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CHAPTER 1 

1. Introduction 

Elastomeric foams are increasingly used in crash and shock mitigation applications.   

Examples include protective helmets, automotive bumpers, packaging, and advanced wall 

systems for blast damping and containment in ordnance storage facilities and other 

structures.  In addition to their effectiveness in shock mitigation applications, they are 

desirable for their low weight and their relatively low cost.  Foams vary widely in their 

composition and density.  Depending on the manufacturing process and density, 

elastomeric foams can be open cell, closed cell, or a combination of both.  Many types of 

polymeric resins can be used to create elastomeric foam such as rubbers, polyurethanes, 

and polystyrenes.  In impact mitigation applications, soft flexible foams can be effective 

by blocking the transmission of shock energy.  However, densification hardening of the 

foam limits the level and duration of shock loading that can be blocked and a sudden loss 

of shock isolation can occur when over stressed.  Medium to hard foams can be used to 

improve effectiveness at higher levels of shock loading by absorbing energy via 

viscoelastic, viscoplastic-damage mechanisms, but due to their greater stiffness they 

allow partial transmission of energy at all shock levels.  The development of a general 

constitutive description of elastomeric foams requires that all of the aforementioned 

mechanisms be incorporated.  Furthermore, this must be done in the context of a finite 

strain formulation where a concurrence of high strain and high strain-rates is expected. 
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In recent years numerous constitutive models for polymeric materials have been 

developed for use in finite element analyses of their use in high strain and high strain-rate 

applications.  The development of formulations for compressible elastomers has been the 

topic of even more recent interest.  Several commercial finite element packages such as 

ABAQUS and LS-DYNA provide their users with some modeling capability of rate-

dependent elastomeric foams  [12] [13].  In most cases, standard models of polymer 

viscoelasticity are used in combination with hyperelastic energy density functions, which 

are commonly called hyperviscoelastic models.  These models can be effective for shock 

loading scenarios, but can require a high number of material parameters, and associated 

material tests, to track detailed constitutive behavior over the entire range of load, 

especially if the foam is to be modeled near its densification limit.  Furthermore, there are 

few constitutive models available that include plastic effects within the hyperviscoelastic 

framework.  

In this dissertation, a constitutive model for closed-cell foams is developed which 

combines the descriptions of nonlinearity, viscoelasticity, and plastic effects.  The model 

is motivated by a need for a practical modeling tool for the accurate predictions of shock 

isolation effectiveness in loading scenarios that are predominantly compressive in nature.  

A material characterization plan is provided for model parameter determination.  

Implementation is made in a MATLAB finite element program and a VUMAT is 

developed for use with commercial the software, ABAQUS.   The restriction to loading 

scenarios that are primarily compressive is exploited to develop a constitutive theory that 
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is far more practical to implement that most hyperviscoelastic formulations while 

providing a detailed and relatively stable description of nonlinearities associated with the 

collapse of the foam microstructure.  This simplification involves the use of composite 

theory to help define the hyperelastic free energy function.  Specifically, we investigate 

the use of three-phase composite theory to supply a complete description of the deviatoric 

constitutive behavior, thereby eliminating the need for specimen characterization under 

deviatoric strain conditions.  The resulting hyperelastic form is fully isotropic.  Since the 

three-phase composite theory does not track strong nonlinear behavior in foams 

associated with elastic instabilities under compressive strains  [32], a phenomenological 

modification to the composite theory is made to incorporate this behavior.  Viscoelastic 

behavior is described with a generalized Maxwell model, also known as the Prony Series.  

Internal variables are used to track the hereditary response.  Finally, a plastic model for 

polymeric materials motivated by the model of Bardenhagen  [35] is incorporated within 

the viscohyperelastic framework using an approach described by Nedjar  [23]. The 

resulting approach offers a model for foams with a unique combination of the following 

features:  

1) An isotropic constitutive description formulated directly in terms of strain-

dependent tangent moduli.  

2) Separation of the gas phase contribution to the constitutive response. 

3) Viscoelastic behavior of the matrix polymer. 

4) A rate-dependent plasticity model integrated within viscoelastic framework.  
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5) Unification of the constitutive description over a large region of the strain/strain-

rate space.  

The validity of the latter feature is a hypothesis tested in this dissertation.  Model 

parameters of the constitutive theory are developed using characterization experiments 

that lie far outside the region in strain/strain-rate space normally characterized as 

“shock”.  The ability of the constitutive model to predict the results of shock experiments 

is then investigated using finite element analysis.  

This dissertation includes experimental results for two commercially available 

closed-cell foam specimens.  These experiments are the Split Hopkinson Pressure Bar 

(SHPB) and a Conical Shock Tube (CST), which both measure material behavior at a 

combination of high strain and high strain-rate.  The subject foams are RUBATEX© 

#R451 Neoprene Foam, and RUBATEX© #R8702 SBR Foam.  These foams are made 

from different base elastomers and possess markedly different moduli and relaxation 

behaviors. Split Hopkinson Pressure Bar experiments are used to characterize small 

cylindrical specimens. Conical Shock Tube experiments are also used to characterize the 

response to underwater shock of larger specimens.  

Shock experiments are simulated with finite element models that incorporate the 

constitutive theory.  Two modeling approaches are employed.  The first is a dedicated 

model of the SHPB experiment that is written in MATLAB.  This model uses an implicit 

solution technique.  Simulations are also made using the commercial software ABAQUS 

using its explicit solution option.  In this case, the constitutive theory is implemented via 
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user defined material subroutine known as a VUMAT.  Material parameters needed for 

the constitutive theory are established for the foams using hydrostatic dilatometer 

experiments and with master curves of the dynamic complex shear modulus, which are 

developed from experiments in a Dynamic Mechanical Thermal Analyzer (DMTA).  

The remainder of this chapter provides a brief background on the theoretical aspects 

of the constitutive model development and provides a description and some background 

of the high strain rate experiments conducted on the foam specimens.  

1.1. Linear Viscoelasticity and Creep 

1.1.1.  Viscoelastic Phenomenon in Polymers 

Viscoelasticity is the manifestation of relaxation phenomena associated with spatial 

molecular rearrangements that occur within a stressed polymer structure  [1] [3].  This 

behavior is readily evident in dynamic mechanical thermal experiments in which the 

magnitude of the complex Young’s or shear modulus can change orders of magnitude 

over the glass transition region.  In the rubbery region (high temperatures) the polymer 

chains are highly mobile and fast to react to an applied stress, whereas in the glassy 

region (cold temperatures) the polymer chains are inactive and slow to react.  This 

underlying relaxation phenomenon also gives rise to the well-known time-temperature 

superposition principle, which postulates a correspondence between temperature and time 

dependence of the viscoelastic moduli.  An increase in temperature at a fixed time-scale 

corresponds to an increased time-scale (or a reduced dynamic frequency) at fixed 



 

 

 

 

6

temperature and vice versa.  This principle is used to create dynamic modulus 

mastercurves over a wide range of frequency from dynamic mechanical experiments 

conducted over a narrow frequency range and repeated at many temperatures.  Rubbery 

creep relaxation seen in most polymers is also part of the same viscoelastic phenomenon, 

but is usually associated with relaxation phenomenon occurring over large time scales 

much larger than those associated with a polymer’s glass-transition frequency 

 [1] [2] [3] [3].  

1.1.2. 1-Dimensional Linear Viscoelasticity 

Viscoelastic materials exhibit a time-dependent stress in response to the application of 

fixed strain.  Accordingly, constitutive relationships via constant elastic moduli are not 

sufficient to describe their behavior.  For a viscoelastic solid subjected to a step in strain, 

a time-dependent relaxation modulus is the analog to the constant modulus value of an 

elastic solid  

 
ε
σ

=E  elastic modulus ( 1-1) 

 ( ) ( )
ε

σ ttE =  viscoelastic relaxation modulus ( 1-2) 

By virtue of the Boltzmann’s linear superposition principle, the stress response to an 

arbitrary strain history can be derived at any time, t, from the relaxation modulus by a 

hereditary convolution integral over the entire strain history.  The hereditary integral for a 

material that has no strain history prior to t=0 is given by 
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 ( ) ( ) τ
τ
ετσ dtEt

t

∂
∂

−= ∫
0

  ( 1-3) 

The Laplace transform of the hereditary integral gives us the following constitutive 

relationship in the Laplace domain: 

 εσ E=    (elastic stress) ( 1-4) 

 ( ) ( )[ ] ( )ssEss εσ ~~~ =   (viscoelastic stress) ( 1-5) 

From ( 1-4) and ( 1-5) we see that in the Laplace domain the constitutive relationship 

of a viscoelastic material is analogous to an elastic material, where the Laplace modulus, 

which we define as ( )sEs~ , takes the role of the elastic modulus.  This similarity between 

the elastic form and the viscoelastic form in the Laplace domain is known as the Elastic-

Viscoelastic Correspondence Principle  [4]. 

1.1.3. Viscoelastic Models 

Viscoelastic behavior is often modeled with mechanical analogs consisting of 

springs and dashpots in various configurations commonly referred to as Viscoelastic 

Models (VEMs).  The stress-strain relationship developed by these mechanical systems 

can emulate the behavior of real viscoelastic materials as given by the hereditary integral.   

In some VEMs like the Gollah, Hughs and McTavish (GHM) model, which is widely 

used in viscoelastic damping problems, masses are also used to facilitate the 

mathematical treatment the finite element approach, but the masses have no tangible 

physical meaning. 
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In this work, a generalized Maxell model, also known as a Prony series, is used to 

describe viscoelastic behavior.  The Prony series represents a discretization of the 

continuous relaxation spectrum within the polymer chains  [1].  The model is well suited 

to describe the macroscopic behavior of the material to almost any degree of accuracy, 

provided that sufficient number of Maxwell elements is used.  A desirable feature of the 

Prony series model is that it is particularly well suited for the inter-conversion between 

modulus and compliance functions in time, frequency, and Laplace transform domains 

 [6].  

The Prony series is shown Figure  1-1.  It consists of a lone spring element in parallel 

with N Maxwell elements.  Each Maxwell element introduces an internal degree of 

freedom, which is the displacement between the spring and dashpot components.  

Subscripts ‘e’ and ‘v’ refer to the elastic and viscous components of the Maxwell 

elements.  

σ

)0(E

)1(
eE

)1(
vE

)1(ξ

)2(
eE
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vE

)2(ξ

)(k
eE

)(k
vE

)(kξ

 

Figure  1-1  Prony series representation for the complex modulus of a VEM 
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In the Laplace domain, the Prony system shown above has the following stress strain 

relationship: 

 ( ) ( )s
s

sEEs
N

k
k

k
k

e ε
τ

τσ ~
1

~
1

)(

)(
)()0(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+= ∑
=

, ( 1-6) 

where, 

τ(k) ≡ Relaxation time of the kth element )(

)(

k
e

k
v

E
E

=  

s ≡ Laplace variable. 

Relaxation modulus (time-domain) and dynamic modulus (frequency-domain) are 

readily obtained from the Laplace domain, allowing Prony coefficients to be established 

with either relaxation or dynamic experiments. 

Relaxation modulus, E(t), is defined by the ratio of stress to strain after imposing a 

step strain to the system.  The Laplace transform of the step strain is given by: 

 ( ) ss /1~ =ε .  ( 1-7) 

Substituting equation ( 1-7) into equation ( 1-6) gives the relaxation modulus in the 

Laplace domain: 

 )(
1

)()0(

1
11)(~

k

N

k

k
e s

EE
s

sE
τ+

+= ∑
=

  ( 1-8)  

As expected equations ( 1-6) and ( 1-8) lead to the same constitutive relation in the 

Laplace domain as was developed from general convolution integral, ( ) ( ) ( )ssEss εσ ~~~ = . 
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The inverse transform of equation ( 1-8) gives the relaxation modulus in the time 

domain: 

 ⎟
⎠
⎞

⎜
⎝
⎛−+= ∑

=
)(

1

)()0( exp)( k

N

k

k
e

tEEtE
τ

. ( 1-9)  

Dynamic modulus can be obtained directly from the Laplace domain by replacing 

the Laplace variable with -iω where ω is the radial frequency, and separating the real and 

imaginary components: 

 ( ) ( )
( )2)(

2)(

1

)()0(

1 k

kN

k

k
eEEE

ωτ

ωτω
+

+=′ ∑
=

, ( 1-10) 

 ( )
( )2)(

)(

1

)(

1 k

kN

k

k
eEE

ωτ

ωτω
+

=′′ ∑
=

,  ( 1-11) 

such that the complex dynamic modulus is given by: 

 ( ) ( ) ( )ωωω EiEE ′′+′=* .  ( 1-12) 

1.1.4. 3-D Linear Viscoelasticity 

This section provides a brief review of three-dimensional linear viscoelasticity.  We 

begin with generalized Hooke’s law for linear elastic solids:  

 klijklij k εσ = .  ( 1-13) 

The elastic tensor relating stress and strain is 4th order and has 81 elements.  In view of 

the symmetry of the stress and strain tensors ( jiij σσ =  and lkkl εε = ) the elastic tensor 
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has at most 36 independent elements  [3].   For a completely isotropic solid, additional 

symmetries, and the requirement that the properties are invariant with rotation reduces 

the number of independent constants to just two and the constitutive relation is given by, 

 ijijkkij μεδλεσ 2+= ,  ( 1-14) 

where λ and μ are the first and second Lamé constants, respectively.  The second Lamé 

constant is more commonly referred to as the shear modulus. The constitutive relation 

can also be written in terms of the bulk and shear moduli, which is a more meaningful 

form in the context of the model development in Chapter 2: 

 ijijkkij K μεδεμσ 2
3
2

+⎟
⎠
⎞

⎜
⎝
⎛ −= .  ( 1-15) 

The bulk modulus is of particular interest because it provides the constitutive 

response to isotropic normal stress, which is a stress state that is readily achievable in 

dilatometer experiments.   In nearly all hyperelastic formulations, a portion of the energy 

potential dependent only on volumetric strain is additively split from a remaining energy 

potential containing the deviatoric behavior.  

In the Laplace domain, the viscoelastic problem has a form that is similar to the 

elastic problem.   Consider the 3-D generalization of equation 2-2 by replacing the 

modulus with the elastic matrix: 

 ( ) ( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −+= ijkkijijkkij ssssssKss δεεμδεσ ~

3
1~~2~~~ . ( 1-16) 
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Equation ( 1-16) provides the 3-D linear viscoelastic response of an isotropic material 

in the Laplace domain.  It can be seen in this equation that there is one independent 

hereditary integral associated with the bulk modulus, ( ) ( )ssKs kkε~~ , and 9 associated with 

the shear modulus, ( ) ( )sss ijεμ ~~ .  Symmetry of the strain tensor eliminates 3 of the shear 

integrals making for a total of 7 hereditary integrals.  

1.2. Hyperelasticity 

Hyperelasticity is used to describe rubber-like materials undergoing finite 

deformations. The underlying assumption of hyperelastic theory is the existence of a 

strain energy density function, that is dependent only on the current state of strain and 

serves as the free energy potential from which the stresses are obtained.  Hyperelastic 

forms most often express the energy density function in terms of the invariants of the 

finite strain tensor.  What is often cited as an advantage of the hyperelastic description is 

that it ensures path independent behavior since the stored elastic energy at any point in 

the material is determined by its current state of deformation.  This also ensures a fixed 

point of equilibrium, which is typically the undeformed state.  

A Lagrangian framework is used in the following development.  The deformation 

gradient is given by:  

 
X
xF

∂
∂

= , 

or 
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J

i
iJ X

x
F

∂
∂

= ,  ( 1-17) 

where x represents the current position of a material particle, and X represents its 

reference position.  To indicate vector components, lower case letters are used for the 

current configuration and upper case is used for the reference configuration.  The 

deformation gradient is a poor measure of deformation since it contains rigid body 

rotation.  By the polar decomposition principle, the finite strain deformation gradient can 

be multiplicatively decomposed into an orthogonal matrix,  R,  representing rigid body 

rotation, and either a right or left symmetric stretch matrix representing pure deformation  

 RVFURF ⋅=⋅= , .  ( 1-18) 

A right and left Cauchy-Green deformation tensor is formed as follows: 

 ( ) URRUFFC ⋅⋅== TTT       (right Cauchy Tensor) ( 1-19) 

 ( )TT VRRVFFB ⋅⋅== T       (left Cauchy Tensor) ( 1-20) 

The rotation matrix, R, is orthogonal so IRR =T .  The stretch matrix, U, is symmetric so 

2UUU =T .  Using these properties becomes  

 2UC = , 2VB =   ( 1-21) 

The right Cauchy-Green tensor maps the dot product of infinitesimal material fiber 

(vector joining two neighboring particles) with itself at the reference configuration to the 

same fiber at the current location. 
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 XCXxx dddd ⋅⋅=⋅ .  ( 1-22) 

The Green-Lagrange finite strain tensor is closely related to C but maps the change 

in the dot products:  

 ( )ICE −=
2
1 ,  ( 1-23) 

 XEXXXxx dddddd ⋅⋅=⋅−⋅ 2 .  ( 1-24) 

The Green finite strain is energy conjugate with the second Piola-Kirchhoff stress.  

Hence, an incremental change in internal energy density is given by;  

 ES ddW := ,  ( 1-25) 

where dW represents the change in strain energy density with respect to the reference 

volume. The volumetric stretch, ( )FJ det= , is a strain invariant always used for 

hyperelastic descriptions of compressible materials.  The deviatoric strain invariants are 

usually derived from a form of the deformation gradient and deformation matrix that is 

independent of volumetric strain, 

 FF 3/1−= J ,  ( 1-26) 

 CFFC 3/2−== JT .  ( 1-27) 

Such tensors are sometimes referred to as volume preserving since they change only with 

deviatoric deformation.  The invariants of the volume preserving right-Cauchy 

deformation tensor are given by the coefficients of the characteristic eigenvalue equation: 
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 [ ] 0det =− IJIJC λδ ,  ( 1-28) 

 0123 =+++ λλλ CC III .  ( 1-29) 

From which we have for the first invariant, 

 2
3

2
2

2
1 λλλ ++=CI ,  ( 1-30) 

and for the second invariant, 

 2
3

2
2

2
1

−−− ++= λλλCII .  ( 1-31) 

where iλ  are the principal stretches and ii J λλ 3/1−= . The eigenvectors of C provide the 

principal directions. 

The hyperelastic strain energy density equation has the general form,  

 ),,( JIIIWW CC= ,  ( 1-32) 

and the second Piola-Kirchhoff stress tensor is derived from the potential as follows: 

 
C
W

E
WS

∂
∂

=
∂
∂

= 2 ,  ( 1-33) 

or 

 
IJIJ

IJ C
W

E
WS

∂
∂

=
∂
∂

= 2 .  ( 1-34) 

In most cases, the hyperelastic energy density is written in terms of the strain 

invariants and the chain rule is used to develop the stresses,  
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 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂

∂

∂
∂

+
∂

∂

∂
∂

=
C

W
C

W
C

WS J
J

II
II

I
I

C

C

C

C

2 . ( 1-35) 

 

The second Piola-Kirchhoff stress tensor is related to the Cauchy stress tensor as 

follows:  

 TFσFS −− ⋅⋅= 1J .  ( 1-36) 

Using the polar decomposition theorem, we can express the second Piola-Kirchhoff stress 

in terms of the co-rotational Cauchy stress, 

 TUσUS −− ⋅⋅= )1J   ( 1-37) 

where σ)  represents the corotational Cauchy stress given by, 

 RσRσ ⋅⋅= Tˆ ,  ( 1-38) 

The co-rotational Cauchy stress is the Cauchy stress tensor pulled-back to reference 

configuration by the material rotation tensor, R.  The second Piola-Kirchhoff stress 

represents the co-rotated stress scaled from the deformed to undeformed configuration. 

Linearization of the hyperelastic relation is used in the finite element method.  A first 

order Taylor expansion of the stress tensor at strain E gives the perturbed stress in terms 

of this gradient: 

 ( ) ( ) E
E
SESEES dd

∂
∂

+=+ .  ( 1-39) 

Rearranging we can write, 
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 EKE
E
SS ddd =⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

= ,  ( 1-40) 

where ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
E
SK is the Lagrangian tangent modulus.  Finally, the true Cauchy stress, 

which is the more useful form for engineering computations, is related to S via: 

 TFSFσ ⋅⋅=
J
1 ,  ( 1-41) 

or 

 jJIJiIij FSF
J
1

=σ .  ( 1-42) 

1.2.1. Specific Forms of the Hyperelastic Potential 

Many forms of the hyperelastic energy potential have been proposed.  Below is a 

brief review of several common models that include to compressible materials.  

Neo-Hookean.  

Neo-Hookean form is the most basic form of the hyperelastic potential.  In its 

general form, the Neo-Hookean model is the expression of the strain energy density 

derived from integration of the stress and strain in the case where the tangent moduli 

remain isotropic and constant.  The form below is a first order expansion of general form 

often available in commercial FEA material libraries:  
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 2

1
1 )1(1)3( −+−= J

D
ICW C&&&   ( 1-43) 

Neo-Hookean form is suitable for slightly compressible materials at low strains.  The 

coefficient C1 represents the initial shear modulus of the material.  Coefficient D1 

represents the inverse of the initial bulk modulus. 

Moony- Rivlin 

Moony-Rivlin (MR) form is motivated by the fact that the free energy of any 

homogeneous, isotropic material can be expressed as an infinite series of the three strain 

invariants  [58].  For a first-order expansion, Mooney-Rivlin form is given by:  

 2

1
2211 )1(1)3()3( −+−+−= J

D
ICICW  ( 1-44) 

It is evident in comparing Moony-Rivlin to Neo-Hookean form it is seen that Neo-

Hookean is a reduced form of the first order MR form with C2=0.   

Ogden form. 

Ogden form, shown here for slightly compressible materials, describes the deviatoric 

portion of the hyperelastic potential in terms of the principal stretches rather that the 

invariants. Hence, implementation of Ogden form requires use of the eigenvectors in 

addition to the eigenvalues.  Anisotropic behavior can develop along the principle 

directions, but the model is still “isotropic” in the sense that the elastic response can be 

derived from the deformation tensor without regard to reference coordinates.  The non-
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integer exponential coefficients also provide greater flexibility than polynomial forms in 

describing nonlinear deviatoric behavior at lower order expansions.  The use of higher 

order expansions allows for detailed descriptions of polymeric behavior at high deviatoric 

strains.  

 ( ) 2

1
321

1
2 )1(12

−+++= ∑
=

J
D

W iii

N

i i

i ααα λλλ
α
μ  ( 1-45) 

A hyperfoam version of the Ogden is similar to the expression above, except the 

volumetric term is expanded in similar fashion.   

Yeoh form 

The Yeoh form (also known as Reduced Polynomial Form) is a versatile polynomial 

form that can handle moderate material compressibility and moderate levels of deviatoric 

strain.  It provides an even balance between the description deviatoric and volumetric 

behavior making it a good choice for an overall description of moderately compressible 

polymers.  Yeoh form is given by:  

 2

3

2

2

2

1

3
130

2
120110

)1(1)1(1)1(1
)3()3()3(

−+−+−+

−+−+−=

J
D

J
D

J
D

ICICICW
 ( 1-46) 

where C10 and 1/D1 represent the initial bulk and shear moduli, respectively. 
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Blatz-Ko 

Blatz-Ko form is of particular research in the context of this dissertation since it was 

developed for the express reason of describing the behavior of polyurethane foams.  They 

derived a hyperelastic free energy function that describes the high compressibility of 

foams, which was lacking in most hyperelastic formulations at the time of its 

development.  An interesting property of the Blatz-Ko form, not obvious from inspection, 

is that the elastic response depends only on the third invariant  [37].  

