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Chapter 1

Introduction

1.1 Climate-Vegetation Interactions

The large-scale patterns of the activity of the terrestrial biosphere are strongly

linked to the climatic conditions over land. The availability of light, water, and heat

strongly shapes patterns of terrestrial productivity (e.g. Field et al. 1998). These

limitations impose constraints on vegetation form and functioning through the land

surface energy-, water-, and carbon balances. On the other hand, vegetation plays

an important part in shaping the climatic conditions near the land surface. Through

its effects on surface albedo, surface roughness, and the depth of the rooting zone,

vegetation modulates the exchange fluxes of momentum, energy and mass at the

land surface, and thereby affects the overlying atmosphere. The climatic relevance

of vegetation has been demonstrated by sensitivity simulations with atmospheric

general circulation models (e.g. Shukla and Mintz 1982, Betts 1999, Kleidon et

al. 2000). For instance, Kleidon et al. (2000) have shown with a climate model

simulation of a Desert World that continental evapotranspiration is substantially

reduced in the absence of vegetation, leading to profound changes in the surface

energy balance and a substantially weakened hydrologic cycle over land. Such veg-

etation feedbacks on the physical climatic conditions at the land surface have been

shown to play an important role in the present-day climate system (Bonan et al.
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1992; Kleidon and Heimann 2000), and its response to global change, for instance

in the Mid-Holocene (Foley et al. 1994; Kutzbach et al. 1996; Claussen and Gayler

1997), during ice ages (de Noblet et al. 1996, Kleidon and Lorenz 2001), and in

scenarios of anthropogenic future climatic change (Sellers et al. 1996; Betts et al.

1997).

The climate-vegetation system can be described in steady-state by the follow-

ing set of surface energy and mass balance equations (Bonan 2002). The steady-state

surface energy balance can be stated as the balance of the net influx of solar ra-

diation, QSW , including the effect of surface albedo αs, the outflux of terrestrial

radiation (a function of surface temperature TS), QLW , and the sensible and latent

heat fluxes, QSH and QSH , where cp is the soil heat capacity.

QSW (1 − αs) − QLW (Ts) − QSH − QLH = cp
dTs

dt
= 0 (1.1)

The rates of precipitation P , evapotranspiration ET , and runoff R form the expres-

sion for the surface water balance, WS.

P − ET − R =
dWs

dt
= 0 (1.2)

Finally, a simplified vegetation carbon balance, CV EG, for terrestrial vegetation is

given by:

GPP − RESa − LIT =
dCveg

dt
= 0 (1.3)

where GPP is gross primary productivity, RESa is autotrophic respiration, and

LIT is the rate of litter production. The balance equations add to zero when taken

as long-term climatological averages.

2



1.2 Diversity of Vegetation Form and Functioning

One of the unique features of vegetation is that it is inherently diverse and

able to adapt to its climatic environment, at the scale of individual plant physiology

and through changes in ecosystem composition. This diversity in vegetation form

and functioning adds many degrees of freedom to the land surface; allowing the sur-

face energy- and mass fluxes in equations 1.1-1.3 to be partitioned in many different

ways. This allows for a wide range of possible values for TS, WS, and CV EG. As

a consequence, the energy- and mass balances merely act as constraints on what is

possible, but are insufficient to determine the full nature of land surface function-

ing and climate-vegetation interactions. Some examples of macroscopic vegetation

properties that moderate the land surface and affect climate functioning include:

• Maximum stomatal conductance: Through changes in stomatal behavior and

density, vegetation is able to limit rate of transpiration to less than the poten-

tial rate (which is ultimately constrained by available water WS and energy,

QSW,net). Increased stomatal conductance increases the supply of atmospheric

CO2 for photosynthesis. However, since the uptake of carbon is linked to the

transpiration of water, an increase in stomatal conductance on the large-scale

will also likely lead to increase in convective cloud cover leading to a decrease

in net solar radiation, QSW,net available for photosynthesis.

• Root-shoot partitioning : The allocation of carbon between above-ground and

below-ground growth affects the leaf area and the depth of the rooting zone.

More carbon allocated to above-ground growth and a higher leaf area will re-
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sult in a lower surface albedo, αS, and more available light for photosynthesis,

QSW,net. However, this comes at the cost of less carbon available for roots, de-

creasing the depth of the rooting zone, limiting the availability of soil moisture

for transpiration, ET .

• Leaf albedo: Plants have some measure of control over the albedo of their leaf

surfaces. In a warmer, water-limited climate, vegetation may adapt leading to

an increase the leaf albedo, leading to a higher overall surface albedo, limiting

the net solar radiation, QSW,net and decreasing surface temperatures TS. Like-

wise in cooler, light-limited or temperature-limited regions, vegetation may

adapt leading to a decrease in leaf albedo, leading to a reduction in surface

albedo, more available net solar radiation, and higher surface temperatures.

