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We study and partially solve three distinct problems in small area estima-

tion. The problems are loosely connected by a common theme of prediction and

(empirical) Bayesian models.

In the first part of the thesis we consider prediction in a survey small area

context with spatially correlated errors. We introduce a novel asymptotic framework

in which the spatially correlated small areas form clusters, the number of such

clusters and the number of small areas in each cluster growing with sample size.

Under such an asymptotic framework we show consistency and asymptotic normality

of the parameter estimators. For empirical predictors based on model estimates,

we show through simulation and a real data example, improved prediction over

estimates ignoring spatial error-correlations.

The second part of the thesis involves using a hierarchical Bayes approach to



solve the problem of multiple comparison in small area estimation. In the context

of multiple comparison, a new class of moment matching priors is introduced. This

class includes the well-known superharmonic prior due to Stein. Through data

analysis and simulation we illustrate the use of our class of priors.

In the third part of the thesis, for a special case of the nested error regression

model, we derive a non-parametric second order unbiased estimator of the mean

squared error of the empirical best linear unbiased predictor. For the balanced case,

the Prasad-Rao estimator is shown to be second order unbiased when the small area

effects are non-normal. Through simulation we show that the Prasad-Rao estimator

is robust for departures from normality.
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Chapter 1

Introduction

1.1 Background

For effective planning of health, social and other services, and for appor-

tioning government funds, there is a growing demand among various government

agencies such as the U.S. Census Bureau, U.K. Central Statistical Office, and Sta-

tistics Canada to produce reliable estimates for smaller sub-populations, called small

areas. For example, in both developed and developing countries, governmental poli-

cies increasingly demand income and poverty estimates for small areas. In fact, in

the U.S.A., more than $130 billion of federal funds per year are allocated based on

these estimates.

A sample survey designed for a large population may select a small number

of elements - even no element - for the small area of interest. Other non-sampling

errors such as non-response may further reduce the sample size for the small area.

Thus, standard design-based methods that are solely based on the survey data, gen-

erally fail to provide small area estimates with the desired level of precision. Over
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the last two decades, different model-based approaches that borrow strength from

related data sources have been proposed in the literature. Such methods essen-

tially use explicit models to combine information from the sample survey, various

administrative/census records, and even previous surveys.

Depending on whether the data are available at the small area level or at the

unit or respondent level, two popular small area models are used.

(a) Fay-Herriot model (area level model)

In order to estimate the per-capita income of small places (population less than

1000), Fay and Herriot [18] used the following two-level empirical Bayes model:

• Level 1 (sampling model): yi|θi
ind∼ N(θi, ψi), i = 1, · · · ,m;

• Level 2 (linking model): θi
ind∼ N(x′iβ, σ2), i = 1, · · · ,m.

In the above model, Level 1 is used to account for the sampling variability of

the direct survey estimates yi of the true small area means θi. Level 2 links the true

small area means θi to a vector of q known auxiliary variables xi, often obtained

from various administrative and census records. The parameters β and σ2 of the

linking model are unknown and are estimated from the available data. In order to

estimate the sampling variability ψi, Fay and Herriot [18] employed the generalized

variance function method (see Wolter [54]) that uses some external information from

the survey. In the Fay-Herriot model, it is customary to assume that the ψi’s are

known without error, even though it is usually the case that some part of ψi is

estimated.
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The Fay-Herriot model can also be viewed as a mixed linear model:

yi = θi + ei = x′iβ + vi + ei, i = 1, · · · ,m,

where vi’s and ei’s are independent with vi
iid∼ N(0, σ2) and ei

ind∼ N(0, ψi). Fay

and Herriot [18] used random effects (also referred to as small area effects) in order

to capture the additional area-specific effects not explained by the area-specific

auxiliary variables. In contrast, the corresponding regression model without random

effects fails to capture this additional area-specific variability. Using the U.S. census

data, Fay and Herriot [18] demonstrated that their empirical Bayes (EB) estimator

[also an empirical best linear unbiased predictor (EBLUP)] performed better than

the direct survey estimator and a synthetic estimator used earlier by the U.S. Census

Bureau.

(b) Nested-error regression model (unit level model)

To estimate areas planted with corn and soybeans for twelve counties in North-

Central Iowa, Battese et al. [3] used the following model:

yij = x′ijβ + vi + eij, i = 1, . . . , m, j = 1, . . . , ni,

where yij is the jth observation in the ith small area, xij is a vector of covariates at

the unit-level, vi’s and eij’s are independent with vi
iid∼ N(0, σ2

v) and eij
iid∼ N(0, σ2

e).

Here, vi’s are area specific effects and eij’s are random effects associated with the jth

observation in the ith small area. For the nested-error regression model, the usual

parameter of interest is the small area mean θi = X
′
iβ + vi, where Xi is the known

population mean of the covariates of the ith small area.
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1.2 Linear mixed models

In this section, we borrow ideas from semi-parametric regression, spatial sta-

tistics, geostatistics and disease mapping in order to discuss possible ways of general-

izing the Fay-Herriot model. One such method is to assume that the mean function

of the response variable is an unspecified smooth function. In such cases, splines

could be used to approximate the smooth function. A second method is by modeling

the random effects; we briefly discuss the conditional autoregressive model and the

simultaneous autoregressive model. A third method is given by directly modeling

the variance-covariance matrix of the random effects.

Consider a single covariate and assume

yi = f(xi) + εi, i = 1, . . . , m, (1.1)

where εi
iid∼ N(0, σ2

ε ) and f(x) is some unspecified smooth function. Kammann and

Wand [23], Wahba [48] and Wand [50] suggest using splines to approximate the

smooth function. For example, a cubic spline basis could be used to approximate

the smooth function. However, due to the large number of parameters, usually a

linear spline basis is used to approximate f(x). We would fit

yi = βo + β1xi +
r∑

j=1

uj(xi − κj)+ + εi, i = 1, . . . , m,

via least squares, where

(xi − κj)+ =

{
0 if xi ≤ κj

xi − κj if xi > κj,

and κ1, . . . , κr are referred to as the ‘knots’. Usually r, the number of knots, is

chosen to be large, approximately one for every 3− 4 observations upto a maximum
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of 20 − 40 knots (Kammann and Wand [23]). However, the large number of knots

will lead to a rough fit. By considering a penalty term on the coefficients of the

knots (referred to as penalized splines), a much smoother fit can be achieved. That

is, (β,u) are estimated by minimizing

m∑
i=1

(
yi − βo − β1xi −

r∑
j=1

uj(xi − κj)+

)2

+ α||u||2 (1.2)

where u = (u1, . . . , ur)
′ and α is the penalty parameter. Note that in (1.2) instead

of the Euclidean norm a number of other norms could be considered (Ruppert et al.

[41]).

Minimizing (1.2) with respect to (β,u) is equivalent to treating u as a random

effect in a linear mixed model (Wahba [49]). That is, let

X =

(1 x1
...

...
1 xm

)
, Z =




(x1 − κ1)+ . . . (x1 − κr)+
...

...
(xm − κ1)+ . . . (xm − κr)+


 .

Then penalized least squares is equivalent to the best linear unbiased prediction of

(β,u) in the linear mixed model:

y = Xβ + Zu + ε (1.3)

where u ∼ N(0r, σ
2
uIr), ε ∼ N(0m, σ2

ε Im) and u, ε are independent.

In the context of small area estimation, Opsomer et al. [34] used penalized

splines to estimate the mean acid neutralizing capacity for 113 small areas. They fit

their model using a bivariate spline on the geographical co-ordinates of the centroid

of each small area. Even though we have only discussed splines for the univariate

case, extension to the bivariate case can be done by considering radial or other

specialized basis functions. We do not elaborate any further.
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We also note several other contributors to the literature on spline smoothing.

For example, Claeskens [8] derived a test statistic based on splines for testing a

parametric mean model against a nonparametric alternative. When the number of

knots and the smoothing parameter are selected as a function of m and the data,

testing a parametric mean model against a nonparametric alternative is asymptot-

ically equivalent to testing σ2
u = 0 in (1.3). Moreover, Ruppert and Carroll [42]

considered spline fitting with a penalty parameter that varies spatially. That is,

instead of assuming the penalty parameter α in (1.2) is a constant for all x, α is

considered to be a function of x. The penalty parameter is allowed to vary spatially

to adapt to possible spatial heterogeneity in the regression function.

For the linear mixed model

yi = x′iβ + ui, i = 1, · · · ,m,

we next give an overview of different ways of modeling the mean zero random effect

ui. A popular model used in spatial statistics is the conditional autoregressive model

(Besag [5] and Cressie [11]), where the ui’s are modeled as

ui|{uj : j 6= i} ∼ N
( m∑

j 6=i, j=1

cijuj, σ2
u

)
, (1.4)

and it follows from Besag [5],

u ∼ N(0m, σ2
u(Im − C)−1)

where u = (u1, . . . , um)′, C is a symmetric m ×m matrix with (i, j)th element cij,

and cii = 0. In the context of disease mapping, Clayton and Kaldor [8] considered

a conditional autoregressive model with cij = 1 if i, j are neighboring districts
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and cij = 0 otherwise. In order to estimate U.S. census undercount, Cressie [10]

considered a more general conditional autoregressive model than the one given in

(1.4).

A simultaneous autoregressive model (Cressie [11] and Ord [35]) treats the ui’s

as

ui =
m∑

j=1

cijuj + εi,

which can be expressed as

(Im − C)u = ε

u = (Im − C)−1ε,

where u = (u1, . . . , um)′, ε = (ε1, . . . , εm)′, C is a m×m matrix with (i, j)th element

cij. Moreover, assuming ε ∼ N(0m, σ2
ε Im), we have

u ∼ N(0m, σ2
ε (Im − C)−1(Im − C ′)−1).

For example, Ord [35] took C = ρW , where W is a known weighting matrix.

We also note that there are several other models for the random effects ui that

are mentioned in spatial statistics. For example, there is a spatial analog of the

moving average model that is used in time series (Cliff and Ord [9]).

In contrast to the aforementioned models for the random effects ui, the ap-

proach we take in Chapter 2 is directly modeling the variance-covariance matrix

of the random effects (in our context, the random effects are referred to as small

area effects). Rao [37] suggests using models from spatial statistics to model the
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variance-covariance matrix of the ui’s. One such example is

α1Im + α2W (1.5)

where Wij, the (i, j)th element of W , is given by

Wij = exp(−α3||hi − hj||) (1.6)

where ||hi−hj|| is the distance between small areas i and j. The covariance models

discussed in Chapter 2 are similar to (1.5)-(1.6). However, a major difference is the

asymptotic framework we consider (see Section 2.2).

1.3 Overview of thesis

In Chapter 2, by introducing a scaling factor, we consider a hybrid asymptotic

framework between infill asymptotics and increasing domain asymptotics (see Sec-

tion 2.1-2.2). We assume that the small areas can be partitioned into clusters, the

number of such clusters and the number of small areas in each cluster growing with

sample size. Under such an asymptotic framework, we suggest a few models for the

covariance matrix of the small area effects.

In Chapter 3, for the small area model we consider, we provide a method

to estimate all parameters. Moreover, we show that our parameter estimators are

consistent and asymptotically normal.

In Chapter 4, through a simulation study, we investigate the properties of the

parameter estimators derived in Chapter 3. We compare the predictor obtained

under our model and the predictor obtained under the misspecified Fay-Herriot
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model. We also investigate the conjecture that under the asymptotic framework

we consider, the maximum likelihood estimator is consistent and asymptotically

normal.

In Chapter 5, we use the small area model that was proposed in Chapter 2

and the estimation methods developed in Chapter 3 to analyze a spatial data set.

In Chapter 6, we give a short summary of the small area estimation problems

that are discussed and partially solved in Chapters 7 and 8. This chapter serves as a

bridge between the problems with spatial covariates and correlated errors, discussed

in earlier chapters, and the specialized non-spatial small area estimation problems

treated in the rest of the thesis.

In Chapter 7, for the Fay-Herriot model, we use a hierarchical Bayes (HB)

approach to develop a methodology to construct simultaneous 100(1−α)% credible

intervals. We develop a new class of moment matching priors for the prior variance

that has a desirable frequentist property.

In Chapter 8, for a special case of the nested error regression model, we derive

a nonparametric second order unbiased estimator of the mean squared error (MSE)

of the empirical best linear unbiased predictor (EBLUP). Through simulation, we

show for various parameter combinations, the Prasad and Rao [36] estimator is quite

robust for departures from normality.

In Chapter 9, we summarize our results and discuss future research problems.
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Chapter 2

Modeling

In the Fay-Herriot [18] model, the small area effects are assumed to be inde-

pendent - though in many data problems neighboring areas ought to be correlated

- and by modeling the correlation, better predictors of the small area means could

be achieved. For the models considered in Chapters 2-5, it is assumed that

yiM = θiM + ei, i ∈ S

θiM = x′iβ + viM, i ∈ U

(2.1)

where U is the set of all small areas, with |U | = M elements, and S ⊂ U is the set

of sampled small areas, with |S| = m elements. The small area means constitute a

triangular array of the type {θiM : i = 1, 2, . . . , M, M = 1, 2, . . .}. We do not observe

the small area means, but instead observe survey estimates {yiM : i ∈ S}. The xi’s

are vector valued covariates for the ith area and β ∈ Rq is an unknown vector valued

parameter. As in the Fay-Herriot model, the sampling errors ei
ind∼ N(0, ψi), the ei’s

and the viM’s are independent. The small area effect vector vU = (v1M, . . . , vMM)′ is

a mean zero normal random vector with covariance matrix ΣU(η) = ΣU, where η is

a vector valued parameter. See Section 2.2 for a discussion of variance-covariance

10



models for ΣU.

For notational convenience, the set U is re-indexed so that the first m elements

of U consist of the sampled small areas. Also, the subscript M in yiM, θiM, viM is

dropped, with the understanding that the θi’s constitute a triangular array. Given

the set of sampled small areas, the vector of survey estimates y = (y1, . . . , ym)′ can

be modeled as

y = θ + e = Xβ + v + e, (2.2)

where X = (x1, . . . ,xm)
′
, v = (v1, . . . , vm)′ and e = (e1, . . . , em)′ are independent

with v ∼ N(0, Σ) and e ∼ N(0, Ψ). Here Σ = Σ(η) is the sub-matrix of ΣU that

corresponds to the sampled small areas, and Ψ = diag(ψ1, . . . , ψm). Also,

var(y) ≡ V = V (η) = Σ + Ψ. (2.3)

2.1 Overview of asymptotics for spatial data

For spatial data, two distinct asymptotic frameworks have been studied. In-

creasing domain asymptotics refers to more and more observations being sampled

over an increasing domain D ⊂ R2 such that the Lebesgue measure of D is un-

bounded. When referring to increasing domain asymptotics, it is assumed that the

spatial locations of the observations do not become dense. That is, for some ε in-

dependent of M and ε > 0, ||hi − hj|| > ε, where hi, hj are the spatial locations of

the observations (Cressie [11] and Mardia and Marshall [26]). Under this asymp-

totic framework, Mardia and Marshall [26] showed that the maximum likelihood

11



estimator (MLE) of the covariance parameters of a Gaussian process is consistent

and asymptotically normal.

Infill asymptotics refers to observations being increasingly sampled over a

bounded domain. There are very few asymptotic results under infill asymptotics.

For example, it is known that some covariance parameters of a zero mean Gaussian

process cannot be consistently estimated, and for the remaining covariance parame-

ters, the MLE is consistent and asymptotically normal. For such results, see Abt

and Welch [1], Chen et al. [7], Stein [45], Ying [55], Zhang [56] and Zhang and

Zimmerman [57].

One of the most popular covariance models for spatial data is given by

C(hi,hj) =





σ2 + δ if i = j,

δ exp(−λ||hi − hj||) if i 6= j,
(2.4)

where δ ≥ 0, λ ≥ 0, σ2 > 0. See Cressie [11], Stein [45] and Zimmermann and

Harville [59]. The above model is referred to as the exponential covariance model

with nugget effect. Under infill asymptotics, and assuming that the spatial process

is Gaussian, when the covariance model is given by (2.4) and the spatial locations

hi are situated on a lattice in [0, 1], Chen et al. [7] showed that the MLE for σ2 is

m
1
2 -consistent. Moreover, δ and λ cannot be simultaneously consistently estimated,

but the MLE for δλ is m
1
4 -consistent. Under infill asymptotics when either the

spatial locations hi are irregularly spaced on [0, 1] or for any spatial pattern hi ∈

[0, 1]2, there are no asymptotic results in the current literature for the MLE for η =

(δ, λ, σ2)′. On the other hand, under increasing domain asymptotics and assuming

the spatial locations do not become dense, the MLE for η = (δ, λ, σ2)′ is m
1
2 -

12



consistent (Mardia and Marshall [26]).

2.2 Covariance models for the small area effects

Motivated by the results mentioned in Section 2.1, we assume the covariance

model for the small areas effects is given by a model similar to (2.4), but we consider

a hybrid asymptotic framework by introducing a scaling factor.

Since small area effects need not depend on geography alone, it would be

reasonable to assume that a number of other covariates influence the correlation

between two “neighboring” areas, and hence, z?
i is a s-dimensional vector of spatial

locations and certain categorical and continuous variables which measure spatial

similarity. The z?
i ’s are in a fixed, finite dimensional space whose dimension is

independent of M . The vector of spatial locations and covariates z?
i of the small

areas are thought to be in an increasing domain, but are scaled such that zi are in

a bounded domain.

The proposed covariance model for the small area effects is

ΣU = σ2IM + δAU (2.5)

where the (i, j)th entry of AU is given by

Aij = exp(−λMp||zi − zj||), (2.6)

where δ ≥ 0, λ ≥ 0, σ2 > 0, Mp is the scaling factor, 0 < p < 1/s is a user specified

parameter (s is the dimension of z?
i ), and the scaling is such that ||z?

i − z?
j || =

Mp||zi− zj||. Note that when δ = 0 we have the Fay-Herriot model. When p = 1/s,

13



and z?
i are only s-dimensional spatial locations, and ||z?

i − z?
j || > ε > 0, we have a

special case of the usual increasing domain asymptotic framework.

Our main assumption in Chapters 2-5 is:

Assumption (C): The set of small areas |U | can be partitioned into k (= k(M)

increasing to ∞ with M) clusters C1, . . . , Ck, with cluster sizes N1, . . . , Nk such

that
∑k

l=1 Nl = M . From each cluster Cl, nl of the Nl small areas are sampled

such that
∑k

l=1 nl = m. The nl’s are assumed to be non-random. The asymptotic

framework that is considered is k →∞ and for each l, Nl →∞, nl →∞ such that

0 < limnl,Nl→∞ nl/Nl < ∞.

Moreover, for l = 1, . . . , k,

lim sup
M→∞

Mp sup
i,j∈Cl

||zi − zj|| < ∞, (2.7)

and for all l1 6= l2,

lim inf
M→∞

Mp

log M
inf

i∈Cl1
,j∈Cl2

||zi − zj|| = ∞. (2.8)

The factor of log M in (2.8) is needed for technical reasons when deriving the

asymptotic distribution of estimators for δ and λ (see Remark 7 in Section 3.4.2

and the proof of Theorem 3.3 in Section 3.5). Note the slightly unusual definition

of what it means for two small areas to be in the same cluster. They are defined

to be in the same cluster only if, asymptotically, their unscaled distance from one

another is bounded.

Moreover, we do not want the clusters to shrink toward a point, that is, it is

14



assumed that for l = 1, . . . , k, ∃ cl > 0 such that

lim
Nl→∞

1

N2
l

∑
i,j∈Cl

I[Mp||zi−zj || ≥ cl] = εl, (2.9)

where 0 < εl ≤ 1. As will be shown in Chapter 3, (2.9) is a sufficient condition for

the parameter λ to be identified and consistently estimated.

In Chapter 3, estimation methods and asymptotic results are derived under

Assumption (C), (2.1)-(2.3) and (2.5)-(2.9). In addition, several other possible co-

variance models for the small area effects are described below.

We also mention that an alternative method to ours would be to include the

vector z?
i in the mean structure as an unspecified smooth function [similar to (1.1)].

We do not elaborate any further.

Based on how clusters were defined in (2.7)-(2.8), a cluster model for AU is

given by

Aij =





exp(−λMp||zi − zj||) if i, j,∈ Cl for some l,

0 otherwise.

(2.10)

Note that for each cluster Cl and for all i, j ∈ Cl, Aij = exp(−λMp||zi − zj||)

is a valid covariance model. Since the clusters are uncorrelated and we assume the

small area effects vector vU is a normal random vector, it follows that (2.10) is a

valid covariance model. Moreover, we do not have to limit ourselves by defining

distance as the Euclidean norm. We could use other norms in (2.6) and (2.10).

However, we need to use a distance norm that gives a positive definite matrix AU.

As is shown in Chapter 3, under Assumption (C), the asymptotic distribution

of the parameter estimators when the true model is (2.1)-(2.3), (2.5), (2.7)-(2.10) is

the same as when the true model is given by (2.1)-(2.3), (2.5)-(2.9).
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Furthermore, (2.6) can be generalized to include a vector parameter λ =

(λ1, λ2)
′. For the ith small area, let h?

i = (h?
i1, . . . , h

?
is)
′ and d?

i = (d?
i1, . . . , d

?
ia)

′ re-

spectively denote the vector of spatial locations and the vector of certain categorical

and continuous covariates. Since the scaling factors of each of the covariates and

spatial locations could be different, an alternate covariance model for the small area

effects is given by

Aij = exp
(
−λ1M

po||hi − hj|| − λ2

( a∑
r=1

Mpr(dir − djr)
2
)1

2
)

(2.11)

where hi = (hi1, . . . , his)
′ and di = (di1, . . . , dia)

′ are respectively the scaled spatial

locations and scaled covariates. For r = 1, . . . , a, Mpr is the scaling factor associated

with covariate d?
ir, where pr ≥ 0 and

∑a
r=1 pr ≤ 2 , and Mpo is the scaling factor for

the spatial locations, where 0 < po < 1/s (and s is the dimension of h?
i ). For any r,

pr = 0 means that {d?
ir : i ∈ U} is always in a bounded interval. For example, the

covariate, proportion of county residents with a college degree. Also, pr > 0 means

that {d?
ir : i ∈ U} lies in an increasing interval. For example, with an increasing

number of counties, it is possible that one may see a wider range for average county

income. Also, (2.11) is a valid covariance model. See Cressie and Huang [13].

Similarly to (2.7)-(2.8), it is assumed that the set of small areas |U | can be

partitioned into clusters C1, . . . , Ck such that for l = 1, . . . , k,

lim sup
M→∞

Mpo sup
i,j∈Cl

||hi − hj||+
( a∑

r=1

lim sup
M→∞

Mpr sup
i,j∈Cl

(dir − djr)
2
) 1

2
< ∞, (2.12)

and for all l1 6= l2,

lim inf
M→∞

Mpo

log M
inf

i∈Cl1
j∈Cl2

||hi − hj ||+
( a∑

r=1

lim inf
M→∞

Mpr

(log M)2
inf

i∈Cl1
j∈Cl2

(dir − djr)2
) 1

2 = ∞ (2.13)
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Also, similarly to (2.9), we do not want the clusters to shrink toward a point.

That is, we assume for l = 1, . . . , k, ∃ cl,1, cl,2 > 0 such that

lim
Nl→∞

1

N2
l

∑
i,j∈Cl

I
[Mpo ||hi−hj || ≥ cl,1, (

Pa
r=1 Mpr (dir−djr)2)

1
2 ≥ cl,2]

= εl, (2.14)

where 0 < εl ≤ 1.

A second cluster model for AU is given by

Aij =





exp
{
−λ1M

po ||hi − hj ||

−λ2

(∑a
r=1 Mpr(dir − djr)2

)1
2
}

if i, j,∈ Cl for some l,

0 otherwise.

(2.15)

Finally, we consider the following covariance model for AU in which small

areas within clusters are equally correlated, and small area between clusters are

uncorrelated:

AU = blockdiag(JN1 , . . . , JNk
) (2.16)

The above model could be seen as a special case of (2.10) by defining ||zi−zj|| =

0 if i, j are in the same cluster.

2.3 Prediction

As mentioned previously, one of the objectives of modeling the small area

effects is to obtain better predictors. Consider predicting a linear combination of

fixed effects and small area effects; that is, for known a ∈ Rq, ` ∈ RM , we wish to
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predict

t = a′β + `′vU (2.17)

where vU is the (population) vector of small area effects. When using the Fay-

Herriot model, the best linear unbiased predictor (BLUP) or the empirical BLUP

(EBLUP) is used to predict the parameter of interest θi (Das et al. [14], Datta and

Lahiri [15], Datta et al. [17], Lahiri and Rao [24] and Rao [37]). The same practice

is adopted in this thesis as well.

Since it was assumed that the set of all small areas U was re-indexed such that

the first m counties are observed, let vU and ΣU be partitioned as follows:

vU =

(
v
v?

)
, ΣU =

(
Σ Σ?

Σ′
? Σ??

)

where v ∈ Rm is the vector of observed small area effects, v? ∈ RM−m is the vector

of unobserved small area effects, Σ = var(v), Σ? = cov(v,v?) and Σ?? = var(v?).

For a general linear model, Rao [37] derived the BLUP of t. For the model

given by Assumption (C), (2.1)-(2.3) and (2.5)-(2.9), the BLUP of t can be derived

in a manner almost identical to the proof given in Rao [37], and hence, the proof is

omitted. The BLUP t̂(η) of t is given by

t̂(η) = a′β̃(η) + `′∆V −1(y −Xβ̃(η))

where V = Σ + Ψ = σ2Im + δA + Ψ, A is the sub-matrix of AU that corresponds to

the sampled small areas, ∆ = ∆(η) =

(
Σ
Σ′

?

)
and β̃(η) is the best linear unbiased

estimator of β. That is,

β̃(η) = (X ′V −1X)−1X ′V −1y.
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Moreover, the MSE of t̂(η) is given by

MSE[t̂(η)] = g1(η) + g2(η)

where

g1(η) = `′(ΣU −∆V −1∆′)`

g2(η) = (a−X ′V −1∆′`)′(X ′V −1X)−1(a−X ′V −1∆′`).

Note that g1(η) is the MSE of the BLUP when β is known. Once again the proof

is omitted as it is almost identical to that given in Rao [37].

Since the BLUP t̂(η) involves unknown parameters, an empirical version of

the BLUP, referred to as the EBLUP, is given by

t̂(η̂) = a′β̃(η̂) + `′∆(η̂)[V (η̂)]−1(y −Xβ̃(η̂))

where η̂ is a consistent estimator of η.

We are interested in predicting θi = x′iβ + vi. For i = 1, . . . , M , the EBLUP

θ̂i(η̂) of θi is given by

θ̂i(η̂) = x′iβ̃(η̂) + f ′i∆(η̂)[V (η̂)]−1(y −Xβ̃(η̂)) (2.18)

where fi is the ith standard basis vector in RM .

In order to compare two predictors of t, we define the relative efficiency of two

unbiased predictors t̂ and t̃ by

R(t̂, t̃) =
MSE[ t̃ ]

MSE[ t̂ ]
(2.19)
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When all parameters are known, assuming that the true model is given by

Assumption (C), (2.1)-(2.3) and (2.5)-(2.9), the following discussion seeks to calcu-

late the relative efficiency of the BLUP θ̂i of θi obtained under the true model and

the BLUP θ̃i of θi obtained under the misspecified Fay-Herriot model. Knowing the

relative efficiency of the two predictors gives an idea as to what parameter settings

would require us to use the more complex model that is proposed as opposed to the

simpler Fay-Herriot model. When β is known, θ̃i is given by

θ̃i =





x′iβ + σ2+δ
σ2+δ+ψi

(yi − x′iβ) if i ∈ S

x′iβ if i ∈ Sc.

(2.20)

It is not obvious that in (2.20), σ2+δ is the correct parameter choice. However,

using the Kullback-Leibler Information Criterion (KLIC) in (3.4), we show that the

aforementioned parameter choice minimizes the KLIC between the true model and

the misspecified Fay-Herriot model, and is therefore the correct parameter choice.

Next, we compute the MSE of θ̃i, where θ̃i is given by (2.20). For i ∈ S,

MSE[θ̃i ] = E
(
x′iβ +

σ2 + δ

σ2 + δ + ψi

(yi − x′iβ)− x′iβ − vi

)2

=
( σ2 + δ

σ2 + δ + ψi

)2

(σ2 + δ + ψi)− 2
σ2 + δ

σ2 + δ + ψi

(σ2 + δ) + (σ2 + δ)

=
(σ2 + δ)ψi

σ2 + δ + ψi

(2.21)

Also, for i ∈ Sc,

MSE[θ̃i ] = E(v2
i ) = σ2 + δ (2.22)

When β is known, it follows from Rao [37] that the MSE of θ̂i is g1(η) where

MSE[θ̂i ] = g1(η) = f ′i(ΣU −∆V −1∆′)fi (2.23)
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As a simple example, using (2.21)-(2.23) and (2.19) we compute R(θ̂i, θ̃i) for

k = 1, n = m = 20, N = M = 40 and k = 1, n = m = 40, N = M = 80. That

is, we assume there is one cluster with 40 or 80 small areas of which we sample 20

or 40 small areas. We take k = 1 for the following reason: by Assumption (C),

(2.7)-(2.8) and since all parameters are known, when predicting a small area only

observed small areas from the same cluster are used. Furthermore, for simplicity we

took ψi = 0.5 for all i ∈ S. The parameter λ was chosen so that the median within

cluster values of the off diagonal entries of AU was some number c. We chose values

c = 0.70, 0.35 that respectively correspond to λ = 0.12, 0.41.

Table 2.1: R(θ̂i, θ̃i) for sampled and non-sampled small areas when ψi = 0.5.

‘Obs.’ refers to R(θ̂i, θ̃i) for an observed area, ‘Unobs.’ refers to R(θ̂i, θ̃i) for

an unobserved area.

M m δ λ σ2 Obs. Unobs.

40 20 0.6 0.12 0.4 1.303 1.946

40 20 0.3 0.12 0.7 1.086 1.267

40 20 0.6 0.41 0.4 1.199 1.604

40 20 0.3 0.41 0.7 1.058 1.177

80 40 0.6 0.12 0.4 1.331 2.032

80 40 0.3 0.12 0.7 1.097 1.300

80 40 0.6 0.41 0.4 1.227 1.678

80 40 0.3 0.41 0.7 1.068 1.205
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In Table 2.1 the column ‘Obs’ refers to R(θ̂i, θ̃i) for an observed small area.

Similarly ‘Unobs’ refers to R(θ̂i, θ̃i) for an unobserved small area. As can be seen

from Table 2.1 larger relative efficiency is obtained for the unobserved small areas.

Moreover, large δ, m and small λ give larger relative efficiency. Note that since

k = 1, m corresponds to the number of sampled small areas in a cluster. That is,

relative efficiency depends on the number of sampled small areas in a cluster. We

also refer to Tables 4.1 and 4.2 where R(θ̂i, θ̃i) is computed when all parameters are

estimated. The tables are comparable in the sense that the parameter combinations

of (δ, λ, σ2) and n, N are the same. However, the ψi’s were not all 0.5 in Tables 4.1

and 4.2 (see Section 4.2 for how the ψi’s were generated to obtain Tables 4.1 and

4.2). We note that the relative efficiency in Tables 4.1 and 4.2 are similar to what

we have obtained here.

Next we compute (2.19) for a much simpler model. Let θ̂i

?
be the BLUP of θi

obtained under the model (2.1)-(2.3), (2.5),(2.16).

When the variance-covariance model for the small area effects is given by

(2.5),(2.16), since the k small area clusters are independent and all parameters are

known, for purposes of predicting θi, it may be assumed that k = 1 without loss of

generality. This follows from noting that when predicting θi, since the clusters are

independent, only observed small areas from the same cluster are used. For this one

cluster, m of the M small areas are sampled. The set of all small areas U is once

again re-indexed such that the first m elements of U consist of the sampled small

areas S.
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The BLUP θ̂i

?
of θi obtained under model (2.1)-(2.3), (2.5),(2.16) is

θ̂i

?
= x′iβ + f ′i

(
σ2Im + δJm

δJM−m

)
[σ2Im + δJm + Ψ]−1(y −Xβ),

and since β is known, the MSE of θ̂i

?
is given by the term g1 (Rao [37]), that is

MSE[θ̂?
i ] = f ′i

(
σ2IM + δJM

−
(

σ2Im + δJm

δJM−m

)
[σ2Im + δJm + Ψ]−1

(
σ2Im + δJm | δJM−m

) )
fi (2.24)

where
(
σ2Im + δJm | δJM−m

)
is an m×M matrix with the first m columns given

by σ2Im + δJm and the last M −m columns given by δJM−m.