Blatz-Ko form is given by,  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−+−−+⎥

⎦

⎤
⎢
⎣

⎡
−+−= − )1(1)3(

2
1)1(1)3(

2 3
3

2
31

ββ

β
μ

β
μ I

I
I

fIIfW  ( 1-47) 

where, 

 
ν

νβ
21−

=  

and f is an interpolation parameter that can vary between 0 and 1.  

1.2.2. Hyperviscoelasticity 

In recent years, there has been a considerable amount of development in 

hyperviscoelastic models.  In 1985 Lubliner  [18] introduced the general approach of 

incorporating viscoelasticity in which the free energy is additively separated into 

equilibrium and non-equilibrium parts.  Lubliner considered the use of a Kelvin element 

and a Maxwell element to model relaxation and concluded that the Maxwell element is 
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advantageous since it is readily expanded for multiple relaxations.  Since Lubliner, 

Holzapfel  [19] and Nedjar  [23], among others, have developed specific viscoelastic 

models using this approach. 

1.3. Hypoelasticity 

Hypoelasticity generally refers to the constitutive relationship between stress and 

strain in rate form  [49]. It differs from the hyperelastic approach in that a unique, 

governing strain energy potential is not identified and often does not exist. Hence, unlike 

the hyperelastic form, the hypoelastic description can be path dependent.  In this sense, 

the hypoelastic form is a more general description of constitutive behavior.  

The velocity gradient, L, can be additively split into a symmetric rate of deformation 

tensor, D and an asymmetric spin tensor, W:  

 WDL += ,  ( 1-48) 

where, 

  ( )TLLD +=
2
1   ( 1-49) 

 ( )TLLW −=
2
1 .  ( 1-50) 

The velocity gradient is related to the deformation tensor as; 

  1−⋅= FFL & .  ( 1-51) 

For small strain, small displacement hypoelasticity the constitutive relationship is simply 
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 DCσ :...)2,1( pp=&   ( 1-52) 

For finite strain and displacements, the rotational portion of the velocity gradient 

must be accounted for to ensure objectivity of the stress rate.  Objective stress rates can 

be developed by considering the polar decomposition of the deformation tensor.  The 

rotation tensor may be used to rotate the Cauchy stress tensor back to the undeformed 

configuration.  

 RσRσ ⋅⋅= Tˆ .  ( 1-38) 

Taking the time derivative gives the rate of Cauchy stress in the material’s corotational 

reference frame, 

 RσRRσRRσRσ &&&& ⋅⋅+⋅⋅+⋅⋅=∗ TTT . ( 1-53) 

Rotating this rate forward to the spatial coordinates gives the Green-Naghdi rate; 

 TTGN Ω⋅−⋅Ω−=⋅⋅= ∗∇ σσσRσRσ && , ( 1-54) 

where, 

 TRR ⋅=Ω .  ( 1-55) 

If the spatial coordinate system coincides with the material coordinates we have: 

 IR = .  ( 1-56) 

It can be also shown through consideration of the polar decomposition theorem ( 1-18) 

and equations ( 1-50) and ( 1-51) that in the absence of deformation, 

 W=Ω   ( 1-57) 
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Making these substitutions into ( 1-54) we find that the Green-Naghdi rate coincides with 

the Jaumann rate: 

 WσσWσσσ ⋅−⋅−== ∇∇ &JGN   ( 1-58) 

Because the Jaumann form is written in terms of the corotational coordinate system it is 

often referred to as the corotational rate of Cauchy stress. 

1.4. Strain/Strain-Rate Reparability 

In general, the Boltzmann superposition principle is invalid for nonlinear problems, 

and hence the viscoelastic response cannot be represented via Laplace transforms.  

However, linearity can be preserved under the assumption that nonlinear behavior is 

separable from linear viscoelastic rate dependence by factorization.  Separability of the 

foam’s rate dependence from its strain nonlinearity has been a key assumption, which 

sometimes goes unstated, in the development of hyperviscoelastic constitutive models.  

This is also true of the constitutive model developed in this dissertation.  In these cases, 

and in the model developed in this dissertation, polymer stretching is assumed to not 

affect the relaxation spectra to a significant degree.  Very little is found on this topic in 

the literature, but it should be expected that the validity of this assumption will depend 

greatly on the magnitude of strain and will surely vary among different polymer 

formulations.  

Some authors have retained coupled strain and strain-effects in foam constitutive 

models.  In the development of a one-dimensional compressive constitutive model for 
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automotive polyurethane foam (Sherwood  [7]) strain is allowed to effect modify the 

exponential term in a power law description of rate-dependence. Compressive stress in 

the foam is given as the product of a “shape function” depending on the strain and a 

strain and strain-rate dependent modulus such that: 

 ( ) ( )εεεσ &,Mfc =   ( 1-59) 

where, 

 ( ) ∑
=

=
10

1n

n
nAf εε   ( 1-60) 

and  
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ε
εεε
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& .  ( 1-61) 

Function ( )εε &,M  gives the power-law stiffening effect of the polymer where 0ε& is the 

reference strain rate.  The coupling term is the coefficient b, which was shown from 

experiments on polyurethane foam to be small but significant.  However, Sherwood states 

that the motivation for the coupling term b2 in his model is pneumatic damping, 

presumably due to an open cell structure in the foam. 

1.5. Plasticity 

A permanent deformation develops in the VEM when strained beyond its elastic 

limit. Plasticity in polymers is often treated as a flow phenomenon that occurs when 
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stress exceeds the boundaries of an elastic space.  In some cases, plasticity is assumed to 

occur at all strains and a loan dashpot is used to allow accumulation of simulate plastic 

set.  This treatment essentially makes plasticity mathematically equivalent to a viscous 

creep phenomenon.  Many rate independent plasticity models have also been developed, 

mostly for metals, and are attractive due to their simplicity and their ability to simulate 

experimentally observed plastic effects.  However, such treatment is inappropriate for 

shock analysis since plasticity in an inherently rate dependent phenomenon. 

1.6. High Strain – High Strain-rate Experiments 

1.6.1. Split Hopkinson Pressure Bar 

The SHPB consists of a horizontally suspended, slender rod that is split at its center 

to accommodate test specimens.  A striker rod is used to launch a compressive strain 

pulse that interacts with the specimen.  The origins of the SHPB experiment date back 

more than a century.  Development of the original Hopkinson Pressure Bar is credited to 

the work of British physicist John Hopkinson (1872) and his son Bertram Hopkinson.  

The development of the Split Hopkinson Pressure Bar in its present day form is credited 

to the work of Kolsky (1949) and Volterra (1948) who were the first to use the split 

configuration with a sandwiched specimen.  

The use of strain gauges to monitor the pulse started to be used in SHPBs in the mid 

1950s to early 1960s.  Strain gauges are still widely used today, but recent investigators 

have begun making use of new developments in measurement techniques such as 
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piezoelectric velocimeters and laser Doppler vibrometry.  Ramesh and Narasimhan 

(1996)  [52] published some earliest results using laser vibrometry.  Casem (2003)  [44] 

has published results for low-density foams tested in a polymeric SHPB using 

electromagnetic velocimeters placed at the specimen interfaces.  

The common approach to the SHPB developed with D’Alembert’s classical solution to 

the 1-dimensional wave equation: 

 )()(),( ctxgctxftxu ++−=   ( 1-62) 

Functions f and g represent waves propagating in the positive and negative x-direction, 

respectively.  The shapes of the waves remain constant.  The wave speed of a long 

slender rod is controlled by Young’s modulus, 

 
ρ
Ec =   ( 1-63) 

Consider the wave traveling in the positive x-direction.  The particle velocity is 

given by:  

 εc
x
ucv −=

∂
∂

−=+ .  ( 1-64) 

Using the elastic relationship, E/σε = , and the wave speed equation we have, 

 
c

v
ρ
σ

−=+ .  ( 1-65) 

When compressive stress is taken to be positive we have, 
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c

v c

ρ
σ

=+   ( 1-66) 

It follows that the particle velocity associated with the traveling in the negative x-

direction is given by, 

 
c

v c

ρ
σ

−=− .  ( 1-67) 

At the interface of the incident bar and the specimen there must be a continuity of stress 

and velocity.  Continuity of stress at the interfaces provides: 

 1int1int1int ||| ris σσσ +=   ( 1-68) 

 1int2int || ts σσ = .  ( 1-69) 

It is commonly assumed that the specimen is sufficiently short such that the stress in 

the specimen is nearly uniform.  With this assumption the average of the interface 

stresses are reported as the sample stress: 

 2int1int1int ||| tris σσσσ ++=   ( 1-70) 

 2int1int1int ||| tris σσσσ ++=   ( 1-71) 

 ( )tris c εεερσ ++= 2

2
1 .  ( 1-72) 

The average specimen strain is given by: 

 ( )dt
l
c

l
uu t

tris ∫ −−=
−

=
0

21

2
1 εεεε , ( 1-73) 
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where t=0 refers to the arrival time at the first interface.  Hence, the strain rate of the 

specimen is given by: 

 ( )tris l
c εεεε −−=& .  ( 1-74) 

Numeric integration of equation ( 1-74) with strain gauge data, using the appropriate 

time offsets to locate the data at the interfaces, gives the specimen strain.  The above 

equations for the sample stress and strain are valid for short specimens that are closely 

matched to the bar’s wave speed characteristics.  Also, the dimensional change of the 

specimen is assumed negligible.  For polymeric materials with relatively low wave 

speeds, the above relationships are invalid and a different analytical approach must be 

used.  A number of investigators have pursued analytic approaches that account for wave 

propagation and deformation of the specimen.  More recent investigations have utilized 

finite element modeling for data analysis.  

1.6.2. Conical Shock Tube 

Underwater shock experiments were conducted on the RUBATEX foam in the 

Navy’s Conical Shock Tube (CST) facility operated by the Naval Underwater Warfare 

Center in Newport, Rhode Island.  The CST is a 20-ft. long thick-walled steel waveguide 

with a conical bore.  A blast cap is fired at the small diameter end and the wave is guided 

to the cylindrical test specimen, which is typically 9 ½” in diameter.  The CST simulates 

a small sector of a spherical blast.  The device is used by the Navy to evaluate vessel 

components in at shock levels similar to underwater explosions.  More recently the Office 
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of Naval Research (ONR) has sponsored material investigations using the CST similar to 

the present work, which motivated the choice of this experimental approach.  

1.7. Objectives of Current Research 

The primary objective of this work is to develop and validate a constitutive model 

that can serve as a useful engineering tool for the numerical characterization of 

viscoelastic foams under conditions of compressive shock.  The goals for achieving this 

objective are,  

1) To minimize the characterization experiments needed for establishing the material 

model. 

2) To minimize the number of coupled material parameters. 

3) To implement the constitutive model in commercially available software package. 

The term “coupled material parameters” in goal #2 refers to those parameters that cannot 

be isolated for characterization.  For example, the Prony representation of the host shear 

modulus can require tens of parameters to cover the relaxation spectrum.  These 

parameters are uncoupled in the sense that they can be characterized independently 

without ambiguous influence from the other material parameters. 

We are particularly interested in developing an accurate description of the loss of 

shock isolation that may occur during the densification process.  This is critical for the 

proper design of shock isolation treatments.  For shock isolation, material designers are 

often concerned about the level of shock isolation provided and at what level of shock the 
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treatment ceases to function.  We also seek a constitutive formulation that is compatible 

with most implicit and explicit finite element approaches.  

A secondary objective is to gain insight into the material physics of closed-cell 

foams.  Understanding the fundamental mechanisms of shock isolation and energy 

absorption is important for the efficient development of specialized material treatments.  

To this end, an attempt is made to retain tangible meaning to the material parameters that 

describe the constitutive behavior.  

Of course, experimental validation of the proposed constitutive model is an objective 

of this work.  Two experiments are used for this purpose - a Split Hopkinson Pressure 

Bar (SHPB) and a Conical Shock Tube (CST).  These two experiments have different 

advantages and disadvantages.  The SHPB experiment is relatively fast and simple 

allowing for the investigation of multiple shock levels and specimen thicknesses. A 

limitation of the SHPB is the achievable sample aspect ratio.  The bar is only ¾” 

diameter, so large diameter-to-thickness aspect ratios would require specimens of 

undesirably small thickness.  The Conical Shock Tube is a more complicated experiment 

to conduct as it requires specimen rigging in a water-filled tube and the use of real 

explosives to generate a fluid-borne shock wave.  Its key advantage for the present study 

is the larger specimen size it can accommodate, which is about 9 ½” in diameter.  This 

permits much larger aspect ratios.  
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1.8. Summary 

From the Elastic-Viscoelastic Correspondence Principle, the basic concepts of 3-

dimensional linear elasticity and one-dimensional viscoelasticity can be extended to form 

a 3-dimensional viscoelastic theory for small deformations.  Multiplication of the 

viscoelastic matrix with the strain tensor forms a stress tensor whose components are 

given by the sum of hereditary integrals.  This provides a general approach to solving 3-

dimensional viscoelasticity problems.  

Viscoelastic models such as the Prony series provide a means of describing 

viscoelastic behavior with a mechanical system of springs and dashpots.  In a time-

incremental analysis, monitoring of the internal strain (or stress) variables within the 

viscoelastic model allows the hereditary integrals to be computed throughout the analysis.  

Two possible approaches for describing constitutive behavior under finite 

deformation and displacement are the hyperelastic and hypoelastic formulations.  The 

hyperelastic approach is attractive because it ensures path-independence, which is a 

reasonable assumption for rubber-like materials. Inelastic behaviors like plasticity and 

damage can be incorporated, and such hyperelastic models have been developed.  This is 

often accomplished by introducing additional free energy functions potential to the 

hyperelastic potential as is done in models developed by Bikard  [38] and Simo  [20].  A 

drawback to the hyperelastic approach is that common forms are limited in their 

descriptive power for nonlinear behavior.  For example, when using a polynomial form of 

the hyperelastic energy function, the polynomial order of the tangent moduli derived 
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from the potential function is reduced by two.  This deficiency can be overcome by 

extending the polynomial order, but this comes at the risk of stability problems of the 

type described by Drucker  [50].  Drucker stability requires that the tangential material 

stiffness be positive definite at all times  [12].  

A key advantage of hypoelastic form is the ease at which strain dependent behavior 

can be introduced.  It can describe both path-dependent and path independent materials, 

whereas a hyperelastic model can only describe the latter.  This makes hypoelastic 

formulations the clear choice for describing materials like soil where effects like packing 

can alter the equilibrium-state of the material and hence the governing potential.  

Likewise, they are also widely used to describe large strain plasticity in metals, especially 

for simulating metal forming operations. The major drawback to hypoelastic formulations 

is that they are typically limited to small strains.  

There are few experimental devices that test materials at a combination of high 

strains and high rates of strain.  The SHPB is one of the oldest and best known of these 

devices.  It is widely used by researchers due to its simplicity, ease of use and 

adaptability.  The Conical Shock Tube facility at the Naval Surface Underwater Warfare 

Center is a unique facility that is used to subject samples to a waterborne shock wave.  
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CHAPTER 2 

2. Constitutive Theory 

In this section we will develop a hyperviscoelastic constitutive model for highly 

deformable elastomeric foams suitable to describe behavior under compressive shock 

conditions. The model is constructed from parameterized functions describing the static 

tangent moduli of foams under hydrostatic conditions.  The tangent moduli expressions 

are related to a hyperelastic energy function whose form is judiciously selected such that 

it is uniquely defined by these moduli.  A modified version of a three-phase composite 

theory is used to describe the tangent moduli.  Use of the three-phase formulae for the 

effective bulk and shear moduli permit the multiplicative separation of the host shear 

modulus from a nonlinear strain function in the stress equation.  Also, it permits an 

additive separation of the gaseous and viscoelastic phases.  A phenomenological 

correction to the composite theory is included to account for stress-induced collapse of 

the foam’s microstructure. A plasticity model is introduced to the first element in the 

Prony series based motivated by the approaches used by Bardenhagen  [35] and Nedjar 

 [23].  

2.1. Three-phase Composite Theory 

An effective properties model by Kerner will be used to help formulate the 

constitutive behavior.  The Kerner model is based on a three-phase analysis consisting of 

a unit cell surrounded by the effective medium as shown in Figure  2-1.  
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Since the three-phase problem is posed in terms of a spherical inclusion, it is 

incapable of describing geometric softening effects that occur due to cell wall bending 

and distributed elastic instabilities.  To correct this deficiency, a phenomenological cell-

wall bending factor will be introduced to modify the effective moduli equations.  

 

Effective medium

Host material

Spherical Inclusion,
Volume fraction, φ

 

Figure  2-1  Three-Phase model  

 

Kerner developed relationships of the effective moduli for composites consisting of a 

matrix material containing spherical inclusions of one or more different materials.  The 

analysis is sufficiently general such that it can be used to estimate the effective moduli of 

closed-cell foams given the assumption that the voids are reasonably spherical.  The 

Kerner relationships provide expressions for the effective moduli of the composite in 

terms of the matrix moduli, and the moduli and volume fractions of the inclusions.  

Kerner’s equations for the effective bulk and shear moduli of a composite containing 

just one filler are given by:  
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where φ is the void fraction, K and μ are the bulk and shear moduli of the host polymer 

and Kinc and μinc are the bulk and shear moduli of the inclusion. Subscript “H” to specifies 

the host polymer.  For a foam, we use the above equations with inclusion properties of an 

ideal gas.  Hence, the shear moduli of the inclusion are set to zero.  This leads to a 

simplified form of the Kerner equations as follows:  
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Polymer incompressibility is also assumed, ( ∞→K , 2/1→ν ), so equations ( 2-3) 

and ( 2-4) can be further simplified:  

 ( )
φφ

φμ air
H

KK +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

3
14   ( 2-5) 
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⎝

⎛

+

−
=

φ

φμμ

3
21

1
H   ( 2-6) 

 

Christensen also analyzed the three-phase model but arrived at a different equation 

for the shear modulus.  He attributes his discrepancy with Kerner’s shear modulus 

equation to the latter’s assumption of a uniform shear state, although he could not 

demonstrate this conclusively due to the brevity of Kerner’s paper.  Since Christensen 

makes no such assumption, his equation presumably represents the exact solution for the 

three-phase problem as posed in Figure  2-11.  In consideration of Christensen’s assertion, 

Kerner’s shear modulus equation should be considered only as an approximate solution to 

the three-phase problem.  Christensen’s “exact” three-phase solution for the effective 

shear modulus, reduced for the case of an incompressible matrix containing spherical 

gaseous inclusions, reduces to the following expression, 



 

 

 

 

37

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++−+

+−−+−++−+−+−
=

9640067245076
44184470094085502763615925067245019

3537310

2383103133203537310

φφφφ
φφφφφφφφφφ

μμ H

 ( 2-7) 

 

Clearly, Christensen’s shear modulus equation ( 2-7) is more cumbersome than the 

Kerner’s shear equation ( 2-6) and for this reason we would prefer to proceed using 

Kerner’s equation.  Convenience alone is not a compelling motivation to choose Kerner’s 

equation over Christensen’s, hence the impact this choice is evaluated in the numerical 

simulations of the SHPB experiment in chapter 6 for a specific case.  This exercise also 

provides the opportunity to gauge the significance of deviatoric response in the SHPB 

experiment, testing the assumption that deviatoric experiments are unnecessary to 

characterize foams for compressive shock loads.  

The reduced three-phase equations contain just one geometric parameter - the void 

fraction.  Hence, these formulas can also be used to describe the dependence of the 

effective moduli under pure volumetric strain since, given the assumption that the 

microstructure remains reasonably spherical, the effect of volumetric strain on the 

microstructure is to change the effective void fraction and the internal gas pressure.  

                                                                                                                                                 

 

1 The three-phase shear modulus expression in Christensen’s book  [4] contains two small errors.  A 
corrected derivation can be found in  [59].  
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The gas bulk modulus term that appears in equation ( 2-5) is readily developed.  

Given a volume of gas, Vgas, trapped within a unit volume of the foam material the bulk 

modulus of the gas is related to the pressure and volume as follows:  

 
gas

gasgas V
PVK

∂
∂

−=   ( 2-8) 

From Boyle’s law the pressure can be written as,  

 
gas

gas

V
V

PP ,0
0= .  ( 2-9) 

Substituting ( 2-9) into ( 2-8) we have: 

 ( )gasgas

gas

gas

gas
gas VV

V
P

V
V

PK
Δ+

==
,0

,0
0

,0
0 . ( 2-10) 

The initial gas volume is given by, 

 ( )0,0 1 SV gas −= .  ( 2-11) 

Incompressibility of the host polymer requires that the change in gas volume is the 

same as the change in the total volume such that:  

 )1( −=Δ=Δ JVVgas   ( 2-12) 

Substituting ( 2-11) and ( 2-12) into ( 2-10) gives the bulk modulus of the entrapped gas in 

terms of the initial solidity, initial gas pressure and volumetric stretch we find:  
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−
=   ( 2-13) 

Again using the assumption of polymer incompressibility, the void fraction term that 

appears in the effective moduli expressions of is related to the volume stretch as follows: 

 

( )
J

SJ 0−
=φ

  ( 2-14) 

Substituting ( 2-14) and ( 2-13) into equations ( 2-5) and ( 2-6) gives the effective moduli in 

terms of the volumetric stretch, 
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It is evident from ( 2-15) and ( 2-16) that the Kerner formulas are consistent with 

expected limit at full densification,  

 HSJ
μμ =

→ 0
   ( 2-17) 

 ∞=
→ 0SJ

K .    ( 2-18) 

Figure  2-2 examines the agreement of the approximate formula for bulk modulus 

with the exact formula.  The plot compares the effective bulk modulus from each formula 

as a function of void fraction and for different values of host shear modulus.  The figure 

shows that the approximation breaks down at low void fractions and for high shear 
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modulus values, but provides a good estimate over a fairly wide range of conditions.  For 

the low modulus rubbers under investigation, the approximation is quite good even near 

the limit of densification.  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
106

107

108

109

1010

1011

1012

1013

G=1e+007

G=1e+008

G=1e+009

G=1e+010

E
ffe

ct
iv

e 
B

ul
k 

M
od

ul
us

 (P
a)

Void Fraction

Exact Kerner Equation
Approximate Kerner Equation

 

Figure  2-2  Exact and approximate Kerner equations for the effective bulk modulus 

of a voided rubber 
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2.2. Cell-Wall Bending Softening Factor 

Low-density foams often exhibit a large cell-wall bending effect under compressive 

load.  In this bending region the effective tangent moduli drop significantly.  This 

behavior is often seen in load deflection tests on foams where a stress-plateau region over 

some span of compressive strain.  The three-phase model as posed in Figure  2-1 provides 

no description of this important transition, but the effect can be simulated by a modulus 

reduction in the bending region.  Numerous phenomenological models have been 

proposed to describe foam behavior over the entire range of compression and tension 

 [45].  We propose a phenomenological correction based on the following assumptions: 

1) The transition from compressive strain to bending strain within the cell walls 

is distributed over a span of compressive strain.  

2) The bending transition affects both the deviatoric and volumetric portion of 

the constitutive relation equally. 

3) The hydrostatic bulk modulus can approach zero values, but cannot become 

negative 

The second assumption is highly important.  It means that a softening effect is to be 

applied equally to both the hydrostatic shear modulus and the bulk modulus.  We base 

this assumption on Ashby’s equations for low-density foams.  Bending within the 

microstructure largely controls their effective moduli and Ashby’s equations provide the 
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same behavior of the bulk and Young’s moduli.  Accordingly, the Poisson’s ratio, which 

is related to the ratio of moduli, is unaffected. 