• Canopy roughness : Canopy structure, constrained by the carbon balance and

determined by plant forms and ecosystem composition, can affect the aero-

dynamic roughness of the land surface. A rougher surface generally leads to

more efficient turbulent exchange of water and carbon (higher ET ), however,

it will also likely increase the convective cloud cover (Sud et al. 1988) and

therefore decrease net solar radiation, QSW,net.

The immediate question that follows is how vegetation organizes itself in terms

of climatologically relevant land surface properties and what the climatic impacts

of such adaptive behavior is for the climate of the present-day and for its sensitivity

to global change.
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One approach that has been used in past studies, mainly at the scale of individ-

ual plants, assumes that terrestrial vegetation adapts optimally to its environmental

conditions in terms of its form and functioning, thereby maximizing its productiv-

ity (gross carbon uptake). Examples of previous work include optimized stomatal

functioning (Cowan and Farquhar 1977; Cowan 1977), optimized partitioning of

carbon resources within plants between roots and shoots (Thornley 1969, 1972; De-

war 1993), optimized distribution of leaf nitrogen in canopies (Field 1983, Dewar

1996) and several aspects of vegetation with respect to its ecohydrological function-

ing (Eagleson 2002). One may ask whether the large-scale functioning of terrestrial

vegetation is also optimal in terms of its productivity given the constraints of the

climatological surface energy- and water balances. This would provide a powerful

approach to characterize vegetation functioning in the climate system and how it

adapts to change.

1.3 Thesis Outline

The purpose of this study is to examine whether terrestrial vegetation is in-

deed optimally adapted in terms of its climatic functioning to allow for maximum

productivity given present-day conditions and to present a methodology for quan-

tifying the uncertainty in future terrestrial productivity, associated with the degree

to which vegetation might adapt at the large, climatically scale relevant adaptation

under scenarios of global change. This is an extension of earlier work on optimum

rooting depth (Kleidon and Heimann 1998; Kleidon 2004a) and optimum stomatal
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functioning (Kleidon 2004b). Several parameters characterizing vegetation form and

functioning are varied in a series of sensitivity simulations using an Earth system

model of intermediate complexity. The results of the sensitivity analysis are used to

determine the range of biologically possible climate-vegetation steady states given

the overall energy and water balance constraints. Then, the partitioning of energy

fluxes in the optimal climates, those with highest simulated gross primary produc-

tivities, is compared with observations from the ECMWF ERA-40 reanalysis climate

dataset (Upsalla 2005) at the biome scale. The ratio of turbulent to radiative energy

fluxes at the land surface is used as a proxy for the cumulative effect of vegetation

form and functioning on overlying atmosphere. This serves as a first crude test to

assess whether vegetation productivity, in terms of gross carbon gain, is near its

maximum possible value within the climate system, given the constraints of the

surface energy and water balance. Under scenarios of global change, vegetation may

adapt to a new optimum partitioning of surface fluxes that maintains maximum

productivity.

Anthropogenic greenhouse gas emissions are predicted to continue to cause sig-

nificant changes to the Earth’s climate throughout the next century (IPCC 2007).

Currently, most of those emissions are taken up by the ocean and the terrestrial

biosphere (Prentice et al 2001). The future absorption of carbon by these sinks is

sensitive to climatic change (Fung et al 2004). While there are still large uncer-

tainties, most recent modelling studies (e.g. Cox et al 2000, Friedlingstein et al

2001, Zeng et al 2004, Friedlingstein et al 2006) predict that the negative impacts of

climate change on the magnitude of the terrestrial carbon sink will cause this carbon-
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climate feedback to be positive. A positive carbon-climate feedback means that an

external perturbation to the system (the introduction of anthropogenic emissions)

lead to climate change, which in turn would lead to changes in the carbon-cycle that

amplify the initial external perturbation.

Most of the coupled carbon-climate models used in these previous studies in-

clude dynamic vegetation schemes and allow for possible shifts in biomes, however,

the parameters that characterize vegetation form and functioning are held static

throughout the simulations. This excludes the possibility of macroscopic adapta-

tion of terrestrial vegetation altering the climate through changes in coupling the

between land surface and the overlying atmosphere. While the degree to and speed

with which terrestrial vegetation adaptively self-organizes to shape its own climatic

conditions is still an open question, it is still possible to simulate a best case scenario,

in which terrestrial gross primary productivity is periodically maximized with re-

spect to several macroscopic vegetation parameters using an evolutionary algorithm.

This is the focus of this thesis. The results of this dynamically optimized simulation

are compared to a simulation where the vegetation parameters are held static at the

values optimized for pre-industrial conditions. The range of uncertainty, the degree

to which terrestrial productivity may be underestimated when vegetation param-

eterizations remain static compared to those reflecting optimal adaptation to new

conditions, is quantified.