For any i ∈ S, using (2.24), we calculate the MSE of θ̂?
i . Let E = diag(σ2 +

ψ1, . . . , σ
2 +ψm). By multiplying both sides of (2.25) by E + δJm, it can be checked

that

[σ2Im + δJm + Ψ]−1 = E−1 − δ

1 + δ
∑m

j=1 1/(σ2 + ψj)
E−1JmE−1 (2.25)

For a sampled small area, that is, i ∈ S, note that

f ′i
(
σ2IM + δJM)fi = σ2 + δ,

f ′i

(
σ2Im + δJm

δJM−m

)
= σ2f ′i + δ1′m,

(δ1m + σ2fi)
′E−1(δ1m + σ2fi) = δ2

m∑
j=1

1

σ2 + ψj

+
2δσ2

σ2 + ψi

+
σ4

σ2 + ψi

,

(δ1m + σ2fi)
′E−1JmE−1(δ1m + σ2fi) = (δ1m + σ2fi)

′E−11m1′mE−1(δ1m + σ2fi)

=
(
(δ1m + σ2fi)

′E−11m

)2

=
(
δ

m∑
j=1

1

σ2 + ψj

+
σ2

σ2 + ψi

)2

.
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Hence, for i ∈ S, by (2.24)

MSE[θ̂?
i ] = σ2 + δ − δ2

m∑

j=1

1
σ2 + ψj

− 2δσ2

σ2 + ψi
− σ4

σ2 + ψi
+

δ

1 + δ
∑m

j=1
1

σ2+ψj

(
δ2

( m∑

j=1

1
σ2 + ψj

)2
+

σ4

(σ2 + ψi)2
+

2δσ2

σ2 + ψi

m∑

j=1

1
σ2 + ψj

)

= σ2 − σ4

σ2 + ψi
+

(
δ − δ2

∑m
j=1 1/(σ2 + ψj)

1 + δ
∑m

j=1 1/(σ2 + ψj)

)
+

δσ4 − 2δσ2(σ2 + ψi)(
1 + δ

∑m
j=1 1/(σ2 + ψj)

)
(σ2 + ψi)2

=
σ2ψi

σ2 + ψi
+

( 1
1 + δ

∑m
j=1 1/(σ2 + ψj)

)(δσ4 − 2δσ2(σ2 + ψi) + δ(σ2 + ψi)2)
(σ2 + ψi)2

=
σ2ψi

σ2 + ψi
+

δψ2
i(

1 + δ
∑m

j=1 1/(σ2 + ψj)
)
(σ2 + ψi)2

(2.26)

For a non-sampled small area, that is, i ∈ Sc, note that

f ′i(σ
2IM + δJM)fi = σ2 + δ,

f ′i

(
σ2Im + δJm

δJM−m

)
= δ1′m,

δ1′mE−1JmE−1δ1m = δ21′mE−11m1′mE−11m

= δ2
( m∑

j=1

1

σ2 + ψj

)2

Hence by (2.24) for i ∈ Sc, we get

MSE[θ̂?
i ] = σ2 + δ − δ2

[ m∑
j=1

1

σ2 + ψj

− δ

1 + δ
∑m

j=1 1/(σ2 + ψj)

( m∑
j=1

1

σ2 + ψj

)2 ]

= σ2 + δ − δ2
∑m

j=1 1/(σ2 + ψj)

1 + δ
∑m

j=1 1/(σ2 + ψj)
(2.27)

From (2.26) and (2.21), for i ∈ S, and assuming ψi > 0 (note that if ψi = 0,

then since it was assumed that β is known, vi is also known), the relative efficiency
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of the two predictors θ̂?
i and θ̃i is

R(θ̂?
i , θ̃i) =

(
1 + δ

∑m
j=1 1/(σ2 + ψj)

)
(σ2 + ψi)

2(σ2 + δ)/(σ2 + δ + ψi)

σ2(σ2 + ψi)
(
1 + δ

∑m
j=1 1/(σ2 + ψj)

)
+ δψi

(2.28)

→
(
1 +

δ

σ2

)( σ2 + ψi

σ2 + δ + ψi

)
as m →∞

Moreover, by (2.27) and (2.22), for i ∈ Sc, the relative efficiency of the two

predictors θ̂?
i and θ̃i is

R(θ̂?
i , θ̃i) =

(σ2 + δ)
(
1 + δ

∑m
j=1 1/(σ2 + ψj)

)

(σ2 + δ)
(
1 + δ

∑m
j=1 1/(σ2 + ψj)

)
− δ2

∑m
j=1 1/(σ2 + ψj)

(2.29)

→ 1 +
δ

σ2

As can be seen from (2.28)-(2.29), the relative efficiency of θ̂?
i and θ̃i depends

on δm/σ2 (this was the case for Table 2.1 as well). Also, for non-sampled small

areas, the predictor derived from the misspecified Fay-Herriot can perform poorly

with respect to θ̂i

?
if the small areas are strongly correlated. For the sampled small

areas, the loss in efficiency by using θ̃i is not as large as the non-sampled small areas

(see Table 2.2).

For various values of m, δ, σ2 and ψi (which we took to be the same for all

small areas) we calculate (2.28), (2.29) and its limits. In Table 2.1 ‘Obs.’ refers

to (2.28) and ‘Obs.lim’ refers to the limit of (2.28). Similarly we define ‘Unobs’,

‘Unobs.lim’. Note that when deriving (2.28), (2.29) we took the number of clusters

to be 1. Hence m refers to the number of sampled small areas in a cluster. It

is interesting to note that increasing ψi from 0.5 to 1.5 increases R(θ̂?
i , θ̃i) for the

sampled small areas. As we previously mentioned, R(θ̂?
i , θ̃i) depends on δm/σ2.
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Table 2.2: R(θ̂?
i , θ̃i) and its limit for sampled and non-sampled small areas .

‘Obs.’ is R(θ̂i

?
, θ̃i) given by (2.28), ‘Obs.lim’ is the limit of (2.28), ‘Unobs.’

is R(θ̂i

?
, θ̃i) given by (2.29), ‘Unobs.lim’ is the limit of (2.29).

m δ σ2 ψi Obs. Obs.lim Unobs. Unobs.lim

20 0.6 0.4 0.5 1.418 1.500 2.263 2.500

20 0.6 0.4 1.5 1.635 1.900 2.075 2.500

20 0.3 0.7 0.5 1.110 1.143 1.333 1.429

20 0.3 0.7 1.5 1.166 1.257 1.281 1.429

40 0.6 0.4 0.5 1.456 1.500 2.371 2.500

40 0.6 0.4 1.5 1.748 1.900 2.252 2.500

40 0.3 0.7 0.5 1.125 1.143 1.375 1.429

40 0.3 0.7 1.5 1.203 1.257 1.340 1.429

Based on Tables 2.1, 2.2 and (2.28)-(2.29), we conclude this chapter by remark-

ing that for the true model given by Assumption (C), (2.1)-(2.3) and (2.5)-(2.9), in

order to achieve large relative efficiency, we require:

1. There be a large number of observations in each cluster (from our computa-

tional experience we believe n should be at least 20).

2. The cluster radius be small and δ/σ2 be large. Note that we could interpret

the results in Table 2.2 as having come from the model given by Assumption

(C), (2.1)-(2.3) and (2.5)-(2.9) with extremely small cluster radius.

However, as will be shown in Chapter 3, for good estimation of the parameters
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we require:

1. A large number of clusters (at least 20) as opposed to a large number of

observations in each cluster.

2. The cluster radius be bounded away from 0, as opposed to small cluster radius

which is needed for better prediction.
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Chapter 3

Parameter estimation

In this chapter, estimation methods and asymptotic theory of the estimators

of the fixed effects parameter β and the covariance parameter η = (δ, λ, σ2)′ are

discussed.

In spatial statistics and geostatistics, numerous estimation methods have been

developed for estimation of covariance models. We give a short review of these

methods.

A classical method of estimation is by the empirical variogram. The variogram

γ(h) of a stationary increments process Z(s) is defined as

γ(h) =
1

2
var(Z(s + h)− Z(s)).

An empirical variogram is estimated using the data, and then by visual in-

spection, a parametric variogram is selected and fitted to the empirical variogram

by least squares or generalized least squares (Cressie [11] and Zhu and Stein [58]).

However, if only the residuals of a spatial process are stationary, the mean function

is estimated by ordinary least squares, and then the residuals are used to estimate
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the empirical variogram. The empirical variogram, while popular, has certain limi-

tations. For one, the empirical variogram is correlated at different lags, making it

difficult to visually inspect and choose a model for the variogram. Moreover, para-

meter estimators obtained by fitting a model to the empirical variogram may not

be consistent (Zhu and Stein [58])

A second method is maximum likelihood. Due to the complex nature of the

variance-covariance matrix in spatial models, Mardia and Marshall [26], Richardson

et al. [39] and Zimmerman and Harville [59] suggest using gradient algorithms

such as Newton-Raphson or scoring to maximize the likelihood function. Such

methods require the inverse of the variance-covariance matrix to be evaluated at

each iteration. Note that, in general, inverting the variance-covariance matrix has

computational time O(m3) (Mardia and Marshall [26]). However, by taking into

account the covariance structure, the computational time could be reduced.

There are also iterative methods that combine two different methods of esti-

mation. For example, a spatial autoregressive model is defined as

y = Xβ + u

u = ρWu + ε

where ε ∼ N(0m, σ2Im) and W is a known weighting matrix which is usually row

normalized to equal 1. For this model, Ord [35] suggested the following iterative

method to estimate all parameters: estimate β by ordinary least squares, then

substitute the residuals into the likelihood function to estimate ρ, then obtain a

generalized least squares estimator of β, recompute ρ, and iterate until (numerical)
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convergence. Another method suggested by Ord [35] to estimate the parameters β

and ρ is to consider the profile log likelihood in terms of ρ alone. After obtaining the

estimate for ρ by maximizing the profile log likelihood, an estimate for β is obtained

by generalized least squares.

Finally, Haining [19] and Richardson et al. [39] suggest a non-parametric

method to estimate the variance-covariance matrix by using the residuals of the

ordinary least squares to estimate the covariance function at various lags. This

method, like the empirical variogram method, has its limitations.

Let κ = (β, η) denote the vector of all parameters in the model given by As-

sumption (C), (2.1)-(2.3) and (2.5)-(2.9). As mentioned, since determining the MLE

of κ involves a large amount of computational time, and due to certain technical

reasons discussed in Section 3.3, alternate methods of estimation are considered.

To further simplify matters, we do not jointly estimate all parameters, but instead

develop routines to estimate only a subset of the parameters at a time.

3.1 Estimation of (β, τ 2)

The parameter τ 2 in our model is defined as

τ 2 = δ + σ2. (3.1)

An estimator (β̂FH, τ̂ 2
FH) for (β, τ 2) is given by (subscript of FH for Fay-Herriot)

(β̂FH, τ̂ 2
FH) = argmax

β∈Rq ,τ2>0

g(β, τ 2;y) (3.2)
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where

g(β, τ 2;y) = −m

2
log 2π − 1

2

m∑
i=1

log(τ 2 + ψi)− 1

2

m∑
i=1

(yi − x′iβ)2

τ 2 + ψi

. (3.3)

Note that (3.3) is the log likelihood when the direct survey estimates yi are

assumed to follow the Fay-Herriot model. That is, we estimate (β, τ 2) by maximiz-

ing a misspecified log likelihood. White [53] showed that under certain regularity

conditions the parameter vector that maximizes the log likelihood is a consistent

estimator of the parameter vector that minimizes the Kullback-Leibler Information

Criterion (KLIC). The KLIC is defined as

I(f1, f2) = Ef1

(
log

f1

f2

)
(3.4)

where f1,f2 are respectively the true and misspecified joint densities of the obser-

vations. In our case, the true model is given by Assumption (C), (2.1)-(2.3) and

(2.5)-(2.9), and minimizing the KLIC is equivalent to maximizing

E[g(β, τ 2;y)] = −m

2
log 2π − 1

2

m∑
i=1

log(τ 2 + ψi)− 1

2

m∑
i=1

τ 2
o + ψi + (x′i(βo − β))2

τ 2 + ψi

,

where E(·) is taken with respect to the true model. Note that the correlations in

the true model do not enter the KLIC. Assuming X has full rank, the parameter

vector that minimizes the KLIC is (β, τ 2) = (βo, τ
2
o ) [see (3.12) for a proof]. Hence,

one would expect (β̂FH, τ̂ 2
FH) to be consistent. However, White’s [53] theory is not

applicable here as White [53] assumed that the true model consisted of independent

observations. In Theorems 3.1 and 3.2, sufficient conditions are given for (β̂FH, τ̂ 2
FH)

to be consistent and asymptotically normal.
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Note: For each of the theorems that follow, see Section 3.4 for the assumptions and

some remarks and Section 3.5 for the proofs.

Theorem 3.1. Suppose the true model for {yi : i ∈ S} is given by (2.1)-(2.3),

(2.5)-(2.6). Suppose τ 2
o > 0, m, M → ∞ such that 0 < limm,M→∞ m

M
< ∞ and

(A1)− (A5) in Section 3.4.1 are satisfied. Then (β̂FH, τ̂ 2
FH) is (locally) consistent for

(βo, τ
2
o ).

Theorem 3.2. Suppose in addition to the assumptions of Theorem 3.1, (A6)-(A8)

in Section 3.4.1 are also satisfied. Then



(X ′D−1
o VoD

−1
o X)−

1
2 X ′D−1

o X 0q

0′q
Pm

i=1 1/(τ2
o +ψi)

2√
2 tr(D−2

o VoD−2
o Vo)



(

β̂FH − βo

τ̂2
FH − τ2

o

)
d→ N(0q+1, Iq+1)

where Do = diag(τ 2
o + ψ1, . . . , τ

2
o + ψm), Vo = Σo + Ψ, Σo = Σ(ηo) = σ2

oIm + δoAo,

Ao = A(λo), and where A is the sub-matrix of AU that corresponds to the sampled

small areas and ηo = (δo, λo, σ
2
o)
′.

3.2 Estimation of (δ, λ)

An estimator (δ̂, λ̂) for (δ, λ) is given by

(δ̂, λ̂) = argmax
δ≥0, λ≥0

h(δ, λ;y) (3.5)

where

h(δ, λ;y) = −
k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j − δ exp(−λMp||zi − zj||)

)2

(3.6)

where ε̂i = yi − x′iβ̂, β̂ is a consistent estimator of βo that satisfies (B8), and for

l = 1, . . . , k, Cl is the lth cluster [see Assumption (C) and (2.7)-(2.8)].
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Theorem 3.3. Assume there are k clusters, C1, . . . , Ck, with cluster sizes N1, . . . , Nk

such that
∑k

l=1 Nl = M . From each cluster Cl, nl of the Nl small areas are sampled

such that
∑k

l=1 nl = m. Suppose δo > 0, λo > 0, the true model for {yi : i ∈ S} is

given by (2.1)-(2.3), (2.5)-(2.6), and (B1)-(B7) in Section 3.4.2 are satisfied, then

(δ̂, λ̂) is (locally) consistent for (δo, λo).

Theorem 3.4. Suppose in addition to the assumptions of Theorem 3.3, (B8) in

Section 3.4.2 is also satisfied, then

∑k
l=1 n2

l

(
∑k

l=1 n4
l )

1
2

K
− 1

2
o Lo

(
δ̂ − δo

λ̂− λo

)
d→ N(02, I2)

where

Ko =
8∑k

l=1 n4
l

(
tr[GoVoGoVo] − tr[GoVoHoVo]

−tr[GoVoHoVo] tr[HoVoHoVo]

)

Lo =
2∑k

l=1 n2
l

(
tr[G2

o] − tr[GoHo]

−tr[GoHo] tr[H2
o ]

)

Vo = Σ(ηo) + Ψ = σ2
oIm + δoAo + Ψ

Ao,ij = exp(−λoM
p||zi − zj||)

Go,ij =





exp(−λoM
p||zi − zj||) if i 6= j, i, j ∈ Cl for some l,

0 otherwise

Ho,ij =





δoM
p||zi − zj|| exp(−λoM

p||zi − zj||) if i 6= j, i, j,∈ Cl for some l,

0 otherwise

where Ao,ij, Go,ij, Ho,ij are respectively the (i, j)th entries of Ao, Go, Ho.
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3.3 Maximum likelihood estimator

As mentioned in Section 2.1, for spatial models under infill asymptotics there

are very few results regarding consistency and asymptotic normality of the MLE.

The difficulty of showing such results is because, for general patterns of zi, there is

no explicit expression for the inverse of the variance-covariance matrix of the random

vector y. Moreover, yet another technical difficulty is that for certain spatial models,

the rates of convergence of the parameter estimators are not necessarily identical.

For example, under infill asymptotics, Chen et al. [7] showed that only σ2 and δλ

are consistently estimable in model (2.4). Moreover, they showed that the MLE

for σ2 is m
1
2 -consistent and the MLE for δλ is m

1
4 -consistent. This result was

shown under the assumption that the zi’s are situated on a lattice in [0, 1]. Under

such an assumption, it is possible to explicitly write the inverse of the variance-

covariance matrix. Moreover, other results that show consistency and asymptotic

normality of the MLE in spatial models, assume similar restrictive conditions on

the spatial patterns to be able to write the inverse of the variance-covariance matrix

in a manageable form (Loh and Lam [25] and Ying [55]). We encounter similar

technical difficulties in trying to show the MLE is consistent and asymptotically

normal. However, we conjecture that for the model given by Assumption (C), (2.1)-

(2.3) and (2.5)-(2.9), the MLE κ̂ML of κ = (β, η) is consistent and

(
I(κ)

) 1
2
(κ̂− κo)

d→ N(0q+3, Iq+3) (3.7)
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where I(κ) is the information matrix, and using Lemma 3.7 (c), it is given by

I(κ) =




X ′VoX 0q 0q 0q

0′q
1
2tr[V −1

o AoV
−1
o Ao] δo

2 tr[V −1
o AoV

−1
o Bo] 1

2tr[V −1
o AoV

−1]

0′q
δo
2 tr[V −1

o AoV
−1
o Bo]

δ2
o
2 tr[V −1

o BoV
−1
o Bo] δo

2 tr[V −1
o BoV

−1]

0′q
1
2tr[V −1

o AoV
−1
o ] δo

2 tr[V −1
o BoV

−1
o ] 1

2tr[V −2
o ]




(3.8)

where for i, j = 1, . . . , m, Bo,ij = −Mp||zi − zj|| exp(−Mpλo||zi − zj||).

The above conjecture is based on:

1. For the balanced one way random effects model, or equivalently, when the

variance-covariance model for the small area effects is given by (2.5) and (2.16)

with no sampling errors, Nl = N , nl = n, and β is an intercept, consistency

and asymptotic normality of the MLE follows as a special case of Miller [29]:




k
1
2 0 0

0 k
1
2 0

0 0 m
1
2







β̂ML − βo

δ̂ML − δo

σ̂2
ML − σ2

o


 d→ N







0

0

0


 ,




δo 0 0

0 2δ2
o 0

0 0 2σ4
o







Note that σ̂2
ML is

√
m-consistent, but β̂ML and δ̂ML are only

√
k-consistent.

2. Under infill asymptotics, since some of the parameters are not consistently

estimable, one cannot expect (3.7) to hold in general. However, this is not the

case for our model. That is, we have already shown that all parameters are

consistently estimable.

3. Simulation results (see Section 4.4) indicate that for large k, the empirical vari-

ance of the MLE of η̂ matches the conjectured variance obtained by inverting

the information matrix [(3.8)].
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3.4 Assumptions and remarks

3.4.1 Theorems 3.1 and 3.2

(A1) X has full rank.

(A2) ψi’s are bounded such that for all i, 0 ≤ ψi ≤ ψc, for some ψc < ∞.

(A3) 0 < limm→∞(1/m)
∑m

i=1 ||xi||2 < ∞.

(A4) limm→∞(δo/m
2)

∑
i6=j ||xi||||xj|| exp(−Mpλo||zi − zj||) = 0.

(A5) limm→∞(δ2
o/m

2)
∑

i6=j exp(−2Mpλo||zi − zj||) = 0 .

(A6) limm→∞ γmax(D
−1
o VoD

−1
o )/(

∑m
i=1 γ2

i )
1
2 = 0 , where the γi’s are the eigenvalues

of D−1
o VoD

−1
o .

(A7) X ′VoX has entries of the order O(tr[V 2
o ]).

(A8) (X ′X)−1 has entries that are O(1/m).

Remark 1:

Neither of the Theorems 3.1-3.2 require Assumption (C) and (2.7)-(2.9). How-

ever, these assumptions are needed when deriving the asymptotic theory of the

estimators for δ and λ.

Remark 2:

Assumption (A3) is satisfied if for i = 1, . . . , m, ||xi|| < ∞. To derive the

asymptotic distribution of (β̂FH, τ̂ 2
FH), we require that the yi’s are uniformly asymp-

totically negligible [(A6)]. (A7) and (A8) are needed to bound (3.27) in probability.

Remark 3:

Even though we have assumed that the covariance model for the small area

effects is given by (2.5)-(2.6), we can relax this assumption. Instead of (A4)-(A5),

36



it suffices to assume that the off-diagonal entries σij of the covariance matrix of the

small area effects satisfy

(A4′) limm→∞(1/m2)
∑

i6=j ||xi||||xj||σij = 0

(A5′) limm→∞(1/m2)
∑

i6=j(σij)
2 = 0

Remark 4:

If in addition to the assumptions of Theorems 3.1 and 3.2, also Assumption

(C) and (2.7)-(2.8) hold, then (A3)-(A6) are satisfied if for i = 1, . . . , m, ||xi|| < ∞,

and

max1≤l≤k nl

(
∑k

l=1 n2
l )

1
2

→ 0.

From Theorem 3.2 the asymptotic variance of β̂FH is

var(β̂FH) = (X ′D−1
o X)−1X ′D−1

o VoD
−1
o X(X ′D−1

o X)−1.

By (A7), X ′VoX has entries that are O(tr[V 2
o ]). Also,

tr[V 2
o ] =

m∑
i,j=1

V 2
o,ij =

k∑

l=1

∑
i,j∈Cl

V 2
o,ij +

∑

l1 6=l2

∑
i∈Cl1
j∈Cl2

V 2
o,ij. (3.9)

where Vo,ij is the (i, j)th entry of Vo = σ2
oIm + δoAo + Ψ. But

∑

l1 6=l2

∑
i∈Cl1
j∈Cl2

V 2
o,ij ≤

∑

l1 6=l2

sup
i∈Cl1
j∈Cl2

exp(−2λoM
p||zi − zj||) nl1nl2

≤ sup
l1 6=l2

sup
i∈Cl1
j∈Cl2

exp(−2λoM
p||zi − zj||) m2

= sup
l1 6=l2

sup
i∈Cl1
j∈Cl2

M exp(−2λoM
p||zi − zj||) m

M
m = O(m) [by (2.8)] (3.10)
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Hence, under Assumption (C) and (2.7)-(2.8), formulas (3.9)-(3.10) imply that

O(tr[V 2
o ]) = O(

∑k
l n2

l ). Now by (A8), it follows that for i = 1, . . . , q, var(β̂i) =

O(
∑k

l n2
l /m

2). If we further assume that all the ni’s grow at the same rate, that

is there exists n such that for l = 1, . . . , k, 0 < limnl,n→∞ nl/n < ∞, then for

i = 1, . . . , q, var(β̂i) = O(1/k).

Also, from Theorem 3.2 the asymptotic variance of τ̂ 2
FH is

var(τ̂ 2
FH) =

2tr(D−2
o VoD

−2
o Vo)( ∑m

i=1
1

(τ2
o +ψi)2

)2

By (2.7)-(2.8), and the last several paragraphs, var(τ̂ 2
FH) = O(

∑k
l n2

l /m
2). Again,

if we further assume that all the ni’s grow at the same rate, then for i = 1, . . . , q,

var(β̂i) = O(1/k).

Remark 5: In practice, we could verify (A4),(A5) by checking that for all c < ∞,

1

m2

∑

i6=j

I[Mp||zi−zj ||≤c] → 0. (3.11)

Note that Assumption (C), (2.7)-(2.8) imply (3.11).

3.4.2 Theorems 3.3 and 3.4

(B1) As M →∞, also m →∞ such that 0 < limm,M→∞ m/M < ∞ and k →∞,

and for l = 1, . . . , k, nl, Nl →∞ such that 0 < limnl,Nl→∞ nl/Nl < ∞.

(B2) For l = 1, . . . , k,

lim sup
M→∞

Mp sup
i,j∈Cl

||zi − zj|| < ∞,

and for all l1 6= l2,

lim inf
M→∞

Mp

log M
inf

i∈Cl1
,j∈Cl2

||zi − zj|| = ∞.
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(B3) For l = 1, . . . , k, ∃ cl such that

lim
Nl→∞

1

N2
l

∑
i,j∈Cl

I[Mp||zi−zj || ≥ cl] = εl > 0,

where zi are in a finite dimensional space.

(B4) For l = 1, . . . , k, 0 < limNl→∞(1/Nl)
∑Nl

i=1 ||xi|| < ∞.

(B5) For l = 1, . . . , k, 0 < limNl→∞(1/Nl)
∑Nl

i=1 ||xi||2 < ∞.

(B6) Assume for l = 1, . . . , k, Nl →∞ such that limk→∞
max1≤l≤k N2

l

(
Pk

l=1 N4
l )

1
2

= 0.

(B7) ψi’s are bounded such that for all i, 0 ≤ ψi ≤ ψc, for some ψc < ∞.

(B8)
Pk

l=1 N2
l

(
Pk

l=1 N4
l )

1
2
||β̂ − βo||2 p→ 0, for some consistent estimator β̂ of βo.

Remark 6:

For the purely spatial analog of the model given by Assumption (C), (2.1)-

(2.3) and (2.5)-(2.9) - that is, the model with no sampling errors - the asymptotic

distribution of (β̂FH, τ̂ 2
FH) and (δ̂, λ̂) can be obtained from Theorems 3.2 and 3.4 by

taking Ψ = Om.

Remark 7:

The factor log M in (B2) is needed to disregard the contribution of the between

cluster terms when showing consistency and asymptotic normality. The asymptotic

properties of parameter estimators for (δ, λ) are derived when the true covariance

model for the small area effects is given by (2.5)-(2.6). However, because of as-

sumption (B2), even if the parameter estimators were derived under the assumption

that the covariance model for the small area effects is given by the model (2.5) and

(2.10), the estimators for (δ, λ) derived under this misspecification would have the

39



same asymptotic properties as the estimators given in Theorems 3.3 and 3.4.

Remark 8:

If the zi’s are equally spaced from one another, the data contains no informa-

tion on the parameter λ. Hence, for zi in a finite dimensional space, it is required

for each cluster that the zi’s do not collapse to a point [(B3)]. We could generalize

(B3) by not assuming the zi’s are in a finite dimensional space, but instead assume

for l = 1, . . . , k, the distribution of zi in cluster Cl is such that

lim
Nl→∞

1

N2
l

var
( ∑

i,j∈Cl
i6=j

Mp||zi − zj||
)

> 0

Remark 9:

Even though we have assumed (B8) for a consistent estimator β̂, for β̂FH given

in Theorems 3.1 and 3.2 this assumption is automatically satisfied. This assertion

follows from Remark 4, (B1), (B6), Lemma 3.4 (c) and noting that m =
∑k

l=1 nl,

M =
∑k

l=1 Nl. Moreover, note that the asymptotic variance of (δ̂, λ̂) given in

Theorem 3.4 does not depend on the estimator β̂. That is, for any estimator β̂ that

satisfies (B8), the asymptotic distribution of (δ̂, λ̂) would be the same. In particular,

we have shown that the asymptotic distribution of (δ̂, λ̂) would be the same if βo

were known.

Remark 10:

The variance of δ̂ and λ̂ is of the order O
( Pk

l=1 n4
l

(
Pk

l=1 n2
l )2

)
. If all the ni’s grow at the

same rate, that is, there exists n such that for l = 1, . . . , k, 0 < limnl,n→∞
nl

n
< ∞,
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then var(δ̂) = O(1/k) and var(λ̂) = O(1/k).

Remark 11:

Since τ 2 = δ + σ2, we can estimate σ2 by σ̂2 = τ̂ 2
FH − δ̂, which is a consistent

estimator of σ2
o . However, we do not have a formula for var(σ̂2).

Remark 12:

(B6) is a uniform asymptotic negligibility condition similar to the one given in

Remark 4 and (A6). However, (B6) is more restrictive than the condition in Remark

4, an assertion which follows from (B1) and Lemma 3.4 (a).

3.5 Proofs

The proofs for consistency of parameter estimators given in this section use

two theorems given in Andersen and Gill [2] and van der Vaart [47], and are stated

for convenience.

Theorem 3.5. (Andersen and Gill [2]) Let E be an open convex set of Rs, and

let F1, F2, . . ., be a sequence of random strictly concave functions on E such that

∀ a ∈ E, Fm(a)
p→ f(a) as m →∞ where f is some real function on E. Then f is

also concave and for all compact H ⊂ E,

sup
a∈H

|Fm(a)− f(a)| p→ 0.
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Theorem 3.6. (van der Vaart [47], p.45) Let Fm be a sequence of random functions

and let f be some fixed function of a such that for every ε > 0

sup
a∈H

|Fm(a)− f(a)| p→ 0

sup
a:||a−ao||≥ε

f(a) < f(ao),

where H is as given in Theorem 3.5. Then any sequence of estimators âm with

Fm(âm) ≥ Fm(ao)− op(1) converges in probability to ao.

We state and prove a few lemmas that are used in the remarks and proofs of

the main theorems in this chapter.

Lemma 3.1. If

(
X
Y

)
∼ N

( (
0
0

)
,

(
σ2

x σxy

σxy σ2
y

) )
, then E(X2Y 2) = σ2

xσ
2
y + 2σ2

xy.

Proof of Lemma 3.1. Note that X − σxy

σ2
y
Y ∼ N

(
0, σ2

x − σ2
xy

σ2
y

)
is independent of Y .

Hence,

E(X2Y 2) = E
[(

X − σxy

σ2
y

Y +
σxy

σ2
y

Y
)2

Y 2
]

= E
[(

X − σxy

σ2
y

Y
)2

Y 2
]

+ E
[σ2

xy

σ4
y

Y 4
]

=
(
σ2

x −
σ2

xy

σ2
y

)
σ2

y +
σ2

xy

σ4
y

3σ4
y = σ2

xσ
2
y + 2σ2

xy

Lemma 3.2. Let a1, . . . , an be a sequence of positive numbers such that

lim
n→∞

max1≤i≤n ai

(
∑n

i=1 a2
i )

1
2

= 0.

If c is any positive number such that c > 2, then

lim
n→∞

∑n
i=1 ac

i( ∑n
i=1 a2

i

) c
2

= 0.
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Proof of Lemma 3.2.

∑n
i=1 ac

i( ∑n
i=1 a2

i

) c
2

=
(max1≤i≤n ai)

c−2

( ∑n
i=1 a2

i

) c−2
2

∑n
i=1 ac

i/(max1≤i≤n ai)
c−2

( ∑n
i=1 a2

i

)

<
(max1≤i≤n ai

(
∑n

i=1 a2
i )

1
2

)c−2
∑n

i=1 ac
i/a

c−2
i∑n

i=1 a2
i

→ 0 as n →∞.

