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Directed By: Professor David L. Akin 
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Mobility will be a key aspect of future planetary surface missions.  A rover with 

several segments connected by rotary joints promises much capability in terrain 

traversal, but is not well understood.  In this thesis, a computer model was built to 

simulate the movements of a passively articulated, segmented-body rover.  Its main 

components are a linearized soil-wheel interaction model, a Newton-Euler based 

dynamic model, and a PD control module to regulate steering and handle 

disturbances.  The simulation outputs were compared against results from past 

research on fixed-chassis vehicles.  Next, the simulation was used to investigate the 

driving and turning behavior of articulated vehicles, and their controllability using a 

simple control system.  It was found that the vehicle is relatively stable, and that 

simple control is possible. 
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Chapter 1: Introduction 

Mobility will be key to the success of future planetary surface exploration 

missions, both human and robotic.  Quick transits to and from sites of interest and the 

ability to traverse a variety of challenging terrain are capabilities that scientists, 

mission planners, and planetary resource prospectors can all agree on. Mass (and 

ultimately, cost) limitations on recent planetary rover programs have led to the 

paradigm of low power rovers landed in the most scientifically dense sites achievable 

by their delivery systems, and fitted with ambitious scientific payloads. 

Because of this low power compromise, these rovers cannot achieve large 

velocities.  The maximum speeds of the Sojourner, Mars Exploration Rover (MER), 

and planned Mars Science Laboratory (MSL) vehicles are on the order of several 

centimeters per second.  Additionally, their “rocker-bogie” type suspensions, while 

very effective at climbing over obstacles, are typically not suited for high speeds 

[Miller,02].  The Lunar Roving Vehicle (LRV), used by astronauts during the last 

three Apollo missions to the moon, averaged 9.6 km/hr during traverses.  It was 

designed to cruise over the lunar regolith on slopes up to 25 degrees and climb over 

obstacles 30 cm in height, but was never intended to negotiate through the moon’s 

more rocky, crater-pocketed terrain [Sullivan,94]. 

One method of increasing rover mobility is to add articulation directly to the 

chassis.  A rover would then be comprised of multiple segments; each with its own 

set of wheels, and connected by a rotational joint.  Resembling a train off of its tracks, 

a segmented-body rover would efficiently conform to terrain as would a “rocker-
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bogie” equipped vehicle, but would not preclude accommodation of an independent 

wheel suspension scheme for use in high-speed, rough terrain traverses. 

The idea for this type of vehicle has been around since the early 20th century.  

Since the 1930s, articulated vehicles have been used extensively in the agricultural, 

forestry, construction, and earthmoving industries.  Military designers have also taken 

notice. The United States Army researched many concept vehicles during the 1960s.  

The “Gama Goat”, a two segmented, six-wheeled vehicle entered service in 1968 and 

remained in service until replaced by the Humvee, decades later [Holm,70].  Today, 

companies such as Caterpillar, Volvo, Terex, Foremost, and Holder all sell their own 

lines of articulated vehicles. 

The vast majority of segmented-body vehicles produced to date have steered 

via the use of hydraulically actuated joints.  On Earth, this solution provides powerful 

turning capability, even when the vehicle is standing still [Holm,70].  However, 

hydraulic systems tend to be massive, making them ill-suited for interplanetary 

payloads.  Additionally, the lubrication and sealant agents used on Earth systems 

typically will not work in the temperature and low-pressure extremes present on the 

surface of the Moon and Mars.  One solution would be to replace the hydraulics with 

an electrical joint actuator.  Another solution would be to implement Ackermann-type 

steering on the front and rear segments (as in the LRV).  However, neither of these 

suggestions reduces the overall mechanical complexity of the system. 

An alternative option—and the one investigated in this thesis—uses passive 

inter-segment joints.  Steering is accomplished by carefully controlling the current 

output to each of the rover’s wheel motors.  The resulting wheel torques cause soil 
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reaction forces that move the segments and affect the overall turning behavior of the 

vehicle, including turning joint motions. Besides the promise of enhanced mobility, 

the passively articulated segmented-body rover would be beneficial operationally.  Its 

segments do not need to be shipped to the planet’s surface together, or they could 

arrive in a volume-optimized disconnected configuration.  The design could also take 

on a modular approach, with specialized segments for a range of surface activities 

including cargo transport, field geology, regolith processing, and base construction.  

If such a vehicle is easily controllable and can make efficient use of power during the 

cruising, turning, and obstacle climbing phases of travel, then it should be considered 

a viable option for future planetary surface exploration rovers. 

Background theory in terramechanics and previous work on segmented body 

rovers is reviewed in Chapter 2.  The computer model for the rover is developed in 

Chapter 3.  In Chapter 4, the simulation construction and validation tests are 

discussed.  Chapter 5 describes the simulations that were performed on articulated 

vehicles.  Finally, Chapter 6 contains a summary of the research, conclusions reached, 

and suggestions for possible future work. 
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Chapter 2: Previous Work and Background Theory 

This chapter introduces the background theory required to model an 

articulated, off-road vehicle as well as reviews past research into the topic.   

2.1 Terramechanics 

2.1.1 Basic Soil/Wheel Relationships 

Modeling of any terrain-vehicle system begins at the terrain-vehicle interface, 

the wheels.  Empirical work on the nature of soil-wheel interaction began in the early 

20th century, with many important breakthroughs and accompanying theory coming 

after World War II [Holm,70].  The soil-wheel interactions this research is primarily 

concerned with are that of rigid wheels on deformable terrain (as opposed to 

deformable wheels on rigid terrain, e.g. pneumatic tires on paved roads).   

Mieczysław G. Bekker, a leading researcher in the field of terramechanics 

introduced the following equation in 1960 [Bekker,60]: 

 

! 

p(h) = (kc /b + k" )h
n  (2.1) 

It relates the pressure that results underneath a flat plate of width b to its 

sinkage depth h. n, kc, and kφ are soil parameters (sinkage exponent, cohesive 

modulus, and frictional modulus respectively) that can be measured experimentally.  

Using this pressure-sinkage relationship, Bekker derived the following two formulae 

for wheels: 
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The first equation allows calculation of a wheel’s sinkage.  Given weight W 

on a wheel of diameter D and width b, it will sink to a depth z0 in a given soil.  The 

second equation describes the wheel’s rolling resistance due to soil compaction 

[Bekker,60].  It takes energy for a rolling wheel to compact soil over a distance.  If Rc 

is the only resistance to movement, then to maintain a velocity v, driving power P = 

Rcv must be provided to the wheel. While very useful in determining baseline 

requirements for wheeled vehicles over a variety of measurable terrain, these 

equations do not take into account wheel slip in loose soils, cornering forces 

experienced during turning, or the contributions of a torqued wheel.  A more 

complete set of equations is needed for accurate simulation. 

2.1.2 Wheel Coordinate System and Slip 

Before going further, it will be useful to define a standard set of wheel 

coordinates and introduce the concept of wheel slip.  Figure 2.1 depicts the wheel 

frame coordinate system. 
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Figure 2.1: Wheel Frame Coordinate System 

The x, or longitudinal axis is in the direction of travel, the z-axis is directed 

vertically, and the y-axis points in the lateral direction, out the wheel’s side.  Centered 

at the wheel hub, θ is the angle measured from bottom-dead-center, with positive 

values being in the direction of travel.  θ1 refers to the entry angle, and θ2 to the exit 

angle. 

Wheel slip becomes an important factor when traveling through loose soil.  A 

wheel can slip in two ways: longitudinally and laterally, as shown in Figure 2.2. 

 

Figure 2.2: Wheel Slip [Ishigami07] 

Longitudinal slip occurs when a wheel’s traveling velocity vx differs from its 
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rim velocity, rω.  It can take on a value between -1 and 1.  A positive slip ratio (s) 

indicates a driven wheel, while a negative s indicates braking. 
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Lateral slip occurs when a wheel moves sideways as well as forwards, and is 

quantified by the slip angle β.  It is the angle a wheel’s traveling velocity makes with 

its longitudinal axis [Ishigami,07]. 

 

! 

" = tan
#1
(vy vx ) (2.5) 

2.2.3 Primary Wheel Forces 

There are three major stress distributions present along the soil contact area of 

a driven rigid wheel.  First is the normal stress σ(θ), acting radially towards the 

wheel’s center.  Next is the longitudinal shear stress τx(θ), which acts tangentially 

along the wheel’s circumference.  Finally, the lateral shear stress τy(θ) acts 

tangentially across the wheel’s width.  Figure 2.3 depicts these stress distributions.  

Note that the maximum value of each stress distribution (σm, τxm, and τym) occurs at 

the same value of θ = θm.  This assumption agrees well with experimental results 

[Wong,67]. 
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Figure 2.3: Wheel Stress Distributions [Ishigami07] 

Given the stress distributions described above, one may calculate forces in the 

three primary wheel axes and torque about the wheel’s axle as follows [Wong,67]. 
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2.1.4 Stress Distributions 

Much effort has been put into finding expressions for the various stress 
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distributions.  In 1967, Wong and Reece introduced a new way to model them that 

includes the effect of wheel slip.  Yoshida et al. modified these equations in 2003 to 

incorporate Bekker’s form of the pressure-sinkage relationship.  For normal stress 

[Ishigami,07], 
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where θm is cacluated by using the linear equation: 
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  (2.11) 

The a0 and a1 coefficients are empirically measured for a soil.  It can be seen 

that the location of maximum stress moves forward with increasing slip.  The normal 

stress is maximum at θm, and falls off on either side to zero at the soil contact points 

[Wong,67].   

Similarly, for shear stress in the longitudinal and lateral directions: 
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c is cohesion, φ is the internal friction angle, and kx and ky are shear 

deformation modules; all soil parameters measurable by experiment [Ishigami,07].  

Figure 2.4 shows a typical example of what the stress distributions look like over the 

contact area of the wheel. 
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Figure 2.4: Typical Stress Distributions 

2.1.5 Closed Form Wheel Force Solutions 

Now that the stress distributions are known, Equations 2.10-2.13 can be 

substituted into Equations 2.6-2.9 to solve for the wheel forces.  However, this 

requires numerical integration, as there are no closed-form solutions to these 

equations due to the complex form of the stress distributions.  For computational 

purposes, it would be useful to find approximated versions of the stress distributions.   

In 1961, Vincent noted that for a variety of soils and slips, the stress 

distribution curves follow a triangular curve [Vincent,61].  In 2001 Iagnemma 

expanded on Vincent’s observation, assumed that θ2 = 0 (accurate for soils with low 

cohesion), and used the following linear approximation to the stress distributions: 
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where α can be any of the primary stress distributions (and αm its maximum 

value).  Figure 2.5 shows a comparison of the approximated distributions and the 

more exact solutions. 

 

 

Figure 2.5: Approximated vs. Theoretical Stress Distributions 

Substituting these equations into Equations 2.6-2.9 and integrating, the 

following closed-form solutions can now be found [Iagnemma,01]. 
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The maximum stresses are found by substituting θm into the original stress 
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equations. 
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Now all forces on the wheel can be represented by algebraic functions of just 

soil parameters, wheel dimensions, and three “state” variables: slip ratio, slip angle, 

and entry angle. These simplified wheel force equations will make it much easier to 

simulate the motions of a passively articulated, segmented body rover. 

2.2 Articulated Vehicle Modeling and Simulation 

Beginning in the 1980s, several studies were conducted by researchers to 

model and simulate articulated vehicles to gain insight into their behavior.  Most of 

these models incorporate joint actuation, but are still relevant to the passively 

articulated problem. 

Oida’s 1987 paper modeled an articulated tractor (see Figure 2.6); specifically 

its turning characteristics.  Wheel forces were heavily simplified, with traction, 

rolling resistance, and cornering forces directly proportional to wheel load.  

Cornering forces also had slip angle dependency, but longitudinal slip was ignored.  

Additionally, during simulation the turning joint angle was rigidly fixed.  The 

vehicle’s equations of motion were determined in the planar case by summing the 
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forces in x and y directions and the moments about the turning joint.   

 

Figure 2.6: Oida’s Tractor [Oida,87] 

A tractor was simulated taking turns at various joint angles and speeds.  

Simulation results were compared with the results of real-world experiments 

involving an actual tractor.  The simulation and experiment agreed well with 

observation, so Oida used the simulation to determine the effects of changing the 

turning joint and center of gravity (CG) locations.  While this research demonstrated 

the feasibility of articulated vehicle simulation, it left much room for improvement in 

the accurate modeling of soil forces and dynamics [Oida,87]. 

More recently, research conducted at the University of Waterloo has focused 

on the dynamic modeling and stability analysis of articulated-steer vehicles both on 

and off-road (see Figure 2.7).   



 

 
14 

 

 

Figure 2.7: Waterloo articulated vehicle schematic [He,05] 

Their papers have given insight into the conditions that lead to jack-knife and 

snaking, two dynamic instabilities experienced by articulated vehicles.  Their wheel 

model is more advanced than Oida’s, and incorporates slip, but is still simplified and 

less theoretically backed than the Bekker-Wong-Yoshida equations [He,05] and 

[Azad,05].  Azad et al.’s 2007 paper introduces a feedback controller to stabilize an 

articulated vehicle undergoing snaking motion [Azad,07]. 