The following methods section contains a brief description of the Earth sys-

tem model, more detailed descriptions of the dynamic vegetation model and the

optimization algorithm, and as well as the experiments. In section 3, the results of
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the sensitivity simulations and a comparison of the two transient scenarios are pre-

sented. The limitations of the methodology and ideas for future work are discussed

in section 4. A brief summary and some concluding thoughts are given in the final

section.
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Chapter 2

Methods

2.1 Planet Simulator

The Planet Simulator (Lunkeit et al. 2004, Fraedrich et al. 2005b) is a coupled

dynamic vegetation-climate system model of intermediate complexity and has been

used successfully in previous studies of climate-vegetation interactions (e.g. Kleidon

et al. 2000, Kleidon 2004b, Fraedrich et al. 2005a). The atmospheric component

runs at a coarse resolution and has five vertical layers. It includes a dynamic core for

simulating atmospheric motion and physical parameterizations of the atmospheric

water cycle, clouds, and radiative transfer. The atmospheric component is coupled to

a simple land surface scheme, a slab mixed-layer ocean model, and a thermodynamic

sea-ice model. The land surface scheme includes a snow model, a ”bucket” soil

hydrology model, and a five layer soil temperature model. The large-scale land

surface parameters are provided by a simplified dynamic global vegetation model

(SimBA).

In its standard configuration, all model components run a horizontal grid res-

olution of 5.6 degrees latitude/longitude and with a time step of 45 minutes. The

intermediate complexity of the Planet Simulator allows it to realistically capture

the broad global patterns of climate and vegetation (see Fig. 2.1), while still run-

ning very quickly, even on a standard desktop computer. This tradeoff between
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model speed and accuracy is necessary in order to make feasible the large number

of simulations described later in this chapter in subsection 2.4. The standard ver-

sion of the model is open source and available for download at http://www.mi.uni-

hamburg.de/plasim.

2.2 SimBA

SimBA (SIMulator of Biospheric Aspects) is a simple dynamic vegetation

scheme embedded within Planet Simulator, which provides the large-scale land sur-

face parameters that are strongly influenced by terrestrial vegetation to the Planet

Simulator GCM. These parameters, including land surface albedo αs, the surface

roughness length z0srf , canopy conductance, and the soil water holding capacity of

the rooting zone Wmax, are derived from the vegetation biomass Cveg, the main state

variable of SimBA.

Equation 2.1 describes the time evolution of Cveg, which is calculated as the

balance of gross primary productivity (GPP ), autotrophic respiration (RESa), and

litter production.

dCveg

dt
= GPP − RESa −

Cveg

τveg

(2.1)

Autotrophic respiration is assumed to be proportional to gross primary productiv-

ity such that RESa = 0.5 * GPP . This is a commonly observed ratio that has

been shown to vary only slightly over a wide range of temperature and other envi-

ronmental conditions at the time scales under consideration in this study (Lenton

and Huntingford 2003, Waring et al 1998). Dewar (1996) argues that this con-
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Figure 2.1: Example of Planet Simulator steady-state surface climatology run in the

control setup. Annual mean plots of precipitation (top), near surface temperature

(middle), and fractional leaf cover (bottom).
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stant NPP/GPP ratio can be explained by optimum nitrogen allocation throughout

canopies. Litter production is characterized by a mean residence time, τveg, fixed at

10 years. Together, these assumptions result in the mean vegetation biomass being

proportional to mean productivity within the model.

Following Monteith et al. (1989), Dewar (1997), and Kleidon (2004), GPP

is expressed as the minimum of a light-limited rate and a flux-limited rate . The

light-limited rate GPPlight is parameterized as a multiplicative function of photo-

synthetically active radiation QPAR, a light use efficiency scalar εlue, and the fraction

of the surface covered by leaves, fleaf :

GPPlight = εlue · fleaf · QPAR (2.2)

The flux-limited rate GPPflux is dependent upon the CO2 gradient across the

leaf-air interface and transpiration rate, ET .

GPPflux = c · pCO2,air − pCO2,leaf

qsat (Ts) − qair

· ET (2.3)

Bare soil evaporation and water intercepted in the canopy are not included for the

sake of simplicity. Hence, the evaporative flux from the land surface is determined

entirely by vegetation form and functioning. The model includes a bulk-formula

evapotranspiration parameterization that takes in to account soil moisture stress

and the effect of surface roughness on turbulent exchange with the overlying atmo-

sphere. This bulk-formula parameterization of evapotranspiration is then scaled by

a unitless maximum stomatal conductance parameter, gsmax In the standard setup

of the model, gsmax=1, which in the absence of soil moisture stress is equivalent to
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simulating the canopy as a wet surface.