Lemma 3.3. Let a1, . . . , an and b1, . . . , bn be any real numbers, then

n∑
i=1

ai

n∑
i=1

aib
2
i −

( n∑
i=1

aibi

)2

=
1

2

n∑
i=1

n∑
j=1

aiaj(bi − bj)
2

Proof of Lemma 3.3.

n∑
i=1

ai

n∑
i=1

aib
2
i −

( n∑
i=1

aibi

)2

=
n∑

i,j=1

aiajb
2
j −

n∑
i,j=1

aiajbibj

=
∑
i>j

aiaj(bi − bj)
2 =

1

2

n∑
i=1

n∑
j=1

aiaj(bi − bj)
2

Lemma 3.4. For k and Nl, . . . , Nk given in (B1), assume for l = 1, . . . , k,

Nl →∞ such that

lim
k→∞

max1≤l≤k N2
l

(
∑k

l=1 N4
l )

1
2

= 0.

Then as k →∞, the following three ratios all tend to 0:

(a)
max1≤l≤k Nl

(
∑k

l=1 N2
l )

1
2

(b)

∑k
l=1 N4

l

(
∑k

l=1 N2
l )2

(c)

∑k
l=1 N2

l∑k
l=1 Nl(

∑k
l=1 N4

l )
1
4

.
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Proof of Lemma 3.4.

(a)
max1≤l≤k Nl

(
∑k

l=1 N2
l )

1
2

=
(max1≤l≤k N2

l∑k
l=1 N2

l

) 1
2

<
(max1≤l≤k N2

l

(
∑k

l=1 N4
l )

1
2

) 1
2 → 0.

(b)

∑k
l=1 N4

l

(
∑k

l=1 N2
l )2

<

∑k
l=1 N2

l max1≤l≤k N2
l

(
∑k

l=1 N2
l )2

→ 0 [by (a)].

(c)

∑k
l=1 N2

l∑k
l=1 Nl(

∑k
l=1 N4

l )
1
4

<

∑k
l=1 Nl max1≤l≤k Nl∑k
l=1 Nl(

∑k
l=1 N4

l )
1
4

=
(max1≤l≤k N2

l

(
∑k

l=1 N4
l )

1
2

) 1
2 → 0.

The following results are from Rencher [38] and McCulloch and Searle [33].

Lemma 3.5. (Rencher [38]) If G and H are any m×m matrices, then the eigen-

values of GH are the same as those of HG.

Lemma 3.6. (McCulloch and Searle [33]) Assume y ∼ N(µ, G), where G = G(ϕ),

ϕ = (ϕ1, . . . , ϕl). Let L(ϕ;y) denote the log likelihood, and H be a symmetric

matrix, then

(a) E(y′Hy) = tr(HG) + µ′Hµ

(b) var(y′Hy) = 2 tr[(HG)2] + 4µ′HGHµ

(c) − E
(∂2L(ϕ;y)

∂ϕi∂ϕj

)
=

1

2
tr

(
G−1∂G

∂ϕi

G−1 ∂G

∂ϕj

)

(d)
∂ log |G|

∂ϕi

= tr
(
G−1 ∂G

∂ϕi

)

(e)
∂G−1

∂ϕi

= −G−1 ∂G

∂ϕi

G−1
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Proof of Theorem 3.1. Let ζ = (β, τ 2)′ = (ζ1, . . . , ζq, ζq+1)
′ ∈ Rq+1, and ζo =

(βo, τ
2
o )′= (ζo1, . . . , ζoq, ζo(q+1))

′. Also, let

g(ζ;y) = −m

2
log 2π − 1

2

m∑
i=1

log(τ 2 + ψi)− 1

2

m∑
i=1

(yi − x′iβ)2

τ 2 + ψi

g(ζ) = E(g(ζ;y))

= −m

2
log 2π − 1

2

m∑
i=1

log(τ 2 + ψi)− 1

2

m∑
i=1

τ 2
o + ψi + (x′i(βo − β))2

τ 2 + ψi

Consistency is established by showing that there exists a sequence ζ̂ (= ζ̂m)

of local maxima of 1
m

g(ζ;y) which is consistent for ζo. The proof involves showing

(i) 1
m

g(ζ) has a unique maximum at ζ = ζo; (ii) for all ζ in a sufficiently small

non-shrinking neighborhood of ζo,
1
m

(g(ζ;y) − g(ζ))
p→ 0 and (iii) the hessian of

1
m

g(ζ;y), 1
m
∇ζζg(ζ;y), is negative definite. Then, it follows from Theorems 3.5 and

3.6 that ζ̂
p→ ζo. For better readability, we indicate the steps given above in the

proof.

Step (i): It is shown that 1
m

g(ζ) has a unique maximum at ζ = ζo. For fixed τ 2,

since X has full rank, 1
m

g(ζ) is maximized at β = βo. Consider

1

m
g(βo, τ

2) = −1

2
log 2π − 1

2m

m∑
i=1

log(τ 2 + ψi)− 1

2m

m∑
i=1

τ 2
o + ψi

τ 2 + ψi

(3.12)

1

m

∂g(βo, τ
2)

∂τ 2
= − 1

2m

m∑
i=1

1

τ 2 + ψi

+
1

2m

m∑
i=1

τ 2
o + ψi

(τ 2 + ψi)2

For τ 2 < τ 2
o , 1

m

∂g(βo,τ2)

∂τ2 > 0 and for τ 2 > τ 2
o , 1

m

∂g(βo,τ2)

∂τ2 < 0, and since

1
m

∂g(βo,τ2
o )

∂τ2 = 0, it follows that 1
m

g(βo, τ
2) is maximized at τ 2 = τ 2

o , and 1
m

g(β, τ 2)

has a unique maximum at ζ = ζo.

Step (ii): For any small ε > 0, consider the following neighborhood of ζo (by (A3)
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the neighborhood is non-shrinking with m):

Bε = {(β, τ 2) : ||β − βo|| <
τ 4ε

1
m

∑m
i=1 ||xi||2

, |τ 2 − τ 2
o | <

9

10
τ 2
0 }

For all ζ ∈ Bε, consider

1
m

(g(ζ;y)− g(ζ)) = − 1
2m

m∑

i=1

(yi − x′iβo)2 − (τ2
o + ψi)

τ2 + ψi
− 1

m

m∑

i=1

(yi − x′iβo)x′i(βo − β)
τ2 + ψi

.

Note that

var
( 1

m

m∑
i=1

(yi − x′iβo)
2 − (τ 2

o + ψi)

τ 2 + ψi

)

=
1

m2

( m∑
i=1

var[(yi − x′iβo)
2]

(τ 2 + ψi)2
+

∑

i6=j

cov[(yi − x′iβo)
2, (yj − x′jβo)

2]

(τ 2 + ψi)(τ 2 + ψj)

)

=
1

m2

( m∑
i=1

2(τ 2
o + ψi)

2

(τ 2 + ψi)2
+

∑

i6=j

2δ2
o exp(−2Mpλo||zi − zj||)

(τ 2 + ψi)(τ 2 + ψj)

)
(by Lemma 3.1)

≤ 1

τ 4m2

(
2m(τ 2

o + ψc)
2 + 2δ2

o

∑

i6=j

exp(−2Mpλo||zi − zj||)
)

(by (A2))

→ 0 as m →∞ (by (A5))

⇒ 1

m

m∑
i=1

(yi − x′iβo)
2 − (τ 2

o + ψi)

τ 2 + ψi

p→ 0 (3.13)

var
( 1

m

m∑

i=1

(yi − x′iβo)x′i(βo − β)
τ2 + ψi

)

=
1

m2

( m∑

i=1

[x′i(βo − β)]2(τ2
o + ψi)

(τ2 + ψi)2
+

∑

i6=j

x′i(βo − β)x′j(βo − β)δo exp(−Mpλo||zi − zj ||)
(τ2 + ψi)(τ2 + ψj)

)

≤ 1
m2

( m∑

i=1

||xi||2||βo − β||2(τ2
o + ψc)

τ4
+

∑

i6=j

||xi||||xj ||||βo − β||2δo exp(−Mpλo||zi − zj ||)
τ4

)

→ 0 as m →∞ [by (A3), (A4)]

⇒ 1

m

m∑
i=1

(yi − x′iβo)x
′
i(βo − β)

τ 2 + ψi

p→ 0 (3.14)
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Hence, for all ζ ∈ Bε,

1

m
(g(ζ;y)− g(ζ))

p→ 0 (3.15)

Step (iii): Next it is shown that for sufficiently large m, and for all ζ ∈ Bε,

1
m
∇ζζg(ζ;y) is negative definite.

1

m
∇ββg(ζ;y) = − 1

m

m∑
i=1

xix
′
i

τ 2 + ψi

By (A1), 1
m
∇ββg(ζ;y) is negative definite.

1

m
∇βτ2g(ζ;y) = − 1

m

m∑
i=1

yi − x′iβ
(τ 2 + ψi)2

xi

Let xi = (xi1, . . . , xiq)
′. Consider the rth element of 1

m
∇βτ2g(ζ;y):

− 1

m

m∑
i=1

yi − x′iβ
(τ 2 + ψi)2

xir = − 1

m

m∑
i=1

yi − x′iβo

(τ 2 + ψi)2
xir − 1

m

m∑
i=1

x′i(βo − β)

(τ 2 + ψi)2
xir

Since ||β − βo|| < τ4ε
1
m

Pm
i=1 ||xi||2 ,

∣∣∣− 1

m

m∑
i=1

x′i(βo − β)

(τ 2 + ψi)2
xir

∣∣∣ <
1

m

m∑
i=1

||xi||2||β − βo||
τ 4

< ε

Moreover, by (A3),(A4) and the Cauchy-Schwarz inequality (the proof is sim-

ilar to (3.14) ) ,

− 1

m

m∑
i=1

yi − x′iβo

(τ 2 + ψi)2
xir

p→ 0 (3.16)

For r = 1, . . . , q, let

Br =
{
y :

∣∣∣ 1

m

m∑
i=1

yi − x′iβo

(τ 2 + ψi)2
xir

∣∣∣ < ε
}

Then for y ∈ Br and for all ζ ∈ Bε,

∣∣∣ 1

m

m∑
i=1

yi − x′iβ
(τ 2 + ψi)2

xir

∣∣∣ < ε + ε = 2ε
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and by (3.16), P (Br) > 1− ε.

Finally, consider

1
m
∇τ2τ2g(ζ;y) =

1
2m

m∑

i=1

1
(τ2 + ψi)2

− 1
m

m∑

i=1

(yi − x′iβ)2

(τ2 + ψi)3

=
1

2m

m∑

i=1

1
(τ2 + ψi)2

− 1
m

m∑

i=1

τ2
o + ψi

(τ2 + ψi)3
− 1

m

m∑

i=1

(x′i(βo − β))2

(τ2 + ψi)3

− 1
m

m∑

i=1

(yi − x′iβo)2 − (τ2
o + ψi)

(τ2 + ψi)3
− 2

m

m∑

i=1

(yi − x′iβo)x′i(βo − β)
(τ2 + ψi)3

Since |τ 2 − τ 2
o | < 9

10
τ 2
0 ,

1

2m

m∑
i=1

1

(τ 2 + ψi)2
− 1

m

m∑
i=1

τ 2
o + ψi

(τ 2 + ψi)3
= − 1

2m

m∑
i=1

2τ 2
o + ψi − τ 2

(τ 2 + ψi)3

< − 1

2m

m∑
i=1

1
10

τ 2
o + ψi

(19
10

τ 2
o + ψi)3

< − 1

20

τ 2
o

(19
10

τ 2
o + ψc)3

Moreover, by (A3)-(A5) and the Cauchy-Schwarz inequality (the proofs are

similar to (3.13) and (3.14) ),

1

m

m∑
i=1

(yi − x′iβo)
2 − (τ 2

o + ψi)

(τ 2 + ψi)3

p→ 0

1

m

m∑
i=1

(yi − x′iβo)x
′
i(βo − β)

(τ 2 + ψi)3

p→ 0

Let

Bq+1 =
{
y :

∣∣∣ 1

m

m∑
i=1

(yi − x′iβo)
2 − (τ 2

o + ψi)

(τ 2 + ψi)3

∣∣∣ < ε
}

Bq+2 =
{
y :

∣∣∣ 1

m

m∑
i=1

(yi − x′iβo)x
′
i(βo − β)

(τ 2 + ψi)3

∣∣∣ < ε
}

Hence, for y ∈ Bq+1

⋂
Bq+2 and for all ζ ∈ Bε, it has been established that

1

m
∇τ2τ2g(ζ;y) < − 1

20

τ 2
o

(19
10

τ 2
o + ψc)3
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Let B = B1

⋂
. . .

⋂
Bq+2, then for y ∈ B and for all ζ ∈ Bε, it has been shown

that 1
m
∇ζζg(ζ;y) is negative definite. So, for y ∈ B and for all ζ ∈ Bε,

1
m

g(ζ;y) is

strictly concave.

Also, P (Bc) = P (Bc
1

⋃
. . .

⋃
Bc

q+2) ≤ P (Bc
1)+ . . .+P (Bc

q+2) = (q+2)ε. Hence,

for sufficiently large m, y ∈ B. By (3.15) and since for sufficiently large m, 1
m

g(ζ;y)

is strictly concave for all ζ ∈ Bε, an application of Theorem 3.5 gives

sup
ζ ∈ B?

ε

∣∣∣ 1

m
(g(ζ;y)− g(ζ))

∣∣∣ p→ 0 (3.17)

where B?
ε is any compact set such that B?

ε ⊂ Bε.

Then, by (3.17) and since 1
m

g(ζ) has a unique maximum at ζ = ζo, an ap-

plication of Theorem 3.6 gives the desired result: there exists a sequence of local

maxima ζ̂m which is consistent for ζo.

Proof of Theorem 3.2. Since it has been shown that ζ̂ is consistent for ζo, we

expand ∇ζg(ζ̂;y) around ζo to obtain

0 ≡ ∇ζg(ζ̂;y) = ∇ζg(ζo;y) +∇ζζg(ζo;y)(ζ̂ − ζo) +

1

2

q+1∑
j=1

∂

∂ζj

{∇ζζg(ζ?;y)}(ζ̂ − ζo)(ζ̂j − ζoj) (3.18)

where ζ? lies between ζ̂ and ζo, and ζ̂ = (ζ̂1, . . . , ζ̂q+1)
′. For better readability, we

indicate the steps in the proof.

Step (i): We first seek to derive the asymptotic distribution of a properly normal-

ized ∇ζg(ζo;y), where

∇ζg(ζo;y) =




∑m
i=1

(yi−x′iβo)xi

τ2
o +ψi

1
2

∑m
i=1

(yi−x′iβo)2

(τ2
o +ψi)2

− 1
2

∑m
i=1

1
τ2
o +ψi


 .
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Note that

m∑
i=1

(yi − x′iβo)xi

τ 2
o + ψi

= X ′D−1
o (y −Xβo) (3.19)

where Do = diag(τ 2
o + ψ1, . . . , τ

2 + ψm), and so,

var
( m∑

i=1

(yi − x′iβo)xi

τ2
o + ψi

)
= X ′D−1

o VoD
−1
o X

Also,

m∑
i=1

1

τ 2
o + ψi

= tr[D−1
o VoD

−1
o ] =

m∑
i=1

γi [by (A6)]

1
2

m∑

i=1

(yi − x′iβo)2

(τ2
o + ψi)2

− 1
2

m∑

i=1

1
τ2
o + ψi

=
1

2
(y −Xβo)

′D−2
o (y −Xβo)−

1

2

m∑
i=1

γi (3.20)

and so,

var
(1

2

m∑
i=1

(yi − x′iβo)
2

(τ 2
o + ψi)2

− 1

2

m∑
i=1

γi

)
=

1

4
2 tr[D−2

o VoD
−2
o Vo] [Lemma 3.6 (b)]

=
1

2

m∑
i=1

γ2
i [by (A6) and Lemma 3.5]

Consider the normalized linear and quadratic forms given in (3.19) and (3.20).

Let

W =




w′
1

...

w′
q


 = (X ′D−1

o VoD
−1
o X)−

1
2 X ′D−1

o , (3.21)

and for i = 1, . . . , q,

Ri = w′
i(y −Xβo)

Rq+1 =
1/2

(1
2

∑m
i=1 γ2

i )
1
2

(
(y −Xβo)

′D−2
o (y −Xβo)−

m∑
i=1

γi

)
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From Theorem 3.2c.1 in Mathai and Provost [27], the joint moment generating

function of (R1, . . . , Rq+1) is given by

MR1,...,Rq+1(t1, . . . , tq+1) =
∣∣∣Im − tq+1D

−2
o Vo

(1
2

∑m
i=1 γ2

i )
1
2

∣∣∣
− 1

2 exp
(
−

∑m
i=1 γitq+1

2(1
2

∑m
i=1 γ2

i )
1
2

)

· exp
(1

2

( q∑

j=1

tjw′
j

)
V

1
2

o

[
Im − tq+1V

1
2

o D−2
o V

1
2

o

(1
2

∑m
i=1 γ2

i )
1
2

]−1
V

1
2

o

( q∑

j=1

tjwj

))

Next it is shown that

lim
m→∞

MR1,...,Rq+1(t1, . . . , tq+1) = exp
(1

2

q+1∑
j=1

t2j

)
. (3.22)

Note that

Im − tq+1V
1
2

o D−2
o V

1
2

o

(1
2

∑m
i=1 γ2

i )
1
2

> Im − tq+1γmax(D
−1
o VoD

−1
o )Im

(1
2

∑m
i=1 γ2

i )
1
2

[by Lemma 3.5]

⇒
( q∑

j=1

tjw
′
j

)
V

1
2

o

(
Im − tq+1V

1
2

o D−2
o V

1
2

o

(1
2

∑m
i=1 γ2

i )
1
2

)−1

V
1
2

o

( q∑
j=1

tjwj

)

<
( q∑

j=1

tjw
′
j

)
Vo

( q∑
j=1

tjwj

)(
1− tq+1γmax(D

−1
o VoD

−1
o )

(1
2

∑m
i=1 γ2

i )
1
2

)−1

<

q∑
j=1

t2j

(
1− tq+1γmax(D

−1
o VoD

−1
o )

(1
2

∑m
i=1 γ2

i )
1
2

)−1

→
q∑

j=1

t2j as m →∞

[Since WVoW
′ = Iq and (A6)].

Similarly,

( q∑
j=1

tjw
′
j

)
V

1
2

o

(
Im − tq+1V

1
2

o D−2
o V

1
2

o

(1
2

∑m
i=1 γ2

i )
1
2

)−1

V
1
2

o

( q∑
j=1

tjwj

)

>
( q∑

j=1

tjw
′
j

)
Vo

( q∑
j=1

tjwj

)(
1− tq+1γmin(D

−1
o VoD

−1
o )

(1
2

∑m
i=1 γ2

i )
1
2

)−1

→
q∑

j=1

t2j as m →∞.
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Hence we obtain the same limit as an asymptotic upper and lower bound. That is

( q∑
j=1

tjw
′
j

)
V

1
2

o

(
Im − tq+1V

1
2

o D−2
o V

1
2

o

(1
2

∑m
i=1 γ2

i )
1
2

)−1

V
1
2

o

( q∑
j=1

tjwj

)
→

q∑
j=1

t2j . (3.23)

Also, note that D−1
o VoD

−1
o and D−2

o Vo have the same eigenvalues (Lemma 3.5).

Hence, the eigenvalues of Im−cD−2
o Vo for any scalar c are given by 1−cγ1, . . . , 1−cγm,

where the γi’s are as given in (A6).

⇒
∣∣∣Im − tq+1D

−2
o Vo

(1
2

∑m
i=1 γ2

i )
1
2

∣∣∣
− 1

2
=

m∏
i=1

(
1− tq+1γi

(1
2

∑m
i=1 γ2

i )
1
2

)− 1
2

Hence,

log
[ m∏

i=1

(
1− tq+1γi

(1
2

∑m
i=1 γ2

i )
1
2

)− 1
2
exp

(
−

∑m
i=1 γitq+1

2(1
2

∑m
i=1 γ2

i )
1
2

) ]

= −1

2

m∑
i=1

log
[
1− tq+1γi

(1
2

∑m
i=1 γ2

i )
1
2

]
−

∑m
i=1 γitq+1

(2
∑m

i=1 γ2
i )

1
2

= −1

2

[ m∑
i=1

(
− tq+1γi

(1
2

∑m
i=1 γ2

i )
1
2

− 1

2

t2q+1γ
2
i

1
2

∑m
i=1 γ2

i

) ]
+ o(tq+1)−

∑m
i=1 γitq+1

(2
∑m

i=1 γ2
i )

1
2

[by (A6) and Lemma 3.2]

=
1

2
t2q+1 + o(tq+1). (3.24)

Now (3.22) follows from (3.23) and (3.24). That is,

C
− 1

2
o ∇ζg(ζo;y)

d→ N(0q+1, Iq+1) (3.25)

where

Co =




X ′D−1
o VoD

−1
o X 0q

0′q
1
2
tr[D−2

o VoD
−2
o Vo]


 .

Step (ii): Next we show that

−C
− 1

2
o ∇ζζg(ζo;y)C

− 1
2

o Fo
p→ Iq+1 (3.26)
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where

Fo = C
1
2
o




X ′D−1
o X 0q

0′q
1
2

∑m
i=1

1
(τ2

o +ψi)2




−1

C
1
2
o .

Since,

−∇ζζg(ζo;y) =




X ′D−1
o X

∑m
i=1

(yi−x′iβo)xi

(τ2
o +ψi)2

∑m
i=1

(yi−x′iβo)x′i
(τ2

o +ψi)2

∑m
i=1

(yi−x′iβo)2

(τ2
o +ψi)3

− 1
2

∑m
i=1

1
(τ2

o +ψi)2


 ,

−C
− 1

2
o ∇ζζg(ζo;y)C

− 1
2

o Fo =




Iq z2

z′1
(

1
2

∑m
i=1

1
(τ2

o +ψi)2

)−1 ∑m
i=1

(yi−x′iβo)2

(τ2
o +ψi)3

− 1


 ,

where

z1 =
(1

2
tr[D−2

o VoD
−2
o Vo]

)− 1
2
(X ′D−1

o VoD
−1
o X)

1
2 (X ′D−1

o X)−1X ′D−2
o (y −Xβo)

and

z2 =

(
1
2
tr[D−2

o VoD
−2
o Vo]

) 1
2

1
2

∑m
i=1

1
(τ2

o +ψi)2

(X ′D−1
o VoD

−1
o X)−

1
2 X ′D−2

o (y −Xβo).

var(z1) =
(1

2
tr[D−2

o VoD
−2
o Vo]

)−1

(X ′D−1
o VoD

−1
o X)

1
2

· (X ′D−1
o X)−1X ′D−2

o VoD
−2
o X(X ′D−1

o X)−1(X ′D−1
o VoD

−1
o X)

1
2 .

Note that

1. X ′D−2
o VoD

−2
o X < γmax(D

− 3
2

o VoD
− 3

2
o ) X ′D−1

o X

2. γmax(D
− 3

2
o VoD

− 3
2

o ), γmax(D
− 1

2
o VoD

− 1
2

o ) and γmax(D
−1
o VoD

−1
o ) are of the same or-

der

3. tr[D−2
o VoD

−2
o Vo] =

∑m
i=1 γ2

i
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and hence

var(z1) <
γmax(D

− 1
2

o VoD
− 1

2
o )γmax(D

− 3
2

o VoD
− 3

2
o )

1
2

∑m
i=1 γ2

i

Iq → Oq×q [by (A6)]

Since E(z1) = 0q, we have established that z1
p→ 0q. Similarly,

var(z2) =
1
2tr[D−2

o VoD
−2
o Vo](

1
2

∑m
i=1

1
(τ2

o +ψi)2

)2 (X ′D−1
o VoD

−1
o X)−

1
2 X ′D−2

o VoD
−2
o X(X ′D−1

o VoD
−1
o X)−

1
2 .

Since

1.
( ∑m

i=1
1

(τ2
o +ψi)2

)2

= O(m2)

2. tr(D−2
o VoD

−2
o Vo) is the same order as tr(V 2

o )=
∑

i6=jδ
2
o exp

(
−2Mpλo||zi−zj||

)
+

∑m
i=1(τ

2
o + ψi)

2,

by (A5) we get

var(z2) → Oq×q.

Since E(z2) = 0q, we have established that z2
p→ 0q. Also,

var
[(1

2

m∑
i=1

1

(τ 2
o + ψi)2

)−1
m∑

i=1

(yi − x′iβo)
2

(τ 2
o + ψi)3

− 1
]

=
(1

2

m∑
i=1

1

(τ 2
o + ψi)2

)−2

var
(
(y −Xβo)

′D−3
o (y −Xβo)

)

=
(1

2

m∑
i=1

1

(τ 2
o + ψi)2

)−2

2tr(D−3
o VoD

−3
o Vo).

Once again by (A5),

var
[(1

2

m∑
i=1

1

(τ 2
o + ψi)2

)−1
m∑

i=1

(yi − x′iβo)
2

(τ 2
o + ψi)3

− 1
]
→ 0 as m →∞.

Hence, it follows that

−C
− 1

2
o ∇ζζg(ζo;y)C

− 1
2

o Fo
p→ E

(
− C

− 1
2

o ∇ζζg(ζo;y)C
− 1

2
o Fo

)
= Iq+1
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Step (iii): Finally it has to be shown that for j = 1, . . . , q + 1,

1

2
C
− 1

2
o

∂

∂ζj

{∇ζζg(ζ?;y)}C− 1
2

o Fo (3.27)

is bounded in probability. The proof for j = 1, . . . , q is similar to j = q + 1, hence,

we give the proof for (3.27) only for the case j = q + 1 (Note: ζq+1 = τ 2).

C
− 1

2
o

∂

∂ζq+1

{∇ζζg(ζ?;y)}C− 1
2

o Fo = (3.28)




(X ′D−1
o VoD

−1
o X)−

1
2 X ′D−2

? X(X ′D−1
o X)−1(X ′D−1

o VoD
−1
o X)

1
2 z2?

z′1?

3
Pm

i=1

(yi−x′iβ?)2

(τ2
?+ψi)

4 − Pm
i=1

1

(τ2
?+ψi)

3

1
2

Pm
i=1

1

(τ2
o +ψi)

2




where ζ? lies between ζ̂ and ζo, ζ? =(β?, τ
2
? ), D? = diag(τ 2

? + ψ1, . . . , τ
2
? + ψm), and

z1? =
1

(
1
2
tr[D−2

o VoD−2
o Vo]

) 1
2

(X ′D−1
o VoD

−1
o X)

1
2 (X ′D−1

o X)−1X ′D−3
? (y −Xβ?)

z2? =
(1

2
tr[D−2

o VoD
−2
o Vo]

) 1
2
(X ′D−1

o VoD
−1
o X)−

1
2

(X ′D−3
? (y −Xβ?)

1
2

∑m
i=1

1
(τ2

o +ψi)2

)

It is not difficult to see that apart from z1? and z2?, the remaining terms in

(3.28) are bounded in probability. By (A8), (X ′X)−1 has entries that are O(1/m).

Hence, by computing the variance of (X ′D−1
o X)−1X ′D−3

? (y −Xβ?) it follows that

(X ′D−1
o X)−1X ′D−3

? (y − Xβ?) is bounded in probability. By (A7), the matrix

(
1
2
tr[D−2

o VoD
−2
o Vo]

) 1
2
(X ′D−1

o VoD
−1
o X)−

1
2 has entries that are O(1). Hence, z1? and

z2? are also bounded in probability.

Step (iv): Putting (3.25)-(3.27) together we derive the asymptotic distribution of

ζ̂. Left multiplying (3.18) by C
− 1

2
o ,

0 = C
− 1

2
o ∇ζg(ζo;y) + C

− 1
2

o ∇ζζg(ζo;y)C
− 1

2
o Fo[F

−1
o C

1
2
o (ζ̂ − ζo)] +

C
− 1

2
o

2

q+1∑
j=1

∂

∂ζj

{∇ζζg(ζ?;y)}C− 1
2

o Fo[F
−1
o C

1
2
o (ζ̂ − ζo)](ζ̂j − ζoj)
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⇒ F−1
o C

1
2
o (ζ̂ − ζo) =

(
−C

− 1
2

o ∇ζζg(ζo;y)C
− 1

2
o Fo − C

− 1
2

o

2

q+1∑

j=1

∂

∂ζj
{∇ζζg(ζ?;y)}C− 1

2
o Fo(ζ̂j − ζoj)

)−1
C
− 1

2
o ∇ζg(ζo;y)

By (3.25)-(3.27) and since for j = 1, . . . , q + 1, ζ̂j
p→ ζoj,

F−1
o C

1
2
o (ζ̂ − ζo)

d→ N(0q+1, Iq+1)

where

F−1
o C

1
2
o =




(X ′D−1
o VoD

−1
o X)−

1
2 X ′D−1

o X 0q

0′q
1√
2

Pm
i=1

1

(τ2
o +ψi)

2√
tr(D−2

o VoD−2
o Vo)




Proof of Theorem 3.3. Let ν =(δ, λ)′ = (ν1, ν2)
′, and νo =(δo, λo)

′= (νo1, νo2)
′.

Also, let

h(ν;y) = −
k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j − δ exp(−λMp||zi − zj||)

)2

h(ν) = −
k∑

l=1

∑
i,j∈Cl
i6=j

(
δo exp(−λoM

p||zi − zj||)− δ exp(−λMp||zi − zj||)
)2

where ε̂i = yi − x′iβ̂. Our method of proof is identical to that of Theorem 3.1.

Step (i): We first show that

1∑k
l=1 n2

l

(
h(ν;y)− h(ν)

)
p→ 0 (3.29)

Note that

1∑k
l=1 n2

l

h(ν;y) = − 1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
(yi − x′iβo)(yj − x′jβo)− (yi − x′iβo)x

′
jb̂

− (yj − x′jβo)x
′
ib̂ + x′ib̂ x′jb̂− δ exp(−λMp||zi − zj||)

)2

,
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where b̂ = β̂ − βo. We argue that any term that involves b̂ in the expression for

1Pk
l=1 n2

l

h(ν;y) will converge to zero in probability. For example,

1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(x′ib̂)2 (x′jb̂)2 ≤ 1∑k
l=1 n2

l

k∑

l=1

n2
l

∑
i,j∈Cl
i6=j

||xi||2
nl

||xj||2
nl

||b̂||4

p→ 0 [by (B1), (B5) and since ||b̂|| p→ 0]

Consider the term 1Pk
l=1 n2

l

∑k
l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(x′jb̂)2.

1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(x′jb̂)2 ≤ 1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2||xj||2||b̂||2

E
∣∣∣ 1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2||xj||2

∣∣∣ =
1∑k

l=1 n2
l

k∑

l=1

n2
l

∑
i,j∈Cl
i6=j

E(yi − x′iβo)
2

nl

||xj||2
nl

≤ c < ∞ [by (B1), (B5)]

and since, ||b̂|| p→ 0,

1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(x′jb̂)2 p→ 0.

Also,

1∑k
l=1 n2

l

∣∣∣
k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(yj − x′jβo)x

′
jb̂

∣∣∣

≤ ||b̂||∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2|yj − x′jβo|||xj||,
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Next, ||b̂|| p→ 0 and

1∑k
l=1 n2

l

k∑

l=1

n2
l

∑
i,j∈Cl
i6=j

E
(
(yi − x′iβo)

2|yj − x′jβo|
)
||xj||

n2
l

≤ 1∑k
l=1 n2

l

k∑

l=1

n2
l

∑
i,j∈Cl
i6=j

(E(yi − x′iβo)
4)

1
2

nl

(E(yj − x′jβo)
2)

1
2 ||xj||

nl

≤ c < ∞ [by (B1), (B4)],

hence,

1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(yj − x′jβo)x

′
jb̂

p→ 0

Also,

1∑k
l=1 n2

l

∣∣∣
k∑

l=1

∑
i,j∈Cl
i6=j

x′ib̂ x′jb̂ δ exp(−λMp||zi − zj||)
∣∣∣ ≤ δ||b̂||2∑k

l=1 n2
l

k∑

l=1

n2
l

∑
i,j∈Cl
i6=j

||xi||
nl

||xj||
nl

p→ 0 [by (B1), (B4)]

Similarly, the remaining terms that involve b̂ in the expression for 1Pk
l=1 n2

l

h(ν;y)

converge to zero in probability. The sum of the terms that do not involve b̂ in the

expression for 1Pk
l=1 n2

l

h(ν;y) are shown to converge in probability to its expectation.

