
The Institute for Systems Research

ISR develops, applies and teaches advanced methodologies of design and

analysis to solve complex, hierarchical, heterogeneous and dynamic prob-

lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the

A. James Clark School of Engineering. It is a graduated National Science

Foundation Engineering Research Center.

www.isr.umd.edu

Generating Cyclic Fair Sequences
using Aggregation and Stride

Jeffrey W. Herrmann

ISR Technical Report 2007-12

Generating Cyclic Fair Sequences using Aggregation and Stride Scheduling

Jeffrey W. Herrmann
Department of Mechanical Engineering

2181 Martin Hall
University of Maryland

College Park, MD 20742
301-405-5433

jwh2@umd.edu

Abstract

Fair sequences are useful in a variety of manufacturing and computer systems. This

paper considers the generation of cyclic fair sequences for a given set of products, each of which

must be produced multiple times in each cycle. The objective is to create a sequence so that, for

each product, the variability of the time between consecutive completions is minimized.

Because the problem is known to be NP-hard, we present a heuristic that combines aggregation

and parameterized stride scheduling. This novel algorithm combines products with the same

demand into groups, creates a sequence for those groups, and then disaggregates the sequence

into a sequence for each product.

Introduction

When a resource must serve many demands simultaneously, it is important to schedule

the resource’s activities in some fair manner, so that each demand receives a share of the

resource that is proportional to its demand relative to the competing demands. A mixed-model

assembly line, to mention one standard example, should produce different products at rates that

are close to the given demand for each product. Similarly, computer systems must service

requests that have different priorities.

Both applications demonstrate the need for a fair sequence. Kubiak (2004) provides a

good overview of fair sequences and the product rate variation problem and reviews important

 1

results. Miltenburg (1989) and Inman and Bulfin (1991) were some of the first to discuss the

problem of mixed-model assembly lines. Waldspurger and Weihl (1995) discuss the problem in

computer system applications and provide an important stride scheduling heuristic. Kubiak

(2004) discusses a parameterized stride scheduling heuristic that we will adapt in our work.

We were motivated to consider the fair sequencing problem while working with a

healthcare facility that needed to schedule the collection of waste from waste collection rooms

throughout the building. Given data about how often a trash handler needs to visit each room (to

take away a cart of waste), the facilities manager wanted these visits to occur as regularly as

possible so that excessive waste would not collect in any room. For instance, if a room needs

four visits per eight-hour shift, then, ideally, it would be visited every two hours. Given a

schedule for one shift, the same schedule can be repeated every shift. The time to visit each

room and return with the trash cart varies slightly depending on the room location and other

factors. However, the variation is small and can be ignored. The problem is difficult because

different rooms require a different number of visits per shift.

This problem is clearly one of creating a fair sequence. In the product rate variation

problem, the typical objective is to minimize the maximum absolute deviation (over each product

and each position in the finite sequence) between the actual cumulative production and the ideal

cumulative production. However, a more appropriate objective in a cyclic situation is to

minimize the variability in the time between consecutive completions of the same task

(consecutive visits to the same room in our waste collection problem).

If the intervals between consecutive completions of the same task had to be equal to a

predetermined quantity, we would have the periodic maintenance scheduling problem (Wei and

 2

Liu, 1983). However, in our case, we don’t require this and instead seek to keep the intervals

nearly the same.

After trying some existing approaches, which created solutions that had excessive

variability, we developed a new approach that combines aggregation and parameterized stride

scheduling.

This paper will formulate the fair sequencing problem that we consider, present an

example, describe and analyze our new algorithm, and present results comparing its performance

to that of other approaches.

Problem Formulation

Given a single server that must produce n products, each with a demand that is a

positive integer, let . A feasible sequence has length D, and each product i

occurs exactly times in the sequence. We assume that each product requires the same amount

of time, so we can ignore time and consider only the positions in the sequence. Moreover, this

sequence will be repeated, and we will call each occurrence a cycle. The response time

variability of a feasible sequence is a function of the response time variability for each product.