The vegetation biomass Cveg is split between an aboveground pool Cveg,above

and a belowground pool Cveg,below by the prescribed root-shoot partitioning param-

eter prs:

Cveg,above = Cveg · prs (2.4)

and

Cveg,below = Cveg · (1 − prs) (2.5)

These two parameters are converted in to fractional covers of aboveground and

belowground vegetation by

fveg,above =
1

cc
· arctan

(
2 · Cveg,above − ca

cb

)
+ cd (2.6)

and

fveg,below =
1

cc
· arctan

(
2 · Cveg,below − ca

cb

)
+ cd (2.7)

where ca , cb , cc , and cd are empirical parameters that were derived from observa-

tions to match the transition of forested to non-forested vegetation along climatic

gradients. The proportion of the surface covered by green leaves, fleaf , is calculated

as a function of leaf area index (LAI) by

fleaf = 1 − exp (−k · LAI) (2.8)

where k = 0.5.
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These fractional covers are used to express land surface properties as functions

of relative proportion of grid cell area that is fully vegetated to bare, non-vegetated

surface. The surface roughness length z0srf is calculated from the fractional cover

of forest fveg,above by:

z0,srf = z0,veg · fveg,above + z0,noveg · (1 − fveg,above) (2.9)

where the roughness of a bare surface z0nonveg = 0.05 m and the vegetation roughness

z0veg is an externally prescribed parameter. Take notice that in this parameteri-

zation, z0veg is scaled to the fractional cover of aboveground vegetation and thus

represents the maximum vegetation roughness length. Overall surface roughness is

derived by combining the orographic roughness z0oro with the land surface roughness

z0srf using:

z0 =
(
z 2
0,oro + z2

0,srf

) 1
2 (2.10)

The influence of the surface roughness calculated in Eqn. 2.10 on bulk evapotran-

spiration is described in Section 2.1 of Lunkeit et al (2004).

The maximum soil water content of the rooting zone Wmax is derived in a

similar fashion from fveg,below by

Wmax = Wmax,veg · fveg + Wmax,nonveg · (1− fveg,below) (2.11)

where Wmax,nonveg = 50 mm, Wmax,veg = 500 mm (taken as a typical value from

Kleidon 2004c) are the corresponding values for a bare and fully vegetated surface

respectively.
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2.3 Optimization Algorithm

The optimization technique used in this study is adapted from the macroevo-

lutionary algorithm (MA) first described by Marin and Sole (1999). Macroevolu-

tionary algorithms differ from genetic algorithms, a more commonly known class of

evolutionary algorithms, in that instead of relying on a population-level metaphor,

they exploit a metaphor based on evolution at higher taxa level where extinction

and diversification are the primary drivers (Marin and Sole 1999). A macroevolu-

tionary algorithm was chosen over a standard genetic algorithm because it has been

shown that MA’s are able to search faster over a solution space even with a very

small population of candidate solutions (Marin and Sole 1999, Zhang and Xu 2005).

This was an important consideration because the number of candidate solution sim-

ulations that could be conducted in parallel at each generation of the iteration was

limited by the available computing resources.

The optimization algorithm iterates over a number of generations G. In the

original MA described by Marin and Sole (1999), each generation constitutes a

set of P species (candidate solutions) where each Pi consists of a vector of input

parameters. In this setup, each of the Pi describes a model run. However, here

each Pi is described by a 2048×2 array of input parameters containing the biotic

parameter values, z0,max and gsmax, for every grid cell of the model. Each grid cell

(row of Pi ), can then can be described as a 2-vector Xi,n (gsi , z0i) where n denotes

the specific grid cell. The values for ocean grid cells are set to zero.

The simulations are run for a number of years and afterwards the fitness value
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f (Xi,n), the mean gross primary productivity over the length of the simulation,

is computed for each grid cell. This fitness value is used in the calculation of a

connectivity matrix W for each grid cell. Each entry in the connectivity matrix W

is a measure of the influence of species j on species i at generation t normalized to

a continuous value within the range between -1 and 1. Wi,j,n is defined as

Wi,j,n =
f (Xi,n) − f (Xj,n)

| Xi,n − Xj,n |
(2.12)

where the numerator is the distance in fitness space between species and the de-

nominator is the distance in parameter space. In cases where the denominator is

zero, Wi,j,n is set to 0. The distances in parameter space are normalized to a range

of [0, 1] as not to give undue weight to the canopy roughness parameter.