We expand variance terms within and between clusters.

var
( k∑

l=1

∑

i,j∈Cl
i6=j

(yi − x′iβo)(yj − x′jβo)δ exp(−λMp||zi − zj ||)
)

≤ δ2
k∑

l=1

var
( ∑

i,j∈Cl
i6=j

(yi − x′iβo)(yj − x′jβo)
)
+ (3.30)

δ2
∑

l1 6=l2

var
( ∑

i∈Cl1
j∈Cl2

(yi − x′iβo)(yj − x′jβo) exp(−λMp||zi − zj ||)
)

(3.31)
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For the term in (3.30), the sum within cluster involves n2
l terms, and the

variance of this sum is O(n4
l ). For the term in (3.31), the sum between cluster,

involves nl1nl2 terms, and the variance of this sum is:

O(n2
l1
n2

l2
) sup

i∈Cl1
j∈Cl2

exp(−λMp||zi − zj||).

Hence,

var
( 1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)(yj − x′jβo)δ exp(−λMp||zi − zj||)
)

=
1

(
∑k

l=1 n2
l )

2

k∑

l=1

O(n4
l ) +

1

(
∑k

l=1 n2
l )

2

∑

l1 6=l2

O(n2
l1
n2

l2
) sup

i∈Cl1
j∈Cl2

exp(−λMp||zi − zj||)

=
O

( ∑k
l=1 n4

l

)

(
∑k

l=1 n2
l )

2
+ sup

l1 6=l2

sup
i∈Cl1
j∈Cl2

exp(−λMp||zi − zj||)

→ 0 [by (B1), (B2), (B6) and Lemma 3.4(b)]

Hence, the term given by (3.32) is non-zero and is one of the terms in the expression

for 1Pk
l=1 n2

l

h(ν).

1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)(yj − x′jβo)δ exp(−λMp||zi − zj||)

p≈ E
( 1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)(yj − x′jβo)δ exp(−λMp||zi − zj||)
)

=
1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

δo exp(−λoM
p||zi − zj||)δ exp(−λMp||zi − zj||) (3.32)
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Similar to the above proof,

var
( 1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(yj − x′jβo)

2
)
→ 0,

and hence,

1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)
2(yj − x′jβo)

2

p≈ 1∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

E((yi − x′iβo)
2(yj − x′jβo)

2)

=
1∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

δ2
o exp(−2λoM

p||zi − zj||) [by Lemma 3.1] (3.33)

Note that the term given by (3.33) is also one of the terms in the expression for

1Pk
l=1 n2

l

h(ν). Putting all the above arguments together, we get (3.29).

Step (ii): We next argue that h(ν) has a unique maximum at δ = δo and λ = λo.

First note that h(δo, λo) = 0 and it is clear that the maximum value of h(ν) is 0.

For any ε > 0 and for any ν = (δ, λ) such that ||ν − νo|| ≥ ε, by (B3) we have that

h(ν) is strictly less than 0. Hence we have shown h(ν) has a unique maximum at

δ = δo and λ = λo.

Step (iii): Next it is shown that for large m, 1Pk
l=1 n2

l

∇ννh(ν;y) is negative definite

in a non-shrinking neighborhood of νo.

Uniformly for large k, n1, . . . , nk,

1∑k
l=1 n2

l

∂2

∂δ2
h(ν;y) =

−2∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

exp(−2λMp||zi − zj||) < 0.
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1∑k
l=1 n2

l

∂2

∂λ2
h(ν;y) =

2δ∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j(M

p||zi − zj||)2 exp(−λMp||zi − zj||)

− 2δ(Mp||zi − zj||)2 exp(−2λMp||zi − zj||)
)

Similar to the proof shown previously that any term that involves b̂ in the

expression for 1Pk
l=1 n2

l

h(ν;y) converges to zero in probability, we get

1∑k
l=1 n2

l

∂2

∂λ2
h(ν;y) =

2δ∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
− 2δ(Mp||zi − zj||)2 exp(−2λMp||zi − zj||)

+ (yi − x′iβo)(yj − x′jβo)(M
p||zi − zj||)2 exp(−λMp||zi − zj||)

)
+ op(1)

Note (B2) is needed in the above proof for two reasons: within a cluster we

need Mp||zi − zj|| < ∞, and to make it possible to disregard between cluster terms.

Moreover,

var
( 1∑k

l=1 n2
l

k∑

l=1

∑

i,j∈Cl
i6=j

(yi − x′iβo)(yj − x′jβo)(M
p||zi − zj ||)2 exp(−λMp||zi − zj ||)

)
→ 0

Hence,

1∑k
l=1 n2

l

∂2

∂λ2
h(ν;y)

p≈ 2δ∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(Mp||zi − zj||)2 exp(−λMp||zi − zj||)

·
(
δo exp(−λoM

p||zi − zj||)− 2δ exp(−λMp||zi − zj||)
)

Since for large m we wish to show that 1Pk
l=1 n2

l

∂2

∂λ2 h(ν;y) < 0 in a neighbor-

hood of νo, it is sufficient to show that ∀l, ∀i, j ∈ Cl, 2δ exp(−λMp||zi − zj||) −

δo exp(−λoM
p||zi − zj||) > 0 in a neighborhood of νo.
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Let δ ∈ (0.6δo, 1.4δo), then

2δ exp(−λMp||zi − zj||)− δo exp(−λoM
p||zi − zj||) >

δo[1.2 exp(−λMp||zi − zj||)− exp(−λoM
p||zi − zj||)]

Let

λ ∈ λo ± log 1.2

supl lim supM→∞ supi,j∈Cl
||zi − zj||

For the neighborhood of νo given above, we have uniformly, for large k,

n1, . . . , nk,
1Pk

l=1 n2
l

∂2

∂λ2 h(ν;y) < 0. Note that we need δo, λo > 0, and (B2) is needed

in showing the existence of a neighborhood at λo such that 1Pk
l=1 n2

l

∂2

∂λ2 h(ν;y) < 0.

Finally, it needs to be shown that uniformly, for large k, n1, . . . , nk, the deter-

minant of 1Pk
l=1 n2

l

∇ννh(ν;y) is positive in a neighborhood of νo.

1∑k
l=1 n2

l

∂2

∂δ∂λ
h(ν;y) =

−2∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂jM

p||zi − zj|| exp(−λMp||zi − zj||)

− 2δMp||zi − zj|| exp(−2λMp||zi − zj||)
)

Using a similar idea to the proof of (3.29), we get

1∑k
l=1 n2

l

∂2

∂δ∂λ
h(ν;y)

p≈ −2∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

Mp||zi − zj|| exp(−λMp||zi − zj||)

·
(
δo exp(−λoM

p||zi − zj||)− 2δ exp(−λMp||zi − zj||)
)
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The determinant of 1Pk
l=1 n2

l

∇ννh(ν;y) is

∣∣∣ 1∑k
l=1 n2

l

∇ννh(ν;y)
∣∣∣ =

4

(
∑k

l=1 n2
l )

2

(
δ

k∑

l=1

∑

i,j∈Cl
i6=j

exp(−2λMp||zi − zj ||)
k∑

l=1

∑

i,j∈Cl
i6=j

(Mp||zi − zj ||)2 exp(−λMp||zi − zj ||)

·
{

2δ exp(−λMp||zi − zj ||)− δo exp(−λoM
p||zi − zj ||)

}
−

{ k∑

l=1

∑

i,j∈Cl
i6=j

Mp||zi − zj ||

· exp(−λMp||zi − zj ||)[δo exp(−λoM
p||zi − zj ||)− 2δ exp(−λMp||zi − zj ||)]

}2 )
+ op(1)

= Π(δ, λ) + op(1)

It needs to be shown that there exists a non shrinking neighborhood around

νo such that on that neighborhood Π(δ, λ) > 0. Let δ = δo + δ?. By choosing δ?

to be small, we can bound any term involving δ? in Π(δ + δ?, λ) by ε1. Now let

λ = λo + λ?, then by choosing λ? to be small, we can bound any term involving

exp(−λoM
p||zi − zj||)− exp(−(λo + λ?)M

p||zi − zj||) by ε2. That is

∣∣∣ 1∑k
l=1 n2

l

∇ννh(ν;y)
∣∣∣ =

4δ2
o

(
∑k

l=1 n2
l )

2

( k∑

l=1

∑

i,j∈Cl
i6=j

exp(−2(λo + λ?)Mp||zi − zj ||)

·
k∑

l=1

∑

i,j∈Cl
i6=j

exp(−2(λo + λ?)Mp||zi − zj ||)(Mp||zi − zj ||)2

−
{ k∑

l=1

∑

i,j∈Cl
i6=j

Mp||zi − zj || exp(−2(λo + λ?)Mp||zi − zj ||)
}2)

+ ε1 + ε2 + op(1)

=
4δ2

o

(
∑k

l=1 n2
l )

2

1
2

k∑

l1=1

∑

i1,j1∈Cl1
i1 6=j1

k∑

l2=1

∑

i2,j2∈Cl2
i2 6=j2

exp(−2(λo + λ?)Mp{||zi1 − zj1 ||+ ||zi2 − zj2 ||})

·
(
Mp||zi1 − zj1 || −Mp||zi2 − zj2 ||

)2
+ ε1 + ε2 + op(1) [by Lemma 3.3]

By (B3) and since zi are in a finite dimensional space, the leading term on

the right hand side of
∣∣∣ 1Pk

l=1 n2
l

∇ννh(ν;y)
∣∣∣ is strictly positive. Hence, we have shown
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that there exists a non-shrinking neighborhood around νo such that uniformly for

large k, n1, . . . , nk,
∣∣∣ 1Pk

l=1 n2
l

∇ννh(ν;y)
∣∣∣ is strictly positive.

Now combining all the above arguments, for large m, with probability one,

1Pk
l=1 n2

l

∇ννh(ν;y) is negative definite and hence, strictly concave in a neighborhood

around νo. Let that neighborhood be denoted by Bε. Let B?
ε ⊂ Bε such that B?

ε is

compact. Then an application of Theorem 3.5 gives

sup
ν ∈ B?

ε

∣∣∣ 1∑k
l=1 n2

l

(
h(ν;y)− h(ν)

)∣∣∣ p→ 0 (3.34)

Then by (3.34) and since 1Pk
l=1 n2

l

h(ν) has a unique maximum at ν = νo, an

application of Theorem 3.6 gives the desired result: there exists a sequence of local

maxima which is consistent for νo.

Proof of Theorem 3.4. Since it has been shown that ν̂ is consistent for νo, we

expand ∇νh(ν̂;y) around νo to obtain

0 ≡ ∇νh(ν̂;y) = ∇νh(νo;y) +∇ννh(νo;y)(ν̂ − νo) +

1

2

2∑
j=1

∂

∂νj

{∇ννh(ν?;y)}(ν̂ − νo)(ν̂j − νoj) (3.35)

where ν? lies between ν̂ and νo, and ν̂ = (ν̂1, ν̂2)
′.

Step (i): We first seek to derive the asymptotic distribution of a properly normal-

ized ∇νh(νo;y), where

∇νh(νo;y) =




∂
∂δ

h(νo;y)

∂
∂λ

h(νo;y)
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∂

∂δ
h(νo;y) = 2

k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j − δo exp(−λoM

p||zi − zj||)
)

exp(−λoM
p||zi − zj||)

∂

∂λ
h(νo;y) = −2δo

k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j − δo exp(−λoM

p||zi − zj||)
)
Mp||zi − zj||

· exp(−λoM
p||zi − zj||)

In the expression for ∂
∂δ

h(νo;y), we write ε̂i, ε̂j as (yi−x′iβo−x′ib̂), (yj−x′jβo−

x′jb̂) and argue that all terms in 1

(
Pk

l=1 n4
l )

1
2

∂
∂δ

h(νo;y) that involve b̂ are op(1).

Consider the term 1

(
Pk

l=1 n4
l )

1
2

∑k
l=1

∑
i,j∈Cl
i6=j

(yi− x′iβo)x
′
jb̂ exp(−λoM

p||zi− zj||).

1

(
∑k

l=1 n4
l )

1
2

E
∣∣∣

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)||xj|| exp(−λoM
p||zi − zj||)

∣∣∣

≤
( 1∑k

l=1 n4
l

E
( k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)||xj|| exp(−λoM
p||zi − zj||)

)2) 1
2

Now we expand the above expression as within and between cluster terms, that is,

E
( k∑

l=1

∑

i,j∈Cl
i6=j

(yi − x′iβo)||xj || exp(−λoM
p||zi − zj ||)

)2
≤

k∑

l=1

E
( ∑

i,j∈Cl
i6=j

(yi − x′iβo)||xj ||
)2

+ sup
l1 6=l2

sup
i∈Cl1
j∈Cl2

exp(−λoM
p||zi − zj ||)

∑

l1 6=l2

E
( ∑

i∈Cl1
j∈Cl2

(yi − x′iβo)||xi||(yj − x′iβo)||xj ||
)2

The sum within a cluster involves n2
l terms, and hence, the expectation of this

sum is O(n4
l ). The sum between cluster involves nl1nl2 terms, so that the expectation
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of this latter sum is O(n2
l1
n2

l2
). Hence,

1∑k
l=1 n4

l

E
( k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)||xj|| exp(−λoM
p||zi − zj||)

)2

=
1∑k

l=1 n4
l

k∑

l=1

O(n4
l ) +

1∑k
l=1 n4

l

∑

l1 6=l2

O(n2
l1
n2

l2
) sup

i∈Cl1
j∈Cl2

exp(−λoM
p||zi − zj||)

=
O

( ∑k
l=1 n4

l

)

∑k
l=1 n4

l

+ sup
l1 6=l2

sup
i∈Cl1
j∈Cl2

M exp(−λoM
p||zi − zj||)

O
(( ∑k

l=1 n2
l

)2)

M
∑k

l=1 n4
l

≤ c
[
by (B1), (B2) and

O
(( ∑k

l=1 n2
l

)2)

M
∑k

l=1 n4
l

→ 0
]

Hence,

1

(
∑k

l=1 n4
l )

1
2

E
∣∣∣

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)||xj|| exp(−λoM
p||zi − zj||)

∣∣∣ ≤ c (3.36)

1

(
∑k

l=1 n4
l )

1
2

k∑

l=1

∑
i,j∈Cl
i6=j

(yi − x′iβo)x
′
jb̂ exp(−λoM

p||zi − zj||) p→ 0 [by (3.36) and b̂
p→ 0]

Also,

1

(
∑k

l=1 n4
l )

1
2

k∑

l=1

∑
i,j∈Cl
i6=j

x′ib̂x′jb̂ exp(−λoM
p||zi − zj||)

∣∣∣ ≤ ||b̂||2
(
∑k

l=1 n4
l )

1
2

k∑

l=1

n2
l

∑
i,j∈Cl
i6=j

||xi||||xj||
n2

l

p→ 0 [by (B1), (B4), (B8)]

Using the matrices defined in Theorem 3.4, we have shown

1

(
∑k

l=1 n4
l )

1
2

∂

∂δ
h(νo;y) =

2

(
∑k

l=1 n4
l )

1
2

(
(y −Xβo)

′Go(y −Xβo)− δotr[G2
o]

)
+ op(1)

= R1 + op(1)
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Similarly,

1

(
∑k

l=1 n4
l )

1
2

∂

∂λ
h(νo;y) =

−2

(
∑k

l=1 n4
l )

1
2

(
(y −Xβo)

′Ho(y −Xβo)− δotr[GoHo]
)

+ op(1)

= R2 + op(1)

Next we derive the asymptotic distribution of (R1, R2)
′ and use Slutsky’s

Lemma to claim that the asymptotic distribution of (R1, R2)
′ is the same as the

asymptotic distribution of 1

(
Pk

l=1 n4
l )

1
2
∇νh(νo;y).

From Theorem 3.2c.2 of Mathai and Provost [27], the moment generating

function of (R1, R2)
′ is given by

MR1,R2(t1, t2) =
∣∣∣Im− 4t1GoVo

(
∑k

l=1 n4
l )

1
2

+
4t2HoVo

(
∑k

l=1 n4
l )

1
2

∣∣∣
− 1

2exp
(−2δot1tr[G2

o] + 2δot2tr[GoHo]

(
∑k

l=1 n4
l )

1
2

)

Let s(t1, t2) = log
∣∣∣Im− 4t1GoVo

(
Pk

l=1 n4
l )

1
2

+ 4t2HoVo

(
Pk

l=1 n4
l )

1
2

∣∣∣. Using Lemma 3.6 (d),(e), we

get

∂s(0, 0)

∂t1
= − 4tr[GoVo]

(
∑k

l=1 n4
l )

1
2

∂s(0, 0)

∂t2
=

4tr[HoVo]

(
∑k

l=1 n4
l )

1
2

∂2s(0, 0)

∂t21
= −16tr[GoVoGoVo]∑k

l=1 n4
l

∂2s(0, 0)

∂t22
= −16tr[HoVoHoVo]∑k

l=1 n4
l

∂2s(0, 0)

∂t1∂t2
=

16tr[GoVoHoVo]∑k
l=1 n4

l

Note that ∂(i+j)s(0,0)

∂t
(i)
1 ∂t

(j)
2

= o(1), if i+ j ≥ 3. This follows from (B1),(B2),(B6) and
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Lemma 3.2. For example,

∂3s(0, 0)

∂t31
= c · tr[(GoVo)

3]

(
∑k

l=1 n4
l )

3
2

=
O(

∑k
l=1 n6

l )

(
∑k

l=1 n4
l )

3
2

[by (B1), (B2)]

→ 0 [by (B2), (B6) and Lemma 3.2]

Next we expand log MR1,R2(t1, t2) around (0, 0),

logMR1,R2(t1, t2) = −1

2

(−4tr[GoVo]

(
∑k

l=1 n4
l )

1
2

t1 +
4tr[HoVo]

(
∑k

l=1 n4
l )

1
2

t2 − 16tr[GoVoGoVo]∑k
l=1 n4

l

t21
2

− 16tr[HoVoHoVo]∑k
l=1 n4

l

t22
2

+
16tr[GoVoHoVo]∑k

l=1 n4
l

t1t2 + o(1)
)
− 2δo(tr[G

2
o]t1 − tr[GoHo]t2)

(
∑k

l=1 n4
l )

1
2

But tr[GoVo] = δotr[G
2
o] and tr[HoVo] = δotr[GoHo], hence

logMR1,R2(t1, t2) =
4tr[GoVoGoVo]∑k

l=1 n4
l

t21 +
4tr[HoVoHoVo]∑k

l=1 n4
l

t22 −
8tr[GoVoHoVo]∑k

l=1 n4
l

t1t2 + o(1)

⇒ K
− 1

2
o

(
R1

R2

)
d→ N(02, I2)

where Ko is defined in Theorem 3.4. By Slutsky’s Lemma,

K
− 1

2
o

(
∑k

l=1 n4
l )

1
2

∇νh(νo;y)
d→ N(02, I2) (3.37)

Step (ii): Next we show

− 1∑k
l=1 n2

l

∇ννh(νo;y)L−1
o

p→ I2 (3.38)

In Theorem 3.3, it was established that each term of 1Pk
l=1 n2

l

∇ννh(ν;y) con-
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verges in probability. Evaluating those expressions at νo we get

1∑k
l=1 n2

l

∂2

∂δ2
h(νo;y) =

−2∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

exp(−2λoM
p||zi − zj||)

1∑k
l=1 n2

l

∂2

∂λ2
h(νo;y)

p≈ −2δ2
o∑k

l=1 n2
l

k∑

l=1

∑
i,j∈Cl
i6=j

(Mp||zi − zj||)2 exp(−2λoM
p||zi − zj||)

1∑k
l=1 n2

l

∂2

∂δ∂λ
h(νo;y)

p≈ 2δo∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

Mp||zi − zj|| exp(−2λoM
p||zi − zj||)

By expressing the above terms by the matrices defined in Theorem 3.4, (3.38)

follows immediately.

Step (iii): Finally it has to be shown that 1Pk
l=1 n2

l

∑2
j=1

∂
∂νj
{∇ννh(ν?;y)} is bounded

in probability. We show this for one of the terms; the remainder is similar and hence

the proof is omitted. For example, consider

1∑k
l=1 n2

l

∂3

∂λ3
h(ν;y) =

−2δ∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j(M

p||zi − zj||)3 exp(−λMp||zi − zj||)

− 4δ(Mp||zi − zj||)3 exp(−2λMp||zi − zj||)
)
.

Then,

∣∣∣ 1∑k
l=1 n2

l

∂3

∂λ3
h(ν?;y)

∣∣∣ ≤ 2 c3 δ?∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
|(yi−x′iβo−x′ib̂)(yj−x′jβo−x′jb̂)|+ 4δ?

)

where ν? = (δ?, λ?)
′ and by (B2),

c = sup
1≤l≤k

lim sup
M→∞

Mp sup
i,j∈Cl

||zi − zj|| < ∞
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Similar to the proofs shown earlier, terms that involve b̂ are op(1), that is,

∣∣∣ 1∑k
l=1 n2

l

∂3

∂λ3
h(ν?;y)

∣∣∣ ≤2c3(|δ? − δo|+ δo)∑k
l=1 n2

l

k∑

l=1

∑
i,j∈Cl
i6=j

(
|(yi − x′iβo)(yj − x′jβo)|

+ 4(|δ? − δo|+ δo)
)

+ op(1)

And now we have the right hand side above converging in probability to a

constant and hence,
∣∣∣ 1Pk

l=1 n2
l

∂3

∂λ3 h(ν?;y)
∣∣∣ is bounded in probability.

Step (iv): Rearranging terms in (3.35) and normalizing by
Pk

l=1 n2
l

(
Pk

l=1 n4
l )

1
2

, we get

∑k
l=1 n2

l

(
∑k

l=1 n4
l )

1
2

K
− 1

2
o Lo(ν̂ − νo) = K

− 1
2

o Lo

(
− ∇ννh(νo;y)∑k

l=1 n2
l

− 1

2
∑k

l=1 n2
l

2∑

j=1

∂

∂νj
{∇ννh(ν?;y)}(ν̂j − νoj)

)−1
K

1
2 K− 1

2
∇νh(νo;y)

(
∑k

l=1 n4
l )

1
2

By (3.37)-(3.38), and for j = 1, 2, ν̂j
p→ νoj, and since

∣∣∣ 1Pk
l=1 n2

l

∂3

∂λ3 h(ν?;y)
∣∣∣ is

bounded in probability, it follows that

∑k
l=1 n2

l

(
∑k

l=1 n4
l )

1
2

K
− 1

2
o Lo(ν̂ − νo)

d→ N(02, I2)
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Chapter 4

Simulation study

In this chapter we are interested in analyzing the following through simulation:

1. Find the relative efficiency of the predictor obtained under the true model and

the predictor obtained under the misspecified Fay-Herriot model.

2. Check if our estimation methods are adversely affected by small, but non-

negligible correlation between neighboring clusters.

3. Analyze the properties of the estimators derived in Sections 3.1-3.2, and com-

pare them with the MLE.

4. Check if increasing the dimension of zi, the vector of spatial locations and

covariates, decreases the standard error of the estimators.

4.1 Simulation setup

The zi’s for the simulation study are spatial co-ordinates, and except for item

4 above, the domain for zi is [0, 10]2, while for item 4, zi ∈ [0, 10]4. For a given
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number of clusters k, the cluster centers were chosen to be equally spaced on a grid

in [0, 10]2. For each cluster, the zi’s were generated using an independent bivariate

normal distribution such that all zi in a cluster were within a radius of r of the

cluster center (the standard deviation of the normal distribution was taken to be

3r/10). For simplicity, for l = 1, . . . , k, we took Nl = N . Note that for any specific

parameter combination of (M,N, k, δ, λ, σ2), the zi’s were generated only once and

then fixed for all simulation runs for that parameter combination.

For the simulation, to mimic (2.7)-(2.8), when M is increased from M1 to M2,

we need to decrease the radius of the clusters and the standard deviation of the

bivariate normal distribution that generates the zi’s. This is done as follows:

r2 = r1
Mp

1

Mp
2

where r1 is the original radius and r2 is the new radius of the clusters. The stan-

dard deviation of the bivariate normal distribution that generates the zi’s is then

decreased to 3r2/10.

Except for item 1 above, we generated data without sampling errors, we took

M = m, N = n (that is, a purely spatial model with no sampling) and we included

a covariate (fraction of adult population with bachelor’s degree) from the data set

analyzed in Chapter 5. The fixed effect parameter β = (β1, β2)
′ = (1, 1)′ was fixed

for the entire simulation study. For item 1, the data were generated with sampling

errors (see Section 4.2): 50% of the population was sampled and we included an

intercept β = 1. Moreover, except when generating data for item 2 above, the data

were generated so that the clusters were independent. Note that generating data so
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that the clusters are independent is equivalent to assuming that the clusters are well

separated [Assumption (C) and (2.7)-(2.8)] . In item 2 above, we generated data so

that the clusters were dependent (see Section 4.3).

For the entire simulation study the following parameters were fixed: p = 0.25,

τ 2 = δ + σ2 = 1. To be able to interpret λ, we choose it as follows: λ is chosen so

that the median value of the within cluster off-diagonal entries of AU is some number

c. Hence, the approximate median covariance among all pairs of small areas in a

cluster is δc.

Next, we define some terminology that is used in this chapter. The estimators

(β̂FH, τ̂ 2
FH, δ̂, λ̂) derived in Sections 3.1-3.2 are referred to as the “least squares esti-

mator” (LSE). To differentiate the MLE from the LSE, we use a subscript of ‘ML’

to denote the MLE.

The empirical mean squared error of an estimator α̂ is defined as

mse(α̂) =
1

R

R∑
r=1

(α̂r − αo)
2 (4.1)

where R is the number of simulation runs for a specific choice of parameter values, α̂r

is the estimate of α in the rth simulation run and αo is the true value of the parameter.

We refer to
√

mse(α̂) as the empirical root mean squared error (abbreviated as

e.s.e.). Moreover, the theoretical standard error, abbreviated as s.e., is obtained for

LSE from Theorems 3.2 and 3.4, while for MLE it is obtained from the information

matrix (3.8).

The relative efficiency of two estimators α̂ML and α̃ of a parameter α is defined
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to be

RE(α̂ML, α̃) =
var(α̃)

var(α̂ML)
. (4.2)

where var(α̂ML) and var(α̃) are the empirical variances of α̂ML and α̃.

For each set of parameter values, when estimating by LSE, we ran 500 sim-

ulation runs. However, when estimating by MLE, we ran 100 simulation runs. In

particular, when computing the MLE, we used the first 100 batches of simulated data

that was used to compute the LSE. The difference in simulation runs is due to time

constraints. Using the R command unix.time, for k = 40, N = 20, it was estimated

that the MLE takes approximately 25 times the running time of LSE. Because of

the small number of simulations runs we do not claim the simulation is definitive,

but we do claim that certain patterns emerge which support our conclusions.

Finally, note that in Sections 3.1-3.2, we derived estimators for (β, τ 2, δ, λ).

Since τ 2 = δ+σ2, we can estimate σ2 by σ̂2 = τ̂ 2
FH− δ̂, which is a consistent estimator

of σ2
o . However, we do not have a formula for var(σ̂2). We defer deriving a least

squares estimator for σ2 to future research.

4.2 Comparison of predictors

Here we are interested in computing the relative efficiency of the EBLUP θ̂i(η̂)

[(2.18)] obtained under the true model, and the EBLUP θ̃i(τ̂
2
FH) obtained under the

Fay-Herriot model, where θ̃i(τ̂
2
FH) is given by

θ̃i(τ̂
2
FH) =





x′iβ̂FH +
(
τ̂ 2

FH/(τ̂ 2
FH + ψi)

)
(yi − x′iβ̂FH) if i ∈ S

x′iβ̂FH if i ∈ Sc.
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where (β̂FH, τ̂ 2
FH) is given by (3.2). As mentioned in Chapter 2, the relative efficiency

of two predictors θ̂i(η̂) and θ̃i(τ̂
2
FH) is defined as

R(θ̂i(η̂), θ̃i(τ̂
2
FH)) =

MSE[ θ̃i(τ̂
2
FH) ]

MSE[ θ̂i(η̂) ]
(4.3)

When computing θ̂i(η̂), since we need to estimate η = (δ, λ, σ2)′, we do so by two

different methods: LSE and MLE.

In our study, we fixed M = 1200, m = 600, β = 1 (the intercept) and con-

sidered two different patterns for (k, n,N): k = 30, n = 20, N = 40 and k = 15,

n = 40, N = 80, and 4 different combinations for (δ, λ, σ2). Due to time constraints

we do not consider an elaborate experimental design for different parameter combi-

nations, however in a future study we plan on doing so. Moreover, in a future study

we will try to provide a more detailed summary as to what combinations of (k, n,N)

and (δ, λ, σ2) result in large relative efficiency. The simulation setup is as given in

Section 4.1, and the sampling errors ψi were generated from a mixture of normal

distributions; that is, ψi ∼ (1/2)N(0.2, 0.03) + (1/2)N(0.4, 0.07). We generate ψi’s

from a bivariate normal distribution so as to mimic a sample survey in which a

fraction of the sampled small areas have a much smaller sampling error compared

to the remaining sampled small areas.

Since the relative efficiency was significantly different for sampled and non-

sampled areas, we summarize our results by these categories. For each of the two

estimation methods, the column ‘Obs’ (sampled small areas) is obtained as follows:

we compute MSE[ θ̃i(τ̂
2
FH) ] and MSE[ θ̂i(η̂) ] by empirically averaging over all sam-

pled small areas and all simulation runs, and then compute the ratio to obtain
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R(θ̂i(η̂), θ̃i(τ̂
2
FH)). Similarly, we compute the column ‘Unobs’ (non-sampled small

areas).

As can be seen from Table 4.1, the relative efficiency is almost identical for

both methods of estimation. Moreover, much larger relative efficiencies are obtained

for the non-sampled areas compared to the sampled areas, and large values of δ

and small values of λ correspond to large relative efficiencies. Note that λ = 0.12

corresponds to c = 0.70 (that is, the median value of the within cluster off-diagonal

entries of AU is 0.70) and λ = 0.41 corresponds to c = 0.35.

Table 4.1: Relative efficiency of EBLUP obtained under the true model and

the Fay-Herriot model: k = 30, n = 20, N = 40, m = 600, M = 1200, β = 1.

‘Obs.’, ‘Unobs.’ respectively refer to the relative efficiency for sampled small

areas and the relative efficiency for non-sampled small areas.

LSE MLE

δ λ σ2 Obs. Unobs. Obs. Unobs

0.60 0.12 0.40 1.231 1.720 1.238 1.729

0.30 0.12 0.70 1.072 1.211 1.073 1.212

0.60 0.41 0.40 1.095 1.331 1.096 1.331

0.30 0.41 0.70 1.033 1.099 1.034 1.099

When k = 15, n = 40, N = 80, in Table 4.2, we provide only the relative

efficiency when LSE is used to estimate the variance components in the EBLUP. As

can be seen, the results are similar to the corresponding parameter combinations in
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Table 4.2: Relative efficiency of EBLUP obtained under the true model and the

Fay-Herriot model: k = 15, n = 40, N = 80, m = 600, M = 1200, β = 1.

δ λ σ2 Obs. Unobs.

0.60 0.12 0.40 1.280 1.861

0.30 0.12 0.70 1.033 1.261

Table 4.1. We note that even though the relative efficiency of the LSE and the MLE

can be small for certain parameters, it does not affect prediction. For example, from

Table 4.3, by dividing column 9 by column 5 and then squaring it, we get the relative

efficiency: the RE(δ̂, δ̂ML) and RE(σ̂2, σ̂2
ML) is 0.70. However, the RE(τ̂ 2

FH, τ̂ 2
ML) is

0.98. Hence one possible reason for the difference in relative efficiency between LSE

and MLE not affecting prediction could be explained by θ̂i(η) depending on τ 2, but

not individually on δ and σ2.