In 1998, Yoshida and Shiwa simulated a rubber-tired articulated vehicle with 

three segments traveling on a hard surface (See Figure 2.8).  The front inter-segment 

joint had roll and yaw degrees of freedom (DOF), while the rear joint had 3 DOF.  

Pitch and yaw joints were compliant (torsional springs), while roll joints were free.  

The four wheels on the front two segments were driven.  The two wheels on the third 

segment rotated freely and were used as odometers to help determine slip rates and 

improve dead-reckoning. 
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Figure 2.8: Yoshida Articulated Rover Illustration [Yoshida98] 

The tire model used includes the effect of wheel slip, as well as rubber wheel 

stiffness and damping.  Vehicle and articulation dynamics were computed by the 

SpaceDyn™ toolbox, which accommodates an arbitrarily articulated system with 

multiple branches.  Given the vehicle’s state, the tire forces were calculated and 

applied at the ends of the branches. The researchers also constructed an experimental 

testbed vehicle to complement the simulations.  The one simulation reported in their 

paper involved commanding sinusoidal velocity commands to the left and right 

wheels of opposite signs to elicit a weaving response.  Results from the simulation 

and experiment were qualitatively consistent with each other, and the path traveled 

and range of slip ratio values showed good agreement [Yoshida,98]. 

Since then, Yoshida’s group has gone on to advance their rover vehicle 

simulation and integrate it with the non-simplified terramechanics equations 

discussed in the previous subsection, but not for a segmented-body vehicle.  They 

compare their simulations with experimental tests conducted with a 35 kg four-wheel 

drive, four-wheel steer rover with rocker suspension (as shown in Figure 2.9). 
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Figure 2.9: Yoshida Experimental Rover [Ishigami07] 

Yoshida’s group has also had success simulating the motion of a rover on 

sloped ground.  Inputs to the simulation are wheel rotation rates, which are kept 

constant during simulation runs.  Typical ground speeds ranged from 1 to 8 cm/s 

[Yoshida,04], [Ishigami,05] and [Ishigami,07]. 
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Chapter 3: Modeling 

Chapter 3 discusses the various models that will be used as components in the 

simulation. Section 3.1 details the overall vehicle configuration and its kinematic 

description.  The wheel/soil interaction model used is shown in Section 3.2, and the 

dynamic model is described in section 3.3. 

3.1 Kinematics 

3.1.1 Vehicle Configuration 

A two-segmented rover is modeled in this research.  Each segment has mass, 

rotational inertia, and two independently driven wheels.  The segments—each of 

length   

! 

l—are connected by a passive yaw joint.  Figures 3.1 and 3.2 show the vehicle 

schematic. 

 

Figure 3.1: Articulated Vehicle Top View 
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Figure 3.2: Articulated Vehicle Side View 

3.1.2 Coordinate Frames and Denavit-Hartenberg Parameters 

This description may be represented analytically using Denavit-Hartenberg 

(DH) notation [Craig,05].  This type of notation is widely used to specify the 

kinematics of manipulators, but can be applied to any serial-chain mechanism.  The 

rover can be moved to any location and oriented toward any direction in space, which 

requires 6 degrees of freedom (DOF).  In addition, the rover has one mechanical DOF 

at its yaw joint, bringing the total to 7 DOF.  In DH notation, each DOF is modeled as 

a joint.  The first three joints are chosen to be prismatic, and the following three joints 

are rotational.  The last joint is the inter-segment joint.  In this scheme, the rear 

segment is assigned to be the “base” and is coincident in space with the three 

orientation joints.  In essence, the rover can be thought of as a 3 DOF Cartesian 

manipulator with a 3 DOF wrist, and a 1 DOF end effector.  Following the DH 

convention, the coordinate frames were assigned as shown in Figure 3.3.  Table 3.1 

shows the DH parameters derived from this arrangement. 



 

 
19 

 

 

 

Figure 3.3: Denavit-Hartenberg Frame Assignments 
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Table 3.1: Denavit-Hartenberg Parameters 
i αi-1 ai-1 di θi 

1 0 0 dz 

! 

"
2

 

2 

! 

"
2

 0 dx -

! 

"
2

 

3 -

! 

"
2

 0 dy -

! 

"
2

 

4 0 0 0 φy 

5 

! 

"
2

 0 0 

! 

"
2

 + φz 

6 

! 

"
2

 0 0 -

! 

"
2

 + φx 

7 0 L 0 θ7 

 

0[dx dy dz] are the coordinates of the rear segment in the base frame. φx, φy, 

and φz specify the yaw, pitch, and roll, respectively, of the rear segment. θ7 is the 

value of the rover’s turning joint.  

Positions of wheels and masses will be important for the simulation, and now 

that link frames are defined, they may be specified. 
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 (3.1) 

6pw and 7pw are the wheel hub locations in the rear and front segment frames, 

respectively.  The wheels are located at the ends of each segment, a height hw below 

the turning joint plane, and distance ±w (left and right) in the lateral direction.  Each 

wheel is a rigid cylinder with radius r and width b. 

The positions of the segment centers of gravity (CG) are as follows: 
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 (3.2) 

The masses, mseg, are located a distance h above the crossing of the segment 

centerline and axle.  A 3 x 3 diagonal inertia matrix I accompanies each mass. 

 

! 

I =

Ixx 0 0

0 Iyy 0

0 0 Izz
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$ 
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' 
' 
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 (3.3) 

The masses are approximated as spheres with radius 

! 

w 2 , so that 

 

! 

Ixx = Iyy = Izz =
1

10
msegw

2 (3.4) 

It should be noted that this kinematic model is easily extendable to rovers with 

three or more segments, and arbitrary values and distributions of mass, inertia, and 

wheel properties.  

3.2 Soil/Wheel Interactions 

As outlined in the previous work section, Equations 2.15-2.18 will be used to 

calculate the wheel forces.  The inputs to these equations are sinkage depth z0, slip 

ratio s, and slip angle β.  The following sections will show how these are derived 

from the rover’s kinematic model and other known state variables.  Then, how these 

forces are aligned with a wheel reaction frame, and interact with the dynamic model, 

will be explained. 

3.2.1 Finding Sinkage Depth 

The sinkage depth is defined as the distance from the lowest point on the 
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wheel (in the base frame), along the line towards the axle, to the surface.  For this 

calculation, the wheel is assumed to be a flat disk of radius r.  Points on the rim in the 

local wheel frame can be expressed as follows: 

 

! 

w
prim =

rcos"

0

rsin"

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

 (3.5) 

γ specifies an angle about the wheel’s y axis.  The rim positions in the base 

frame are found by operating on wprim with the tranformation matrix between the 

wheel and inertial frame: 

 

! 

0
prim=w

0
T
w
prim  (3.6) 

The rim’s vertical position is the first element of 0prim.  For a given rover pose 

(joint value set), there will be a γmin which minimizes 0prim(1), locating the lowest 

point on the wheel.  To find this angle, take the expression for 0prim(1) 

 

! 

0
prim 1( )=w

0
T 1,:( )w prim = Arcos"

min
+ Crsin"

min
+ D (3.7) 

(A, B, C, and D are the elements of the first row of 

! 

w

0
T ), set its derivative 

equal to zero, and solve for γmin.  This results in the following: 

 

! 

"
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= tan
#1 C

A

$ 
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( 
)  (3.8) 

Now γmin may be substituted into Equation 3.7 to find the lowest point on the 

wheel, 0plow.  Next, the unit vector pointing from 0plow to the wheel’s axle (located at 

0pw) is needed: 

 

! 

0
rline=

0
pw"

0
plow  (3.9) 
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r

0

0

0
ˆ =  (3.10) 

The depth of a point on rline with the origin at the surface can be expressed as 

  

! 

depth=0
plow 1( ) + z"

0 ˆ r slope (1) (3.11) 

Solving for when depth = 0 and z = z0, 

 

! 

z
0

= "
0
plow 1( )

0 ˆ r slope (1)
 (3.12) 

To find the entry angle, which is an input to the wheel force equations, use 

 

! 

"
1

= cos
#1
1#

z
0

r

$ 

% & 
' 

( ) 
 (3.13) 

3.2.2 Finding Slip Angle 

As defined above, the slip angle is the angle between a wheel’s velocity vector 

and its longitudinal axis (measured about its vertical axis).  Analytically (see 

Equation 2.5), β is the inverse tangent of the ratio of lateral to longitudinal velocity.  

These velocity components must be expressed in a wheel frame, requiring the 

calculation of Jacobians.  Given joint rates 

! 

˙ q , Cartesian velocities can be solved for 

via 

! 

W
vW =

W
J ˙ q .  

! 

W
J  is the translation Jacobian in the wheel frame.  The method used 

to find the Jacobian was outlined in [Craig,05]. 
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(3.14) 

Frame N is the link the wheel is on (6 or 7).  N+1 is the wheel frame.  The z’s 

represent the frame’s z axis described in the wheel frame.  The p’s are the position of 
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the wheel in each frame.  I is the identity matrix, and 

! 

" = diag # j( ).  

! 

" j= 1 for 

revolute joints, and 

! 

" j= 0 for prismatic joints [Craig,05].  Notice the lowest frame 

referenced is frame 1.  The z’s can be calculated via 
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1" n " N  (3.15) 

The p terms can be written as 

! 

n

N
RN

n
T
N
pN +1.  

! 

N
pN +1 is the wheel position with 

respect to the link origin. 

Using 

! 

W
J , the wheel velocities in their own frame may be obtained.  

However, the wheel frames do not change orientation with respect to the rest of the 

segment if the rover’s orientation with respect to the ground changes.  For example, if 

the rover is pitched forward, then the longitudinal axis will point slightly down into 

the ground, not parallel to it as is expected by the terramechanics equations.  A frame 

is needed whose longitudinal direction remains parallel to the surface of the ground, 

and whose vertical axis passes through the wheel’s lowest point and axle.  This is 

important for accurately determining β, and will be used later when aligning soil 

forces with the vehicle. 

This new coordinate frame is called the wheel reaction (wr) frame.  The 

vertical axis of this new frame points in the same direction as sloper̂0 .  The lateral axes 

for the wheel and wr frames point in the same direction.  The wr x-axis is then 

orthogonal to the other two, which is parallel to the ground’s surface.  This is the case 

because the situation can be described as a planar disk (wheel) intersecting a plane 
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(ground).  If the disk’s z-axis crosses the its lowest point and center, and its y-axis is 

oriented perpendicular to the face of the disk, then its longitudinal axis must be 

pointed parallel to the plane it is intersecting.  To build this frame, R
link

wr
 is needed, 

which operates on coordinates in the wr frame and expresses them in the local link 

frame. 

 

! 

wr

link
R=

0

link
R

0
X
wr

0
Y
wr

0
Z
wr[ ]  (3.16) 
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0
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! 

0
Y
wr

, and 

! 

0
Z
wr

 are the primary axes of the wr frame expressed in base 

frame coordinates.  These can be calculated as follows: 
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To calculate velocities of the wheel bub and β in the wheel reaction frame, use 

 JRJ
Wwr

link

wr
=  (3.20) 

 qJv
wr

W

wr
&=  (3.21) 
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3.2.3 Finding Slip Ratio 

The slip ratio s may be solved for numerically using the torque equation, 

Equation 2.18.  T can be considered as the torque commanded to a rover’s wheel, 
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which is a known (or derivable) quantity.  Entry angle, the other input to the torque 

equation is known by the simulation through the process outlined in Section 3.2.1.  

The only remaining unknown is s.  Since torque generally increases with slip ratio, 

the bisection search method is used, and yields reliable results. 

3.2.4 Wheel Force Vector Construction 

Once a value for s is obtained, the remaining force magnitudes may be easily 

calculated with Equations 2.15-2.17, and aligned with the wr frame.  However, while 

the force equations yield numerical results for any vehicle state, additional steps are 

needed to ensure their proper application and direction.  Equation 2.15 describes 

forces along the longitudinal axis of the wheel reaction frame.  Drawbar pull Fx has 

two terms.  The first (dependent on shear stress) is soil thrust H, and the second 

(dependent on radial stress) is rolling resistance R.   
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The soil thrust term can evaluate positive or negative depending on the 

applied torque and wheel sinkage.  The rolling resistance term always evaluates 

negative.  For a wheel with zero longitudinal velocity (wrvx = 0), soil thrust must 

overcome rolling resistance (|H| > |R|) for Fx to be nonzero.  In that case,  

 

! 

Fx = H + sign(H) " R  (3.25) 

Otherwise, Fx = 0.  For nonzero wrvx, |R| is applied opposite the direction of 

motion, while H’s sign is maintained.  For this case,  
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! 

Fx = H + sign(
wr
vx ) " R  (3.26) 

Likewise, for lateral forces, Fy acts in the direction opposite wrvy, and only 

when wrvy is nonzero.  Vertical forces are always on, however an additional damping 

term was added for this research that approximates a suspension system. 

