, then for any honest

party Pa ∈ {Pi, Pj}, then Pk will set trustk,a := 0 only with negligible

probability.

• Secrecy: If Pi and Pj are honest, then in ICsend and ICreveal, the adversary (if

Pk is corrupted) learns z, z′, d, s′ + ds, y′ + dy. However, since Pi and Pj are

both honest, (s′ + ds, y′ + dy, z′ + dz) is always α-consistent. Given s′ + ds,

z′+dz and α, the adversary can compute y′+dy by itself. It is easy to see that

the distribution of z, z′, d, s′ + ds is independent of s. Hence secrecy holds.

• Linearity: Suppose Pi, Pj, Pk have executed ICsend and ICauth for two different

values s1 and s2 using the same α. Now Pj wants to reveal βs1 +γs2 to Pk for

some known constants β and γ. In ICreveal, Pj can send (βs1 +γs2, βy1 +γy2)

to Pk; Pk accepts or rejects depending on trustk,i, trustk,j and whether (βs1 +

γs2, βy1 + γy2, βz1 + γz2) is αi,j,k-consistent.

4.3.2 IC-Signature

It will be handy to have the notion of IC-signature (a similar definition ap-

peared in [CDD+99, Section 4]) when we define and construct VSS protocols with
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2(3)-level sharing. Roughly speaking, an IC-signature scheme is similar to a (stan-

dard) signature scheme but it can have the linearity property. There are two parties

Pi and Pj , and Pi has a secret s. An IC-signature scheme has three phases:

• ICssend(Pi, Pj, s): Executes ICsend(Pi, Pj , Pk, s, αi,j,k) for all parties Pk. If Pj

receives the same s in all invocations, then Pj accepts s else Pj rejects.

• ICsauth(Pi, Pj, s): If Pj accepts s in ICssend, then executes ICsauth(Pi, Pj,Pk,s,

αi,j,k) for all parties Pk.

• ICsreveal(Pj , s): If Pj accepts s in ICssend, then executes ICreveal(Pj , Pk, s)

for all parties Pk.

The round complexities of ICssend, ICsauth and ICsreveal are (1, 0), (5, 0)

and (1, 0) respectively. If trustj,i = 1 after executions of ICssend(Pi, Pj, s) and IC-

sauth(Pi, Pj, s), then we say Pj obtains a IC-signature of s from Pi. If trustk,j = 1

after the execution of ICsreval(Pj, s), then we say Pk accepts the IC-signature of s

from Pj .

Following the properties of the information checking scheme given in the previ-

ous section, it is easy to see that the following conditions hold with all but negligible

probability:

• If Pj obtains a IC-signature of s from Pi, then an honest party Pk will accept

s from Pj in ICsreveal. Moreover, if Pi and Pj are both honest, then the view

of the adversary is independent of s before ICsreveal.

• If a (malicious) Pj does not obtain a IC-signature of s′ from Pi, then no honest
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party Pk will accept s′ in ICsreveal.

• If Pj obtains a IC-signature of s1 and s2 from Pi, then Pj can reveal the value

of βs1 + γs2 to all parties by executing ICsreveal(Pj , βs1 + γs2).

4.3.3 Generalized Secret Sharing with IC-signatures

Next, we provide an analogue of Section 4.2.1 for secret sharing using IC-

signatures. We start by extending the definitions of 2(3)-level sharing.

Definition 12 (2-level sharing with IC-authentication): We say that a value s has

been 2-level shared with IC-authentication if the following two conditions hold:

• There exists t+1 polynomials Fs(x), Fs1
(x), . . . , Fsn

(x), each of degree at most

t, such that Fs(0) = s, Fs1
(0) = Fs(1), . . . , Fsn

(0) = Fs(n).

• Each honest Pi knows the polynomial Fsi
(x). In addition, for all j ∈ [n], either

Pj has obtained a IC-signature on Fsi
(j) from (potentially corrupted) Pi or

the value of Fsi
(j) has been made public.

♦

We call Fs(x) the polynomial that 1-level shares s.

Definition 13 (3-level sharing with IC-authentication): We say that a value s has

been 3-level shared with IC-authentication if the following conditions hold:

• s has been 2-level shared with IC-authentication.

• Let Fs(x) be the polynomial that 1-level shares s. For 1 ≤ i ≤ n, the value
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Fs(i) has been 2-level shared; Pi knows the polynomial Fsi
(x) that 1-level

shares Fs(i).

♦

We now generalize the definition of VSS (cf. Definition 3) as follows:

Definition 14 (Generalized verifiable secret sharing): A two-phase protocol for par-

ties P = {P1, . . . , Pn}, where a distinguished dealer P ∗ ∈ P holds an initial input s,

is a VSS protocol with 2-level (resp., 3-level) sharing and IC-authentication tolerat-

ing t malicious parties if the following conditions hold for any adversary controlling

at most t parties:

Validity By the end of the first phase, some value s′ is 2-level (resp., 3-level) shared

with IC-authentication. Moreover, if the dealer is honest then s′ = s.

Secrecy If the dealer is honest by the end of the first phase (the sharing phase),

then at the end of the first phase the joint view of the malicious parties is

independent of the dealer’s input s.

Reconstruction All honest parties output s′ at the end of the reconstruction phase.

♦

Remark If both s and s′ have been 2-level shared with IC-authentication, then

following the linearity of IC-signature, s + s′ has been 2-level shared with IC-

authentication as well.2

2It may be the case that for some pair (i, j), Pj has obtained a IC-signature on Fsi
(j) from Pi

while the value of Fs′

i
(j) has been made public. However, following the linearity of IC-signature,

it means that Pj has obtained a IC-signature on Fsi
(j) + Fs′

i
(j) from Pi.
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We now proceed to construct authenticated VSS protocol with 2(3)-level shar-

ing and IC-authentication. First, we make the following observation related to secret

reconstruction:

Lemma 4.3.2 Suppose s has been 2(3)-level shared with IC-authentication. As-

suming t < n/2, then the parties can reconstruct s using one round of interaction.

Proof Note that by definition, if s has been 3-level shared, then s has been 2-

level shared as well. If s has been 2-level shared, then s can be constructed by the

following routine:

Message Exchange For each i, if the value of Fsi
(k) has not been made public,

then Pk executes ICsreveal(Pk, Fsi
(k)).

Secret Reconstruction For each i, let

Sk
i =















(j, Fsi
(j)) :

Fsi
(j) has been made public, or

Pk accepts the IC-signature of Fsi
(j) from Pj















and

Sk =















(j, F ′
si
(0)) :

A polynomial F ′
si
(x) of degree at most t

can be obtained by interpolating the points in Sk
i















Party Pk then outputs s = F ′
s(0) where F ′

s(x) is the polynomial obtained

through interpolating the points in Sk.

First, we show that if a polynomial F ′
si
(x) of degree at most t can be inter-

polated from the set of points in Sk
i , then F ′

si
(x) is equal to Fsi

(x). Consider an

honest party Pj . Either Fsi
(j) has been made public or Pk will (only) accept the
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IC-signature of Fsi
(j) from Pj (following the definition of IC-signature, see Sec-

tion 4.3.2). Hence F ′
si
(j) = Fsi

(j). Since there are at least t+1 honest parties, both

F ′
si
(x) and Fsi

(x) are polynomials of degree at most t, it follows that F ′
si
(x) = Fsi

(x).

Next, we show that if Pi is honest, then Pk can always interpolate the poly-

nomial Fsi
(x) from the set Sk

i . If the value Fsi
(j) has not been made public, then

following the definition of IC-signature, Pk will only accept a value from Pj if that

value is equal to Fsi
(j). Moreover, if Pj is honest, then Pk will always accept the

IC-signature of Fsi
(j). Since there are at least t + 1 honest parties, and Fsi

(x) is

of degree at most t, it follows that Pk can always interpolate the polynomial Fsi
(x)

from the set Sk
i .