For the corresponding parameter combinations, the relative efficiency in Tables

4.1 and 4.2 are quite similar to the relative efficiency in Table 2.1. Recall that, in

Table 2.1, when all parameters are known, we computed the relative efficiency of

the BLUP obtained under the true model and the BLUP obtained under the Fay-

Herriot model. Also, for the calculation in Table 2.1, we took ψi = 0.5 for all i ∈ S.

However, the relative efficiency in Table 2.1 is slightly larger than the corresponding

relative efficiency in Tables 4.1 and 4.2. This is probably explained by the difference

in the number of parameters that need to be estimated to obtain the EBLUP under

the true model as opposed to the EBLUP under the Fay-Herriot model. That is, for
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the EBLUP obtained under the true model two additional parameters (δ, λ) have to

be estimated.

Table 4.3: Summary of LSE 3 and MLE for model with sampling errors, k = 30,

n = 20, N = 40, m = 600, M = 1200.

LSE MLE

par. tr.val.4 mean 5 med. 6 e.s.e. 7 s.e. 8 mean med. e.s.e. s.e.

β 1.00 1.006 0.999 0.093 0.094 0.998 0.999 0.091 0.093

δ 0.30 0.320 0.316 0.110 0.112 0.304 0.287 0.092 0.089

λ 0.12 0.133 0.116 0.102 0.102 0.145 0.123 0.099 0.077

σ2 0.70 0.672 0.675 0.099 -9 0.685 0.678 0.083 0.077

τ 2 1.00 0.992 0.984 0.093 0.092 0.989 0.975 0.092 0.091

3LSE refers to (β̂FH, τ̂2
FH)′ and (δ̂, λ̂)′ given by (3.2) and (3.5).

4true value of the parameter.

5mean parameter estimate over all simulation runs.

6median parameter estimate over all simulation runs.

7empirical root mean squared error of parameter estimate, given by the square root of (4.1).

8theoretical standard error evaluated at true parameter value.

9σ2 can be consistently estimated by τ̂2
FH−δ̂. However, we do not have a formula for its variance.
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4.3 Correlated clusters

For this section, the point pattern was generated as described in Section 4.1,

with the cluster radius r = 1.25 and the cluster centers {(i, j) : i, j = 1, 3, 5, 7, 9}.

The data were generated using the covariance model (2.5)-(2.6), where k = 25,

N = 20, M = 500. Note that the choice of r allows cluster boundaries of neighboring

clusters to intersect and small areas from two neighboring clusters to have non-

negligible correlation. λ = 0.3 was chosen so that the median within cluster value

of the Aij’s was 0.40. In this case, the median Aij value for any two neighboring

clusters is approximately 0.05.

In order to compare our estimation method of (δ, λ) with an estimation method

that takes advantage of the between cluster correlation, we also consider estimating

(δ, λ) as follows:

(δ̃, λ̃) = argmax
δ≥0, λ≥0

h̃(δ, λ;y) (4.4)

where

h̃(δ, λ;y) = −
m∑

i,j=1

i6=j

(
ε̂iε̂j − δ exp(−λMp||zi − zj||)

)2

(4.5)

where ε̂i = yi − x′iβ̂FH. As can be seen from Tables 4.4 and 4.5, there is little to

choose between the two estimation methods. Moreover, we note that for the LSE

the s.e.’s match the e.s.e.’s.

NOTE (1): In addition to the above mentioned estimator (δ̃, λ̃), it is possible to

derive an approximately unbiased estimator for (δ, λ) as follows.
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Table 4.4: Summary of LSE and LSE-C [the estimator given by (4.4)-(4.5)] when

clusters are correlated and no sampling errors, k = 25, N = 20, M = 500.

LSE LSE-C

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e.

δ 0.3 0.305 0.294 0.105 0.112 0.311 0.305 0.107

λ 0.3 0.319 0.308 0.178 0.175 0.339 0.319 0.180

Table 4.5: Summary of LSE and LSE-C when clusters are correlated and no sampling

errors, k = 25, N = 20, M = 500.

LSE LSE-C

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e.

δ 0.6 0.618 0.603 0.175 0.171 0.619 0.613 0.160

λ 0.3 0.327 0.318 0.129 0.111 0.336 0.338 0.138

80



Let D = diag(τ 2 +ψ1, . . . , τ
2 +ψm) and ỹ = [Im− (X ′D−1X)−1X ′D−1]y; that

is, ỹ is the vector of residuals after estimating β by β̂FH when τ 2 is known. The

approximately bias corrected estimator is derived as:

E(ỹỹ′) = E[(Im − (X ′D−1X)−1X ′D−1)yy′(Im −D−1X(X ′D−1X)−1X ′)]

= (Im − (X ′D−1X)−1X ′D−1)(σ2Im + δA + Ψ)(Im −D−1X(X ′D−1X)−1X ′)

= (Im − (X ′D−1X)−1X ′D−1)(D + δ(A− Im))(Im −D−1X(X ′D−1X)−1X ′)

= δ(Im −X(X ′D−1X)−1X ′D−1)(A− Im)(Im −D−1X(X ′D−1X)−1X ′)

+ (D −X(X ′D−1X)−1X ′)

= δQ(1)(λ, τ 2) + Q(2)(τ 2)

where

Q(1)(λ, τ 2) = (Im −X(X ′D−1X)−1X ′D−1)(A− Im)(Im −D−1X(X ′D−1X)−1X ′)

Q(2)(τ 2) = (D −X(X ′D−1X)−1X ′)

An approximately unbiased estimator (δ̆, λ̆) for (δ, λ) is given by

(δ̆, λ̆) = argmax
δ≥0, λ≥0

h?(δ, λ;y) (4.6)

where

h?(δ, λ;y) = −
k∑

l=1

∑
i,j∈Cl
i6=j

(
ε̂iε̂j − δQ

(1)
ij (λ, τ̂ 2

FH)−Q
(2)
ij (τ̂ 2

FH)
)2

where ε̂i = yi − x′iβ̂FH, β̂FH, τ̂ 2
FH are given in (3.2) and Q

(1)
ij (λ, τ̂ 2

FH), Q
(2)
ij (τ̂ 2

FH) are the

(i, j)th element of Q(1), Q(2) evaluated at τ̂ 2
FH. Note that since h?(δ, λ;y) does not

include diagonal elements of Q(1)(λ, τ̂ 2
FH) and Q(2)(τ̂ 2

FH), the bias correction terms
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are of lower order than the top order terms. Hence, (δ̆, λ̆) obtained by maximizing

h?(δ, λ;y) is asymptotically equivalent to (δ̂, λ̂).

As we did not perform many simulation runs, we do not report summary

statistics for the estimator given by (4.6). However, for the parameter combinations

we considered, there was negligible difference between the estimators given by (4.6)

and the least squares estimators we considered in Chapter 3.

NOTE (2): We can express the variance-covariance matrix of y as

var(y) = V = σ2Im + δA + Ψ = τ 2Im + δ(A− Im) + Ψ (4.7)

Using (4.7) we can estimate (δ, λ) as follows: Use the log likelihood function but

substitute estimators (β̂FH, τ̂ 2
FH) for (β, τ 2) and maximize over (δ, λ). That is we

define the estimator (δ̂H, λ̂H) of (δ, λ) as

(δ̂H, λ̂H) = argmax
δ≥0, λ≥0

L(δ, λ;y) (4.8)

where

L(δ, λ;y) = −1

2
log |V (δ, λ, τ̂ 2

FH)| − 1

2
(y −Xβ̂FH)′

[
V (δ, λ, τ̂ 2

FH)
]−1

(y −Xβ̂FH) (4.9)

where

V (δ, λ, τ̂ 2
FH) = τ̂ 2

FHIm + δ(A− Im) + Ψ.

In a limited simulation study (not reported here), of the estimator given by

(4.8)-(4.9), we found that it was more efficient than the least squares estimator for

(δ, λ) given by (3.5). Moreover, the estimator given by (4.8)-(4.9) has a running

time approximately one third the running time of the MLE when k = 40, N = 20.
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The shorter running time is due to the reduced number of matrix multiplications

that need to be computed for each iteration when (δ, λ) is estimated by (4.8)-(4.9)

as opposed to the MLE. We defer showing large sample properties of the estimator

given by (4.8)-(4.9) to the future.

4.4 Comparison of LSE and MLE

In this section, we compare the LSE and the MLE for various parameter

combinations. Since it is not possible to be exhaustive and analyze all parameter

combinations, we fix λ = 0.54, which corresponds to the median within cluster value

of Aij being approximately 0.32. The simulation setup is exactly as described in

Section 4.1. We first summarize our results and then give some details for specific

simulation runs.

1. The relative efficiency of LSE and MLE depends on δ. Large values of δ

correspond to small values of relative efficiency of LSE and MLE (that is, for

large δ, MLE is much more efficient).

2. When δ and k are small, estimating λ is problematic. Depending on δ and

k, as many as 5% (and this could be much larger if k or δ is taken to be

smaller than values considered in this simulation study) of the simulation

runs result in the estimate for λ either being 0 or being extremely large. Here,

by extremely large, we mean the estimate is greater than 4 s.e.’s from the true

value. However, the frequency of such cases decreases as k increases. For all

parameters except λ, in most cases, the s.e.’s of the LSE and the MLE match
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the e.s.e.’s. Moreover, we do not have boundary problems with (β1, β2, τ
2).

However, in very few cases the estimate of δ is 0. We note that whenever an

estimate was at the boundary or very large (in the case of λ), in nearly all cases,

randomly restarting the maximization routine did not help. If this occurred

when estimating by LSE, in certain cases, the contour plots were checked and

they indicated that the maximization routine had indeed converged correctly.

3. In certain cases, when estimating λ, the RE(λ̂, λ̂ML) > 1. This is probably due

to k being too small. In such cases, whenever we increase k, the RE(λ̂, λ̂ML)

decreases to a number smaller than 1. Moreover, for small k, the histogram of

λML has a fatter tail on the right when compared to the histogram of λ̂. Also,

we note that since we ran only 100 simulation runs for the MLE, the MLE of

λ is unduly influenced by large estimated values for λ.

4. Large values of δ and N imply smaller values of k are needed so that the s.e.

of the LSE and the e.s.e. of the LSE are close to one another. The same is

true for the MLE.

5. Based on previous results mentioned in Sections 2.1 and 3.3, we conjectured

that the MLE for σ2 is
√

m-consistent. However, the e.s.e. of the MLE for σ2 is

approximately the same as the e.s.e. of the MLE for δ. This seems to indicate

that the MLE for σ2 is not
√

m-consistent but possibly only
√

k-consistent.

From Table 4.6 for the LSE and the MLE, we see that, except when estimating

λ by LSE, for all the other cases the e.s.e.’s are close to the s.e.’s. Moreover, two
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Table 4.6: Summary of LSE and MLE for model without sampling errors, k = 20,

N = 20, M = 400.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 1.012 1.007 0.141 0.141 1.008 1.002 0.145 0.125

β2 1.00 0.940 0.931 0.925 0.893 0.952 0.915 0.852 0.746

δ 0.30 0.314 0.301 0.131 0.135 0.301 0.309 0.108 0.103

λ 0.54 0.570 0.526 0.327 0.303 0.579 0.575 0.267 0.260

σ2 0.70 0.673 0.681 0.121 - 0.697 0.690 0.100 0.095

τ 2 1.00 0.987 0.983 0.083 0.080 0.998 0.977 0.088 0.079

of the estimated values of λ̂ are large, and without these two estimates, the e.s.e.of

LSE reduces to 0.304, which is nearly identical to the s.e. Moreover, we note that

RE(β̂1,FH, β̂1,ML) is marginally greater than 1. However, when k is increased to 40

(Table 4.7), we have RE(β̂1,FH, β̂1,ML) is much smaller than 1. Regarding estimation

of τ 2, we note that for every parameter combination we took, the RE(τ̂ 2, τ̂ 2
ML) ≈ 1.

When k is increased to 40 (Table 4.7) with (δ, λ, σ2) being the same, we calculate

the factor by which the e.s.e.’s decrease. For β1, β2, δ, λ, σ2, τ 2, the factors by which

the e.s.e.’s decrease are 1.37, 1.28, 1.41, 1.54, 1.44, 1.48. Theory would suggest that

they should reduce by approximately
√

2. However, we point out the need for a

larger simulation study to be definitive about this claim.
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Table 4.7: Summary of LSE and MLE for model without sampling errors, k = 40,

N = 20, M = 800.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 1.003 1.002 0.103 0.103 0.996 0.987 0.077 0.092

β2 1.00 0.935 0.944 0.722 0.729 0.983 1.009 0.522 0.620

δ 0.30 0.305 0.302 0.093 0.093 0.312 0.303 0.075 0.074

λ 0.54 0.539 0.534 0.212 0.212 0.589 0.555 0.223 0.187

σ2 0.70 0.688 0.690 0.084 - 0.688 0.692 0.069 0.068

τ 2 1.00 0.993 0.989 0.056 0.056 1.000 1.000 0.056 0.056

Note that in Table 4.7, the RE(λ̂, λ̂ML) > 1. When estimating by maximum

likelihood, there were two extremely large estimated values of λ which unduly in-

fluenced the e.s.e. After eliminating the large estimated values for both LSE and

MLE of λ, the RE(λ̂, λ̂ML) decreases to 0.96.

When instead of increasing k, we increased N = 40 (Table 4.8) with (δ, λ, σ2)

being the same, we noticed that the e.s.e.’s decrease quite significantly, for example,

when compared to Table 4.6, the e.s.e. of the LSE of δ, λ, σ2, τ 2 reduce by a factor

of 1.30, 1.28, 1.39, 1.32. While this may seem puzzling, as increasing N should

result in an inconsistent estimator, we probably have to increase N significantly to

be able to detect this. This is beyond the computing resources used for this thesis.

We point out that for both methods of estimation, the s.e. for the estimator of λ is
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Table 4.8: Summary of LSE and MLE for model without sampling errors, k = 20,

N = 40, M = 800.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 0.990 0.983 0.122 0.124 0.986 0.990 0.102 0.102

β2 1.00 1.099 1.134 0.811 0.829 1.035 1.038 0.625 0.614

δ 0.30 0.315 0.307 0.101 0.092 0.301 0.301 0.065 0.068

λ 0.54 0.569 0.541 0.256 0.219 0.589 0.555 0.201 0.179

σ2 0.70 0.676 0.683 0.087 - 0.690 0.692 0.055 0.058

τ 2 1.00 0.991 0.985 0.063 0.062 0.991 0.984 0.059 0.061

much smaller than the e.s.e. But once again we point out that after eliminating the

large estimated values for λ, the e.s.e.’s are almost identical to the s.e.’s

Comparing Tables 4.7 and 4.8, it is striking that when N = 40, k = 20, the

e.s.e. of δ̂ML, λ̂ML and σ̂2
ML is smaller than when N = 20, k = 40. We mention that

for large k, N such a phenomenon should not occur. However, we have no way

of verifying this claim using the computing resources available for this thesis. As

expected, the LSE and MLE for (β1, β2, τ
2) have larger e.s.e. when N = 40, k = 20

compared to N = 20, k = 40. This should be the case as larger N implies more

correlated observations which would make estimating the fixed effect parameter and

the variance parameter more difficult.
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Table 4.9: Summary of LSE and MLE for model without sampling errors, k = 20,

N = 20, M = 400.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 0.998 1.010 0.184 0.173 0.994 1.005 0.133 0.134

β2 1.00 1.046 0.970 1.148 1.050 1.015 0.998 0.730 0.696

δ 0.60 0.619 0.598 0.192 0.181 0.600 0.594 0.120 0.116

λ 0.54 0.538 0.519 0.207 0.214 0.599 0.565 0.184 0.159

σ2 0.40 0.365 0.377 0.146 - 0.392 0.386 0.082 0.074

τ 2 1.00 0.984 0.972 0.106 0.103 0.992 0.991 0.097 0.096

In Tables 4.9 and 4.10, δ is increased to 0.6 with k = 20, N = 20 (Table 4.9)

and k = 40, N = 20 (Table 4.10). We see that except when λ is estimated by MLE

for k = 20, N = 20, for all other cases, the e.s.e. matches the s.e. Moreover, unlike

in Table 4.7, when δ = 0.6, k = 40 is large enough for both methods of estimation to

not have estimated values of λ to be 0 or extremely large. Moreover, a comparison

of the relative efficiency of LSE and MLE in Table 4.10 for parameters β1, β2, δ,

λ, σ2, τ 2, gives 0.49, 0.42, 0.38, 0.63, 0.25, 1.03, which we compare to the similar

numbers in Table 4.7. which are 0.56, 0.52, 0.65, 1.11, 0.67, 1.00. It appears likely

that the relative efficiency depends on δ for fixed λ, k, N . Moreover, we point out

that in Table 4.9 for all parameters, the e.s.e. of LSE matches the s.e. which is not

the case in Table 4.6.
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Table 4.10: Summary of LSE and MLE for model without sampling errors, k = 40,

N = 20, M = 800.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 0.994 0.997 0.123 0.124 0.989 0.995 0.086 0.097

β2 1.00 1.052 0.961 0.913 0.866 1.093 1.153 0.594 0.580

δ 0.60 0.614 0.613 0.136 0.137 0.609 0.611 0.084 0.082

λ 0.54 0.541 0.525 0.148 0.150 0.559 0.549 0.117 0.112

σ2 0.40 0.380 0.393 0.107 - 0.392 0.386 0.054 0.053

τ 2 1.00 0.994 0.989 0.071 0.071 1.001 0.996 0.072 0.068

Next, we consider δ = 0.2, k = 40, N = 15 (Table 4.11). As mentioned

previously, small δ results in difficulty in estimating λ. The LSE and the MLE for

λ both show large bias, and the RE(λ̂, λ̂ML) > 1. Increasing to k = 80 (Table 4.12)

with (δ, λ, σ2) and N the same, still results in the e.s.e. not matching the s.e. for λ.

However, from Table 4.12 we have RE(λ̂, λ̂ML) < 1. Using Table 4.12, we compute

the relative efficiency of the LSE and the MLE. For the parameters β1, β2, δ, λ, σ2,

τ 2, the relative efficiency of the LSE and the MLE is 0.90, 0.87, 0.79, 0.82, 0.70, 0.77

which are much larger compared to the similar calculation we did for the relative

efficiency of LSE and MLE using Tables 4.7 and 4.10. In an effort to attain the

s.e. for the estimator for λ, we increase to k = 160. However, for this case it is

not possible to run a simulation for the MLE using available computer resources.
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Hence, we only consider the LSE. As Table 4.13 indicates, we have finally managed

to match the s.e. for λ̂ with the e.s.e. for λ̂.

Table 4.11: Summary of LSE and MLE for model without sampling errors, k = 40,

N = 15, M = 600.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 1.003 0.996 0.101 0.101 0.999 0.999 0.102 0.096

β2 1.00 0.991 0.999 0.702 0.706 0.943 0.976 0.677 0.662

δ 0.20 0.220 0.204 0.112 0.099 0.201 0.198 0.090 0.087

λ 0.54 0.600 0.528 0.420 0.335 0.693 0.574 0.495 0.313

σ2 0.80 0.777 0.788 0.113 - 0.784 0.779 0.101 0.090

τ 2 1.00 0.997 0.997 0.060 0.060 0.985 0.985 0.061 0.060

4.5 Change in dimension

Here, we consider zi in a higher dimensional space - we take zi ∈ [0, 10]4.

Except for this, the simulation setup is exactly as described in Section 4.1. We

consider the same set of parameter values for (δ, λ, σ2) and k, N , M as Table 4.7.

We notice that increasing the dimension of zi (see Tables 4.14 and 4.7) reduces

the e.s.e. of (β1, β2, τ
2). This is because in a higher dimensional space for zi, the

observations within a cluster are not as highly correlated, which in turn results in

better estimation of (β1, β2, τ
2). However, as can be seen from these two tables, the
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Table 4.12: Summary of LSE and MLE for model without sampling errors, k = 80,

N = 15, M = 1200.

LSE MLE

par. tr.val. mean med. e.s.e. s.e. mean med. e.s.e. s.e.

β1 1.00 0.991 0.991 0.077 0.075 0.981 0.983 0.073 0.071

β2 1.00 1.059 1.058 0.567 0.559 1.129 1.149 0.496 0.522

δ 0.20 0.208 0.204 0.073 0.069 0.203 0.194 0.065 0.061

λ 0.54 0.551 0.529 0.261 0.239 0.555 0.525 0.237 0.224

σ2 0.80 0.789 0.793 0.074 - 0.795 0.796 0.062 0.063

τ 2 1.00 0.997 0.995 0.041 0.043 0.998 0.998 0.036 0.043

Table 4.13: Summary of LSE for model without sampling, k = 160, N = 15,

M = 2400.

par. tr.val. mean med. e.s.e. s.e.

β1 1.00 1.007 1.008 0.057 0.056

β2 1.00 0.933 0.920 0.432 0.424

δ 0.20 0.202 0.200 0.047 0.048

λ 0.54 0.534 0.514 0.170 0.168

σ2 0.80 0.793 0.795 0.050 -

τ 2 1.00 0.995 0.994 0.030 0.030
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e.s.e. of δ̂ and λ̂ both increase, though they match the s.e. of LSE.

Table 4.14: Summary of LSE for model without sampling, zi ∈ R4, k = 40, N = 20,

M = 800.

par. tr.val. mean med. e.s.e. s.e.

β1 1.00 0.997 0.998 0.094 0.092

β2 1.00 0.992 0.963 0.686 0.677

δ 0.30 0.335 0.307 0.182 0.173

λ 0.54 0.539 0.525 0.261 0.258

σ2 0.70 0.661 0.688 0.180 -

τ 2 1.00 0.996 0.996 0.054 0.052

4.6 Concluding remarks on simulation study

We conclude this chapter by remarking that while our simulation study is by

no means exhaustive, it is supportive of our theoretical results. Moreover for large

k, the simulation study provides evidence that the e.s.e. of the MLE matches the

s.e. of the MLE. However, we need to run a much larger simulation study, which we

will do in the future. We also suggest a few areas where it would be of interest to

carry out further simulation studies:

1. Compare the EBLUP under the true model and the EBLUP under the misspec-

ified Fay-Herriot model for more exhaustive combinations of (n,N, m, M, δ,

λ, σ2, ψi). Include covariates in addition to the intercept term. We believe by
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doing so larger relative efficiency between the EBLUP obtained under the true

model and the EBLUP obtained under the Fay-Herriot model can be achieved.

2. Consider different point patterns that generate the zi’s in each cluster.

3. Consider decreasing the cluster radius and check whether estimation is ad-

versely affected, especially estimation of λ.

4. Increase N and see if this results in inconsistent estimators for LSE. As we

mentioned in Sections 2.1 and 3.3, for certain spatial models under infill as-

ymptotics σ̂2
ML is

√
m-consistent. However, these results are for very special

point patterns. Based on our simulation results when estimating by MLE, we

have no evidence of different rates of convergence. We need to conduct a more

exhaustive simulation study to check this claim.

5. Consider certain types of mispecifications. For example, when clusters are

not well separated, check if the estimation method is adversely affected if a

fraction of points are assigned to the incorrect cluster.
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Chapter 5

Data analysis

We analyze a U.S. county level data set that was previously analyzed by

Wheeler [51], [52] for a different purpose. The data set consists of civilian em-

ployment growth rates for all U.S. counties between 1980 and 1990 and includes 14

county level covariates. We are interested in clustering the counties, and by doing so

we hope to obtain better predictors of the observed and unobserved counties when

compared to the predictors obtained without clustering. We assume the clusters

are Census Bureau regions (there are 9 such regions) and assume that the variance-

covariance matrix of the county level random effects (small area effects) is given by

(2.5), (2.10).

The set of covariates included in the data set were (the year is given in paren-

thesis): log employment (1980), log population (1980), employment density (1980),

population density (1980), log land area (1980), fraction of adult population with

bachelor’s degree (1980), fraction of employment in manufacturing (1980), unem-

ployment rate (1980), per capita income (1979), urban/rural indicator (1990), share

of local government spending on education (1982), share of local government spend-
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ing on police (1982), share of local government spending on highways (1982) and

fraction of population that is not white (1980).

Among the 3106 U.S. counties, we deleted 4 counties with missing covariates.

Unfortunately the deleted counties were all large counties. The deleted counties

were Bronx, New York, Queens and Richmond with employment growth rates of

0.0926, 0.0972, 0.0992 and 0.1976. Among the deleted counties, the first 3 counties

have approximately the median employment growth rate among all U.S. counties

while the last county has a growth rate in the 75th percentile. The missing covariates

for the counties were local government spending on education, police and highways,

and we were not able to impute these missing covariates.

In order to choose the best set of covariates, we considered the stepwise AIC

criterion. Following the discussion in Wheeler [51] where he mentions a non-linear

inverted ‘U’ relationship between the employment growth rate and log employment,

we plotted the data to check for such a relationship. Having seen one, we fitted a

model with a second degree polynomial in log employment in addition to includ-

ing other covariates. The other covariates were urban/rural indicator, fraction of

adult population with bachelor’s degree, fraction of employment in manufacturing,

log population, log land area, share of local government spending on police, share

of local government spending on highways and fraction of population that is not

white. Having chosen our main effects by stepwise AIC criterion, next we consid-

ered interaction terms. We considered interaction among all main effects, and the

final model selected by the AIC criterion was: log employment, urban/rural indica-

tor, fraction of adult population with bachelor’s degree, fraction of employment in
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manufacturing, log population, share of local government spending on police, share

of local government spending on highways, fraction of population that is not white,

and interaction between the following pairs of covariates: urban/rural indicator and

fraction of employment in manufacturing, urban/rural indicator and log popula-

tion, share of local government spending on police and fraction of employment in

manufacturing, share of local government spending on police and fraction of adult

population with bachelor’s degree. We note that when we considered interaction

terms, the quadratic term in log employment was not significant at the 0.05 level.

In the final model, among all coefficients for the fixed effects, the largest p-value

was 2.5× 10−8.

A histogram of the employment growth rates shows a slightly fatter tail to the

right but is otherwise symmetric and unimodal. Having fitted the model with the

above mentioned covariates, we checked a plot of the residuals against covariates

and against the fitted values, searching for any pattern. In particular, we checked

a plot of the residuals against log employment. We did not detect any pattern in

any of the plots. Moreover, for the residuals we did a normal Q-Q plot to check

our normality assumption. In the middle and the left tail, the plot looked fine,

however beyond the second standard deviation the plot deviated significantly from

the normal quantiles. This is associated with the slightly fatter tail to the right of

the histogram of the observations.

We draw a simple random sample of 800 from the 3102 U.S. counties and

pretend that only the sampled counties were observed. We refer to the remaining

2302 counties as the unobserved counties. Moreover, since the sampling errors ψi
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were not included in the data set, we added noise to the data in order to mimic

a typical setting in which the Fay-Herriot model is used. We pretend that the

employment growth rates given in the data set are the true employment growth

rates. We also analyze the data set without sampling errors. In this case, we do

cross-validation to compute the relative efficiency of the two different predictors.

To make the discussion easier, regardless of whether we add or do not add noise to

the employment growth rates, we refer to the competing model as the Fay-Herriot

model. Moreover, the above mentioned covariates were selected using the entire data

set so as to not have the set of covariates be dependent on the observed sample. Also,

in order not to have a specific sample unduly influence the outcome, we reanalyzed

the data set by randomly selecting another 2 samples.

In order to choose the sampling errors we did the following. Usually the ψi’s

are chosen so that for all i, ψi ∝ 1
ni

, where ni is the sample size of the direct survey

estimate of the ith small area. Moreover, in Fay-Herriot applications, the ni’s are

taken to be roughly proportional to population size for the ith small area. We chose

the constant of proportionality by taking the smallest county with the number of

civilians employed of at least 200, 000, and for such a county we made sure its direct

estimate would not differ from its EBLUP under the Fay-Herriot model by more

than 1%. Once we chose the constant of proportionality (which was 51.03), we kept

it fixed for all 3 samples.

We chose the number 200, 000 by using the same practice employed by the

Current Population Survey (CPS) where for a sampled county the sampling fraction

is approximately 1 in 2000 . Hence we do not want a county with a sample of at
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Table 5.1: Estimates of (δ, λ, τ 2) for 3 random samples from employment growth

rate data set.

Sample 1 Sample 2 Sample 3

Parameter spatial survey spatial survey spatial survey

δ 0.00958 0.01214 0.00834 0.00930 0.00768 0.00921

λ 0.00135 0.00150 0.00200 0.00212 0.00166 0.00189

τ 2 0.02104 0.02316 0.01822 0.01879 0.01744 0.01766

Table 5.2: Relative efficiency of EBLUP under true and Fay-Herriot for 3 randomly

selected samples using employment growth rate data.

Sample 1 Sample 2 Sample 3

sampled area 1.074 1.042 1.085

non-sampled area (survey) 1.395 1.341 1.368

non-sampled area (spatial) 1.483 1.420 1.447

least 100 to differ from its EBLUP under the Fay-Herriot model by more than 1%.

In Table 5.1, we give the set of parameter estimates (δ, λ, τ 2) for each of the 3

samples we generated. Moreover, we considered estimating the parameters with and

without adding sampling error which in the Table 5.1 is referred to as ‘survey’ and

‘spatial’. As can be seen from Table 5.1, there seems to be some variation by sample

in the estimates of the covariance parameters. Moreover, for any specific sample,

there is a noticeable difference in the estimates of the covariance parameters when

we add error compared to when we do not.
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From Table 5.2 we note that the relative efficiency of the EBLUP under the

true model and the Fay-Herriot is approximately the same for all 3 samples, even

though as mentioned previously there is some variability in the estimates by sample.

The row ‘sampled area’ refers to when we add sampling error to the county level

employment growth rates and we compute the relative efficiency of the two predic-

tors. We compute the relative efficiency by computing the ratio of the squared error

averaged over all observed small areas for each of the 2 different types of predictors.

Also, ‘non-sampled area (survey)’ refers to a similar computation as above when we

add sampling error and are interested in the relative efficiency of the predictors for

the non-sampled areas. Finally, ‘non-sampled area (spatial)’ refers to cross valida-

tion when we do not add sampling errors. As expected when we limit ourselves to

non-sampled areas, the relative efficiency is larger when there is no sampling error

as opposed to when we add sampling error. Also, as can be seen, the relative effi-

ciency is quite small for the sampled areas. We compare these numbers to the limit

of (2.28). For example, for sample 1, we substitute the estimated values of δ, σ2

and the median value of ψi in the limit of (2.28) and we get 1.08. Assuming the

estimated values for δ, σ2 in sample 1 are close to the true values, we have achieved

as large a relative efficiency as we can hope for.

In Figure 5.1, for one of the samples for the case when we did not add sampling

error, we give a plot of the squared error of the EBLUP under our model (x co-

ordinate) against the squared error of the EBLUP under the Fay-Herriot model (y

co-ordinate) for each of the non-sampled areas. The plotted line is y = x. As can be

seen, for most non-sampled small areas, the squared error of the EBLUP under the
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Fay-Herriot model is larger than the squared error of the EBLUP under our model.
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Figure 5.1: Plot of the squared error for EBLUP under our model vs. Fay Herriot

model.

As a further validation of fitting our model we computed the deviance, that is

2 times the difference in the log likelihood under our model and the log likelihood

under the Fay-Herriot model. The deviance when we added sampling error was

123.29 (in this case, the log likelihood under the Fay-Herriot model was 6463.59).

The deviance when we did not add sampling error was 183.19 (in this case, the log

likelihood under the Fay-Herriot model was 6311.36). We computed the deviance
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for only one of the samples. We also note that usually deviance is computed when

the parameters are estimated by MLE, however we point out that the large deviance

even when we estimate the parameters by our method is indicative of a better fit of

our model compared to the Fay-Herriot model.

We conclude this chapter by mentioning that in a future study of this data

set we plan on clustering the counties in a more scientific manner by using spatial

locations and various covariates. We did not do so in this thesis due to time con-

straints. However, as we have shown, even when we use Census Bureau regions as

our clusters, we obtain improved prediction, especially for the non-sampled areas.
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Chapter 6

Small area estimation problems

The second and third parts of this thesis consist of two non-spatial small area

estimation problems. In Chapter 7, in a small area context, we consider the problem

of simultaneous credible intervals. In the frequentist framework there are several

multiple comparison procedures that have been used in linear models. For example,

Scheffé’s, Tukey’s and Bonferroni’s multiple comparison procedures (Hochberg &

Tamhane [21], Miller [29] and Scheffé [43]). We adapt these procedures to the

Bayesian framework in order to construct simultaneous credible intervals for small

areas.

