

ABSTRACT

Title of Document: Simulation and Control of a Passively

Articulated, Segmented-Body Rover

 Timothy Andrew Wasserman, Master of Science,

2007

Directed By: Professor David L. Akin

Department of Aerospace Engineering

Mobility will be a key aspect of future planetary surface missions. A rover with

several segments connected by rotary joints promises much capability in terrain

traversal, but is not well understood. In this thesis, a computer model was built to

simulate the movements of a passively articulated, segmented-body rover. Its main

components are a linearized soil-wheel interaction model, a Newton-Euler based

dynamic model, and a PD control module to regulate steering and handle

disturbances. The simulation outputs were compared against results from past

research on fixed-chassis vehicles. Next, the simulation was used to investigate the

driving and turning behavior of articulated vehicles, and their controllability using a

simple control system. It was found that the vehicle is relatively stable, and that

simple control is possible.

SIMULATION AND CONTROL OF A PASSIVELY ARTICULATED,
SEGMENTED-BODY ROVER

By

Timothy Andrew Wasserman

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2007

Advisory Committee:
Professor David L. Akin, Chair
Research Associate Craig R. Carignan
Professor Robert M. Sanner

© Copyright by

Timothy Andrew Wasserman

2007

ii

Dedication

To my family.

iii

Acknowledgements

First I would like to thank Dave Akin for taking me on as one of his graduate

students at the SSL and letting me pursue the research I wanted to do. I have had an

excellent time working at the SSL over the past four years. 90% of that excellent

time was spent with its faculty, staff, and students (the other 10% was with robots).

Thank you to Agnieszka, Dave, John, and Liz who kept me on my toes and were

always up for a distraction or refreshing conversation. Thanks to Rico, Nick, Leon,

and Max for keeping the office entertaining and being great reality checks for my

research. Thanks to Mike Liszka for being a bad influence.

I also have to thank the SSL staff (present and former) for always taking the

time to answer my questions. This is a first for me, but I’m going to thank a piece of

furniture, the cot in our office. This thesis would not have been completed yet if it

were not for those reinvigorating late afternoon power naps. Also, Go Eulers!

There are several people outside of the lab who I am lucky to call friends, and

are my connections to all things non-engineering. Thank you Katie S, Harry, Nadim,

Katie M, and Allison. These great people helped to nurture my sanity over the past

two years.

To Madeline, thank you. You have been being an amazing support, super-fun,

and a fantastic girlfriend. Finally, my family deserves special thanks for letting me

figure things out myself, but always being there when I need help. I love you guys.

iv

Table of Contents

Dedication... ii

Acknowledgements ..iii

Table of Contents ... iv

List of Tables ..vii

List of Figures..viii

Chapter 1: Introduction.. 1

Chapter 2: Previous Work and Background Theory... 4

2.1 Terramechanics.. 4

2.1.1 Basic Soil/Wheel Relationships ... 4

2.1.2 Wheel Coordinate System and Slip.. 5

2.2.3 Primary Wheel Forces ... 7

2.1.4 Stress Distributions ... 8

2.1.5 Closed Form Wheel Force Solutions.. 10

2.2 Articulated Vehicle Modeling and Simulation.................................... 12

Chapter 3: Modeling.. 17

3.1 Kinematics... 17

3.1.1 Vehicle Configuration ... 17

3.1.2 Coordinate Frames and Denavit-Hartenberg Parameters 18

3.2 Soil/Wheel Interactions .. 21

3.2.1 Finding Sinkage Depth .. 21

3.2.2 Finding Slip Angle .. 23

v

3.2.3 Finding Slip Ratio ... 25

3.2.4 Wheel Force Vector Construction.. 26

3.3 Rover Dynamic Model ... 27

3.3.1 Modified Newton-Euler Method.. 27

3.3.2 Equation of Motion ... 28

Chapter 4: Simulation Design.. 29

4.1 Simulation Outline ... 29

4.2 Simulation Testing and Validation ... 30

4.2.1 Comparison to Bekker Model.. 31

4.2.2 Comparison to Yoshida Model .. 33

4.2.3 Constant Velocity Driving... 39

Chapter 5: Articulated Rover Simulation .. 42

5.1 Forward Movement.. 42

5.1.1 Nominal Case.. 42

5.1.2 Disturbed Behavior.. 42

5.2 PD Control... 46

5.3.1 Controller Design .. 47

5.3.2 Response to Disturbances .. 47

5.3.3 Turning Performance... 51

Chapter 6: Summary, Conclusions, Future Work... 57

6.1 Summary.. 57

6.2 Conclusions ... 57

6.3 Future Work... 58

vi

Appendices ... 60

Appendix A: Matlab Simulation Code ... 60

Appendix B: Mathematica® Dynamic Modeling 74

Appendix C: Soil Parameters ... 81

References... 82

vii

List of Tables

Table 3.1: Denavit-Hartenberg Parameters .. 20

Table 4.1: Rolling Resistance vs. Wheel diameter, Width, and Weight 31

Table 4.2: Wheel Sinkage vs. Wheel Diameter, Width, and Weight......................... 31

Table 4.3: Rolling Resistance vs. Soil Parameters.. 32

Table 4.4: Wheel Sinkage vs. Soil Parameters ... 33

Table 4.5: Test Rover Configuration Parameters.. 39

Table 4.6: Steady State Test Values... 39

Table 4.7: Expected Acceleration Test Values... 40

Table 4.8: Simulated Acceleration Test Values.. 40

Table 5.1: Turning Performance at 0.5 m/s .. 51

Table 5.2: Turning Performance at 3 m/s... 52

viii

List of Figures

Figure 2.1: Wheel Frame Coordinate System... 6

Figure 2.2: Wheel Slip [Ishigami07].. 6

Figure 2.3: Wheel Stress Distributions [Ishigami07].. 8

Figure 2.4: Typical Stress Distributions... 10

Figure 2.5: Approximated vs. Theoretical Stress Distributions................................. 11

Figure 2.6: Oida’s Tractor [Oida,87] ... 13

Figure 2.7: Waterloo articulated vehicle schematic [He,05] 14

Figure 2.8: Yoshida Articulated Rover Illustration [Yoshida98] 15

Figure 2.9: Yoshida Experimental Rover [Ishigami07] .. 16

Figure 3.1: Articulated Vehicle Top View ... 17

Figure 3.2: Articulated Vehicle Side View .. 18

Figure 3.3: Denavit-Hartenberg Frame Assignments ... 19

Figure 4.1: Rolling Resistance and Sinkage vs. Wheel Diameter 32

Figure 4.2: Yoshida drawbar pull vs. slip ratio for different slip angles.................... 34

Figure 4.3: Yoshida Side Forces vs. slip ratio for different slip angles 35

Figure 4.4: Simulation Model Drawbar Pull vs. slip ratio for different slip angles.... 36

Figure 4.5: Simulation Model Side Forces vs. slip ratio for different slip angles 36

Figure 4.6: Approximated vs. Exact Stress Distribution for non-zero θ2 37

Figure 4.7: Rover at Space Systems Laboratory... 37

Figure 4.8: Lunar Roving Vehicle (NASA) ... 38

Figure 5.1: Low Speed Disturbance, Turning Joint Angle vs. Time 43

ix

Figure 5.2: Low Speed Disturbance, Maximum Turning Joint Angles 44

Figure 5.3: Medium Speed Disturbanc, Turning Joint Angle vs. Time..................... 44

Figure 5.4: Medium Speed Disturbance, Maximum Turning Joint Angles 45

Figure 5.5: High Speed Disturbance, Maximum Turning Joint Angles..................... 45

Figure 5.6: High Speed Disturbed Rover Path ... 46

Figure 5.7: Disturbance Effects for v = 0.5 m/s.. 48

Figure 5.8: Disturbance Effects for v = 3 m/s .. 49

Figure 5.9: Disturbance Effects for v = 6 m/s .. 49

Figure 5.10: Response of Turning Joint with PD Control at High Speeds 50

Figure 5.11: Settling Time and Power Requirement Comparisons 50

Figure 5.12: High Speed Turning Joint Response with Alternate Gains 51

Figure 5.13: Low Speed Turning Response ... 52

Figure 5.14: High Speed Turning Response... 53

Figure 5.15: Turning Joint Value During Maneuver .. 54

Figure 5.16: Vehicle Heading Angle During Maneuver ... 54

Figure 5.17: Rover Path During Maneuver .. 55

Figure 5.18: Rover Wheel Sinkages During Maneuver .. 55

Figure 5.19: Wheel Torques During Maneuver.. 56

1

Chapter 1: Introduction

Mobility will be key to the success of future planetary surface exploration

missions, both human and robotic. Quick transits to and from sites of interest and the

ability to traverse a variety of challenging terrain are capabilities that scientists,

mission planners, and planetary resource prospectors can all agree on. Mass (and

ultimately, cost) limitations on recent planetary rover programs have led to the

paradigm of low power rovers landed in the most scientifically dense sites achievable

by their delivery systems, and fitted with ambitious scientific payloads.

Because of this low power compromise, these rovers cannot achieve large

velocities. The maximum speeds of the Sojourner, Mars Exploration Rover (MER),

and planned Mars Science Laboratory (MSL) vehicles are on the order of several

centimeters per second. Additionally, their “rocker-bogie” type suspensions, while

very effective at climbing over obstacles, are typically not suited for high speeds

[Miller,02]. The Lunar Roving Vehicle (LRV), used by astronauts during the last

three Apollo missions to the moon, averaged 9.6 km/hr during traverses. It was

designed to cruise over the lunar regolith on slopes up to 25 degrees and climb over

obstacles 30 cm in height, but was never intended to negotiate through the moon’s

more rocky, crater-pocketed terrain [Sullivan,94].

One method of increasing rover mobility is to add articulation directly to the

chassis. A rover would then be comprised of multiple segments; each with its own

set of wheels, and connected by a rotational joint. Resembling a train off of its tracks,

a segmented-body rover would efficiently conform to terrain as would a “rocker-

2

bogie” equipped vehicle, but would not preclude accommodation of an independent

wheel suspension scheme for use in high-speed, rough terrain traverses.

The idea for this type of vehicle has been around since the early 20th century.

Since the 1930s, articulated vehicles have been used extensively in the agricultural,

forestry, construction, and earthmoving industries. Military designers have also taken

notice. The United States Army researched many concept vehicles during the 1960s.

The “Gama Goat”, a two segmented, six-wheeled vehicle entered service in 1968 and

remained in service until replaced by the Humvee, decades later [Holm,70]. Today,

companies such as Caterpillar, Volvo, Terex, Foremost, and Holder all sell their own

lines of articulated vehicles.

The vast majority of segmented-body vehicles produced to date have steered

via the use of hydraulically actuated joints. On Earth, this solution provides powerful

turning capability, even when the vehicle is standing still [Holm,70]. However,

hydraulic systems tend to be massive, making them ill-suited for interplanetary

payloads. Additionally, the lubrication and sealant agents used on Earth systems

typically will not work in the temperature and low-pressure extremes present on the

surface of the Moon and Mars. One solution would be to replace the hydraulics with

an electrical joint actuator. Another solution would be to implement Ackermann-type

steering on the front and rear segments (as in the LRV). However, neither of these

suggestions reduces the overall mechanical complexity of the system.

An alternative option—and the one investigated in this thesis—uses passive

inter-segment joints. Steering is accomplished by carefully controlling the current

output to each of the rover’s wheel motors. The resulting wheel torques cause soil

3

reaction forces that move the segments and affect the overall turning behavior of the

vehicle, including turning joint motions. Besides the promise of enhanced mobility,

the passively articulated segmented-body rover would be beneficial operationally. Its

segments do not need to be shipped to the planet’s surface together, or they could

arrive in a volume-optimized disconnected configuration. The design could also take

on a modular approach, with specialized segments for a range of surface activities

including cargo transport, field geology, regolith processing, and base construction.

If such a vehicle is easily controllable and can make efficient use of power during the

cruising, turning, and obstacle climbing phases of travel, then it should be considered

a viable option for future planetary surface exploration rovers.

Background theory in terramechanics and previous work on segmented body

rovers is reviewed in Chapter 2. The computer model for the rover is developed in

Chapter 3. In Chapter 4, the simulation construction and validation tests are

discussed. Chapter 5 describes the simulations that were performed on articulated

vehicles. Finally, Chapter 6 contains a summary of the research, conclusions reached,

and suggestions for possible future work.