A softening factor is developed by considering the material as being comprised of a 

mix of pre-bending and post-bending regions.  Three parameters are introduced to 

incorporate the softening behavior.  The first two parameters, C1 and C2, are used in a 

hyperbolic tangent function that is intended to describe the cumulative distribution, based 

on volume, of the material that has passed into the bending mode.  The fraction of cells 

that have transitioned to a bending mode being given by:  

 

( )( )
2

1*tanh 12 +−
=

JCC
fb

  ( 2-19) 

The third parameter, D2, is a coefficient to modify the strength of the strain-induced 

softening effect.  The homogenized softening factor is then given by:  

 bfDSF 21−= .  ( 2-20) 

This softening factor is applied to the viscoelastic term of the hydrostatic bulk modulus as 

follows: 
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The final forms for the tangent moduli as function of model parameters and the 

volumetric stretch are then given by: 
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With the introduction of the bending correction, the resulting moduli equations must 

be classified as phenomenological in a strict sense.  But the parameters do bear tangible 

significance and can provide some insight to the material physics.  The significance of 

the material parameters is summarized in Table  2-1. 

In the next two sections, the Kerner moduli will be incorporated into finite strain 

constitutive formulations.  
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Table  2-1.  Summary of Three-Phase Parameters 

Parameter Constraints Physical Significance 

D1 Real, positive Quasi-static shear modulus of the host polymer 

D2 Real, positive 

0<D2<1 

Softening coefficient.   

Complete softening in bending region as D2 →  

1. 

No softening in bending region as D2  → 0 

C1 Real, positive 

S0<C1<1 

Center point of the bending transition given in 

terms of volumetric stretch. 

C2 Real, positive Sharpness of the bending transition.  

Broadening distribution as C2 → 0 

Narrowing distribution as C2 → ∞ 

P0 Real, positive Initial gas pressure within the closed cells 

S0 Real, positive 

0<S0<1 

Initial foam solidity 
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2.3. Consistent Hyperelastic Form 

In this section the general form of the hyperelastic free energy is developed.  The 

selection of this form is guided by the desire of having the associated tangent moduli 

coincide with the composite theory in the case of infinitesimal deviatoric strain.  

We begin with a judicious selection of a consistent form of the free energy function.  

By consistent, we mean that equality with the Kerner moduli is enforceable for all values 

of pure hydrostatic strain.  We begin with an additive decomposition of the hyperelastic 

free energy into two energy functions:  

 ( ) ( )CIJWJWW ,)2()1( += .  ( 2-24) 

This choice of form provides one function that depends only on volumetric stretch, J, 

and a “mixed” function that depends both on volumetric stretch and a deviatoric strain 

invariant, CI . The second term is further split multiplicatively to separate volumetric and 

deviatoric strain dependence: 

 ( ) ( )CIJW ΓΦ=)2( .  ( 2-25) 

This second term contains the deviatoric dependence of the energy density function.  

Since a major thesis is that deviatoric experiments can be forgone, no experimental data 

will be used to help establish the second term.  Rather, we will rely entirely on three-

phase composite theory to establish ( )JΦ .  Moreover, there will no basis whatsoever to 
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establish ( )CIΓ  making the only reasonable choice for deviatoric strain dependence first 

order.  This leads to the general hyperelastic form,  

 ( ) ( )( )3−Φ+Ψ=
C

IJJW &   ( 2-26) 

In section  2.4 the stress and tangent moduli are derived from the general form.  In 

Section  2.5 we will show that the functions ( )JΨ  and ( )JΦ  can be identified in terms of 

the hydrostatic bulk and shear moduli, respectively.  

2.4. Stress and Tangent Moduli 

With the proposed hyperelastic form defined, the stress and tangent moduli can be 

derived.  First, the second Piola-Kirchhoff stress is developed.  The stress tensor is given 

by: 

 
C
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W2 .  ( 2-27) 

By the chain rule we have, 
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The following three matrix identities are useful for the following development: 
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Table  2-2  Matrix Identities of Symmetric Matrix C 

X  
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Making use of the above identities, the stress tensor derived from the hyperelastic 

free energy is then given by:  
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The Lagrangian tangent moduli can be formed using: 
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The tangent moduli relating Kirchhoff stress and the rate of deformation can also be 

determined from the Lagrangian tangent moduli via a “push forward” transformation 

involving the deformation gradient:  

ES
IJKLlLkKjJiI

D
ijkl KFFFFK :: =τ .  
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2.4.1. A Note on Stability 

With the introduction of a bending transition we have introduced the possibility of 

Drucker instability under certain deformations.  Consider the form of the hyperelastic 

free energy shown in equation ( 2-26).  The volumetric term, ( )JΨ , is unconditionally 

stable, provided that the hydrostatic bulk modulus is always positive, since it is related to 

hydrostatic bulk modulus via double integration of equation ( 2-37).  This is not the case 

for the deviatoric term, ( )JΦ , which is directly related to the hydrostatic shear modulus 

via equation ( 2-46).  Hence, if there is a reduction in the hydrostatic shear modulus with 

an increase in volumetric deformation due to bending effects, the possibility exists that 

the net change in free energy will be negative.  This is also evident in the elastic response 

given by equation ( 2-29).  The first derivative of the hydrostatic shear modulus function 

with respect to J appears in the equation with the deviatoric strain.  In the bending 

transition, this derivative can be positive and large causing negative stresses to develop in 

the presence of shear deformation.  

If needed, Drucker instability can be controlled with the constitutive model by 

artificially reducing the sharpness parameter, C2.  Drucker instability was encountered in 

several cases for the modeling done for this dissertation. 

2.5. Relationship between the Hyperelastic Form and Hydrostatic Moduli 

We seek to make the tangent moduli as derived from the hyperelastic formulation 

consistent with the modified three-phase theory for the case of pure triaxial strain.  The 
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hyperelastic tangent moduli can be derived from the Cauchy stress following the 

approach used by Scott  [53].  The Cauchy stress is first derived from the Second Piola-

Kirchhoff stress:  

 TJ FSFσ ⋅⋅= −1   ( 2-32) 

For our specific hyperelastic form we have for the second Piola-Kirchhoff stress,  

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ+−⎟

⎠
⎞

⎜
⎝
⎛ Φ−−Φ+Ψ= −−− IICCS 3/211

,, 22
3
23 JIIJJ CCJJ o  ( 2-33) 

The Cauchy stress tensor is then given by, 

( ) BIσ 3/53532
,, 2

3
23 −−− Φ+⎟

⎠
⎞

⎜
⎝
⎛ Φ−−Φ+Ψ= JIJIJ CCJJ  ( 2-34) 

Under pure hydrostatic strain, IB 32J= , and the Cauchy stress tensor simplifies to;  

 Iσ J,Ψ=   ( 2-35) 

The tangent bulk modulus is then derived from the Cauchy stress tensor: 
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3/1

321
3 J

pp
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JJK
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⎞
⎜⎜
⎝

⎛
∂

∂
=

λλλ

σ)
  ( 2-36) 

This leads to the following relationship between the hydrostatic bulk modulus and the 

potential function, Ψ, 

 ( ) JJJJK ,Ψ=
)

  ( 2-37) 
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We use a similar approach to develop the deviatoric potential function Φ .  In this case, 

the task is to relate the tangent shear modulus form from composite theory the 

hyperelastic function. To sample the shear modulus, a perturbation shear deformation is 

introduced.  We make the perturbation to the material already in a state of finite 

volumetric strain where the deformation is given by, 

 
⎥
⎥
⎥
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⎤

⎢
⎢
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⎣

⎡
=

100
010
001

3
1

JF .  ( 2-38) 

Next, an incremental deformation gradient due to a small shearing angle, 
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F .  ( 2-39) 

The perturbed right-Cauchy Green tensor is then given by: 
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The perturbed left-Cauchy strain tensor is identical. 

Recalling that CC 3
2

−
= J , the perturbed invariant is given by: 

 23 γ=−CI ,  ( 2-41) 

and the Cauchy stress tensor can be written as follows: 
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The tangent shear can now be identified: 

 ( ) 112 2 −Φ=
∂

∂
= JJ

γ
σμ) .  ( 2-45) 

Finally, rearranging equation ( 2-45) provides our expression for Φ : 

 ( ) ( )
2

JJJ μ)
=Φ .  ( 2-46) 

Equation is analogous to the relationship found in neo-Hookean form, 
2

0
10

μ
=C , where 

the initial modulus is replaced with one that varies with the volumetric stretch.  

Equations ( 2-37) and ( 2-46) provide the defining relationships between hydrostatic 

moduli and the hyperelastic free energy, completing the general form. A key feature of 

Kerner’s equation for effective bulk modulus is that it also allows us to express separate a 

material phase and a gas phase contributions; 
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 ( ) ( ) ( )JKJKJK mg ))
+= ˆ   ( 2-47) 

Hence, it follows from equation ( 2-37) that an additive split of the energy potential can 

be made: 

 ( ) ( ) ( )JJJ mg Ψ+Ψ=Ψ   ( 2-48) 

 

2.5.1. Nonlinear Strain Functions 

With equations ( 2-37) and ( 2-46) the second Piola-Kirchhoff stress tensor can be 

written in terms of the hydrostatic tangent moduli derived from three-phase composite 

theory.  
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where, 
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 Φ
∂
∂

=Φ
JJ, .  ( 2-53) 

 

It should be noted here that a closed form of the integral equation given in ( 2-51) is 

desirable, but unnecessary since it will be evaluated numerically in the final 

implementation.  

The relationships developed between the hydrostatic moduli and the hyperelastic free 

energy given in equations ( 2-50), ( 2-51), ( 2-51) and ( 2-53) allow us to write the stress 

function in a form where the neat shear modulus and initial gas pressure terms are 

factored from remaining nonlinear strain functions such that:  

 mg DP QQS 10 += ,  ( 2-54) 

The tensors gQ and mQ  are referred to as the nonlinear strain functions. They are 

formed by normalizing the terms of the stress function by the initial gas pressure and the 

matrix shear modulus, respectively.  These functions are given by the following 

expressions: 
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For an incremental change we have, 

 mg DP QQS Δ+Δ=Δ 10 .  ( 2-57) 

In this form the stress is given by the nonlinear strain functions acting on the initial bulk 

modulus of the air, and the linear shear modulus of the host polymer.  The analogy to 

linear viscoelasticity should be clear.  Replacement of the shear modulus term with the 

viscoelastic modulus forms the hyperviscoelastic response. 

2.6. Incorporation of Viscoelastic Relaxation and Plasticity 

Up to this point we have developed a hyperelastic energy potential and the associated 

stress and tangent moduli. Viscoelasticity is introduced to the constitutive model using a 

Prony model for the second Piola-Kirchhoff stress that is analogous to the linear, 1-

dimensional modulus model described in chapter 1.  Plasticity will also be incorporated 

into the Prony model by modifying the elastic spring using an approach motivated by the 

works of Nedjar  [23] and Bardenhagen  [35].  
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Figure  2-3 illustrates the Prony system for the viscoelastic portion of the problem.  

The subscript now refers to the components of the stress and nonlinear strain function in 

Voigt notation.  Note that internal displacement variables are needed for each component 

of stress.  Plasticity is introduced in the Prony series for each strain component.  A plastic 

spring with a slider is introduced in series with the elastic spring as shown.  

The plastic yield parameter controlling the slider is given in terms of strain.  A 

plastic condition is developed when the elastic strain exceeds the yield strain limit, 

QLIM, and when the total amount of plastic set is beneath the permanent set limit, QSET.  

 Plastic Condition:  ( ) QSETQandQLIMQQ setm
J

setm
J

m
J <>− ,,  

During a plastic increment, the static spring element is softened such that its effective 

value is 

 
p

p

μμ
μμ

μ
+

=′
0

0
0 .  ( 2-58) 

The plastic modulus is related to the static modulus with a coefficient, p, such that, 

 
pp

0μ
μ = .  ( 2-59) 

Substituting ( 2-59) into ( 2-58) we have: 
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1
00 +

=′
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μμ   ( 2-60) 
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Finally, the amount of set accumulated in the plastic increment can be determined 

by solving for the internal displacement between he elastic and plastic springs (not shown 

in the figure).  It is given by: 

 
1

,

+
Δ=Δ

J

Jm
J

setm
J p

pQQ .  ( 2-61) 

Implementation of these plastic rules requires additional state variables for each element 

and for each strain component.  These include the maximum and minimum strain values 

seen over the strain history, and the accumulated set. 
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Figure  2-3  Nonlinear strain function, Q, acting on the linear Prony representation 

of the neat shear modulus 

 

2.7. Time Incremental formulation 

A central difference operator is used for time integration.  In this scheme, the value 

and time derivative for a function, X, is given at the midpoint of the interval by:  
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22/
XXX ttt

Δ
+=Δ+ ,  ( 2-62) 

 
t
XX tt Δ

Δ
=Δ+ 2/

& .  ( 2-63) 

Referring to Figure  2-3, the stress can be written as the sum of the internal stresses 

within the Prony elements.  Ignoring the plastic effect for the time being we have,  

 ∑
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k
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J sQS

1

)(
0μ .  ( 2-64) 

where, 

 ≡)(k
Js internal stress of the kth Maxwell element 

Continuity of stress across one Maxwell element allows us to write two equalities for 

the internal stress:  
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and 
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Taking the time derivative of equation ( 2-65) and rearranging we have, 
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Substitution of equation ( 2-67) into ( 2-66) eliminates the internal displacement variable 

and yields the following expression for the internal stress variable: 

 m
J

k
v

k
J

k
J

k
J Qss && )()()()( μτ =+ ,  ( 2-68) 

where, 
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Applying the time increment scheme to equations ( 2-68) and ( 2-64) and reintroducing the 

plastic effect and the elastic response of the gas, we obtain the following expression for 

the stress change over the time increment: 
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Written to fully identify the relation to the strain invariants and material parameters we 

have, 
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where, 
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Equation ( 2-70) provides the basis for numerical implementation.  It alone is 

sufficient to implement an explicit analysis.  However, an implicit analysis also requires 

that the stress Jacobian and the time derivative be available.  These are developed in the 

next section.  

2.8.  The Incremental Stress Jacobian and Partial Time Derivative  

In the implicit MATLAB model that is discussed in chapter 5, two additional tensors 

are needed to implement the analysis.  The incremental energy change of the system is 

written as a first order Taylor series expansion involving the stress increment and the 

time increment [see section  5.1.1].  Hence, the stress Jacobian relating the incremental 

second Piola-Kirchhoff stress to the finite strain is and the partial time derivative of the 

stress are needed.  The incremental stress Jacobian is given by: 
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Note that we are using Voigt notation. Considering equations ( 2-70) and ( 2-57) we 

develop the following equation for the incremental Jacobian: 
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The material tangent tensors appearing in ( 2-75) are developed from equation ( 2-31) 

using the respective substitutions.  For the gas phase all deviatoric terms are zero. 

The partial time derivative of the stress is given by: 

t
SJ

J Δ∂
Δ∂

=Θ  

Referring to equation ( 2-70) we find, 
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2.9. Summary  

A hyperviscoelastic constitutive theory for closed-cell foams has been fully 

developed.  A particular form of the hyperelastic free energy was chosen to allow the 

constitutive behavior to exactly match a three-phase composite theory under hydrostatic 

loading.  The elastic response derived from this potential [see equation ( 2-29)] depends 

on both the first and third invariants.  Hence, this form cannot be classified as a Blatz-Ko 

model, which depends only on the third invariant.  

A phenomenological correction for softening due to cell-wall bending was 

introduced and applied to the hydrostatic moduli that are related to the free energy 

function.  Three parameters control the softening effect: the center of the bending 

transition, the modulus reduction when fully transitioned, and last, the sharpness of the 
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transition.  The last of these parameters can lead to model Drucker instability stemming 

from the deviatoric terms in the stress and tangent moduli equations. If needed, Drucker 

instability could be controlled with a stability parameter that would reduce the sharpness 

of the bending transition for the hydrostatic shear modulus term. 

Time-incremental equations for the stress and stress Jacobian were developed for 

implementation in finite analysis.  Viscoelastic and plastic effects were introduced by 

factoring out a parameter that represents the matrix shear modulus from nonlinear strain 

functions.  This shear modulus parameter was replaced with a Prony viscoelastic model 

that includes a plastic spring.  
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CHAPTER 3 

3. Characterization of Commercial Closed Cell Foams  

This section describes the foam specimens selected for experimental investigation, 

the experiments used for their characterization and the techniques used to extract the 

material parameters for the constitutive model.  

3.1. Foam Samples 

Two commercial closed-cell foams were chosen for experimental investigation.  The 

desired characteristics were a relatively high density and stiffness, very low water 

absorption and significant viscoelastic behavior. Furthermore, it was desired that the two 

foams exhibit significantly different viscoelastic behavior.  RUBATEX R451 and 

RUBATEX R8702 were ultimately selected.  Basic physical properties measured for the 

foams are provided in Table  3-1.  Table  3-2 and Table  3-3 provide the manufacturers 

specifications for these products.  Densities of the two products are about the same, but 

the composition is different.  R451 is a formed from a neoprene rubber whereas R8702 is 

formed from and styrene/butadiene rubber (SBR).  The manufacturer’s durometer data 

indicate that R451 is the more compliant of the two foams. 

A photograph of some of the foam specimens tested is shown in figure.  Specimens 

for DMTA testing are shown in the foreground.  Shorter beam lengths were chosen for 
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the R451 specimens due to the low durometer values for the foam.  This ensures that the 

beam is sufficiently stiff to stay above the noise floor of the DMTA system. 

 

Table  3-1  Measured Physical Properties of RUBATEX Foam Samples 

Property RUBATEX R451 RUBATEX R8702 

Density 0.48-0.52 0.49-0.56 

Shore A 21-30 44-50 

Water Absorption 

(24 hrs at 700 psi) 

0.8% 0.7% 

Set 

(24 hrs at 700 psi) 

12% 25% 
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Table  3-2  Manufacturer’s Physical Properties for R451 
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Table  3-3  Manufacturer’s Physical Properties for R8702 
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Figure  3-1  Foam Specimens.  Rubatex R451 (right).  Rubatex R8702 (left).  DMTA 

Specimens shown in the foreground . SHPB specimens  of ½” and 1” heights shown 

in back. 

3.2. Characterization Experiments 

The material parameters required by the constitutive model are the Prony coefficients 

and plastic terms, and the modified three-phase parameters.  This information is collected 

in two experiments.  A Dynamic Mechanical Thermal Analyzer (DMTA) is used to 
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generate a mastercurve of the dynamic shear modulus for the foams.  Fitting the 

mastercurve with a Prony viscoelastic model provides the moduli and relaxation times of 

the viscoelastic Maxwell elements.  A hydrostatic dilatometer test is used to develop the 

three-phase parameters.  This provides the volume strain of the specimen under a known 

hydrostatic pressure-history.  Parameters are extracted through optimization of the 

experimental results using the constitutive model.  Relaxation behavior must be 

established a priori to account for long-term relaxation behavior seen in the quasi-static 

experiment.  

3.2.1. Dynamic Mechanical Thermal Analysis 

A Dynamic Mechanical Thermal Analyzer V (DMTA V) shown in Figure  3-2 was 

used to measure the complex shear modulus of the foams at isothermal temperatures 

ranging from –50ºC to 50ºC.  At each isotherm the bending/shear stiffness and phase of a 

short sample beam is measured at dynamic frequencies ranging from 0.3 to 10 Hz.  A 

typical test specimen in the testing fixture is shown in Figure  3-3.  Specimens are bonded 

to metal end blocks for the test to ensure that the boundary conditions for the specimen 

are fixed.  Geometry factors relating the modulus to the stiffness are developed with a 

high order beam formulation that is accurate for all DMTA sample lengths.  A 

mastercurve of the dynamic shear modulus is developed from the isothermal frequency 

scans using the time-temperature superposition principle discussed in chapter 1.  
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Figure  3-2  DMTA V with FTS Temperature Controller 



 

 

 

 

70

 

 Figure  3-3  Single Cantilever Specimen Loaded in the DMTA V 

3.2.1.1.Determining Prony Coefficients 

The Prony coefficients are provided to the model as pairs of the normalized 

relaxation moduli and the corresponding relaxation time,  

 )0(
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i μ
μτ =  => relaxation time of the ith Prony element ( 3-2) 

Pre-selecting the relaxation times over the time-scale of interest facilitates the least 

squares optimization of the Prony coefficients.  The long-term elastic modulus, μ0 is not 

required by the constitutive model since the initial foam moduli are established by the 

modified Kerner parameters.  

Prony coefficients are established by utilizing a nonlinear least-square optimization 

routine to fit dynamic shear modulus mastercurves to the Prony expressions given in 

equations 2-6 and 2-7. MATLAB routine, “lsqnonlin” is used to perform the nonlinear 

optimization. Rather than optimizing the spring and the dashpot values simultaneously, a 

fixed set of element relaxation times is selected in advance.  This approach greatly 

improves the stability of the optimization.  Of course, the range of relaxation times must 

cover the time scales of interest.  

Since the Prony series is a mechanical description of viscoelasticity, it necessarily 

satisfies the Kramers-Kronig’s causality relations  [56], [57].  Furthermore, since the 

Prony series can be expanded without limit, it must also provide a convergent description 

of any linear viscoelastic system.  Therefore curve fitting of complex modulus data with 

the Prony series model is a way to test the validity of frequency domain viscoelastic data.  

As it is shown in the next section, neither of the mastercurves developed for the 

RUBATEX specimens fully obeys Kramers-Kronig’s relations.  The violation is 

particularly significant with the RUBATEX R451 mastercurve.  
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3.2.1.2.Prony Series Optimization for RUBATEX R8702 

The DMTA mastercurve for RUBATEX R8702 and its Prony optimization is shown 

in Figure  3-4.  The upper curve shows the real part of the dynamic shear modulus and the 

lower curve shows the dynamic loss factor.  The optimization was made in MATLAB 

using the ‘lsqnonlin’ function.  Optimized R8702 Prony coefficients are provided in 

Table  3-4.  The objective function used for optimization was an equal weighting of the 

difference in predicted and measured log10(Re(G)) and log10(η).  This foam turns out to 

be quite unusual since it exhibits two strong phase transitions, which are evident by the 

double peak in loss factor.  The value the Prony model is evident here since it has no 

difficulty in describing multiple transitions.  The low-frequency transition poses an 

additional challenge from a modeling perspective since the material has strong relaxation 

behavior on very long time scales.  This is evident in relaxation modulus in the time 

domain shown in Figure  3-5, which shows that the modulus drops by about a factor of 5 

over the time period of 1 second to 1 day.  The popular approach of characterizing ‘static’ 

properties via quasi-static experiments will not accurately characterize this type of foam, 

unless one is willing to conduct his experiments over a time scale of weeks.  