If product i occurs at positions {

id

1 nD d d= + +"

id

}1, ,
ii idp p… , the response time variability is a function of the

intervals between each position, which are { }1, ,
ii idΔ Δ… , where the intervals are measured as

follows (with): 0 ii idp p= − D

 , 1ik ik i kp p −Δ = −

The average interval for product i is , so we can define the total variability V of a

sequence as follows:

/ iD d

 3

2

1 1

idn

ik
i k i

DV
d= =

⎛ ⎞
= Δ −⎜ ⎟

⎝ ⎠
∑∑

This problem is NP-hard (Kubiak, 2004). Note that changes to the absolute positions do

not change the variability. The objective function value is invariant under any translations or

reflection.

Example

To clarify the problem, we will present a simple, hypothetical example (Example 2 from

Miltenburg, 1989). There are n = 3 products with demands d = (6, 6, 1). Therefore, D = 13.

One feasible sequence is (1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3). The variability V = 5/3. (Note that,

as long as the sequence iterates between products 1 and 2, the position of product 3 is irrelevant

to the variability.)

Another feasible sequence is (1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3). The variability of this

sequence is V = 81 2/3, which is 49 times greater than the variability of the previous fair

sequence.

Equal Demand

An important special case occurs when all of the products have the same demand. That

is, for all i. Note that D = nd. One can form a sequence with V = 0 by combining d

copies of any permutation of {1, …, n}. The intervals for each product are all n.

id d=

The aggregation procedure that we present below exploits this special case. The

disaggregation is simple because it is solving subproblems that are instances of this special case.

Parameterized Stride Scheduling

The parameterized stride scheduling algorithm builds a fair sequence and performs well

at minimizing the maximum absolute deviation (Kubiak, 2004). The algorithm has a single

 4

parameter δ that can range from 0 to 1. This parameter affects the relative priority of low-

demand products and their absolute position within the sequence. When δ is near 0, low-demand

products will be positioned earlier in the sequence. When δ is near 1, low-demand products will

be positioned later in the sequence.

The algorithm starts with an empty sequence. Given a partial sequence, with the first k

positions filled, let ikx be the number of times that product i occurs in those k positions. Then,

position is allocated to customer i* where 1k +

 * arg max i

i
ik

di
x δ

⎧ ⎫
= ⎨ ⎬+⎩ ⎭

Of course, there may be ties, so a tie-breaking procedure is needed. We always select the

lowest-numbered product to break a tie. The computational effort of the algorithm is O(nD).

In the example above, the parameterized stride scheduling algorithm generates the first

sequence when δ = 1. If δ = 0.5, product 3 would appear in position 7. As mentioned before,

this translation does not affect the variability.

Another Example

The parameterized stride scheduling algorithm can generate sequences with large

variability. Consider the following example. There are n = 14 products with demands d = (20,

2, 2, …, 2). Therefore, D = 46. The parameterized stride scheduling algorithm (with δ = 0.5)

generates the following sequence is (1, 1, 1, 1, 1, 2, 3, …, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, …,

14, 1, 1, 1, 1, 1). The sequence is shown in Figure 1. The variability V = 304.2. (Other values

of δ change the absolute position of the low-demand products but not the variability.)

The high variability of this sequence occurs because the algorithm positions all of the

low-demand products together, which creates a lumpy pattern for the high-demand product. A

more fair sequence would blend the two types of products more evenly.

 5

Aggregation

To do this blending, we will combine products that have the same demand into groups.

This has two benefits. First, it reduces the number of products that need to sequenced.

Secondly, because a group will have higher demand, it will be blended better than the individual

products.

The aggregation procedure works as follows. If there are k products and groups with the

same demand d, then replace the k products by a group that has demand kd. The products and

groups replaced are called the children of the new group. Note that the total demand remains the

same. Repeat until there are no products or groups that have the same demand.