4

Chapter 2: Previous Work and Background Theory

This chapter introduces the background theory required to model an

articulated, off-road vehicle as well as reviews past research into the topic.

2.1 Terramechanics

2.1.1 Basic Soil/Wheel Relationships

Modeling of any terrain-vehicle system begins at the terrain-vehicle interface,

the wheels. Empirical work on the nature of soil-wheel interaction began in the early

20th century, with many important breakthroughs and accompanying theory coming

after World War II [Holm,70]. The soil-wheel interactions this research is primarily

concerned with are that of rigid wheels on deformable terrain (as opposed to

deformable wheels on rigid terrain, e.g. pneumatic tires on paved roads).

Mieczysław G. Bekker, a leading researcher in the field of terramechanics

introduced the following equation in 1960 [Bekker,60]:

!

p(h) = (kc /b + k")h
n (2.1)

It relates the pressure that results underneath a flat plate of width b to its

sinkage depth h. n, kc, and kφ are soil parameters (sinkage exponent, cohesive

modulus, and frictional modulus respectively) that can be measured experimentally.

Using this pressure-sinkage relationship, Bekker derived the following two formulae

for wheels:

5

!

z
0

=
3W

(3" n)(k
c

+ bk#) D

$

%
&
&

'

(
)
)

2

2n+1

 (2.2)

!

R
c

=
(3W)

2n+2

2n+1

(3" n)
2n+2

2n+1 (n +1)(k
c

+ bk#)

1

2n+1D

n+1

2n+1

 (2.3)

The first equation allows calculation of a wheel’s sinkage. Given weight W

on a wheel of diameter D and width b, it will sink to a depth z0 in a given soil. The

second equation describes the wheel’s rolling resistance due to soil compaction

[Bekker,60]. It takes energy for a rolling wheel to compact soil over a distance. If Rc

is the only resistance to movement, then to maintain a velocity v, driving power P =

Rcv must be provided to the wheel. While very useful in determining baseline

requirements for wheeled vehicles over a variety of measurable terrain, these

equations do not take into account wheel slip in loose soils, cornering forces

experienced during turning, or the contributions of a torqued wheel. A more

complete set of equations is needed for accurate simulation.

2.1.2 Wheel Coordinate System and Slip

Before going further, it will be useful to define a standard set of wheel

coordinates and introduce the concept of wheel slip. Figure 2.1 depicts the wheel

frame coordinate system.

6

Figure 2.1: Wheel Frame Coordinate System

The x, or longitudinal axis is in the direction of travel, the z-axis is directed

vertically, and the y-axis points in the lateral direction, out the wheel’s side. Centered

at the wheel hub, θ is the angle measured from bottom-dead-center, with positive

values being in the direction of travel. θ1 refers to the entry angle, and θ2 to the exit

angle.

Wheel slip becomes an important factor when traveling through loose soil. A

wheel can slip in two ways: longitudinally and laterally, as shown in Figure 2.2.

Figure 2.2: Wheel Slip [Ishigami07]

Longitudinal slip occurs when a wheel’s traveling velocity vx differs from its

7

rim velocity, rω. It can take on a value between -1 and 1. A positive slip ratio (s)

indicates a driven wheel, while a negative s indicates braking.

!

s =
(r" # v

x
) r" r" > v

x

(r" # v
x
) v

x
r" < v

x

$
%
&

 (2.4)

Lateral slip occurs when a wheel moves sideways as well as forwards, and is

quantified by the slip angle β. It is the angle a wheel’s traveling velocity makes with

its longitudinal axis [Ishigami,07].

!

" = tan
#1
(vy vx) (2.5)

2.2.3 Primary Wheel Forces

There are three major stress distributions present along the soil contact area of

a driven rigid wheel. First is the normal stress σ(θ), acting radially towards the

wheel’s center. Next is the longitudinal shear stress τx(θ), which acts tangentially

along the wheel’s circumference. Finally, the lateral shear stress τy(θ) acts

tangentially across the wheel’s width. Figure 2.3 depicts these stress distributions.

Note that the maximum value of each stress distribution (σm, τxm, and τym) occurs at

the same value of θ = θm. This assumption agrees well with experimental results

[Wong,67].

8

Figure 2.3: Wheel Stress Distributions [Ishigami07]

Given the stress distributions described above, one may calculate forces in the

three primary wheel axes and torque about the wheel’s axle as follows [Wong,67].

!

F
x

= rb "
x
(#)cos#d#

2

#1

$ % &(#)sin#d#
2

#1

$
'
(
)

*)

+
,
)

-)
 (2.6)

!

F
z

= rb "(#)cos#d#
2

#1

$ + %
x
(#)sin#d#

2

#1

$
&
'
(

) (

*
+
(

, (
 (2.7)

!

Fy = rb " y (#)d#
2

#1

$ (2.8)

!

T = r
2
b "

x
(#)

2

#1

$ d# (2.9)

2.1.4 Stress Distributions

Much effort has been put into finding expressions for the various stress

9

distributions. In 1967, Wong and Reece introduced a new way to model them that

includes the effect of wheel slip. Yoshida et al. modified these equations in 2003 to

incorporate Bekker’s form of the pressure-sinkage relationship. For normal stress

[Ishigami,07],

!

"(#) =

r
n k

c

b
+ k$

%

&
'

(

)
* [cos# + cos#1]

n
(#

m
,# < #

1
)

r
n k

c

b
+ k$

%

&
'

(

)
* cos #1 +

+#
2

#
m
+#

2

#
1
+#

m()
-
.
/

0
1
2
+ cos#

1

3

4
5

6

7
8

n

(#
2

< # , #
m
)

-

.

9
9

/

9
9

(2.10)

where θm is cacluated by using the linear equation:

!

"
m

= (a
0

+ a
1
s)"

1
 (2.11)

The a0 and a1 coefficients are empirically measured for a soil. It can be seen

that the location of maximum stress moves forward with increasing slip. The normal

stress is maximum at θm, and falls off on either side to zero at the soil contact points

[Wong,67].

Similarly, for shear stress in the longitudinal and lateral directions:

!

"
x
(#) = (c +$(#)tan%) 1& e

&
r

k
x

#1&# &(1&s)(sin#1&sin#)()'

(
)
)

*

+
,
,
 (2.12)

!

" y (#) = (c +$(#)tan%) 1& e
&
r

ky
(1&s)(#1&#) tan '(

)
*
*

+

,
-
-
 (2.13)

c is cohesion, φ is the internal friction angle, and kx and ky are shear

deformation modules; all soil parameters measurable by experiment [Ishigami,07].

Figure 2.4 shows a typical example of what the stress distributions look like over the

contact area of the wheel.

10

Figure 2.4: Typical Stress Distributions

2.1.5 Closed Form Wheel Force Solutions

Now that the stress distributions are known, Equations 2.10-2.13 can be

substituted into Equations 2.6-2.9 to solve for the wheel forces. However, this

requires numerical integration, as there are no closed-form solutions to these

equations due to the complex form of the stress distributions. For computational

purposes, it would be useful to find approximated versions of the stress distributions.

In 1961, Vincent noted that for a variety of soils and slips, the stress

distribution curves follow a triangular curve [Vincent,61]. In 2001 Iagnemma

expanded on Vincent’s observation, assumed that θ2 = 0 (accurate for soils with low

cohesion), and used the following linear approximation to the stress distributions:

11

!

"(#) =

#

#
m

"
m

0 $# $#
m

#
1
%#

#
1
%#

m

"
m

#
m

< # $ #
1

&

'
((

)
(
(

 (2.14)

where α can be any of the primary stress distributions (and αm its maximum

value). Figure 2.5 shows a comparison of the approximated distributions and the

more exact solutions.

Figure 2.5: Approximated vs. Theoretical Stress Distributions

Substituting these equations into Equations 2.6-2.9 and integrating, the

following closed-form solutions can now be found [Iagnemma,01].

!

F
x

=
rb

"
m
"
1
#"

m()
$
xm
"
1
cos"

m
#"

m
cos"

1
#"

1
+ "

m() #%m
"
1
sin"

m
#"

m
sin"

1()[] (2.15)

!

F
z

=
rb

"
m
"
1
#"

m()
$
m
"
1
cos"

m
#"

m
cos"

1
#"

1
+ "

m() + %
xm
"
1
sin"

m
#"

m
sin"

1()[] (2.16)

!

Fy =
1

2
rb" ym#1 (2.17)

!

T =
1

2
r
2
b"

xm
#
1
 (2.18)

The maximum stresses are found by substituting θm into the original stress

12

equations.

!

"
m

= r
n k

c

b
+ k#

$

%
&

'

(
) [cos*m + cos*1]

n (2.19)

!

"
xm

= (c +#
m
tan$) 1% e

%
r

k
x

(&1%&m)%(1%s)(sin&1%sin&m)()'

(
)
)

*

+
,
,
 (2.20)

!

" ym = (c +#m tan$) 1% e
%
r

ky
(1%s)(&1%&m) tan '(

)
*
*

+

,
-
-
 (2.21)

Now all forces on the wheel can be represented by algebraic functions of just

soil parameters, wheel dimensions, and three “state” variables: slip ratio, slip angle,

and entry angle. These simplified wheel force equations will make it much easier to

simulate the motions of a passively articulated, segmented body rover.

2.2 Articulated Vehicle Modeling and Simulation

Beginning in the 1980s, several studies were conducted by researchers to

model and simulate articulated vehicles to gain insight into their behavior. Most of

these models incorporate joint actuation, but are still relevant to the passively

articulated problem.

Oida’s 1987 paper modeled an articulated tractor (see Figure 2.6); specifically

its turning characteristics. Wheel forces were heavily simplified, with traction,

rolling resistance, and cornering forces directly proportional to wheel load.

Cornering forces also had slip angle dependency, but longitudinal slip was ignored.

Additionally, during simulation the turning joint angle was rigidly fixed. The

vehicle’s equations of motion were determined in the planar case by summing the

13

forces in x and y directions and the moments about the turning joint.

Figure 2.6: Oida’s Tractor [Oida,87]

A tractor was simulated taking turns at various joint angles and speeds.

Simulation results were compared with the results of real-world experiments

involving an actual tractor. The simulation and experiment agreed well with

observation, so Oida used the simulation to determine the effects of changing the

turning joint and center of gravity (CG) locations. While this research demonstrated

the feasibility of articulated vehicle simulation, it left much room for improvement in

the accurate modeling of soil forces and dynamics [Oida,87].

More recently, research conducted at the University of Waterloo has focused

on the dynamic modeling and stability analysis of articulated-steer vehicles both on

and off-road (see Figure 2.7).

14

Figure 2.7: Waterloo articulated vehicle schematic [He,05]

Their papers have given insight into the conditions that lead to jack-knife and

snaking, two dynamic instabilities experienced by articulated vehicles. Their wheel

model is more advanced than Oida’s, and incorporates slip, but is still simplified and

less theoretically backed than the Bekker-Wong-Yoshida equations [He,05] and

[Azad,05]. Azad et al.’s 2007 paper introduces a feedback controller to stabilize an

articulated vehicle undergoing snaking motion [Azad,07].

In 1998, Yoshida and Shiwa simulated a rubber-tired articulated vehicle with

three segments traveling on a hard surface (See Figure 2.8). The front inter-segment

joint had roll and yaw degrees of freedom (DOF), while the rear joint had 3 DOF.

Pitch and yaw joints were compliant (torsional springs), while roll joints were free.

The four wheels on the front two segments were driven. The two wheels on the third

segment rotated freely and were used as odometers to help determine slip rates and

improve dead-reckoning.

15

Figure 2.8: Yoshida Articulated Rover Illustration [Yoshida98]

The tire model used includes the effect of wheel slip, as well as rubber wheel

stiffness and damping. Vehicle and articulation dynamics were computed by the

SpaceDyn™ toolbox, which accommodates an arbitrarily articulated system with

multiple branches. Given the vehicle’s state, the tire forces were calculated and

applied at the ends of the branches. The researchers also constructed an experimental

testbed vehicle to complement the simulations. The one simulation reported in their

paper involved commanding sinusoidal velocity commands to the left and right

wheels of opposite signs to elicit a weaving response. Results from the simulation

and experiment were qualitatively consistent with each other, and the path traveled

and range of slip ratio values showed good agreement [Yoshida,98].