Since Fs(x) is of degree at most t and there are at least t + 1 honest parties,

following from the previous paragraph, F ′
s(x) = Fs(x) can always be reconstructed

from Sk. Hence the party Pk can reconstruct s = Fs(0).

Given the above lemma, we can now focus on constructing the sharing phase

of VSS protocol with 2(3)-level sharing and IC-authentication.

4.3.3.1 VSS Protocol with 2-Level Sharing

The following protocol is based on the sharing phase of the authenticated VSS

protocol for t < n/2 given in Lemma 2.2.5. We modify the protocol so that it is

with 2-level sharing and IC-authentication.

We consider a finite field F with s ∈ F, |F| > n, and [n] can be injectively

mapped to F. If the dealer is disqualified then execution of the protocol halts,
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and a default value s′ is 2-level shared. We say an ordered sequence of values

(v1, . . . , vn) ∈ F
n is t-consistent if there exists a polynomial f(x) of degree at most

t such that f(i) = vi for 1 ≤ i ≤ n.

Step 1 The dealer chooses a random bivariate polynomial F (x, y) of degree at

most t in each variable with F (0, 0) = s. Let ai,j = bi,j
def
= F (i, j). The dealer

sends to party Pi the values a1,i, . . . , an,i and bi,1, . . . , bi,n, along with a digital

signature on each such value.

Step 2 If Pi receives all values (with valid signatures) from the dealer as specified in

round 1, {a1,i, a2,i, . . . , an,i} and {bi,1, bi,2, . . . , bi,n} are both t-consistent, then

Pi executes ICssend(Pi, Pj, aj,i) for all j, else Pi sends “No IC-signature” to all

Pj.

Step 3 The following two sub-routines are executed in parallel:

Sub-routine a If Pi does not send “No IC-signature” to Pj in step 2, then

executes ICsauth(Pi, Pj, aj,i).

Sub-routine b If Pi sends “No IC-signature” to all Pj in step 2, then Pi

broadcasts “Complaint: dealer”; else if Pi receives “No IC-signature”

from a party Pj, or Pi does not accept bi,j in ICssend(Pj , Pi, ai,j), then Pi

broadcasts bi,j and the signature of the dealer on bi,j (we say the value

bi,j has been made public).

Step 4 For any party Pj that broadcasts a complaint in step 3,

• The dealer broadcasts ~aj = (a1,j, . . . , an,j), ~bj = (bj,1, . . . , bj,n).
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• If Pi does not broadcast a complaint in step 3, then Pi broadcast aj,i and

bi,j with the dealer’s signature on these two values.

For any party Pj that broadcasts a value bj,i (with a valid signature from the

dealer on bj,i) in step 3,

• If Pi does not broadcast a complaint in step 3, then Pi broadcasts aj,i

and the signature of the dealer on aj,i.

The dealer is disqualified if one of the following conditions hold:

• If a party Pj broadcasts a complaint in step 3, but the dealer does not

respond to it in step 4, or either ~aj or ~bj broadcasted by the dealer is not

t-consistent or aj,j 6= bj,j.

• There exists a pair (i, j) such that each of ai,j and bi,j has been broadcast

by the dealer in step 4 or has been broadcast by a party along with the

dealer’s signature on the value, and ai,j 6= bi,j .

We now show that the above protocol implements the sharing phase of VSS

with 2-level sharing and IC-authentication.

We first prove secrecy. If the dealer is honest, no honest party will send “No

IC-signatures” to other parties in step 2. Furthermore, if Pi and Pj are both honest,

then Pj will accept bj,i = aj,i in ICssend(Pi, Pj, aj,i). Hence the value of aj,i will not

be broadcast in step 3 nor step 4. It follows that the information the adversary has

about s by the end of the sharing phase consists entirely of the values sent to the
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malicious parties by the dealer in round 1. Secrecy follows since F (x, y) is a random

bivariate polynomial of degree at most t.

Next we prove validity. The case for a disqualified malicious dealer is im-

mediate. On the other hand, it is easy to see that an honest dealer will never be

disqualified. To complete the proof, we are going to show that by the end of the

protocol, if the dealer is not disqualified, then there exists a bivariate polynomial

F ′(x, y) of degree at most t such that

• If the dealer is honest, then F ′(x, y) = F (x, y).

• Each Pi knows the polynomials F ′(x, i) and F ′(i, y). In addition, for each

Pj, either Pi has obtained a IC-signature on F ′(i, j) from Pj (even if Pj is

malicious) or the value of F ′(i, j) has been made public.

Takes F ′
s(x) = F ′(0, x) and F ′

si
(x) = F ′(x, i), it follows that F ′(0, 0) has been 2-level

shared with IC-authentication.

It follows readily from the protocol that the above holds for an honest dealer.

We now consider a malicious dealer that is not disqualified. For each honest party

Pi, let ~ai = (a1,i, . . . , an,i), ~bi = (bi,1, . . . , bi,n) be the values held by Pi by the end

of the protocol. Either Pi obtains ~ai and ~bi from the dealer in step 1 or the dealer

broadcasts ~ai and ~bi in step 4. Since the dealer is not disqualified, ~ai and ~bi are both

t-consistent.

If Pi and Pj are both honest, then ai,j = bi,j. Assume this is not true. There

are four possible cases:

• Both Pi and Pj do not broadcast a complaint in step 3 (i.e., both parties do
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not send “No IC-signature” to other parties in step 2). Then it must be the

case that Pi does not accept bi,j in ICssend(Pj , Pi, ai,j) in step 2. Hence Pi will

make bi,j public in step 3. But then Pj will broadcast ai,j (with the signature

of the dealer on it) in step 4. The dealer will be disqualified since ai,j 6= bi,j.

• Pi broadcasts a complaint in step 3 but Pj does not. Then the dealer broad-

casts bi,j in step 4. Pj will broadcast ai,j in round 4 (with the signature of the

dealer on it). Hence the dealer will be disqualified.

• Pj broadcasts a complaint in step 3 but Pi does not. This case is symmetric

to the previous case.

• Both Pi and Pj broadcast a complaint in step 3: the dealer will be disqualified

since the dealer broadcasts ai,j and bi,j in step 4 but the two values are not

equal.

Since there are at least t+1 honest parties, and both ~ai and ~bi are t-consistent

if Pi is honest, there exists a bivariate polynomial F ′(x, y) of degree at most t such

that F ′(i, k) = bi,k and F ′(k, i) = ak,i for all honest parties Pi and all 1 ≤ k ≤ n.

To complete the proof for the second item, suppose a party Pi does not obtain

a IC-signature on F ′(i, j) = bi,j from Pj in step 2. In that case, either Pi will make

F ′(i, j) public in step 3 or Pi broadcasts a complaint in step 3 (and then the dealer

will make the value public by broadcasting it in step 4 ).

The round complexity of the above protocol is (8, 2): each step 1 and step 2

requires 1 round, sub-routine b of step 3 requires 1 round of broadcast, sub-routine

a of step 3 requires 5 rounds, and step 4 requires 1 round of broadcast.
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Reducing the number of rounds of broadcast: Using the method mentioned in the

proof of Lemma 2.2.5, we can reduce the round complexity of the above protocol to

(8, 1). In more details, the above protocol invokes two rounds of broadcast in the

following manner:

• In sub-routine b of step 3, if certain conditions hold, then Pi broadcasts a

message x.

• In step 4, if Pi broadcasts a message y in sub-routine b of step 3, then Pj

broadcasts a message z.

Call the above protocol Π. We construct a protocol Π′ with round complexity

(8, 1). Π′ is the same as Π except that:

1. In sub-routine b of step 3,

(a) If Pi is supposed to broadcast x in Π, then Pi signs and sends x to all

parties.

(b) If Pk receives x with a valid signature from Pi, then Pk forwards x (with

the signature of Pi on x) to all parties.