We then apply the parameterized stride scheduling algorithm to the remaining products

and groups. After generating a sequence, we disaggregate each group as follows: Consider a

group with k children that has been assigned kd positions in the sequence. Order the children

from first to last (any permutation is acceptable). The first position goes to the first child in the

group, the second to the second child, and so forth. Position 1k + goes to the first child, position

 position goes to the second child in the group, and this continues until all kd positions have

been assigned. Each child gets d positions. If a child is a group, then the positions assigned to it

must go to its children in a similar manner. Repeat until all groups in the original sequence have

been disaggregated.

2k +

The aggregation procedure requires O(n) time. If the aggregation creates a problem with

G groups (some of which may be individual products), then scheduling algorithm requires

O(GD) time. Note that the disaggregation does not require stride scheduling but only counting.

Let H be the maximum number of levels in the aggregation (i.e., the maximum number of

 6

generations). Th disaggregation requires O(HD) effort because there are only D positions to

allocate, and each position is assigned at most H times.

In the example above, the aggregation procedure replaces the 13 low-demand products by

one group with a demand of 26. The parameterized stride scheduling algorithm (with δ = 0.5)

generates the aggregate sequence shown in the top part of Figure 2. Disaggregation yields the

aggregate sequence shown in the bottom part of Figure 2. The variability V has been reduced

from 304.2 to 4.2.

The aggregation may be more complex. For instance, consider a problem with n = 14

products with demands d = (1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 7, 10). The five products with

demand equal to 1 are replaced with a group with demand equal to 5. Because 11 5d = , this

group and product 11 can be replaced with a group with demand equal to 10. Because 14 10d = ,

this group and product 14 can be replaced with a group with demand equal to 20. In a similar

manner, products 6, 7, and 8 (with demand equal to 2) are replaced with a group, and this group

and the product 12 can be replaced by a second supergroup. The aggregation, which has H = 4

levels, is shown in Figure 3.

When a sequence for the five remaining groups is generated, every other position

allocated to the first supergroup will go to product 14. Then, every other of the 10 remaining

positions will go to product 11. This leaves 5 positions that can be assigned to products 1

through 5 in any way.

The aggregation can greatly simplify sequencing. If only one supergroup remains, then it

gets all of the positions in the sequence, and one can immediately proceed to disaggregation. For

instance, consider the following example from Waldspurger and Weihl (1995). There are n =

101 products with demands d = (100, 1, 1, …, 1). Therefore, D = 200. To solve this problem,

 7

we first aggregate the one hundred low-demand products into one group with a total demand of

100. Then we aggregate the group and the high-demand product into a supergroup with a total

demand of 200. Now that we have only one group, we disaggregate the 200 positions by

allocating them alternately to the high-demand product and the group of 100. Then, we

disaggregate the group’s 100 positions by giving one to each low-demand product. The resulting

sequence has zero variability.

We note that Waldspurger and Weihl (1995) present a hierarchical stride scheduling

algorithm that combines products into groups. They suggest the use of a binary tree to minimize

the maximum absolute deviation. The key distinction between their hierarchical stride

scheduling algorithm and the aggregation approach presented here is that their algorithm requires

using the stride scheduling algorithm to disaggregate each group, since the products in a group

may have unequal demands. Also, the placement of products in the tree not specified. Because

our aggregation scheme groups products with equal demand, the disaggregation is much simpler.

The limitation, however, is that the problem must have some equal demand products.

Finally, after developing this aggregation procedure, we discovered that Wei and Liu

(1983) had suggested that machines with the same maintenance interval could be replaced by a

substitute machine with a smaller maintenance interval and that this replacement would facilitate

finding a feasible solution. However, their insight was not developed into a solution algorithm.

Better Aggregation

The aggregation procedure specified above creates an effective set of groups. However,

it is not guaranteed to create an minimal variability sequence. Consider, for instance, a problem

with n = 17 products with the following demands: d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 7,

14). D = 42. The standard aggregation groups the nine products with demand equal to 1 into a

 8

group and the six products with demand equal to 2 into another group. After using the

parameterized stride scheduling algorithm and disaggregating, the resulting sequence has a

variability of V = 20.