Since then, Yoshida’s group has gone on to advance their rover vehicle

simulation and integrate it with the non-simplified terramechanics equations

discussed in the previous subsection, but not for a segmented-body vehicle. They

compare their simulations with experimental tests conducted with a 35 kg four-wheel

drive, four-wheel steer rover with rocker suspension (as shown in Figure 2.9).

16

Figure 2.9: Yoshida Experimental Rover [Ishigami07]

Yoshida’s group has also had success simulating the motion of a rover on

sloped ground. Inputs to the simulation are wheel rotation rates, which are kept

constant during simulation runs. Typical ground speeds ranged from 1 to 8 cm/s

[Yoshida,04], [Ishigami,05] and [Ishigami,07].

17

Chapter 3: Modeling

Chapter 3 discusses the various models that will be used as components in the

simulation. Section 3.1 details the overall vehicle configuration and its kinematic

description. The wheel/soil interaction model used is shown in Section 3.2, and the

dynamic model is described in section 3.3.

3.1 Kinematics

3.1.1 Vehicle Configuration

A two-segmented rover is modeled in this research. Each segment has mass,

rotational inertia, and two independently driven wheels. The segments—each of

length

!

l—are connected by a passive yaw joint. Figures 3.1 and 3.2 show the vehicle

schematic.

Figure 3.1: Articulated Vehicle Top View

18

Figure 3.2: Articulated Vehicle Side View

3.1.2 Coordinate Frames and Denavit-Hartenberg Parameters

This description may be represented analytically using Denavit-Hartenberg

(DH) notation [Craig,05]. This type of notation is widely used to specify the

kinematics of manipulators, but can be applied to any serial-chain mechanism. The

rover can be moved to any location and oriented toward any direction in space, which

requires 6 degrees of freedom (DOF). In addition, the rover has one mechanical DOF

at its yaw joint, bringing the total to 7 DOF. In DH notation, each DOF is modeled as

a joint. The first three joints are chosen to be prismatic, and the following three joints

are rotational. The last joint is the inter-segment joint. In this scheme, the rear

segment is assigned to be the “base” and is coincident in space with the three

orientation joints. In essence, the rover can be thought of as a 3 DOF Cartesian

manipulator with a 3 DOF wrist, and a 1 DOF end effector. Following the DH

convention, the coordinate frames were assigned as shown in Figure 3.3. Table 3.1

shows the DH parameters derived from this arrangement.

19

Figure 3.3: Denavit-Hartenberg Frame Assignments

z0

x0

z1
x1

z2

x2

z3

x3 *

dz

dx

dy

z3,4

x3,4 *

z6

x5

z7

x7

z5

x6

L

20

Table 3.1: Denavit-Hartenberg Parameters
i αi-1 ai-1 di θi

1 0 0 dz

!

"
2

2

!

"
2

 0 dx -

!

"
2

3 -

!

"
2

 0 dy -

!

"
2

4 0 0 0 φy

5

!

"
2

 0 0

!

"
2

 + φz

6

!

"
2

 0 0 -

!

"
2

 + φx

7 0 L 0 θ7

0[dx dy dz] are the coordinates of the rear segment in the base frame. φx, φy,

and φz specify the yaw, pitch, and roll, respectively, of the rear segment. θ7 is the

value of the rover’s turning joint.

Positions of wheels and masses will be important for the simulation, and now

that link frames are defined, they may be specified.

!

6
pw =

0

±w

hw

"

$
$
$

%

&

'
'
'

,
7
pw =

l

±w

hw

"

$
$
$

%

&

'
'
'

 (3.1)

6pw and 7pw are the wheel hub locations in the rear and front segment frames,

respectively. The wheels are located at the ends of each segment, a height hw below

the turning joint plane, and distance ±w (left and right) in the lateral direction. Each

wheel is a rigid cylinder with radius r and width b.

The positions of the segment centers of gravity (CG) are as follows:

21

!

6
pcg =

0

0

hcg

"

$
$
$

%

&

'
'
'

,
7
pcg =

l

0

hcg

"

$
$
$

%

&

'
'
'

 (3.2)

The masses, mseg, are located a distance h above the crossing of the segment

centerline and axle. A 3 x 3 diagonal inertia matrix I accompanies each mass.

!

I =

Ixx 0 0

0 Iyy 0

0 0 Izz

"

$
$
$

%

&

'
'
'

 (3.3)

The masses are approximated as spheres with radius

!

w 2 , so that

!

Ixx = Iyy = Izz =
1

10
msegw

2 (3.4)

It should be noted that this kinematic model is easily extendable to rovers with

three or more segments, and arbitrary values and distributions of mass, inertia, and

wheel properties.

3.2 Soil/Wheel Interactions

As outlined in the previous work section, Equations 2.15-2.18 will be used to

calculate the wheel forces. The inputs to these equations are sinkage depth z0, slip

ratio s, and slip angle β. The following sections will show how these are derived

from the rover’s kinematic model and other known state variables. Then, how these

forces are aligned with a wheel reaction frame, and interact with the dynamic model,

will be explained.

3.2.1 Finding Sinkage Depth

The sinkage depth is defined as the distance from the lowest point on the

22

wheel (in the base frame), along the line towards the axle, to the surface. For this

calculation, the wheel is assumed to be a flat disk of radius r. Points on the rim in the

local wheel frame can be expressed as follows:

!

w
prim =

rcos"

0

rsin"

$

%
%
%

&

'

(
(
(

 (3.5)

γ specifies an angle about the wheel’s y axis. The rim positions in the base

frame are found by operating on wprim with the tranformation matrix between the

wheel and inertial frame:

!

0
prim=w

0
T
w
prim (3.6)

The rim’s vertical position is the first element of 0prim. For a given rover pose

(joint value set), there will be a γmin which minimizes 0prim(1), locating the lowest

point on the wheel. To find this angle, take the expression for 0prim(1)

!

0
prim 1()=w

0
T 1,:()w prim = Arcos"

min
+ Crsin"

min
+ D (3.7)

(A, B, C, and D are the elements of the first row of

!

w

0
T), set its derivative

equal to zero, and solve for γmin. This results in the following:

!

"
min

= tan
#1 C

A

$

%
&

'

(
) (3.8)

Now γmin may be substituted into Equation 3.7 to find the lowest point on the

wheel, 0plow. Next, the unit vector pointing from 0plow to the wheel’s axle (located at

0pw) is needed:

!

0
rline=

0
pw"

0
plow (3.9)

23

line

line
slope

r

r
r

0

0

0
ˆ = (3.10)

The depth of a point on rline with the origin at the surface can be expressed as

!

depth=0
plow 1() + z"

0 ˆ r slope (1) (3.11)

Solving for when depth = 0 and z = z0,

!

z
0

= "
0
plow 1()

0 ˆ r slope (1)
 (3.12)

To find the entry angle, which is an input to the wheel force equations, use

!

"
1

= cos
#1
1#

z
0

r

$

% &
'

()
 (3.13)

3.2.2 Finding Slip Angle

As defined above, the slip angle is the angle between a wheel’s velocity vector

and its longitudinal axis (measured about its vertical axis). Analytically (see

Equation 2.5), β is the inverse tangent of the ratio of lateral to longitudinal velocity.

These velocity components must be expressed in a wheel frame, requiring the

calculation of Jacobians. Given joint rates

!

˙ q , Cartesian velocities can be solved for

via

!

W
vW =

W
J ˙ q .

!

W
J is the translation Jacobian in the wheel frame. The method used

to find the Jacobian was outlined in [Craig,05].

!

N +1
Jtran = N +1

z
1
"
N +1

1
pN +1(),N +1

z
2
"
N +1

2
pN +1()...N +1

zN#1"
N +1

N#1
pN +1(),N +1

zN"
N +1

N
pN +1()[]$

+ N +1
z
1
,
N +1
z
2
...
N +1
zN#1,

N +1
zN[] % # $()

(3.14)

Frame N is the link the wheel is on (6 or 7). N+1 is the wheel frame. The z’s

represent the frame’s z axis described in the wheel frame. The p’s are the position of

24

the wheel in each frame. I is the identity matrix, and

!

" = diag # j().

!

" j= 1 for

revolute joints, and

!

" j= 0 for prismatic joints [Craig,05]. Notice the lowest frame

referenced is frame 1. The z’s can be calculated via

!
!
!

"

#

$
$
$

%

&

==
+++

1

0

0

ˆˆ
111
RzRz

N

nn

nN

nn

N , where

!

1" n " N (3.15)

The p terms can be written as

!

n

N
RN

n
T
N
pN +1.

!

N
pN +1 is the wheel position with

respect to the link origin.

Using

!

W
J , the wheel velocities in their own frame may be obtained.

However, the wheel frames do not change orientation with respect to the rest of the

segment if the rover’s orientation with respect to the ground changes. For example, if

the rover is pitched forward, then the longitudinal axis will point slightly down into

the ground, not parallel to it as is expected by the terramechanics equations. A frame

is needed whose longitudinal direction remains parallel to the surface of the ground,

and whose vertical axis passes through the wheel’s lowest point and axle. This is

important for accurately determining β, and will be used later when aligning soil

forces with the vehicle.

This new coordinate frame is called the wheel reaction (wr) frame. The

vertical axis of this new frame points in the same direction as sloper̂0 . The lateral axes

for the wheel and wr frames point in the same direction. The wr x-axis is then

orthogonal to the other two, which is parallel to the ground’s surface. This is the case

because the situation can be described as a planar disk (wheel) intersecting a plane

25

(ground). If the disk’s z-axis crosses the its lowest point and center, and its y-axis is

oriented perpendicular to the face of the disk, then its longitudinal axis must be

pointed parallel to the plane it is intersecting. To build this frame, R
link

wr
 is needed,

which operates on coordinates in the wr frame and expresses them in the local link

frame.

!

wr

link
R=

0

link
R

0
X
wr

0
Y
wr

0
Z
wr[] (3.16)

!

0
X
wr

,

!

0
Y
wr

, and

!

0
Z
wr

 are the primary axes of the wr frame expressed in base

frame coordinates. These can be calculated as follows:

!
!
!

"

#

$
$
$

%

&

=

0

1

0

00
RY

linkwr
 (3.17)

 slopewr rZ ˆ
00

= (3.18)

wrwr

wrwr

wr

ZY

ZY
X

00

00

0

!

!
= (3.19)

To calculate velocities of the wheel bub and β in the wheel reaction frame, use

 JRJ
Wwr

link

wr
= (3.20)

 qJv
wr

W

wr
&= (3.21)

 !!
"

#
$$
%

&
=

'

)1(

)2(
tan 1

W

wr

W

wr

v

v
((3.22)

3.2.3 Finding Slip Ratio

The slip ratio s may be solved for numerically using the torque equation,

Equation 2.18. T can be considered as the torque commanded to a rover’s wheel,

26

which is a known (or derivable) quantity. Entry angle, the other input to the torque

equation is known by the simulation through the process outlined in Section 3.2.1.

The only remaining unknown is s. Since torque generally increases with slip ratio,

the bisection search method is used, and yields reliable results.

3.2.4 Wheel Force Vector Construction

Once a value for s is obtained, the remaining force magnitudes may be easily

calculated with Equations 2.15-2.17, and aligned with the wr frame. However, while

the force equations yield numerical results for any vehicle state, additional steps are

needed to ensure their proper application and direction. Equation 2.15 describes

forces along the longitudinal axis of the wheel reaction frame. Drawbar pull Fx has

two terms. The first (dependent on shear stress) is soil thrust H, and the second

(dependent on radial stress) is rolling resistance R.

!

H =
rb

"
m
"
1
#"

m()
$
xm
"
1
cos"

m
#"

m
cos"

1
#"

1
+ "

m()[] (3.23)

!

R =
rb

"
m
"
1
#"

m()
#$

m
"
1
sin"

m
#"

m
sin"

1()[] (3.24)

The soil thrust term can evaluate positive or negative depending on the

applied torque and wheel sinkage. The rolling resistance term always evaluates

negative. For a wheel with zero longitudinal velocity (wrvx = 0), soil thrust must

overcome rolling resistance (|H| > |R|) for Fx to be nonzero. In that case,

!