2. In step 4,

• If Pj receives at least 1 copy of y (with a valid signature of Pi on y) from

other parties in the previous step, then Pj broadcasts (Pi, y, z).

• In parallel to the above, if Pk receives x with a valid signature from Pi

in sub-routine b, then Pk broadcasts (Pi, x).
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The party determines the output in Π′ the same way as they determine the

output in Π, except that they consider the set of broadcast values as follow:

• If at least t + 1 parties broadcast (Pi, x) in step 4 of Π′, then Pi is considered

to broadcast x in step 3 of Π.

• If at least t + 1 parties broadcast (Pi, x) and Pj broadcasts (Pi, x, z) in step 4

of Π′, then Pj is considered to broadcast z in step 4 of Π.

In Π′, sub-routine b of step 3 now requires 2 rounds, but the overall round

complexity remains (8, 1) (Notice that sub-routine a of step 3 requires 5 rounds).

Using the same argument as in Lemma 2.2.5, we can show that Π′ implements

the sharing phase of VSS with 2-level sharing and IC-authentication. Thus we have

the following:

Lemma 4.3.3 There exists an authenticated VSS protocol with 2-level sharing and

IC-authentication tolerating t < n/2 malicious parties such that the round complexity

of its sharing phase is (8, 1) and the round complexity of its reconstruction phase is

(1, 0).

4.3.3.2 VSS Protocol with 3-Level Sharing

In this section, we construct a protocol to implement the sharing phase of

VSS with 3-level sharing and IC-authentication. Basically, the dealer will run n + 1

invocations of the protocol from the previous section in parallel with the following

modifications:
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1. In the first step,

• In the first invocation, the dealer picks a random bivariate polynomial

F0(x, y) such that F0(0, 0) = s.

• In the kth (1 ≤ k ≤ n) invocation, the dealer picks random bivariate

polynomials Fk(x, y) with the restriction that Fk(0, y) = F0(k, y).

2. In the second step, to ensure that Fk(0, y) = F0(k, y) for all 1 ≤ k ≤ n, each

party Pi will do this additional checking:

• Let {ak
1,i, a

k
2,i, . . . , a

k
n,i} be the shares Pi obtained in the kth invocation.

Pi interpolates the polynomial F i
k(x) from {ak

1,i, a
k
2,i, . . . , a

k
n,i} and check

if F i
k(0) = a0

k,i.

• If there exists a k such that F i
k(0) 6= a0

k,i, then Pi will always send “No

IC-signature” to all parties in all k + 1 invocations (instead of executing

ICsauth).

3. In the forth step, if the dealer is required to broadcast the shares of a party

Pi in a particular invocation, then the dealer broadcasts the shares of Pi in all

invocations. At the end of the protocol, the dealer will be disqualified if there

exists a k such that Fk(0, i) 6= a0
k,i (in addition to the existing conditions).

We now give the description of the protocol.

Step 1 The dealer chooses a random bivariate polynomial F0(x, y) of degree at

most t in each variable with F0(0, 0) = s. In addition, the dealer chooses n
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random bivariate polynomials F1(x, y), . . . , Fn(x, y) of degree at most t in both

variables with Fk(0, y) = F0(k, y) for 1 ≤ k ≤ n. Let ak
i,j = bk

i,j

def
= Fk(i, j).

The dealer sends to party Pi the values ak
1,i, . . . , a

k
n,i and bk

i,1, . . . , b
k
i,n, along

with a digital signature on each such value.

Step 2 If Pi receives all values (with valid signatures) from the dealer as specified

in round 1, for all 0 ≤ k ≤ n, {ak
1,i, a

k
2,i, . . . , a

k
n,i}, {bk

i,1, b
k
i,2, . . . , b

k
i,n} are t-

consistent, and for all 1 ≤ k ≤ n, there exists a polynomial F i
k(x) of degree at

most t such that F i
k(z) = ak

z,i for all 1 ≤ z ≤ n and F i
k(0) = a0

k,i, then executes

ICssend(Pi, Pj, a
k
j,i) for all j and k, else Pi sends “No IC-signature” to all Pj.

Step 3 The following two sub-routines are executed in parallel:

Sub-routine a If Pi does not send “No IC-signature” to Pj in step 2, then

executes ICsauth(Pi, Pj, a
k
j,i) for all k.

Sub-routine b If Pi sends “No IC-signature” to all parties in step 2, then

Pi broadcasts “Complaint: dealer”; else if Pi receives “No IC-signature”

from Pj or Pi does not output (accept, bk
i,j) in ICssend(Pj , Pi, a

k
i,j) for any

k, then Pi broadcasts bk
i,j and the signature of the dealer on bk

i,j for all k.

Step 4 For any party Pj that broadcasts a complaint in step 3, then for all 0 ≤

k ≤ n,

• The dealer broadcasts ~ak
j = (ak

1,j, . . . , a
k
n,j),

~bk
j = (bk

j,1, . . . , b
k
j,n).

• If Pi does not broadcast a complaint in step 3, then Pi broadcast ak
j,i and

bk
i,j with the dealer’s signature on these two values.
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For any party Pj that broadcasts a value bk
j,i (with a valid signature from the

dealer on bk
j,i) in step 3,

• If Pi does not broadcast a complaint in step 3, then Pi broadcasts ak
j,i

and the signature of the dealer on ak
j,i.

The dealer is disqualified and a default value is 3-level shared if one of the

following conditions hold:

• If a party Pj broadcasts a complaint in step 3, but the dealer does not

respond to it in step 4, or for some k either ~ak
j or ~bk

j broadcast by the

dealer is not t-consistent, or ak
j,j 6= bk

j,j or there does not exist a polynomial

Fk(x) of degree at most t such that Fk(0) = a0
k,i and Fk(z) = ak

z,i for all

z.

• There exists a triple (i, j, k) such that each of ak
i,j and bk

i,j has been broad-

casted by the dealer in step 4 or has been broadcasted by a party along

with the dealer’s signature on the value, and ak
i,j 6= bk

i,j.

We now argue that the above protocol implement the sharing phase of VSS

with 3-levels sharing.

We first argue secrecy. It follows from the proof in the last section that if Pk is

honest, then the adversary does not learn any additional information on Fk(0, 0) =

F0(0, k). Thus the view of the adversary remains independent of s = F0(0, 0).

Next we argue validity. The case for an honest dealer or a disqualified malicious

dealer is obvious. We consider a malicious dealer who is not disqualified. Following
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the proof in the last section, Fk(0, 0) has been 2-level shared for 0 ≤ k ≤ n. To

complete the proof, it suffices to argue that Fk(0, y) = F0(k, y) for 1 ≤ k ≤ n. Since

the dealer is not disqualified, then Fk(0, i) = a0
k,i = F0(k, i) for all honest parties Pi.

As Fk(0, y) is a polynomial of degree at most t, Fk(0, y) = F0(k, y).

The above protocol has round complexity (8, 2). Using exactly the same tech-

nique as described in the last section, we can reduce the round complexity to (8, 1).

Thus, we have the following lemma:

Lemma 4.3.4 There exists an authenticated VSS protocol with 3-level sharing and

IC-authentication tolerating t < n/2 malicious parties such that the round complexity

of its sharing phase is (8, 1) and the round complexity of its reconstruction phase is

(1, 0).

4.3.4 Generating Random Multiplication Triples

We describe the protocol for generating one random multiplication triple, as in

Section 4.2.2, the protocol can be parallelized to generate as many triples as needed.

The protocol given below is based on the multiplication protocol in [CDD+99].

However, for the protocol given in [CDD+99], each time when a (corrupted) party

is disqualified in sharing product of its shares, the protocol is rewinded to reveal the

shares of the disqualified party. As a result, the round complexity of the protocol

may not be a constant since there can be a linear number of rewinding. We use VSS

with 3-level sharing as a building block in our construction so that rewinding is not

needed to reveal the shares of the disqualified parties (since these shares would have
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already been 2-level shared). Hence the round complexity of the overall protocol

can remain to be a constant.3

Step 1 Each party Pi picks two random values ai and bi and shares them using the

sharing phase of the VSS protocol with 3-level sharing and IC-authentication

in section 4.3.3.2.