However, it is possible to create a sequence with no variability as follows. First, replace

seven of the products with demand equal to 1 by a group with demand equal to 7, and then

replace the other two products with demand equal to 1 by a second group with demand equal to

2. Replace these first of these groups and product 16 (whose demand equals 7) by a group with

demand equal to 14. Replace the second group and the six products with demand equal to 2 by a

group with demand equal to 14. Finally, because 17 14d = , replace the two supergroups and the

product 17 by a supergroup with demand equal to 42. We can then disaggregate the sequence to

form a sequence with no variability (see Figure 6).

This example also illustrate that it may be possible, by combining the products in a

different way, to create a better aggregation (one that leads to a sequence with lower variability).

Skewed Demand Distributions

We can show that the aggregation procedure significantly reduces variability for

instances with skewed demand distributions.

In this case, there are n products. The demand of product 1 equals d, where .

The demand of the remaining products equals 1. Therefore,

1d n≥ −

1n − 1D d n= + − .

If δ = 1, then the parameterized stride scheduling algorithm creates a sequence with

product 1 in the first d positions. This occurs because the priority for any low-demand product

equals 1, but the priority for product 1 when considering position 1k + equals , which

is greater than or equal to one until that product has received d positions. The remaining

/(1)d k +

1n −

positions are occupied by the low-demand products. 1n −

 9

If δ < 1, then the parameterized stride scheduling algorithm will first assign k positions to

product 1, where k is the smallest positive integer such that /() 1/d k δ δ+ < . Then, the

algorithm will assign the low-demand products (which now have the larger priority) to the next

 positions. The remaining positions will be assigned to product 1. 1n − d k−

In either case, product 1 has 1d − intervals that equal 1 and one interval that equals n.

The intervals for the low-demand products are all D. Therefore, the variability

()() ()()21 11 1 1nV d n d n n
d d

−
= − − = − − +1 .

Now, we aggregate the low-demand products into a single group. Let be the

demand for this group. (Thus, .) We will show that the parameterized stride scheduling

algorithm will assign positions for the group such that the group does not have any two

consecutive positions. Consider the first position. The priority of product 1 equals d/δ, which is

greater than or equal to the priority of the group, which equals m/δ. Thus, product 1 receives the

first position.

1m n= −

d m≥

1n −

Now, assume that product 1 received position k p+ (giving product 1 a total of k

positions and the group a total of p positions) and the group received position (giving it

a total of positions). The following conditions must hold:

1k p+ +

1p +

1
d

k p
m

δ δ
≥

− + +
 (1)

 d m
k pδ δ

<
+ +

 (2)

Condition (1) holds because product 1 received position k p+ , and condition (2) holds

because the group received position 1k p+ + .

 10

Now consider position . From (1) we have that dp2k p+ + d mk m mδ δ+ ≥ − + .

Because m is not greater than d, we can derive the following:

()

(1

1

m k dp d m
dp d d
d p

m d
p k

)

δ δ
δ

δ

δ δ

+ ≤ + +
≤ + +
= + +

≤
+ + +

Therefore, product 1 will receive position 2k p+ + . We can conclude that the group

never receives two consecutive positions.

Then, for product 1, there are 1n − intervals that equal 2 and 1d n− + intervals that equal

1. After disaggregation, the intervals for the products in the group are all D. In this case, the

variability (1 1nV d n
d
−

= −)+ , which is clearly smaller than the variability of the sequence

obtained without aggregation.

A Waste Collection Example

We now consider an instance from the waste collection setting that motivated this work.

There are n = 14 products with demands d = (2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5). Therefore, D =

46. Using the parameterized stride scheduling algorithm with any δ creates a sequence with

variability V = 344.267, as shown in Figure 4.