Fx = H + sign(H) " R (3.25)

Otherwise, Fx = 0. For nonzero wrvx, |R| is applied opposite the direction of

motion, while H’s sign is maintained. For this case,

27

!

Fx = H + sign(
wr
vx) " R (3.26)

Likewise, for lateral forces, Fy acts in the direction opposite wrvy, and only

when wrvy is nonzero. Vertical forces are always on, however an additional damping

term was added for this research that approximates a suspension system.

Now the forces may be aligned with the wheel reaction frame as follows:

!

wr
F =

Fx

Fy

Fz

"

$
$
$

%

&

'
'
'

 (3.27)

3.2.5 Forces and Moments on Link CG

For the dynamics calculations in the next section, it will be convenient to

combine each segment’s wheel forces into a single force and single moment at that

segment’s cg.

 != i

link

C

link
FF (3.28)

 ! "= i

link

i

link

C

link FpN (3.29)

Fi are the individual wheel forces in the link frame. linkpi is the position vector

from each wheel to its segment’s cg in link frame coordinates.

3.3 Rover Dynamic Model

3.3.1 Modified Newton-Euler Method

The rover dynamic equations were derived using a modified form of the

iterative Newton-Euler dynamic formulation shown in [Craig,05]. In the standard

approach, the forces on each segment CG due to the link’s accelerative, coriolis, and

centrifugal motions. The modification is introduced at this step by including the

28

combined wheel forces and moments on the segment cg in Equations 3.28 and 3.29.

!

i+1
F

i+1
= m

i+1

i+1
˙ v

C
i+1

+
i+1

F
C

w

 (3.30)

!

i+1
N

i+1
=
C
i+1 I

i+1

i+1
˙ "
i+1

+
i+1"

i+1
#
C
i+1 I

i+1

i+1"
i+1

+
i+1
N
C
w

 (3.31)

3.3.2 Equation of Motion

After obtaining the joint torque equations, similar terms can be collected, and

a configuration-space equation may be formed:

!

" = M q()˙ ̇ q + B q() ˙ q ̇ q [] + C q() ˙ q
2[] + G q() + F q() Fw[] + N q() Nw[] (3.32)

τ is the vector of torques applied at each joint. For the passively articulated

rover case, this is a zero vector. M is the (7 x 7) mass matrix. B is a (7 x 6) matrix of

coriolis terms. While there are many combinations of joint velocity products, only

six of these have coefficients that evaluate to nonzero values. C is a (7 x 4) matrix of

centrifugal terms (4 columns for the 4 nonzero coefficients). G is a vector of gravity

terms. F and N are (7 x 6) and are multiplied by the stacked wheel forces and torques

on the link cg in the link frame. With τ = 0, the joint accelerations at each time step

can be solved for by using

!

˙ ̇ q = M
"1

q() "B q() ˙ q ̇ q [] "C q() ˙ q
2[] "G q() " F q() Fw[] " N q() Nw[][] (3.33)

See Appendix A for the dyamic equation coefficients.

29

Chapter 4: Simulation Design

This chapter describes the simulation’s design and testing. Section 4.1 walks

through the simulation loop. Section 4.2 compares the simulation results with results

from previous research.

4.1 Simulation Outline

Now that the kinematic, dynamic, and terrain interaction models are defined,

they can be used as components of a computer program to simulate the motion of a

segmented-body, rigid-wheeled rover through deformable terrain. This section

describes how the simulation developed for this thesis is constructed.

First, soil properties, wheel and rover dimensions, masses, and inertias are

loaded into Matlab. Next, initial conditions are set. These include the initial position,

orientation, and body joint values and their rates. All zero values describe a static

rover facing forwards, and sitting upright, with a straightened turning joint. The other

initial conditions to be set are the torques applied by the motors to each of the wheels.

As shown in the closed-form applied torque equation, it is solely a function of

slip ratio and sinkage. Each wheel’s sinkage can be found by following the process

described in Section 3.2.1. Using the bisection method, the torque equation is solved

for slip ratio. Having obtained wheel sinkage and slip, the magnitudes of the other

non-lateral forces (D and W) may now be calculated.

To calculate C, the wheel’s slip angle must be known. Slip angle is a function

of the ratio of lateral and longitudinal velocity components, so the wheel’s velocity in

30

its own frame must be determined. Following the method in [Craig,05], the Jacobian

for each wheel is obtained. Operating on the joint rate vector with these Jacobians

yields the desired velocity vector for each wheel, from which β is easily calculated.

Finally, side force C is calculated for each wheel.

Now that all of the wheel forces are known, the next step is to compute their

combined force and moment on the local link center of gravity (Equations 3.30 and

3.31). Once these forces and moments are known, they can be used along with the

vehicle joint values and rates in Equation 3.33 to find the joint accelerations. The

final step is to update the joint values and rates via Euler integration.

!

q t + "t() = q t() + ˙ q t()"t + 1

2
˙ ̇ q t()"t

2 (4.1)

!

˙ q t + "t() = ˙ q t() + ˙ ̇ q t()"t (4.2)

Also at this step—how often depends on bandwidth selection—new wheel

powers can be commanded according to a control law. For the simulations performed

in this research, each timestep was 0.001 seconds, and the controller bandwidth

(when present) was 10 Hz.

4.2 Simulation Testing and Validation

Before using the simulation to gain insight into the dynamics of passively

articulated rover systems, it must be validated against previous work and common

sense in order to be accepted. Since part of the soil model is new, its outputs should

be compared with those of other soil models. The model must also be consistent

with itself. For example, if steady state conditions and wheel torques are solved for,

those conditions should be maintained throughout a simulation. This would indicate

31

that the dynamic and soil interaction models are stable together. All validation tests

were conducted with a fixed central joint.

4.2.1 Comparison to Bekker Model

First, the soil model was compared to Bekker’s equations (2.2-2.3). Bekker’s

equations assume that rolling resistance (Rc) and wheel sinkage (z0) are related to the

wheel diameter (D), width (b), and weight on the wheel (W) through a power law,

such that

!

Q = Ax
B (4.3)

where Q is the quantity being calculated, x is the variable, and A and B are the

power law parameters. A suitable range of variables were chosen, and three cases

were tested to find the Rc and z0 dependencies of both Bekker’s and the author’s

models. The results are summarized in Tables 4.1 and 4.2. Figure 4.1 shows typical

relationships between rolling resistance, sinkage, and wheel diameter.

Table 4.1: Rolling Resistance vs. Wheel diameter, Width, and Weight
x D b W

Bekker 131.6 34.41 0.01475
A

Simulation 162.7
24%

43.74
27%

0.01988
35%

Bekker -0.6563 -0.3115 1.312
B

Simulation -0.6298
4.0%

-0.2989
4.0%

1.301
0.8%

Table 4.2: Wheel Sinkage vs. Wheel Diameter, Width, and Weight
x D b W

Bekker 0.03191 0.008723 0.0003846
A

Simulation 0.03874
21%

0.01075
23%

0.0004874
27%

Bekker -0.3125 -0.6229 0.625
B

Simulation -0.2978
4.7%

-0.6161
1.1%

0.6192
0.9%

32

Figure 4.1: Rolling Resistance and Sinkage vs. Wheel Diameter

It can be seen from the tables that the exponent terms match fairly well (to

within a few percent), so that the general trends of Q vs. x are similar. However, the

A coefficient from the simulation differs from Bekker’s equations by 20-35%.

Typically, this indicates that the simulated rolling resistances and sinkages are greater

than that which would be calculated using Bekker’s equations. Wong’s model takes

into account forces generated by the wheel’s tangential stress whereas Bekker’s does

not, but removing these extra terms from the equations yielded negligible changes.

Next, dependency of Rc and z0 on soil parameters n and kφ was checked (kc

always appears in conjunction with kφ and for low cohesion soils is much smaller).

Table 4.3: Rolling Resistance vs. Soil Parameters
x n kφ

Bekker 182.8 17470
A

Simulation 228.4
25%

10630
39%

Bekker 1.331 -0.3113
B

Simulation 1.09
18%

-0.2617
16%

33

Table 4.4: Wheel Sinkage vs. Soil Parameters
x n kφ

Bekker 0.03075 280.9
A

Simulation 0.03869
26%

231.8
17%

Bekker 2.638 -0.6226
B

Simulation 2.275
14%

-0.5957
4.3%

These results show that the simulation’s dependence on soil parameters differs

significantly from Bekker’s model, and are probably the cause of the 25% offset in

sinkage and rolling resistances. For this study, overall trends related to vehicle

weight and dimensions are more important than exacting numeric values, so the

simulation will be sufficient.

4.2.2 Comparison to Yoshida Model

Next, the simulation was compared against the [Ishigami,07] results for

turning and drawbar pull at various slip ratios and slip angles on a single wheel. The

wheel has a radius of 9 cm, a width of 11 cm, and a mass of 6.6 kg. Their

experimental measurements are plotted over their model predictions in Figures 4.2

and 4.3. Figures 4.4 and 4.5 show the results from the author’s simulation.

34

Figure 4.2: Yoshida drawbar pull vs. slip ratio for different slip angles

At first glance, the trends are similar. Drawbar pull increases with increasing

slip ratio, and decreases with increasing sideslip. Side forces decrease with

increasing slip ratio, and increase with increasing sideslip. For low slip ratios and

sideslip, the author’s side force results are within 10-15% of Yoshida’s. However,

the drawbar pull magnitudes of the simulation plots differ significantly from

Yoshida’s: by ~ 14 N with s = 0, and ~ 25 N when s = 0.8, nearly independent of

sideslip. This is due to Yoshida’s inclusion of rut recovery in their wheel/soil

interaction model. Unlike the assumption in this thesis that the wheel stops

contacting the soil behind bottom-dead-center (θ2 = 0), Yoshida assumes a nonzero θ2

defined by

35

!

"
2

= cos#1 1# $z
0
/r() (4.4)

where λ is called the wheel sinkage ratio, denoting the ratio between the front

and rear sinkages of the wheel. Rut recovery depends on many variables and is not

well understood. For Yoshida’s calculations, 0.9 < λ < 1.1 [Ishigami07]. This means

that θ2 ≈ θ1, which significantly stretches out the stress distributions discussed in

section 2.1.4. This stretching effect compared to the approximated distribution is

shown in Figure 4.6.

Figure 4.3: Yoshida Side Forces vs. slip ratio for different slip angles

36

Figure 4.4: Simulation Model Drawbar Pull vs. slip ratio for different slip angles

Figure 4.5: Simulation Model Side Forces vs. slip ratio for different slip angles

37

Figure 4.6: Approximated vs. Exact Stress Distribution for non-zero θ2

For Yoshida’s experiments with a small rover on lunar simulant soil, the rut

recovery method worked well. To look for other regimes where rut recovery has

significant effects, two other rovers were considered. The first was a four-wheeled

rocker-suspension rover at the Space Systems Laboratory (Figure 4.7) with wheels

13.3 cm in diameter and 8.9 cm wide. The rover’s weight is 8.5 kg, yielding an

average load of 20.8 N on each wheel.

Figure 4.7: Rover at Space Systems Laboratory

38

Using the model developed for the simulation, for zero drawbar pull, sinkage

in loose dry sand is 1.31 cm, slip ratio is 0.37, and rolling resistance is 5.88 N.

During testing, the rover reached a velocity of 20 cm/s, drawing a power of 1.55 W

per wheel. No significant rut recovery was noticed. Assuming a motor efficiency of

0.8, the power available to each wheel was 1.24 W, indicating a rolling resistance of

6.2 N. The rolling resistance calculated by the simulation differs from this value by

only 5.2%. While this test was crude, the results are encouraging.

The second rover considered was the LRV used during the Apollo missions to

the moon (Figure 4.8). The LRV had wheels 0.41 m in radius, 0.23 m in width, and

had a mass of 700 kg. According to the author’s model, the LRV would attain a

drawbar pull of zero when s = 0.07. Sinkage would be 2.5 cm, and rolling resistance

would be 46.2 N per wheel. The rover was provided with 0.25 hp (186 W) drive

motors at each wheel. This would enable a top speed of about 4 m/s, or 14.4 kph,

which is near the rover’s maximum design velocity on flat ground. For this case also,

rut recovery does not appear to have had a large effect on vehicle performance.