In the Bayesian framework the choice of prior for the hyperparameter(s) is

important. Usually a flat prior is chosen for the regression coefficient and the prior

variance is assumed to be independent of the regression coefficients and uniformly

distributed over the positive part of the real line (Berger [4] Morris & Christiansen

[30] and Morris [32]). However, there is significant of amount literature on choosing

priors so that they have approximate frequentist validity. For example, probability

matching priors refers to priors that give Bayesian credible sets that have approx-
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imately correct frequentist coverage (Datta & Mukerjee [16] and Tibshirani [46]).

The approximate agreement of the Bayesian and frequentist coverage probabilities

of the associated credible sets gives these priors an external validation (Datta &

Mukerjee [16]).

Datta et al. [17] refer to a prior as having dual justification if the posterior

variance of the hierarchical Bayes estimator is second order unbiased for the mean

squared error of the EBLUP (see 7.10). In Chapter 7, we follow a similar approach

in deriving an objective prior for the prior variance.

In Chapter 8, for a special case of the nested error regression model we consider

the problem of deriving a robust mean squared error (MSE) estimator for the em-

pirical best linear unbiased predictor (EBLUP). The small area mean θi is predicted

using the BLUP, but usually there will be unknown variance components that need

to be estimated. The BLUP with estimated variance components is referred to as

the EBLUP. The MSE of the BLUP cannot be used as an approximation of the

MSE of the EBLUP as it does not take into account the variability of estimating

the variance components.

For the Fay-Herriot model and the nested-error regression model, Prasad &

Rao [36] used a moment estimator to estimate the variance components, and under

normality derived a second order approximation of the MSE of the EBLUP, and

a second order unbiased estimator of the MSE of the EBLUP. Here, second order

approximation of the MSE means that the difference between the true MSE and the

approximation of the true MSE is o(1/m), where m is the number of small areas.

Also, second order unbiased means that the difference between the expectation of
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the estimator of the MSE and the true MSE is o(1/m).

For the Fay-Herriot model, Lahiri & Rao [24] showed that the normality of the

random effects could be relaxed by a certain moment condition on the random effects

so that the Prasad-Rao MSE estimator (with the variance components estimated by

a moment estimator) would still be second order unbiased. In a more general model,

under normality, Datta & Lahiri [15] gave an approximation and an estimator of

the MSE of the EBLUP when the variance components were estimated by either

the MLE or REML.

Without assuming normality Das, Jiang & Rao [14] derived an approximation

for the MSE of the EBLUP under a more general model that included the Fay-

Herriot model and nested error regression model as special cases. However when

deriving an estimator of the MSE of the EBLUP they assume normality.

For nested error regression model, Hall & Maiti [20] derived a non-parametric

estimator of the MSE of the EBLUP. They do so by considering a double bootstrap

method. In Chapter 8, unlike in Hall & Maiti, we derive a closed form expression

for the estimator of the MSE of the EBLUP.

104



Chapter 7

Simultaneous credible intervals

A researcher in public health may report an estimate of the mean body mass

index and the associated 95% individual confidence interval for each domain formed

by different demographic groups (e.g., for different race×gender× age-group com-

binations), and then use these individual confidence intervals to find significant

difference among pairs of domains. The problem with the above approach, often

referred to as data snooping, is that even if a table of estimates of the domain mean

differences and their associated 95% (individual) confidence intervals are reported

for all possible pairs, the confidence level refers to a single comparison and not to a

series of comparisons. In fact, the overall confidence level, that is, the probability

that all confidence intervals cover their respective true values, could be much lower

than the nominal 95% level. The problem of finding spurious significance results

due to data snooping is referred to as the problem of multiple comparison.

Exploratory data analysis is a useful part of any scientific investigation, but

any claim suggested by such analysis should be validated by an appropriate statis-

tical procedure. Multiple comparison is the most common data snooping problem
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encountered in small area research. The literature on multiple comparison for linear

models is vast, for example, see Hochberg and Tamhane [21] and Miller [29].

Using the celebrated Fay-Herriot model, we demonstrate how the Bayesian

method can be adapted to address the multiple comparison problem. The Bayesian

method is conceptually straightforward. Once the posterior distribution of the pa-

rameter(s) of interest is found, this is used for all inferential purposes.

As mentioned in Chapter 1, the Fay-Herriot model is given by

• Level 1 (sampling model): yi|θi
ind∼ N(θi, ψi), i = 1, · · · ,m;

• Level 2 (linking model): θi
ind∼ N(x′iβ, σ2), i = 1, · · · ,m.

Suppose we are interested in finding a 100(1 − α)% credible interval for a

specific `′θ, where ` is a known m× 1 column vector. We simply find the posterior

distribution of `′θ and use this to find the desired credible interval. To illustrate

the method, first assume σ2 is known, but β unknown. We put a flat (improper)

prior on β, that is, π(β) ∝ 1. As we show in Section 6.5,

θ |y ∼ N(Λω, Λ) (7.1)

where y = (y1, . . . , ym)
′
, θ = (θ1, . . . , θm)

′
, ω = ( y1

ψ1
, . . . , ym

ψm
)
′
, X = (x1, . . . ,xm)

′
,

and Λ−1 = diag( 1
ψ1

+ 1
σ2 , . . . ,

1
ψm

+ 1
σ2 )− X(X

′
X)−1X

′

σ2 .

A 100(1− α)% credible interval for `′θ is given by

`
′
Λω ±

(
`
′
Λ`χ2

(α,1)

) 1
2
, (7.2)

where χ2
(α,1) is the upper α percentage point of the chi-squared distribution with one

degree of freedom.
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When σ2 is unknown, we need to put priors on both β and σ2. We assume

that

π(β, σ2) = π(β)π(σ2) ∝ π(σ2).

In this case, a closed-form density for

T (1) =

(
`′(θ − E(θ | y))

)2

`′var(θ | y)`
| y

cannot be obtained. Hence, a Monte Carlo method is used to construct a credible

interval for `
′
θ. The method is as follows: For large R, independently simulate

(θ(1), β(1), σ
2
(1)), . . . , (θ(R), β(R), σ

2
(R)) ∼ f(θ, β, σ2 |y). Then E(θ |y) and var(θ |y)

are approximated by

E(θ | y) = θ(.) =
1

R

R∑
i=1

θ(i),

var(θ | y) =
1

(R− 1)

R∑
i=1

(θ(i) − θ(.))(θ(i) − θ(.))
′
.

Also, T
(1)
α , the upper α percentage point of the distribution of T (1), is given

by the upper α percentage point of the ordered values T
(1)
(i) (i = 1, . . . , R), where

T
(1)
(i) =

(
`′(θ(i) − E(θ | y))

)2

`′var(θ | y)`
.

When σ2 is unknown, a 100(1− α)% credible interval for `
′
θ is given by

`
′
E(θ | y)±

(
`
′
var(θ | y)`T (1)

α

) 1
2
. (7.3)

One important step in the Bayesian approach is the choice of the prior distrib-

ution for the hyperparameter(s). Morris and Christiansen [30] used a flat (Lebesgue
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measure) prior distribution for the regression coefficients, and assumed the prior

variance to be independent of the regression coefficients and uniformly distributed

over the positive part of the real line. These prior distributions for the hyperpara-

meters are simple to interpret to a nonstatistician and are often recommended. See

Berger [4] and Morris [32]. The uniform prior for the variance, often referred to as

the Stein’s superharmonic prior, is noninformative and is known to provide mini-

max procedures. Unless more information on the hyperparameters is available, these

simple prior distributions for the hyperparameters give good frequentist properties

to the resulting rules (Morris and Christiansen [30]).

7.1 Multiple Comparison

We are interested in constructing simultaneous 100(1−α)% credible intervals,

say I`, for `
′
θ for all ` ∈ L, where L ⊂ Rm, the m−dimensional Euclidean space.

That is, we want

P [`
′
θ ∈ I` for all ` ∈ L|y] = 1− α,

where the probability is with respect to the posterior distribution of θ = (θ1, . . . , θm)
′

given y = (y1, . . . , ym)
′
.

If one were to use (7.2) [when σ2 is known] or (7.3) [when σ2 is unknown] for

multiple comparison, then the overall coverage probability will be much lower than

the nominal 100(1 − α)%. Hence the need for our method. In the following three

subsections, we discuss multiple comparison procedures for three useful classes L.
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7.1.1 Pairwise comparison

Here we are only interested in constructing simultaneous credible intervals for

all pairwise comparisons. We will restrict attention to the case where σ2 is unknown.

A Bayesian version of Tukey’s simultaneous confidence intervals can be used. Define

max
k

(
(θk − E(θk | y)) | y

)
−min

k

(
(θk − E(θk | y)) | y

)
≡ T (2).

Note that ∀i, j,
∣∣∣
(
(θi − E(θi | y)) | y

)
−

(
(θj − E(θj | y)) | y

)∣∣∣ ≤ T (2)

⇒ P
(
∀i, j, |(θi − E(θi | y))− (θj − E(θj | y))| ≤ T (2)

α | y
)
≥ 1− α,

where T
(2)
α is the upper α percentage point of the distribution of T (2). Simultaneous

100(1− α)% credible intervals for all pairwise comparisons, θi − θj, are given by

E(θi | y)− E(θj | y)± T (2)
α ,

where, as before, Monte Carlo is used to compute E(θi | y), E(θj | y), T
(2)
α .

7.1.2 Multiple comparison for all contrasts

Here we concentrate on all possible contrasts in θ (that is, `
′
θ such that

∑m
i=1 `i = 0). Define

(θ − E(θ | y))′
{(

var(θ | y)
)−1
−

(
var(θ | y)

)−1
Jm

(
var(θ | y)

)−1

1′m
(
var(θ | y)

)−1
1m

}
(θ − E(θ | y))

∣∣∣y ≡ T (3).

Note (see Section 6.5) that subject to the constraint
∑m

i=1 `i = 0,

max
`

(
`′(θ − E(θ | y))

)2

`′var(θ | y)`

∣∣∣y = T (3). (7.4)
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When σ2 is known, in Section 6.5, it is shown that

T (3) ∼ χ2
(m−1). (7.5)

Thus simultaneous 100(1−α)% credible intervals for all `
′
θ such that

∑m
i=1 `i =

0 are given by

`
′
Λω ±

(
`
′
Λ`χ2

(α,m−1)

) 1
2
.

When σ2 is unknown, Monte Carlo is used to compute E(θ | y), var(θ | y),

T
(3)
α , and in this case simultaneous 100(1 − α)% credible intervals for all `

′
θ such

that
∑m

i=1 `i = 0 are given by

`
′
E(θ | y)±

(
`
′
var(θ | y) `T (3)

α

) 1
2
.

7.1.3 Multiple comparison for all `′θ

Note that (proof is similar to (7.4))

max
`

(
`′(θ − E(θ | y))

)2

`′var(θ | y)`

∣∣∣y = (θ − E(θ | y))′{var(θ | y)}−1(θ − E(θ | y)) |y ≡ T (4).

When σ2 is known, T (4) ∼ χ2
(m). Thus simultaneous 100(1 − α)% credible

intervals for `
′
θ for all ` ∈ Rm are given by

`
′
Λω ±

(
`
′
Λ `χ2

(α,m)

) 1
2
.

When σ2 is unknown, Monte Carlo is used to compute E(θ | y), var(θ | y),

T
(4)
α , and in this case simultaneous 100(1− α)% credible intervals for all `

′
θ for all
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` ∈ Rm are given by

`
′
E(θ | y)±

(
`
′
var(θ | y) `T (4)

α

) 1
2
.

7.2 Prior Selection

There are several ways one can choose the prior distribution for σ2. A popular

choice is Stein’s superharmonic prior distribution given by

π(σ2) ∝ I[σ2>0].

The above choice of prior is non-informative and is known to provide an ad-

missible procedure in the context of point estimation (Morris and Christiansen [30]).

The superharmonic prior was also used by Morris [31] in obtaining a suitable mea-

sure of uncertainty of his empirical Bayes estimator. In what follows, we consider

another approach to choosing a prior for σ2.

Given {wi ≥ 0, i = 1, · · · ,m, such that
∑m

i=1 wi = 1}, we seek a prior π(σ2)

satisfying the following condition:

m∑
i=1

wiE
(
var(θi | y)−MSE[θ̂i(σ̂

2)]
)

= o(1/m), (7.6)

where var(.|y) is the variance under the prior π(σ2), E(·) and MSE(·) are taken

with respect to the Fay-Herriot model; θ̂i(σ̂
2) is the EBLUP of θi, that is

θ̂i(σ̂
2) = x

′
iβ̃(σ̂2) +

σ̂2

(σ̂2 + ψi)
(yi − x

′
iβ̃(σ̂2))

β̃(σ2) = (X
′
Ω−1X)−1X

′
Ω−1y

111



where Ω = diag(ψ1 + σ2, . . . , ψm + σ2), and σ̂2 is the REML estimator of σ2. The

choice of REML estimator for σ2 is for convenience.

Assuming a general prior π(ψ), Datta et al. [17] proved that the hierarchical

Bayes estimator of θi has frequentist validation in the sense that, the EBLUP of

θi and the hierarchical Bayes estimator of θi differ by terms of the order Op(1/m).

Moreover, Datta et al. [17] chose a prior for which the posterior variance, a Bayesian

measure of variability, has a certain frequentist property (see 7.10). Similarly, we

seek a prior that satisfies (7.6). Such a prior has the following property: the weighted

average of the posterior variances over all small areas is second order unbiased for

the corresponding weighted average of the MSE of the EBLUP.

In order to satisfy (7.6), as shown in Section 6.5, it is necessary and sufficient

for π(σ2) to satisfy the following differential equation

dπ(σ2)

dσ2

1

π(σ2)
− 2

∑m
i=1 wiψ

2
i /(ψi + σ2)3

∑m
i=1 wi{ψi/(ψi + σ2)}2

+ 2

∑m
i=1 1/(ψi + σ2)3

∑m
i=1 1/(ψi + σ2)2

= 0. (7.7)

It can be checked that the solution to (7.7) is given by

π(σ2) ∝
∑m

i=1 1/(ψi + σ2)2

∑m
i=1 wi{ψi/(ψi + σ2)}2

. (7.8)

When the prior is given by (7.8), it can be checked that for m+2 > rank(X) the

posterior distribution of θ is proper (Datta et al. [17]). It is interesting to note that

Stein’s super-harmonic prior is a special case of (7.8): simply take wi =
1/ψ2

iPm
j=1 1/ψ2

j
.

The superharmonic prior could be interpreted as a prior under which the weighted

average of the posterior variance of θi is a second-order unbiased estimator of the

corresponding weighted average of the MSE of the EBLUP, the average being taken
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over all small areas and the weight for a given area being proportional to the inverse

of the squared sampling variance.

By taking wi = 1/m (for i = 1, . . . , m), we get the following prior which we

refer to as the “average moment matching prior”:

π(σ2) ∝
∑m

i=1 1/(ψi + σ2)2

∑m
i=1{ψi/(ψi + σ2)}2

. (7.9)

The prior given by (7.9) has the property that the average posterior variance

of θi is second-order unbiased for the average MSE of the EBLUP of θi. Also, by

taking wj = 1 for j = i, and wj = 0 for j 6= i, we get a prior obtained by Datta et

al. [17]. Their main motivation was to choose a prior distribution for σ2 such that

the posterior variance of θi is second-order unbiased for the mean squared error of

the EBLUP of θi, that is,

E
(
var(θi | y)

)
= MSE

(
θ̂i(σ̂

2)
)

+ o(1/m). (7.10)

Datta et al. [17] showed that the prior which satisfies (7.10) is given by

π(σ2) ∝ (ψi + σ2)2

m∑
j=1

1

(ψj + σ2)2
. (7.11)

Note that, unless ψi = ψ for i = 1, . . . , m, the prior for σ2 is area specific and

hence it is not possible to select a prior which satisfies (7.11) simultaneously for

i = 1, . . . , m.

113



7.3 Implementation by Monte Carlo

It is straightforward to show that (see Section 6.5)

fσ2|y(σ
2 | y) ∝ π(σ2)

m∏
i=1

exp(−1
2
y
′
(Ω−1 − Ω−1X(X ′Ω−1X)−1X

′
Ω−1)y)

(ψi + σ2)
1
2 |X ′Ω−1X| 12

(7.12)

β | σ2,y ∼ N((X ′Ω−1X)−1X ′Ω−1y, (X ′Ω−1X)−1) (7.13)

θ | β, σ2,y ∼ N(Γζ, Γ) (7.14)

where Ω = diag(ψ1 + σ2, . . . , ψm + σ2), Γ = diag( ψ1σ2

ψ1+σ2 , . . .
ψmσ2

ψm+σ2 ), , |X ′
Ω−1X| is

the determinant of X ′Ω−1X, ζ =
Xβ
σ2 + diag( 1

ψ1
, . . . , 1

ψm
)y.

We need to generate (θ∗, β∗, σ
2
∗) from f(θ, β, σ2 | y). To this end, note that

f(θ, β, σ2 | y) ∝ fσ2|y(σ2 | y)f(β | σ2,y)f(θ | β, σ2, y).

Hence (θ∗, β∗, σ
2
∗) will be generated as follows: σ2

∗ ∼ fσ2|y(σ2 | y), β∗ ∼ f(β |

σ2
∗,y), θ∗ ∼ f(θ | β∗, σ2

∗,y). Simulating β∗ ∼ f(β | σ2
∗,y) and θ∗ ∼ f(θ | β∗, σ2

∗,y)

is straightforward. To simulate σ2
∗ ∼ fσ2|y(σ2 | y), use the following accept-reject

method (for a discussion of the accept-reject method, see Robert and Casella [40]):

1. Simulate z ∼ χ2
(m−q−2) [where q = rank(X)].

2. Compute u = y
′
(I−X(X

′
X)−1X

′
)y

z
− ϕ. If u ≥ 0, then u ∼ fU(u), where

fU(u) ∝
exp(− 1

2(ϕ+u)
y
′
(I −X(X ′X)−1X

′
)y)

(ϕ + u)(m−q)/2
I[u≥0].

ϕ is chosen such that the acceptance rate in the accept-reject method is max-

imized or we could simply choose ϕ to be the median of the ψi’s.

3. Generate w ∼ Unif[0, 1].

114



4. Check if 1
K

fσ2|y(u|y)

fU (u)
≥ w, where K = maxt

fσ2|y(t|y)

fU (t)
. If true, then

u∼fσ2|y(σ2 |y).

7.4 Data analysis and simulation

In this section, we use a well-known data set to illustrate to what extent the

theoretically valid methods for multiple comparison differ from the naive compari-

son based on individual credible intervals. In our study, we include both pairwise

comparisons and comparisons of general contrasts. Also, a simulation study is per-

formed to compare the average moment matching prior (7.9) with that of Stein’s

superharmonic prior.

In our data analysis, we use the baseball run scoring data given in Morris and

Christiansen [30]. The baseball data set (Table 7.1) gives the average runs scored

per game and sample standard deviation of 14 baseball teams in the American

League for the year 1993. Each of the teams played 162 games, and yi denotes

the average runs scored over those 162 games. A good approximation given in

Morris and Christiansen [30] for the variance of runs scored for a single game is

var(µ) = (1.375µ)1.2, where µ is the mean runs scored for a single game. For

the 162 games played, the variance ψi for the ith team is then approximated by

ψi = var(yi)/162 = (1.375yi)
1.2/162, and is assumed to be known without error.

The normality assumption for yi is justified by the central limit theorem. The

estimates of the true runs per game θi and its standard error given in Table 7.1 were

computed using 20, 000 independent samples for each of the two priors.

115



Table 7.1: Estimates of the true runs/game and its s.e., using the superharmonic

prior (columns 5 and 6) and average moment matching prior (columns 7 and 8).

Obs Team yi

√
ψi θi si θ∗i s∗i

1 Det 5.549 0.266 5.287 0.250 5.290 0.250

2 Tor 5.228 0.257 5.070 0.227 5.073 0.230

3 Tex 5.154 0.254 5.022 0.225 5.021 0.226

4 NY 5.068 0.252 4.962 0.221 4.961 0.221

5 Cle 4.877 0.246 4.827 0.214 4.829 0.214

6 Bal 4.852 0.245 4.808 0.212 4.809 0.211

7 Chi 4.790 0.243 4.765 0.210 4.764 0.211

8 Sea 4.531 0.235 4.570 0.205 4.573 0.205

9 Mil 4.525 0.235 4.569 0.206 4.567 0.206

10 Oak 4.414 0.232 4.483 0.207 4.486 0.205

11 Min 4.278 0.227 4.379 0.205 4.381 0.205

12 Bos 4.235 0.226 4.346 0.205 4.348 0.205

13 Cal 4.222 0.226 4.336 0.204 4.337 0.205

14 KC 4.167 0.224 4.293 0.208 4.294 0.205
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Table 7.2: Credible intervals for selected contrasts using the superharmonic prior

Contrast All contrasts Pairwise Individual

θ1 − θ14 (-0.691,2.680) (-0.026,2.015) (0.341,1.682)

θ2 − θ14 (-0.785,2.339) (-0.244,1.797) (0.173,1.417)

θ4 − θ12 (-0.887,2.120) (-0.404,1.637) (0.034,1.228)

θ5 − θ13 (-0.965,1.947) (-0.529,1.511) (-0.070,1.084)

1
2
(θ2 + θ3)− θ13 (-0.627,2.045) not pairwise (0.189,1.251)

1
3
(θ1 + θ2 + θ3 − θ12 − θ13 − θ14) (-0.250,1.852) not pairwise (0.382,1.219)

It is interesting to note that the average moment matching prior gives very

similar results to the ones obtained when the superharmonic prior is used. This is

possibly because, for the baseball data set, there is little variability in the sampling

errors. Hence, the weights wi =
1/ψ2

iPm
j=1 1/ψ2

j
that generate the superharmonic prior are

more or less uniform across areas.

For the baseball data set, Tables 7.2-7.3 give 95% credible intervals for a few

contrasts of interest. Note that when an appropriate multiple comparison method

is used, the coverage probability holds simultaneously for all contrasts or pairwise

comparisons. If instead, before looking at the data, a practitioner decides that

a specific `
′
θ is the only contrast of interest, then a much shorter interval can be

obtained by using (7.3). As can be seen from Tables 7.2-7.3, in a number of instances,

after looking at the data, if a practitioner were to naively use (7.3), he/she would

incorrectly reject the null hypothesis Ho : `
′
θ = 0 when it should be accepted.

In an attempt to further investigate our class of priors, in a simulation study we
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Table 7.3: Credible intervals for selected contrasts using the moment matching prior

Contrast All contrasts Pairwise Individual

θ1 − θ14 (-0.666,2.657) (-0,027,2.018) (0.348,1.667)

θ2 − θ14 (-0.785,2.343) (-0.244,1.801) (0.176,1.419)

θ4 − θ12 (-0.900,2.125) (-0.410,1.636) (0.034,1.230)

θ5 − θ13 (-0.965,1.949) (-0.531,1.515) (-0.077,1.088)

1
2
(θ2 + θ3)− θ13 (-0.636,2.055) not pairwise (0.187,1.253)

1
3
(θ1 + θ2 + θ3 − θ12 − θ13 − θ14) (-0.252,1.854) not pairwise (0.379,1.217)

consider two different patterns for the sampling errors ψi and compare the average

moment matching prior with the uniform prior. The simulation setup we consider

is similar to the one given in Datta, Rao and Smith [17]. In the first pattern, the

ψi’s are more or less equal across areas. In the second pattern, there is considerable

variation in ψi’s, so that the weights that generate the superharmonic prior are also

quite variable.

Similar to Datta et al. [17], our simulation setup is as follows: m = 15, σ2 = 1,

five groups G1, G2, G3, G4, G5, with three small areas having the same ψi value

of 0.7, 0.6, 0.5, 0.4, 0.3 [pattern (a)] and 4.0, 0.6, 0.5, 0.4, 0.1 [pattern (b)]. Note

that our ψi patterns (a) and (b) are same as the Type I and Type III patterns of

Datta, Rao and Smith [17] respectively. For the entire simulation, β = (1, 1)′ was

fixed, and the scalar covariate xi was generated uniformly on [0, 1], and then fixed

for the entire simulation run. The above simulation was run 100 times, and for each

simulation run, the posterior distributions of θ, β, ψ were approximated by 10000
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runs of the monte carlo method discussed in Section 7.3.

Tables 7.4-7.7 summarize for each of the groups G1-G5, the average coverage of

a nominal 95% equal-tailed credible interval for θi, average length of the aforemen-

tioned credible interval, and the average integrated Bayes risk (same as the MSE) of

the θi’s. In computing the coverage and integrated Bayes risk, the joint distribution

of y and θ is used. We take the average over all small areas in the same group and

over all simulation runs. The last column in Tables 7.4-7.7 gives similar summary

statistics for the prior variance σ2 = 1, although, unlike the θi’s, the average is only

taken over all simulation runs.

Table 7.4: Summary of simulation results for θi in each group and for σ2 using the

superharmonic prior when m = 15, σ2 = 1 and pattern (a) for ψi’s.

G1 G2 G3 G4 G5 σ2

Coverage 0.930 0.970 0.967 0.950 0.940 0.930

Length 2.755 2.612 2.435 2.229 1.971 4.335

Risk 0.471 0.419 0.363 0.354 0.261 1.220

As can be seen from Tables 7.4-7.5, there is little to choose between the two

priors for ψi pattern (a). When the ψi’s have pattern (b), for G1 there is a reduction

of 10% in the average length of the credible interval for the same coverage, and a

6.75% reduction in average risk by using the moment matching prior as opposed

to the superharmonic prior. For G2 the gains are smaller, and for the remaining

groups there is little or no difference between the two priors. In terms of estimation
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Table 7.5: Summary of simulation results for θi in each group and for σ2 using the

moment matching prior when m = 15, σ2 = 1 and pattern (a) for ψi’s.

G1 G2 G3 G4 G5 σ2

Coverage 0.930 0.970 0.960 0.950 0.943 0.940

Length 2.744 2.605 2.428 2.223 1.964 4.280

Risk 0.472 0.420 0.362 0.354 0.261 1.167

Table 7.6: Summary of simulation results for θi in each group and for σ2 using the

superharmonic prior when m = 15, σ2 = 1 and pattern (b) for ψi’s.

G1 G2 G3 G4 G5 σ2

Coverage 1.000 0.933 0.967 0.933 0.967 0.900

Length 4.436 2.562 2.406 2.235 1.202 4.719

Risk 0.652 0.483 0.276 0.309 0.103 1.753

of σ2, significant gains can be achieved by using the moment matching prior. For

example, the average length of the credible interval is 26% shorter and the average

risk is reduced by 45%.

In conclusion, we remark that our simulation study suggests that one may

consider using the average moment matching prior over the superharmonic prior

when there is substantial variation in the sampling errors.
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Table 7.7: Summary of simulation results for θi in each group and for σ2 using the

moment matching prior when m = 15, σ2 = 1 and pattern (b) for ψi’s.

G1 G2 G3 G4 G5 σ2

Coverage 1.000 0.933 0.933 0.933 0.967 0.900

Length 3.993 2.435 2.310 2.159 1.189 3.482

Risk 0.608 0.477 0.284 0.305 0.102 0.960

7.5 Appendix

Derivation of (7.1). For known σ2 and ψ1, . . . , ψm,

f(θ|y) ∝
∫

β
f(y|θ)f(θ|β)π(β)dβ

∝
∫

β
exp

(
−

m∑
i=1

(yi − θi)
2

2ψi

−
m∑

i=1

(θi − x′iβ)2

2σ2

)
dβ

∝
∫

β
exp

(
−

m∑
i=1

(yi − θi)
2

2ψi

− 1

2σ2

(
β′X ′Xβ − 2θ′Xβ + θ′θ

))
dβ

∝ exp
(
−

m∑
i=1

( θ2
i

2ψi

− yiθi

ψi

)
− 1

2σ2
θ′

(
Im −X(X ′X)−1X ′

)
θ
)

∝ exp
(
− 1

2

(
θ′Λ−1θ − 2ω′θ

))

∝ exp
(
− 1

2
(θ − Λω)′Λ−1(θ − Λω)

)

where ω = ( y1

ψ1
, . . . , ym

ψm
)
′
and Λ−1 = diag( 1

ψ1
+ 1

σ2 , . . . ,
1

ψm
+ 1

σ2 ) − X(X
′
X)−1X

′

σ2 , and

the result follows.

Derivation of (6.4). For notational convenience, let Z be a random vector such that

E(Z) = µ and var(Z) = Υ. We shall show that subject to the constraint
∑m

i=1 `i = 0

max
`

(`′(Z− µ))2

`′Υ`
= (Z− µ)′

{
Υ−1 − Υ−1JmΥ−1

1mΥ−11m

}
(Z− µ).
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Let

f =
(`′(Z− µ))2

`′Υ `
+ λ`′1m.

Setting ∂f
∂`

= 0 and ∂f
∂λ

= 0, we have

2{`′(Z− µ)}
`
′
Υ `

(Z− µ)− 2{`′(Z− µ)}2

{`′Υ `}2
Υ ` + λ1m = 0 (7.15)

`
′
1m = 0.

Multiplying (7.15) by 1′mΥ−1 and solving for λ

λ = −2{`′(Z− µ)}{1′mΥ−1(Z− µ)}
{1′mΥ−11m}{`′Υ `} .

Substituting λ in (7.15), we get

` =
`′Υ `

`′(Z− µ)
Υ−1(Z− µ)− {`′Υ `}{1′mΥ−1(Z− µ)}

{1′mΥ−11m}{`′(Z− µ)}Υ−11m. (7.16)

Using (7.16), we obtain

max
`

f = max
`

(`′(Z− µ))2

`′Υ `
+ λ`′1m

=

{
(Z− µ)

′
Υ−1(Z− µ)− {1′mΥ−1(Z−µ)}2

1′mΥ−11m

}2

{
(Z− µ)′Υ−1 − 1′mΥ−1(Z−µ)

1′mΥ−11m
1′mΥ−1

}
Υ

{
Υ−1(Z− µ)− 1′mΥ−1(Z−µ)

1′mΥ−11m
Υ−11m

}

= (Z− µ)
′
Υ−1(Z− µ)− {1′mΥ−1(Z− µ)}2

1′mΥ−11m

= (Z− µ)′
{

Υ−1 − Υ−1JmΥ−1

1′mΥ−11m

}
(Z− µ). (7.17)

Derivation of (6.5). Moreover, for Z ∼ N(µ, Υ), consider the quadratic form given

in (7.17). By Searle [44] [Theorem 2, p.57], since

(
Υ−1 − Υ−1JmΥ−1

1′mΥ−11m

)
Υ = Im − Υ−1Jm

1′mΥ−11m
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is idempotent, and

rank
(
Im − Υ−1Jm

1′mΥ−11m

)
= tr

(
Im − Υ−1Jm

1′mΥ−11m

)
= m− 1,

it follows that

(Z− µ)′
{

Υ−1 − Υ−1JmΥ−1

1′mΥ−11m

}
(Z− µ) ∼ χ2

(m−1).

Derivation of (6.7). Using the approximations for E
(
var(θi | y)

)
and MSE

(
θ̂i(σ̂

2)
)

given in Datta et al. [17], we have

E
(
var(θi | y)

)
= g1i(σ

2) + g?
1πi(σ

2) + g2i(σ
2) + o(1/m) (7.18)

MSE
(
θ̂i(σ̂

2)
)

= g1i(σ
2) + g2i(σ

2) + g3i(σ
2) + o(1/m) (7.19)

where

g1i(σ2) =
ψiσ

2

ψi + σ2

g2i(σ2) =
ψ2

i

(ψi + σ2)2
x
′
i

( m∑

j=1

xjx
′
j

ψj + σ2

)−1
xi

g?
1πi(σ

2) =
2ψ2

i

(ψi + σ2)2
1∑m

j=1(ψj + σ2)−2

(dπ(σ2)
dσ2

1
π(σ2)

− 1
ψ2

i + σ2
+ 2

∑m
j=1(ψj + σ2)−3

∑m
j=1(ψj + σ2)−2

)

g3i(σ2) =
2ψ2

i

(ψi + σ2)3
1∑m

j=1(ψj + σ2)−2
.