Now the forces may be aligned with the wheel reaction frame as follows: 
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 (3.27) 

3.2.5 Forces and Moments on Link CG 

For the dynamics calculations in the next section, it will be convenient to 

combine each segment’s wheel forces into a single force and single moment at that 

segment’s cg. 

 != i

link

C

link
FF  (3.28) 

 ! "= i

link

i

link

C

link FpN  (3.29) 

Fi are the individual wheel forces in the link frame.  linkpi is the position vector 

from each wheel to its segment’s cg in link frame coordinates. 

3.3 Rover Dynamic Model 

3.3.1 Modified Newton-Euler Method 

The rover dynamic equations were derived using a modified form of the 

iterative Newton-Euler dynamic formulation shown in [Craig,05].  In the standard 

approach, the forces on each segment CG due to the link’s accelerative, coriolis, and 

centrifugal motions.  The modification is introduced at this step by including the 
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combined wheel forces and moments on the segment cg in Equations 3.28 and 3.29. 
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3.3.2 Equation of Motion 

After obtaining the joint torque equations, similar terms can be collected, and 

a configuration-space equation may be formed: 

 

! 

" = M q( )˙ ̇ q + B q( ) ˙ q ̇  q [ ] + C q( ) ˙ q 
2[ ] + G q( ) + F q( ) Fw[ ] + N q( ) Nw[ ]  (3.32) 

τ is the vector of torques applied at each joint.  For the passively articulated 

rover case, this is a zero vector.  M is the (7 x 7) mass matrix.  B is a (7 x 6) matrix of 

coriolis terms.  While there are many combinations of joint velocity products, only 

six of these have coefficients that evaluate to nonzero values.  C is a (7 x 4) matrix of 

centrifugal terms (4 columns for the 4 nonzero coefficients).  G is a vector of gravity 

terms.  F and N are (7 x 6) and are multiplied by the stacked wheel forces and torques 

on the link cg in the link frame.  With τ = 0, the joint accelerations at each time step 

can be solved for by using  

 

! 

˙ ̇ q = M
"1

q( ) "B q( ) ˙ q ̇  q [ ] "C q( ) ˙ q 
2[ ] "G q( ) " F q( ) Fw[ ] " N q( ) Nw[ ][ ]  (3.33) 

See Appendix A for the dyamic equation coefficients. 
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Chapter 4: Simulation Design 

This chapter describes the simulation’s design and testing.  Section 4.1 walks 

through the simulation loop.  Section 4.2 compares the simulation results with results 

from previous research. 

4.1 Simulation Outline 

Now that the kinematic, dynamic, and terrain interaction models are defined, 

they can be used as components of a computer program to simulate the motion of a 

segmented-body, rigid-wheeled rover through deformable terrain.  This section 

describes how the simulation developed for this thesis is constructed. 

First, soil properties, wheel and rover dimensions, masses, and inertias are 

loaded into Matlab.  Next, initial conditions are set.  These include the initial position, 

orientation, and body joint values and their rates.  All zero values describe a static 

rover facing forwards, and sitting upright, with a straightened turning joint.  The other 

initial conditions to be set are the torques applied by the motors to each of the wheels. 

As shown in the closed-form applied torque equation, it is solely a function of 

slip ratio and sinkage.  Each wheel’s sinkage can be found by following the process 

described in Section 3.2.1.  Using the bisection method, the torque equation is solved 

for slip ratio.  Having obtained wheel sinkage and slip, the magnitudes of the other 

non-lateral forces (D and W) may now be calculated. 

To calculate C, the wheel’s slip angle must be known.  Slip angle is a function 

of the ratio of lateral and longitudinal velocity components, so the wheel’s velocity in 
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its own frame must be determined.  Following the method in [Craig,05], the Jacobian 

for each wheel is obtained.  Operating on the joint rate vector with these Jacobians 

yields the desired velocity vector for each wheel, from which β is easily calculated.  

Finally, side force C is calculated for each wheel. 

Now that all of the wheel forces are known, the next step is to compute their 

combined force and moment on the local link center of gravity (Equations 3.30 and 

3.31).  Once these forces and moments are known, they can be used along with the 

vehicle joint values and rates in Equation 3.33 to find the joint accelerations.  The 

final step is to update the joint values and rates via Euler integration. 

 

! 

q t + "t( ) = q t( ) + ˙ q t( )"t + 1

2
˙ ̇ q t( )"t

2  (4.1) 

 

! 

˙ q t + "t( ) = ˙ q t( ) + ˙ ̇ q t( )"t  (4.2)  

Also at this step—how often depends on bandwidth selection—new wheel 

powers can be commanded according to a control law.  For the simulations performed 

in this research, each timestep was 0.001 seconds, and the controller bandwidth 

(when present) was 10 Hz. 

4.2 Simulation Testing and Validation 

Before using the simulation to gain insight into the dynamics of passively 

articulated rover systems, it must be validated against previous work and common 

sense in order to be accepted.  Since part of the soil model is new, its outputs should 

be compared with those of other soil models.   The model must also be consistent 

with itself.  For example, if steady state conditions and wheel torques are solved for, 

those conditions should be maintained throughout a simulation.  This would indicate 
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that the dynamic and soil interaction models are stable together.  All validation tests 

were conducted with a fixed central joint. 

4.2.1 Comparison to Bekker Model 

First, the soil model was compared to Bekker’s equations (2.2-2.3).  Bekker’s 

equations assume that rolling resistance (Rc) and wheel sinkage (z0) are related to the 

wheel diameter (D), width (b), and weight on the wheel (W) through a power law, 

such that 

 

! 

Q = Ax
B  (4.3) 

where Q is the quantity being calculated, x is the variable, and A and B are the 

power law parameters.  A suitable range of variables were chosen, and three cases 

were tested to find the Rc and z0 dependencies of both Bekker’s and the author’s 

models.  The results are summarized in Tables 4.1 and 4.2.  Figure 4.1 shows typical 

relationships between rolling resistance, sinkage, and wheel diameter. 

Table 4.1: Rolling Resistance vs. Wheel diameter, Width, and Weight 
x  D b W 

Bekker 131.6 34.41 0.01475 
A 

Simulation 162.7 
24% 

43.74 
27% 

0.01988 
35% 

Bekker -0.6563 -0.3115 1.312 
B 

Simulation -0.6298 
4.0% 

-0.2989 
4.0% 

1.301 
0.8% 

Table 4.2: Wheel Sinkage vs. Wheel Diameter, Width, and Weight 
x  D b W 

Bekker 0.03191 0.008723 0.0003846 
A 

Simulation 0.03874 
21% 

0.01075 
23% 

0.0004874 
27% 

Bekker -0.3125 -0.6229 0.625 
B 

Simulation -0.2978 
4.7% 

-0.6161 
1.1% 

0.6192 
0.9% 
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Figure 4.1: Rolling Resistance and Sinkage vs. Wheel Diameter 

It can be seen from the tables that the exponent terms match fairly well (to 

within a few percent), so that the general trends of Q vs. x are similar.  However, the 

A coefficient from the simulation differs from Bekker’s equations by 20-35%.  

Typically, this indicates that the simulated rolling resistances and sinkages are greater 

than that which would be calculated using Bekker’s equations.  Wong’s model takes 

into account forces generated by the wheel’s tangential stress whereas Bekker’s does 

not, but removing these extra terms from the equations yielded negligible changes. 

Next, dependency of Rc and z0 on soil parameters n and kφ was checked (kc 

always appears in conjunction with kφ and for low cohesion soils is much smaller). 

Table 4.3: Rolling Resistance vs. Soil Parameters 
x  n kφ 

Bekker 182.8 17470 
A 

Simulation 228.4 
25% 

10630 
39% 

Bekker 1.331 -0.3113 
B 

Simulation 1.09 
18% 

-0.2617 
16% 
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Table 4.4: Wheel Sinkage vs. Soil Parameters 
x  n kφ 

Bekker 0.03075 280.9 
A 

Simulation 0.03869 
26% 

231.8 
17% 

Bekker 2.638 -0.6226 
B 

Simulation 2.275 
14% 

-0.5957 
4.3% 

 

These results show that the simulation’s dependence on soil parameters differs 

significantly from Bekker’s model, and are probably the cause of the 25% offset in 

sinkage and rolling resistances.  For this study, overall trends related to vehicle 

weight and dimensions are more important than exacting numeric values, so the 

simulation will be sufficient. 

4.2.2 Comparison to Yoshida Model 

Next, the simulation was compared against the [Ishigami,07] results for 

turning and drawbar pull at various slip ratios and slip angles on a single wheel.  The 

wheel has a radius of 9 cm, a width of 11 cm, and a mass of 6.6 kg.  Their 

experimental measurements are plotted over their model predictions in Figures 4.2 

and 4.3.  Figures 4.4 and 4.5 show the results from the author’s simulation. 
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Figure 4.2: Yoshida drawbar pull vs. slip ratio for different slip angles 

At first glance, the trends are similar.  Drawbar pull increases with increasing 

slip ratio, and decreases with increasing sideslip.  Side forces decrease with 

increasing slip ratio, and increase with increasing sideslip.  For low slip ratios and 

sideslip, the author’s side force results are within 10-15% of Yoshida’s.  However, 

the drawbar pull magnitudes of the simulation plots differ significantly from 

Yoshida’s: by ~ 14 N with s = 0, and ~ 25 N when s = 0.8, nearly independent of 

sideslip.  This is due to Yoshida’s inclusion of rut recovery in their wheel/soil 

interaction model.  Unlike the assumption in this thesis that the wheel stops 

contacting the soil behind bottom-dead-center (θ2 = 0), Yoshida assumes a nonzero θ2 

defined by 
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! 

"
2

= cos#1 1# $z
0
/r( ) (4.4) 

where λ is called the wheel sinkage ratio, denoting the ratio between the front 

and rear sinkages of the wheel.  Rut recovery depends on many variables and is not 

well understood.  For Yoshida’s calculations, 0.9 < λ < 1.1 [Ishigami07].  This means 

that θ2 ≈ θ1, which significantly stretches out the stress distributions discussed in 

section 2.1.4.  This stretching effect compared to the approximated distribution is 

shown in Figure 4.6.  

 

Figure 4.3: Yoshida Side Forces vs. slip ratio for different slip angles 
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Figure 4.4: Simulation Model Drawbar Pull vs. slip ratio for different slip angles 

 

Figure 4.5: Simulation Model Side Forces vs. slip ratio for different slip angles 
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Figure 4.6: Approximated vs. Exact Stress Distribution for non-zero θ2 

For Yoshida’s experiments with a small rover on lunar simulant soil, the rut 

recovery method worked well.  To look for other regimes where rut recovery has 

significant effects, two other rovers were considered.  The first was a four-wheeled 

rocker-suspension rover at the Space Systems Laboratory (Figure 4.7) with wheels 

13.3 cm in diameter and 8.9 cm wide.  The rover’s weight is 8.5 kg, yielding an 

average load of 20.8 N on each wheel.   

 

Figure 4.7: Rover at Space Systems Laboratory 
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Using the model developed for the simulation, for zero drawbar pull, sinkage 

in loose dry sand is 1.31 cm, slip ratio is 0.37, and rolling resistance is 5.88 N.  

During testing, the rover reached a velocity of 20 cm/s, drawing a power of 1.55 W 

per wheel.  No significant rut recovery was noticed.  Assuming a motor efficiency of 

0.8, the power available to each wheel was 1.24 W, indicating a rolling resistance of 

6.2 N.  The rolling resistance calculated by the simulation differs from this value by 

only 5.2%.  While this test was crude, the results are encouraging. 

The second rover considered was the LRV used during the Apollo missions to 

the moon (Figure 4.8).  The LRV had wheels 0.41 m in radius, 0.23 m in width, and 

had a mass of 700 kg.  According to the author’s model, the LRV would attain a 

drawbar pull of zero when s = 0.07.  Sinkage would be 2.5 cm, and rolling resistance 

would be 46.2 N per wheel.  The rover was provided with 0.25 hp (186 W) drive 

motors at each wheel.  This would enable a top speed of about 4 m/s, or 14.4 kph, 

which is near the rover’s maximum design velocity on flat ground.  For this case also, 

rut recovery does not appear to have had a large effect on vehicle performance. 

 

Figure 4.8: Lunar Roving Vehicle (NASA) 
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Since the general trends of the simulation follow previous work done, and 

produce results numerically similar to experimental data where rut recovery was not a 

major factor, it will be considered sufficient for the investigations that follow. 

4.2.3 Constant Velocity Driving 

Given a set of steady state conditions, the simulation should maintain those 

conditions.  For straight, constant velocity driving, the net force in the longitudinal 

direction (drawbar pull) must be equal to zero.  To test this, three two-segment rovers 

were specified, and their steady state driving torques were numerically solved for.  