Figure 4.8: Lunar Roving Vehicle (NASA)

39

Since the general trends of the simulation follow previous work done, and

produce results numerically similar to experimental data where rut recovery was not a

major factor, it will be considered sufficient for the investigations that follow.

4.2.3 Constant Velocity Driving

Given a set of steady state conditions, the simulation should maintain those

conditions. For straight, constant velocity driving, the net force in the longitudinal

direction (drawbar pull) must be equal to zero. To test this, three two-segment rovers

were specified, and their steady state driving torques were numerically solved for.

These torques were then used as initial conditions for the simulation, which was run

for 5 seconds. The rover parameters were as follows:

Table 4.5: Test Rover Configuration Parameters
Rover Segment Mass (kg) Wheel Radius (m) Wheel Width (m)

A 200 0.5 0.2

B 100 0.4 0.15

C 25 0.15 0.08

The steady-state parameters used as initial conditions for each rover wheel are

shown in the table below:

Table 4.6: Steady State Test Values

Rover
Torque

(Nm)

Velocity

(m/s)
Slip Ratio

Sinkage

(cm)

Rolling

Resistance (N)

A 88.86 3.0 0.00258 4.445 174.1

B 36.36 1.0 0.0121 3.703 89.0

C 5.222 0.5 0.0753 3.105 33.1

40

At the end of the simulation, the rover’s state was virtually the same as its

initial conditions, indicating that accelerations were near zero, and the wheel/soil

interaction and rover dynamic models interacted in a stable way.

4.2.4 Constant Drawbar Pull

Next, the simulation was tested with constant accelerations. This was done

for Rover A and solving for the required torques to 1) accelerate at 0.1 m/s2 and 2)

overcome the rolling resistance of an additional, unpowered segment. This translates

to per-wheel drawbar pulls of 10 N and 175 N, respectively.

Table 4.7: Expected Acceleration Test Values

Test

Drawbar
Pull (N)

Torque
(Nm)

Sim
Time

(s)

Initial
Velocity

(m/s)

Expected
Final

Velocity
(m/s)

Slip
Ratio

z0

(cm)
Rc
(N)

1 10 93.83 10 0.0 1.0 0.00564 4.445 173.8

2 175 170.4 5 1.0 8.75 0.0708 4.401 176.4

The results of the final iteration of the simulation and deviation from the

expected values are shown in Table 4.8.

Table 4.8: Simulated Acceleration Test Values

Test

Drawbar

Pull (N)
Velocity (m/s) Slip Ratio

Sinkage

(cm)

Rolling
Resistance

(N)

1 10.80 8.0% 1.0002 0.02% 0.00598 6.0% 4.4356 2.6% 173.1 0.45%

2
(F) 175.8 0.5% 0.0785 11% 4.2486 3.5% 158.3 10%

2
(B) 150.4 14%

9.1456 4.5%
0.0535 24% 4.5560 3.5% 183.3 3.9%

41

For the low drawbar pull case, the expected final velocity was reached nearly

exactly. For the high drawbar pull case, a higher velocity is obtained than expected.

Drawbar pull, slip, sinkage, and rolling resistances also differ by nontrivial amounts.

This is due to the fact that the steady state torques were solved for under the

assumption that all wheels were at the same depth. Due to the vehicle’s forward

acceleration, weight is transferred to the rear, causing the back wheels to sink deeper

than the front wheels. A steady state 0.07 degree pitch-up was the result. This effect

was not accounted for when calculating the torques, and will be attributed the

deviations.

42

Chapter 5: Articulated Rover Simulation

This chapter details an investigation into passively articulated rover motion

using the simulation described above. Unlike the validation tests, the turning joint is

free to rotate in these simulations. Section 5.1 looks at forward movement, and its

stability when disturbed by an external impulse. Section 5.2 describes the turning

nature of an articulated vehicle. Section 5.3 implements a simple control system to

deal with disturbances and to help complete desired vehicle motions. All simulations

occur under Earth gravity conditions and in uniform dry sand.

5.1 Forward Movement

5.1.1 Nominal Case

The first articulated simulation runs were targeted at determining whether the

rover could move in a straight line. In a perfect simulation world, if the rover is

moving at constant velocity and provides equal and sufficient powers to its wheels,

then it will continue without changing its velocity vector, or exhibiting turning joint

motion. Three simulations were performed with initial velocities of 0.5 m/s, 3 m/s,

and 6 m/s for 60 seconds each. At the end of each 60 second simulation, turning joint

angles were on the order of 10-9 degrees, the vehicle’s heading had shifted by 10-8

degrees, and the velocities were the same to about one part in one million.

5.1.2 Disturbed Behavior

Traveling over a planet’s surface, a rover will encounter non-homogenous soil

43

and rock distributions. Rocks impacting the wheel sides have the ability to disturb

the rover’s motion, and impart angular velocity on its turning joint. Disturbances

were introduced into the simulation as a non-zero initial turning joint rate. The rover

was tested over rates ranging from 0 deg/s to one such that its lateral velocity

matched its longitudinal velocity. This range was chosen to represent probable

disturbance magnitudes encountered in the field. The rover’s responses to these

disturbances changed as initial velocity was increased. For each disturbance, the

maximum turning angle, settled turning angle, final heading change rate, and settling

time were recorded.

For the low speed case, the turning joint approached its settled value without

overshoot (Figure 5.1), and the relationship between maximum turning joint angle

and disturbance magnitude was nearly linear (Figure 5.2).

Figure 5.1: Low Speed Disturbance, Turning Joint Angle vs. Time

44

Figure 5.2: Low Speed Disturbance, Maximum Turning Joint Angles

For the medium speed case, there is some overshoot (Figure 5.3). Maximum

vs. final turning joint angles differ by up to 6.3 percent, diverging with increasing

disturbance. Figure 5.4 shows that the maximum disturbance plot begins to turn for

higher magnitude disturbances.

Figure 5.3: Medium Speed Disturbanc, Turning Joint Angle vs. Time

45

Figure 5.4: Medium Speed Disturbance, Maximum Turning Joint Angles

 For the high speed case, the maximum turning angle plot continues its turn,

but eventually levels out at a maximum disturbance of about 17 degrees, independent

of the initial displacement (Figure 5.5). The difference between maximum and final

turning joint angles also diverged by significant amounts for the larger disturbances.

Figure 5.5: High Speed Disturbance, Maximum Turning Joint Angles

46

Essentially, each disturbance introduces a steady state turning joint, or q7

displacement, and therefore, turning radius to the rover’s motion. For a given q7, the

rover’s segments line up with a circle of radius

!

r =
l

tan q
7
2()

 (5.1)

The observed vs. expected turning radii differed only by an average of 3.8%.

This difference could be due in part to the same powers being delivered to each

wheel, whereas inner and outer wheel powers would be slightly different for a

perfectly turning vehicle. Figure 5.6 shows the circular path produced for one of the

high speed simulations.

Figure 5.6: High Speed Disturbed Rover Path

5.2 PD Control

In order to truly be in control of an articulated rover and to handle

disturbances, there must be a means of steering. The steering system should be as

47

simple as possible, and rely on feedback easily available from the rover. It is

assumed that the rover has a high quality absolute rotary encoder at its turning joint to

measure angles, and to derive joint rates.

5.3.1 Controller Design

The controller developed for this test was a PD controller. The turning joint

value and rate are multiplied by gains, and added to the steady-state power delivered

to the front left wheel, and subtracted from the front left one.

!

Pleft = Pnom + K p q
7
" q

7des() + Kd
˙ q

7
" ˙ q

7des() (5.2)

!

Pright = Pnom "K p q
7
" q

7des() "Kd
˙ q

7
" ˙ q

7des() (5.3)

The initial gains were chosen arbitrarily such that Kp = 100, and Kd = 100.

The controller may command new powers at a frequency of 10 Hz.

5.3.2 Response to Disturbances

The first test for the control system was to see how well it handled the same

disturbances described in Section 5.1.2. The simulations were stopped when the

turning joint angle and rate were negligible. Results in Figures 5.7-5.9 show the

maximum q7 overshoot and final vehicle heading q6 as a function of disturbance

magnitude, for each of the velocities tested.

48

Figure 5.7: Disturbance Effects for v = 0.5 m/s

For low and medium velocities, the general trend is for higher disturbances to

cause larger overshoots and heading changes. Also, for the given set of gains, the

control system was less able to handle the higher speed cases. Additionally, power

requirements per motor increased by up to 2% and 19% for the 0.5 m/s and 3 m/s

velocities, respectively, while for the 6 m/s case, power requirements increased by up

to 15%.

Settling times were on the order of 9 seconds for v = 0.5 m/s, 17 seconds for v

= 3 m/s, and 18 seconds for v = 6 m/s. While maximum turning joint angles increase

with increasing disturbance magnitude for the high velocity case, final heading

increases until about 100 deg/s disturbance, and then decreases back to near zero at

230 deg/s. A typical trace of turning joint angle vs. time (for the high speed case) is

shown in figure 5.10.

49

Figure 5.8: Disturbance Effects for v = 3 m/s

Figure 5.9: Disturbance Effects for v = 6 m/s

50

Figure 5.10: Response of Turning Joint with PD Control at High Speeds

Next an attempt was made to achieve a quicker settling time by altering the

gains of the system for the 6 m/s case. Now, Kp = 300 and Kd = 300. Figure 5.11

shows the settling time and power requirement percent differences between the two

gain sets.

Figure 5.11: Settling Time and Power Requirement Comparisons

The new gains improve settling time by 25-55 percent across the disturbance

51

range. Power requirements increased by a maximum of 25 percent. The turning joint

response is shown in Figure 5.12

Figure 5.12: High Speed Turning Joint Response with Alternate Gains

5.3.3 Turning Performance

The next group of simulations set the rover moving at 0.5 or 3 m/s (nominal

per-wheel driving powers of 89 W and 535 W, respectively) in the longitudinal

direction, and then told the control system to move the turning joint angle to 5, 10, 15,

30, or 45 degrees. Tables 5.1 and 5.2 show each case’s settled turning joint angle

percentage, resulting turn radius, and maximum power per wheel.

Table 5.1: Turning Performance at 0.5 m/s
q7 commanded

(deg)
q7 final
(deg)

q7 %
difference

Turn Radius
(m)

Maximum
Power

(W)

5 4.999 0.00 34.7 98

10 9.9994 0.01 17.3 107

15 14.9979 0.01 11.5 115

30 29.9823 0.06 5.7 141

45 44.931 0.15 3.7 168

52

Table 5.2: Turning Performance at 3 m/s
q7 commanded

(deg)
q7 final
(deg)

q7 %
difference

Turn Radius
(m)

Maximum
Power

(W)

5 4.9881 0.24 35.2 543

10 9.9058 0.94 17.7 552

15 14.6882 2.08 11.9 561

30 27.7773 7.41 6.3 587

45 38.6856 14.03 4.4 613

Traveling velocities remained within 5% of their initial values. The PD

controller had an easier time achieving the desired joint angles for the smaller

velocity case than for the higher one (See Figures 5.13 and 5.14). Powers peaked

during initial phases of disturbance handling, but then returned to within a few Watts

of nominal steady-state powers.

Figure 5.13: Low Speed Turning Response

53

Figure 5.14: High Speed Turning Response

Next, the vehicle (traveling at 1.5 m/s) was commanded to perform a

maneuver. The maneuver set the desired turning joint angle to 20 degrees for 6

seconds (starting at t = 2 s), and then returned to driving straight. As can be seen in

Figure 5.15, the turning joint angle reached 20 degrees by the end of being

commanded to do so, and then returned to zero within a few seconds. The overall

heading change (see Figure 5.16) was 60 degrees.

54

Figure 5.15: Turning Joint Value During Maneuver

Figure 5.16: Vehicle Heading Angle During Maneuver

To verify, the path is shown in Figure 5.17. The wheel sinkages and torques

are shown in Figures 5.18 and 5.19, respectively. It can be seen that during the left

55

turn, the wheels were deeper on the right than on the left, which is expected.