Using (7.6), (7.18) and (7.19), it follows that

dπ(σ2)
dσ2

1
π(σ2)

m∑

i=1

wi
ψ2

i

(ψi + σ2)2
1∑m

i=1(ψi + σ2)−2
−

m∑

i=1

wi
ψ2

i

(ψi + σ2)3
1∑m

i=1(ψi + σ2)−2
+

2
m∑

i=1

wi
ψ2

i

(ψi + σ2)2

∑m
i=1(ψi + σ2)−3

( ∑m
i=1(ψi + σ2)−2

)2 =
m∑

i=1

wi
ψ2

i

(ψi + σ2)3
1∑m

i=1(ψi + σ2)−2

and by rearranging terms we get (7.7).
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Derivation of (6.12)-(6.14). For (6.12), see Datta et al. [17]. For (6.13):

f(β|σ2,y) ∝
∫

θ
f(y|θ)f(θ|β)π(β, σ2)dθ

∝
∫

θ
exp

(
−

m∑
i=1

(yi − θi)
2

2ψi

− 1

2σ2
(θ −Xβ)′(θ −Xβ)

)
dθ

∝ exp
(
− 1

2σ2
β′X ′Xβ

) ∫

θ
exp

(
− 1

2
(θ′Γ−1θ − 2ζ ′θ)

)
dθ

∝ exp
(
− 1

2σ2
β′X ′Xβ +

1

2
ζ ′Γζ

)

∝ exp
(
− 1

2
(β′X ′Ω−1Xβ − 2(X ′Ω−1y)′β)

)

∝ exp
(
− 1

2
(β − (X ′Ω−1X)−1X ′Ω−1y)′X ′Ω−1X(β − (X ′Ω−1X)−1X ′Ω−1y)

)

where Ω = diag(ψ1 + σ2, . . . , ψm + σ2), Γ = diag( ψ1σ2

ψ1+σ2 , . . . ,
ψmσ2

ψm+σ2 ), ζ =
Xβ
σ2 +

diag( 1
ψ1

, . . . , 1
ψm

)y, and the result follows.

For (6.14):

f(θ|y, β, σ2) ∝ f(y|θ)f(θ|β, σ2)

∝ exp
(
−

m∑
i=1

(yi − θi)
2

2ψi

− 1

2σ2
(θ −Xβ)′(θ −Xβ)

)

∝ exp
(
− 1

2
(θ′Γ−1θ − 2ζ ′θ)

)

∝ exp
(
− 1

2
(θ − Γζ)′Γ−1(θ − Γζ)

)

and the result follows.
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Chapter 8

Robust mean squared error estimator

As mentioned in Chapter 1, the nested error regression model is given by

yij = x′ijβ + vi + eij, i = 1, . . . , m, j = 1, . . . , ni, (8.1)

where yij is the jth observation in the ith small area, xij is a vector of known

covariates at the unit-level, vi’s and eij’s are independent with vi
iid∼ N(0, σ2

v) and

eij
iid∼ N(0, σ2

e).

The model given by (8.1) along with the Fay-Herriot model are the two most

popular models in small area estimation. To estimate areas planted with corn and

soybeans for twelve counties in North-Central Iowa, Battese et al. [3] used (8.1). The

parameter of interest is the small area mean θi = X
′
iβ + vi, where Xi is the known

population mean of the covariates of the ith small area. Usually θi is predicted by

the best linear unbiased predictor θ̂i(σ
2) (Battese et al. [3], Prasad and Rao [36] and

Rao [37]). Here, σ2 = (σ2
v , σ

2
e)
′ is the vector of variance components. Since θ̂i(σ

2)

contains unknown variance components, an empirical BLUP (EBLUP) is given by

θ̂i(σ̂
2), where σ̂2 = (σ̂2

v , σ̂
2
e)
′ is a consistent estimator of σ2.
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An important problem in small area estimation has to do with estimating the

mean squared error (MSE) of the EBLUP. For the model given by (8.1), under

the assumption of normality of the vi’s and eij’s, Prasad and Rao [36] derived an

estimator of the MSE of the EBLUP which was second order unbiased. An estimator

of the MSE of θ̂i(σ̂
2) is said to be second order unbiased if

E
(
M̂SE[ θ̂i(σ̂

2) ]
)

= MSE[ θ̂i(σ̂
2) ] + o(m−1) (8.2)

where MSE[ θ̂i(σ̂
2) ] is the mean squared error of θ̂i(σ̂

2), M̂SE[ θ̂i(σ̂
2) ] is an esti-

mator of MSE[ θ̂i(σ̂
2) ], and m is the number of sampled small areas.

Moreover, recently there has been interest in relaxing the normality assump-

tion. For example, Hall and Maiti [20] derived a non-parametric second order unbi-

ased estimator of the MSE of the EBLUP using a double bootstrap method. In this

chapter, for a special case of the nested error regression model, without assuming

any distributional assumptions, we derive an estimator of the MSE of the EBLUP

that satisfies (8.2). Unlike the estimator given by Hall and Maiti [20], our estimator

is closed form. Moreover, for the balanced case (that is for all i, ni = k), and when

the eij’s are normally distributed, we show that the Prasad Rao MSE estimator is

second order unbiased. Through simulation, we show that the Prasad Rao MSE

estimator is robust for departures from normality.

The model we consider is x′ijβ = µ, that is, a common means model

yij = µ + vi + eij, i = 1, . . . , m, j = 1, . . . , ni. (8.3)

Moreover, we relax the normality assumption of the vi’s and eij’s, and we only

assume vi’s are uncorrelated with E(vi) = 0, var(vi) = σ2
v , eij’s are uncorrelated
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with E(eij) = 0, var(eij) = σ2
e , and vi’s and eij’s are uncorrelated. In addition to

the aforementioned assumptions, for technical reasons, we require for some c > 0,

E(e8+c
ij ) < ∞ and E(v8+c

i ) < ∞.

For the above model, the BLUP of the ith small area mean θi = µ + vi is

θ̂i(σ
2) = µ̃ + γi(ȳi − µ̃) (8.4)

where σ2 = (σ2
v , σ

2
e)
′, γi = σ2

v/(σ
2
v + σ2

e/ni), µ̃ =
∑m

i=1 γiȳi/
∑m

i=1 γi and ȳi =

(1/ni)
∑ni

j=1 yij.

Since the BLUP contains unknown variance components, the EBLUP of θi is

obtained by plugging in estimators for the unknown variance components in (8.4).

That is, the EBLUP of θi is given by

θ̂i(σ̂
2) = µ̂ + γ̂i(ȳi − µ̂) (8.5)

where σ̂2 = (σ̂2
v , σ̂

2
e)
′, γ̂i and µ̂ are the same as γi and µ̃ except that unknown

variance components are estimated by the analysis of variance estimators (Searle

[44]):

σ̂2
e =

1

n−m

m∑
i=1

ni∑
j=1

(yij − ȳi)
2 =

SSW

n−m
= MSW (8.6)

σ̂2
v =

(m− 1)

g
(MSB−MSW) (8.7)

where ȳi = (1/ni)
∑ni

j=1 yij, ȳ = (1/n)
∑m

i=1 niȳi, n =
∑m

i=1 ni, g = n−∑m
i=1(n

2
i /n)

and

MSB =
SSB

m− 1
=

1

m− 1

m∑
i=1

ni(ȳi − ȳ)2.
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8.1 Robust MSE approximation

In order to derive an estimator that satisfies (8.2), we need to first approximate

the MSE of θ̂i(σ̂
2). To this end, note that

MSE[θ̂i(σ̂
2)] = E[θ̂i(σ̂

2)− θi]
2 = E[θ̂i(σ̂

2)− θ̂i(σ
2) + θ̂i(σ

2)− θi]
2

= MSE[θ̂i(σ
2)] + E[θ̂i(σ̂

2)− θ̂i(σ
2)]2

+ 2E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi] (8.8)

where

MSE[θ̂i(σ
2)] = g1i(σ

2) + g2i(σ
2)

= (1− γi)σ
2
v +

(1− γi)
2σ2

v∑m
i=1 γi

. (8.9)

A second order approximation of the last two terms given in (8.8) is given below.

Due to time constraints, in Section 8.6, we only give a sketch of the proof1, which

we note is similar to how Prasad and Rao [36] derived their MSE approximation.

E[θ̂i(σ̂
2)− θ̂i(σ

2)]2

=
1/n2

i

(σ2
e/ni + σ2

v)
3
var(σ2

v σ̂
2
e − σ2

e σ̂
2
v) + o(m−1)

=
1/n2

i

(σ2
e/ni + σ2

v)
3

(
σ4

vvar(σ̂2
e) + σ4

evar(σ̂2
v)− 2σ2

eσ
2
vcov(σ̂2

v , σ̂
2
e)

)
+ o(m−1) (8.10)

1In a personal communication by Dr. Lahiri, he mentioned the decomposition of the MSE

given in (8.8) and the approximations given in (8.10), (8.11) and that he had a proof for the

approximation given in (8.13). The result was independently re-derived by the author.
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2E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi]

=
2

n

σ2
e/ni

(σ2
e/ni + σ2

v)
3

(σ2
v

n2
i

(δe − 3σ4
e)− σ2

e(δv − 3σ4
v)

)

−
(ni − 1

n3
i

) 1

(n−m)

σ4
v

(σ2
e/ni + σ2

v)
3
(δe − 3σ4

e) + o(m−1)

= g4i(σ
2, δ) + o(m−1) (8.11)

where δ = (δv, δe)
′ are the fourth moments of e, v. In Section 8.6, we give the

derivations for var(σ̂2
e), var(σ̂2

v) and cov(σ̂2
v , σ̂

2
e). From (8.55)-(8.57), we have

var(σ̂2
e) =

1
(n−m)2

(
(n− 2m)δe − (n− 4m)σ4

e +
m∑

i=1

1
ni

(δe − 3σ4
e)

)

var(σ̂2
v) =

1
n2

( m∑

i=1

n2
i (δv − σ4

v) + 4nσ2
vσ

2
e + 2mσ4

e +
m∑

i=1

1
ni

(δe − 3σ4
e)

)

+
m2

n2(n−m)2
(
(n− 2m)δe − (n− 4m)σ4

e +
m∑

i=1

1
ni

(δe − 3σ4
e)

)

− 2m

n2(n−m)

(
m−

m∑

i=1

1
ni

)
(δe − 3σ4

e) + O(m−2)

cov(σ̂2
v , σ̂

2
e) =

1
n(n−m)2

(
m2(δe − σ4

e)− 2mnσ4
e − n

m∑

i=1

1
ni

(δe − 3σ4
e)

)
+ O(m−2)

where δe, δv are the fourth moments of e, v and n =
∑m

i=1 ni.

From (8.10) and the above formulas for var(σ̂2
e), var(σ̂2

v), cov(σ̂2
v , σ̂

2
e), we can

derive an approximation for E[θ̂i(σ̂
2)− θ̂i(σ

2)]2 correct upto order o(m−1). Denote

this approximation by g3i(σ
2, δ). That is,

E[θ̂i(σ̂
2)− θ̂i(σ

2)]2 = g3i(σ
2, δ) + o(m−1) (8.12)

where g3i(σ
2, δ) is given by the first term on the right hand side of (8.10) and

(8.55)-(8.57).
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From (8.8)-(8.12), we obtain the following second order approximation of the

MSE of θ̂i(σ̂
2):

MSE[θ̂i(σ̂
2)] = g1i(σ

2) + g2i(σ
2) + g3i(σ

2, δ) + g4i(σ
2, δ) + o(m−1). (8.13)

Also, under normality of e and v, since δv = 3σ4
v , δe = 3σ4

e , from (8.11), we

have g4i(σ
2, δ) = 0. Furthermore, substituting δv = 3σ4

v , δe = 3σ4
e in g3i(σ

2, δ) and

simplifying we get

MSE[θ̂i(σ̂
2)] = g1i(σ

2) + g2i(σ
2) + gPR

3i (σ2) + o(m−1) (8.14)

where

gPR
3i (σ2) =

1/n2
i

(σ2
e/ni + σ2

v)
3

( 2

n−m
σ4

vσ
4
e +

2

n2

{ nm

n−m
σ4

e + 2nσ2
vσ

2
e +

m∑
i=1

n2
i σ

4
v

}
σ4

e

+
4m

n(n−m)
σ2

vσ
6
e

)
. (8.15)

Note that gPR
3i (σ2) agrees upto terms O(m−1) with the similar term derived in

Prasad and Rao [36]. Also, under the assumption of normality, Kackar and Harville

[22] showed

E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi] = 0. (8.16)

Hence, under normality of e, v, the above term need not be approximated.

8.2 MSE estimators

In this section, we give closed form expressions for the robust MSE estimator,

the naive MSE estimator and the Prasad Rao MSE estimator.
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8.2.1 Naive MSE estimator

The naive MSE estimator refers to estimating the MSE of the EBLUP by

the MSE of the BLUP with estimated variance components (σ̂2
v , σ̂

2
e) substituted for

(σ2
v , σ

2
e). That is,

M̂SEi,N = g1i(σ̂
2) + g2i(σ̂

2) (8.17)

8.2.2 Robust MSE estimator

Since g2i(σ
2), g3i(σ

2, δ) and g4i(σ
2, δ) are of order O(m−1), second order unbi-

ased estimators of these terms are given by the plug-in estimators. However, g1i(σ
2)

is of order O(1), and since

E(g1i(σ̂
2)) = g1i(σ

2)− g3i(σ
2, δ) + o(1/m),

we obtain the following robust second order unbiased MSE estimator:

M̂SEi,prop = g1i(σ̂
2) + g2i(σ̂

2) + 2g3i(σ̂
2, δ̂) + g4i(σ̂

2, δ̂) (8.18)

where δ̂ = (δ̂v, δ̂e)
′ is the fourth moment estimator of v and e. In Section 8.6, we give

a brief sketch justifying the second order unbiasedness of the robust MSE estimator

given by (8.18). Following Hall and Maiti [20], we use the following moment based

estimators for the fourth moments of e and v:

δ̂e = max
( 1

2

1∑m
i=1 ni(ni − 1)

m∑
i=1

ni∑
j1,j2=1

j1 6=j2

(yij1 − yij2)
4 − 3σ̂4

e , σ̂4
e

)

δ̂v = max
( 1

n

m∑
i=1

ni∑
j=1

(yij − µ̂)4 − 6σ̂2
e σ̂

2
v − δ̂e, σ̂4

v

)

where µ̂ =
∑m

i=1 γ̂iȳi/
∑m

i=1 γ̂i and γ̂i = σ̂2
v/(σ̂

2
v + σ̂2

e/ni).

131



8.2.3 Prasad Rao MSE estimator

The Prasad Rao MSE estimator can be derived from (8.18) by taking δ̂e = 3σ̂4
e

and δ̂v = 3σ̂4
v , and is given by

M̂SEi,PR = g1i(σ̂
2) + g2i(σ̂

2) + 2gPR
3i (σ̂2) (8.19)

where gPR
3i (σ2) is given by (8.15).

8.3 Simulation results for unbalanced case

For the simulation study both e, v were generated from either shifted expo-

nential or double exponential, m = 30, with 5 areas each having ni = 2, 3, 4, 5,

6, σ2
v = 1, σ2

e = 0.5, 4. To compare the previously mentioned MSE estimators, for

each set of distributions for e,v and for each value of σ2
e , 10000 independent samples

were generated and the percent relative bias of each MSE estimator was evaluated.

The percent relative bias of each MSE estimator was defined to be the average over

all areas with the same ni of

RBi = 100 · E(M̂SEi)−MSEi

MSEi

where the expectation of the MSE estimator for the ith area, E(M̂SEi), and the

true MSE of the EBLUP for the ith area, MSEi, were estimated empirically.

In the tables that are provided, ‘NAIVE’ denotes the naive MSE estimator

given by (8.17), ‘prop’ denotes the robust MSE estimator given by (8.18) and ‘PR’

denotes the Prasad Rao MSE estimator given by (8.19). Simulations indicate that

when σ2
e/σ

2
v = 0.5, the Prasad Rao and the robust MSE estimators perform quite
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Table 8.1: Percent relative bias of MSE estimators, m = 30, σ2
v = 1, σ2

e = 0.5.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

ni 2 3 4 5 6 2 3 4 5 6

NAIVE -6.54 -3.83 -2.98 -1.77 -1.22 -7.36 -3.99 -3.45 -1.62 -1.42

prop -1.21 0.26 0.26 0.89 1.00 -0.81 0.90 0.30 1.39 0.99

PR -2.42 -0.38 -0.05 0.78 1.04 -3.10 -0.31 -0.28 1.21 1.11

Table 8.2: Percent relative bias of MSE approximations, m = 30, σ2
v = 1, σ2

e = 0.5.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

ni 2 3 4 5 6 2 3 4 5 6

prop -0.25 0.38 -0.08 0.25 0.16 0.97 1.08 -0.43 0.07 -0.71

PR -0.67 0.87 0.90 1.54 1.67 0.18 2.11 1.58 2.73 2.36
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well. For example, from Table 8.1, for both sets of distributions and for all values

of ni, the robust MSE estimator has relative bias less that 1.5% while the Prasad

Rao MSE estimator has relative bias less than 3%. In this case, even the naive MSE

estimator for large ni (=5, 6) has relative bias of under 2%. Moreover, in this case,

from Table 8.2 we have that the robust MSE approximation has relative bias less

than 1%. However, even the Prasad Rao MSE approximation given by (8.14)-(8.15)

has small relative bias - less than 3% - this is due to a “canceling off” effect. What

we mean, is in several settings that we considered (not reported here), the term

E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)−µ− vi] in (8.8) was always negative and hence, g4i(σ

2, δ)

was also negative. Moreover, gPR
3i (σ2) for various non-normal settings was smaller

than the term E[θ̂i(σ̂
2) − θ̂i(σ

2)]2. That is, the Prasad Rao MSE approximation

does well in certain settings because gPR
3i (σ2) is smaller than E[θ̂i(σ̂

2)− θ̂i(σ
2)]2 and

the Prasad Rao MSE approximation assumes E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)−µ−vi] = 0,

which is negative in most settings.

When σ2
e/σ

2
v = 4, the relative bias of the Prasad Rao MSE estimator increases

significantly with ni, but for the robust MSE estimator it decreases with ni (Tables

8.3 and 8.4). This result can be partially explained by looking at the relative bias

of the robust and the Prasad Rao MSE approximations (Table 8.5). From Table

8.5, when σ2
e/σ

2
v = 4, e, v ∼ double exponential and ni increases from 2 to 6, the

relative bias of the robust MSE approximation decreases from 3.92% to 0.23%. When

σ2
e/σ

2
v = 4, e, v ∼ shifted exponential and ni increases from 2 to 6, the relative bias of

the robust MSE approximation decreases from 4.88% to −1.03%. In contrast, when

e, v ∼ double exponential, the relative bias of the Prasad Rao MSE approximation
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Table 8.3: Percent relative bias of MSE estimators, m = 30, σ2
v = 1, σ2

e = 4, e, v ∼

Double Exponential.

ni 2 3 4 5 6

NAIVE -15.66 -17.71 -16.37 -16.49 -15.66

prop 11.89 9.28 8.70 4.64 0.61

PR -1.30 -0.91 2.83 4.46 7.13

increases from 1.24% to 3.91%, and when e, v ∼ shifted exponential, the relative

bias of the Prasad Rao MSE approximation increases from −0.18% to 6.79%.

It is difficult to give a general statement as to when the robust MSE approxi-

mation will do better than the Prasad Rao MSE approximation. In a future study,

we will consider a more exhaustive simulation design for different parameter combi-

nations. However, from different combinations of σ2
e/σ

2
v that we have tried (not all

reported here), we draw the following conclusions: when σ2
e/σ

2
v is small (less than

2), the Prasad Rao and robust MSE approximations perform well. However, when

σ2
e/σ

2
v is large, the robust MSE approximation does poorly for small ni, but does

exceedingly well for large ni. The Prasad Rao MSE approximation does poorly for

large ni but well for small ni. This needs to be investigated further.

Moreover, we note that compared to the Prasad Rao MSE estimator, the

robust MSE estimator has a much larger mean squared error (not reported here).

The much larger variability in the robust MSE estimator is due to estimation of

fourth moments, in particular the estimation of the fourth moment of v.
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Table 8.4: Percent relative bias of MSE estimators, m = 30, σ2
v = 1, σ2

e = 4, e, v ∼

Shifted Exponential.

ni 2 3 4 5 6

NAIVE -18.54 -17.71 -16.68 -16.12 -15.43

prop 14.26 14.40 12.02 7.18 1.16

PR -4.50 -0.48 3.24 6.12 9.07

Table 8.5: Percent relative bias of MSE approximations, m = 30, σ2
v = 1, σ2

e = 4.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

ni 2 3 4 5 6 2 3 4 5 6

prop 3.92 1.61 2.32 0.78 0.23 4.88 4.52 3.26 1.04 -1.03

PR 1.24 0.81 3.19 3.13 3.91 -0.18 3.13 5.30 6.14 6.79

8.4 Balanced case

For the model given by (8.3), the balanced case refers to when we have ni = k

for all i. In Section 8.6, for the balanced case, we derive the corresponding terms for

g3i(σ
2, δ) and g4i(σ

2, δ). We drop the subscript i as in the balanced case g3i(σ
2, δ)

and g4i(σ
2, δ) do not depend on i.

g3(σ2, δ) =
1
m

1
(σ2

e + kσ2
v)3

(
δeσ

4
v + kδvσ

4
e +

2σ8
e

k − 1
−

(k2 − 3
k − 1

)
σ4

eσ
4
v +

4kσ6
eσ

2
v

k − 1

)
(8.20)

g4(σ2, δ) =
2
m

1
(σ2

e + kσ2
v)3

(1
k
σ2

eσ
2
v(δe − 3σ4

e)− σ4
v(δe − 3σ4

e)− kσ4
e(δv − 3σ4

v)
)

(8.21)
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From (8.18), for the balanced case we have the following robust MSE estimator:

M̂SEprop = g1(σ̂
2) + g2(σ̂

2) + 2g3(σ̂
2, δ̂) + g4(σ̂

2, δ̂). (8.22)

However, note that by the derivations we have for g3(σ
2, δ) and g4(σ

2, δ) given

in (8.20)-(8.21), it follows that

2g3(σ̂
2, δ̂) + g4(σ̂

2, δ̂) =
2

m

1

(σ̂2
e + kσ̂2

v)
3

(
δ̂eσ̂

4
v + kδ̂vσ̂

4
e +

2σ̂8
e

k − 1
− (k2 − 3)σ̂4

e σ̂
4
v

k − 1

4kσ̂6
e σ̂

2
v

k − 1
+

1

k
σ̂2

e σ̂
2
v(δ̂e − 3σ̂4

e)− σ̂4
v(δ̂e − 3σ̂4

e)− kσ̂4
e(δ̂v − 3σ̂4

v)
)

=
2

m

1

(σ̂2
e + kσ̂2

v)
3

( 2σ̂8
e

k − 1
+

2k2

k − 1
σ̂4

v σ̂
4
e +

( 4k

k − 1
− 3

k

)
σ̂6

e σ̂
2
v +

σ̂2
e σ̂

2
v

k
δ̂e

)
. (8.23)

1. By (8.23), we have shown for the balanced case, the robust MSE estimator

given by (8.22) does not depend on the estimated fourth moment of vi.

2. Note that since the robust MSE estimator does not involve the estimated

fourth moment of vi, it follows that, under the assumption eij are normally

distributed, the Prasad Rao MSE estimator is second order unbiased even if

vi are not normally distributed.

To derive the Prasad Rao MSE estimator, in (8.22) we simply take δ̂e = 3σ̂4
e .

M̂SEPR = g1(σ̂
2) + g2(σ̂

2) + 2gPR
3 (σ̂2) (8.24)

where 2gPR
3 (σ̂2) is given by substituting δ̂e = 3σ̂4

e in (8.23). That is,

2gPR
3 (σ̂2) =

2

m

1

(σ̂2
e + kσ̂2

v)
3

1

(k − 1)

(
2σ̂8

e + 2k2σ̂4
v σ̂

4
e + 4kσ̂6

e σ̂
2
v

)
.

From (8.23), if δ̂e > 3, then M̂SEprop > M̂SEPR. Hence, if M̂SEPR is

overestimating the true MSE, so will M̂SEprop (see Tables 8.6 and 8.7).
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8.5 Simulation results for balanced case

To compare the above MSE estimators, 10000 independent samples were gen-

erated and the percent relative bias of each MSE estimator was evaluated. The

percent relative bias of each MSE estimator was defined to be the average over all

small areas of

RBi = 100 · E(M̂SEi)−MSEi

MSEi

(8.25)

where once again the expectation of the MSE estimator for the ith area, E(M̂SEi),

and the true MSE of the EBLUP for the ith area, MSEi, were estimated empirically.

In the simulation, both e, v were generated from either shifted exponential or double

exponential, k was either 3 or 6, m = 30, σ2
v = 1, σ2

e = 0.5, 1, 2, 4.

From Tables 8.6 and 8.7, for all simulated values of σ2
e , increasing k from 3 to

6 reduces the relative bias of all MSE estimators. This is due to Prasad Rao and

robust MSE approximation performing better in terms of relative bias when k is

increased. For example, from Table 8.8, when k = 3, e, v ∼ shifted exponential and

σ2
e varies from 0.5 to 4, the Prasad Rao MSE approximation and the robust MSE

approximation have relative bias that varies from 2.71% to 7.62% and −0.34% to

5.36%. When k is increased to 6 (Table 8.9), the relative bias of the Prasad Rao MSE

approximation varies from 1.42% to 4.01%, and the robust MSE approximation has

negligible bias.

Moreover, the robust MSE approximation performs slightly better than the

Prasad Rao MSE approximation for small values σ2
e/σ

2
v , but performs as badly

when σ2
e/σ

2
v is large and k is small (that is, σ2

e/σ
2
v = 4 and k = 3). As mentioned
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Table 8.6: Percent relative bias of MSE estimators, m = 30, k = 3, σ2
v = 1.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

σ2
e 0.5 1 2 4 0.5 1 2 4

NAIVE -3.87 -7.19 -13.17 -19.57 -3.77 -7.44 -13.37 -19.16

prop 0.32 0.94 2.19 7.35 1.00 1.67 3.67 10.21

PR 0.24 0.68 1.72 6.87 0.70 0.96 2.41 8.69

Table 8.7: Percent relative bias of MSE estimators, m = 30, k = 6, σ2
v = 1.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

σ2
e 0.5 1 2 4 0.5 1 2 4

NAIVE -1.60 -3.51 -6.08 -10.44 -1.71 -3.22 -6.12 -10.88

prop 0.03 -0.33 0.12 1.47 0.08 0.35 0.72 1.90

PR 0.04 -0.34 0.05 1.33 0.06 0.24 0.42 1.33

earlier, in every case we considered whenever the Prasad Rao estimator has positive

relative bias, the robust MSE estimator has larger relative bias than the Prasad Rao

MSE estimator.
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Table 8.8: Percent relative bias of MSE approximations, m = 30, k = 3, σ2
v = 1.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

σ2
e 0.5 1 2 4 0.5 1 2 4

prop -0.53 0.28 0.41 2.54 -0.34 -0.29 0.64 5.36

PR 0.99 2.39 2.56 3.77 2.71 3.58 4.89 7.62

Table 8.9: Percent relative bias of MSE approximations, m = 30, k = 6, σ2
v = 1.

e, v ∼ Double Exponential e, v ∼ Shifted Exponential

σ2
e 0.5 1 2 4 0.5 1 2 4

prop -0.20 -0.87 -0.93 -0.02 -0.22 -0.33 -0.77 -0.51

PR 0.63 0.51 1.07 2.28 1.42 2.44 3.25 4.01
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8.6 Appendix

Notation:

ȳi =
1

ni

ni∑
j=1

yij ȳ =
1

n

m∑
i=1

niȳi

ēi =
1

ni

ni∑
j=1

eij ē =
1

n

m∑
i=1

niēi

n =
m∑

i=1

ni g = n−
m∑

i=1

n2
i

n

γi =
σ2

v

σ2
v + σ2

e/ni

µ̃ =

∑m
i=1 γiȳi∑m
i=1 γi

σ̂2
e =

1

n−m

m∑
i=1

ni∑
j=1

(yij − ȳi)
2 =

SSW

n−m
= MSW

σ̂2
v =

(m− 1)

g
(MSB−MSW)

MSB =
SSB

m− 1
=

1

m− 1

m∑
i=1

ni(ȳi − ȳ)2.

Brief sketch on approximating E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi] and

E[θ̂i(σ̂
2)− θ̂i(σ

2)]2. We first expand θ̂i(σ̂
2) around σ2.

θ̂i(σ̂
2) = θ̂i(σ

2) +
∂θ̂i(σ

2)

∂σ2
e

(σ̂2
e − σ2

e) +
∂θ̂i(σ

2)

∂σ2
v

(σ̂2
v − σ2

v) + Rm

where Rm are the remainder terms. Since θ̂i(σ
2) = µ̃ + γi(ȳi − µ̃) =

∑m
j=1 bj ȳj, we

have θ̂i(σ
2) is linear in ȳj. In particular, the weights bj attached to ȳj sum to one.

Moreover, we have

∂θ̂i(σ
2)

∂σ2
e

=
m∑

j=1

aj ȳj (8.26)

where aj =
∂bj

∂σ2
e
,
∑m

j=1 aj = 0. So, for example, in order to approximate
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E[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi], we express [θ̂i(σ̂

2)− θ̂i(σ
2)][θ̂i(σ

2)− µ− vi] as

[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi]

=
(∂θ̂i(σ

2)

∂σ2
e

(σ̂2
e − σ2

e) +
∂θ̂i(σ

2)

∂σ2
v

(σ̂2
v − σ2

v) + Rm

)
(θ̂i(σ

2)− µ− vi) (8.27)

By (8.26) we can express (8.27) as

[θ̂i(σ̂
2)− θ̂i(σ

2)][θ̂i(σ
2)− µ− vi]

=
( m∑

j=1

aj ȳj(σ̂
2
e − σ2

e) +
m∑

j=1

ãj ȳj(σ̂
2
v − σ2

v) + Rm

)
(

m∑
j=1

bj ȳj − µ− vi)

Now it has to be shown that the expectation for terms involving Rm is of the

order o(m−1). And for the terms that do not involve Rm by noting that both σ̂2
e

and σ̂2
v are quadratic in yij and by expanding terms and taking expectations we get

(8.11). The argument is similar but a lot lengthier when it comes to approximating

E[θ̂i(σ̂
2)− θ̂i(σ

2)]2.

In order to derive var(σ̂2
e), var(σ̂2

v) and cov(σ̂2
e , σ̂

2
v), we first derive var(SSW),

var(SSB) and cov(SSW,SSB).

Derivation of var(SSW).

var[SSW ] = var
[ m∑

i=1

ni∑
j=1

(yij − ȳi)
2
]

= var
[ m∑

i=1

ni∑
j=1

(eij − ēi)
2
]

=
m∑

i=1

var
[ ni∑

j=1

(eij − ēi)
2
]

=
m∑

i=1

(
E

[ ni∑
j=1

(eij − ēi)
2
]2

−
[
E

( ni∑
j=1

(eij − ēi)
2
) ]2)

. (8.28)

First we compute E(eij − ēi)
2.

E(eij − ēi)
2 = E[e2

ij − 2eij ēi + ēi
2]

= σ2
e −

2

ni

σ2
e +

1

ni
2
niσ

2
e =

(
1− 1

ni

)
σ2

e . (8.29)
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Next we expand the first term in (8.28), and compute E(eij − ēi)
4.

E(eij − ēi)
4 = E[e4

ij − 4e3
ij ēi + 6e2

ij ēi
2 − 4eij ēi

3 + ēi
4]

= δe − 4

ni

δe +
6

n2
i

[(ni − 1)σ4
e + δe]− 4

n3
i

[δe + 3(ni − 1)σ4
e ]+

+
1

n4
i

[niδe + 3ni(ni − 1)σ4
e ]. (8.30)

Next we compute the cross term when expanding the first term in (8.28).

