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Abstract 

Fair sequences are useful in a variety of manufacturing and computer systems.  This 

paper considers the generation of cyclic fair sequences for a given set of products, each of which 

must be produced multiple times in each cycle.  The objective is to create a sequence so that, for 

each product, the variability of the time between consecutive completions is minimized.  

Because the problem is known to be NP-hard, we present a heuristic that combines aggregation 

and parameterized stride scheduling.  This novel algorithm combines products with the same 

demand into groups, creates a sequence for those groups, and then disaggregates the sequence 

into a sequence for each product.   

Introduction 

When a resource must serve many demands simultaneously, it is important to schedule 

the resource’s activities in some fair manner, so that each demand receives a share of the 

resource that is proportional to its demand relative to the competing demands.  A mixed-model 

assembly line, to mention one standard example, should produce different products at rates that 

are close to the given demand for each product.  Similarly, computer systems must service 

requests that have different priorities.   

Both applications demonstrate the need for a fair sequence.  Kubiak (2004) provides a 

good overview of fair sequences and the product rate variation problem and reviews important 
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results.  Miltenburg (1989) and Inman and Bulfin (1991) were some of the first to discuss the 

problem of mixed-model assembly lines.  Waldspurger and Weihl (1995) discuss the problem in 

computer system applications and provide an important stride scheduling heuristic.  Kubiak 

(2004) discusses a parameterized stride scheduling heuristic that we will adapt in our work.   

We were motivated to consider the fair sequencing problem while working with a 

healthcare facility that needed to schedule the collection of waste from waste collection rooms 

throughout the building.  Given data about how often a trash handler needs to visit each room (to 

take away a cart of waste), the facilities manager wanted these visits to occur as regularly as 

possible so that excessive waste would not collect in any room.  For instance, if a room needs 

four visits per eight-hour shift, then, ideally, it would be visited every two hours.  Given a 

schedule for one shift, the same schedule can be repeated every shift.  The time to visit each 

room and return with the trash cart varies slightly depending on the room location and other 

factors.  However, the variation is small and can be ignored.  The problem is difficult because 

different rooms require a different number of visits per shift.   

This problem is clearly one of creating a fair sequence.  In the product rate variation 

problem, the typical objective is to minimize the maximum absolute deviation (over each product 

and each position in the finite sequence) between the actual cumulative production and the ideal 

cumulative production.  However, a more appropriate objective in a cyclic situation is to 

minimize the variability in the time between consecutive completions of the same task 

(consecutive visits to the same room in our waste collection problem).   

If the intervals between consecutive completions of the same task had to be equal to a 

predetermined quantity, we would have the periodic maintenance scheduling problem (Wei and 
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Liu, 1983).  However, in our case, we don’t require this and instead seek to keep the intervals 

nearly the same.   

After trying some existing approaches, which created solutions that had excessive 

variability, we developed a new approach that combines aggregation and parameterized stride 

scheduling. 

This paper will formulate the fair sequencing problem that we consider, present an 

example, describe and analyze our new algorithm, and present results comparing its performance 

to that of other approaches. 

Problem Formulation 

Given a single server that must produce n products, each with a demand  that is a 

positive integer, let .  A feasible sequence has length D, and each product i 

occurs exactly  times in the sequence.  We assume that each product requires the same amount 

of time, so we can ignore time and consider only the positions in the sequence.  Moreover, this 

sequence will be repeated, and we will call each occurrence a cycle.  The response time 

variability of a feasible sequence is a function of the response time variability for each product.  

If product i occurs at positions {

id

1 nD d d= + +"

id

}1, ,
ii idp p… , the response time variability is a function of the 

intervals between each position, which are { }1, ,
ii idΔ Δ… , where the intervals are measured as 

follows (with ): 0 ii idp p= − D

  , 1ik ik i kp p −Δ = −

The average interval for product i is , so we can define the total variability V of a 

sequence as follows: 
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This problem is NP-hard (Kubiak, 2004).  Note that changes to the absolute positions do 

not change the variability.  The objective function value is invariant under any translations or 

reflection. 

Example 

To clarify the problem, we will present a simple, hypothetical example (Example 2 from 

Miltenburg, 1989).  There are n = 3 products with demands d = (6, 6, 1).  Therefore, D = 13.  

One feasible sequence is (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3).  The variability V = 5/3.  (Note that, 

as long as the sequence iterates between products 1 and 2, the position of product 3 is irrelevant 

to the variability.) 

Another feasible sequence is (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3).  The variability of this 

sequence is V = 81 2/3, which is 49 times greater than the variability of the previous fair 

sequence. 