Figure 5.17: Rover Path During Maneuver

Figure 5.18: Rover Wheel Sinkages During Maneuver

56

Figure 5.19: Wheel Torques During Maneuver

57

Chapter 6: Summary, Conclusions, Future Work

6.1 Summary

In this thesis, a computer model was built to simulate the movements of a

passively articulated, segmented-body rover. Its main components are a linearized (to

reduce computation time) soil-wheel interaction model, a Newton-Euler based

dynamic model (easily implemented using DH parameters), and a PD control module

that regulates turning the turning joint’s position and velocity. The simulation was

tested against results for fixed-chassis rovers from past research. Next, the simulation

was used to investigate the driving and turning behavior of articulated vehicles.

Straight driving cases with disturbances were looked at first. Finally, the feedback

control loop was added to the system, and its ability to handle disturbances and turn

the vehicle was determined.

6.2 Conclusions

The simulation developed for this research provides qualitatively and to some

extent, numerically consistent results with those of previous studies. It also

corresponded well to one rough experimental test in the lab. It was sufficient for the

purpose of investigating the general behavior of articulated vehicles.

It was found that if disturbed from a straight path, a passively articulated rover

will typically not become unstable, but rather settle into a stable turn radius which

decreases with increasing velocity and disturbance severity. Additionally, it is

possible for such a vehicle to be controlled via a simple PD controller running at 10

58

Hz that is dependent only on feedback from a turning joint encoder. For higher

velocities and larger disturbances or turn commands, the controller required power

significantly above the straight driving power, however this may have only been due

to the specific gains chosen.

Overall, it was found that simulation is a powerful way to look at vehicle

behavior and derive vehicle requirements. It was also found that for the passively-

articulated case, that it is controllable by simple control laws, but that optimal choice

of gains is important in order to reduce required power and torque, yet keep the

steering responsive.

6.3 Future Work

There is much that can still be done to improve the accuracy and capability of

the simulation itself. First, if the simulation is ported to a faster language, such as C

or C++, then it might be feasible to use more accurate terramechanics stress

distributions. It might also be possible to speed the simulation up to real-time and use

it as a simulator with humans and other real-world systems in the loop. Currently the

simulation runs between 30 and 40 Hz. The timestep used for most work in this

research was 0.001 seconds.

Another area where the simulation could be expanded on is the number of

vehicle segments and turning joint degrees of freedom modeled. The kinematics

module is already extendable to additional segments and joints, but the dynamic

model was solved in Mathematica® for specifically two segments and one yaw

degree of turning freedom.

59

For this research a damping term was introduced to approximate a suspension

system. A more accurate model of the suspension would improve the prediction

power of the simulation, as well as give it the capability to evaluate ride quality and

structural design requirements. Rover movement on sloped ground should also be

investigated. Turning the gravity vector in the dynamic formulation would simulate

sloped behavior.

Simulations should also be performed on other types of rovers to make fair

comparisons between configurations. Additionally, it may be interesting to look at

the effects of changing segment dimensions, mass distributions, and wheel/soil

parameters for the articulated vehicle.

This research modeled the ground’s surface as a flat plane. However, it would

be useful to add vertical dimension to the terrain and simulate obstacle climbing

performance.

Finally, the simulation should be tested against experimental results in the

laboratory and out in the field. Good agreement between simulation and actual

testing would significantly improve the design process for new rover concepts. For

this, a research-grade meter-scale prototype vehicle should be constructed, basing its

design on the results from available simulations. Depending on the joint

configuration, this prototype could also begin testing the articulated vehicle’s obstacle

climbing abilities.

60

Appendices

Appendix A: Matlab Simulation Code

A.1: simcore.m

% simcore.m simulates the motions of an articulated vehicle

clear all
close all
clc

% LOAD SOIL PROPERTIES
soil = loadsoil('drysand2.soil')
g = 9.81; % grav accel (m/s^2)

% VEHICLE PARAMETERS

rover.n = 2; % number of segments
rover.l = 1.5; % rover length dimension (distance to next link)
rover.hw = -0.375; % vertical distance from link plane to wheel hub
rover.hcg = 0.125; % vertical distance from link plane to segment cg
rover.w = 0.8; % lateral distance from segment centerline to wheel hub

% wheel and cg coords in link frame
for i=1:rover.n;
 pw{i,1}=[sign(i-1)*rover.l;rover.w;rover.hw]; % wheel coords
 pw{i,2}=[sign(i-1)*rover.l;-rover.w;rover.hw]; % wheel coords
 pcg{i}=[sign(i-1)*rover.l;0;rover.hcg]; % cg coords
end

joints = [0 0 0 1 1 1 ones(1,rover.n-1)]; % joint types (0=P,1=R)

% segment masses
mseg = 200; % kg
segmass = mseg*ones(rover.n,1);

% wheel properties
wheel.r = 0.5; % wheel radius
wheel.b = 0.2; % wheel width
D = 800; % vertical damping at each wheel (Ns/m)

% solve for wheel state given desired drawbar pull
[sinkage,Tmag,Rconst,slip0] = constvel(mseg,g,wheel,0);

% INITIAL CONDITIONS

vel_init = 0.5; % initial rover velocity

dx = wheel.r-sinkage-rover.hw; % vertical position
dy = 0; dz = 0;
phix = 0; phiy = 0; phiz = 0;

theta_init = 0; % initial turning joint angle (deg)
jointrate = 0; % initial turning joint rate (deg/s)

% initial joint values
q = [dz,dx,dy,phiy,phiz,phix,theta_init]';
qdot = [-vel_init;0;0;0;0;0;jointrate];

% VARIABLE HACKS FOR DYNAMICS EQNS
ms = mseg;

61

L = rover.l;
H = pcg{1}(3);
sphereI = 2/5*ms*(pw{1,1}(2)/2)^2;
I11=sphereI;I12=0;I13=0;
I21=0;I22=sphereI;I23=0;
I31=0;I32=0;I33=sphereI;

% Wheel Powers & Torques
motor.Pmax0 = Tmag*(vel_init/((1-slip0)*wheel.r))*ones(rover.n,2);
motor.Pmax = motor.Pmax0;
T = Tmag*ones(rover.n,2);

% Desired values
q7des = 0; % desired turning joint angle
q7dotdes = 0; % desired turning jonit rate

% PD Controller gains
PgainP = 100; % position
PgainD = 100; % velocity

% SIMULATION PARAMETERS
dt = 0.001; % timestep length (s)
simseconds = 1; % length of simulation (s)

num_iter = simseconds/dt; % number of iterations
iterations = 1; % start iteration counter at 1
records = 1; % start records counter at 1
t = 0; % start time at 0 seconds
tic % start timer

stable = 1;

% MAIN SIMULATION LOOP
while(iterations < num_iter)

 DH = getDH(rover,q); % get updated DH parameters

 % Transformation Matrices
 Tadjacent = getTadj(DH); % All T's between adjacent frames
 Tjoint = getTjoint(Tadjacent,rover); % T's from joint to base frame
 Twheel = getTwheel(Tjoint,rover,pw); % T's from wheel to base frame

 plow0 = getplow0(Twheel,rover,wheel); % base coords of deepest wheel point
 [z0, Rwr2w] = getWRframe(plow0,Twheel,Tjoint,rover); % max wheel depth &
rotation from wheel frame to wheel reaction frame

 % break out of simulation if wheel breaks surface
 if sum(sum(z0>=0))>0
 stable = 0;
 break;
 end

 % Jacobians
 Jtransw = getJTWheel(rover,wheel,joints,Tadjacent,pw); % Wheel Jacobians in wheel
frame
 Jtrans = getJTWR(Jtransw,Rwr2w,rover); % Wheel Jacobians in wheel
reaction frame

 % Wheel velocities
 wheelvel = getvwheel(rover,qdot,Jtrans);

 % WHEEL FORCES

 th1 = real(acos(1-(-z0)./wheel.r)); % wheel entry angle

 % solve for slip angle and slip ratios
 for i=1:rover.n
 for j=1:2
 betaslip(i,j) = getBeta(wheelvel{i,j});
 soil.kx(i,j) = betaslip(i,j)*soil.dkx+soil.kx0;

62

 soil.ky(i,j) = betaslip(i,j)*soil.dky+soil.ky0;
 slip(i,j) = sbisect(th1(i,j),soil.kx(i,j),soil,T(i,j),wheel);
 end
 end

 % location of maximum stresses
 thm = thetamax(th1, slip, soil);

 % max stress values
 sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-
cos(th1)).^soil.n;
 jx = wheel.r.*(th1-thm-(1-slip).*(sin(th1)-sin(thm)));
 taum = (soil.c+sigm*tan(soil.phi)) .* (1-exp((-1*jx)./soil.kx));
 tauym = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-(wheel.r./soil.ky) .* ((1-
slip).*(th1-thm).*tan(betaslip))));

 % Wheel Force Magnitudes
 FxH = DPH(th1,thm,taum,wheel); % soil thrust
 FxR = DPR(th1,thm,sigm,wheel); % soil resistance
 Fz = W(th1, thm, sigm, taum, wheel); % vertical reaction
 Fytau = abs(Ctau(th1, tauym, wheel)); % lateral stress
 %Fybull(i,j) = quad(@(th) Cbull(th, th1(i,j), wheel, soil),0,th1(i,j)); % lateral
bulldozing
 %Fy = Fytau+Fybull; % total lateral forces
 Fy = Fytau;

 % Determine force vectors
 FxHsign = sign(FxH);
 for i=1:rover.n
 Fcw{i}=zeros(3,1); Ncw{i} = zeros(3,1);
 for j=1:2

 % Vectorize in local coords
 if (wheelvel{i,j}(1)==0 && FxHsign(i,j)==1)
 WFx_vec{i,j} = [max([FxH(i,j)+FxR(i,j),0]);0;0];
 elseif (wheelvel{i,j}(1)==0 && FxHsign(i,j)==-1)
 WFx_vec{i,j} = [min([FxH(i,j)-FxR(i,j),0]);0;0];
 else
 WFx_vec{i,j} = [FxH(i,j)+FxR(i,j)*sign(wheelvel{i,j}(1));0;0];
 end
 WFy_vec{i,j} = [0;Fy(i,j)*-sign(wheelvel{i,j}(2));0];
 WFz_vec{i,j} = [0;0;Fz(i,j)-D*wheelvel{i,j}(3)];

 % Transform to link (cg)
 WFx_veclink{i,j} = Rwr2w{i,j}*WFx_vec{i,j};
 WFy_veclink{i,j} = Rwr2w{i,j}*WFy_vec{i,j};
 WFz_veclink{i,j} = Rwr2w{i,j}*WFz_vec{i,j};

 pwheelwrtcg{i,j} = pw{i,j} - pcg{i}; % position of wheel wrt cg (link
frame)
 Fcwlocal = WFx_veclink{i,j} + WFy_veclink{i,j} + WFz_veclink{i,j};
 Fcw{i}= Fcw{i} + Fcwlocal;
 Ncw{i}= Ncw{i} + cross(pwheelwrtcg{i,j},Fcwlocal);
 end
 end

 % BUILD HANDY STATE MATRICES

 % forces & moments
 Fs = [];
 Ns = [];
 for i=1:rover.n
 Fs = [Fs;Fcw{i}];
 Ns = [Ns;Ncw{i}];
 end

 % square of joint rates
 qdotsquared = qdot(4:rover.n+5).^2;

 % joint rate products

63

 tempcounter = 0;
 for i=4:rover.n+5-1
 for j=i+1:rover.n+5
 tempcounter = tempcounter+1;
 qdotprods(tempcounter,1)=qdot(i)*qdot(j);
 end
 end

 % DYNAMICS!!!