E(eij − ēi)
2(eik − ēi)

2 = E[e2
ij − 2eij ēi + ēi

2][e2
ik − 2eikēi + ēi

2]

= σ4
e −

2

ni

σ4
e +

1

n2
i

[δe + (ni − 1)σ4
e ]−

2

ni

σ4
e +

8

n2
i

σ4
e

− 2

n3
i

[δe + 3(ni − 1)σ4
e ] +

1

n2
i

[δe + (ni − 1)σ4
e ]

− 2

n3
i

[δe + 3(ni − 1)σ4
e ] +

1

n4
i

[niδe + 3ni(ni − 1)σ4
e ] (8.31)

From (8.30) and (8.31) we get the first term in (8.28).

E
[ ni∑

j=1

(eij − ēi)2
]2

=
(
ni − 4 +

6
ni
− 3

n2
i

)
δe +

[6(ni − 1)
ni

− 12(ni − 1)
n2

i

+
3(ni − 1)

n2
i

]
σ4

e

+ ni(ni − 1)
[ ( 2

n2
i

− 4
n3

i

+
1
n3

i

)
δe +

(
1− 4

ni
+

ni − 1
n2

i

+
8
n2

i

− 6(ni − 1)
n3

i

+
(ni − 1

n2
i

)

− 6(ni − 1)
n3

i

+
3(ni − 1)

n3
i

)
σ4

e

]

=
(
ni − 2 +

1
ni

)
δe +

(
7− 14

ni
+

12
n3

i

)
σ4

e . (8.32)

From (8.29) and (8.32) we get

var
[ ni∑

j=1

(eij − ēi)
2
]

=
(
ni − 2 +

1

ni

)
δe +

(
n2

i − 3ni + 5− 3

ni

)
σ4

e − n2
i

(
1− 1

ni

)2

σ4
e

=
(
ni − 2 +

1

ni

)
δe +

(
− ni + 4− 3

ni

)
σ4

e . (8.33)
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Finally, from (8.33), we get (8.28). That is

var[SSW ] =
m∑

i=1

(
ni − 2 +

1

ni

)
δe +

m∑
i=1

(
− ni + 4− 3

ni

)
σ4

e

=
(
n− 2m +

m∑
i=1

1

ni

)
δe +

(
− n + 4m−

m∑
i=1

3

ni

)
σ4

e (8.34)

Derivation of var(SSB)

var[SSB] = var
[ m∑

i=1

ni(ȳi − ȳ)2
]

= var
[ m∑

i=1

ni

(
vi −

∑
njvj

n
+ ēi − ē

)2]

= E
[ m∑

i=1

ni(vi −
∑

njvj

n
+ ēi − ē)2

]2 − [
E[SSB]

]2
. (8.35)

We first compute E[SSB].

E[SSB] = E
[ m∑

i=1

ni[vi −
∑

j njvj

n
+ ēi − ē]2

]

=
m∑

i=1

niE
[ (

vi −
∑

j njvj

n

)2

+ (ēi − ē)2
]

=
m∑

i=1

ni

[
σ2

v +

∑
n2

i

n2
σ2

v − 2
ni

n
σ2

v +
1

ni

σ2
e +

1

n
σ2

e −
2

nin
niσ

2
e

]

=
(
n−

∑
i n

2
i

n

)
σ2

v + (m− 1)σ2
e (8.36)
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We expand the first term of (8.35).

E
[
n2

i [vi −
∑

j njvj

n
+ ēj − ē]4

]

= n2
i

[
E

[(
vi −

∑
j njvj

n

)4

+ 6
(
vi −

∑
j njvj

n

)2

(ēi − ē)2 + (ēi − ē)4
] ]

= n2
i

[
E

[
v4

i − 4v3
i

∑
j njvj

n
+ 6v2

i

(
∑

j njvj)
2

n2
− 4

vi(
∑

j njvj)
3

n3
+

(
∑

j njvj)
4

n4

]

+ 6
(
σ2

v +

∑
j n2

jσ
2
v

n2
− 2ni

n
σ2

v

)( 1

ni

σ2
e −

1

n
σ2

e

)

+ E[ēi
4 − 4ēi

3ē + 6ēi
2ē2 − 4ēiē

3 + ē4]
]

= n2
i

[
δv − 4

ni

n
δv + 6

n2
i

n2
δv +

6

n2

∑

j 6=i

n2
jσ

4
v −

4n3
i

n3
δv − 12ni

n3

∑

j 6=i

njσ
4
v

+

∑
j n4

j

n4
δv + 3

∑
j 6=k n2

jn
2
k

n4
σ4

v

]
+ 6(σ2

v + σ2
v

∑
j n2

j

n2
− 2ni

n
σ2

v)(
1

ni

− 1

n
)σ2

e

+
1

n4
i

[niδe + 3ni(ni − 1)σ4
e ]−

4

n3
i n

[niδe + 3ni(ni − 1)σ4
e ]

+
6

n2
i n

2
[niδe + ni(n− 1)σ4

e + ni(ni − 1)σ4
e ]−

4

nin3
[niδe + 3ni(n− 1)σ4

e ]

+
1

n4
[nδe + 3n(n− 1)σ4

e ]. (8.37)

From (8.37) we get

E
[ m∑

i=1

n2
i [vi −

∑
j njvj

n
+ ēj − ē]4

]

=
m∑

i=1

n2
i δv + 6nσ2

eσ
2
v +

m∑
i=1

1

ni

δe +
m∑

i=1

3(ni − 1)

ni

σ4
e + O(1). (8.38)

When expanding the first term of (8.35), the cross term is

E
[
ninj

[
vi −

∑
k nkvk

n
+ ēi − ē

]2[
vj −

∑
k nkvk

n
+ ēj − ē

]2
]

= ninjE
[ [(

vi −
∑

k nkvk

n

)2

+ (ēi − ē)2 + 2
(
vi −

∑
k nkvk

n

)
(ēi − ē)

]

[(
vj −

∑
k nkvk

n

)2

+ (ēj − ē)2 + 2
(
vj −

∑
k nkvk

n

)
(ēj − ē)

]]
(8.39)
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To derive (8.39), we compute (8.40)-(8.43)

E
([

vi −
∑

k nkvk

n

]
[ēi − ē]

[
vj −

∑
k nkvk

n

]
[ēj − ē]

)

= E[vi −
∑

k nkvk

n
][vj −

∑
k nkvk

n
]E[ēi − ē][ēj − ē]

=
(− ni

n
σ2

v −
nj

n
σ2

v +
∑

k

n2
k

n2
σ2

v

)(− 1

nin
niσ

2
e −

1

n
σ2

e +
1

n
σ2

e

)

=
(∑

k n2
k

n2
− ni

n
− nj

n

)(−1

n

)
σ2

eσ
2
v = O(m−2). (8.40)

E
[
vi −

∑
k nkvk

n

]2[
vj −

∑
k nkvk

n

]2

= E[v2
i −

2vi

n

∑

k

nkvk +
1

n2
(
∑

k

nkvk)
2][v2

j −
2vj

n

∑

k

nkvk +
1

n2
(
∑

k

nkvk)
2]

= σ4
v −

2nj

n
σ4

v +
1

n2

∑

k 6=i

n2
kσ

4
v +

n2
i

n2
δv − 2ni

n
σ4

v +
8ninj

n2
σ4

v +
1

n2

∑

k 6=j

n2
kσ

4
v

+
n2

j

n2
δv +

1

n4
[
∑

k

n4
kδv + 3

∑

k 6=l

nknlσ
4
v ] + O(m−2)

= σ4
v −

2ni

n
σ4

v +
1

n2

∑

k 6=i

n2
kσ

4
v −

2nj

n
σ4

v +
1

n2

∑

k 6=j

n2
kσ

4
v + O(m−2). (8.41)

E[vi−
∑

k nkvk

n
]2E[ēj − ē]2 =

(
σ4

v −
2ni

n
σ2

v +
1

n2

∑

k

n2
kσ

2
v

)( 1

n2
j

njσ
2
e +

1

n
σ2

e −
2

n
σ2

e

)

=
( 1

nj

− 1

n

)
σ2

vσ
2
e −

2ni

njn
σ2

vσ
2
e +

∑
k n2

k

njn2
σ2

vσ
2
e + O(m−2). (8.42)

E(ēi − ē)2(ēj − ē)2 = E[ēi
2 − 2ēiē + ē2][ēj

2 − 2ēj ē + ē2]

=
1

ni

1

nj

σ4
e −

2

n2
i njn

ninjσ
4
e +

1

n2
i n

2
[ni(n− 1)σ4

e ]−
2

n2
jnin

σ4
e +

8

ninjn2
ninjσ

4
e

+
1

n2
jn

2
[nj(n− 1)σ4

e ] +
1

n4
[nδe + 3n(n− 1)σ4

e ] + O(m−2)

=
1

ninj

σ4
e −

2

nin
σ4

e +
1

nin
σ4

e −
2

njn
σ4

e +
1

njn
σ4

e + O(m−2) (8.43)
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⇒ E
[
ninj

[
vi −

∑
k nkvk

n
+ ēi − ē

]2[
vj −

∑
k nkvk

n
+ ēj − ē

]2
]

= ninj

[( 1
nj
− 1

n

)
− 2ni

njn
+

∑
k n2

k

njn2

]
σ2

vσ
2
e

+
[
1− 2nj

n
+

1
n2

∑

k 6=j

n2
k −

2ni

n
+

1
n2

∑

k 6=j

n2
k

]
σ4

v +
[( 1

ni
− 1

n

)
− 2nj

nin
+

∑
k n2

k

nin2

]
σ2

vσ
2
e

+
[ 1
ninj

− 1
nin

− 1
nin

]
σ4

e + O(m−2) (8.44)

Now we get the first term in (8.35), from (8.38) and (8.44).

⇒ E
[ m∑

i=1

ni[vi −
∑

k nkvk

n
+ ēi − ē]2

]2

=
t∑

i=1

n2
i δv + 6nσ2

eσ
2
v +

m∑
i=1

1

ni

δe + 3mσ4
e − 3

m∑
i=1

1

ni

σ4
e

+ [2n(m− 1)− 2n + 2

∑
i n

2
i

n
− 4

∑
i n

2
i

n
(m− 1) + 2

∑
k n2

k(m− 1)

n
]σ2

vσ
2
e

+
[
n2 −

∑
i

n2
i −

4

n
(n

∑

k

n2
k −

∑

k

n3
k) +

2

n2

∑

k

n2
kn

2 − 2

n2
(
∑

k

n2
k)

2
]
σ4

v

+ [m(m− 1)− 2

n
n(m− 1)]σ4

e + O(1)

=
m∑

i=1

n2
i δv + 6nσ2

eσ
2
v +

m∑
i=1

1

ni

δe − 3
m∑

i=1

1

ni

σ4
e + 3mσ4

e

+
[
2nm− 4n− 2

m∑
i=1

n2
i

m

n

]
σ2

vσ
2
e + [n2 −

∑
i

n2
i − 2

∑

k

n2
k]σ

4
v+

+ (m− 1)(m− 2)σ4
e + O(1). (8.45)
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Hence, from (8.35),(8.36) and (8.45), we get

var[SSB] =
m∑

i=1

n2
kδv +

[
2nm + 2n− 2

∑

k

n2
k

m

n

]
σ2

vσ
2
e + [n2 − 3

∑

k

n2
k]σ

4
v

+ [3m + (m− 1)(m− 2)]σ4
e +

m∑

k=1

1

nk

(δe − 3σ4
e)− [n2 − 2

∑

k

n2
k]σ

4
v

− (m− 1)2σ4
e − 2(m− 1)(n−

∑
k n2

k

n
)σ2

vσ
2
e

=
m∑

k=1

n2
kδv −

m∑

k=1

n2
kσ

4
v + 4nσ2

vσ
2
e + 2mσ4

e +
m∑

k=1

1

nk

(δe − 3σ4
e) + O(1). (8.46)

Derivation of cov(SSB,SSW)

cov(SSB, SSW ) = E
[ m∑

i=1

ni(ȳi − ȳ)2
m∑

i=1

ni∑

j=1

(yij − ȳi)2
]
− E(SSB)E(SSW ) (8.47)

where

E(SSB) =
(
n−

∑m
k=1 n2

k

n

)
σ2

v + (m− 1)σ2
e (8.48)

E(SSW ) = (n−m)σ2
e (8.49)

E[SSBSSW ] = E
[ m∑

i=1

ni(vi −
∑

nkvk

n
+ ēi − ē]2

m∑
i=1

ni∑
j=1

(eij − ēi)
2
]

=
m∑

i=1

ni[σ
2
v +

∑
n2

k

n2
σ2

v −
2ni

n
σ2

v ](n−m)σ2
e

+ E
[ m∑

i=1

ni(ēi − ē)2

m∑
i=1

ni∑
j=1

(eij − ēi)
2
]

(8.50)

In (8.50) consider the first term.

m∑
i=1

ni

[
σ2

v +

∑
n2

kσ
2
v

n2
− 2ni

n
σ2

v

]
(n−m)σ2

e = σ2
vσ

2
e(n−m)

[
n +

∑
n2

k

n
− 2

∑
n2

k

n

]

= (n−m)σ2
vσ

2
e

[
n−

∑ n2
k

n

]
(8.51)
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In (8.50) consider the term E
[ ∑m

k=1 nk(ēk − ē)2
∑m

i=1

∑ni

j=1(eij − ēi)
2
]
. For i = k,

E
[ m∑

k=1

ni∑
j=1

nk(ēk − ē)2(ekj − ēk)
2
]

=
m∑

k=1

ni∑
j=1

nkE[e2
kj + ē2

k − 2ēkekj][ē
2
k − 2ēkē + ē2]

=
m∑

k=1

ni∑
j=1

nk

[ 1

n2
k

(δe + (nk − 1)σ4
e) +

1

n4
k

(nkδe + 3nk(nk − 1)σ4
e)

− 2

n3
k

(δe + 3(nk − 1)σ4
e)

]
+ O(1)

=
m∑

k=1

ni∑
j=1

[ 1

nk

δe +
(
1− 1

nk

)
σ4

e −
1

n2
k

δe − 3
( 1

nk

− 1

n2
k

)
σ4

e

]
+ O(1)

=
(
m−

m∑

k=1

1

nk

)
(δe − 3σ4

e) + (n−m)σ4
e + O(1) (8.52)

For i 6= k,

E
[ ∑

i6=k

ni∑
j=1

(eij − ēk)
2nk(ēk − ē)2

]

=
∑

i6=k

ni∑
j=1

nkE[(e2
ij − 2ējeij + ē2

i )(ē
2
k − 2ēkē + ē2)]

=
∑

i6=k

ni∑
j=1

nk

[ 1

n2
k

nkσ
4
e −

2

nkn
nkσ

4
e +

1

n2
((n− 1)σ4

e + δe)
]

− 2
∑

i6=k

ni∑
j=1

nk

[ 1

nin2
k

nkσ
4
e −

2

ninkn
(nkσ

4
e) +

1

nin2
(δe + (n− 1)σ4

e)
]

+
∑

i6=k

ni∑
j=1

nk

[ 1

nink

σ4
e −

2

n2
i nkn

ninkσ
4
e +

1

nin2
(ni(n− 1)σ4

e)
]

+ O(1)

= σ4
e

∑

i6=k

ni∑
j=1

[
1− 2nk

n
+

(n− 1

n2

)
nk

]
+ σ4

e

∑

i6=k

ni∑
j=1

[
− 2

ni

+
4nk

nin
− 2nk(n− 1)

nin2

]

+ σ4
e

∑

i6=k

ni∑
j=1

[ 1

ni

− 2nk

nin
+

nk(n− 1)

nin2

]
+ O(1)
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= σ4
e

∑

i6=k

ni∑
j=1

[
1− nk

n
− 1

ni

+
2nk

nin
− nk(n− 1)

nin2

]
+ O(1)

= [n(m− 2)− (m− 1)2]σ4
e + O(1) (8.53)

Putting (8.47)-(8.53) together we get

cov(SSB, SSW ) = (n−m)σ4
e + (δe − 3σ4

e)(m−
m∑

k=1

1

nk

)

+ [n(m− 2)− (m− 1)2)]σ4
e − (n−m)(m− 1)σ4

e + O(1)

= (δe − 2σ4
e)(m−

m∑

k=1

1

nk

) + O(1) (8.54)

Derivation of var(σ̂2
e). Using (8.34) we get

var(σ̂2
e) = var

[ SSW

n−m

]

=
1

(n−m)2
[(n− 2m +

m∑

k=1

1

nk

)δe + (−n + 4m− 3
m∑

k=1

1

nk

)σ4
e ]

=
1

(n−m)2

(
(n− 2m)δe − (n− 4m)σ4

e +
m∑

i=1

1

ni

(δe − 3σ4
e)

)
(8.55)

Derivation of var(σ̂2
v). Using (8.34), (8.46) and (8.54) we get

var(σ̂2
v) = var

[( SSB

m− 1
− SSW

n−m

)(m− 1)

g

]

=
(m− 1)2

g2

[var(SSB)

(m− 1)2
+

var(SSW )

(n−m)2
− 2

(m− 1)(n−m)
cov(SSB, SSW )]

=
(m− 1)2

g2

[ 1

(m− 1)2

( m∑

k=1

n2
kδv −

m∑

k=1

n2
kσ

4
v + 4nσ2

vσ
2
e + 2mσ4

e +
m∑

k=1

1

nk

(δe − 3σ4
e)

)

+
1

(n−m)2

(
(n− 2m +

m∑

k=1

1

nk

)δe + (−n + 4m− 3
m∑

k=1

1

nk

)σ4
e

)

− 2

(m− 1)(n−m)

(
(δe − 3σ4

e)(m−
m∑

k=1

1

nk

)
)]

+ O(m−2)
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By noting that 1
g2 = 1

n2 + O(m−3) we get

var(σ̂2
v) =

1

n2

( m∑

k=1

n2
k(δv − σ4

v) + 4nσ2
vσ

2
e + 2mσ4

e +
m∑

k=1

1

nk

(δe − 3σ4
e)

)

+
m2

n2(n−m)2

(
(n− 2m)δe − (n− 4m)σ4

e +
m∑

k=1

1

nk

(δe − 3σ4
e)

)

− 2m

n2(n−m)

(
m−

m∑

k=1

1

nk

)
(δe − 3σ4

e) + O(m−2) (8.56)

Derivation of cov(σ̂2
e , σ̂

2
v). By (8.34) and (8.50)-(8.53) we get

cov(σ̂2
e , σ̂

2
v) = E

[ SSW

n−m

(
SSB − (m− 1)SSW

n−m

)
g−1

]
− σ2

eσ
2
v

=
1
g

[ 1
(n−m)

E(SSW · SSB)− (m− 1)
(n−m)2

E(SSW 2)
]
− σ2

eσ
2
v

=
g−1

(n−m)

[
(δe − 3σ4

e)
(
m−

m∑

k=1

1
nk

)
+ (n−m)

(
n−

∑m
k=1 n2

k

n

)
σ2

eσ
2
v

+ (n−m)(m− 1)σ4
e

]
− (m− 1)

(n−m)2g

[(
n− 2m +

m∑

k=1

1
nk

)
δe

−
(
n− 4m + 3

m∑

k=1

1
nk

)
σ4

e + (n−m)2σ4
e

]
− σ2

eσ
2
v + O(m−2)

=
(δe − 3σ4

e)(m−∑m
k=1

1
nk

)

g(n−m)
− (m− 1)

(n−m)2g

[(
n− 2m +

m∑

k=1

1
nk

)
δe

−
(
n− 4m + 3

m∑

k=1

1
nk

)
σ4

e

]
+ O(m−2)

=
1

n(n−m)2
(
m2(δe − σ4

e)− 2mnσ4
e − n

m∑

i=1

1
ni

(δe − 3σ4
e)

)
+ O(m−2) (8.57)

Derivation of the robust second order unbiased MSE estimator. We give a brief

argument outlining the proof. First it needs to be shown that E[g1i(σ̂
2)] = g1i(σ

2)−

g3i(σ
2). Note that

∂g1i(σ
2)

∂σ2
e

=
niσ

4
v

(σ2
e + niσ2

v)
2
,

∂g1i(σ
2)

∂σ2
v

=
σ4

e

(σ2
e + niσ2

v)
2
,

∂2g1i(σ
2)

∂(σ2
e)

2
= − 2niσ

4
v

(σ2
e + niσ2

v)
3
,

∂2g1i(σ
2)

∂(σ2
v)

2
= − 2niσ

4
e

(σ2
e + niσ2

v)
3
,

∂2g1i(σ
2)

∂σ2
eσ

2
v

=
2niσ

2
eσ

2
v

(σ2
e + niσ2

v)
3
.
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Now we expand g1i(σ̂
2) around σ2 = (σ2

v , σ
2
e).

g1i(σ̂
2) = g1i(σ

2) + (σ̂2
e − σ2

e)
∂g1i(σ

2)

∂σ2
e

+ (σ̂2
v − σ2

v)
∂g1i(σ

2)

∂σ2
v

+
1

2
(σ̂2

e − σ2
e)

2∂2g1i(σ
2)

∂(σ2
e)

2

+
1

2
(σ̂2

v − σ2
v)

2∂2g1i(σ
2)

∂(σ2
v)

2
+ (σ̂2

e − σ2
e)(σ̂

2
v − σ2

v)
∂2g1i(σ

2)

∂σ2
eσ

2
v

+ Rm

where Rm are the remainder terms. Computing the expectation of g1i(σ̂
2) we get

E[g1i(σ̂
2)] = g1i(σ

2)− 1

2
var(σ̂2

e)
2niσ

4
v

(σ2
e + niσ2

v)
3
− 1

2
var(σ̂2

v)
2niσ

4
e

(σ2
e + niσ2

v)
3

+ cov(σ̂2
v , σ̂

2
v)

2niσ
2
eσ

2
v

(σ2
e + niσ2

v)
3

+ E(Rm)

= g1i(σ
2)− g3i(σ

2) + E(Rm)

It needs to be shown that E(Rm) = o(m−1). Consider a typical remainder term:

1

6
(σ̂2

e − σ2
e)

3∂3g1i(σ
2
∗)

∂(σ2
e)

3

where σ2
∗ lies between σ̂2 and σ2. Note that

∂3g1i(σ
2
∗)

∂(σ2
e)

3
< 1

and since σ̂2
e is

√
m-consistent we have |σ̂2

e − σ2
e |3 = op(m

− 3
2 ). It has to be shown

E|σ̂2
e − σ2

e |3 = o(m−1). Similarly it has to be shown the other remainder terms are

also o(m−1). Hence we have

E[g1i(σ̂
2)] = g1i(σ

2)− g3i(σ
2) + o(m−1) (8.58)

Next we argue that E[g2i(σ̂
2)] = g2i(σ

2) + o(m−1). As we did previously

expand g2i(σ̂
2) around σ2 = (σ2

v , σ
2
e).

g2i(σ̂
2) = g2i(σ

2) + (σ̂2
e − σ2

e)
∂g2i(σ

2
∗)

∂σ2
e

+ (σ̂2
v − σ2

v)
∂g2i(σ

2
∗)

∂σ2
v
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where σ2
∗ lies between σ̂2 and σ2. It needs to be shown that

E
∣∣∣(σ̂2

e − σ2
e)

∂g2i(σ
2
∗)

∂σ2
e

∣∣∣ = o(m−1)

Note that ∂g2i(σ2∗)
∂σ2

e
= Op(m

−1) and since σ̂2
e is

√
m-consistent we have

E
∣∣∣(σ̂2

e − σ2
e)

∂g2i(σ2∗)
∂σ2

e

∣∣∣ = o(m−1). So we have

E[g2i(σ̂
2)] = g2i(σ

2) + o(m−1) (8.59)

Similarly it needs to be shown that

E[g3i(σ̂
2, δ̂)] = g3i(σ

2, δ) + o(m−1) (8.60)

E[g4i(σ̂
2, δ̂)] = g4i(σ

2, δ) + o(m−1) (8.61)

Putting (8.58)-(8.61) together we have

E[g1i(σ̂2) + g2i(σ̂2) + 2g3i(σ̂2, δ̂) + g4i(σ̂2, δ̂)] = g1i(σ2) + g2i(σ2) + g3i(σ2, δ)

+ g4i(σ2, δ) + o(m−1)

= MSE[θ̂i(σ̂2)] + o(m−1) [by (8.13)]

which shows that the robust MSE estimator given by (8.18) is second order unbiased.

Derivation of g3(σ
2, δ) for the balanced case. In the balanced case we denote for all

i, ni = k. For balanced case after some algebra and disregarding terms of the order

O(m−2) it follows that (8.55)-(8.57) are given by

var(σ̂2
e) =

1

km
δe − (k − 3)

k(k − 1)m
σ4

e (8.62)

var(σ̂2
v) =

δv − σ4
v

m
+

4σ2
vσ

2
e

km
+

2σ4
e

k2m
− (k − 3)σ4

e

k3(k − 1)m
+

3σ4
e

k3m
+ O(m−2) (8.63)

cov(σ̂2
e , σ̂

2
v) =

δe − 3σ4
e

k2m
− δe

k2m
+

(k − 3)σ4
e

k2(k − 1)m
+ O(m−2) (8.64)

153



By (8.10) and (8.62)-(8.64) we get

g3(σ2, δ)

=
1/k2

(σ2
e/k + σ2

v)3
(
σ4

vvar(σ̂2
e) + σ4

evar(σ̂2
v)− 2σ2

eσ
2
vcov(σ̂2

v , σ̂
2
e)

)

=
1/k2

(σ2
e/k + σ2

v)3
( δe

km
σ4

v +
µ4vσ

4
e

m
− σ4

eσ
4
v

m

[
1 +

k − 3
k(k − 1)

]
+

2σ8
e

k(k − 1)m

+
σ6

eσ
2
v

km

[
4 +

6
k
− 2(k − 3)

k(k − 1)

])

=
1/k2

(σ2
e/k + σ2

v)3
( δe

km
σ4

v +
µ4vσ

4
e

m
− σ4

eσ
4
v

k(k − 1)m
(k2 − 3) +

2σ8
e

k(k − 1)m
+

4σ6
eσ

2
v

(k − 1)m

)

=
k

m(σ2
e + kσ2

v)3
[δe

k
σ4

v + µ4vσ
4
e +

2σ8
e

k(k − 1)
− σ4

eσ
4
v(k

2 − 3)
k(k − 1)

+
4σ6

eσ
2
v

k − 1

]

=
1

m(σ2
e + kσ2

v)3
[
δeσ

4
v + kδvσ

4
e +

2σ8
e

k − 1
− σ4

eσ
4
v(k

2 − 3)
k − 1

+
4kσ6

eσ
2
v

k − 1

]
(8.65)

Derivation of g4(σ
2, δ) for the balanced case. From (8.11) we have

g4(σ2, δ) =
2
n

σ2
e/k

(σ2
e/k + σ2

v)3
(σ2

v

k2
(δe − 3σ4

e)− σ2
e(δv − 3σ4

v)
)

−
(k − 1

k3

) 1
(n−m)

σ4
v

(σ2
e/k + σ2

v)3
(δe − 3σ4

e)

=
2
m

1
(σ2

e + kσ2
v)3

(1
k
σ2

eσ
2
v(δe − 3σ4

e)− σ4
v(δe − 3σ4

e)− kσ4
e(δv − 3σ4

v)
)

(8.66)
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Chapter 9

Summary of results and future research problems

A summary of the results of this thesis and a list of research problems that

have arisen from this thesis are listed below.

1. By considering spatial and non-spatial covariates to cluster the small areas, I

have introduced a hybrid asymptotic framework between infill asymptotics and

increasing domain asymptotics. By building on the popular exponential co-

variance model with nugget effect, I have introduced some variance-covariance

models for the random effects.

2. Under my asymptotic framework, I have derived parameter estimators that

are consistent and asymptotically normal. Moreover, I have provided some

simulation evidence to show that the MLE exhibits its “usual” large sample

behavior. However, I have not shown that the MLE is consistent and asymp-

totically normal. Proving consistency and asymptotic normality of the MLE

for general patterns zi will be very technical. However, for certain specialized

spatial patterns I will attempt to do so.
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3. I have shown that the estimators (β, τ 2) derived under the Fay-Herriot model

are somewhat robust for certain types of model misspecification. However, the

relative efficiency of β̂FH and β̂ML can be small especially if the random effects

are strongly correlated.

4. Through simulation and a real data example I have shown improved prediction

over predictors that ignore small area correlations. Simulations indicate for

purposes of prediction, the method of parameter estimation (my method and

the MLE) does not seem to matter. I hope to consider a more comprehensive

simulation study as suggested in Section 4.6.

5. I have not considered estimation of the parameters for the covariance models

that include a vector parameter λ. I should be able to generalize the estimation

methods developed in Chapter 3 to derive the large sample properties of the

estimators of this more general model. In addition, as mentioned in Chapter

4, I hope to derive a least squares estimator of σ2. I also plan on showing

consistency and asymptotic normality of the estimator for (δ, λ) given by (4.8)-

(4.9).

6. Due to time constraints, the data analysis in Chapter 5 was done only using

spatial locations to cluster the small areas (U.S. counties). However, in a

future study of the data set analyzed in Chapter 5, I plan on using non-spatial

covariates in addition to spatial locations to cluster the small areas.

7. By borrowing frequentist methods for multiple comparisons, I have shown
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how they could be applied in a Bayesian setting for the problem of multiple

comparisons of small areas. In the context of multiple comparisons, I have

introduced a new class of moment matching priors.

8. For a special case of the nested error regression model, a robust MSE esti-

mator of the EBLUP was derived. For the balanced case, the Prasad-Rao

MSE estimator was shown to be second order unbiased when the errors eij

are normally distributed. Moreover, my simulation study indicates that the

Prasad-Rao MSE estimator is robust for departures from normality. I will be

generalizing the robust MSE estimator to the regression case.
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[43] Scheffé, H. (1959), The Analysis of Variance. New York: Wiley.

[44] Searle, S.R. (1971), Linear Models, New York: Wiley.

[45] Stein, M.L. (1999), Interpolation of Spatial Data: Some Theory for Kriging.
New York: Springer-Verlag.

[46] Tibshirani, R.J. (1989), Noninformative priors for one parameter of many, Bio-
metrika, 76, 604-608.

[47] van der Vaart, A.W. (2005), Asymptotic Statistics. New York: Cambridge.

[48] Wahba, G. (1975), Smoothing noisy data with spline functions, Numerical
Mathematics, 24, 383-393.

[49] Wahba, G. (1990), Spline Models for Observational Data , Philadelphia: SIAM.

[50] Wand, M. (2003), Smoothing and mixed models, Computational Statistics, 18,
223-249.

[51] Wheeler, C.H. (2003), Evidence on agglomeration economies, diseconomies, and
growth, Journal of Applied Econometric, 18, 79-104.

[52] Wheeler, C.H. (2003), U.S. Counties 1998. http://qed.econ.queensu.ca/jae/
2003-v18.1/wheeler.

[53] White, H. (1982), Maximum likelihood estimation of misspecified models,
Econometrica, 50, 1-25.

[54] Wolter, K.M. (1985), Introduction to Variance Estimation. New York: Springer-
Verlag.

161



[55] Ying, Z. (1993), Maximum likelihood estimation of parameters under a spatial
sampling scheme, Annals of Statistics, 21, 1567-1590.

[56] Zhang, H. (2004), Inconsistent estimation and asymptotically equal interpola-
tions in model-based geostatistics, Journal of the American Statistical Associ-
ation, 99, 250-261.

[57] Zhang, H. & Zimmerman, D.L. (2005), Towards reconciling two asymptotic
frameworks in spatial statistics, Biometrika, 92, 921-936.

[58] Zhu, Z. & Stein, .L. (2005), Spatial sampling design for parameter estimation
of the covariance function, Journal of Statistical Planning and Inference, 134,
583-603.

[59] Zimmerman, D.L. & Harville, D.A. (1991), A random field approach to the
analysis of field-plot experiments and other spatial experiments. Biometrics,
47, 223-239.

162