These problems are circumvented in the present approach since the assumption of a 

‘static’ material response is not made.  Relaxation is fully accounted for when extracting 

static material parameters.  This is discussed in more detail in the next section.  
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Figure  3-4  Mastercurve for the dynamic shear modulus and loss factor for  

RUBATEX R8702 at 20 C 
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Figure  3-5  Relaxation shear modulus of RUBATEX R8702 at 20 C  
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tau (s) g (Pa) g/g0
7.13E-14 7.30E+07 5.07E+01
3.63E-13 5.26E+07 3.65E+01
1.85E-12 5.77E+07 4.01E+01
9.42E-12 4.17E+07 2.90E+01
4.80E-11 2.75E+07 1.91E+01
2.44E-10 1.54E+07 1.07E+01
1.24E-09 9.48E+06 6.59E+00
6.34E-09 6.72E+06 4.67E+00
3.23E-08 5.01E+06 3.48E+00
1.64E-07 4.12E+06 2.86E+00
8.37E-07 3.61E+06 2.51E+00
4.26E-06 3.31E+06 2.30E+00
2.17E-05 3.14E+06 2.18E+00
1.11E-04 2.92E+06 2.03E+00
5.63E-04 2.67E+06 1.86E+00
2.87E-03 2.47E+06 1.71E+00
1.46E-02 2.24E+06 1.55E+00
7.43E-02 2.07E+06 1.44E+00
3.79E-01 1.90E+06 1.32E+00
1.93E+00 1.78E+06 1.24E+00
9.82E+00 1.60E+06 1.11E+00
5.00E+01 1.50E+06 1.04E+00
2.55E+02 1.37E+06 9.53E-01
1.30E+03 1.28E+06 8.87E-01
6.60E+03 1.03E+06 7.14E-01
3.36E+04 6.79E+05 4.72E-01
1.71E+05 3.72E+05 2.58E-01
8.72E+05 2.22E+05 1.54E-01
4.44E+06 1.51E+05 1.05E-01
2.26E+07 1.75E+05 1.21E-01
inf 1.44E+06 1  

 Table  3-4  Optimized Prony Coefficients for RUBATEX R8702 
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3.2.1.3.Prony Series Optimization for RUBATEX R451 

The DMTA mastercurve for RUBATEX R451 and its Prony optimization is shown 

in Figure  3-6.  The upper plot is the real part of the dynamic shear modulus and the lower 

curve gives the dynamic loss factor. The objective function used for optimization was an 

equal, 50/50, weighting of the difference in predicted and measured log10(Re(G)) and 

log10(η). Optimized R451 Prony coefficients are provided in Table  3-5 for this weighting.  

R451 exhibits a more typical dynamic modulus for a soft rubber with a glass transition 

frequency just above 1 MHz at the reference temperature of 20C.  Like many rubbers, 

R451 shows a significant creep character, which is characterized by the non-zero low-

frequency loss factor.  

As we mentioned earlier, the DMTA mastercurve for R451 violates Kramers-

Kronig’s causality relations.  Guillot and Trivett have described a similar difficulty 

developing mastercurves for R451 from dynamic Young’s modulus data  [51].  They 

observed inconsistent time-temperature (horizontal) shift factors for the real and 

imaginary components of the modulus.  Although there is no direct connection between 

this problem and causality, a possible link exists. In their paper they assert that the 

imaginary modulus is the more reliable modulus component for establishing the 

horizontal shift factors.  They also make use of ‘vertical’ shift factors, which are applied 

to the real part of the modulus to correct the remaining discrepancies that exist after 

shifting the data set horizontally.  The link is that vertical shifting factors applied to the 

real modulus would also be remedial to the causality problem.  This can be seen in Figure 
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 3-6 where one may recognize that the ability of the Prony series to describe both the real 

and imaginary components of the complex modulus would be improved by vertically 

shifting the rubbery modulus downward and the glassy region upward.  The Prony fit 

shown in Figure  3-6 is a compromise.  The choice of an equally weighted objective 

function has provided a fairly good overall fit to the real part, but has resulted in a loss 

factor fit that is significantly biased on the low side of the measurements.  

That vertical shifting would improve the causality of the mastercurve is even more 

evident in Figure  3-8 where we have now changed the weighting of the objective function 

from 50/50 to 90/10 in favor of the loss factor.  Optimized R451 Prony coefficients for 

this weighting are provided in Table  3-6.  The real part of the Prony fit is now 

representative of the causal counterpart to the loss factor.  One might attribute this 

difference between the shifted data and the Prony fit as a missing vertical shift of the real 

modulus data.  
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Figure  3-6  Mastercurve for the real part of the shear modulus – RUBATEX R451 
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Figure  3-7 Relaxation shear modulus of RUBATEX R451 at 20 C 
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tau (s) g (Pa) g/g0
1.46E-14 2.31E+07 5.22E+01
6.19E-14 1.14E+07 2.58E+01
2.63E-13 1.48E+07 3.33E+01
1.12E-12 2.24E+07 5.05E+01
4.74E-12 1.66E+07 3.74E+01
2.01E-11 3.22E+07 7.26E+01
8.55E-11 2.76E+07 6.22E+01
3.63E-10 3.96E+07 8.94E+01
1.54E-09 3.25E+07 7.33E+01
6.55E-09 3.34E+07 7.52E+01
2.78E-08 1.60E+07 3.60E+01
1.18E-07 1.01E+07 2.27E+01
5.02E-07 3.37E+06 7.59E+00
2.13E-06 2.66E+06 6.00E+00
9.05E-06 1.39E+06 3.12E+00
3.84E-05 1.05E+06 2.36E+00
1.63E-04 7.25E+05 1.63E+00
6.93E-04 5.98E+05 1.35E+00
2.94E-03 4.89E+05 1.10E+00
1.25E-02 4.17E+05 9.41E-01
5.31E-02 3.51E+05 7.92E-01
2.25E-01 2.84E+05 6.40E-01
9.58E-01 2.34E+05 5.27E-01
4.07E+00 1.92E+05 4.32E-01
1.73E+01 1.54E+05 3.47E-01
7.34E+01 1.30E+05 2.94E-01
3.12E+02 1.06E+05 2.40E-01
1.32E+03 9.93E+04 2.24E-01
5.62E+03 7.12E+04 1.60E-01
2.39E+04 9.49E+04 2.14E-01
inf 4.44E+05 1  

Table  3-5  Optimized Prony Coefficients for RUBATEX R451 
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Figure  3-8  Mastercurve for the real part of the shear modulus – RUBATEX R451 – 

[High Loss Factor Weighting for Prony Coefficients] 
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Figure  3-9 Relaxation shear modulus of RUBATEX R451 at 20 C R451 – [High Loss 

Factor Weighting for Prony Coefficients] 
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tau (s) g (Pa) g/g0
1.46E-14 4.89E+07 1.99E+02
6.19E-14 2.33E+07 9.52E+01
2.63E-13 3.45E+07 1.41E+02
1.12E-12 4.33E+07 1.77E+02
4.74E-12 4.30E+07 1.76E+02
2.01E-11 6.27E+07 2.56E+02
8.55E-11 7.10E+07 2.90E+02
3.63E-10 8.35E+07 3.41E+02
1.54E-09 8.02E+07 3.28E+02
6.55E-09 6.45E+07 2.63E+02
2.78E-08 3.09E+07 1.26E+02
1.18E-07 1.48E+07 6.04E+01
5.02E-07 5.94E+06 2.43E+01
2.13E-06 3.62E+06 1.48E+01
9.05E-06 1.99E+06 8.11E+00
3.84E-05 1.31E+06 5.33E+00
1.63E-04 9.32E+05 3.81E+00
6.93E-04 7.10E+05 2.90E+00
2.94E-03 5.47E+05 2.23E+00
1.25E-02 4.41E+05 1.80E+00
5.31E-02 3.44E+05 1.40E+00
2.25E-01 2.64E+05 1.08E+00
9.58E-01 1.99E+05 8.13E-01
4.07E+00 1.55E+05 6.32E-01
1.73E+01 1.13E+05 4.60E-01
7.34E+01 9.42E+04 3.85E-01
3.12E+02 6.70E+04 2.74E-01
1.32E+03 6.34E+04 2.59E-01
5.62E+03 3.64E+04 1.49E-01
2.39E+04 5.34E+04 2.18E-01
inf 2.45E+05 1  

Table  3-6  Optimized Prony Coefficients for RUBATEX R451 [High Loss Factor 

Weighting] 
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3.2.2. APP Dilatometer 1000 Compression Test 

An automated dilatometer system manufactured by Advanced Pressure Products 

(APP) was used to measure the specimens under hydrostatic pressure.  A schematic of the 

apparatus is shown in Figure  3-10.  The system is water-filled.  A specimen is placed in 

the pressure vessel and a computer controls the piston action that generates the system 

pressure.  An encoder monitors the piston displacement, which can be related to the 

volume change of the system.  Alternatively, volume change can be obtained with a level 

meter mounted in a standpipe on the non-pressurized side of the pressure generator (not 

shown in the schematic).  The level meter system is also referred to as a “leak recovery 

system” since it provides volume data that is uncorrupted by possible water leaks past the 

piston seals.  Calibrations are performed with no specimen to characterize the system 

compliance for calibration.  

3.2.2.1.Determining Three-Phase Parameters 

The modified three-phase parameters and the plastic parameters are determined by 

optimizing the predicted response of a dilatometer experiment. In the case of viscoelastic 

foams, the Prony coefficients must be established a priori of this optimization so that the 

viscoelastic creep can separated from the nonlinear, static behavior.  This is clearly the 

case for the foams under investigation as can be seen in from their relaxation moduli in 

Figure  3-5 and Figure  3-7.  Significant relaxation phenomena occur at time scales on the 

order of days and even weeks.  In fact, the equilibrium moduli (where the curve plateaus 

at long times) as determined from these figures are only apparent.  Indeed, they are 
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simply artifacts of the low-frequency data cut-off of the source dynamic mastercurves.  

Fortunately, it is unnecessary to identify the “true” equilibrium shear modulus and it is 

sufficient to work with its apparent value, provided that the relaxation curve at least spans 

the time scale of the quasi-static experiment. 
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Figure  3-10  Schematic of APP Dilatometer 1000 with Pressure Vessel 
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Figure  3-11  APP Dilatometer 1000 with Level Meter for Volume Metering - 

Exterior 
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Figure  3-12  APP Dilatometer 1000 with Level Meter for Volume Metering - 

Interior 
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A special type of pressure loading history is used to facilitate the separation of 

plastic and elastic behavior.  The sample is subjected to pressure intervals that grow in 

amplitude and which are separated by a relaxation period.  This allows for an 

examination of the plastic set accumulation - although it remains difficult to distinguish 

viscoelastic and plastic effects. 

3.2.2.2.Three-Phase and Plastic Parameters Optimization for R451 

Dilatometer data and the optimization results for R451 are shown in Figure  3-13.  

The predicted response of the material to the hydrostatic stress-history is developed at a 

material point (no inertia) with the constitutive model.  Inertial effects are negligible 

because the experiment is conducted at very low strain-rates.  Stress relaxation is 

incorporated in the constitutive model using the Prony coefficients given in Table  3-5. 

The optimization parameters are the three-phase coefficients, the plastic yield, the plastic 

set, and the plastic spring.  The Prony parameters are fixed during the optimization. 

The optimized three-phase and plastic parameters for R451 are given in Table  3-7.  

With these parameters established, the corresponding hydrostatic moduli can be 

developed for examination.  Figure  3-14 shows the hydrostatic bulk (red) and shear 

(magenta) moduli for R451.  Also, the contributions to the effective bulk modulus from 

the material (green) and gas (blue) phases are shown.  The black, vertical line indicates 

the densification limit of the foam.  Interestingly, the plot shows that the bulk modulus of 

the foam is dominated by the gas phase, even in its initial state.  Hence, the foam is 

essentially like a rubber balloon, which helps explain its resiliency under repeated 
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pressure cycles.  The optimization did not make use of the parameters describing a 

bending transition and softening effect in the material phase.  Hence, the material is 

described fully with the three-phase theory using an elevated initial gas pressure in the 

cells.  But considering the dominant effect of the gas phase, it is quite possible that 

bending effects do occur, but are simply undetectable in the data set. 
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Figure  3-13  R451 Hyperbaric chamber test data and model optimization results – 

(fixed relaxation spectrum) 
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Table  3-7.  Optimized Three-Phase and Plastic Parameters for R451 

Parameter Value 

D1 2.2x105 Pa 

D2 Not used 

C1 Not used 

C2 Not used 

P0 1.5x105 Pa (22 psi) 

S0 0.28 

p 0.30 

QLIM 0.04 

QSET 0.35 
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Figure  3-14  Optimized Static Hydrostatic Moduli for R451 versus Volumetric 

Stretch 



 

 

 

 

93

 

3.2.2.3.Three-Phase and Plastic Parameters Optimization for R8702 

Dilatometer data and the optimization results for R8702 are shown Figure  3-15.  

Stress relaxation is accounted for using the Prony coefficients given Table  3-4.  

The optimized three-phase and plastic parameters for R8702 are given in Table  3-8.  

The corresponding hydrostatic moduli are shown in Figure  3-16, which shows the 

hydrostatic bulk (red) and shear (magenta) moduli for R8702.  Also, the contributions to 

the effective bulk modulus from the material (green) and gas (blue) phases are shown.  

The relatively high stiffness of R8702 during the first pressure cycle, seen in Figure  3-15, 

gives a parameter optimization showing a strong bending transition centered at a volume 

stretch of 0.88.  Before the transition the material phase is the dominant player in the 

effective bulk modulus.  Afterwards the material behavior becomes dominated by the air 

term similar to the R451 foam. 
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Figure  3-15  R8702 Hyperbaric chamber test data and model optimization results – 

(fixed relaxation spectrum) 
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Table  3-8.  Optimized Three-Phase and Plastic Parameters for R8702 

Parameter Value 

D1 1.0x106 Pa 

D2 0.86 

C1 0.88 

C2 20 

P0 1.8 x105 Pa  (26.5 psi) 

S0 0.31 

p 60 

QLIM 0.04 

QSET 0.30 
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Figure  3-16  Optimized Static Hydrostatic Moduli for R8702 versus Volumetric 

Stretch 

 

3.3. Summary 

The three-phase and plastic parameters have been determined using a dilatometer 

apparatus that subjects a specimen to hydrostatic pressure and monitors its volume 

change.  The pressure-history involved periodic pressurization and relaxation.  Peak 
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pressure levels were increased with each cycle with a ramped peak pressure level.  

Parameters were developed by optimizing the description of the experiment using the 

constitutive model.  Prony parameters, which control relaxation behavior, were 

established a priori using DMTA measurements. 

Foam specimen R451 exhibited no detectable bending transition and the data could 

be described using three-phase theory without the bending modification.  The optimized 

initial gas pressure within the foam was nearly twice atmospheric pressure.  This provides 

the resiliency seen in the data and prevents the model from exhibiting a large amount of 

viscoelastic set over the pressure cycles.  The effective bulk modulus of the material was 

found to be dominated by the gas phase.  

Foam specimen R8702 exhibited a strong bending transition that occurs quickly with 

volumetric strain.  In its initial state the effective bulk modulus is dominated by the 

material phase.  A rapid drop in the material phase contribution occurs through the 

bending transition and the effective bulk becomes dominated by the gas phase.  Like 

R451, an elevated gas pressure is found to improve optimization with the data set.  
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CHAPTER 4 

4. Shock Experiments 

Two types of shock experiments were conducted on the foam specimens.  UMD’s 

Split Hopkinson Pressure Bar (SHPB) was used to test ¾” diameter specimens under high 

strain rate compression.  In this test the specimens are sandwiched within two slender, ¾” 

diameter pressure bars of polycarbonate.  An impact on one the “incident bar” sends a 

shock pulse to the specimen section.  Specimen behavior is measured by monitoring 

strains are monitored on the incident bar and on the “receive bar”, which accepts 

transmitted energy passing through the specimen.  Larger specimens were tested in a 

Conical Shock Tube (CST) at the Naval Underwater Warfare Center.  The CST is 

essentially a water-filled, thick walled cylinder with a conical bore.  The wide end 

accepts a test specimen up to about 9.5” diameter.  At the narrow end an explosive charge 

is detonated sending a water-borne shock wave to the specimen.  A pressure gauge near 

the specimen monitors the shock pressures in the water.  Specimens are prepared with a 

pressure sensor embedded behind the specimen to monitor transmitted pressure.  

Specimens are also fitted with a neutrally buoyant accelerometer on their outward surface 

to monitor surface motion during the shock event.  

4.1. Split Hopkinson Pressure Bar Experiments 

A conventional SHPB experimental setup was used as shown in the photograph in 

Figure  4-1 and the schematic in Figure  4-2.  A polycarbonate pressure bar was used 
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rather than steel or aluminum to provide better impedance matching with the foam 

specimens.  Two BAM-1 bridge amplifiers were used to measure strain in full bridge 

configuration. Strain gauge pairs, axially aligned, were located at the middle of the 

incident bar and on the receive bar near the specimen.  These were monitored with a 

digital oscilloscope for data capture. Specimens were sandwiched between the bars and 

held with a light pressure supported by the frictional contact within the support collars.  

Samples were otherwise unattached to the bars. Each foam sample was tested in a 1” and 

½” sample height.  Diameters of all specimens were about ¾” to match the pressure bar.  

Since the striker bar is matched to the incident bar in both material and diameter, a 

nearly perfect square compression pulse results from the impact of the striker bar.  

Immediately after impact, a compressive strain pulse begins to spread out from the 

contact interface in both directions equally.  The pulse width is exactly twice the striker 

length since it terminates when the travelling compressive strain in the striker bar reaches 

its free end.  This is why the striker bar is typically less than ½ the length of the incident 

bar: it keeps a small separation in time from the end of a passing pulse and the arrival its 

reflection.  

 



 

 

 

 

100

Output
Strain Gage

StrikerIncident Bar

Incident
Strain Gage

VEM SpecimenOutput Bar

Oscilloscope
& Recorder

Strain Gage
Amplifier

Strain Gage
Amplifier

 

Figure  4-1  Photo of UMD SHPB with Polycarbonate Pressure Bar 
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Figure  4-2  Schematic of the UMD SHPB with Polycarbonate Pressure Bar 
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4.1.1. SHPB Results for RUBATEX R451 

This section provides the SHPB results for R451.  Specimens were tested using three 

different impact velocities and two specimen thicknesses.  

Figure  4-3 shows the response of a 1” thick R451 specimen at the lowest striker 

charge of 7 psi.  The upper curve (blue) is the time-history of strain gauge located at the 

middle of the striker bar.  This gauge first detects the compression pulse caused by the 

striker.  Shortly thereafter it detects a reflected tensile wave from the specimen interface. 

The reflection of the tensile wave from the free end of the incident bar can be seen near 

the end of the time history.  The reflected pulse is nearly the mirror image of the incident 

pulse, meaning that nearly all the energy was reflected at the specimen interface.  This is 

also evident in the receive bar.  The lower curve (red) shows the transmitted strain.  In 

this case it is clear that the foam specimen is nearly 100% effective in blocking the strain 

pulse.  

Figure  4-4 and Figure  4-5 show the 1” R451 responses to the 10-psi and 13 psi 

striker levels, respectively.  As one would expect, the pulse amplitude in the incident bar 

grows in proportion with the striker velocity.  The sample continues to function as a 

shock isolator, although there is a small but noticeable increase in the amount of 

transmitted energy.  

More interesting results are obtained with the ½” thick specimens.  Figure  4-6 shows 

the response with a 7-psi striker charge.  The sample is still blocking a majority of the 

incident energy, but now a clear transmitted pulse is observed.  The pulse arrives at about 
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1.2 ms and keeps a nearly flat amplitude until about 2 ms where it drops back near zero, 

giving a pulse width that closely matches the incident wave.  After 2 ms the pulse 

exponentially returns to zero.  Results for the 10 psi striker charge on the ½” R451 

specimen are shown in Figure  4-7.  Now the material begins to transmit a more 

significant portion of the incident energy and there is a hint of densification effects near 

the end of the transmitted pulse.  The reflected tensile wave is also beginning to show 

signs of lost energy.  This is characterized by a loss of amplitude and rounding near the 

end of the pulse.  Also, the slow decay of the pulse after the nominal pulse width is more 

evident.  Figure  4-8 shows the response to the 13-psi charge.  The densification effect is 

highly pronounced.  The peak transmitted strain is slightly more than 50% of the incident 

strain level.  However, from an energy standpoint, it still represents a small fraction of the 

incident pulse.  The decay of the transmitted pulse is now such that the nominal pulse 

width is no longer discernable.  A significant portion of the energy is being trapped in the 

foam specimen and slowly transmits to the higher impedance bar. 
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Figure  4-3  SHPB Strain Gauge Data  - 1” RUBATEX R451 specimen with 7psi 

charge 
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Figure  4-4  SHPB Strain Gauge Data  - 1” RUBATEX R451 specimen with 10 psi 

charge 
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Rubatex R451 - 1.0" tall specimen - 13 psi charge
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Figure  4-5 SHPB Strain Gauge Data  - 1” RUBATEX R451 specimen with 13 psi 

charge 
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Rubatex R451 - 0.5" tall specimen - 7 psi charge

 

 
Incident Pulse

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 10-3

time (ms)

st
ra

in
 (i

n/
in

)

 

 
Transmitted Pulse

 

Figure  4-6 SHPB Strain Gauge Data  - 1/2” RUBATEX R451 specimen with 7psi 

charge 
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Rubatex R451 - 0.5" tall specimen - 10 psi charge
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Figure  4-7  SHPB Strain Gauge Data  - 1/2” RUBATEX R451 specimen with 10 psi 

charge 
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Rubatex R451 - 0.5" tall specimen - 13 psi charge
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Figure  4-8 SHPB Strain Gauge Data  - 1/2” RUBATEX R451 specimen with 13 psi 

charge 
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4.1.2. SHPB Results for RUBATEX R8702 

This section provides the SHPB results for R8702.  Specimens were tested using 

three different impact velocities and two specimen thicknesses. 

Figure  4-9 shows the response of a 1” thick R8702 specimen at the lowest striker 

charge of 7 psi.  The upper curve (blue) is the time-history of strain gauge located at the 

middle of the striker bar.  This gauge first detects the compression pulse caused by the 

striker.  Shortly thereafter it detects a reflected tensile wave from the specimen interface.  

The reflection of the tensile wave from the free end of the incident bar can be seen near 

the end of the time history.  The reflected pulse is nearly the mirror image of the incident 

pulse, except for a small and uniform reduction in amplitude across the entire pulse 

width.  This missing strain energy in the reflected pulse incident bar appears in the 

receive bar as a low pulse of uniform amplitude (red curve).  Hence, the material 

response is as one might expect for a linear material with a relatively low modulus.  Like 

the R451 specimens, the process of a slow release of trapped strain energy is evident after 

2 ms.  

Figure  4-10 and Figure  4-11 show the 1” R8702 response to the 10-psi and 13 psi 

striker levels, respectively.  The character of the sample response is mostly unchanged, 

except for a small increase in the amplitude over the pulse width.  It is interesting that the 

initial pulse amplitude is somewhat insensitive to the incident strain level, which is likely 

due to the specimen reaching its stress plateau.  
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Figure  4-12 shows the response of a ½” R8720 specimen with a 7 psi striker charge.  

The behavior is pretty much unchanged from what is seen in the 1” specimens. Figure 

 4-13 and Figure  4-14 show the response at the 10-psi and 13 psi striker charge levels, 

respectively.  The figures show that the initial portion of the transmitted pulse remains 

unchanged, but the densification effects at that occur later becomes pronounced.  
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Figure  4-9 SHPB Strain Gauge Data  - 1” RUBATEX R8702 specimen with 7psi 

charge 
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Figure  4-10 SHPB Strain Gauge Data  - 1” RUBATEX R8702 specimen with 10psi 

charge 
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Rubatex R8702 - 1.0" tall specimen - 13 psi charge
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Figure  4-11 SHPB Strain Gauge Data  - 1” RUBATEX R8702 specimen with 13psi 

charge 
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Rubatex R8702 - 0.5" tall specimen - 7 psi charge
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Figure  4-12 SHPB Strain Gauge Data  - 1/2” RUBATEX R8702 specimen with 7psi 

charge 
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Rubatex R8702 - 0.5" tall specimen - 10 psi charge
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Figure  4-13 SHPB Strain Gauge Data  - 1/2” RUBATEX R8702 specimen with 10 

psi charge 
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Figure  4-14 SHPB Strain Gauge Data  - 1/2” RUBATEX R8702 specimen with 13 

psi charge 
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4.2. Conical Shock Tube Experiments 

The NUWC Conical Shock Facility, shown in Figure  4-15, is designed to simulate a 

small conical sector of a full-scale, spherical underwater charge.  Test specimens can be 

mounted on a blocked witness plate or a slider mass can be used to simulate the mass 

impedance of the floating shock platform used in the Navy standard Heavyweight Shock 

Test (MIL-S-901D). A blocked witness plate was selected for specimen testing. In each 

test the data were collected from three sensors.  The slider shown in the schematic was 

not used. 