These torques were then used as initial conditions for the simulation, which was run 

for 5 seconds.  The rover parameters were as follows: 

Table 4.5: Test Rover Configuration Parameters 
Rover Segment Mass (kg) Wheel Radius (m) Wheel Width (m) 

A 200 0.5 0.2 

B 100 0.4 0.15 

C 25 0.15 0.08 

 

The steady-state parameters used as initial conditions for each rover wheel are 

shown in the table below: 

Table 4.6: Steady State Test Values 

Rover 
Torque 

(Nm) 

Velocity 

(m/s) 
Slip Ratio 

Sinkage 

(cm) 

Rolling  

Resistance (N) 

A 88.86 3.0 0.00258 4.445 174.1 

B 36.36 1.0 0.0121 3.703 89.0 

C 5.222 0.5 0.0753 3.105 33.1 
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At the end of the simulation, the rover’s state was virtually the same as its 

initial conditions, indicating that accelerations were near zero, and the wheel/soil 

interaction and rover dynamic models interacted in a stable way. 

4.2.4 Constant Drawbar Pull 

Next, the simulation was tested with constant accelerations.  This was done 

for Rover A and solving for the required torques to 1) accelerate at 0.1 m/s2 and 2)  

overcome the rolling resistance of an additional, unpowered segment.  This translates 

to per-wheel drawbar pulls of 10 N and 175 N, respectively. 

Table 4.7: Expected Acceleration Test Values 

Test 
# 

 

Drawbar 
Pull (N) 

Torque 
(Nm) 

Sim 
Time 

(s) 

Initial 
Velocity 

(m/s) 

Expected 
Final 

Velocity 
(m/s) 

Slip 
Ratio 

z0 

(cm) 
Rc  
(N) 

1 10 93.83 10 0.0 1.0 0.00564 4.445 173.8 

2 175 170.4 5 1.0 8.75 0.0708 4.401 176.4 

 

The results of the final iteration of the simulation and deviation from the 

expected values are shown in Table 4.8. 

Table 4.8: Simulated Acceleration Test Values 

Test 
# 

Drawbar 

Pull (N) 
Velocity (m/s) Slip Ratio 

Sinkage 

(cm) 

Rolling 
Resistance 

(N) 

1 10.80 8.0% 1.0002 0.02% 0.00598 6.0% 4.4356 2.6% 173.1 0.45% 

2 
(F) 175.8 0.5% 0.0785 11% 4.2486 3.5% 158.3 10% 

2 
(B) 150.4 14% 

9.1456 4.5% 
0.0535 24% 4.5560 3.5% 183.3 3.9% 
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For the low drawbar pull case, the expected final velocity was reached nearly 

exactly.  For the high drawbar pull case, a higher velocity is obtained than expected.  

Drawbar pull, slip, sinkage, and rolling resistances also differ by nontrivial amounts.  

This is due to the fact that the steady state torques were solved for under the 

assumption that all wheels were at the same depth.  Due to the vehicle’s forward 

acceleration, weight is transferred to the rear, causing the back wheels to sink deeper 

than the front wheels.  A steady state 0.07 degree pitch-up was the result.  This effect 

was not accounted for when calculating the torques, and will be attributed the 

deviations. 
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Chapter 5:  Articulated Rover Simulation 

This chapter details an investigation into passively articulated rover motion 

using the simulation described above.  Unlike the validation tests, the turning joint is 

free to rotate in these simulations.  Section 5.1 looks at forward movement, and its 

stability when disturbed by an external impulse.  Section 5.2 describes the turning 

nature of an articulated vehicle.  Section 5.3 implements a simple control system to 

deal with disturbances and to help complete desired vehicle motions.  All simulations 

occur under Earth gravity conditions and in uniform dry sand. 

5.1 Forward Movement 

5.1.1 Nominal Case 

The first articulated simulation runs were targeted at determining whether the 

rover could move in a straight line.  In a perfect simulation world, if the rover is 

moving at constant velocity and provides equal and sufficient powers to its wheels, 

then it will continue without changing its velocity vector, or exhibiting turning joint 

motion.  Three simulations were performed with initial velocities of 0.5 m/s, 3 m/s, 

and 6 m/s for 60 seconds each.  At the end of each 60 second simulation, turning joint 

angles were on the order of 10-9 degrees, the vehicle’s heading had shifted by 10-8 

degrees, and the velocities were the same to about one part in one million. 

5.1.2 Disturbed Behavior 

Traveling over a planet’s surface, a rover will encounter non-homogenous soil 



 

 
43 

 

and rock distributions.  Rocks impacting the wheel sides have the ability to disturb 

the rover’s motion, and impart angular velocity on its turning joint.  Disturbances 

were introduced into the simulation as a non-zero initial turning joint rate.  The rover 

was tested over rates ranging from 0 deg/s to one such that its lateral velocity 

matched its longitudinal velocity.  This range was chosen to represent probable 

disturbance magnitudes encountered in the field.  The rover’s responses to these 

disturbances changed as initial velocity was increased.  For each disturbance, the 

maximum turning angle, settled turning angle, final heading change rate, and settling 

time were recorded. 

For the low speed case, the turning joint approached its settled value without 

overshoot (Figure 5.1), and the relationship between maximum turning joint angle 

and disturbance magnitude was nearly linear (Figure 5.2).   

 

Figure 5.1: Low Speed Disturbance, Turning Joint Angle vs. Time 
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Figure 5.2: Low Speed Disturbance, Maximum Turning Joint Angles 

For the medium speed case, there is some overshoot (Figure 5.3).  Maximum 

vs. final turning joint angles differ by up to 6.3 percent, diverging with increasing 

disturbance. Figure 5.4 shows that the maximum disturbance plot begins to turn for 

higher magnitude disturbances. 

 

Figure 5.3: Medium Speed Disturbanc, Turning Joint Angle vs. Time 



 

 
45 

 

 

Figure 5.4: Medium Speed Disturbance, Maximum Turning Joint Angles 

 For the high speed case, the maximum turning angle plot continues its turn, 

but eventually levels out at a maximum disturbance of about 17 degrees, independent 

of the initial displacement (Figure 5.5).  The difference between maximum and final 

turning joint angles also diverged by significant amounts for the larger disturbances. 

 

Figure 5.5: High Speed Disturbance, Maximum Turning Joint Angles 
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Essentially, each disturbance introduces a steady state turning joint, or q7 

displacement, and therefore, turning radius to the rover’s motion.  For a given q7, the 

rover’s segments line up with a circle of radius 

 
  

! 

r =
l

tan q
7
2( )

 (5.1) 

The observed vs. expected turning radii differed only by an average of 3.8%.  

This difference could be due in part to the same powers being delivered to each 

wheel, whereas inner and outer wheel powers would be slightly different for a 

perfectly turning vehicle.  Figure 5.6 shows the circular path produced for one of the 

high speed simulations.  

 

Figure 5.6: High Speed Disturbed Rover Path 

 

5.2 PD Control 

In order to truly be in control of an articulated rover and to handle 

disturbances, there must be a means of steering.  The steering system should be as 
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simple as possible, and rely on feedback easily available from the rover.  It is 

assumed that the rover has a high quality absolute rotary encoder at its turning joint to 

measure angles, and to derive joint rates. 

5.3.1 Controller Design 

The controller developed for this test was a PD controller.  The turning joint 

value and rate are multiplied by gains, and added to the steady-state power delivered 

to the front left wheel, and subtracted from the front left one. 

 

! 

Pleft = Pnom + K p q
7
" q

7des( ) + Kd
˙ q 

7
" ˙ q 

7des( )  (5.2) 

 

! 

Pright = Pnom "K p q
7
" q

7des( ) "Kd
˙ q 

7
" ˙ q 

7des( ) (5.3) 

The initial gains were chosen arbitrarily such that Kp = 100, and Kd = 100.  

The controller may command new powers at a frequency of 10 Hz. 

5.3.2 Response to Disturbances 

The first test for the control system was to see how well it handled the same 

disturbances described in Section 5.1.2.  The simulations were stopped when the 

turning joint angle and rate were negligible.  Results in Figures 5.7-5.9 show the 

maximum q7 overshoot and final vehicle heading q6 as a function of disturbance 

magnitude, for each of the velocities tested. 



 

 
48 

 

 

Figure 5.7: Disturbance Effects for v = 0.5 m/s 

For low and medium velocities, the general trend is for higher disturbances to 

cause larger overshoots and heading changes.  Also, for the given set of gains, the 

control system was less able to handle the higher speed cases.  Additionally, power 

requirements per motor increased by up to 2% and 19% for the 0.5 m/s and 3 m/s 

velocities, respectively, while for the 6 m/s case, power requirements increased by up 

to 15%. 

Settling times were on the order of 9 seconds for v = 0.5 m/s, 17 seconds for v 

= 3 m/s, and 18 seconds for v = 6 m/s.  While maximum turning joint angles increase 

with increasing disturbance magnitude for the high velocity case, final heading 

increases until about 100 deg/s disturbance, and then decreases back to near zero at 

230 deg/s.  A typical trace of turning joint angle vs. time (for the high speed case) is 

shown in figure 5.10. 
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Figure 5.8: Disturbance Effects for v = 3 m/s 

 

Figure 5.9: Disturbance Effects for v = 6 m/s 



 

 
50 

 

 

Figure 5.10: Response of Turning Joint with PD Control at High Speeds 

Next an attempt was made to achieve a quicker settling time by altering the 

gains of the system for the 6 m/s case.  Now, Kp = 300 and Kd = 300.  Figure 5.11 

shows the settling time and power requirement percent differences between the two 

gain sets. 

 

Figure 5.11: Settling Time and Power Requirement Comparisons 

The new gains improve settling time by 25-55 percent across the disturbance 
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range.  Power requirements increased by a maximum of 25 percent.  The turning joint 

response is shown in Figure 5.12 

 

Figure 5.12: High Speed Turning Joint Response with Alternate Gains 

5.3.3 Turning Performance 

The next group of simulations set the rover moving at 0.5 or 3 m/s (nominal 

per-wheel driving powers of 89 W and 535 W, respectively) in the longitudinal 

direction, and then told the control system to move the turning joint angle to 5, 10, 15, 

30, or 45 degrees.  Tables 5.1 and 5.2 show each case’s settled turning joint angle 

percentage, resulting turn radius, and maximum power per wheel. 

Table 5.1: Turning Performance at 0.5 m/s 
q7 commanded 

(deg) 
q7 final 
(deg) 

q7  % 
difference 

Turn Radius 
(m) 

Maximum 
Power 

(W) 

5 4.999 0.00 34.7 98 

10 9.9994 0.01 17.3 107 

15 14.9979 0.01 11.5 115 

30 29.9823 0.06 5.7 141 

45 44.931 0.15 3.7 168 
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Table 5.2: Turning Performance at 3 m/s 
q7 commanded 

(deg) 
q7 final 
(deg) 

q7  % 
difference 

Turn Radius 
(m) 

Maximum 
Power 

(W) 

5 4.9881 0.24 35.2 543 

10 9.9058 0.94 17.7 552 

15 14.6882 2.08 11.9 561 

30 27.7773 7.41 6.3 587 

45 38.6856 14.03 4.4 613 

 

Traveling velocities remained within 5% of their initial values.  The PD 

controller had an easier time achieving the desired joint angles for the smaller 

velocity case than for the higher one (See Figures 5.13 and 5.14).  Powers peaked 

during initial phases of disturbance handling, but then returned to within a few Watts 

of nominal steady-state powers. 

 

Figure 5.13: Low Speed Turning Response 
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Figure 5.14: High Speed Turning Response 

Next, the vehicle (traveling at 1.5 m/s) was commanded to perform a 

maneuver.  The maneuver set the desired turning joint angle to 20 degrees for 6 

seconds (starting at t = 2 s), and then returned to driving straight.  As can be seen in 

Figure 5.15, the turning joint angle reached 20 degrees by the end of being 

commanded to do so, and then returned to zero within a few seconds.  The overall 

heading change (see Figure 5.16) was 60 degrees. 



 

 
54 

 

 

Figure 5.15: Turning Joint Value During Maneuver 

 

Figure 5.16: Vehicle Heading Angle During Maneuver 

To verify, the path is shown in Figure 5.17.  The wheel sinkages and torques 

are shown in Figures 5.18 and 5.19, respectively.  It can be seen that during the left 
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turn, the wheels were deeper on the right than on the left, which is expected. 

 

Figure 5.17: Rover Path During Maneuver 

 

Figure 5.18: Rover Wheel Sinkages During Maneuver 
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Figure 5.19: Wheel Torques During Maneuver 



 

 
57 

 

Chapter 6: Summary, Conclusions, Future Work 

6.1 Summary 

In this thesis, a computer model was built to simulate the movements of a 

passively articulated, segmented-body rover.  Its main components are a linearized (to 

reduce computation time) soil-wheel interaction model, a Newton-Euler based 

dynamic model (easily implemented using DH parameters), and a PD control module 

that regulates turning the turning joint’s position and velocity.  The simulation was 

tested against results for fixed-chassis rovers from past research.  Next, the simulation 

was used to investigate the driving and turning behavior of articulated vehicles.  

Straight driving cases with disturbances were looked at first.  Finally, the feedback 

control loop was added to the system, and its ability to handle disturbances and turn 

the vehicle was determined. 