Let A =
∑

aj and B =
∑

bj ; let A(x) and B(x) be the polynomials that 1-level

share A and B respectively; and let Ai
def
= A(i) and Bi

def
= B(i). For each 1 ≤ i ≤ n,

the following steps are carried out in parallel :

Step 2 The following three routines are carried out in parallel:

(a) Let Ai(x) and Bi(x) be the polynomials that 1-level share Ai and Bi

respectively. Pi shares AiBi using the sharing phase of the VSS protocol

with 2-level sharing and IC-authentication in Section 4.3.3.1. Let Ci(x)

be the polynomial that 1-level shares AiBi.

(b) Pi picks a random βi. Pi shares βi and βiBi using the sharing phase

of the VSS protocol with 2-level sharing and IC-authentication in Sec-

tion 4.3.3.1.. Let fβi
(x) and fβiBi

(x) be the polynomials that 1-level share

βi and βiBi respectively.

(c) Each Pj picks a random rj
i and shares it using the sharing phase of a VSS

protocol.

3In [DI05], a primitive called EVSS is used to handle this problem. EVSS is similar to VSS

with 3-level of sharing. However, we are able to construct more round-efficient protocol due to the

usage of PKI.
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Step 3 The parties reconstruct {rj
i } and computes ri =

∑

rj
i .

Step 4 Pi broadcasts the following two polynomials:

• f 1
i (x) = riAi(x) + fβi

(x)

• f 2
i (x) = f 1

i (0)Bi(x) −fβiBi
(x) − riCi(x).

Step 5 If f 1
i (k) 6= riAi(k) + fβi

(k) or f 2
i (k) 6= f 1

i (0)Bi(k)− fβiBi
(k)− riCi(k), then

Pk broadcasts a complaint, as well as the signatures of Pi on fβi
(k), fβiBi

(k)

and Ci(k) (if such values have not been made public)4.

Step 6 Let Faj
(x) and Fbj

(x) be the polynomials that 1-level share aj and bj re-

spectively; let Fai
j
(x) and Fbi

j
(x) be the polynomials that 1-level share Faj

(i)

and Fbj
(i) respectively (recall that aj and bj have been 3-level shared). If Pk

broadcasts a complaint, then for all 1 ≤ j ≤ n, Pi broadcasts Fai
j
(k), Fbi

j
(k)

and the signatures of Pk on each of the values (assuming the corresponding

value has not been made public)5.

Step 7 Pi is disqualified if one of the following conditions hold:

• Pk broadcasts a complaint in step 6 but Pi does not respond to it, or Pi

fails to provide the signatures of Pk on the required values, or f 1
i (k) 6=

ri

∑

j Fai
j
(k) + fβi

(k), or f 2
i (k) 6= f 1

i (0)
∑

j Fbi
j
(k) − fβiBi

(k) − riCi(k).

• f 2
i (0) 6= 0.

4Pk has these signatures if the VSS protocol given in Section 4.3.3.1 is used.
5Pk has these signatures since the VSS protocol given in Section 4.3.3.2 is used.
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If Pi is disqualified, then the parties reconstruct the values of Ai and Bi (note

that Ai and Bi have already been 2-level shared). Otherwise, it will follow

from our proof that Ci(0) = AiBi has been 2-level shared.

Output Determination Following Lemma 4.2.3, the parties can then compute

the shares of C non-interactively.

We now prove the correctness of the protocol by showing the following three

lemmas:

Lemma 4.3.5 The values of A =
∑

ai, B =
∑

bi are randomly distributed.

Proof The above follows directly from the secrecy property of VSS.

Lemma 4.3.6 If Pi is honest, then the view of the adversary remains independent

of AiBi by the end of the protocol.

Proof The polynomial f 1
i (x) reveals no information on AiBi as the view of the

adversary is independent of βi. Furthermore, if Pi is honest, then an adversary

corrupting t parties can reconstruct the polynomial f 2
i (x) given its view in the first

three steps: f 2
i (x) is a polynomial of degree at most t, f 2

i (0) = riAiBi+βiBi−βiBi−

riCi = 0, and the adversary knows f 2
i (k) = f 1

i (0)Bi(k)− fβiBi
(k)− riCi(k) for every

malicious party Pk. Hence broadcasting the polynomial f 2
i (x) in step 4 does not

give the adversary any new information. An honest party Pk will not broadcast a

complaint against Pi in step 5. Thus, the adversary does not learn any additional

information in steps 5 and 6. The lemma then follows as Pi will not be disqualified

in step 7.
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Following the above lemma, the view of the adversary remains independent of

A and B after the protocol.

Lemma 4.3.7 If Pi is not disqualified, Ci(0) = AiBi with all but negligible proba-

bility.

Proof If Pi is not disqualified, then f 1
i (x) = riAi(x) + fβi

(x) and f 2
i (x) =

f 1
i (0)Bi(x) − fβiBi

(x) − riCi(x) since f 1
i (x), f 2

i (x) are polynomials of degree at

most t and f 1
i (k) = riAi(k) + fβi

(k), f 2
i (k) = f 1

i (0)Bi(k) − fβiBi
(k) − riCi(k) for

all honest parties Pk. Furthermore, f 2
i (0) = 0. Hence (riAi(0) + fβi

(0))Bi(0) =

fβiBi
(0) + riCi(0). Therefore ri(Ai(0)Bi(0) − Ci(0)) = fβiBi

(0) − fβi
(0)Bi(0). Note

that ri is revealed to the adversary only after the values of fβiBi
(0) and fβi

(0) are

fixed. Since ri is randomly generated, the equality will hold only with negligible

probability if Ai(0)Bi(0) 6= Ci(0).

The round complexity of the above protocol is (21, 5): the round complexities

of both step 1 and step 2 are (8, 1); step 3 requires 1 round of interaction; each of

steps 4 to 6 require 1 round of broadcast; step 7 requires 1 round of interaction.

Reducing the round complexity: There are a number of modifications we can

do to reduce the round complexity.

Modification 1. As in Section 4.2.2, we can apply the technique from [FGG+06] to

reduce the round complexities of step 1 and step 2 from (16, 2) to (9, 2): suppose Pi

is required to share a value x in step 2 of the original protocol. Instead, Pi shares a

random value r in step 1 and broadcasts x − r in step 2.

Modification 2. We can save one round of broadcast by modifying steps 4 to 7 of
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the protocol as follows. The main idea is that we postpone the usage of broadcast

in step 4 to step 6 by using a (regular) signature scheme.

Step 4 Pi sends f 1
i (x) = riAi(x)+fβi

(x) and f 2
i (x) = f 1

i (0)Bi(x)−fβiBi
(x)−riCi(x)

to all parties, along with a signature on each polynomial.

Step 5 Pk broadcasts a complaint, as well as the signatures of Pi on fβi
(k), fβiBi

(k)

and Ci(k) (if these values have not been made public), if one of the following

conditions hold:

• Pk does not receive the polynomials f 1
i (x) or f 2

i (x) (with valid signatures).

• f 1
i (k) 6= riAi(k) + fβi

(k) or f 2
i (k) 6= f 1

i (0)Bi(k) − fβiBi
(k) − riCi(k).

Step 6 • Pk broadcasts the polynomials (along with signatures from Pi) it re-

ceived in step 4.

• If Pk broadcasts a complaint, then for all 1 ≤ j ≤ n, Pi broadcasts

Fai
j
(k), Fbi

j
(k) and the signatures of Pk on each of the values (assuming

the corresponding value has not been made public).

Step 7 Pi is disqualified if one of the following conditions hold:

• Two different polynomials (with valid signatures from Pi) for f 1
i (x) or

f 2
i (x) were broadcast in step 6.