Equal Demand 

An important special case occurs when all of the products have the same demand.  That 

is,  for all i.  Note that D = nd.  One can form a sequence with V = 0 by combining d 

copies of any permutation of {1, …, n}.  The intervals for each product are all n. 

id d=

The aggregation procedure that we present below exploits this special case.  The 

disaggregation is simple because it is solving subproblems that are instances of this special case. 

Parameterized Stride Scheduling 

The parameterized stride scheduling algorithm builds a fair sequence and performs well 

at minimizing the maximum absolute deviation (Kubiak, 2004).  The algorithm has a single 
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parameter δ that can range from 0 to 1.  This parameter affects the relative priority of low-

demand products and their absolute position within the sequence.  When δ is near 0, low-demand 

products will be positioned earlier in the sequence.  When δ is near 1, low-demand products will 

be positioned later in the sequence.   

The algorithm starts with an empty sequence.  Given a partial sequence, with the first k 

positions filled, let ikx  be the number of times that product i occurs in those k positions.  Then, 

position  is allocated to customer i* where  1k +

 * arg max i

i
ik

di
x δ

⎧ ⎫
= ⎨ ⎬+⎩ ⎭

 

Of course, there may be ties, so a tie-breaking procedure is needed.  We always select the 

lowest-numbered product to break a tie.  The computational effort of the algorithm is O(nD).   

In the example above, the parameterized stride scheduling algorithm generates the first 

sequence when δ = 1.  If δ = 0.5, product 3 would appear in position 7.  As mentioned before, 

this translation does not affect the variability. 

Another Example 

The parameterized stride scheduling algorithm can generate sequences with large 

variability.  Consider the following example. There are n = 14 products with demands d = (20,  

2, 2, …, 2).  Therefore, D = 46.  The parameterized stride scheduling algorithm (with δ = 0.5) 

generates the following sequence is (1, 1, 1, 1, 1, 2, 3, …, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, …, 

14, 1, 1, 1, 1, 1).  The sequence is shown in Figure 1.  The variability V = 304.2.  (Other values 

of δ change the absolute position of the low-demand products but not the variability.) 

The high variability of this sequence occurs because the algorithm positions all of the 

low-demand products together, which creates a lumpy pattern for the high-demand product.  A 

more fair sequence would blend the two types of products more evenly. 
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Aggregation 

To do this blending, we will combine products that have the same demand into groups.  

This has two benefits.  First, it reduces the number of products that need to sequenced.  

Secondly, because a group will have higher demand, it will be blended better than the individual 

products. 

The aggregation procedure works as follows.  If there are k products and groups with the 

same demand d, then replace the k products by a group that has demand kd.  The products and 

groups replaced are called the children of the new group.  Note that the total demand remains the 

same.  Repeat until there are no products or groups that have the same demand. 

We then apply the parameterized stride scheduling algorithm to the remaining products 

and groups.  After generating a sequence, we disaggregate each group as follows:  Consider a 

group with k children that has been assigned kd positions in the sequence.  Order the children 

from first to last (any permutation is acceptable).  The first position goes to the first child in the 

group, the second to the second child, and so forth.  Position 1k +  goes to the first child, position 

 position goes to the second child in the group, and this continues until all kd positions have 

been assigned.  Each child gets d positions.  If a child is a group, then the positions assigned to it 

must go to its children in a similar manner.  Repeat until all groups in the original sequence have 

been disaggregated. 

2k +

The aggregation procedure requires O(n) time.  If the aggregation creates a problem with 

G groups (some of which may be individual products), then scheduling algorithm requires 

O(GD) time.  Note that the disaggregation does not require stride scheduling but only counting.  

Let H be the maximum number of levels in the aggregation (i.e., the maximum number of 

 6



generations).  Th disaggregation requires O(HD) effort because there are only D positions to 

allocate, and each position is assigned at most H times. 

In the example above, the aggregation procedure replaces the 13 low-demand products by 

one group with a demand of 26.  The parameterized stride scheduling algorithm (with δ = 0.5) 

generates the aggregate sequence shown in the top part of Figure 2.  Disaggregation yields the 

aggregate sequence shown in the bottom part of Figure 2.  The variability V has been reduced 

from 304.2 to 4.2. 

The aggregation may be more complex.  For instance, consider a problem with n = 14 

products with demands d = (1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 10).  The five products with 

demand equal to 1 are replaced with a group with demand equal to 5.  Because 11 5d = , this 

group and product 11 can be replaced with a group with demand equal to 10.  Because 14 10d = , 

this group and product 14 can be replaced with a group with demand equal to 20.  In a similar 

manner, products 6, 7, and 8 (with demand equal to 2) are replaced with a group, and this group 

and the product 12 can be replaced by a second supergroup.  The aggregation, which has H = 4 

levels, is shown in Figure 3.  