The wall thickness of the tube sections increases along the length of the tube.  This 

ensures a rigid boundary condition for the travelling shock wave and prevents dispersion 

of the shock pulse due to radial wall compliance. 
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Figure  4-15  Conical Shock Tube Schematic (top).  Photo of rigged test specimen 

(bottom) 
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Figure  4-16 shows how the specimen is configured in the test section.  The CST 

facility provides a pressure sensor to monitor the shock pressure at a location near the test 

specimen.  This sensor was rigged at a location nominally 14” in front of the specimens.  

This sensor shows the incident shock wave and its exponential decay as it passes towards 

the specimen.  Since the RUBATEX test specimens are low-impedance relative to water, 

a strong inverted shock pulse is reflected from the specimen back towards the sensor.  

Upon arrival at the sensor, there is sudden cancellation of the incident pressure.  The 

inverted pulse is not fully developed however because water cavitation occurred at very 

low negative pressure in most cases.  Instead, a period of near zero pressure is observed 

during the cancellation period.  Later in time, an extended period of positive pressure 

occurs due to the relatively slow process of compressive strain energy release from the 

specimen.  At even longer times, there is a gradual rise in pressure, which is an artifact of 

the CST measurement.  The propagation impedance of the reflected wave increases due 

to the diminishing cross section, thereby trapping the energy. 

Figure  4-18 shows the specimen the 1.875” thick R451 specimen being prepared for 

the test.  Motion of the specimen’s outer surface is measured with an Endevco Instron® 

accelerometer, Model 2255B-01, mounted on the face of the specimens.  To reduce local 

inertia effects, the accelerometers are encased in a collar of syntactic foam to zero their 

net buoyancy.  Time integration of the accelerometer response provides the surface 

velocity.  A second integration provides the surface displacement.  As the shock wave 

reaches the sample, which has a low characteristic impedance relative to water, an 
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acceleration profile is developed at the interface that is qualitatively resembles the time 

derivative of the incident pressure wave.  The accelerometer does have a low-frequency 

roll-off shown in Figure  4-17.  Hence, velocities and displacements established via 

integration of the accelerometer data will accumulate error as the integration is extended 

in time.  

The sensor behind the specimen provides a measure of shock energy that is 

transmitted through the specimen and to the structure.  The sensor used is a PCB 

Underwater ICP Blast Pressure Sensor, model #138M176.  In the CST experiments 

conducted for this report, the tube was terminated with a rigid witness plate, rather than 

the sliding piston, so the data are most representative of the foam behavior on a high-

impedance structure.  Finite-impedance structures would likely experience lower 

transmitted pressures.  

To make this measurement, a pressure sensor was imbedded in a ½” thick adhesive 

layer joining the specimen to the metal attachment plate. The greenish adhesive layer can 

be seen in the photograph shown in Figure  4-18 between the specimen and the witness 

plate.  The sensor cable can be seen on the far side of the photo. The transmitted pressure 

at the sample/blocked interface also provides information that is complementary to the 

accelerometer to isolate material response from the fluid effects.  This could be very 

useful because the fluid behavior, which is complicated by cavitation effects as well as 

tube dynamics, is difficult to model properly.  
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Figure  4-16  Test specimen setup in the CST 
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Figure  4-17  Frequency Response of Endevco Model 2255B Shock Accelerometer 

(Type –01 Used in CST) 
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Figure  4-18  RUBATEX R451 sample ready for Concial Shock Tube Testing 

4.2.1. CST Results for RUBATEX R451 

Figure  4-19 shows the CST results for a 1.875” thick R451 specimen using the lower 

shock level (no booster).  The blue curve shows the pressure at an offset of 14” from the 

specimen surface.  The shock wave passes with a peak pressure of about 1600-psi and 

rapidly decays thereafter.  The reflection from the specimen surface arrives at the 

pressure sensor at about 5.1 ms and cancels the incident pressure.  Cavitation of the water 

prevents a negative pressure from forming, which would be analogous to the tensile 

reflection in the SHPB experiment.  The thick, soft specimen causes an extended period 

of cavitation and no pressure is seen for over the time scale reported.  The pressure 
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behind the specimen is very small indicating that the material has effectively blocked the 

majority of the shock energy from reaching the witness plate.  Note however that the 

transmitted pressure, although small, lingers at the witness plate for the extended period 

shown in the figure.  

The accelerometer data for this test are shown in Figure  4-20.  The acceleration is 

shown in the top plot.  Velocity and displacements were developed by integration the 

accelerometer data as shown in the center and bottom plots, respectively.  The 

displacement peak of about 1” is believable for this specimen, but is should be noted that 

due to the low-frequency roll-off of the accelerometer used, significant error 

accumulation can be expected after about 2 ms.  

Figure  4-21 shows the CST results for a 1.875” thick R451 specimen using the 

higher shock level (with booster).  The blue curve shows the pressure at an offset of 12” 

from the specimen surface.  The shock wave passes with a peak pressure of about 3200-

psi and rapidly decays thereafter.  The reflection from the specimen surface arrives at the 

pressure sensor at about 4.9 ms and cancels the incident pressure.  The pressure behind 

the specimen (red curve) shows a significant densification as a small portion of energy 

gets through the material.  As this trapped stress is slowly released back to the water it 

helps to collapse the cavitation bubble which is seen at about 9 ms in the offset pressure 

sensor.  

Figure  4-22 shows the accelerometer results for this test.  The peak acceleration and 

velocity levels are nearly double compared to the low level shot, which is consistent with 
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the relative peak pressure levels.  In this case however, the problem with integration of 

the accelerometer level is evident in the displacement plot, which shows the specimen 

surface reaching a peak displacement of 2.1 inches, which is in excess of the specimen 

thickness of 1.875”.  
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Figure  4-19 CST Pressure Sensors Data  - 1.875” RUBATEX R451 specimen – no 

booster 
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Figure  4-20 CST Accelerometer Data  - 1.875” RUBATEX R451 specimen – no 

booster 
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Figure  4-21 CST Pressure Sensors Data  - 1.875” RUBATEX R451 specimen – with 

booster 
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Figure  4-22 CST Accelerometer Data  - 1.875” RUBATEX R451 specimen – with 

booster 
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4.2.2. CST Results for RUBATEX R8702 

Figure  4-23 shows the CST results for a 1.875” thick R8702 specimen using the 

lower shock level (no booster).  The blue curve shows the pressure at an offset of 14” 

from the specimen surface.  The shock wave passes with a peak pressure of about 1800-

psi and rapidly decays thereafter.  The reflection from the specimen surface arrives at the 

pressure sensor at about 0.7 ms and cancels the incident pressure.  Cavitation of the water 

prevents a negative pressure from forming, which would be analogous to the tensile 

reflection in the SHPB experiment.  The soft specimen causes an extended period lasting 

about 2 ms. Unlike the R451 specimen, a small but significant portion of the pressure 

transmits through the specimen.  Some of this energy arrives quickly and has the same 

character as was seen in the SHPB experiments (see Figure  4-14 for example).  As has 

been seen throughout the experiments, there is an extended of elevated stress that decays 

in exponential fashion.  

The accelerometer data for this test are shown in Figure  4-20.  The acceleration is 

shown in the top plot.  Velocity and displacements were developed by integration the 

accelerometer data as shown in the center and bottom plots, respectively.  The shorter 

specimen improves the situation with the integration of the accelerometer data since the 

peak displacement occurs sooner.  The displacement peak of about 0.55” seen at 2.2 ms is 

believable for this specimen, but the data beyond this point is obviously suspect for the 

reasons mentioned earlier.  
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Figure  4-25 shows the CST results for a 1.0” thick R8702 specimen using the higher 

shock level (with booster).  The blue curve shows the pressure at an offset of 14” from 

the specimen surface.  The shock wave passes with a peak pressure of about 3300-psi and 

rapidly decays thereafter.  The reflection from the specimen surface arrives at the 

pressure sensor at about 4.9 ms and cancels the incident pressure.  The pressure behind 

the specimen (red curve) shows a significant densification as a significant portion of 

energy gets through the material.  Note that the quick arriving stress (red curve at about 

4.9 ms) has lost its sharp ascent as was seen in the previous low level shock experiment 

and all of the SHPB tests.  This is most likely due to the fact that this is the first 

experiment conducted on a non-virgin specimen.  Judging by the ratio of the densification 

peak in this test with the quick-arriving energy seen in the previous test, it is clear that 

this experiment has caused the greatest densification of R8702 in the experimental data 

set.  

Figure  4-26 shows the accelerometer data for this test.  Again, the faster response of 

the R8702 specimen gives us a better chance of measuring the displacement peak.  The 

peak of about 0.85” occurs at 6 ms.  This exceeds the 0.69” peak expected at full 

densification.  
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Figure  4-23  CST Pressure Sensors Data  - 1.00” RUBATEX R8702 specimen – no 

booster 
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Figure  4-24  CST Accelerometer Data  - 1.00” RUBATEX R8702 specimen – no 

booster 
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Figure  4-25 CST Pressure Sensors Data  - 1.00” RUBATEX R8702 specimen – with 

booster 
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Figure  4-26 CST Accelerometer Sensors Data  - 1.00” RUBATEX R8702 specimen – 

with booster 
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4.3. Summary 

A Split Hopkinson Pressure Bar (SHPB) and a Conical Shock Tube (CST) were used 

to investigate the shock response of RUBATEX R451 and RUBATEX R8702 closed-cell 

foams.  

The SHPB was used to test small ¾” diameter button specimens under high 

compression-rate loading.  Specimens were tested in two thicknesses; ½:” and 1”.  Three 

striker charge levels of 7 psi, 10 psi and 13 psi were used to generate the shock pulse.  

These were found to correspond to striker velocities of 600, 900 and 1200 cm/s.  The 

SHPB experiments captured the range of foam performance: from nearly perfect shock 

isolation to densification and energy transmission.  The two foams exhibited distinct 

characters in their response.  R8702 showed a small amount of energy transmission at all 

striker levels and specimen thicknesses.  This was characterized by a level strain 

response, except at the highest two striker levels on the ½” specimen where densification 

effects were significant.  The R451 specimen exhibited nearly perfect isolation in the 1” 

thickness and in the ½” thickness at the 7 psi striker level.  When densification effects 

could be seen in the ½” specimens at the 10 and 13-psi striker levels, the transmitted 

levels exceeded those seen in the R8702 foam. 

The CST experiment was used to test larger 9.5” diameter specimens of the foams in 

their full slab thickness, which is 1.875” for R451 and 1” for R8702.  The larger aspect 

ratio of the CST specimens provides more of a plane wave response from the material 

than is obtained in the SHPB.  In a sense, the CST is quite similar to the SHPB 
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experiment.  Both have a transmission velocity of about 1500 m/s and both can be used to 

measure a transfer function across the specimen.  A major difference is the cavitation 

effect that occurs in the water, which prevents any significant “tensile” wave from being 

formed.  Nonetheless, the experiments were in good agreement qualitatively in what the 

reveal about the foam specimens.  The CST data for R8702 in its first test exhibited the 

same type of transmission as was seen in the higher level SHPB tests.  This is 

characterized by a relatively fast arrival of transmitted pressure followed by a stress 

plateau and ultimately densification.  It was interesting that the second shot on the R8702 

specimen did not have the pronounced arrival of the fast energy as was seen in all other 

experiments.  This could be explained by the fact that it was the only experiment on a 

non-virgin specimen.  Likewise, the behavior of R451 in the CST resembles its behavior 

in the SHPB experiment.  At the lower blast level, the R451 was nearly 100% effective in 

isolating the shock wave from reaching the witness plate.  At the higher blast level, a 

densification peak that exceeded the R8702 specimen was measured. 
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CHAPTER 5 

5. Finite Element Implementation 

In this section implementation of the constitutive theory is developed in two finite 

element approaches.  

5.1. Dedicated MATLAB Model 

MATLAB was used to implement the constitutive theory for material parameter 

optimization with the hydrostatic chamber data.  An axisymmetric finite element model 

was also developed for the specific purpose of supporting the development of the 

constitutive theory.  The efficiency of MATLAB’s built-in matrix functions makes it 

feasible to also use this model for the SHPB simulations.  The MATLAB model is not the 

intended focus of this work, but it is worthwhile to provide a brief description of the 

finite element derivation to illustrate in detail how the constitutive model can be 

incorporated in an implicit finite element approach. 

5.1.1. Axisymmetric Element Derivation 

A displacement based quad element was used as shown in Figure  5-1.  
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Figure  5-1  Quad Element 

 

Shape functions are used to map the displacement field within the element.  

 zrczcrccrzur 4321),( +++= ,  ( 5-1) 

 zrdzdrddrzuz 4321),( +++= .  ( 5-2) 

 

Nodal displacement are related to the shape function coefficients by the shape matrix, N: 
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The incremental change in Hencky strain is derived in terms of the shape function 

coefficients as follows:  

 zcc
r
urz r

rr 43),( +=
∂
∂

=ε   ( 5-3) 

 rdd
z
urz z

zz 43),( +=
∂
∂

=ε   ( 5-4) 
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=ε  ( 5-5) 

 ( )zcrzccrc
r
urz r

4321),( +++==θθε . ( 5-6) 

The corresponding incremental change in the finite strain tensor is then developed with 

current value of the deformation gradient: 

 ( )FεFE T=Δ .  ( 5-7) 

We proceed to develop the nodal forces by consideration of the internal work.  The 

finite strain is energy conjugate with the second Piola-Kirchhoff stress such that,  

 dES :∫=W .  ( 5-8) 

Hence, the change in internal energy over a small time increment is given by: 

 ESS Δ⎟
⎠
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 EΘEΛS Δ⎟
⎠
⎞

⎜
⎝
⎛ Δ+Δ+=Δ :

2
1

2
1 tW  . ( 5-11) 

 

The incremental stress Jacobian and the time derivative were developed in section  2.8. 

The existing stress is updated throughout the analysis, and the finite strain tensor will 

be related to the nodal displacements.  Before proceeding further, it is convenient to 

vectorize the following quantities as follows,  

 [ ]TzDzCzBzArDrCrBrA uuuuuuuu=u , ( 5-12) 

 [ ]Tddddcccc 43214321=c . ( 5-13) 

Also we introduce the nodal forces, 

 [ ]T
zDzCzBzArDrCrBrA ffffffff=f , ( 5-14) 

Now the vectorized shape coefficients are related to the vectorized displacements by, 

 uNc 1−=   ( 5-15) 

 mkmk uNc 1−=   ( 5-16) 

where, 
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The nodal forces are derived by equating the change in internal energy caused by 

each displacement with the work done at the node.  Using the chain rule we can write this 

incremental forces as,  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟
⎟
⎠

⎞
⎜
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⎛

∂
Δ∂

=
i

j

j
i u

c
c
WArf 00̂2π   ( 5-18) 

where r0 and A0 are the mean radius and the area of the element in original reference 

configuration, respectively.  The force represents is given as the average over the time 

increment.  The first bracketed term on the right side, the partial derivative of the 

incremental energy with respect to the shape coefficients, has the form, 

 jkjk
j

c
c
W χβ +=

∂
Δ∂ ,  ( 5-19) 

where β is a 6x6 matrix containing the first order derivative coefficients and χ is a 6x1 

column vector containing the zero order terms from the differentiation.  The second term, 

the partial derivative of the shape coefficients with respect to the nodal displacements, is 

simply related to the shape matrices as follows: 

 1−=
∂

∂
ji

i

j N
u
c

.  ( 5-20) 

Substituting equations ( 5-19) and ( 5-20) into ( 5-18) we have: 

 ( )11
00̂2 −− += jijjikjki NNcArf χβπ .   ( 5-21) 
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The left-hand side of the equation represents the average nodal force over the time 

increment using the midpoint rule.  Finally, substituting equation ( 5-16) and rearranging 

we obtain: 

 ( )111
002 −−− += jijmkmjkjii NuNNArf χβπ , ( 5-22) 

or in matrix form, 

 ( )χNuNβNf TTAr −−− += 1
002π .  ( 5-23) 

Equation ( 5-22) represents the incremental force contributions from the element to the 

attached nodes.  In general, each nodal location will receive incremental force 

contributions from 1,2 or 4 elements, depending on its location in the mesh. 

The matrix β and the vector χ contain lengthy algebraic expressions involving the 

tangent moduli, the stress, and the stress relaxation. The algebraic expressions are 

developed with symbolic equation manipulator.  

 

5.1.1.1.Element Stabilization and the Prevention of Hour Glassing 

Hour glassing is a well-known phenomenon that can occur in finite element analysis.  

It is caused by the propagation of zero energy modes that can exist in certain element 

formulations.  The effect of hour glassing can be negligible in small strain analysis, but 

the accumulative effect in finite strain problems can lead to erroneous results and 

eventually element instabilities.  Consider the element illustrated on the left in Figure  5-2.  

In this case, the nodal forces are derived from an evaluation of the change in internal 
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energy as evaluated at the center point of the element.  Now consider the deformation 

mode illustrated on the right in Figure  5-2.  By inspection it is obvious that this mode 

causes neither volumetric nor deviatoric strain when evaluated at the center point.  It 

follows that there is no incremental energy change associated with this mode and hence 

there are no nodal forces.  This mode can propagate throughout a finite element mesh in 

an alternating pattern which gives rise to the hour glass appearance.  

 

AB

C D

Energy
evaluation point

 A’B’

C’ D’

 

Figure  5-2  Hour Glassing Mode in an Element with a Single Energy Evaluation 

Point 

 

Hour glassing can be effectively suppressed by increasing the number of energy 

evaluation points.  In the present formulation four evaluation points are used as shown in 

Figure  5-3.  Clearly, the hour glassing mode shown on the right in Figure  5-3 will now 

generate a significant volumetric and deviatoric response at the centroid of each quadrant 
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and hence the mode will no longer be tolerated energetically.  Since the constitutive 

model is highly nonlinear, further stabilization and accuracy of the element under large 

deformation is obtained by tracking inhomogeneity within the element by monitoring the 

properties within each quadrant.  This requires tracking each quadrant’s internal 

displacement, stress state and constitutive internal variables throughout the analysis.  
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Figure  5-3  Multiple Energy Evaluation Points to Suppress Hour Glassing 

 

5.1.1.2.Mass Matrix 

A simple lumped-mass approach is used.  Each element quadrant is assigned a mass 

at the beginning of the analysis is assumed to remain unchanged under deformation.  

Vectorizing the elemental mass matrix we have,  

 



 

 

 

 

145

 [ ]TDCBA mmmm=m   ( 5-24) 

5.1.2. The Equation of Motion 

The average acceleration method is used to develop the equation of motion.  We 

begin by considering the change in velocity at a node,  

 ( ) ( ) tatxttx iii Δ+=Δ+ &&   ( 5-25) 

where x can represent either the current r or z position, and ai represents the 

corresponding average acceleration over the time increment.  The acceleration is also 

related to the nodal force and mass, 

 
∑
∑−

=
i

i
i m

f
a .  ( 5-26) 

The summation refers to the multiple element contributions to the node and does not refer 

to the nodal position subscript, i.  A negative sign is used with the force terms because 

they represent the internal forces of the element.  Substituting ( 5-26) into ( 5-25) we have: 

 ( ) 2

2
t

m
f

ttxu
i

i
ii Δ−Δ=

∑
∑

&   ( 5-27) 

Substitution of equations ( 5-22) and ( 5-24) into equation ( 5-27) lead directly to the final 

equation of motion for the node: 

 BAui =   ( 5-28) 

where, 
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⎛ Δ
−Δ= jijii

NtArtumB χπ&  ( 5-30) 

Construction of sparse system matrices accomplished with the built-in MATLAB 

function SPARSE.  

SHPB simulations are compared with the experiments in section 6.  

5.1.3. Mesh Transition 

A special boundary condition was developed to link non-matching element meshes.  

This allows the mesh density in the specimen region to be increased without changing the 

mesh of the region occupied by the pressure bar.  The technique exploits the large 

modulus mismatch between the test specimen and the pressure bar.  Consider the figure 

below.  Elements 1 through 4 represent foam in the test section and element 5 represents 

the pressure bar.  Node locations 1C, 2D, 2C, 3D, 3C, and 4D are not connected to the 

coarse region.  To correct the situation, the displacement equation coefficients A and B of 

equation ( 5-28) are transferred from each of the non-matching nodes to nodes 5B and 5A 

in proportion to their distance.  This effectively transfers the reaction stresses at the non-

connected nodes to the coarse region.  Afterwards these displacement equations are 

eliminated and the nodes are forced to move with the edge of the coarse element (5).  

This is accomplished by introducing displacement equations for the non-connected nodes 

via linear interpolation of displacements 5B and 5A. 
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Figure  5-4  Interface between dissimilar mesh densities 

 

5.2. ABAQUS/EXPLICT User Defined Material Subroutine (VUMAT) 

A VUMAT subroutine was written so that the constitutive theory would be available 

with the commercial FEA software, ABAQUS/EXPLICIT.  The implementation has been 

made only for the explicit solver, but a UMAT for the implicit solver, 

ABAQUS/STANDARD, could readily be developed since the stress Jacobian has been 

fully derived for the implicit-based MATLAB model.  The basic difference between an 

explicit and an implicit analysis is that the former requires no information regarding the 

state variables at the end of the increment.  Rather it relies on sufficiently small time 

increments such that system’s future state can be extrapolated from the current state.  The 

state variables are updated after the increment.  An implicit approach accounts for the 

change in state variables that occur over the step.  Hence, they require that the stress 
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Jacobian be available.  Implicit solutions tend to be more time consuming, but much 

larger time increments are possible.  The MATLAB analysis derived in the previous 

section is an example of an implicit solution method.  We will not attempt to here to 

provide a detailed review of the ABAQUS theories or their implementation.  The reader 

is referred to the ABAQUS theory manual for more detail. 

The VUMAT was adapted from the constitutive algorithm developed for the 

MATLAB analysis following the instruction provided with the ABAQUS documentation.  

The FORTRAN code for the VUMAT is provided in Appendix A. 

ABAQUS models were used to duplicate one of the SHPB simulations made with 

the  MATLAB software as a redundancy check.  It also provided the only means of 

simulating the Conical Shock Tube experiments since it provides the needed fluid 

elements and cavitation effects.  Results from these models are discussed in the following 

section.  

5.3. Summary 

An axisymmetric finite element program was written to develop the constitutive 

theory and to simulate the SHPB experiments.  An axisymmetric quad element was 

developed.  This element has four energy evaluation points (also known as “fully 

integrated”).  An implicit-based analysis is used.  The incremental change in internal 

energy is formed in terms of the second Piola-Kirchhoff stress and finite strain increment.  