The survival coefficient h at each grid cell n for each species i is then computed

as given by

hi,n (t) =
P∑

j=1

Wi,j,n (t) (2.13)

where t is the generation number. If hi,n ≤ 0 then the grid cell Xi,n is said to be

extinct and its values discarded. Extinct sites are then filled in two ways. With

probability τ , a completely new solution for Xi,n is randomly generated within the

bounds of the biota parameter fields. Otherwise with probability 1 − τ , the extinct

grid cell Xi,n is colonized with a value from a randomly chosen surviving grid cell

Xj,n. The colonized grid cell value is then altered slightly by adding a small random

value between [−ε, ε]. If an altered value lies outside the parameter boundaries, the

new value is set to nearest parameter limit. The parameter τ decreases with each

16



generation as in simulated annealing as given by

τ (t) = max
(

0.2 − t

200
, 0.01

)
(2.14)

.

2.4 Experimental Design

2.4.1 Steady State Simulations

An array of sensitivity simulations were conducted over a range of parame-

ter values for maximum stomatal conductance gsmax, canopy roughness z0veg and

root-shoot partitioning prs. In these sensitivity simulations, the parameters were

prescribed uniformly across all land grid cells. Simulations were conducted for gs-

max values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 1.0; z0veg values of 0.1,

0.2, 0.5, 1, 2, 5 and 10; and prs values of 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99. The

”Control” simulation was represented by gsmax = 1.0, z0veg= 2.0, and prs = 0.5, the

parameter values used in the standard configuration of the model.

The simulations were run for the equivalent of 200 years with prescribed, cli-

matological sea-surface temperatures and sea-ice cover to allow the coupled dynamic

vegetation-climate system to reach a steady state. The last 10 years of model out-

put from each simulation were averaged for the analysis. The atmospheric carbon

dioxide concentration was fixed at 360 ppm. Some simulations with high values for

canopy roughness and stomatal conductance were run with the time step reduced

by half to ensure numerical stability.
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The partitioning of the land surface fluxes found in the sensitivity simulations

was compared to observations from the ECMWF ERA-40 climate reanalysis (Up-

palla 2005). The ERA-40 reanalysis consists of global meteorological data on a 2.5◦

x 2.5◦ grid for the period of 1957 to 2002 based on a reanalysis of observations from

multiple platforms. For the purposes of this experiment, the monthly temperature

and land surface flux data were extracted from the ERA-40 reanalysis for the period

of 1980 to 1989. This comparison of the fluxes was performed at the vegetation-

type/biome scale. Since the SimBA model does not use vegetation biomes per se,

the simulated control climate was used in conjunction with the BIOME classification

model (Prentice et al. 1992) to derive biome masks corresponding to the various

vegetation types. The BIOME model was used to predict which vegetation types

(biomes) would be dominant in each grid cell of the simulated control climate based

on the monthly mean values of precipitation, temperature, and soil moisture stress.

Due to the relatively coarse resolution of the Planet Simulator, in some cases, there

were very few grid cells in a biome mask produced by the BIOME model. This

was overcome by merging some of the biomes from the BIOME model; the tropical

rainforest and tropical seasonal forest became ’tropical forest’, warm mixed forest

and temperate deciduous forest became ’temperate forest’, and cool mixed forest,

cool conifer forest, and taiga became ’boreal forest’. The other biome masks pro-

duced by the BIOME model were not used in the analysis. Using these masks, the

surface fluxes from the sensitivity climates were averaged over the different biomes.

The same process was repeated to derive the corresponding biome-averaged surface

fluxes from the ECMWF ERA-40 climate reanalysis data.
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2.4.2 Transient Simulations

Two transient scenarios were simulated for the period 1850-2100 with pre-

scribed historical and projected atmospheric CO2 concentrations representing an

’optimizing’ scenario (optimal adaptation) and a ’static scenario’ (no adaptation).

In the transient scenarios, the model was run with the slab mixed-layer ocean model

and the thermodynamic sea-ice model. This was necessary to adequately simulate

the water vapor feedback over the range of simulated greenhouse conditions. In the

spinup process, the model was run with a prescribed pre-industrial CO2 concentra-

tion of 280 ppm until the vegetation biomass and soil carbon pools arrived at steady

states. The gsmax and z0veg parameter sets were then optimized over 20 generations

of the MA using a population of nine species. The root-shoot partitioning param-

eter, prs, was not optimized. In preliminary testing, the productivity was found to

be least sensitive to the optimization of the root-shoot parameter. Each parameter

to be optimized increases the computational burden exponential. This root-shoot

parameter was excluded to allow the optimizations to be run to completion within

time constraints. In the sensitivity simulations, the model output was least sensi-

tive to this parameter and it was excluded to increase the speed of the optimization

process.

In the ’static’ scenario, the model was run from 1850 to 2100 with increasing

prescribed CO2 concentrations following historical and projected values in the Post-

SRES A2 scenario obtained from Schlesinger and Malyshev (2001). The vegetation

parameters, optimized for a pre-industrial CO2 concentration of 280 ppm during
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the spin up process, were not changed during the course of the simulation period.