• Pk broadcasts a complaint in step 6 but Pi does not respond to it or Pi

fails to provide the signatures of Pk on the required values or f 1
i (k) 6=

ri

∑

j Fai
j
(k) + fβi

(k) or f 2
i (k) 6= f 1

i (0)
∑

j Fbi
j
(k) − fβiBi

(k) − riCi(k) or

f 2
i (0) 6= 0.

121



If Pi is disqualified, then the parties reconstruct the values of Ai and Bi (note

that Ai and Bi have been 2-level shared).

Modification 3. After modification 2, two rounds of broadcasts are invoked in steps

5 and 6 in the following manner:

• In step 5, if certain conditions hold, then Pk broadcasts a message x.

• In step 6, if Pk broadcasts a message y in step 5, then Pi broadcasts a mes-

sage z.

To reduce the number of rounds of broadcasts from two to one, we can apply

the same technique that was used in Lemma 2.2.5 and Section 4.3.3.1, at the expense

of an additional round of interaction. We modify steps 5–7 as follows:

Step 5

Sub-step a If one of the following conditions hold: (i) Pk does not receive

the polynomials f 1
i (x) or f 2

i (x) (with valid signatures). (ii) f 1
i (k) 6=

riAi(k) + fβi
(k) or f 2

i (k) 6= f 1
i (0)Bi(k) − fβiBi

(k) − riCi(k), then Pk

sends and signs the following to all parties: “Pk complains Pi”, and the

signatures of Pi on fβi
(k), fβiBi

(k) and Ci(k) (if the values have not been

made public).

Sub-step b A party forwards all the messages it received in step a to Pi.

Step 6 • Pk broadcasts the polynomials (along with signatures from Pi) it re-

ceived in step 4, as well as all the messages it received in step 5a.
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• If Pi receives a message “Pk complains Pi” (with valid signature from Pk)

in step 5b, then for all 1 ≤ j ≤ n, Pi broadcasts Fai
j
(k), Fbi

j
(k) and the

signatures of Pk on each of the values (assuming the corresponding value

has not been made public).

Step 7 Pi is disqualified if one of the following conditions hold:

• Two different polynomials (with valid signatures from Pi) for f 1
i (x) or

f 2
i (x) were broadcast in step 6.

• In step 6, at least t + 1 parties broadcast “Pk complains Pi”, as well as

the signatures of Pi on fβi
(k), fβiBi

(k) and Ci(k) (if the values have not

been made public),

and

Pi does not respond to the complaint in step 6, or Pi fails to provide the

signatures of Pk on the required values, or f 1
i (k) 6= ri

∑

j Fai
j
(k) + fβi

(k),

or f 2
i (k) 6= f 1

i (0)
∑

j Fbi
j
(k) − fβiBi

(k) − riCi(k), or f 2
i (0) 6= 0.

If Pi is disqualified, then the parties reconstruct the values of Ai and Bi (note

that Ai and Bi have been 2-level shared).

After the above three modifications, step 1 and step 2 now require 9 rounds

(including 2 rounds of broadcast) in total; steps 3 and 4 require 1 round each, step 5

requires 2 rounds, step 6 requires 1 round of broadcast and step 7 requires 1 round

of interaction. Thus, we have the following:
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Lemma 4.3.8 There exists an authenticated protocol with round complexity (15, 3)

tolerating t < n/2 malicious parties that generates random multiplication triples.

4.3.5 Constant-Round MPC Protocols using One Round of

Broadcast

By applying the same transformation as described in Section 4.2.3.1 to the ran-

dom multiplication triples generation protocol, and using the authenticated grade-

cast protocol in Lemma 2.2.2 , we have a protocol implementing the setup phase

with round complexity (29, 1). Given this result, following the discussion in Sec-

tion 4.2.3.2, we obtain the following theorem:

Theorem 4.3.9 Assuming the existence of one-way functions and public-key in-

frastructure, there exists a secure multiparty computation protocol tolerating t < n/2

malicious parties with round complexity (34, 1).

Following Corollary 3.2.4, this immediately gives a MPC protocol with (ex-

pected) round complexity (67, 0). However, we can do better. The protocol in

Theorem 4.3.9 does not use broadcast until the 28th round. In Section 3.2.2, we

have made the observation that some components of our broadcast protocol (in

particular, the first phase of an OLE protocol) can be carried out in advance even

before the broadcast values are known. This observation allows us to save 5 rounds

of interaction. Thus, we have the following corollary:

Corollary 4.3.10 Assuming the existence of one-way functions and public-key in-

frastructure, there exists a secure multiparty computation protocol tolerating t < n/2
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malicious parties with expected round complexity 62.
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Part II

Feasibility of Broadcast in Radio Networks
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Chapter 5

Feasibility of Broadcast in Radio Networks

In this chapter, we study the feasibility of broadcast in radio networks in the

presence of malicious parties. We describe our network and adversarial model and

give the necessary definitions in Section 5.1. We give a protocol in Section 5.2

that can achieve broadcast if the adversary cannot corrupt more than a certain

number of parties in any neighborhood. We show the bound is tight in Section 5.3

in the sense that broadcast is impossible if the number of corrupted parties in some

neighborhood is greater than that number.

5.1 Preliminaries

We recall the requirements of the broadcast problem. There is a distinguished

party Pd known as the dealer that holds an initial message M. A protocol is said

to achieve broadcast if the following conditions hold:

1. All (honest) parties eventually output a common value v.

2. If the dealer is honest, then v = M.

We consider the network model where parties are located on an infinite grid

(each grid unit is a 1 × 1 square). A party can be uniquely identified by its grid

location (x, y).
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Assuming absence of collisions, if a party multicasts a message m, then all

parties within distance r (in an appropriate metric) will receive the message. This

distance r is known as the transmission radius. The set of parties within this radius is

termed as the neighborhood of (x, y) and is denoted as nbd(x, y). Parties in nbd(x, y)

are known as the neighbors of (x, y). (x, y) is considered to be in nbd(x, y). For

convenience, we denote by nbd2(x, y) the set of parties that are at most two hops

away from (x, y), i.e.,

nbd2(x, y)
def
= {(x2, y2) : ∃(x1, y1) s.t. (x2, y2) ∈ nbd(x1, y1) ∧ (x1, y1) ∈ nbd(x, y)} .

We let r̃
def
= ⌊r⌋, that is r̃ is the truncation of r in case r is not an integer.

Message Collision: When two parties Pi and Pj multicast at the same time, a

message collision occurs at the parties in nbd(Pi)∩ nbd(Pj). If parties are equipped

with collision detectors, then parties in nbd(Pi) ∩ nbd(Pj) detect that a message

collision has occurred and can substitute default messages instead. In the absence

of a collision detector, there is no guarantee on what parties in nbd(Pi) ∩ nbd(Pj)

receive.

We primarily present results in the L∞ metric, where the distance between

points (x1, y1) and (x2, y2) is given by max {|x1 − x2|, |y1 − y2|}. Note that there is

a total number of (2r̃ + 1)2 parties in a neighborhood. However, our protocols are

also applicable in the L2 (also known as the “Euclidean”) metric, where the distance

between points as before is given by
√

(x1 − x2)2 + (y1 − y2)2. This issue will be

briefly discussed in the corresponding section.
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We consider a locally bounded adversarial model, i.e., the adversary is allowed

to corrupt parties as long as no single neighborhood contains more than t corrupted

parties. We assume there exists a pre-determined time division multiple access

(TDMA) schedule such that if all parties follow the schedule, then no collision will

occur. However, a corrupted party is allowed to deviate from the schedule and cause

message collision and spoof the identity of another party for a bounded number of

times (of course, we assume an honest party always follows the schedule). Let

nc and ns be the corresponding bounds on the number of message collisions and

address spoofing respectively that a corrupted party can perform. Both nc and ns

are assumed to be known in advance by all parties.