The incremental stress Jacobian and time-derivative are needed to form the equation of 
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motion and were developed.  A special interface boundary condition was developed to 

join dissimilar mesh densities.  The displacement equations for nodes at the interface in 

the finer mesh are forced to move with element edge in the coarser mesh.  The forces 

associated with these nodes are transferred to the nodes of the coarse element. 
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CHAPTER 6 

6. Comparisons of FE Simulations and Experimental Data 

In this section finite element simulations of the SHPB and CST experiments are 

compared with the experimental results.  Other investigators have pursued finite element 

simulations and have proposed an inverse analysis to develop constitutive material 

parameters  [46].  Here, finite element analysis serves as a validation of the underlying 

premise of this dissertation, which is that behavior in the shock region can be predicted 

from characterizations made in other regions of strain/strain-rate space.  

6.1. MATLAB SHPB Model Compared with Experimental Data 

A model of the SHPB was meshed in MATLAB.  The overall geometry is illustrated 

in Figure  6-1.  Several locations were selected for results and are indicated in the figure.  

The analysis described in section  5 is implemented with the incremental constitutive 

model developed in section  2.  The properties of the polycarbonate striker bar are given a 

small loss factor of 0.05 by using the viscoelastic portion of the constitutive model.  

Otherwise the elastic moduli match those given in the figure.  The strain in the z-direction 

is written to a results file at the specified locations.  The strain quantity is actually the 

finite strain, but in the polycarbonate, this quantity is equivalent to the Hencky strain, 

which is measured in the experiments. 

The striker bar and incident bar are modeled as a single piece.  To excite the model 

into motion, an initial velocity is assigned to the striker bar.  This simulates the condition 
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at impact.  At later time a tensile wave returns to the impact interface.  In reality the 

striker bar separates from the incident bar.  The model does not account for the 

separation, but this discrepancy affects the simulations at a time that lies outside the 

period of interest. 

153 cm 153 cm
1.270 cm
2.540 cm

v0

Striker bar
(polycarbonate)

Incident bar
(polycarbonate)

Test specimen
(VUMAT)

All diameters = 1.91 cm
Striker bar length = 60 cm

Transmit bar
(polycarbonate)

Polycarbonate properties :
ρ=1202 kg/m 3

E=2.58x10 9 Pa
ν=.38

MATLAB Model of SHPB

60 cm

41 2 3

1) top of incident bar
2) mid-point incident bar
3) 8 cm from top transmit bar
4)mid-point transmit bar

Save locations*Strike Velocities
Low:  6 m/s
Med:  9 m/s
High: 12 m/s

* One point on outside diameter

 

Figure  6-1  SHPB geometry and MATLAB model configuration 

6.1.1. Still Images from SHPB Simulations of R8702 

Sample images from the simulations of ½” R8702 at the highest striker velocity are 

shown in the series of figures from Figure  6-2 to Figure  6-12.  Each figure gives an 

overall view of the SHPB on the left and a close-up of the specimen section on the right.  
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The blue end of the color spectrum indicates compressive strain.  Strains shown for the 

overall view are magnified by a factor of 1000.  Figure  6-2 shows the simulation early on 

at 0.10 ms when the striker bar has just begun to impinge on the incident bar at a location 

of about 311 cm.  Figure  6-3 shows the simulation just 0.2 ms later when the pulse is still 

fanning out in both directions in symmetric fashion, but has not yet reached the free 

boundary. Figure  6-4 shows the simulation at 1.0 ms when the pulse has been fully 

formed and its arrival at the interface in imminent.  Figure  6-5 through Figure  6-10 show 

the simulation in 0.2 ms increments from this point as the sample reacts to the 

compressive pulse.  Some interesting behavior of the specimen is seen at 1.4 ms (Figure 

 6-6) where there is a distinct plane of a large strain gradient develops from the upper-

center down towards the middle-right.  This behavior is not seen in simulations of R451, 

which indicates that it is most likely associated with the bending transition in the 

material.  At 1.8 ms (Figure  6-8) the specimen has just passed its densification peak and a 

compressive pulse is launched into the receive bar, which is visible in the overall view.  

The remaining figures show the progression of the material’s rebound at 2.0 ms, 2.2 ms, 

2.5 ms, and finally, much later at 3.5 ms. 
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Figure  6-2  SHPB Simulation at 0.10 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right).  
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Figure  6-3 SHPB Simulation at 0.30 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-4 SHPB Simulation at 1.00 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-5 SHPB Simulation at 1.20 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-6 SHPB Simulation at 1.40 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-7 SHPB Simulation at 1.60 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-8 SHPB Simulation at 1.80 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-9 SHPB Simulation at 2.00 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-10 SHPB Simulation at 2.20 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-11 SHPB Simulation at 2.50 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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Figure  6-12  SHPB Simulation at 3.50 ms– ½” R8702 Specimen with 13 psi charge.  

Overall view (left).  Specimen area (right). 
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6.1.2. SHPB Simulations for R8702 Compared with Measurements 

SHPB strain levels for a 1.0” thick R8702 samples are shown in Figure  6-13, Figure 

 6-14, and Figure  6-15 for a 7-psi, 10 psi and 13 psi striker charge, respectively.  The 

model agrees well with the 1” R8702 experiments.  It captures both the level and 

character of the measurement.  However, at times beyond 2 ms there is a distinct and 

interesting discrepancy in the rate at which the strain levels return to zero. 

SHPB strain levels for 0.5” thick R8702 samples are shown in Figure  6-16, Figure 

 6-17, and Figure  6-18 for a 7-psi, 10 psi and 13 psi striker charge, respectively.  The 

model agrees fairly well with the 0.5” experiments.  It captures both character of the 

measurement, but the densification peak levels is overstated in the simulations for the 10 

and 13 psi striker charges.  Also, the discrepancy in the stress decay at times beyond 2 is 

more prominent.  A second discrepancy also becomes more apparent with the shorter 

specimen.  There is a brief period between about 2.2 and 2.5 ms where we have valid 

data/theory comparison of the strain in the incident bar immediately after the passing of 

the tensile wave.  At the highest striker charge level, Figure  6-18, there is a noticeable 

disagreement.  The model shows a compression wave trailing the tensile wave, which 

must be due to the reaction of the specimen.  The two discrepancies combined hint at an 

unaccounted loss mechanism either in the material or in the experiment. 
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6.1.2.1.Use of Christensen’s shear equation 

A special simulation was made where Kerner’s approximate shear equation was 

replaced with the exact equation developed by Christensen. R8702 was selected to make 

this comparison since it was found that the material phase plays a greater role in its 

overall behavior.  The 0.5” specimen thickness with the highest striker charge was 

selected since it involves the greatest deformation of the specimen.  

Figure  6-19 shows the comparison of the simulations with Kerner and Christensen’s 

shear equations, compared with the data set.  The incident bar results have been omitted, 

and an expanded scale is used to examine the differences.  We find that Christensen’s 

equation makes only a very small difference in the results.  It makes a slight improvement 

on the initial rise of strain, but has no significant effect on the behavior near 

densification.  This finding is welcomed since the use of Christensen’s shear equation 

was found to slow the execution of the computation by more than a factor of 2.  It also 

supports the underlying assumption that deviatoric response is of secondary importance 

in compressive load scenarios.  An unexpected consequence of using Christensen’s 

equation was the triggering of a Drucker instability that occurred in the computation at 

1.6 ms. This does not imply that there is a general stability issue associated with his 

equation.  Rather it demonstrates how near the R8702 model is to unstable behavior for 

this load condition.  Reduction of the sharpness parameter, C2, for the deviatoric response 

by a factor of 2 allowed the computation to proceed beyond the densification peak 
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Figure  6-13  SHPB Data Theory Comparison - MATLAB model – 1.00” R8702 

Specimen with 7 psi charge 
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Figure  6-14  SHPB Data Theory Comparison - MATLAB model – 1.00” R8702 

Specimen with 10 psi charge 
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Figure  6-15  SHPB Data Theory Comparison - MATLAB model – 1.00” R8702 

Specimen with 13 psi charge 
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Figure  6-16  SHPB Data Theory Comparison - MATLAB model – 0.50” R8702 

Specimen with 7 psi charge 
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Figure  6-17  SHPB Data Theory Comparison - MATLAB model – 0.50” R8702 

Specimen with 10 psi charge 
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Figure  6-18  SHPB Data Theory Comparison - MATLAB model – 0.50” R8702 

Specimen with 13 psi charge 
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Figure  6-19  Effect of Christensen’s Shear Equation – 0.5” R8702 Specimen with 13 

psi charge 

 

6.1.3. SHPB Simulations for R451 Compared with Measurements 

Figure  6-20 through Figure  6-22 show data-model comparisons for the 1.0” thick 

R451 using the 7-psi, 10 psi and 13 psi striker charges, respectively.  The model agrees 

with the data set fairly well, which is not entirely impressive since the energy is being 



 

 

 

 

173

almost completely reflected.  At the highest striker levels, a small but noticeable 

discrepancy develops.  The model shows a small amount of late-arriving transmitted 

energy not seen in the data. 

Figure  6-23 through Figure  6-25 show the data-model agreement for the 0.5” thick 

R451 specimens with the 7-psi, 10 psi and 13 psi striker charges, respectively.  The 

model does a good job tracking the densification peak with this specimen.  Note that 

there is now a clear discrepancy on the arrival time of the transmitted energy likely due to 

a missing pre-bending stiffness in the R451 model.  Fortunately, the missing feature is 

not significant to the overall response. 

6.1.3.1.Use of High Loss Factor Weighting for R451 

A special simulation was made where the relaxation moduli for R451 was changed 

from the even, 50/50, weighting of real modulus and loss factor, to the one shown in 

Figure  3-9 where the loss factor was favored in the weighting by 90/10.  

Figure  6-26 shows the comparison of the simulations, with the 90/10 weighting 

function on the real and loss factor components of the mastercurve. We find that the 

50/50 weighting provides better overall agreement to the data set.  However, the higher 

loss did help smooth the response, and in that sense, improved the agreement to the data 

character. 
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Figure  6-20  SHPB Data Theory Comparison - MATLAB model – 1.00” R451 

Specimen with 7 psi charge 
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Figure  6-21  SHPB Data Theory Comparison - MATLAB model – 1.00” R451 

Specimen with 10 psi charge 
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Figure  6-22  SHPB Data Theory Comparison - MATLAB model – 1.00” R451 

Specimen with 13 psi charge 
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Figure  6-23  SHPB Data Theory Comparison - MATLAB model – 0.50” R451 

Specimen with 7 psi charge 
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Figure  6-24  SHPB Data Theory Comparison - MATLAB model – 0.50” R451 

Specimen with 10 psi charge 
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Figure  6-25  SHPB Data Theory Comparison - MATLAB model – 0.50” R451 

Specimen with 13 psi charge 
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Figure  6-26  SHPB Data Theory Comparison - MATLAB model – 0.50” R451 

Specimen with 13 psi charge – [High Loss Factor Weighting for Prony Coefficients] 
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6.2. Comparison of ABAQUS and MATLAB Models for SHPB Cases 

Figure  6-27  ABAQUS Mesh of the SHPB experiment near the specimen region.  

Comparisons were made at the highest striker level on the ½” thick specimens since those 

cases involve the greatest split between the reflected and transmitted pulses.  The 

VUMAT provided in Appendix A was used to execute the constitutive theory for the 

foams in ABAQUS using the same model parameters used with MATLAB. 

It should be noted that the ABAQUS and MATLAB models differ in several ways 

that could be significant to the interpretation of the comparisons.  In the ABAQUS 

model, the striker bar is modeled as separate piece and the impact is modeled using a 

contact analysis.  A frictionless surface is assumed between the striker bar and the 

incident bar.  The MATLAB simulation models the striker and incident bars as one piece, 

which would be equivalent to the contact surface having an infinite friction coefficient in 

the ABAQUS model..  The models also differ significantly in their mesh densities.  A 

much finer mesh was used with the ABAQUS model in both the specimen region and the 

bar.  Finally, the solution approach is different as was previously discussed in section 5. 

The agreement between the ABAQUS and MATLAB simulations is shown in Figure 

 6-32 for the R451 specimen.  We find that the models agree quite well, but there is an 

interesting discrepancy.  The ABAQUS model shows greater strain oscillation throughout 

the simulation.  These oscillations are associated with a ringing of the radial mode in the 

bar as the strain pulse travels.  It was initially believed that the use of a small loss factor 

for the polycarbonate bar in the MATLAB modeling was the source of the discrepancy, 
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but running the MATLAB case without the loss factor yielded an indistinguishable result.  

The difference in the mesh densities of the polycarbonate bar was also ruled out as the 

source of the discrepancy.  Remaining possibilities include the difference in the way the 

collision between the striker and incident bar, and numerical damping effects in one or 

both solution methods. 

The agreement between the ABAQUS and MATLAB simulations is shown in Figure 

 6-32 for the R8702 specimen.  Again, we find that the models agree quite well, but the 

ABAQUS model suffered numerical problems at about 1.6 ms preventing the run from 

reaching completion.  This may be a Drucker instability that is aggravated by the finer 

mesh used in the ABAQUS analysis.  Another possible factor is the additional stability 

built into the axisymmetric elements used with the MATLAB simulation, which may be 

helping to control excessive deformation of elements.  The latter explanation is likely:  

ABAQUS only provides single point integration elements with EXPLICIT and artificial 

hour glass control needed to stabilize the elements.  
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Figure  6-27  ABAQUS Mesh of the SHPB experiment near the specimen 
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Figure  6-28  A comparison of ABAQUS and MATLAB simulations of the SHPB 

experiment for ½” R451 with a 13 psi striker charge. 
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Figure  6-29  A comparison of ABAQUS and MATLAB simulations of the SHPB 

experiment for ½” R8702 with a 13 psi striker charge. 

 



 

 

 

 

186

6.3. ABAQUS CST Model Compared with Experimental Data 

ABAQUS models of the CST experiments were made for additional validation of the 

constitutive model.  Modeling the CST experiment is a far more difficult task than the 

SHPB experiment mainly because of cavitation, which occurs when tensile stress tries to 

develop in the water medium causing bubble formation.  An idealized description of the 

model was used to facilitate the analysis, so the model details and assumptions should be 

considered before interpreting the comparisons. The ABAQUS mesh for the CST 

analysis is shown in Figure  6-30 for the R451 specimen.  The fluid region extends 10” 

from the specimen face.  A reflection-free boundary condition is applied at the top of the 

model to permit the reflected pressure to propagate away.  The conical geometry was 

simplified to be cylindrical at the specimen end.  A rigid boundary condition was applied 

along the sides of the water.  A roller boundary condition was applied to the specimens.  

This is a reasonable assumption for the R451 specimen, which has an aspect ratio 

(diameter-to-thickness) of 5.  The assumption is much better for the R8702 specimen, 

which has an aspect ratio of 10.  With a roller boundary condition, the specimen response 

is insensitive to diameter for normally incident plane wave excitation.  This motivated the 

choice of a 2” diameter for the simulation, rather than the 9.5” specimen diameter, since 

model size could be reduced.  However, the assumption of model insensitivity to 

diameter is not perfectly valid considering that we are also modeling the cavitation 

effects.  Some impact on the simulation due to our choice of diameter must be expected, 

but since cavitation inception is chaotic and strongly influenced by the fluid mesh, we did 
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not expect to gain greater accuracy by growing the model to match the diameter of the 

experiment. 
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Figure  6-30  ABAQUS Mesh for the CST experiment 
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ABAQUS allows the incident shock pressures from a remotely located source to be 

prescribed at a specific location.  Shock pressure profiles from earlier CST measurements 

were used as the prescribed incident pressures for the CST models.  Figure  6-31 shows 

the incident shock pressure profile used to model the higher shock level.  Cavitation due 

to reflection from a specimen caused the incident pressure profile to be lost after 0.44 ms.  

The missing information is replaced with an exponential curve fit [left figure, red curve], 

which is extrapolated out in time to provide a complete incident profile for the simulation 

[right figure]. 

Cavitation pressure was set at 15 psi for all CST simulations. 
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Figure  6-31  Incident Shock Pressure Profile used for CST model – with booster 
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6.3.1. CST Simulations for R8702 Compared with Measurements 

CST pressure levels for a 1.0” thick R8702 specimen at the lower shock level (no 

booster used with the charge) are shown in Figure  6-32.   

The lower figure shows output from the pressure sensor imbedded between the 

specimen and the witness plate compared with the predicted pressure for this location.  

We find that the model predicts slightly higher transmitted pressure levels.  Also, like 

was seen with the SHPB model, a much slower decay back to zero pressure is predicted.   

The upper figure shows output from the pressure sensor, which is located 14” in 

front of the witness plate.  This is compared with the predicted pressure at 11” from the 

witness plate.  The slight discrepancy in position would cause about a small 0.10 ms 

discrepancy in the arrival of reflected energy from the specimen.  The model prediction 

of the passing shock waves differs from the experiment only because a different 

measurement was used to establish the incident pulse in the simulation.  At about 0.8 ms 

the reflected energy cancels the incident pulse and there is a subsequent period of 

cavitation that lasts until 2.2 ms in the simulation and until 2.7 ms in the experiment.  

After the cavitation bubble is closed the simulation shows the decay of pressure 

consistent with the transmit sensor as the pressure equilibrates throughout the model.   

The equilibrium of pressure beyond about 3 ms is evident from the convergence of the 

pressure in the fluid and the pressure behind the specimen.  The experimental data also 

shows this equilibration, but at lower pressure levels. 
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CST pressure levels for a 1.0” thick R8702 specimen at the higher shock level (using 

the booster) are shown in Figure  6-32.  From the fluid pressure sensor, we find that the 

cavitation pressure was slightly higher than the 15 psi used in the simulation.  The model 

tracks the increase in transmitted pressure [lower figure] fairly well, but the simulation 

shows a broader pressure pulse and shows more oscillation.  Again we find a discrepancy 

in the decay of the pressures at longer times.  The simulation shows equilibration of 

pressure beyond 3 ms.  The experimental results do not show equilibration as there is a 

discrepancy in the fluid and transmitted pressure levels  
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Figure  6-32  Comparison of data with ABAQUS simulation of the CST experiment 

for 1.0” R8702.  No booster used. 
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Figure  6-33  Comparison of data with ABAQUS simulation of the CST experiment 

for 1.0” R8702.  Booster used. 
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6.3.2. CST Simulations for R451 Compared with Measurements 

CST pressure levels for a 1.875” thick R451 specimen at the lower shock level (no 

booster used with the cap) are shown in Figure  6-34. 

The lower figure shows output from the pressure sensor imbedded between the 

specimen and the witness plate compared with the predicted pressure for this location.  

The experiment shows very little energy making its way through the specimen, whereas 

the model predicts a small but significant transmitted pressure level.  A similar 

comparison was seen on the 1” SHPB simulation of R451 at the highest striker levels [see 

Figure  6-22]. 

The upper figure shows output from the pressure sensor, which is located 14” in 

front of the witness plate.  This is compared with the predicted pressure at about 11.9” 

from the witness plate.  The slight discrepancy in position would cause about a small 0.07 

ms discrepancy in the arrival of reflected energy from the specimen.  The model 

prediction of the passing shock waves differs from the experiment only because a 

different measurement was used to establish the incident pulse in the simulation.  At 

about 1.0 ms the reflected energy cancels the incident pulse and there is a subsequent 

period of cavitation that lasts until 4 ms in the simulation.  The closing of the cavitation 

bubble in the experiment is not seen over the entire period reported. 

CST pressure levels for a 1.0” thick R451 specimen at the higher shock level (using 

the booster) are shown in Figure  6-32.  The model tracks the increase in transmitted 

pressure fairly well, but there is a significant discrepancy in the arrival time of 
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transmitted pressure and once again, the simulation shows a broader pressure pulse.  

Also, we again find a discrepancy in the decay rate of the pressures after the main shock 

event, which has appeared consistently throughout the data-model comparisons. 
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Figure  6-34  Comparison of data with ABAQUS simulation of the CST experiment 

for 1.0” R8702.  No booster used. 
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Figure  6-35  Comparison of data with ABAQUS simulation of the CST experiment 

for 1.0” R8702.  Booster used. 
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6.4. Summary 

Simulations of the Split Hopkinson Pressure Bar experiments correlate well with the 

measurements.  The model did exceptionally well at capturing the transmitted and 

reflected strain levels with increasing striker charge levels, especially for the R451 

specimen.  The model tended to over predict the transmitted pressure level in the R8702 

specimen, but it tracked the character of the data well. 

The use of Christensen’s equation made a slight improvement to the model-data 

comparison of the R8702 specimen.  This slight improvement comes at the price of 

increased computation time.  It also triggered a Drucker instability, which revealed that 

the R8702 model is very near the instability condition. 

Simulations of the Conical Shock Tube experiments showed fair correlation with the 

measurements.  In most cases, the model did fairly good job of predicting the peak 

amplitudes of the transmitted pressure.  However, significant discrepancies were noted in 

arrival times of the transmitted pressure with the R451 specimen, as well as the time at 

which the cavitation bubble closed.  Also, the character of the transmitted pressure pulse 

differed significantly from the measured pulse. 

A consistent discrepancy between the model and the data for both the SHPB and 

CST experiments was the difference in the decay rate of the transmitted strain and 

pressure, respectively.  The discrepancy indicates that there is an unaccounted loss 
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mechanism at work.  An unknown loss mechanism could also explain other discrepancies 

in data character seen in the experiments. 
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CHAPTER 7 

7. Summary and Conclusions 

In this dissertation a fully isotropic constitutive model was developed for closed-cell 

foams such that it is specialized towards shock loads that are predominantly compressive 

in nature.  The hyperelastic free energy was written in a special form so that it could be 

fully defined with the hydrostatic bulk and shear moduli, which in turn are functions of 

the volumetric stretch.  This permitted the use of three-phase composite theory to fully 

define the hyperelastic free energy.  Use of the three-phase model had three major 

advantages: 

1) Identification of the hyperelastic free energy contributions of the gas and material 

phases. 

2) Elimination of deviatoric experiments for parameter determination. 

3) Proper behavior at the densification limit 

Separation of the gas and material phase contributions was critical in properly 

establishing the proper relaxation behavior of the foam.  The three-phase theory provided 

a link between the deviatoric response of the foam and its volumetric response, thereby 

eliminating the need for deviatoric experiments altogether.  It also ensures that the 

material will reach a state of incompressibility when the densification limit is approached 

under high compressive strains.  The Elastic-Viscoelastic Correspondence Principle was 

used to create a hyperviscoelastic description from the hyperelastic framework.  
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Nonlinear strain functions were developed from the stress equation, which serve as 

analogs to the infinitesimal strain in linear viscoelasticity.  Since three-phase composite 

theory lacks a description of cell wall bending, a phenomenological correction to the 

composite theory was developed to include this behavior. 

A characterization approach was developed for closed-cell foams.  This involves just 

two experiments and optimization of model parameters.  A Dynamic Mechanical 

Thermal Analyzer (DMTA) was used to develop mastercurves of the specimen’s 

dynamic complex shear modulus from which the Prony coefficients are developed.  A 

dilatometer experiment was used to measure specimen volumetric compression in a 

controlled hydrostatic pressure-history.  This was used to establish three-phase 

parameters and the plastic terms. 

Difficulty was encountered with the determination of the Prony coefficients for 

RUBATEX R451.  The DMTA mastercurve was clearly in violation of Kramers-

Kronig’s causality relations, making the Prony model was unable to describe both the real 

and imaginary components of modulus.  This caused weighting factors used in the 

optimization to play a significant role in the final Prony fit.  Favoring the loss factor 

worsened the predictions of the SHPB experiment, but considering the other uncertainties 

in the modeling approach it is difficult to draw firm conclusions for this finding. 