 % more variable hacks
 q1=q(1);q2=q(2);q3=q(3);q4=q(4);q5=q(5);q6=q(6);q7=q(7);

 % equations from mathematica
 Minv=inv([2*ms,0,0,ms*(2*L*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*(-
2*H*cos(q5) + L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*sin(q4)*(2*H*sin(q5) +
L*cos(q5)*(sin(q6) + sin(q6 + q7))),L*ms*(2*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4)*sin(q5)
+ cos(q4)*(sin(q6) + sin(q6 + q7))),L*ms*(cos(q6 + q7)*sin(q4)*sin(q5) +
cos(q4)*sin(q6 + q7));0,2*ms,0,ms*(-2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) +
sin(q4)*(-2*H*cos(q5) + L*sin(q5)*(sin(q6) + sin(q6 + q7)))),-(ms*cos(q4)*(2*H*sin(q5)
+ L*cos(q5)*(sin(q6) + sin(q6 + q7)))),L*ms*(-2*cos(q4)*cos(q6 +
q7/2.)*cos(q7/2.)*sin(q5) + sin(q4)*(sin(q6) + sin(q6 + q7))),L*ms*(-(cos(q4)*cos(q6 +
q7)*sin(q5)) + sin(q4)*sin(q6 + q7));0,0,2*ms,0,ms*(2*H*cos(q5) - L*sin(q5)*(sin(q6) +
sin(q6 + q7))),2*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.),L*ms*cos(q5)*cos(q6 +
q7);ms*(2*L*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*(-2*H*cos(q5) +
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*(-2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) +
sin(q4)*(-2*H*cos(q5) + L*sin(q5)*(sin(q6) + sin(q6 + q7)))),0,I33 +
(cos(q5)^2*(2*(2*I11 + I22 + 2*H^2*ms + L^2*ms) + (-I11 + I22 + L^2*ms)*cos(2*q6) + (-
I11 + I22)*cos(2*(q6 + q7)) + L^2*ms*(2*cos(q7) + cos(2*(q6 + q7)) + 2*cos(2*q6 +
q7))) + 2*(I22 + 2*I33 + 2*L^2*ms + 2*L^2*ms*cos(q7))*sin(q5)^2 -
4*H*L*ms*cos(q7/2.)*sin(2*q5)*sin(q6 + q7/2.))/2.,2*H*L*ms*cos(q6 +
q7/2.)*cos(q7/2.)*sin(q5) + cos(q5)*(L^2*ms + (-I11 + I22 + L^2*ms)*cos(q7))*sin(2*q6
+ q7),2*(I33 + L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*(sin(q6) + sin(q6 +
q7)),(I33 + L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*sin(q6 +
q7);ms*sin(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7))),-
(ms*cos(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7)))),ms*(2*H*cos(q5) -
L*sin(q5)*(sin(q6) + sin(q6 + q7))),2*H*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) +
cos(q5)*(L^2*ms + (-I11 + I22 + L^2*ms)*cos(q7))*sin(2*q6 + q7),(2*(I11 + I22 + I33 +
2*H^2*ms + L^2*ms) + (I11 - I22 - L^2*ms)*cos(2*q6) + 2*L^2*ms*cos(q7) + (I11 - I22 -
L^2*ms)*cos(2*(q6 + q7)) - 2*L^2*ms*cos(2*q6 + q7))/2.,H*L*ms*(cos(q6) + cos(q6 +
q7)),H*L*ms*cos(q6 + q7);L*ms*(2*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4)*sin(q5) +
cos(q4)*(sin(q6) + sin(q6 + q7))),L*ms*(-2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5)
+ sin(q4)*(sin(q6) + sin(q6 + q7))),2*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.),2*(I33 +
L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*(sin(q6) + sin(q6 +
q7)),H*L*ms*(cos(q6) + cos(q6 + q7)),2*(I33 + L^2*ms + L^2*ms*cos(q7)),I33 + L^2*ms +
L^2*ms*cos(q7);L*ms*(cos(q6 + q7)*sin(q4)*sin(q5) + cos(q4)*sin(q6 + q7)),L*ms*(-
(cos(q4)*cos(q6 + q7)*sin(q5)) + sin(q4)*sin(q6 + q7)),L*ms*cos(q5)*cos(q6 + q7),(I33
+ L^2*ms + L^2*ms*cos(q7))*sin(q5) - H*L*ms*cos(q5)*sin(q6 + q7),H*L*ms*cos(q6 +
q7),I33 + L^2*ms + L^2*ms*cos(q7),I33 + L^2*ms]);
 B=[2*ms*cos(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 +
q7))),2*L*ms*(2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) - sin(q4)*(sin(q6) + sin(q6
+ q7))),2*L*ms*(cos(q4)*cos(q6 + q7)*sin(q5) - sin(q4)*sin(q6 +
q7)),4*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4),2*L*ms*cos(q5)*cos(q6 +
q7)*sin(q4),2*L*ms*(cos(q4)*cos(q6 + q7) - sin(q4)*sin(q5)*sin(q6 +
q7));2*ms*sin(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7))),2*L*ms*(2*cos(q6
+ q7/2.)*cos(q7/2.)*sin(q4)*sin(q5) + cos(q4)*(sin(q6) + sin(q6 + q7))),2*L*ms*(cos(q6
+ q7)*sin(q4)*sin(q5) + cos(q4)*sin(q6 + q7)),-4*L*ms*cos(q4)*cos(q5)*cos(q6 +
q7/2.)*cos(q7/2.),-2*L*ms*cos(q4)*cos(q5)*cos(q6 + q7),2*L*ms*(cos(q6 + q7)*sin(q4) +
cos(q4)*sin(q5)*sin(q6 + q7));0,0,0,-4*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5),-
2*L*ms*cos(q6 + q7)*sin(q5),-2*L*ms*cos(q5)*sin(q6 + q7);(-
8*H*L*ms*cos(2*q5)*cos(q7/2.)*sin(q6 + q7/2.) + 2*sin(2*q5)*(-2*I11 + 2*I33 - 2*H^2*ms
+ L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) + 2*L^2*ms*sin(q6)*sin(q6 +
q7)))/2.,-2*H*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(2*q5) - 2*cos(q5)^2*(L^2*ms + (-I11
+ I22 + L^2*ms)*cos(q7))*sin(2*q6 + q7),(2*cos(q6 + q7)*(-(H*L*ms*sin(2*q5)) +
cos(2*q5)*((I11 - I22)*sin(q6 + q7) - L^2*ms*(sin(q6) + sin(q6 + q7)))) + (I11 -
I22)*sin(2*(q6 + q7)) - L^2*ms*(3*sin(q7) + sin(2*(q6 + q7)) + sin(2*q6 +
q7)))/2.,cos(q5)*(2*(I33 + L^2*ms) + (-I11 + I22 + L^2*ms)*cos(2*q6) + (-I11 +
I22)*cos(2*(q6 + q7)) + L^2*ms*(2*cos(q7) + cos(2*(q6 + q7)) + 2*cos(2*q6 +
q7))),cos(q5)*(I33 + L^2*ms + (-I11 + I22)*cos(2*(q6 + q7)) + L^2*ms*(cos(q7) +
cos(2*(q6 + q7)) + cos(2*q6 + q7))),-2*L*ms*(H*cos(q5)*cos(q6 + q7) +

64

L*sin(q5)*sin(q7));0,(-8*H*L*ms*cos(q7/2.)*sin(q5)*sin(q6 + q7/2.) - 4*cos(q5)*(I33 +
L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) + 2*L^2*ms*sin(q6)*sin(q6 +
q7)))/2.,(-2*(I33 + L^2*ms)*cos(q5) + 2*(-I11 + I22 + L^2*ms)*cos(q5)*cos(2*(q6 + q7))
- 4*L*ms*(H*sin(q5) + L*cos(q5)*sin(q6))*sin(q6 + q7))/2.,2*(L^2*ms + (-I11 + I22 +
L^2*ms)*cos(q7))*sin(2*q6 + q7),2*cos(q6 + q7)*(L^2*ms*sin(q6) + (-I11 + I22 +
L^2*ms)*sin(q6 + q7)),-2*H*L*ms*sin(q6 + q7);2*H*L*ms*sin(q5)*(sin(q6) + sin(q6 + q7))
+ 2*cos(q5)*(I33 + L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) +
2*L^2*ms*sin(q6)*sin(q6 + q7)),0,-2*L^2*ms*sin(q5)*sin(q7),0,0,-
2*L^2*ms*sin(q7);(2*cos(q5)*(I33 + L^2*ms + (I11 - I22)*cos(2*(q6 + q7)) +
L^2*ms*(cos(q7) - cos(2*(q6 + q7)) - cos(2*q6 + q7))) + 4*H*L*ms*sin(q5)*sin(q6 +
q7))/2.,2*L^2*ms*sin(q5)*sin(q7),0,0,0,0];
 C=[ms*(2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) + sin(q4)*(2*H*cos(q5) -
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*sin(q4)*(2*H*cos(q5) - L*sin(q5)*(sin(q6) +
sin(q6 + q7))),L*ms*(2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) - sin(q4)*sin(q5)*(sin(q6) +
sin(q6 + q7))),L*ms*(cos(q4)*cos(q6 + q7) - sin(q4)*sin(q5)*sin(q6 +
q7));ms*(2*L*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*(-2*H*cos(q5) +
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),ms*cos(q4)*(-2*H*cos(q5) + L*sin(q5)*(sin(q6) +
sin(q6 + q7))),L*ms*(2*cos(q6 + q7/2.)*cos(q7/2.)*sin(q4) + cos(q4)*sin(q5)*(sin(q6) +
sin(q6 + q7))),L*ms*(cos(q6 + q7)*sin(q4) + cos(q4)*sin(q5)*sin(q6 + q7));0,-
(ms*(2*H*sin(q5) + L*cos(q5)*(sin(q6) + sin(q6 + q7)))),-
2*L*ms*cos(q5)*cos(q7/2.)*sin(q6 + q7/2.),-(L*ms*cos(q5)*sin(q6 +
q7));0,2*H*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.) - (L^2*ms + (-I11 + I22 +
L^2*ms)*cos(q7))*sin(q5)*sin(2*q6 + q7),-2*H*L*ms*cos(q5)*cos(q6 + q7/2.)*cos(q7/2.),-
(L*ms*(H*cos(q5)*cos(q6 + q7) +
L*sin(q5)*sin(q7)));(16*H*L*ms*cos(2*q5)*cos(q7/2.)*sin(q6 + q7/2.) - 4*sin(2*q5)*(-
2*I11 + 2*I33 - 2*H^2*ms + L^2*ms + (I11 - I22 - L^2*ms)*cos(q7)*cos(2*q6 + q7) +
2*L^2*ms*sin(q6)*sin(q6 + q7)))/8.,0,-(H*L*ms*(sin(q6) + sin(q6 + q7))),-
(H*L*ms*sin(q6 + q7));H*L*ms*cos(q6 + q7/2.)*cos(q7/2.)*sin(2*q5) + cos(q5)^2*(L^2*ms
+ (-I11 + I22 + L^2*ms)*cos(q7))*sin(2*q6 + q7),-((L^2*ms + (-I11 + I22 +
L^2*ms)*cos(q7))*sin(2*q6 + q7)),0,-(L^2*ms*sin(q7));(2*cos(q6 + q7)*(H*L*ms*sin(2*q5)
+ cos(2*q5)*(L^2*ms*sin(q6) + (-I11 + I22 + L^2*ms)*sin(q6 + q7))) + (-I11 +
I22)*sin(2*(q6 + q7)) + L^2*ms*(3*sin(q7) + sin(2*(q6 + q7)) + sin(2*q6 + q7)))/4.,-
(cos(q6 + q7)*(L^2*ms*sin(q6) + (-I11 + I22 + L^2*ms)*sin(q6 +
q7))),L^2*ms*sin(q7),0];
 G=[0,2*ms,0,ms*(-2*L*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.) + sin(q4)*(-2*H*cos(q5) +
L*sin(q5)*(sin(q6) + sin(q6 + q7)))),-(ms*cos(q4)*(2*H*sin(q5) + L*cos(q5)*(sin(q6) +
sin(q6 + q7)))),L*ms*(-2*cos(q4)*cos(q6 + q7/2.)*cos(q7/2.)*sin(q5) + sin(q4)*(sin(q6)
+ sin(q6 + q7))),L*ms*(-(cos(q4)*cos(q6 + q7)*sin(q5)) + sin(q4)*sin(q6 + q7))]';
 Fwcoeff=[-(cos(q4)*cos(q6)) + sin(q4)*sin(q5)*sin(q6),cos(q6)*sin(q4)*sin(q5) +
cos(q4)*sin(q6),-(cos(q5)*sin(q4)),-(cos(q4)*cos(q6 + q7)) + sin(q4)*sin(q5)*sin(q6 +
q7),cos(q6 + q7)*sin(q4)*sin(q5) + cos(q4)*sin(q6 + q7),-(cos(q5)*sin(q4));-
(cos(q6)*sin(q4)) - cos(q4)*sin(q5)*sin(q6),-(cos(q4)*cos(q6)*sin(q5)) +
sin(q4)*sin(q6),cos(q4)*cos(q5),-(cos(q6 + q7)*sin(q4)) - cos(q4)*sin(q5)*sin(q6 +
q7),-(cos(q4)*cos(q6 + q7)*sin(q5)) + sin(q4)*sin(q6 +
q7),cos(q4)*cos(q5);cos(q5)*sin(q6),cos(q5)*cos(q6),sin(q5),cos(q5)*sin(q6 +
q7),cos(q5)*cos(q6 + q7),sin(q5);H*cos(q5)*cos(q6),-
(H*cos(q5)*sin(q6)),0,H*cos(q5)*cos(q6 + q7) + L*sin(q5)*sin(q7),L*(1 +
cos(q7))*sin(q5) - H*cos(q5)*sin(q6 + q7),-2*L*cos(q5)*cos(q6 +
q7/2.)*cos(q7/2.);H*sin(q6),H*cos(q6),0,H*sin(q6 + q7),H*cos(q6 + q7),-(L*(sin(q6) +
sin(q6 + q7)));0,0,0,L*sin(q7),L*(1 + cos(q7)),0;0,0,0,0,L,0];