6.2 Conclusions 

The simulation developed for this research provides qualitatively and to some 

extent, numerically consistent results with those of previous studies.  It also 

corresponded well to one rough experimental test in the lab.  It was sufficient for the 

purpose of investigating the general behavior of articulated vehicles. 

It was found that if disturbed from a straight path, a passively articulated rover 

will typically not become unstable, but rather settle into a stable turn radius which 

decreases with increasing velocity and disturbance severity.  Additionally, it is 

possible for such a vehicle to be controlled via a simple PD controller running at 10 
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Hz that is dependent only on feedback from a turning joint encoder.  For higher 

velocities and larger disturbances or turn commands, the controller required power 

significantly above the straight driving power, however this may have only been due 

to the specific gains chosen. 

Overall, it was found that simulation is a powerful way to look at vehicle 

behavior and derive vehicle requirements.  It was also found that for the passively-

articulated case, that it is controllable by simple control laws, but that optimal choice 

of gains is important in order to reduce required power and torque, yet keep the 

steering responsive. 

6.3 Future Work 

There is much that can still be done to improve the accuracy and capability of 

the simulation itself.  First, if the simulation is ported to a faster language, such as C 

or C++, then it might be feasible to use more accurate terramechanics stress 

distributions.  It might also be possible to speed the simulation up to real-time and use 

it as a simulator with humans and other real-world systems in the loop.  Currently the 

simulation runs between 30 and 40 Hz.  The timestep used for most work in this 

research was 0.001 seconds. 

Another area where the simulation could be expanded on is the number of 

vehicle segments and turning joint degrees of freedom modeled.  The kinematics 

module is already extendable to additional segments and joints, but the dynamic 

model was solved in Mathematica® for specifically two segments and one yaw 

degree of turning freedom. 
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For this research a damping term was introduced to approximate a suspension 

system.  A more accurate model of the suspension would improve the prediction 

power of the simulation, as well as give it the capability to evaluate ride quality and 

structural design requirements.  Rover movement on sloped ground should also be 

investigated.  Turning the gravity vector in the dynamic formulation would simulate 

sloped behavior. 

Simulations should also be performed on other types of rovers to make fair 

comparisons between configurations.  Additionally, it may be interesting to look at 

the effects of changing segment dimensions, mass distributions, and wheel/soil 

parameters for the articulated vehicle. 

This research modeled the ground’s surface as a flat plane.  However, it would 

be useful to add vertical dimension to the terrain and simulate obstacle climbing 

performance. 

Finally, the simulation should be tested against experimental results in the 

laboratory and out in the field.  Good agreement between simulation and actual 

testing would significantly improve the design process for new rover concepts.  For 

this, a research-grade meter-scale prototype vehicle should be constructed, basing its 

design on the results from available simulations.  Depending on the joint 

configuration, this prototype could also begin testing the articulated vehicle’s obstacle 

climbing abilities. 
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Appendices 

Appendix A: Matlab Simulation Code 

A.1: simcore.m 

% simcore.m simulates the motions of an articulated vehicle 
  
clear all 
close all 
clc 
  
% LOAD SOIL PROPERTIES 
soil = loadsoil('drysand2.soil') 
g = 9.81;   % grav accel (m/s^2) 
  
% VEHICLE PARAMETERS 
  
rover.n = 2;        % number of segments 
rover.l = 1.5;        % rover length dimension (distance to next link) 
rover.hw = -0.375;  % vertical distance from link plane to wheel hub 
rover.hcg = 0.125;  % vertical distance from link plane to segment cg 
rover.w = 0.8;     % lateral distance from segment centerline to wheel hub 
  
% wheel and cg coords in link frame 
for i=1:rover.n; 
    pw{i,1}=[sign(i-1)*rover.l;rover.w;rover.hw]; % wheel coords 
    pw{i,2}=[sign(i-1)*rover.l;-rover.w;rover.hw]; % wheel coords 
    pcg{i}=[sign(i-1)*rover.l;0;rover.hcg];   % cg coords 
end 
  
joints = [0 0 0 1 1 1 ones(1,rover.n-1)];   % joint types (0=P,1=R) 
  
% segment masses 
mseg = 200;   % kg 
segmass = mseg*ones(rover.n,1); 
  
% wheel properties 
wheel.r = 0.5;     % wheel radius 
wheel.b = 0.2;     % wheel width 
D = 800;    % vertical damping at each wheel (Ns/m) 
  
% solve for wheel state given desired drawbar pull 
[sinkage,Tmag,Rconst,slip0] = constvel(mseg,g,wheel,0); 
  
% INITIAL CONDITIONS 
  
vel_init = 0.5; % initial rover velocity 
  
dx = wheel.r-sinkage-rover.hw;    % vertical position 
dy = 0; dz = 0; 
phix = 0; phiy = 0; phiz = 0; 
  
theta_init = 0;     % initial turning joint angle (deg) 
jointrate = 0;      % initial turning joint rate (deg/s) 
  
% initial joint values 
q = [dz,dx,dy,phiy,phiz,phix,theta_init]'; 
qdot = [-vel_init;0;0;0;0;0;jointrate];      
  
% VARIABLE HACKS FOR DYNAMICS EQNS 
ms = mseg; 
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L = rover.l; 
H = pcg{1}(3); 
sphereI = 2/5*ms*(pw{1,1}(2)/2)^2; 
I11=sphereI;I12=0;I13=0; 
I21=0;I22=sphereI;I23=0; 
I31=0;I32=0;I33=sphereI; 
  
% Wheel Powers & Torques 
motor.Pmax0 = Tmag*(vel_init/((1-slip0)*wheel.r))*ones(rover.n,2); 
motor.Pmax = motor.Pmax0; 
T = Tmag*ones(rover.n,2); 
  
% Desired values 
q7des = 0;      % desired turning joint angle 
q7dotdes = 0;   % desired turning jonit rate 
  
% PD Controller gains 
PgainP = 100;   % position 
PgainD = 100;   % velocity 
  
% SIMULATION PARAMETERS 
dt = 0.001;         % timestep length (s) 
simseconds = 1;    % length of simulation (s) 
  
num_iter = simseconds/dt;   % number of iterations 
iterations = 1;             % start iteration counter at 1 
records = 1;                % start records counter at 1 
t = 0;                      % start time at 0 seconds 
tic                         % start timer 
  
stable = 1; 
  
% MAIN SIMULATION LOOP 
while(iterations < num_iter) 
     
    DH = getDH(rover,q);                    % get updated DH parameters 
  
    % Transformation Matrices 
    Tadjacent = getTadj(DH);                % All T's between adjacent frames 
    Tjoint = getTjoint(Tadjacent,rover);    % T's from joint to base frame 
    Twheel = getTwheel(Tjoint,rover,pw);    % T's from wheel to base frame 
     
    plow0 = getplow0(Twheel,rover,wheel);         % base coords of deepest wheel point 
    [z0, Rwr2w] = getWRframe(plow0,Twheel,Tjoint,rover);    % max wheel depth & 
rotation from wheel frame to wheel reaction frame    
     
    % break out of simulation if wheel breaks surface 
    if sum(sum(z0>=0))>0 
        stable = 0; 
        break; 
    end 
     
    % Jacobians 
    Jtransw = getJTWheel(rover,wheel,joints,Tadjacent,pw);  % Wheel Jacobians in wheel 
frame 
    Jtrans = getJTWR(Jtransw,Rwr2w,rover);                  % Wheel Jacobians in wheel 
reaction frame 
     
    % Wheel velocities 
    wheelvel = getvwheel(rover,qdot,Jtrans); 
         
    % WHEEL FORCES 
     
    th1 = real(acos(1-(-z0)./wheel.r)); % wheel entry angle 
         
    % solve for slip angle and slip ratios 
    for i=1:rover.n 
        for j=1:2 
            betaslip(i,j) = getBeta(wheelvel{i,j}); 
            soil.kx(i,j) = betaslip(i,j)*soil.dkx+soil.kx0; 
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            soil.ky(i,j) = betaslip(i,j)*soil.dky+soil.ky0; 
            slip(i,j) = sbisect(th1(i,j),soil.kx(i,j),soil,T(i,j),wheel); 
        end 
    end 
     
    % location of maximum stresses 
    thm = thetamax(th1, slip, soil); 
  
    % max stress values 
    sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-
cos(th1)).^soil.n; 
    jx = wheel.r.*(th1-thm-(1-slip).*(sin(th1)-sin(thm))); 
    taum = (soil.c+sigm*tan(soil.phi)) .* (1-exp((-1*jx)./soil.kx)); 
    tauym = (soil.c+sigm.*tan(soil.phi)) .* (1-exp( -(wheel.r./soil.ky) .* ((1-
slip).*(th1-thm).*tan(betaslip)))); 
  
    % Wheel Force Magnitudes 
    FxH = DPH(th1,thm,taum,wheel);              % soil thrust 
    FxR = DPR(th1,thm,sigm,wheel);         % soil resistance 
    Fz = W(th1, thm, sigm, taum, wheel);        % vertical reaction 
    Fytau = abs(Ctau(th1, tauym, wheel));       % lateral stress 
    %Fybull(i,j) = quad(@(th) Cbull(th, th1(i,j), wheel, soil),0,th1(i,j));  % lateral 
bulldozing 
    %Fy = Fytau+Fybull;                          % total lateral forces 
    Fy = Fytau; 
  
    % Determine force vectors 
    FxHsign = sign(FxH); 
    for i=1:rover.n 
        Fcw{i}=zeros(3,1); Ncw{i} = zeros(3,1); 
        for j=1:2 
  
            % Vectorize in local coords 
            if (wheelvel{i,j}(1)==0 && FxHsign(i,j)==1) 
                WFx_vec{i,j} = [max([FxH(i,j)+FxR(i,j),0]);0;0]; 
            elseif (wheelvel{i,j}(1)==0 && FxHsign(i,j)==-1) 
                WFx_vec{i,j} = [min([FxH(i,j)-FxR(i,j),0]);0;0]; 
            else 
                WFx_vec{i,j} = [FxH(i,j)+FxR(i,j)*sign(wheelvel{i,j}(1));0;0]; 
            end 
            WFy_vec{i,j} = [0;Fy(i,j)*-sign(wheelvel{i,j}(2));0]; 
            WFz_vec{i,j} = [0;0;Fz(i,j)-D*wheelvel{i,j}(3)]; 
  
            % Transform to link (cg) 
            WFx_veclink{i,j} = Rwr2w{i,j}*WFx_vec{i,j}; 
            WFy_veclink{i,j} = Rwr2w{i,j}*WFy_vec{i,j}; 
            WFz_veclink{i,j} = Rwr2w{i,j}*WFz_vec{i,j}; 
             
            pwheelwrtcg{i,j} = pw{i,j} - pcg{i};    % position of wheel wrt cg (link 
frame) 
            Fcwlocal = WFx_veclink{i,j} + WFy_veclink{i,j} + WFz_veclink{i,j}; 
            Fcw{i}= Fcw{i} + Fcwlocal; 
            Ncw{i}= Ncw{i} + cross(pwheelwrtcg{i,j},Fcwlocal); 
        end 
    end 
     
    % BUILD HANDY STATE MATRICES 
     
    % forces & moments 
    Fs = []; 
    Ns = []; 
    for i=1:rover.n 
        Fs = [Fs;Fcw{i}]; 
        Ns = [Ns;Ncw{i}]; 
    end 
     
    % square of joint rates 
    qdotsquared = qdot(4:rover.n+5).^2; 
     
    % joint rate products 
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    tempcounter = 0; 
    for i=4:rover.n+5-1 
        for j=i+1:rover.n+5 
            tempcounter = tempcounter+1; 
            qdotprods(tempcounter,1)=qdot(i)*qdot(j); 
        end 
    end 
     
    % DYNAMICS!!! 
     