Identity Spoofing: A corrupted party Pi is able to spoof an honest party Pj

when it is the turn of Pj to multicast a message (according to the underlying TDMA

schedule) but Pj has no message to send (according to the prescribed protocol). In

this scenario, Pi can impersonate Pj by multicasting a message m with the sender

identity falsely set to Pj . If this happens, then the parties in nbd(Pi) ∩ nbd(Pj)

receive m and treat m as originating from Pj.

We remark that the problem of identity spoofing can be reduced to message

collision by having Pj always multicasts something (e.g., a fixed dummy message)

when it is its turn instead of remaining silent. However, this approach is communi-

cation inefficient, and our solution takes a different approach.
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5.2 Feasibility Result

In this section, we present a protocol that can achieve broadcast for t <

1
2
r̃(2r̃+1) in the L∞ metric, even if a corrupted party can cause nc message collisions

and ns spoofed address. Our solutions use some known results in the literature; we

we review them in Section 5.2.1. We describe our protocol in Section 5.2.2.

In the descriptions of protocols that follow, when we say a party multicasts

a message m, we actually mean the party multicasts m in its next available turn

(according to the TDMA schedule).

5.2.1 Tools

Our solutions use some known results in the literature, reviewed below.

Broadcast in Point-to-Point Networks We only review the essentials for our

solution. Please refer to Section 1.1.1 for a more detailed review. Consider a fully

connected point-to-point network where there is an authenticated channel connect-

ing each pair of parties. An adversary cannot modify the messages sent between

honest parties, but it can observe the messages. An execution of a synchronous

protocol takes place in a sequence of rounds. In each round, parties send messages

to each other depending on the messages they have received in the previous rounds.

An adversary is said to be rushing if it can see the messages sent to corrupted parties

in the current round before it decides the outgoing messages of faulty parties for

that round. Let n be the total number of parties. The following result is well-known

(see, e.g. [PSL80, GM98]):
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Lemma 5.2.1 There exists a synchronous protocol Bp2p that achieves broadcast in

a fully connected point-to-point network in the presence of a rushing adversary cor-

rupting t < 1
3
n parties. Bp2p terminates in a fixed number of rounds and has the

following property: within the same round, an honest party always sends the same

message to all other parties.

Broadcast in Radio Networks without Collisions or Identity Spoofing

We review the broadcast algorithm Bno collision described in [BV05b] that achieves

broadcast if t < 1
2
r̃(2r̃ + 1), assuming the L∞ metric, no collisions, and no address

spoofing.

1. (Broadcast in nbd(Pd)): The dealer Pd multicasts the message M. Each

neighbor Pi of Pd outputs the first value it receives from Pd and then multicasts

a COMMITTED(Pi,M) message.

2. (Broadcast in the rest of the network): Every party Pj (including the

dealer and the neighbors of the dealer) follows the procedure below:

• On receipt of a COMMITTED(Pi, v) message from neighbor Pi, record

the message and multicast a HEARD(Pj , Pi, v) message.

• On receipt of a HEARD(Pi, Pk, v) message from neighbor Pi, record the

message (but do not propagate it further).

• (Output determination): All Pj that are not neighbors of Pd continually

check the following: if there exists a party Pq, a value v, and Pj has

recorded t + 1 messages m1, m2, . . . , mt+1 such that (i) for 1 ≤ i ≤ t + 1,
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message mi is of the form COMMITTED(Pai
, v) or HEARD(Pai

, Pa′

i
, v);

and (ii) Pa1
, . . . , Pa′

1
, . . . are all distinct neighbors of Pq, then Pj outputs

the value v.

The following is implicit in the proof of [BV05b, Theorem 2]:

Claim 5.2.2 Assuming the L∞ metric, no collisions, no address spoofing, and t <

1
2
r̃(2r̃ + 1), Bno collision achieves broadcast. In addition, there exists a constant T

(dependent on t, r̃) such that if the parties start executing Bno collision at time 0, all

honest parties in nbd2(Pd) output M by time T .

Moreover, the above holds even the adversary is given the following extra power:

when a corrupted party Pi 6= Pd performs a multicast, the neighbors of Pi can receive

different messages, subject to the choice of the adversary.

5.2.2 Our Broadcast Protocol

Following Claim 5.2.2, broadcast can be achieved in the presence of an adver-

sary that can cause message collisions and spoofed address if we obtain a protocol

based on Bno collision such that:

1. (Broadcast in nbd(Pd)): In step 1, neighbors of the dealer agree on a common

message (as the message originated from the dealer) before they propagate it

to other parties in the network.

2. (Broadcast in the rest of the network): In step 2, whenever an honest

party multicasts a message m, its neighbors are able to receive m correctly
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despite the possible occurrence of collisions caused by corrupted parties in the

vicinity. If the adversary can send spoofed address, then a party will accept

a message m from a neighbor only if it is convinced that m originated from

that neighbor.

Condition (1), above, is required to handle situations where a corrupted dealer

can collude with other corrupted parties, and use collisions to send conflicting values

to different neighbors. An example is as follows: a corrupted dealer multicasts two

inconsistent messages; a corrupted party on its left causes a message collision the

first time; a corrupted party on its right causes a message collision the second time.

Now parties on the left will get a message different from those parties on the right.

To this effect, we develop an agreement protocol among parties in nbd(Pd). We use

a primitive called weak broadcast as a building block in this agreement protocol.

Weak broadcast is defined as follows:

Definition 15 (Weak Broadcast) A party Pi performs a weak broadcast of a

message m to a set of parties S within time T if the following conditions hold:

1. An honest party Pj ∈ S outputs a message mj within time T .

2. If Pi is honest, then mj = m for all honest parties Pj ∈ S.

Note that if Pi is corrupted, then two honest parties may output two different

messages.

In Section 5.2.2.2, we show how to construct protocols for weak broadcast and,

subsequently, broadcast. But first, in Section 5.2.2.1, we will show how to achieve
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agreement among the neighbors of the dealer, assuming each party in nbd(Pd) is

capable of performing a weak broadcast to all other parties in nbd(Pd) within time T .

5.2.2.1 Agreement among Neighbors of the Dealer

We transform the broadcast protocol Bp2p (cf. Lemma 5.2.1) for n = |nbd(Pd)|

parties and working in the point-to-point model to a broadcast protocol Bnbd(Pd) for

the set nbd(Pd) and working in the radio network model.

Bnbd(Pd) simulates Bp2p round by round. Suppose in a given round of Bp2p,

party Pi is instructed to send the message mi to other parties. To simulate one

round of execution in Bp2p, the parties run the following subroutine sequentially:

for each party Pi ∈ nbd(Pd), party Pi does a weak broadcast of the

message mi to all parties in nbd(Pd).

Note that the weak broadcast may be viewed as establishing a virtual point-

to-point link between pairs of parties in nbd(Pd). Thus, it is ensured that if Pi is

honest, all other parties receive the same value from Pi. If Pi is corrupted, receipt

of conflicting values is acceptable, as Pi is capable of sending different values to

different parties in the point-to-point model (cf. Claim 5.2.2).

Finally, party Pi outputs whatever it is directed to output by Bp2p. We note

that if the round complexity of Bp2p is R, then Bnbd(Pd) takes time RT |nbd(Pd)|.

Lemma 5.2.3 If t < 1
2
r̃(2r̃ + 1), then Bnbd(Pd) ensures that all neighbors of the

dealer output the same message m′. If the dealer is honest, then m′ = M.
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Proof n = |nbd(Pd)| = (2r̃ + 1)(2r̃ + 1). If t < 1
2
r̃(2r̃ + 1), then t < 1

4
|nbd(Pd)|.

The lemma then follows from the fact that Bp2p can tolerate a rushing adversary

corrupting fewer than 1
3
n parties.