This scenario represents a ”worst case” in which there is no large-scale, climati-

cally relevant adaptation by terrestrial vegetation in terms of maximum stomatal

conductance or canopy roughness.

In the ’optimizing’ scenario, the model was run from 1850 to 2100 following the

same prescribed CO2 trajectory as in the ’static’ scenario. However, the gsmax and

z0veg parameters were periodically optimized at each grid cell using the MA during

the years 1970-1972, 2000-2002, 2020-2022, 2040-2042, 2060-2062, and 2080-2082.

The vegetation parameters were optimized over 20 generations using a population

of nine species. This scenario represents a ”best case” in which terrestrial vegeta-

tion adapts optimally at the large, climatically relevant scale in terms of maximum

stomatal conductance or canopy roughness.

During the period of 1970 to 1972, for instance, nine model runs were intialized

in the first generation of the optimization with the model restart files from the

end of 1969. One of these runs used the gsmax and z0veg parameter values from

the period 1860 to 1969. The other eight runs used differing prescribed sets of

vegetation parameter values. Following the MA, the results of this first generation

were processed and nine new sets of vegetation parameters were created for the

second generation. The optimization process was repeated for twenty generations.

Out of the resulting 180 runs, the set of vegetation parameters resulting in the

highest global mean GPP during the three year period was used to initialize the

model for the year 1973. The model was then run from 1973 to 1999 and in the year

2000 the process began again.
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Chapter 3

Results

In this section, the results of the the two modelling experiments are presented.

In the first section, the range of biologically possible climate-vegetation steady states

are quantified in terms of the annual mean land surface boundary conditions aver-

aged over all land areas and over the tropical forest, temperate, and boreal biomes.

Then, the characteristic partitioning of the energy fluxes at the land surface are

then compared to observations found in the ECMWF ERA-40 reanalysis (Upsalla

2005) to test whether present-day climatic conditions are near optimal in terms of

biospheric functioning. In the second section, the range of uncertainty in terrestrial

productivity is quantified, over the course of the 250 year transient simulation pe-

riod, between the ”optimizing” scenario, in which vegetation properties periodically

adapt to a new optimum, and the ”static” scenario, in which vegetation properties

remained fixed at optimum conditions for pre-industrial conditions. The geographic

pattern of differences between the two scenarios in terms of vegetation properties,

terrestrial productivity and biomass, and climatic conditions are compared at year

2100.
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3.1 Sensitivity Simulations

3.1.1 Possible Range of Steady States

The results of the sensitivity simulations are shown in terms of land surface

boundary conditions (precipitation and surface air temperature) averaged by biome

in Figure 2.1. Note that each box represents the biome-average values of precipi-

tation and surface temperature for a single sensitivity simulation and the shading

denotes the simulated gross primary productivity. These simulations show a gen-

eral trend of higher productivity where the set of values for the model parameters

characterizing vegetation form and functioning led to a climatic regime with lower

temperatures and greater rates of precipitation. In all three plots, the boundary

conditions of the control simulations are largely consistent with the sensitivity sim-

ulations associated with optimal conditions for productivity. The parameters values

of gsmax and z0veg that resulted in the highest mean productivity were 0.1 and 0.5m

for the tropical forest biome, 0.2 and 2.0m for the temperate biome, and 0.1 and

1.0m for the boreal biome. In the plot of the tropical biome, the optimal sensitivity

climates, the control simulation, and the ECMWF reanalysis values correspond re-

markably well. More importantly, these plots confirm that vegetation adds a great

deal of flexibility to land surface functioning; allowing for many possible climate-

vegetation steady states which differ greatly in their gross primary productivity.
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3.1.2 Energy Flux Partitioning

Figure 2.2 shows the results from the same sensitivity simulations in a similar

fashion in terms of the turbulent fraction, the partitioning between radiative and

turbulent fluxes (QLH +QSH/QSW ), averaged over the biome regions. Table 1 shows

the values for turbulent fraction from the sensitivity simulation with the optimum

set of vegetation parameter values, the control simulation, and the corresponding

observed values from the ECMWF reanalysis for each biome region. The optimum

set of vegetation parameter values being defined here as those which led to the

highest mean gross primary productivity for that particular biome.

It was found to be useful to compare the characteristic partitioning of fluxes

rather than absolute fluxes due to biases in the energy balance inherent to the

Planet Simulator model. For instance, in the boreal region, the Planet Simulator

underestimates the presence of clouds, which leads to an underestimation of net

solar radiation and surface temperatures.The values of turbulent fraction found in

the sensitivity climates with the highest gross primary productivities are largely

consistent with the observed values in the ERA-40 reanalysis. Overall, it appears

that the highest simulated productivities fall close to but not at the upper limit of

the simulated range of turbulent to radiative flux ratios. These results add support

to the hypothesis that vegetation productivity is at its maximum possible value

within the climate system, given the constraints of the surface energy and water

balance.
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Figure 3.1: Climatic mean land surface boundary conditions averaged for the boreal

(top), temperate (middle), and tropical (bottom) biomes. Each box represents a sin-

gle sensitivity simulation and the shading denotes the simulated productivity. The

white star represents the control simulation and the black star marks the boundary

conditions found in the ECMWF ERA-40 reanalysis.
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a single sensitivity simulation and the shading denotes the simulated productivity.