    % more variable hacks 
    q1=q(1);q2=q(2);q3=q(3);q4=q(4);q5=q(5);q6=q(6);q7=q(7); 
     
    % equations from mathematica 
    Minv=inv([2*ms,0,0,ms*(2*L*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*(-
2*H*cos(q5) + L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*sin(q4)*(2*H*sin(q5) + 
L*cos(q5)*(sin(q6) + sin(q6 + q7))),L*ms*(2*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4)*sin(q5) 
+ cos(q4)*(sin(q6) + sin(q6 + q7))),L*ms*(cos(q6 + q7)*sin(q4)*sin(q5) + 
cos(q4)*sin(q6 + q7));0,2*ms,0,ms*(-2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) + 
sin(q4)*(-2*H*cos(q5) + L*sin(q5)*(sin(q6) + sin(q6 + q7)))),-(ms*cos(q4)*(2*H*sin(q5) 
+ L*cos(q5)*(sin(q6) + sin(q6 + q7)))),L*ms*(-2*cos(q4)*cos(q6 + 
q7/2.)*cos(q7/2.)*sin(q5) + sin(q4)*(sin(q6) + sin(q6 + q7))),L*ms*(-(cos(q4)*cos(q6 + 
q7)*sin(q5)) + sin(q4)*sin(q6 + q7));0,0,2*ms,0,ms*(2*H*cos(q5) - L*sin(q5)*(sin(q6) + 
sin(q6 + q7))),2*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.),L*ms*cos(q5)*cos(q6 + 
q7);ms*(2*L*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*(-2*H*cos(q5) + 
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*(-2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) + 
sin(q4)*(-2*H*cos(q5) + L*sin(q5)*(sin(q6) + sin(q6 + q7)))),0,I33 + 
(cos(q5)^2*(2*(2*I11 + I22 + 2*H^2*ms + L^2*ms) + (-I11 + I22 + L^2*ms)*cos(2*q6) + (-
I11 + I22)*cos(2*(q6 + q7)) + L^2*ms*(2*cos(q7) + cos(2*(q6 + q7)) + 2*cos(2*q6 + 
q7))) + 2*(I22 + 2*I33 + 2*L^2*ms + 2*L^2*ms*cos(q7))*sin(q5)^2 - 
4*H*L*ms*cos(q7/2.)*sin(2*q5)*sin(q6 + q7/2.))/2.,2*H*L*ms*cos(q6 + 
q7/2.)*cos(q7/2.)*sin(q5) + cos(q5)*(L^2*ms + (-I11 + I22 + L^2*ms)*cos(q7))*sin(2*q6 
+ q7),2*(I33 + L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*(sin(q6) + sin(q6 + 
q7)),(I33 + L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*sin(q6 + 
q7);ms*sin(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7))),-
(ms*cos(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7)))),ms*(2*H*cos(q5) - 
L*sin(q5)*(sin(q6) + sin(q6 + q7))),2*H*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) + 
cos(q5)*(L^2*ms + (-I11 + I22 + L^2*ms)*cos(q7))*sin(2*q6 + q7),(2*(I11 + I22 + I33 + 
2*H^2*ms + L^2*ms) + (I11 - I22 - L^2*ms)*cos(2*q6) + 2*L^2*ms*cos(q7) + (I11 - I22 - 
L^2*ms)*cos(2*(q6 + q7)) - 2*L^2*ms*cos(2*q6 + q7))/2.,H*L*ms*(cos(q6) + cos(q6 + 
q7)),H*L*ms*cos(q6 + q7);L*ms*(2*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4)*sin(q5) + 
cos(q4)*(sin(q6) + sin(q6 + q7))),L*ms*(-2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) 
+ sin(q4)*(sin(q6) + sin(q6 + q7))),2*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.),2*(I33 + 
L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*(sin(q6) + sin(q6 + 
q7)),H*L*ms*(cos(q6) + cos(q6 + q7)),2*(I33 + L^2*ms + L^2*ms*cos(q7)),I33 + L^2*ms + 
L^2*ms*cos(q7);L*ms*(cos(q6 + q7)*sin(q4)*sin(q5) + cos(q4)*sin(q6 + q7)),L*ms*(-
(cos(q4)*cos(q6 + q7)*sin(q5)) + sin(q4)*sin(q6 + q7)),L*ms*cos(q5)*cos(q6 + q7),(I33 
+ L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*sin(q6 + q7),H*L*ms*cos(q6 + 
q7),I33 + L^2*ms + L^2*ms*cos(q7),I33 + L^2*ms]); 
    B=[2*ms*cos(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + 
q7))),2*L*ms*(2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) - sin(q4)*(sin(q6) + sin(q6 
+ q7))),2*L*ms*(cos(q4)*cos(q6 + q7)*sin(q5) - sin(q4)*sin(q6 + 
q7)),4*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4),2*L*ms*cos(q5)*cos(q6 + 
q7)*sin(q4),2*L*ms*(cos(q4)*cos(q6 + q7) - sin(q4)*sin(q5)*sin(q6 + 
q7));2*ms*sin(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7))),2*L*ms*(2*cos(q6 
+ q7/2.)*cos(q7/2.)*sin(q4)*sin(q5) + cos(q4)*(sin(q6) + sin(q6 + q7))),2*L*ms*(cos(q6 
+ q7)*sin(q4)*sin(q5) + cos(q4)*sin(q6 + q7)),-4*L*ms*cos(q4)*cos(q5)*cos(q6 + 
q7/2.)*cos(q7/2.),-2*L*ms*cos(q4)*cos(q5)*cos(q6 + q7),2*L*ms*(cos(q6 + q7)*sin(q4) + 
cos(q4)*sin(q5)*sin(q6 + q7));0,0,0,-4*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5),-
2*L*ms*cos(q6 + q7)*sin(q5),-2*L*ms*cos(q5)*sin(q6 + q7);(-
8*H*L*ms*cos(2*q5)*cos(q7/2.)*sin(q6 + q7/2.) + 2*sin(2*q5)*(-2*I11 + 2*I33 - 2*H^2*ms 
+ L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) + 2*L^2*ms*sin(q6)*sin(q6 + 
q7)))/2.,-2*H*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(2*q5) - 2*cos(q5)^2*(L^2*ms + (-I11 
+ I22 + L^2*ms)*cos(q7))*sin(2*q6 + q7),(2*cos(q6 + q7)*(-(H*L*ms*sin(2*q5)) + 
cos(2*q5)*((I11 - I22)*sin(q6 + q7) - L^2*ms*(sin(q6) + sin(q6 + q7)))) + (I11 - 
I22)*sin(2*(q6 + q7)) - L^2*ms*(3*sin(q7) + sin(2*(q6 + q7)) + sin(2*q6 + 
q7)))/2.,cos(q5)*(2*(I33 + L^2*ms) + (-I11 + I22 + L^2*ms)*cos(2*q6) + (-I11 + 
I22)*cos(2*(q6 + q7)) + L^2*ms*(2*cos(q7) + cos(2*(q6 + q7)) + 2*cos(2*q6 + 
q7))),cos(q5)*(I33 + L^2*ms + (-I11 + I22)*cos(2*(q6 + q7)) + L^2*ms*(cos(q7) + 
cos(2*(q6 + q7)) + cos(2*q6 + q7))),-2*L*ms*(H*cos(q5)*cos(q6 + q7) + 
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L*sin(q5)*sin(q7));0,(-8*H*L*ms*cos(q7/2.)*sin(q5)*sin(q6 + q7/2.) - 4*cos(q5)*(I33 + 
L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) + 2*L^2*ms*sin(q6)*sin(q6 + 
q7)))/2.,(-2*(I33 + L^2*ms)*cos(q5) + 2*(-I11 + I22 + L^2*ms)*cos(q5)*cos(2*(q6 + q7)) 
- 4*L*ms*(H*sin(q5) + L*cos(q5)*sin(q6))*sin(q6 + q7))/2.,2*(L^2*ms + (-I11 + I22 + 
L^2*ms)*cos(q7))*sin(2*q6 + q7),2*cos(q6 + q7)*(L^2*ms*sin(q6) + (-I11 + I22 + 
L^2*ms)*sin(q6 + q7)),-2*H*L*ms*sin(q6 + q7);2*H*L*ms*sin(q5)*(sin(q6) + sin(q6 + q7)) 
+ 2*cos(q5)*(I33 + L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) + 
2*L^2*ms*sin(q6)*sin(q6 + q7)),0,-2*L^2*ms*sin(q5)*sin(q7),0,0,-
2*L^2*ms*sin(q7);(2*cos(q5)*(I33 + L^2*ms + (I11 - I22)*cos(2*(q6 + q7)) + 
L^2*ms*(cos(q7) - cos(2*(q6 + q7)) - cos(2*q6 + q7))) + 4*H*L*ms*sin(q5)*sin(q6 + 
q7))/2.,2*L^2*ms*sin(q5)*sin(q7),0,0,0,0]; 
    C=[ms*(2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) + sin(q4)*(2*H*cos(q5) - 
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*sin(q4)*(2*H*cos(q5) - L*sin(q5)*(sin(q6) + 
sin(q6 + q7))),L*ms*(2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) - sin(q4)*sin(q5)*(sin(q6) + 
sin(q6 + q7))),L*ms*(cos(q4)*cos(q6 + q7) - sin(q4)*sin(q5)*sin(q6 + 
q7));ms*(2*L*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*(-2*H*cos(q5) + 
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*cos(q4)*(-2*H*cos(q5) + L*sin(q5)*(sin(q6) + 
sin(q6 + q7))),L*ms*(2*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*sin(q5)*(sin(q6) + 
sin(q6 + q7))),L*ms*(cos(q6 + q7)*sin(q4) + cos(q4)*sin(q5)*sin(q6 + q7));0,-
(ms*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7)))),-
2*L*ms*cos(q5)*cos(q7/2.)*sin(q6 + q7/2.),-(L*ms*cos(q5)*sin(q6 + 
q7));0,2*H*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.) - (L^2*ms + (-I11 + I22 + 
L^2*ms)*cos(q7))*sin(q5)*sin(2*q6 + q7),-2*H*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.),-
(L*ms*(H*cos(q5)*cos(q6 + q7) + 
L*sin(q5)*sin(q7)));(16*H*L*ms*cos(2*q5)*cos(q7/2.)*sin(q6 + q7/2.) - 4*sin(2*q5)*(-
2*I11 + 2*I33 - 2*H^2*ms + L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) + 
2*L^2*ms*sin(q6)*sin(q6 + q7)))/8.,0,-(H*L*ms*(sin(q6) + sin(q6 + q7))),-
(H*L*ms*sin(q6 + q7));H*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(2*q5) + cos(q5)^2*(L^2*ms 
+ (-I11 + I22 + L^2*ms)*cos(q7))*sin(2*q6 + q7),-((L^2*ms + (-I11 + I22 + 
L^2*ms)*cos(q7))*sin(2*q6 + q7)),0,-(L^2*ms*sin(q7));(2*cos(q6 + q7)*(H*L*ms*sin(2*q5) 
+ cos(2*q5)*(L^2*ms*sin(q6) + (-I11 + I22 + L^2*ms)*sin(q6 + q7))) + (-I11 + 
I22)*sin(2*(q6 + q7)) + L^2*ms*(3*sin(q7) + sin(2*(q6 + q7)) + sin(2*q6 + q7)))/4.,-
(cos(q6 + q7)*(L^2*ms*sin(q6) + (-I11 + I22 + L^2*ms)*sin(q6 + 
q7))),L^2*ms*sin(q7),0]; 
    G=[0,2*ms,0,ms*(-2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) + sin(q4)*(-2*H*cos(q5) + 
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),-(ms*cos(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + 
sin(q6 + q7)))),L*ms*(-2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) + sin(q4)*(sin(q6) 
+ sin(q6 + q7))),L*ms*(-(cos(q4)*cos(q6 + q7)*sin(q5)) + sin(q4)*sin(q6 + q7))]'; 
    Fwcoeff=[-(cos(q4)*cos(q6)) + sin(q4)*sin(q5)*sin(q6),cos(q6)*sin(q4)*sin(q5) + 
cos(q4)*sin(q6),-(cos(q5)*sin(q4)),-(cos(q4)*cos(q6 + q7)) + sin(q4)*sin(q5)*sin(q6 + 
q7),cos(q6 + q7)*sin(q4)*sin(q5) + cos(q4)*sin(q6 + q7),-(cos(q5)*sin(q4));-
(cos(q6)*sin(q4)) - cos(q4)*sin(q5)*sin(q6),-(cos(q4)*cos(q6)*sin(q5)) + 
sin(q4)*sin(q6),cos(q4)*cos(q5),-(cos(q6 + q7)*sin(q4)) - cos(q4)*sin(q5)*sin(q6 + 
q7),-(cos(q4)*cos(q6 + q7)*sin(q5)) + sin(q4)*sin(q6 + 
q7),cos(q4)*cos(q5);cos(q5)*sin(q6),cos(q5)*cos(q6),sin(q5),cos(q5)*sin(q6 + 
q7),cos(q5)*cos(q6 + q7),sin(q5);H*cos(q5)*cos(q6),-
(H*cos(q5)*sin(q6)),0,H*cos(q5)*cos(q6 + q7) + L*sin(q5)*sin(q7),L*(1 + 
cos(q7))*sin(q5) - H*cos(q5)*sin(q6 + q7),-2*L*cos(q5)*cos(q6 + 
q7/2.)*cos(q7/2.);H*sin(q6),H*cos(q6),0,H*sin(q6 + q7),H*cos(q6 + q7),-(L*(sin(q6) + 
sin(q6 + q7)));0,0,0,L*sin(q7),L*(1 + cos(q7)),0;0,0,0,0,L,0]; 
    
Nwcoeff=[0,0,0,0,0,0;0,0,0,0,0,0;0,0,0,0,0,0;cos(q5)*sin(q6),cos(q5)*cos(q6),sin(q5),c
os(q5)*sin(q6 + q7),cos(q5)*cos(q6 + q7),sin(q5);-cos(q6),sin(q6),0,-cos(q6 + 
q7),sin(q6 + q7),0;0,0,1,0,0,1;0,0,0,0,0,1]; 
      
    qddot = Minv*(-B*qdotprods-C*qdotsquared-g*G+Fwcoeff*Fs+Nwcoeff*Ns); 
     