5.2.2.2 Weak Broadcast and Broadcast

Depending on different assumptions (i.e., whether corrupted parties are al-

lowed to spoof the identity of other parties, whether honest parties are equipped

with collision detectors, etc.), we show how to obtain a weak broadcast protocol and

then a protocol for broadcast in the entire network. The most general case is that

corrupted parties are allowed to do address spoofing and parties are not equipped

with collision detectors. However, we provide constructions for other cases to serve

as a warmup.

(i) No Address Spoofing; Collision Detectors

Here we assume ns = 0. An honest party may fail to receive a message from

another honest party due to message collision; however, this can happen at most

tnc number of times. We observe that if an honest party Pi multicasts a message m

for a total of tnc + 1 times, then any neighbor of Pi will receive at least one copy of

m successfully.

Based on the protocol Bno collision, we construct a protocol Brepeat where a party

Pi will execute the same instructions as in Bno collision except that:

• If Pi is instructed to multicast a message m in Bno collision, then Pi multicasts

the message m for a total of tnc + 1 times.
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• If Pi is instructed to carry out an action after receipt of a message m from Pj

in Bno collision, then Pi carries out the corresponding action only when it receives

m from Pj for the first time.

Brepeat will be used as a building block for our weak broadcast protocol. For

the sake of completeness, we include the protocol description for Brepeat:

1. The dealer Pd′ multicasts the message M for a total of tnc + 1 times. Each

neighbor Pi of Pd′ outputs the first value v it heard from Pd′ .

2. If Pi is a neighbor of Pd′ and it outputs a value v, then it multicasts the

message COMMITTED(Pi, v) for a total of tnc + 1 times.

3. Every party Pj (including the dealer and the neighbors of the dealer) follows

the procedure below:

• On receipt of a COMMITTED(Pi, v) message from a neighbor Pi for the

first time, record the message and multicast HEARD(Pj , Pi, v) for a total

of tnc + 1 times.

• On receipt of a HEARD(Pi, Pk, v) message from a neighbor Pi for the

first time, record the message (but do not re-propagate).

• Output the value v and multicast COMMITTED(Pj , v) tnc + 1 times if:

not already committed to a value, and there exists a party Pq and t + 1

recorded messages m1, m2, . . . , mt+1 such that (1) for all i, either mi =

COMMITTED(Pai
, v) or mi=HEARD(Pai

, Pai′
, v), and (2) {Pai

, Pai′
} are

all distinct neighbors of Pq.
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The dealer Pd′ mentioned above is the dealer in the protocol Brepeat (used as a

building block), and is not to be confused with the dealer of the overall broadcast. As

can be seen, Brepeat primarily differs from Bno collision in that messages are repeated

sufficiently-many times so that they will eventually be received even if there are

collisions. We have:

Lemma 5.2.4 Assume the L∞ metric, and t < 1
2
r̃(2r̃ + 1). Then there exists a

constant T (depending on r) such that the following holds: If the dealer Pd′ in

Brepeat is honest and all parties execute Brepeat for time T , then all honest parties in

nbd2(Pd′) will output m.

Proof This follows from Claim 5.2.2.

Achieving Weak Broadcast Note that in Brepeat, if the party Pd′ is corrupted

then an honest party may not output a value. However, it is easy to modify Brepeat

to obtain a weak broadcast protocol.

Lemma 5.2.5 Assume the L∞ metric, and t < 1
2
r̃(2r̃ + 1). Then for any party Pd′

there exists a protocol Bweak broadcast that allows a party Pi ∈ nbd(Pd′) (which can be

potentially corrupted) to perform a weak broadcast to nbd(Pd′) within time T .

Proof In Bweak broadcast (with Pi as dealer of the weak broadcast), parties execute

Brepeat for a period of time T . After time T , if a party has not yet been able to output

a value, then a party outputs a default value. Note that nbd(Pd) ⊆
⋃

i∈nbd(Pd) nbd2(i).

The lemma then follows from Lemma 5.2.4.

Achieving Broadcast Following Lemma 5.2.5, every party in nbd(Pd) can perform

a weak broadcast to nbd(Pd). Thus, we have the primitive required to run protocol
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Bnbd(Pd). We can now obtain a broadcast protocol resilient to a bounded number of

collisions. This protocol Breliable broadcast is a modified version of Brepeat, where the

first step of Brepeat is changed to the following:

The parties execute the protocol Bnbd(Pd) with the dealer Pd using the

message M as the input. Let mi be the output of party Pi in Bnbd(Pd).

Each neighbor Pi of Pd outputs mi.

With this change, we obtain a protocol achieving broadcast.

The above protocol can also be used in the absence of a collision detector, and

in the presence of address spoofing, after minor modifications. We discuss various

scenarios below.

(ii) No Address Spoofing; No Collision Detectors

The construction is similar to case (i) except that in the transformation of

Bno collision into Brepeat:

• If a party Pi is instructed to multicast a message m in Bno collision, then in Brepeat

Pi multicasts the message m for a total of 2tnc + 1 times.

• If a party Pi is instructed to carry out an action after receipt of a message

m from Pj in Bno collision, then in Brepeat party Pi carries out the corresponding

action only when it receives tnc + 1 copies of m from Pj.

Note that if an honest party Pi multicasts a message m for a total of 2tnc + 1

times, then a neighbor of Pi will receive at least tnc +1 legitimate copies of m. Now,

if a party Pj receives tnc + 1 copies of m from Pi, then Pj can conclude that m has

not been corrupted due to message collisions.
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(iii) Address Spoofing; Collision Detectors

In the transformation of Bno collision into Brepeat, we now do the following:

• If a party Pi is instructed to multicast a message m in Bno collision, then in Brepeat

party Pi multicasts the message m for a total of t(nc + ns) + 1 times.

• If a party Pi is instructed to carry out an action after receipt of a message

m from Pj in Bno collision, then in Brepeat party Pi carries out the corresponding

action only when it receives tns + 1 copies of m from Pj.

If an honest party Pi multicasts a message m for a total of t(nc +ns)+1 times,

then a neighbor of Pi will receive at least tns + 1 legitimate copies of m. On the

other hand, if a party Pj receives tns + 1 copies of m claimed to be originated from

Pi, then Pj can conclude that m indeed originated from Pi.

(iv) Address Spoofing; No Collision Detectors

In the transformation of Bno collision into Brepeat, we now do the following:

• If a party Pi is instructed to multicast a message m in Bno collision, then in Brepeat

party Pi multicasts the message m for a total of t(2nc + ns) + 1 times.

• If a party Pi is instructed to carry out an action after receipt of a message

m from Pj in Bno collision, then in Brepeat party Pi carries out the corresponding

action only when it receives t(nc + ns) + 1 copies of m from Pj.

If an honest party Pi multicasts a message m for a total of t(2nc + ns) + 1

times, then a neighbor of Pi will receive at least t(nc + ns) + 1 legitimate copies of
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m. On the other hand, if a party Pj receives t(nc + ns) + 1 copies of m claimed to

be originated from Pi, then Pj can conclude that m indeed originated from Pi.

Thus, we obtain the following theorem:

Theorem 5.2.6 In the L∞ metric, if t < 1
2
r̃(2r̃+1) then there exists a protocol that

achieves broadcast as long as there is a bound on the number of collisions caused

and spoofed messages sent by each corrupted party.

In fact, an analogue of Claim 5.2.2 exists for the L2 metric (due to [BV05b,

Section VIII.]):

Claim 5.2.7 Assuming the L2 metric, no collisions, no address spoofing, and t <

0.23πr̃2, Bno collision achieves broadcast. In addition, there exists a constant T (depen-

dent on t, r̃) such that if the parties start executing Bno collision at time 0, all honest

parties in nbd2(Pd) output M by time T .

Moreover, the above holds even the adversary is given the following extra power:

when a faulty party Pi 6= Ps performs a multicast, the neighbors of Pi can receive

different messages, subject to the choice of the adversary.