The behavior of closed-cell elastomeric foams under shock loading conditions was 

investigated experimentally.  Split Hopkinson Pressure Bar (SHPB) and a Conical Shock 

Tube (CST) experiments were conducted.  The data show that a layer of soft elastomeric 
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foam can be used as a treatment to effectively isolate an underlying structure from the 

shock loading.  It was also shown that the isolation performance degrades dramatically 

once the foam nears its densification point.  The conditions leading to degradation were 

shown to involve multiple parameters.  The experiments revealed that the amplitude of 

the shock event and the layer thickness are among these parameters.  The experimental 

data also provided verification for the constitutive model.  For this purpose, finite 

element models of the shock experiments were made.  It was demonstrated that the 

constitutive description and foam characterization were sufficient to provide good 

correlation to the high strain-rate experiments. The SHPB and CST experiments revealed 

consistent attributes for the two foam specimens.  Both tests showed that R8702 

specimen passes some energy regardless of the shock level whereas the R451 was nearly 

100% effective until densification levels were reached. 

SHPB data agreed favorably with model simulations. The model was able to predict 

with reasonable accuracy the transmitted strain levels and their dependence on specimen 

thickness and shock amplitude. CST data agreed less favorably with simulations, but in 

most cases, the model was able to predict peak amplitudes of the transmitted pressure.  

Generally, there were discrepancies in the decay rate of the transmitted stress and also 

with the strength of the compressive reflection from the specimen that follows the tensile 

reflection.  Both of these discrepancies point toward an unaccounted loss mechanism.  

One of the major theses of this work was that high strain-rate experiments could be 

predicted from low strain-rate experiments.  From an engineering perspective, this was 
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successfully demonstrated to the extent that good qualitative agreement was achieved 

with many of the experimental results, and by the fact the model was largely successful at 

predicting peak transmitted energy levels.  However, the persistent discrepancy in system 

energy between experimental and model results, suggesting an unaccounted loss 

mechanism, raises the question as to whether the missing mechanism might be due to a 

coupling between the rubber relaxation behavior and the finite strain.  If so, the 

separability assumption, which is key to the model development, may be introducing a 

significant under-accounting of the foams capacity to absorb energy.  This unaccounted 

loss mechanism is an area well worth further study in both the experiments and the 

constitutive theory. 

The model provided additional insight into the shock isolation performance of 

foams.  It was shown that, in addition to layer thickness and shock amplitude, the 

duration of the shock event is a key parameter in determining whether the foam will 

effectively isolate an underlying structure.  The model also provided insight into the 

material physics.  The foam exhibited a drastic loss of moduli in the stress plateau region, 

and it was shown that the only significant source of elastic response in this region is due 

to the gas contained within the closed cells of the foam.  Modeling also indicated that, 

although plasticity was an insignificant player in shock events, it does play an important 

role in the interpretation of low strain-rate characterization experiments.  An interesting 

observation is that the constitutive model provides a description of behavior resembling 
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Mullen’s effect, which was found to arise from a combination of viscoelastic creep, 

plastic set, and strain dependent moduli.  

An important aspect of the description of closed cell foams is the contribution of the 

gas phase to the constitutive response.  There is still more work to be done on this aspect 

of the problem.  If the contribution of the gas phase relative to the material phase is not 

described well, there could be significant errors in the predicted viscoelastic behavior.  

The optimization results for the RUBATEX foams proved to be interesting in this regard.  

Based on the hydrostatic chamber experiments, the effective bulk modulus of R451 at 

low strain rates was seen to be dominated by the gas phase whereas R8702 was 

dominated by the material phase initially, and then became gas-dominated upon 

compression.  Since there was no rigorous treatment of the gas thermodynamics and its 

interaction with the material phase, the initial gas pressure in the foam was left as a 

parameter for optimization.  Both foams showed improved dilatometer optimizations 

with an internal gas pressure above atmospheric pressure. For R451 the parameter was 

1.5x Patm and for R8702 the parameter was 1.8x Patm.  This could be due in part to an 

adiabatic response of the gas in the dilatometer experiment, but considering the low strain 

rate of this experiment one may be inclined to assume isothermal behavior.  It is also 

possible that some of the elevated pressure is real.  Based on discussions with 

RUBATEX regarding the manufacturing process, this finding seems plausible.  The 

foams are formed by pressurizing the resins under nitrogen gas during the vulcanization 

process.  The slabs are then rolled out to atmospheric conditions while they are partially 
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cured.  At that time the slab rises as the dissolved nitrogen expands and the rubber 

completes it curing process. 

The general applicability of three-phase composite theory for these types of foams 

remains an open issue.  While we were fairly successful in predicting material behavior 

with this model, a number of caveats must be noted.  First, we did not enforce a 

consistency between the DMTA static shear modulus value with that derived from the 

optimization of the dilatometer data.  DMTA was used only to establish the relaxation 

moduli relative to the static shear modulus, whereas the dilatometer optimization was 

used to establish the actual static value.  Furthermore, in the case of R8702, a strong 

bending correction was applied to the three-phase theory.  However, the general 

hyperelastic form that has been developed in this dissertation is adaptable to any 

composite theory, phenomenological or not, as long as it is capable of describing the 

hydrostatic moduli as continuos functions of volume strain.  It could also accommodate 

experimentally determined hydrostatic moduli, provided that they cover the range of 

expected volumetric deformation.  This is another major advantage that this approach 

offers over other hyperelastic models. 
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Appendix A:  VUMAT 

subroutine vumat( 
C Read only (unmodifiable)variables - 
     1  nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal, 
     2  stepTime, totalTime, dt, cmname, coordMp, charLength, 
     3  props, density, strainInc, relSpinInc, 
     4  tempOld, stretchOld, defgradOld, fieldOld, 
     5  stressOld, stateOld, enerInternOld, enerInelasOld, 
     6  tempNew, stretchNew, defgradNew, fieldNew, 
C Write only (modifiable) variables - 
     7  stressNew, stateNew, enerInternNew, enerInelasNew ) 
C 
      include 'vaba_param.inc' 
C 
      dimension props(nprops), density(nblock), coordMp(nblock,*), 
     1  charLength(nblock), strainInc(nblock,ndir+nshr), 
     2  relSpinInc(nblock,nshr), tempOld(nblock), 
     3  stretchOld(nblock,ndir+nshr), 
     4  defgradOld(nblock,ndir+nshr+nshr), 
     5  fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr), 
     6  stateOld(nblock,nstatev), enerInternOld(nblock), 
     7  enerInelasOld(nblock), tempNew(nblock), 
     8  stretchNew(nblock,ndir+nshr), 
     8  defgradNew(nblock,ndir+nshr+nshr), 
     9  fieldNew(nblock,nfieldv), 
     1  stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev), 
     2  enerInternNew(nblock), enerInelasNew(nblock), 
     
     1  eye3(3,3), kdelta(3,3), Voigt1(6), Voigt2(6), 
     2  DSTATEV(nstatev),FSTRAN(6), DFSTRAN(6),DFSTRANA(6), DSTRAN(6), DSTRES(6), G(6), 
     3  DDSDDE(6,6),STRESS(3,3),S2PK_OLD(6),S2PK_NEW(6), 
     4  CAUCH0(3,3),CAUCH1(3,3),CAUCHM(3,3),CAUCH(3,3), 
     5  CB0(3,3),CB1(3,3),CBM(3,3),CB(3,3), 
     5  CI0(3,3),CI1(3,3),CIM(3,3),CI(3,3), 
     5  CDI0(3,3),CDI1(3,3),CDIM(3,3),CDI(3,3), 
     5  U0(3,3),U1(3,3),UM(3,3),U(3,3),U0I(3,3), U1I(3,3), UMI(3,3), UI(3,3), 
     6  DE(3,3),DEA(3,3), cid0(3,3), cid1(3,3), cidm(3,3), cid(3,3), 
     7  STRAN_NLIN0(3,3), STRAN_NLINA0(3,3), STRAN_NLIN1(3,3), STRAN_NLINA1(3,3), 
     8  STRAN_NLIN(3,3), STRAN_NLINA(3,3), FINITE_STRAIN(3,3) 
 
C 
      character*80 cmname       
C 
 
      NELS=(nprops-10)/2 
       
      NTENS=ndir+nshr 
 
      nstatev2=3*ntens+(ntens*ntens)*nels+1 
 
C  Identity Matrix 
      eye3(1,1)=1 
      eye3(2,2)=1 
      eye3(3,3)=1 
      eye3(1,2)=0 
      eye3(2,1)=0 
      eye3(1,3)=0 
      eye3(3,1)=0 
      eye3(2,3)=0 
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      eye3(3,2)=0 
 
      kdelta=eye3 
 
C  Voigt Notation 
      Voigt1(1)=1 
      Voigt1(2)=2 
      Voigt1(3)=3 
      Voigt1(4)=1 
      Voigt1(5)=1 
      Voigt1(6)=2 
 
      Voigt2(1)=1 
      Voigt2(2)=2 
      Voigt2(3)=3 
      Voigt2(4)=2 
      Voigt2(5)=3 
      Voigt2(6)=3 
 
c      print*, stepTime, totalTime, dt, nels, ntens, nblock, nstatev 
C 
C      
C 
C --------------- MAIN BLOCK LOOP ----------------------------------------- 
      DO 100 km=1,nblock 
C 
C 
C       
C   Get the current properties 
C 
      J1=2*NELS 
      PHI0 = PROPS(J1+1) 
      BN   = PROPS(J1+2) 
      C1   = PROPS(J1+3) 
      C2   = PROPS(J1+4) 
      D1   = PROPS(J1+5) 
      D2   = PROPS(J1+6) 
      PR   = PROPS(J1+7) 
      ELIMIT = PROPS(J1+8) 
      ESET = PROPS(J1+9) 
      p0=PROPS(J1+10) 
C 
      s0=1.-phi0 
C 
C   Set the Drucker Stability parameter here.  DS=1 (no control)  DS>1 (control) 
      DS=1. 
      C2G=C2/DS 
 
C  
C  ------ conditions at begining of time step -------------- 
C 
      U0(1,1)=stretchOld(km,1) 
      U0(2,2)=stretchOld(km,2) 
      U0(3,3)=stretchOld(km,3) 
      U0(1,2)=stretchOld(km,4) 
      U0(2,1)=stretchOld(km,4) 
      U0(1,3)=0 
      U0(3,1)=0 
      U0(2,3)=0 
      U0(3,2)=0 
 
      X11=U0(1,1) 
      X12=U0(1,2) 
      X13=U0(1,3) 
      X21=U0(2,1) 
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      X22=U0(2,2) 
      X23=U0(2,3) 
      X31=U0(3,1) 
      X32=U0(3,2) 
      X33=U0(3,3) 
  
      U0I(1,1)=(X22*X33-X23*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(1,2)=-(X12*X33-X13*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(1,3)=(X12*X23-X13*X22)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(2,1)=-(X21*X33-X23*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(2,2)=(X11*X33-X13*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(2,3)= -(X11*X23-X13*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(3,1)=(X21*X32-X22*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(3,2)= -(X11*X32-X12*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U0I(3,3)=(X11*X22-X12*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
C 
      VS0=X11*X22*X33-X11*X23*X32-X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22 
C       
      CAUCH0=MATMUL(U0,U0) 
      X11=CAUCH0(1,1) 
      X12=CAUCH0(1,2) 
      X13=CAUCH0(1,3) 
      X21=CAUCH0(2,1) 
      X22=CAUCH0(2,2) 
      X23=CAUCH0(2,3) 
      X31=CAUCH0(3,1) 
      X32=CAUCH0(3,2) 
      X33=CAUCH0(3,3) 
  
      CI0(1,1)=(X22*X33-X23*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(1,2)=-(X12*X33-X13*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(1,3)=(X12*X23-X13*X22)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(2,1)=-(X21*X33-X23*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(2,2)=(X11*X33-X13*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(2,3)= -(X11*X23-X13*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(3,1)=(X21*X32-X22*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(3,2)= -(X11*X32-X12*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI0(3,3)=(X11*X22-X12*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
 
      SINVB0=VS0**(-2./3.)*(CAUCH0(1,1)+CAUCH0(2,2)+CAUCH0(3,3)) 
      CID0=kdelta 
      CID0(1,1)=CI0(1,1) 
      CID0(2,2)=CI0(2,2) 
      CID0(3,3)=CI0(3,3) 
 
      CB0=CAUCH0*VS0**(-2./3.) 
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C       
C  ------ conditions at end of time step -------------- 
C 
      U1(1,1)=stretchNew(km,1) 
      U1(2,2)=stretchNew(km,2) 
      U1(3,3)=stretchNew(km,3) 
      U1(1,2)=stretchNew(km,4) 
      U1(2,1)=stretchNew(km,4) 
      U1(1,3)=0 
      U1(3,1)=0 
      U1(2,3)=0 
      U1(3,2)=0 
 
      X11=U1(1,1) 
      X12=U1(1,2) 
      X13=U1(1,3) 
      X21=U1(2,1) 
      X22=U1(2,2) 
      X23=U1(2,3) 
      X31=U1(3,1) 
      X32=U1(3,2) 
      X33=U1(3,3) 
C  
      U1I(1,1)=(X22*X33-X23*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(1,2)=-(X12*X33-X13*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(1,3)=(X12*X23-X13*X22)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(2,1)=-(X21*X33-X23*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(2,2)=(X11*X33-X13*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(2,3)= -(X11*X23-X13*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(3,1)=(X21*X32-X22*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(3,2)= -(X11*X32-X12*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      U1I(3,3)=(X11*X22-X12*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
C       
      VS1=X11*X22*X33-X11*X23*X32-X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22 
C       
      CAUCH1=MATMUL(U1,U1) 
      X11=CAUCH1(1,1) 
      X12=CAUCH1(1,2) 
      X13=CAUCH1(1,3) 
      X21=CAUCH1(2,1) 
      X22=CAUCH1(2,2) 
      X23=CAUCH1(2,3) 
      X31=CAUCH1(3,1) 
      X32=CAUCH1(3,2) 
      X33=CAUCH1(3,3) 
  
      CI1(1,1)=(X22*X33-X23*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(1,2)=-(X12*X33-X13*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(1,3)=(X12*X23-X13*X22)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(2,1)=-(X21*X33-X23*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(2,2)=(X11*X33-X13*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
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      CI1(2,3)= -(X11*X23-X13*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(3,1)=(X21*X32-X22*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(3,2)= -(X11*X32-X12*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CI1(3,3)=(X11*X22-X12*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
 
      SINVB1=VS1**(-2./3.)*(CAUCH1(1,1)+CAUCH1(2,2)+CAUCH1(3,3)) 
      CID1=kdelta 
      CID1(1,1)=CI1(1,1) 
      CID1(2,2)=CI1(2,2) 
      CID1(3,3)=CI1(3,3) 
 
      CB1=CAUCH1*VS1**(-2./3.) 
c      print*, 2 
C  
C       
C  ------ conditions at mid point -------------- 
C 
      UM=(U0+U1)/2. 
 
      X11=UM(1,1) 
      X12=UM(1,2) 
      X13=UM(1,3) 
      X21=UM(2,1) 
      X22=UM(2,2) 
      X23=UM(2,3) 
      X31=UM(3,1) 
      X32=UM(3,2) 
      X33=UM(3,3) 
  
      UMI(1,1)=(X22*X33-X23*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(1,2)=-(X12*X33-X13*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(1,3)=(X12*X23-X13*X22)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(2,1)=-(X21*X33-X23*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(2,2)=(X11*X33-X13*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(2,3)= -(X11*X23-X13*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(3,1)=(X21*X32-X22*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(3,2)= -(X11*X32-X12*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      UMI(3,3)=(X11*X22-X12*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
       
      VSM=X11*X22*X33-X11*X23*X32-X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22 
       
      CAUCHM=MATMUL(UM,UM) 
      X11=CAUCHM(1,1) 
      X12=CAUCHM(1,2) 
      X13=CAUCHM(1,3) 
      X21=CAUCHM(2,1) 
      X22=CAUCHM(2,2) 
      X23=CAUCHM(2,3) 
      X31=CAUCHM(3,1) 
      X32=CAUCHM(3,2) 
      X33=CAUCHM(3,3) 
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      CIM(1,1)=(X22*X33-X23*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(1,2)=-(X12*X33-X13*X32)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(1,3)=(X12*X23-X13*X22)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(2,1)=-(X21*X33-X23*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(2,2)=(X11*X33-X13*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(2,3)= -(X11*X23-X13*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(3,1)=(X21*X32-X22*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(3,2)= -(X11*X32-X12*X31)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
      CIM(3,3)=(X11*X22-X12*X21)/(X11*X22*X33-X11*X23*X32-
X21*X12*X33+X21*X13*X32+X31*X12*X23-X31*X13*X22) 
 
      SINVBM=VSM**(-2./3.)*(CAUCHM(1,1)+CAUCHM(2,2)+CAUCHM(3,3)) 
      CIDM=kdelta 
      CIDM(1,1)=CIM(1,1) 
      CIDM(2,2)=CIM(2,2) 
      CIDM(3,3)=CIM(3,3) 
 
      CBM=CAUCHM*VSM**(-2./3.) 
c      print*, 3 
 
 
C  GET THE STARTING NONLINEAR STRAIN FUNCTION 
      VS=VS0 
      SINVB=SINVB0 
      CI=CI0 
      CID=CID0 
 
      fb=(tanh(C2*(C1-VS))+1.)/2. 
      SFR=D2 
      Bv=(4.*S0/(3.*(VS-S0)))*(1.-fb*SFR) 
C      Gv=(3.*S0/(5.*VS-2.*S0)) 
C      PHI =3./2.*VS*S0/(5.*VS-2.*S0) 
C      PHIJ =3./2.*S0/(5.*VS-2.*S0)-15./2.*VS*S0/(5.*VS-2.*S0)**2 
C      PHIJJ =-15.*S0/(5.*VS-2.*S0)**2+75.*VS*S0/(5.*VS-2.*S0)**3 
      Gv =3./2.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0) 
      PHI =3./4.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0) 
      PHIJ =3./4.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0)+3./4.*VS*S0*D2*(1.-
tanh(C2G*(-C1+VS))**2)*C2G/(5.*VS-2.*S0)-15./4.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-
D2)/(5.*VS-2.*S0)**2 
      PHIJJ =3./2.*S0*D2*(1.-tanh(C2G*(-C1+VS))**2)*C2G/(5.*VS-2.*S0)-
15./2.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0)**2-3./2.*VS*S0*D2*tanh(C2G*(-
C1+VS))*(1.-tanh(C2G*(-C1+VS))**2)*C2G**2/(5.*VS-2.*S0)-15./2.*VS*S0*D2*(1.-tanh(C2G*(-
C1+VS))**2)*C2G/(5.*VS-2.*S0)**2+75./2.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-
2.*S0)**3 
 
 
      Ba=P0*VS*(1.-S0)/(VS-S0)**2 
      BAINT =P0*(VS-1.)/(VS-S0) 
      BVINT=stateold(km,NSTATEV) 
 
      TSIJJ=Bv/VS 
      TSIJ=BVINT 
 
      TSIJJA=Ba/VS 
      TSIJA=BAINT 
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      STRAN_NLIN0=(VS*TSIJ+VS*PHIJ*(SINVB-3.)-2./3.*PHI*SINVB)*(2.*CI-CID)+2.*PHI*VS**(-
2./3.)*kdelta 
      STRAN_NLINA0=VS*TSIJA*(2.*CI-CID) 
 
c      print*, 4 
 
C  GET THE ENDING NONLINEAR STRAIN FUNCTION 
      VS=VS1 
      SINVB=SINVB1 
      CI=CI1 
      CID=CID1 
 
      fb=(tanh(C2*(C1-VS))+1.)/2. 
      SFR=D2 
      Bv=(4.*S0/(3.*(VS-S0)))*(1.-fb*SFR) 
      Gv =3./2.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0) 
      PHI =3./4.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0) 
      PHIJ =3./4.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0)+3./4.*VS*S0*D2*(1.-
tanh(C2G*(-C1+VS))**2)*C2G/(5.*VS-2.*S0)-15./4.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-
D2)/(5.*VS-2.*S0)**2 
      PHIJJ =3./2.*S0*D2*(1.-tanh(C2G*(-C1+VS))**2)*C2G/(5.*VS-2.*S0)-
15./2.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0)**2-3./2.*VS*S0*D2*tanh(C2G*(-
C1+VS))*(1.-tanh(C2G*(-C1+VS))**2)*C2G**2/(5.*VS-2.*S0)-15./2.*VS*S0*D2*(1.-tanh(C2G*(-
C1+VS))**2)*C2G/(5.*VS-2.*S0)**2+75./2.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-
2.*S0)**3 
 
 
      Ba=P0*VS*(1.-S0)/(VS-S0)**2 
      BAINT =P0*(VS-1.)/(VS-S0) 
      BVINT=stateold(km,NSTATEV) + ( Bv/VSM*(VS1-VS0)) 
 
      TSIJJ=Bv/VS 
      TSIJ=BVINT 
 
      TSIJJA=Ba/VS 
      TSIJA=BAINT 
 
      STRAN_NLIN1=(VS*TSIJ+VS*PHIJ*(SINVB-3.)-2./3.*PHI*SINVB)*(2.*CI-CID)+2.*PHI*VS**(-
2./3.)*kdelta 
      STRAN_NLINA1=VS*TSIJA*(2.*CI-CID) 
 
c      print*, 5 
 
C  GET THE MIDPOINT  NONLINEAR STRAIN FUNCTION 
      VS=VSM 
      SINVB=SINVBM 
      CI=CIM 
      CID=CIDM 
 
 
      fb=(tanh(C2*(C1-VS))+1.)/2. 
      SFR=D2 
      Bv=(4.*S0/(3.*(VS-S0)))*(1.-fb*SFR) 
      Gv =3./2.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0) 
      PHI =3./4.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0) 
      PHIJ =3./4.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0)+3./4.*VS*S0*D2*(1.-
tanh(C2G*(-C1+VS))**2)*C2G/(5.*VS-2.*S0)-15./4.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-
D2)/(5.*VS-2.*S0)**2 
      PHIJJ =3./2.*S0*D2*(1.-tanh(C2G*(-C1+VS))**2)*C2G/(5.*VS-2.*S0)-
15./2.*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-2.*S0)**2-3./2.*VS*S0*D2*tanh(C2G*(-
C1+VS))*(1.-tanh(C2G*(-C1+VS))**2)*C2G**2/(5.*VS-2.*S0)-15./2.*VS*S0*D2*(1.-tanh(C2G*(-
C1+VS))**2)*C2G/(5.*VS-2.*S0)**2+75./2.*VS*S0*(2.+D2*tanh(C2G*(-C1+VS))-D2)/(5.*VS-
2.*S0)**3 
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      Ba=P0*VS*(1.-S0)/(VS-S0)**2 
      BAINT =P0*(VS-1.)/(VS-S0) 
      BVINT=stateold(km,NSTATEV)+1./2.*( Bv/VSM*(VS1-VS0)) 
      DSTATEV(NSTATEV)=Bv/VSM*(VS1-VS0) 
 
      TSIJJ=Bv/VS 
      TSIJ=BVINT 
 
      TSIJJA=Ba/VS 
      TSIJA=BAINT 
 
      STRAN_NLIN=(VS*TSIJ+VS*PHIJ*(SINVB-3.)-2./3.*PHI*SINVB)*(2.*CI-CID)+2.*PHI*VS**(-
2./3.)*kdelta 
      STRAN_NLINA=VS*TSIJA*(2.*CI-CID) 
 
 
C       DE will represent the change in the nonlinear strain function 
 
      DE=(STRAN_NLIN1-STRAN_NLIN0) 
      DEA=(STRAN_NLINA1-STRAN_NLINA0) 
 
      DFSTRAN(1)=DE(1,1) 
      DFSTRAN(2)=DE(2,2) 
      DFSTRAN(3)=DE(3,3) 
      DFSTRAN(4)=DE(1,2) 
      DFSTRAN(5)=DE(1,3) 
      DFSTRAN(6)=DE(2,3) 
 
      DFSTRANA(1)=DEA(1,1) 
      DFSTRANA(2)=DEA(2,2) 
      DFSTRANA(3)=DEA(3,3) 
      DFSTRANA(4)=DEA(1,2) 
      DFSTRANA(5)=DEA(1,3) 
      DFSTRANA(6)=DEA(2,3) 
 
      FINITE_STRAIN=STRAN_NLIN 
 
      FSTRAN(1)=FINITE_STRAIN(1,1) 
      FSTRAN(2)=FINITE_STRAIN(2,2) 
      FSTRAN(3)=FINITE_STRAIN(3,3) 
      FSTRAN(4)=FINITE_STRAIN(1,2) 
      FSTRAN(5)=FINITE_STRAIN(1,3) 
      FSTRAN(6)=FINITE_STRAIN(2,3) 
 
C -------------- CONVERT THE OLD CAUCHY STRESS TO THE OLD 2PK STRESS    ---------------- 
      STRESS(1,1)=stressOld(km,1) 
      STRESS(2,2)=stressOld(km,2) 
      STRESS(3,3)=stressOld(km,3) 
      STRESS(1,2)=stressOld(km,4) 
      STRESS(2,1)=stressOld(km,4) 
      STRESS(1,3)=0 
      STRESS(3,1)=0 
      STRESS(2,3)=0 
      STRESS(3,2)=0 
       
      STRESS=VS0*(matmul(U0I,STRESS)) 
      STRESS=matmul(STRESS,U0I) 
       
      S2PK_OLD(1)=STRESS(1,1) 
      S2PK_OLD(2)=STRESS(2,2) 
      S2PK_OLD(3)=STRESS(3,3) 
      S2PK_OLD(4)=STRESS(1,2) 
       
c            print*, 6 
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C -------------- GET PLASTIC STATE    ---------------- 
 
C   Update the MAXIMUM strains (Note volume strain is negative in compression) 
C   Also compute new plastic strains 
C 
      DO K1=1,NTENS 
          IF (FSTRAN(K1)+DFSTRAN(K1).GT.stateold(km,3*K1-2)) THEN                   
 
              STRAN_TEST=FSTRAN(K1)-stateold(km,3*K1)+DFSTRAN(K1) 
 
              IF ((STRAN_TEST.GT.+1.*ELIMIT).AND.(stateold(km,3*K1).LT.+1.*ESET)) THEN           
                  g(K1)=PR 
              ELSE 
                  g(K1)=0 
              END IF 
              DSTATEV(3*K1-2)=FSTRAN(K1)+DFSTRAN(K1)-stateold(km,3*K1-2) 
              DSTATEV(3*K1-1)=0 
              DSTATEV(3*K1)=DFSTRAN(K1)*g(K1)/(g(K1)+1.) 
 