    % UPDATE JOINT VALUES & RATES 
    q = q+qdot*dt+1/2*qddot*dt^2; 
    qdot = qdot+qddot*dt; 
    %q(7)=0;qdot(7)=0;qddot(7)=0;    % use if want to fix turning joint 
  
    % PD Controller 
    if (mod(iterations,100)==0) 
     
        deltatheta = q(7)-q7des; 
        deltathetadot = qdot(7)-q7dotdes; 
        PdeltaP = PgainP*deltatheta; 
        PdeltaD = PgainD*deltathetadot; 
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        motor.Pmax=motor.Pmax0; 
        motor.Pmax(2,2) = motor.Pmax0(2,2)-PdeltaP-PdeltaD; 
        motor.Pmax(2,1) = motor.Pmax0(2,1)+PdeltaP+PdeltaD; 
  
    end 
     
    % Calculate Wheel Torques 
    for i=1:rover.n 
        for j=1:2 
            if slip(i,j)>=0 
                T(i,j) = motor.Pmax(i,j)*(wheel.r*(slip(i,j)-1))/(-
abs(wheelvel{i,j}(1))); 
            else 
                T(i,j) = 
motor.Pmax(i,j)/((slip(i,j)+1)*abs(wheelvel{i,j}(1))/wheel.r); 
            end 
        end 
    end 
         
    % PRINT OUT INFORMATION TO SCREEN & RECORD SIMULATION DATA 
    iterations = iterations + 1; 
    if (mod(iterations,10)==0) 
         
        % Screen Output 
        if (mod(iterations,10)==0) 
            minsleft = (num_iter-iterations)/(iterations/toc)/60; 
            minsleftrnd = fix(minsleft); 
            secondsleft = round((minsleft-minsleftrnd)*60); 
            clc 
            disp([num2str(minsleftrnd), ' min ', num2str(secondsleft), ' sec 
remaining, Completed ',num2str(iterations), ' iterations in ', num2str(round(toc)), ' 
seconds at ',num2str(round(iterations/toc)),' Hz']); 
            disp(['simtime = ',num2str(t),' / ',num2str(simseconds)]); 
            disp(['turning joint angle: ',num2str(180/pi*q(7))]); 
            disp(['turning joint angle rate: ',num2str(180/pi*qdot(7))]); 
            disp(['vel = ',num2str(sqrt(qdot(1).^2+qdot(3).^2))]) 
            disp(['DP = ',num2str(FxH(1,1)+FxR(1,1))]) 
            disp(['slip = ',num2str(slip(1,1))]) 
            disp(['sinkage = ',num2str(z0(1,1))]) 
            disp(['R = ',num2str(FxR(1,1))]) 
            disp(['heading: ',num2str(180/pi*q(6))]); 
            disp(['heading rate: ',num2str(180/pi*qdot(6))]); 
        end 
         
        % Record Data 
        trec(records) = t; 
        qrec(:,records) = q; 
        qrecdot(:,records) = qdot; 
        qrecddot(:,records) = qddot; 
  
        counter = 1; 
        for i=1:rover.n 
            for j=1:2 
                z0rec(records,counter)=z0(i,j); 
                th1rec(records,counter)=th1(i,j); 
                betarec(records,counter)=betaslip(i,j); 
                sliprec(records,counter)=slip(i,j); 
                Hrec(records,counter)=FxH(i,j); 
                Rrec(records,counter)=FxR(i,j); 
                %Fytaurec(records,counter)=Fytau(i,j); 
                %Fybullrec(records,counter)=Fybull(i,j); 
                %Fzrec(records,counter)=Fz(i,j); 
                Torec(records,counter)=T(i,j); 
                Porec(records,counter)=motor.Pmax(i,j); 
                %wvrecx(records,counter)=wheelvel{i,j}(1); 
                %wvrecy(records,counter)=wheelvel{i,j}(2); 
                wfxrec(records,counter)=WFx_vec{i,j}(1); 
                wfyrec(records,counter)=WFy_vec{i,j}(2); 
                wfzrec(records,counter)=WFz_vec{i,j}(3); 
                counter = counter+1; 
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            end 
        end 
        records = records + 1; 
    end 
  
    % update time 
    t = t + dt; 
     
end 
toc 
  
plotit 

 

A.2: loadsoil.m 

% soil = loadsoil(file) 
% 
% loads soil properties from a file (mks units) 
% each property name and value on one line separated by a space 
%  
% 5/1/07: phi (friction angle) is stored in file in degrees, but converted 
% to radians in this routine 
  
function soil = loadsoil(file) 
  
% default soil parameters if not specified in file 
soil.name = ['default']; 
soil.n = 1; 
soil.c = 1000; 
soil.phi = 45*pi/180; 
soil.kc = 1000; 
soil.kphi = 1000000; 
soil.kx0 = 0.036; 
soil.ky0 = 0.013; 
soil.dkx = 0.043; 
soil.dky = 0.020; 
soil.a0 = 0.15; 
soil.a1 = 0.4; 
soil.density = 2000; 
  
% read data from .soil file 
[param_name,value]=textread(file,'%s %s','commentstyle','matlab'); 
  
% assign data values to soil structure 
for i=1:length(param_name) 
    switch param_name{i} 
        case 'name' 
            soil.name = value{i}; 
        case 'n' 
            soil.n = str2num(value{i}); 
        case 'c' 
            soil.c = str2num(value{i}); 
        case 'phi' 
            soil.phi = str2num(value{i})*pi/180; 
        case 'kc' 
            soil.kc = str2num(value{i}); 
        case 'kphi' 
            soil.kphi = str2num(value{i}); 
        case 'kx0' 
            soil.kx0 = str2num(value{i}); 
        case 'ky0' 
            soil.ky0 = str2num(value{i}); 
        case 'dkx' 
            soil.dkx = str2num(value{i}); 
        case 'dky' 
            soil.dky = str2num(value{i}); 
        case 'a0' 
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            soil.a0 = str2num(value{i}); 
        case 'a1' 
            soil.a1 = str2num(value{i}); 
        case 'density' 
            soil.density = str2num(value{i}); 
    end 
end 
             
% set kx & ky values for zero slip angle 
soil.kx = soil.kx0; 
soil.ky = soil.ky0; 

 

A.3: constvel.m 

% function [z,T,R,s] = constvel(mseg,g,wheel,DP_des) 
% 
% for constant drawbar pull driving, determines sinkage, driving torque, 
% rolling resistance, and slip per wheel 
% 
% mseg = segment mass 
% g = gravity 
% wheel = wheel properties 
% DP_des = desired drawbar pull 
  
function [z,T,R,s] = constvel(mseg,g,wheel,DP_des) 
  
m = mseg/2; % mass per wheel 
soil = loadsoil('drysand2.soil'); 
  
s = fzero(@(s) zeroDP(s, wheel,soil, g, m, DP_des, 0),[0 1]); 
  
zguess = 0.04; 
for i=1:length(s) 
    z = fzero(@(z) zeroFz(z, s, wheel, soil, g, m, 0),zguess); 
end 
  
th1 = acos(1-z/wheel.r); 
thm = thetamax(th1, s, soil); 
sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-cos(th1)).^soil.n; 
  
jx = wheel.r*(th1-thm-(1-s)*(sin(th1)-sin(thm))); 
taum = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-jx/soil.kx)); 
  
R = abs(DPR(th1, thm, sigm, wheel)); 
T = 1/2*wheel.r^2*wheel.b*taum.*th1; 

 

A.4: zeroFz.m 

% function Fz = zeroFz(z, slip, wheel, soil, g, m,lamda) 
% 
% minimized to find vertical force equilibrium 
  
function Fz = zeroFz(z, slip, wheel, soil, g, m,lamda) 
  
th1 = real(acos(1-z./wheel.r)); 
thm = thetamax(th1, slip, soil); 
jx = wheel.r*(th1-thm-(1-slip)*(sin(th1)-sin(thm))); 
sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-cos(th1)).^soil.n; 
taum = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-jx/soil.kx)); 
  
Fz = W(th1, thm, sigm, taum, wheel) - m*g*(1+lamda); 
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A.5: zeroDP.m 

% function DP = zeroDP(s, wheel,soil, g, m, DP_des,lamda) 
% 
% minimized to find desire drawbar pull solution 
  
function DP = zeroDP(s, wheel,soil, g, m, DP_des,lamda) 
  
zguess = 0.05; 
z = fzero(@(z) zeroFz(z, s, wheel, soil, g, m, lamda),zguess); 
th1 = acos(1-z/wheel.r); 
  
thm = thetamax(th1, s, soil); 
sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-cos(th1)).^soil.n; 
jx = wheel.r*(th1-thm-(1-s)*(sin(th1)-sin(thm))); 
taum = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-jx/soil.kx)); 
  
R = abs(DPR(th1, thm, sigm, wheel)); 
H = DPH(th1,thm,taum,wheel); 
DP = H-R-DP_des; 

 

A.6: getDH.m 

% function DHparams = getDH(rover,q) 
% 
% assigns DH parameters based on current joint values q 
  
function DHparams = getDH(rover,q) 
  
DHparams.i = [1:rover.n+5]; 
DHparams.alpha = [0,pi/2,-pi/2,0,pi/2,pi/2,zeros(1,rover.n-1)]; 
DHparams.a = [0,0,0,0,0,0,rover.l,2*rover.l*ones(1,rover.n-2)]; 
DHparams.d = [q(1:3)',zeros(1,rover.n+2)]; 
DHparams.theta = [pi/2,-pi/2,-pi/2,q(4),q(5)+pi/2,q(6)-pi/2,q(7:end)']; 

 

A.7: getTadj.m 

% function Tadjacent = getTadj(DH) 
% 
% calculates transformation matrices between all adjacent frames (i to i-1) 
  
function Tadjacent = getTadj(DH) 
  
for i = 1:(DH.i(end)) 
    Tadjacent{i} = [cos(DH.theta(i)),-sin(DH.theta(i)),0,DH.a(i); 
        sin(DH.theta(i))*cos(DH.alpha(i)),cos(DH.theta(i))*cos(DH.alpha(i)),-
sin(DH.alpha(i)),-sin(DH.alpha(i))*DH.d(i); 
        
sin(DH.theta(i))*sin(DH.alpha(i)),cos(DH.theta(i))*sin(DH.alpha(i)),cos(DH.alpha(i)),c
os(DH.alpha(i))*DH.d(i); 
        0,0,0,1]; 
end 

 

A.8: getTjoint.m 

% function Tjoint = getTjoint(Tadjacent,rover) 
% 
% calculates transformation matrices between all frames and the base frame 
  
function Tjoint = getTjoint(Tadjacent,rover) 
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for i = 1:rover.n 
    Tjoint{i} = 1; 
    for j = i+5:-1:1 
        Tjoint{i} = Tadjacent{j} * Tjoint{i}; 
    end 
end 

 

A.9: getTwheel.m 

% function Twheel = getTwheel(Tjoint,rover,pw) 
% 
% calculates transformation matrices from wheel hubs to base frame 
  
function Twheel = getTwheel(Tjoint,rover,pw) 
  
for i=1:rover.n 
    for j=1:2 
        Tw2j = [eye(3,3),pw{i,j};0,0,0,1]; 
        Twheel{i,j}=Tjoint{i}*Tw2j; 
    end 
end 

 

A.10: getplow0.m 

% function plow0 = getplow0(Twheel,rover,wheel) 
% 
% returns the lowest point of each wheel in the base frame 
  
function plow0 = getplow0(Twheel,rover,wheel) 
  
for i=1:rover.n 
    for j=1:2 
        thetamin = atan2(Twheel{i,j}(1,3),Twheel{i,j}(1,1)); 
        if thetamin>0 
            thetaminother = thetamin - pi; 
        elseif thetamin<=0 
           thetaminother = thetamin + pi; 
        end 
         
        plow0{i,j} = Twheel{i,j}*[wheel.r*cos(thetamin);0;wheel.r*sin(thetamin);1]; 
        plow0other{i,j} = 
Twheel{i,j}*[wheel.r*cos(thetaminother);0;wheel.r*sin(thetaminother);1]; 
         
        if plow0{i,j}(1)>plow0other{i,j}(1) 
            plow0{i,j} = plow0other{i,j}; 
        end 
    end 
end 

 

A.11: getWRframe.m 

% function [zdepth,Rwr2w] = getWRframe(plow0,Twheel,Tjoint,rover) 
% 
% returns the sinkage of each wheel, and the transformation between wheel 
% reaction frame and wheel (hub) frame 
  
function [zdepth,Rwr2w] = getWRframe(plow0,Twheel,Tjoint,rover) 
  
for i=1:rover.n 
    for j=1:2 
        rline = Twheel{i,j}(1:3,4)-plow0{i,j}(1:3); 
        rslope0 = rline/norm(rline); 
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        zdepth(i,j) = plow0{i,j}(1)/rslope0(1); 
        Xpart = cross(Tjoint{i}(1:3,1:3)*[0;1;0],rslope0); 
        Rwr20{i,j} = [Xpart/norm(Xpart),Tjoint{i}(1:3,1:3)*[0;1;0],rslope0]; 
        Rwr2w{i,j} = inv(Tjoint{i}(1:3,1:3))*Rwr20{i,j}; 
    end 
end 