Thus, applying the same transformation as outlined before, we obtain that:

Theorem 5.2.8 In the L2 metric, if t < 0.23πr̃2 then there exists a protocol that

achieves broadcast as long as there is a bound on the number of collisions caused

and spoofed messages sent by each corrupted party.
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5.3 Impossibility Result

In this section, we present the lower bound result on the value of t when it is

impossible to achieve broadcast. The idea is to have the adversary corrupt a set of

parties that partitions the square grid into two halves, and act in a way such that

an honest party in one half cannot learn the messages broadcasted by a dealer in

the other half. Without loss of generality, we assume that the dealer is at (0, 0). We

remark that our impossibility result holds even if a corrupted party cannot cause

message collisions nor carry out message spoofing.

Theorem 5.3.1 If t ≥ 1
2
r̃(2r̃+1), it is impossible to achieve broadcast in L∞ metric,

even if a corrupted party cannot cause message collision nor carry out message

spoofing.

Proof We define two sets of parties S1 and S2 as follows:

• If r̃ is even, then

S1
def
= {(x, y) : 1 ≤ x ≤ r̃ ∧ x is odd}

S2
def
= {(x, y) : 1 ≤ x ≤ r̃ ∧ x is even}

• If r̃ is odd, then

S1
def
= {(x, y) : (1 ≤ x < r̃ ∧ x is odd)

∨(x = r̃ ∧ y is odd)}

S2
def
= {(x, y) : (1 ≤ x < r̃ ∧ x is even)

∨(x = r̃ ∧ y is even)}
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Figure 5.1: Lower Bound in L∞ metric

Refer to Figure 5.1 for a pictorial representation of S1 and S2.

Note that no honest party P (x, y) (for x > r) can distinguish the following

two scenarios:

• Scenario 1:

– The dealer broadcasts a message m.

– The adversary corrupts all parties in S1 and all corrupted parties act as

if the dealer broadcasted the message m̄.

– All parties in S2 are honest.

• Scenario 2:

– The dealer broadcasts a message m̄.

– The adversary corrupts all parties in S2 and all corrupted parties act as

if the dealer broadcasted the message m.

– All parties in S1 are honest.
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The only thing left is to argue the adversary has corrupted at most 1
2
r̃(2r̃ +1)

neighbors of any honest party in both scenarios. But this is true since any party

not in S1(S2) has at most 1
2
r̃(2r̃ + 1) neighbors in S1(S2).
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Chapter 6

Conclusions

In this dissertation, we have constructed round-efficient broadcast and secure

multiparty computation protocols in the point-to-point network and studied the

feasibility of broadcast in radio networks.

We have argued that if the ultimate goal is to optimize round complexity for

point-to-point networks, then it is preferable to focus on minimizing the number of

rounds in which broadcast is used rather than on minimizing the total number of

rounds. Towards this end, we have constructed constant-round secure multiparty

computation protocols that use only a single round of broadcast. The key to the

constructions is a new primitive that we introduce – moderated protocols. This new

primitive also allows us to construct the first expected constant-round authenticated

broadcast protocol for honest majority without any additional assumption.

We have initiated the study of broadcast in radio networks in the presence of

adversarial faults. We have purposed an adversarial model to model the corruptions

of parties in radio networks. Feasibility and impossibility results are present for the

L1-metric, and these results are tight under our adversarial model.

Some problems are left open by this dissertation, and we discuss these below:

Expected Constant-Round Broadcast Protocol for Dishonest Majority

We have shown the existence of an authenticated broadcast protocol for honest
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majority. However, it is of theoretical interest to determine if it is possible to achieve

broadcast in an expected constant number of rounds in the presence of dishonest

majority (i.e., more than half of the parties can be corrupted by the adversary).

Recently, some progress has been made towards resolving this question [GKKO],

but a complete answer is yet to be obtained.

Constant-Round Secure Multiparty Computation Protocol for Honest Majority Using

One Round of Broadcast

In this dissertation, we have given a constant-round secure MPC protocol for

honest majority using one round of broadcast assuming the existence of a public-key

infrastructure (PKI). This immediately gives a constant-round secure MPC protocol

using two rounds of broadcast without assuming a PKI (since a PKI can be setup

using one round of broadcast). It will be interesting to see if the number of rounds

of broadcast can be reduced from two to one.

Efficient Broadcast Protocol for Radio Networks

In our broadcast protocol, the communication overhead per each honest party

grows as Ω(t(nc + ns)) (recall that t is the maximum number of corrupted parties

in a neighborhood, nc and ns being the maximum number of collisions and address

spoofing caused by a corrupt party respectively). It is also to be noted that if

the adversary performs the maximum number of disruptive actions permitted, the

average cost of causing disruptions is Θ(nc + ns) per corrupted party. Thus, in our

protocol, honest parties are required to send more messages than corrupted parties

are assumed able to send!

One would desire a more communication-efficient broadcast protocol, or at
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least a protocol that requires honest parties to send out more messages only when the

corrupted parties send out more messages. Our protocols do not achieve this since

they are proactive, requiring parties to repeatedly send messages sufficiently-many

times to overcome any collisions (or instances of address spoofing) that may occur.

It would be of interest to determine whether a reactive protocol might perform

better in the above regard.
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Chapter A

Appendix

A.1 Multiparty computation protocol with round complex-

ity (O(1), O(1))

In below, we sketch the protocol due to Damg̊ard and Ishai[DI05] with em-

phasis on the part which requires interactions between parties. We refer the readers

to [DI05] for a complete protocol description and explanation. We assume the func-

tion to be computed is described as a Boolean circuit. Let W be the total number

of wires. And we number the wires from 0 to W -1.

Step 1 For each wire w = 0, . . . , W − 1,

- Party Pi shares a random bit λi
w by VSS. Let λw =

∑

λi
w mod 2. A

party compute its share of λw.

- Party Pi shares 2 random keys si
2w, si

2w+1 of length K by VSS (K being the

security parameter). Again, the sharing is done in a bit by bit manner.

For each input bit bw held by party Pj, Pj shares bw by VSS.

Step 2 • For each input wire w and i = 1, . . . , n, each server computes a share of

the value si
2w+(bw⊕λw). Note that the value can be written as the following
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polynomial:

((1 + bw + λw) mod 2)si
2w + ((bw + λw) mod 2)si

2w+1

If si
2w and si

2w+1 are shared in a bit by bit manner, then computing the

sharing of the value si
2w+(bw⊕λw) can be reduced to computing the sharing

of K degree-2 polynomials over GF (2).

• For each wire w, the parties compute the shares of the value bw ⊕ λw.

• For each gate g in the circuit, suppose the two input wires are α and

β, the output wire is γ and the corresponding operator is ?. For each

i = 1, . . . , n, the parties compute shares of the values

a00,i
g = si

2γ+δ00
g

; δ00
g = (λα?λβ) ⊕ λγ

a01,i
g = si

2γ+δ01
g

; δ01
g = (λα?λ̄β) ⊕ λγ

a10,i
g = si

2γ+δ10
g

; δ10
g = (λ̄α?λβ) ⊕ λγ

a11,i
g = si

2γ+δ11
g

; δ11
g = (λ̄α?λ̄β) ⊕ λγ

Note that the values can be written as degree 3 polynomials in the already

shared values.

Step 3 Let acd
g = (acd,1

g , . . . , acd,n
g ) for c, d ∈ {0, 1}. Define Acd

g = (acd
g , δcd

g ). Each

party Pi computes a ciphertext (using the scheme described in [DI05]) based

on (and only on) its share of Acd
g and the keys si

2α+c and si
2β+d. Each party

Pi sends the following items to the parties who are supposed to receive the

outputs:
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• The shares of the polynomials it obtained in step 2.

• The ciphertexts it computed in the current step.

• If Pj is entitled to receive the value of output wire w, then Pi sends its

share of λw to Pj.

Step 4 Pi constructs its entitled output based on the information it received in the

previous step.
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