          ELSE IF ((FSTRAN(K1)+DFSTRAN(K1)).LT.stateold(km,3*K1-1)) THEN               
 
              STRAN_TEST=FSTRAN(K1)-stateold(km,3*K1)+DFSTRAN(K1) 
 
              IF ((STRAN_TEST.LT.-1.*ELIMIT).AND.(stateold(km,3*K1)>-1.*ESET)) THEN         
                  g(K1)=PR 
              ELSE 
                  g(K1)=0 
              END IF 
              DSTATEV(3*K1-2)=0 
              DSTATEV(3*K1-1)=FSTRAN(K1)+DFSTRAN(K1)-stateold(km,3*K1-1) 
              DSTATEV(3*K1)=DFSTRAN(K1)*g(K1)/(g(K1)+1.) 
 
          ELSE 
              DSTATEV(3*K1-2)=0 
              DSTATEV(3*K1-1)=0 
              DSTATEV(3*K1)=0 
              g(K1)=0 
          END IF 
           
      END DO 
c      print*, 61, at 
 
C ********************************************************************************* 
C    CHANGE IN 2PK STRESS COMPONENT (PRONY SYSTEM) 
C ********************************************************************************* 
      SKIP=3*NTENS 
C 
      icnt=0 
      DO K1=1,NTENS 
          vM0=D1*DFSTRAN(K1)/(1.+g(K1))+DFSTRANA(K1) 
          vNUM=vM0 
          DO J1=1,NELS 
              icnt=icnt+1 
              ISTATV=SKIP+icnt 
              TAU=PROPS(J1+NELS) 
              vME=D1*PROPS(J1) 
              vNUM=vNUM + vME*DFSTRAN(K1)/(1.+DTIME/2./TAU) - 
stateold(km,ISTATV)*DTIME/(TAU+DTIME/2.) 
              DSTATEV(ISTATV) = (vME*(DFSTRAN(K1))-
DTIME*stateold(km,ISTATV)/TAU)/(1.+DTIME/2./TAU) 
          END DO 
          DSTRES(K1)=vNUM 
      END DO 
C 



 

 

 

 

216

C 
c      print*, 7 
 
C    GET THE NEW SECOND PIOLA KIRCHOFF STRESS 
 
      DO K1=1,NTENS 
          S2PK_NEW(K1)=S2PK_OLD(K1)+DSTRES(K1) 
      END DO 
       
C    UPDATE THE CAUCHY STRESS 
 
      STRESS(1,1)=S2PK_NEW(1) 
      STRESS(2,2)=S2PK_NEW(2) 
      STRESS(3,3)=S2PK_NEW(3) 
      STRESS(1,2)=S2PK_NEW(4) 
      STRESS(2,1)=S2PK_NEW(4) 
      STRESS(1,3)=0 
      STRESS(3,1)=0 
      STRESS(2,3)=0 
      STRESS(3,2)=0 
       
      STRESS=(matmul(U1,STRESS)) 
      STRESS=matmul(STRESS,U1)/VS1 
       
      stressNew(km,1)=STRESS(1,1) 
      stressNew(km,2)=STRESS(2,2) 
      stressNew(km,3)=STRESS(3,3) 
      stressNew(km,4)=STRESS(1,2) 
 
C 
C    UPDATE THE STATE VARIABLES 
C 
      do K1=1,NSTATEV 
          stateNew(km,K1)=StateOld(km,K1)+DSTATEV(K1) 
      end do 
c      print*, 8 
 
  
  
C 
100    continue      
C   
      RETURN 
      END 

 



 

 

 

 

217

 

Bibliography 

[1] Ferry, J.D. , Viscoelastic Properties of Polymers; John Wiley & Sons, New York, 

1980 

[2] Rosen, S.L. Fundamental Principles of Polymeric Materials, 2nd ed., John Wiley & 

Sons, New York, 1993 

[3] Christensen, R.M., Theory of Viscoelasticity, An Introduction, Academic Press, New 

York, 1982 

[4] Christensen, R.M., Mechanics of Composite Materials, John Wiley & Sons, New 

York, 1979 

[5] Findley, W. N.; Lai, J. S.; Onaran, K. Creep Relaxation of Nonlinear Viscoelastic 

Materials – with an Introduction to Linear Viscoelasticity, Dover Publications, Inc, 

New York, 1989 

[6] Park, S.W.; Schapery, R.A.,   “Methods of Interconversion Between Linear 

Viscoelastic Material Functions. Part I - a Numerical Method Based on Prony 

Series”,  International Journal of Solids and Structures, v 36, no. 11, Apr 1999, pp 

1653-1675 

[7] Sherwood, J. A.; “Constitutive Modeling and Simulation of Energy Absorbing 

Polyurethane Foam Under Impact Loading”, Polymer Engineering and Science, v 32, 

no. 16, Aug 1992, pp. 1138-1146 



 

 

 

 

218

[8] Shim, V.P.W.; Yang, L. M.; et al., “A Visco-Hyperelastic Constitutive Model to 

Characterize Both Tensile and Compressive Behavior of Rubber”, Journal of Applied 

Polymer Science, v 92, no. 1, Apr 5, 2004, pp. 523-531 

[9] Jung, G.; Youn, S.; and Kim, B;  “Development of a three-dimensional nonlinear 

viscoelastic constitutive model of solid propellant”,  J. Braz. Soc. Mech. Sci., 2000, 

v.22, no.3, pp.457-476. 

[10] Farber, J. N.; Farris, R. J.  “Model for prediction of the elastic response of reinforced 

materials over wide ranges of concentration”,  Journal of Applied Polymer Science 

v 34, no. 6, 1987. pp. 2093-2104 

[11] Shim, V.P.W.; Yang, L. M.; et al., “A Visco-Hyperelastic Constitutive Model to 

Characterize Both Tensile and Compressive Behavior of Rubber”, Journal of Applied 

Polymer Science, v 92, no. 1, Apr 5, 2004, pp. 523-531 

[12] Hibbit, Karlsson and Sorenson Inc., 2004, “ABAQUS theory manual”, Version 6.4. 

[13] Livermore Software Technology Corp.; Hallquist, J. O. (ed.), LS-DYNA Theoretical 

Manual, May 1998 

[14] Peyraut, F.; “Loading Restrictions for the Blatz-Ko Hyperelastic Model – 

Application to a Finite Element Analysis”, International Journal of Non-Linear 

Mechanics, v. 39 2004, pp. 969-976 



 

 

 

 

219

[15] Farber, J. N.; Farris, R. J.  “Model for prediction of the elastic response of reinforced 

materials over wide ranges of concentration”,  Journal of Applied Polymer Science 

v 34, no. 6, 1987. pp. 2093-2104 

[16] Feng W.W.; Hallquist J.O.;  “On Constitutive Equations for Elastomers and 

Elastomeric Foams”, 4th European LS-DYNA Users Conference, 2003 

[17] Pan, E.; Sassolas, B.; and Pfeffer, W. T. “A 3-D boundary Element Formulation of 

Viscoelastic Media with Gravity”, Computational Mechanics, v. 19, 1997,  pp. 308-

316 

[18] Lubliner, J;  “A Model of Rubber Viscoelasticity”, Mechanics Research 

Communications, v.12, no. 2, 1985, pp. 93-99 

[19] Holzappel, G. A.; “On Large Strain Viscoelasticity: Contunuim Formulation and 

Finite Element Applications to Elastomeric Structures”, International Journal for 

Numerical Methods in Engineering”, v. 39, 1996 pp. 3903-3926 

[20] Holzappel, G. A.; Simo, J.C.;  “A New Viscoelastic Constitutive Model for 

Continuous Media at Finite Thermomechanical Changes”, International Journal of 

Solid Structures”, v. 33, no. 20-22 1996 pp. 3019-3034 

[21] Simo, J. C.;  “On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage 

Model: Formulation and Computational Aspects”, Computer Methods in Applied 

Mechanics and Engineering, v. 60, 1987, pp. 153-173 



 

 

 

 

220

[22] Amin, A. F. M. S.; Alam, M. S.; Okui, Y.; “An Improved Hyperelasticity Relation in 

Modeling Viscoleasticity Response of Natural and High Damping Rubbers in 

Compression: Experiments, Parameter Identification and Numerical Verification”, 

Mechanics of Materials, v. 34 (2002) pp. 75-95 

[23] Nedjar, B.; “Frameworks for Finite Strain Viscoelastic-Plasticity Based on 

Multiplicative Decomposition.  Part 1: Continuum Formulations”, Computer Methods 

in Applied Mechanics and Engineering”, v. 191 (2002), pp. 1541-1562 

[24] Yang, L. M. ;  “Visco-hyperelastic Approach to Modelling the Constitutive Behavior 

of Rubber” , International Journal of Impact Engineering, v. 24 no. 6, Jun 2000, pp. 

545-560 

[25] Yang, L. M.;  “A Visco-Hyperelastic Constitutive Description of Elastomeric Foam” 

International Journal of Impact Engineering, v. 30 no. 8-9, Sep-Oct 2004, pp. 1099-

1110 

[26] Bilkard, J.; “Finite Viscoelasticity, Plasticity and Damage of a Class of Filled 

Elastomers: Constitutive Model”, Mechanics Research Communications, v. 28, no. 6, 

Nov-Dec, 2001, pp. 693-702 

[27] Chiyokura, K; Wantanabe, O.; “Consitutive Equation of Dynamic Plasticity Using 

Internal Time Theory (Uniaxial Response and Determination of Material Constants)”, 

Transactions of the Japan Society of Engineers, Part Am v. 59, no. 567, Nov 1993, 

pp. 2626-2634 



 

 

 

 

221

[28] Tsakmakis, C.; Haupt, P; “On The Hypoelastic-Idealplastic Constitutive Model”, 

Acta Mechanica, v 80, no. 3-4, Dec 1989, pp. 273-285 

[29] Richardson, M. O. W.; Nandra, D. S.; “Load Deflection Analyses of Shock 

Mitigating Polyurethane-Silicon Foams”, Cellular Polymers, v 4, no. 6, 1985, pp. 

445-462 

[30] Zhang, X.; Liu, L.; Zhang, J; Chen, Q; Zhang, L.; “Study on Mircostructure and 

Mechanical properties Relationship of Short Fibers/Rubber Foam Composites”, 

European Polymer Journal, v. 40, no. 8, Aug 2004, pp.1733-1742 

[31] Siegmann, A.; “Mechanical Behavior of Reinforced Polyurethane Foams”, Polymer 

Composites, v. 4, no. 2, Apr 1983, pp. 113-119  

[32] Gibson, L. J.; Ashby, M. F.;  “Mechanics of Three-Dimensional Cellular Materials”, 

Proceeding of the Royal Society of London, Series A: Mathematical and Physical 

Sciences, v. 382, no. 1782, Jul 1982, pp. 43-59 

[33] Farber, J. N.; “Model for Prediction of Elastic Response of Reinforced Materials 

over Wide Ranges of Concentration”, Journal of Applied Polymer Science, v 34, no. 

6 Nov 1987, pp. 2093-2104 

[34] Fish, J; Shek, K.; “Finite Deformation Plasticity Based on the Additive Split of the 

Rate of Deformation And Hyperelasticity”, Computational Methods in Applied 

Mechanical Engineering, v. 190, 2000, pp. 75-93 



 

 

 

 

222

[35] Bardenhagen, S. G.; Stout, M. G.; Gray, G. T.; “Three-dimensional, finite 

deformation, viscoplastic constitutive models for polymeric materials”, Mechanics of 

Materials, v 25,  1997, pp. 235-253 

[36] Du Bois, P. A.; Kolling, S.; Koesters, M; Frank, T.; “Material Behaviour of 

Polymers Under Impact Loading”, International Journal of Impact Engineering, v 32, 

2006, pp. 725-740 

[37] Kakavas, P. A.; Anifantis, K; “Effective Moduli of Hyperelastic Porous Media at 

Large Deformation”, Acta Mechanica, v. 160, 2003, pp. 127-147 

[38] Bikard, J.; Désoyer, T.; “Finite Viscoelasticity, Plasticity and Damage of a Class of 

Filled Elastomers: Constitutive Model”, Mechanics Research Communications, v 28, 

no. 6, 2001, pp. 693-702 

[39] Lopez-Pamies, O.; Castañeda, P. P.; “Second-Order Estimates for the Macroscopic 

Response and Loss of Ellipticity in Porous Rubbers at Large Deformations”, Journal 

of Elasticity, v. 76,  2004, pp. 247-287 

[40] Mettupalayam, V.; Sivaselvan, V; Reinhorn, A; “Hysteretic Models for Deteriorating 

Inelastic Structures”, Journal of Engineering Mechanics, June 2000, pp. 633-640 

[41] Browning R. V.; Gurtin, M. E.; Williams, W. O.; “A One-Dimensional Viscoplastic 

Constitutive Theory for Filled Polymers”, International Jounral of Solids and 

Structures, v 20, no. 11/12, 1984, pp. 921-934 



 

 

 

 

223

[42] Danielsson, M.; Parks, D.M.; Boyce, M.C; “Constitutive Modeling of Porous 

Hyperelastic Materials”, Mechanics of Materials, v. 36, 2004, pp. 347-358 

[43] Blatz, P. J.; Ko, W. L; “Application of Finite Elastic Theory to the Deformation of 

Rubbery Materials”, Transactions of the Society of Rheology, v. 6, 1962, pp. 223-251 

[44] Casem, D. T.; Fourney, W. L; Chang, P;  “A Polymeric Split Hopskinson Pressure 

Bar Instrumented with a Velocity Gauge”, Society for Experimental Mechanics, v. 43, 

no. 4, 4 Dec 2003, pp. 420-427 

[45] Frew, D. J.; Forrestal, M. J; Chen, W;  “Pulse Shaping Tecniques for Testing Elastic-

plastic Materials with a Split Hopksinson Pressure Bar”, Society for Experimental 

Mechanics, v 45, no. 2, April 2005, pp. 186-195 

[46] Gavrus, A.; Caestecker, E; Ragneau, E; Davoodi, B; “Analysis of the Dynamic 

SHPB Test Using the Finite Element Simulation”, Society for Experimental 

Mechanics, v 45, no. 2, April 2005, pp. 186-195 

[47] Liu, Q. L.; Subhash, G.;  “A Phenomenological Constitutive Model for Foams Under 

Large Deformations”, Polymer Engineering and Science, v 44, no. 3, March 2004, 

pp. 463-473 

[48] Fish, J; Shek, K.; “Finite Deformation Plasticity Based on the Additive Split of the 

Rate of Deformation and Hyperelasticity”, Comp. Meth. Appl. Mech. Engng., v 190, 

2000, pp. 75-93 



 

 

 

 

224

[49] Zhou X.; Sha D.; Tamma, K.; “A Novel Nonlinearly Explicit Second-Order Accurate 

L-Stable Methodology for Finite Deformation Hypo/Hypoelasto-Plastic Structural 

Dynamics Problems with Total/Updated Lagrangian Formulations”, AIAA-2002-

1304., 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 

Materials Conference, 2002 

[50] Drucker, D.C.; “A Definition of Stable Inelastic Material”, J. Appl. Mech., v 26, 

1959, pp. 101-106 

[51] Guillot, F. M.; Trivett, D. H.; “A Dynamic Young’s Modulus Measurement System 

for Highly Compliant Polymers”, J. Acoust. Soc. Am., v 114 (3), Sep 2003, pp. 1334-

1345 

[52] Ramesh, K. T.; Narasimham, S.; “Finite Deformations and the Dynamic 

Measurement of Radial Strains in Compression Kolsky Bar Experiments”, Intl. J. of 

Solids and Structures, v 33, 1996, pp. 3723-3738 

[53] Scott, N. H.; “The Incremental Bulk Modulus, Young’s Modulus and Poisson’s 

Ratio in Nonlinear Isotropic Elasticity: Physically Reasonable Response”, 

Mathematics and Mechanics of Solids OnlineFirst, April 7, 2006 

[54] Ogden, R. W.; “Large Deformation Isotropic Elasticity: On the Correlation of 

Theory and Experiment for Compressible Rubberlike Solids”, Proc. R. Soc. London, 

1972 



 

 

 

 

225

[55] Jemiolo, S; Turteltaub, S.; “A Parametric Model for a Class of Foam-Like Isotropic 

Hyperelastic Materials”, Trans. of the ASME, v 67, June, 2000, pp. 248-254 

[56] Kramers, H. A; Nature, v 117, 1925, pp. 775 

[57] Kronig, R. de L.; Journal of the Optical Society of America, v 12, 1926, pp. 547 

[58] Beda, T.; “Reconciling the Fundemental Phenomenological Expression of the Strain 

Energy of Rubber with Established Experimental Facts”,  Wiley InterScience,  21 Aug 

2004 

[59] Wijeyewickrema, A. C.; “Prediction of Interphase Properties of  a Three-Phase 

Composite Using Three-Phase and Four-Phase Composite Models”, 16th ASCE 

Engineering Mechanics Conference, July 16-18, 2003 

 

 


	P
	p
	S
	V
	1. Introduction
	1.1. Linear Viscoelasticity and Creep
	1.1.1.  Viscoelastic Phenomenon in Polymers
	1.1.2. 1-Dimensional Linear Viscoelasticity
	1.1.3. Viscoelastic Models
	1.1.4. 3-D Linear Viscoelasticity

	1.2. Hyperelasticity
	1.2.1. Specific Forms of the Hyperelastic Potential
	Neo-Hookean. 
	Moony- Rivlin
	Ogden form.
	Yeoh form
	 Blatz-Ko


	1.2.2. Hyperviscoelasticity

	1.3. Hypoelasticity
	1.4. Strain/Strain-Rate Reparability
	1.5. Plasticity
	1.6. High Strain – High Strain-rate Experiments
	1.6.1. Split Hopkinson Pressure Bar
	1.6.2. Conical Shock Tube

	1.7. Objectives of Current Research
	1.8. Summary

	2. Constitutive Theory
	2.1. Three-phase Composite Theory
	2.2. Cell-Wall Bending Softening Factor
	2.3. Consistent Hyperelastic Form
	2.4. Stress and Tangent Moduli
	2.4.1. A Note on Stability

	2.5. Relationship between the Hyperelastic Form and Hydrostatic Moduli
	2.5.1. Nonlinear Strain Functions

	2.6. Incorporation of Viscoelastic Relaxation and Plasticity
	2.7. Time Incremental formulation
	2.8.  The Incremental Stress Jacobian and Partial Time Derivative 
	2.9. Summary 

	3. Characterization of Commercial Closed Cell Foams 
	3.1. Foam Samples
	3.2. Characterization Experiments
	3.2.1. Dynamic Mechanical Thermal Analysis
	3.2.1.1. Determining Prony Coefficients
	3.2.1.2. Prony Series Optimization for RUBATEX R8702
	3.2.1.3.  Prony Series Optimization for RUBATEX R451

	3.2.2. APP Dilatometer 1000 Compression Test
	3.2.2.1. Determining Three-Phase Parameters
	3.2.2.2. Three-Phase and Plastic Parameters Optimization for R451
	3.2.2.3. Three-Phase and Plastic Parameters Optimization for R8702


	3.3. Summary

	4. Shock Experiments
	4.1. Split Hopkinson Pressure Bar Experiments
	4.1.1. SHPB Results for RUBATEX R451
	4.1.2. SHPB Results for RUBATEX R8702

	4.2. Conical Shock Tube Experiments
	4.2.1. CST Results for RUBATEX R451
	4.2.2. CST Results for RUBATEX R8702

	4.3. Summary

	5. Finite Element Implementation
	5.1. Dedicated MATLAB Model
	5.1.1. Axisymmetric Element Derivation
	5.1.1.1. Element Stabilization and the Prevention of Hour Glassing
	5.1.1.2. Mass Matrix

	5.1.2. The Equation of Motion
	5.1.3. Mesh Transition

	5.2. ABAQUS/EXPLICT User Defined Material Subroutine (VUMAT)
	5.3. Summary

	6. Comparisons of FE Simulations and Experimental Data
	6.1. MATLAB SHPB Model Compared with Experimental Data
	6.1.1. Still Images from SHPB Simulations of R8702
	6.1.2. SHPB Simulations for R8702 Compared with Measurements
	6.1.2.1. Use of Christensen’s shear equation

	6.1.3. SHPB Simulations for R451 Compared with Measurements
	6.1.3.1. Use of High Loss Factor Weighting for R451


	6.2. Comparison of ABAQUS and MATLAB Models for SHPB Cases
	6.3. ABAQUS CST Model Compared with Experimental Data
	6.3.1.  CST Simulations for R8702 Compared with Measurements
	6.3.2. CST Simulations for R451 Compared with Measurements

	6.4. Summary

	7. Summary and Conclusions