 

A.12: getJTWheel.m 

% function JT = getJTWheel(rover,wheel,joints,Tadjacent,pw) 
% 
% get jacobian for all wheels in wheel (hub) frames 
  
function JT = getJTWheel(rover,wheel,joints,Tadjacent,pw) 
  
wsign = -1; 
for i = 1:rover.n 
    for j = 1:2 
        % indiv. wheel 
        for k = 1:i+5 
            Trans = eye(4); 
            for m = i+5:-1:k+1 
                Trans = Tadjacent{m} * Trans; 
            end 
            z{k} = Trans(1:3,1:3)'*[0;0;1]; 
            p1{k} = Trans * [pw{i,j};1]; 
            p1{k} = p1{k}(1:3); 
            p2{k} = Trans(1:3,1:3)'*p1{k}; 
            zp{k} = cross(z{k}(1:3),p2{k}); 
        end 
        term1 = cell2mat(zp); 
        term2 = cell2mat(z); 
        lam_joints = diag(joints(1:i+5)); 
        JT{i,j} = term1*lam_joints + term2*(eye(i+5)-lam_joints); 
        wsign = -wsign; 
    end 
end 

 

A.13: getJTWR.m 

% function Jtrans = getJTWR(Jtransw,Rwr2w,rover) 
% 
% get jacobian for all wheels in wheel reaction frames 
  
function Jtrans = getJTWR(Jtransw,Rwr2w,rover) 
  
for i=1:rover.n 
    for j=1:2 
        Jtrans{i,j}=Rwr2w{i,j}'*Jtransw{i,j}; 
    end 
end 

 

A.14: getvwheel.m 

% function wheelvel = getvwheel(rover,qdot,Jtrans) 
% 
% wheel velocities in wheel reaction frames 
  
function wheelvel = getvwheel(rover,qdot,Jtrans) 
  
for i=1:rover.n 
    qdotloc=qdot(1:i+5); 
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    for j=1:2 
        wheelvel{i,j}=Jtrans{i,j}*qdotloc; 
    end 
end 

 

A.15: getBeta.m 

%function betaslip = getBeta(rover,Jtrans,qdot) 
% 
% calculates slip angle for each wheel 
  
function betaslip = getBeta(wheelvel); 
  
betaslip = abs(atan2(wheelvel(2),wheelvel(1))); 
  
% if on wrong side of wheel 
if (betaslip > pi/2) 
    betaslip = pi-betaslip; 
end 

 

A.16: thetamax.m 

% function thm = thetamax(th1, s, soil) 
% 
% calculate the location of maximum stresses 
  
function thm = thetamax(th1, s, soil) 
  
thm = (soil.a0 + soil.a1*s).*th1; 

 

A.17: DPH.m 

% function Fx = DPH(th1, thm, taum, wheel) 
% 
% calculates soil thrust H 
  
function Fx = DPH(th1, thm, taum, wheel) 
  
Fx = wheel.r*wheel.b./(thm.*(th1-thm)).*(taum.*(th1.*cos(thm)-thm.*cos(th1)-th1+thm)); 

 

A.18: DPR.m 

% function Fx = DPR(th1, thm, sigm, wheel) 
% 
% calculates soil rolling resistance R 
  
function Fx = DPR(th1, thm, sigm, wheel) 
  
Fx = wheel.r*wheel.b./(thm.*(th1-thm)).*(-sigm.*(th1.*sin(thm)-thm.*sin(th1))); 

 

A.19: W.m 

% function Fz = W(th1, thm, sigm, taum, wheel) 
% 
% calculates wheel vertical load 
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function Fz = W(th1, thm, sigm, taum, wheel) 
  
Fz = wheel.r*wheel.b./(thm.*(th1-thm)).*(sigm.*(th1.*cos(thm)-thm.*cos(th1)-
th1+thm)+taum.*(th1.*sin(thm)-thm.*sin(th1))); 
  
% use for no powered wheel contribution to load 
%Fz = wheel.r*wheel.b./(thm.*(th1-thm)).*(sigm.*(th1.*cos(thm)-thm.*cos(th1)-
th1+thm)); 

 

A.20: Ctau.m 

% function Fytau = Ctau(th1, taum, wheel) 
% 
% calculates wheel side load 
  
function Fytau = Ctau(th1, taum, wheel) 
  
Fytau = 1/2.*taum*wheel.r*wheel.b.*th1; 

 

A.21: plotit.m 

% plotit plots a multitude of data from the simulation including joint 
% values, positions, torques, slips, powers, etc. over the entire sim time 
  
fcount=1; 
rect = [1500 50 1666 970]; 
  
figure('Position',rect); 
% backwards! 
figc = 5; 
figr = 2; 
  
subplot(figr,figc,fcount);plot(trec,qrec(4:7,:)*180/pi,'.');legend y z 6 
7;fcount=fcount+1; 
  
subplot(figr,figc,fcount);plot(trec,qrecdot(4:7,:)*180/pi,'.');legend dy dz d6 
d7;fcount=fcount+1; 
  
fwdvelrec = sqrt(qrecdot(1,:).^2+qrecdot(3,:).^2); 
subplot(figr,figc,fcount);plot(trec,sqrt(qrecdot(1,:).^2+qrecdot(3,:).^2),'.');title('
vel');fcount=fcount+1; 
hold on; 
plot(trec,-qrecdot(1,:),'r.'); 
hold on; 
plot(trec,qrecdot(3,:),'g.'); 
legend fwd x y; 
subplot(figr,figc,fcount);plot(-
qrec(1,:),qrec(3,:),'.');fcount=fcount+1;title('path');axis equal; 
  
subplot(figr,figc,fcount);plot(trec,z0rec,'.');title('wheel depth');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
%figure;plot(trec,th1rec*180/pi,'.');title('theta1');legend rearleft rearright 
frontleft frontright;fcount=fcount+1; 
subplot(figr,figc,fcount);plot(trec,betarec*180/pi,'.');title('beta');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
subplot(figr,figc,fcount);plot(trec,sliprec,'.');title('slip');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
%figure;plot(trec,Hrec,'.');title('FxH');legend rearleft rearright frontleft 
frontright; 
%figure;plot(trec,Rrec,'.');title('FxR');legend rearleft rearright frontleft 
frontright; 
%figure;plot(trec,Fytaurec,'.');title('Fytau');legend rearleft rearright frontleft 
frontright; 
%figure;plot(trec,Fybullrec,'.');title('Fybull');legend rearleft rearright frontleft 
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frontright; 
%figure;plot(trec,Fzrec,'.');title('Fz');legend rearleft rearright frontleft 
frontright; 
%figure;plot(trec,Torec,'.');title('Torque');legend rearleft rearright frontleft 
frontright;fcount=fcount+1; 
  
subplot(figr,figc,fcount);plot(trec,wfxrec,'.');title('Fx actual');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
subplot(figr,figc,fcount);plot(trec,wfyrec,'.');title('Fy actual');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
%subplot(figr,figc,fcount);plot(trec,wfzrec,'.');title('Fz actual');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
subplot(figr,figc,fcount);plot(trec,Porec,'.');title('Power');legend rearleft 
rearright frontleft frontright;fcount=fcount+1; 
  
%figure;figure;plot(trec,wvrec,'.');title('wheel vel x');legend rearleft rearright 
frontleft frontright; 
  
disp(' ') 
disp(['vel = ',num2str(sqrt(qrecdot(1,end).^2+qrecdot(3,end).^2))]) 
disp(['DP = ',num2str(FxH(end,end)+FxR(end,end))]) 
disp(['slip = ',num2str(sliprec(end,end))]) 
disp(['sinkage = ',num2str(z0rec(end,end))]) 
disp(['R = ',num2str(FxR(end,end))]) 

 

A.22: drysand2.soil 

% This File Contains Soil Data For 
% Dry Sand (Wong 2001, pg 136) & (Dimi 2001, pg 40) 
% Created 5/2/07 
% 
%START 
name drysand2 
n 1.1 
c 1040 
phi 38 
kc 990 
kphi 1528430 
kx0 0.0254 
ky0 0.0254 
dkx 0 
dky 0 
a0 0.28 
a1 0.35 
density 1500 
%END 
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Appendix B: Mathematica® Dynamic Modeling 

The following pages show the Mathetmatica® code used to formulate the dynamic 

equations for the articulated rover. 
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Appendix C: Soil Parameters 

Soil Parameter Symbol Units Dry Sand Lunar Soil 
Simulant 

Exponent of 
sinkage 

n - 1.1 1.0 

Soil cohesion c kPa 1.04 0.8 
Internal friction 
angle 

φ deg 38 37.2 

Cohesion modulus kc kN/mn+1 0.99 1.37 
Friction modulus kφ kN/mn+2 1528.43 814 
Longitudinal shear 
deformation 
modulus 

kx m 0.0254 0.036 

Lateral shear 
deformation 
modulus 

ky m 0.0254 0.013 

Maximum stress 
parameter 

a0 - 0.28 0.4 

Maximum stress 
parameter 

a1 - 0.35 0.15 

Soil density ρ kg/m2 1500 1600 
 

References: [Apostolopoulos,01], [Wong,01], and [Ishigami,07] 

 



 

 
82 

 

References 

[Azad,05] Azad, N.L. et al. “Off-road lateral stability analysis of an articulated 
steer vehicle with a rear mounted load,” International Journal of 
Vehicle Systems Modeling and Testing, Vol. 1, Nos. 1/2/3, pp. 106-
130, 2005. 

[Azad,07] Azad, N.L. et al. “Robust state feedback stabilization of articulated 
steer vehicles,” Vehicle Systems Dynamics, Vol. 45, No. 3, pp. 249-
275, 2007. 

[Apostolopoulos,01] Apostolopoulos, D.S. “Analytical Configuration of Wheeled 
Robobtic Locomotion,” Ph.D. Thesis, Carnegie Mellon University.  
Pittsburgh, PA, 2001. 

[Bekker,60] Bekker, M.G. Off-the-road Locomotion. The University of Michigan 
Press, Ann Arbor, MI, 1960. 

[Craig,05] Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed., 
Prentice Hall, Upper Saddle River, NJ, 2005. 

[He,05] He, Y. et al. “Dynamic modeling and stability analysis of articulated 
frame steer vehicles,” International Journal of Vehicle Systems, Vol. 
12, No. 1, pp. 28-59, 2005. 

[Holm,70] Holm, I.C. “Articulated, Wheeled Off-The-Road Vehicles,” Journal of 
Terramechanics, Vol. 7, No. 1, pp. 19-54, 1970. 

[Iagnemma,01]Iagnemma, K.D. “Rough-Terrain Mobile Robot Planning and Control 
with Application to Planetary Exploration,” Ph.D. Thesis, 
Massachusetts Institute of Technology. Cambridge, MA, 2001. 

[Ishigami,05] Ishigami G. et al. “Steering Trajectory Analysis of Planetary 
Exploration Rovers Based on All-Wheel Dynamics Model,” 
Proceedings of The 8th International Symposium on Artificial 
Intelligence, Robotics, and Automation in Space, Munich, Gernmany, 
2005. 

[Ishigami,07] Ishigami, G. et al. “Terramechanics-Based Model for Steering 
Maneuver of Planetary Exploration Rovers on Loose Soil,” Journal of 
Field Robotics, Vol. 24, No. 3, pp. 233-250, 2007. 

[Miller,02] Miller, D.P. and Lee, T.L.  “High-Speed Traversal of Rough Terrain 
Using a Rocker-Bogie Mobility System,” Proceedings of Robotics 
2002: The 5th Inernational Conference on Robotics for Challenging 
Situations and Environments, Albuquerque, New Mexico, March 
2002. 

[Oida,87] Oida, A. “Turning Behavior of Articulated Frame Steering Tractors – 
Part 2. Motion of Tractors With Drawbar Pull,” Journal of 



 

 
83 

 

Terramechanics, Vol. 24, No. 1, pp. 57-73, 1987. 
[Sullivan,94] Sullivan, T.A. Catalog of Apollo Experiment Operations, NASA 

Reference Publication 1317, 1994. 
[Wong,67] Wong, J. and Reece, A.R. “Prediction of Rigid Wheel Performance 

Based on the Analysis of Soil-Wheel Stresses Part I.  Performance of 
Driven Rigid Wheels,” Journal of Terramechanics, Vol. 4, No. 1, pp. 
81-98, 1967. 

[Wong,01] Wong, J. Theory of Ground Vehicles, 3rd ed., Wiley-Interscience, 
2001. 

[Yoshida,98] Yoshida, K. et al. “Dynamic Simulation of an Articulated Off-Road 
Vehicle,” AIAA Modeling and Simulation Technologies Conference 
and Exhibit, pp. 257-261, Boston, Massachusetts, 1998. 

[Yoshida,04] Yoshida, K. and Ishigami, G. “Steering Characteristics of a Rigid 
Wheel for Exploration on Loose Soil,” Proceedings of the IEEE 
International Conference on Intelligent Robotics and Systems, Sendai, 
Japan, 2004. 