When a sequence for the five remaining groups is generated, every other position 

allocated to the first supergroup will go to product 14.  Then, every other of the 10 remaining 

positions will go to product 11.  This leaves 5 positions that can be assigned to products 1 

through 5 in any way.   

The aggregation can greatly simplify sequencing.  If only one supergroup remains, then it 

gets all of the positions in the sequence, and one can immediately proceed to disaggregation.  For 

instance, consider the following example from Waldspurger and Weihl (1995).  There are n = 

101 products with demands d = (100, 1, 1, …, 1).  Therefore, D = 200.  To solve this problem, 
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we first aggregate the one hundred low-demand products into one group with a total demand of 

100.  Then we aggregate the group and the high-demand product into a supergroup with a total 

demand of 200.  Now that we have only one group, we disaggregate the 200 positions by 

allocating them alternately to the high-demand product and the group of 100.  Then, we 

disaggregate the group’s 100 positions by giving one to each low-demand product.  The resulting 

sequence has zero variability. 

We note that Waldspurger and Weihl (1995) present a hierarchical stride scheduling 

algorithm that combines products into groups.  They suggest the use of a binary tree to minimize 

the maximum absolute deviation.  The key distinction between their hierarchical stride 

scheduling algorithm and the aggregation approach presented here is that their algorithm requires 

using the stride scheduling algorithm to disaggregate each group, since the products in a group 

may have unequal demands.  Also, the placement of products in the tree not specified.  Because 

our aggregation scheme groups products with equal demand, the disaggregation is much simpler.  

The limitation, however, is that the problem must have some equal demand products. 

Finally, after developing this aggregation procedure, we discovered that Wei and Liu 

(1983) had suggested that machines with the same maintenance interval could be replaced by a 

substitute machine with a smaller maintenance interval and that this replacement would facilitate 

finding a feasible solution.  However, their insight was not developed into a solution algorithm. 

Better Aggregation 

The aggregation procedure specified above creates an effective set of groups.  However, 

it is not guaranteed to create an minimal variability sequence.  Consider, for instance, a problem 

with n = 17 products with the following demands: d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 7, 

14).  D = 42.  The standard aggregation groups the nine products with demand equal to 1 into a 
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group and the six products with demand equal to 2 into another group.  After using the 

parameterized stride scheduling algorithm and disaggregating, the resulting sequence has a 

variability of V = 20.   

However, it is possible to create a sequence with no variability as follows.  First, replace 

seven of the products with demand equal to 1 by a group with demand equal to 7, and then 

replace the other two products with demand equal to 1 by a second group with demand equal to 

2.  Replace these first of these groups and product 16 (whose demand equals 7) by a group with 

demand equal to 14.  Replace the second group and the six products with demand equal to 2 by a 

group with demand equal to 14.  Finally, because 17 14d = , replace the two supergroups and the 

product 17 by a supergroup with demand equal to 42.  We can then disaggregate the sequence to 

form a sequence with no variability (see Figure 6).  

This example also illustrate that it may be possible, by combining the products in a 

different way, to create a better aggregation (one that leads to a sequence with lower variability). 

Skewed Demand Distributions 

We can show that the aggregation procedure significantly reduces variability for 

instances with skewed demand distributions. 

In this case, there are n products.  The demand of product 1 equals d, where .  

The demand of the remaining  products equals 1.  Therefore, 

1d n≥ −

1n − 1D d n= + − . 

If δ = 1, then the parameterized stride scheduling algorithm creates a sequence with 

product 1 in the first d positions.  This occurs because the priority for any low-demand product 

equals 1, but the priority for product 1 when considering position 1k +  equals , which 

is greater than or equal to one until that product has received d positions.  The remaining 

/( 1)d k +

1n −  

positions are occupied by the  low-demand products.   1n −
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If δ < 1, then the parameterized stride scheduling algorithm will first assign k positions to 

product 1, where k is the smallest positive integer such that /( ) 1/d k δ δ+ < .  Then, the 

algorithm will assign the low-demand products (which now have the larger priority) to the next 

 positions.  The remaining  positions will be assigned to product 1.   1n − d k−

In either case, product 1 has 1d −  intervals that equal 1 and one interval that equals n.  

The intervals for the low-demand products are all D. Therefore, the variability 

( )( ) ( )( )21 11 1 1nV d n d n n
d d

−
= − − = − − +1 . 