The sequence created by the hierarchical stride scheduling algorithm depends upon how

the products are placed into the binary tree. If the products with equal demand are grouped at the

lowest levels of the tree, then the variability of the resulting sequence is V = 40.267. However,

other placements lead to sequences with variability over ten times greater.

 11

The aggregation procedure creates four groups with the following demands: (8, 12, 16,

10). After running the parameterized stride scheduling algorithm and disaggregating, the

variability is reduced to V = 8.267. The sequences are shown in Figure 5.

Summary and Conclusions

Unlike most other work on fair sequences, we have considered the response time

variability of cyclic sequences. Because absolute position is not important, our novel

aggregation scheme, combined with parameterized stride scheduling, creates sequences with low

variability. We have proven its superiority in the case of skewed demand distributions and

demonstrated its performance on a variety of examples, including one from the real-world

problem that motivated this work. The aggregation scheme has been used to create sequences

for the waste management problem.

In the case of multiple servers, it would be interesting to look at the problem under the

constraint that, for each product, all of its demand must be satisfied by exactly one of the servers.

That is, the products are first assigned to servers, and then we seek to find a low variability

sequence for each server.

Acknowledgements

This work was motivated by a collaboration with the University of Maryland Medical

Center. The author appreciates the help of Leonard Taylor, who introduced the problem,

provided useful data, and recognized the value of the work presented here.

 12

Figures

Figure 1. The sequence created by stride scheduling for a problem with one product whose demand equals 20

and thirteen products whose demand equals 2. Each row represents a different product. Each box
represents a position allocated to that product.

Group sequence

Product sequence
Figure 2. The sequence created by aggregation and stride scheduling for a problem with one product whose
demand equals 20 and thirteen products whose demand equals 2. In the top sequence, the first row is the

high-demand product and the second row is the group of low-demand products.
In the bottom sequence, each row represents a different product.

Each box represents a position allocated to that product.

 13

1 1 1 1 1

5

3 4 7

10

5

10

20

2 2 2

66

12

Figure 3. Aggregation of products into groups and supergroups.

The numbers that are not underlined represent the demand of different products.
The underlined numbers represent the demand of groups or supergroups.

Figure 4. The sequence created by stride scheduling for a problem with fourteen products. Each row

represents a different product. Each box represents a position allocated to that product.

Group sequence

Product sequence
Figure 5. The sequence created by aggregation and stride scheduling for a problem with fourteen products.

In the top sequence, each row represents one of the groups.
In the bottom sequence, each row represents a different product.
Each box represents a position allocated to the group or product.

 14

Figure 6. The disaggregated sequence with no variability for a problem with seventeen products.

Each row represents a different product.
Each box represents a position allocated to the group or product.

 15

References
Kubiak, W. (2004) Fair sequences. In Handbook of Scheduling: Algorithms, Models and

Performance Analysis, Leung, J.Y-T., editor, Chapman & Hall/CRC, Boca Raton,

Florida.

Inman, R.R., and Bulfin, R.L. (1991) Sequencing JIT Mixed-Model Assembly Lines.

Management Science, 37(7):901-904.

Miltenburg, J. (1989) Level Schedules for Mixed-Model Assembly Lines in Just-in-Time

Production Systems. Management Science, 35(2):192-207.

Waldspurger, C.A., and Weihl, W.E. (1995) Stride scheduling: Deterministic proportional-share

resource management. Technical Memorandum MIT/LCS/TM-528, MIT Laboratory for

Computer Science, Cambridge, Massachusetts.

Wei, W.D., and Liu, C.L. (1983) On a periodic maintenance problem. Operations Research

Letters, 2(2):90-93.

 16

	Abstract
	Introduction
	Problem Formulation
	Example
	Equal Demand
	Parameterized Stride Scheduling
	Another Example
	Aggregation
	Better Aggregation
	Skewed Demand Distributions
	A Waste Collection Example
	Summary and Conclusions
	Acknowledgements
	Figures