The white star represents the control simulation and the dashed vertical line marks

the partitioning found in the ECMWF ERA-40 reanalysis.25



3.2 Transient Simulations

3.2.1 Range of Uncertainty in Simulated Future Terrestrial Produc-

tivity

Figure 3.3 (top) shows the change in annual mean gross primary productivity

over the course of the ”optimizing” and ”static” scenarios. The difference between

the two scenarios represents the range of uncertainty in terrestrial productivity be-

tween no adaptation in terms of the macroscopic vegetation properties and optimal

adaptation leading to maximized productivity. In both scenarios, the CO2 fertiliza-

tion effect lead to an increase in GPP and an accumulation of vegetation biomass.

After the first optimization period from 1970 to 1973, the GPP in the ’optimizing’

scenario begins to increase at a faster rate than the the ’static’ simulation for a

few years. Shortly thereafter, the difference between the two scenarios disappeared

again . The range between the two scenarios grew during each subsequent optimiza-

tion period. However, in some of the spans between the optimizations, the rate of

increase in GPP is higher in the ’static’ scenario than the ’optimizing’ scenarios.

Most drastically, in the period 2083 to 2100, the GPP in the ’static scenario’ is

nearly matches the productivity in the ’optimizing’ scenario.

Figure 3.3 (bottom) shows the change in vegetation biomass over the same pe-

riod of 1850 to 2100. In the Planet Simulator, mean biomass is proportional to mean

gross primary productivity. Therefore, comparing the evolution of vegetation car-

bon pools reveals the cumulative effect of changes in GPP and with less interannual
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variability.The total increase in vegetation carbon from 1850 to 2100 was about 251

PgC in the ’static’ scenario and 273 PgC in the ’optimizing’ scenario. The periodic

optimization of the gsmax and z0,veg parameter values led to the accumulation of

about 22 PgC more in the vegetation carbon pool at year 2100 in the ’optimizing’

scenario than in the ’static scenario’. The largest difference in vegetation biomass

of about 28 PgC occurred at year 2083 after the last optimization period from year

2080 to 2083.

3.2.2 Geographic Differences Between Optimized and Static Simula-

tions

The spatial differences between the two scenarios at year 2100 in terrestrial

gross primary productivity and terrestrial biomass are shown in Figure 3.4. The

’optimizing’ scenario’ saw significantly larger gains in GPP and biomass in northern

Australia, southeast Asia, southern Africa, and the northern latitudes. In central

United States and the tropical forest regions of eastern Amazonia and Central Africa,

there were significantly larger gains in GPP and biomass in the ’static’ scenario.

This indicates that while the optimization algorithm led to a higher mean global

productivity, it failed to optimize the vegetation parameters across all regions.

Figure 3.5 shows the geographic differences in the vegetation parameters, gsmax

and z0veg, between the two scenarios after the final optimization period. The opti-

mization algorithm led to a decrease in maximum stomatal conductance parameter

values in most vegetated regions of the world. The decreases in maximum stomatal
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Figure 3.3: Time evolution of terrestrial productivity (top) and vegetation biomass

(bottom). The red line is from optimizing scenario and the blue line represents the

static scenario.
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Difference in Gross Primary Productivity (gC/m2/day)

Difference in Vegetation Biomass (kgC/m2)

Figure 3.4: Differences between the static and optimizing scenarios in gross primary

productivity (top) and vegetation biomass (bottom) at year 2100
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conductance was most pronounced in the tropics and the northern latitudes. This

is consistent with the observed reduction in stomatal density reported in Woodward

(1989).

There is no similarly consistent spatial pattern of differences in the roughness

parameter values between the scenarios. There were marked decreases in roughness

in northern Australia and southern Africa. The magnitude of differences in rough-

ness lengths were generally greater than the magnitude of differences in maximum

stomatal conductance. However, this does not suggest that the impact of changes

in roughness length are greater than the impact of changes in maximum stomatal

conductance because stomatal conductance has much a greater influence on the

turbulent mass and energy exchange at the atmosphere-biosphere boundary.