Now, we aggregate the low-demand products into a single group.  Let  be the 

demand for this group.  (Thus, .)  We will show that the parameterized stride scheduling 

algorithm will assign  positions for the group such that the group does not have any two 

consecutive positions.  Consider the first position.  The priority of product 1 equals d/δ, which is 

greater than or equal to the priority of the group, which equals m/δ.  Thus, product 1 receives the 

first position.   

1m n= −

d m≥

1n −

Now, assume that product 1 received position k p+  (giving product 1 a total of k 

positions and the group a total of p positions) and the group received position  (giving it 

a total of  positions).  The following conditions must hold: 

1k p+ +

1p +

 
1
d

k p
m

δ δ
≥

− + +
 (1) 

 d m
k pδ δ

<
+ +

 (2) 

Condition (1) holds because product 1 received position k p+ , and condition (2) holds 

because the group received position 1k p+ + .  
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Now consider position .  From (1) we have that dp2k p+ + d mk m mδ δ+ ≥ − + .  

Because m is not greater than d, we can derive the following: 

 

( )

( 1

1

m k dp d m
dp d d
d p

m d
p k

)

δ δ
δ

δ

δ δ

+ ≤ + +
≤ + +
= + +

≤
+ + +

 

Therefore, product 1 will receive position 2k p+ + .  We can conclude that the group 

never receives two consecutive positions. 

Then, for product 1, there are 1n −  intervals that equal 2 and 1d n− +  intervals that equal 

1.  After disaggregation, the intervals for the products in the group are all D. In this case, the 

variability (1 1nV d n
d
−

= − )+ , which is clearly smaller than the variability of the sequence 

obtained without aggregation. 

A Waste Collection Example 

We now consider an instance from the waste collection setting that motivated this work.  

There are n = 14 products with demands d = (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5).  Therefore, D = 

46.  Using the parameterized stride scheduling algorithm with any δ creates a sequence with 

variability V = 344.267, as shown in Figure 4.   

The sequence created by the hierarchical stride scheduling algorithm depends upon how 

the products are placed into the binary tree.  If the products with equal demand are grouped at the 

lowest levels of the tree, then the variability of the resulting sequence is V = 40.267.  However, 

other placements lead to sequences with variability over ten times greater. 
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The aggregation procedure creates four groups with the following demands: (8, 12, 16, 

10).  After running the parameterized stride scheduling algorithm and disaggregating, the 

variability is reduced to V = 8.267.  The sequences are shown in Figure 5. 

Summary and Conclusions 

Unlike most other work on fair sequences, we have considered the response time 

variability of cyclic sequences.  Because absolute position is not important, our novel 

aggregation scheme, combined with parameterized stride scheduling, creates sequences with low 

variability.  We have proven its superiority in the case of skewed demand distributions and 

demonstrated its performance on a variety of examples, including one from the real-world 

problem that motivated this work.  The aggregation scheme has been used to create sequences 

for the waste management problem. 

In the case of multiple servers, it would be interesting to look at the problem under the 

constraint that, for each product, all of its demand must be satisfied by exactly one of the servers.  

That is, the products are first assigned to servers, and then we seek to find a low variability 

sequence for each server.   
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Figures  

 
Figure 1. The sequence created by stride scheduling for a problem with one product whose demand equals 20 

and thirteen products whose demand equals 2.  Each row represents a different product.  Each box 
represents a position allocated to that product. 

Group sequence

Product sequence  
Figure 2. The sequence created by aggregation and stride scheduling for a problem with one product whose 
demand equals 20 and thirteen products whose demand equals 2.  In the top sequence, the first row is the 

high-demand product and the second row is the group of low-demand products. 
In the bottom sequence, each row represents a different product.   

Each box represents a position allocated to that product. 
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Figure 3. Aggregation of products into groups and supergroups.   

The numbers that are not underlined represent the demand of different products.   
The underlined numbers represent the demand of groups or supergroups. 

 
Figure 4. The sequence created by stride scheduling for a problem with fourteen products.  Each row 

represents a different product.  Each box represents a position allocated to that product. 

Group sequence

Product sequence  
Figure 5. The sequence created by aggregation and stride scheduling for a problem with fourteen products.  

In the top sequence, each row represents one of the groups.  
In the bottom sequence, each row represents a different product.   
Each box represents a position allocated to the group or product. 
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Figure 6. The disaggregated sequence with no variability for a problem with seventeen products.   

Each row represents a different product.   
Each box represents a position allocated to the group or product. 
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