Figure 7 shows the geographic pattern of differences at year 2100 between the

two scenarios in turbulent fraction. A positive difference in turbulent fraction means

that the turbulent fluxes increased at the expense of radiative cooling. There is a

strong negative signal in Africa, especially east Africa and south Africa. There are

also decreases in northern Australia, southeast Asia, and Indonesia.
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Difference in Maximum Stomatal Conductance (unitless)

Difference in Vegetation Roughness (m)

Figure 3.5: Differences between the static and optimizing scenarios in maximum

stomatal conductance (top) and vegetation roughness (bottom) at year 2100
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Difference in Turbulent Fraction (unitless)

Figure 3.6: Differences between the static and optimizing scenarios in turbulent

fraction at year 2100
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Chapter 4

Discussion

4.1 Limitations of Model and Experimental Setup

The Planet Simulator is a model of intermediate complexity, and thus, many

climate and vegetation processes are ignored or highly simplified. The simulations

were performed at a fairly coarse horizontal and vertical resolutions. The model

does not include nutrients as a limiting factor on productivity and the soil hydrology

scheme includes only one layer. In the sensitivity study, the vegetation parameters

were varied in a globally uniform manner in the sensitivity simulations. While this

simplifies the analysis, a more realistic approach for estimating the range of possible

steady states might use a cloud of randomly generated, spatially heterogeneous

parameter sets. Also, climatological sea-surface temperatures and sea-ice extents

were externally prescribed in the sensitivity study. Bonan et al (1992) presents

the potential interactions between the springtime warming associated with a darker

vegetated boreal forest and oceanic and sea-ice feedbacks. This sort of land-sea

interaction would not be captured in the described sensitivity experiment.

Both the transient and sensitivity simulations were performed with prescribed

CO2 concentrations, making it impossible to directly compare the results of this

study with other carbon-climate feedback studies mentioned in Section 1.3. This

study should be extended using a fully interactive carbon model with feedbacks
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to the atmosphere and including the nutrient demands of vegetation. Additional

model parameters, such as leaf albedo and stomatal response to vapor pressure

deficits, could also be included in the optimization.

4.2 Performance of the Optimization Algorithm

The optimization algorithm as implemented in this study performed poorly.

By definition, an optimized set of parameters should produce productivity values

which are greater than or at least equal to the static parameters. In the optimizing

scenario presented here, each optimization period caused an initial gain in productiv-

ity over the static scenario. However, in the interim periods between optimizations,

these gains were not sustained with the global productivity of the optimized scenario

falling below the static scenario. Repeating the study with a longer optimization

(e.g. 10 years) may improve the results by allowing the simulated land surface

more time to approach a new equilibrium. The algorithm also performed poorly in

some key areas including Amazonia resulting in an overall lower biomass in those

region at the end of the optimization scenario when compared to the static sce-

nario. Running the optimizations requires a considerable amount of time even with

a moderate-size cluster of computational nodes. Nonetheless, a systematic approach

examining the tradeoffs between the length of the optimization period, the frequency

of optimizations, the number of generations per optimization, the required compu-

tational burden, and the effectiveness of the algorithm would be a useful project

and greatly improve the credibility of any results developed using the methodology
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presented for the first time in this study. Unfortunately, this was not feasible within

the timeframe of this study. Additionally, the use of other optimization algorithms

such as gradient-based and extremal optimization methods, as well as variants of

the one presented in this paper should be explored.
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Chapter 5

Conclusion

This study shows that vegetation adds a great deal of flexibility to the land

surface allowing for a wide range of biologically possible climate-vegetation states

that differ in their productivity. This suggests that the energy and mass balances do

not determine but only act to constrain the emergent state of the climate-vegetation

system. Furthermore, the partitioning of radiative to turbulent fluxes found in

the sensitivity simulations with the highest productivities is largely consistent with

observations from the ERA-40 reanalysis. This is consistent with the hypothesis

that the present-day climate reflects optimal conditions for the terrestrial biosphere

due in part to form and functioning of the biosphere itself.

A new methodology was presented to quantify the range of uncertainty in

future terrestrial productivity associated with potential adaptation of large-scale,

climatically relevant vegetation properties. Under scenarios of global change, these

large-scale vegetation properties may adapt to a new configuration that maintains an

optimum partitioning of surface fluxes leading to a state of maximum productivity

for the new conditions. In which case, a selection criterion will be necessary to

pick out the this state from the range of possible climate-vegetation states. An

optimization approach may be a valuable tool for selecting from the many possible

steady states.
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Even if the terrestrial biosphere is unable to consistently maintain, through

large-scale feedbacks, optimum conditions for productivity, the methodology of in-

vestigating past and future climate change from the perspective of optimality pro-

vides an important quantification of a best case scenario. This is of particular rele-

vance as current research on future climate change is focused on positive feedbacks

and negative impacts on the terrestrial biosphere (e.g. Cox et al. 2000, Friedlingstein

et al. 2003), while optimality provides the complementary perspective of the best

case climate change scenario and emphasizes the dominance of negative feedbacks.
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