Nwcoeff=[0,0,0,0,0,0;0,0,0,0,0,0;0,0,0,0,0,0;cos(q5)*sin(q6),cos(q5)*cos(q6),sin(q5),c
os(q5)*sin(q6 + q7),cos(q5)*cos(q6 + q7),sin(q5);-cos(q6),sin(q6),0,-cos(q6 +
q7),sin(q6 + q7),0;0,0,1,0,0,1;0,0,0,0,0,1];

 qddot = Minv*(-B*qdotprods-C*qdotsquared-g*G+Fwcoeff*Fs+Nwcoeff*Ns);

 % UPDATE JOINT VALUES & RATES
 q = q+qdot*dt+1/2*qddot*dt^2;
 qdot = qdot+qddot*dt;
 %q(7)=0;qdot(7)=0;qddot(7)=0; % use if want to fix turning joint

 % PD Controller
 if (mod(iterations,100)==0)

 deltatheta = q(7)-q7des;
 deltathetadot = qdot(7)-q7dotdes;
 PdeltaP = PgainP*deltatheta;
 PdeltaD = PgainD*deltathetadot;

65

 motor.Pmax=motor.Pmax0;
 motor.Pmax(2,2) = motor.Pmax0(2,2)-PdeltaP-PdeltaD;
 motor.Pmax(2,1) = motor.Pmax0(2,1)+PdeltaP+PdeltaD;

 end

 % Calculate Wheel Torques
 for i=1:rover.n
 for j=1:2
 if slip(i,j)>=0
 T(i,j) = motor.Pmax(i,j)*(wheel.r*(slip(i,j)-1))/(-
abs(wheelvel{i,j}(1)));
 else
 T(i,j) =
motor.Pmax(i,j)/((slip(i,j)+1)*abs(wheelvel{i,j}(1))/wheel.r);
 end
 end
 end

 % PRINT OUT INFORMATION TO SCREEN & RECORD SIMULATION DATA
 iterations = iterations + 1;
 if (mod(iterations,10)==0)

 % Screen Output
 if (mod(iterations,10)==0)
 minsleft = (num_iter-iterations)/(iterations/toc)/60;
 minsleftrnd = fix(minsleft);
 secondsleft = round((minsleft-minsleftrnd)*60);
 clc
 disp([num2str(minsleftrnd), ' min ', num2str(secondsleft), ' sec
remaining, Completed ',num2str(iterations), ' iterations in ', num2str(round(toc)), '
seconds at ',num2str(round(iterations/toc)),' Hz']);
 disp(['simtime = ',num2str(t),' / ',num2str(simseconds)]);
 disp(['turning joint angle: ',num2str(180/pi*q(7))]);
 disp(['turning joint angle rate: ',num2str(180/pi*qdot(7))]);
 disp(['vel = ',num2str(sqrt(qdot(1).^2+qdot(3).^2))])
 disp(['DP = ',num2str(FxH(1,1)+FxR(1,1))])
 disp(['slip = ',num2str(slip(1,1))])
 disp(['sinkage = ',num2str(z0(1,1))])
 disp(['R = ',num2str(FxR(1,1))])
 disp(['heading: ',num2str(180/pi*q(6))]);
 disp(['heading rate: ',num2str(180/pi*qdot(6))]);
 end

 % Record Data
 trec(records) = t;
 qrec(:,records) = q;
 qrecdot(:,records) = qdot;
 qrecddot(:,records) = qddot;

 counter = 1;
 for i=1:rover.n
 for j=1:2
 z0rec(records,counter)=z0(i,j);
 th1rec(records,counter)=th1(i,j);
 betarec(records,counter)=betaslip(i,j);
 sliprec(records,counter)=slip(i,j);
 Hrec(records,counter)=FxH(i,j);
 Rrec(records,counter)=FxR(i,j);
 %Fytaurec(records,counter)=Fytau(i,j);
 %Fybullrec(records,counter)=Fybull(i,j);
 %Fzrec(records,counter)=Fz(i,j);
 Torec(records,counter)=T(i,j);
 Porec(records,counter)=motor.Pmax(i,j);
 %wvrecx(records,counter)=wheelvel{i,j}(1);
 %wvrecy(records,counter)=wheelvel{i,j}(2);
 wfxrec(records,counter)=WFx_vec{i,j}(1);
 wfyrec(records,counter)=WFy_vec{i,j}(2);
 wfzrec(records,counter)=WFz_vec{i,j}(3);
 counter = counter+1;

66

 end
 end
 records = records + 1;
 end

 % update time
 t = t + dt;

end
toc

plotit

A.2: loadsoil.m

% soil = loadsoil(file)
%
% loads soil properties from a file (mks units)
% each property name and value on one line separated by a space
%
% 5/1/07: phi (friction angle) is stored in file in degrees, but converted
% to radians in this routine

function soil = loadsoil(file)

% default soil parameters if not specified in file
soil.name = ['default'];
soil.n = 1;
soil.c = 1000;
soil.phi = 45*pi/180;
soil.kc = 1000;
soil.kphi = 1000000;
soil.kx0 = 0.036;
soil.ky0 = 0.013;
soil.dkx = 0.043;
soil.dky = 0.020;
soil.a0 = 0.15;
soil.a1 = 0.4;
soil.density = 2000;

% read data from .soil file
[param_name,value]=textread(file,'%s %s','commentstyle','matlab');

% assign data values to soil structure
for i=1:length(param_name)
 switch param_name{i}
 case 'name'
 soil.name = value{i};
 case 'n'
 soil.n = str2num(value{i});
 case 'c'
 soil.c = str2num(value{i});
 case 'phi'
 soil.phi = str2num(value{i})*pi/180;
 case 'kc'
 soil.kc = str2num(value{i});
 case 'kphi'
 soil.kphi = str2num(value{i});
 case 'kx0'
 soil.kx0 = str2num(value{i});
 case 'ky0'
 soil.ky0 = str2num(value{i});
 case 'dkx'
 soil.dkx = str2num(value{i});
 case 'dky'
 soil.dky = str2num(value{i});
 case 'a0'

67

 soil.a0 = str2num(value{i});
 case 'a1'
 soil.a1 = str2num(value{i});
 case 'density'
 soil.density = str2num(value{i});
 end
end

% set kx & ky values for zero slip angle
soil.kx = soil.kx0;
soil.ky = soil.ky0;

A.3: constvel.m

% function [z,T,R,s] = constvel(mseg,g,wheel,DP_des)
%
% for constant drawbar pull driving, determines sinkage, driving torque,
% rolling resistance, and slip per wheel
%
% mseg = segment mass
% g = gravity
% wheel = wheel properties
% DP_des = desired drawbar pull

function [z,T,R,s] = constvel(mseg,g,wheel,DP_des)

m = mseg/2; % mass per wheel
soil = loadsoil('drysand2.soil');

s = fzero(@(s) zeroDP(s, wheel,soil, g, m, DP_des, 0),[0 1]);

zguess = 0.04;
for i=1:length(s)
 z = fzero(@(z) zeroFz(z, s, wheel, soil, g, m, 0),zguess);
end

th1 = acos(1-z/wheel.r);
thm = thetamax(th1, s, soil);
sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-cos(th1)).^soil.n;

jx = wheel.r*(th1-thm-(1-s)*(sin(th1)-sin(thm)));
taum = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-jx/soil.kx));

R = abs(DPR(th1, thm, sigm, wheel));
T = 1/2*wheel.r^2*wheel.b*taum.*th1;

A.4: zeroFz.m

% function Fz = zeroFz(z, slip, wheel, soil, g, m,lamda)
%
% minimized to find vertical force equilibrium

function Fz = zeroFz(z, slip, wheel, soil, g, m,lamda)

th1 = real(acos(1-z./wheel.r));
thm = thetamax(th1, slip, soil);
jx = wheel.r*(th1-thm-(1-slip)*(sin(th1)-sin(thm)));
sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-cos(th1)).^soil.n;
taum = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-jx/soil.kx));

Fz = W(th1, thm, sigm, taum, wheel) - m*g*(1+lamda);

68

A.5: zeroDP.m

% function DP = zeroDP(s, wheel,soil, g, m, DP_des,lamda)
%
% minimized to find desire drawbar pull solution

function DP = zeroDP(s, wheel,soil, g, m, DP_des,lamda)

zguess = 0.05;
z = fzero(@(z) zeroFz(z, s, wheel, soil, g, m, lamda),zguess);
th1 = acos(1-z/wheel.r);

thm = thetamax(th1, s, soil);
sigm = wheel.r^soil.n * (soil.kc/wheel.b+soil.kphi) .* (cos(thm)-cos(th1)).^soil.n;
jx = wheel.r*(th1-thm-(1-s)*(sin(th1)-sin(thm)));
taum = (soil.c+sigm.*tan(soil.phi)) .* (1-exp(-jx/soil.kx));

R = abs(DPR(th1, thm, sigm, wheel));
H = DPH(th1,thm,taum,wheel);
DP = H-R-DP_des;

A.6: getDH.m

% function DHparams = getDH(rover,q)
%
% assigns DH parameters based on current joint values q

function DHparams = getDH(rover,q)

DHparams.i = [1:rover.n+5];
DHparams.alpha = [0,pi/2,-pi/2,0,pi/2,pi/2,zeros(1,rover.n-1)];
DHparams.a = [0,0,0,0,0,0,rover.l,2*rover.l*ones(1,rover.n-2)];
DHparams.d = [q(1:3)',zeros(1,rover.n+2)];
DHparams.theta = [pi/2,-pi/2,-pi/2,q(4),q(5)+pi/2,q(6)-pi/2,q(7:end)'];

A.7: getTadj.m

% function Tadjacent = getTadj(DH)
%
% calculates transformation matrices between all adjacent frames (i to i-1)

function Tadjacent = getTadj(DH)

for i = 1:(DH.i(end))
 Tadjacent{i} = [cos(DH.theta(i)),-sin(DH.theta(i)),0,DH.a(i);
 sin(DH.theta(i))*cos(DH.alpha(i)),cos(DH.theta(i))*cos(DH.alpha(i)),-
sin(DH.alpha(i)),-sin(DH.alpha(i))*DH.d(i);

sin(DH.theta(i))*sin(DH.alpha(i)),cos(DH.theta(i))*sin(DH.alpha(i)),cos(DH.alpha(i)),c
os(DH.alpha(i))*DH.d(i);
 0,0,0,1];
end

A.8: getTjoint.m

% function Tjoint = getTjoint(Tadjacent,rover)
%
% calculates transformation matrices between all frames and the base frame

function Tjoint = getTjoint(Tadjacent,rover)

69

for i = 1:rover.n
 Tjoint{i} = 1;
 for j = i+5:-1:1
 Tjoint{i} = Tadjacent{j} * Tjoint{i};
 end
end

A.9: getTwheel.m

% function Twheel = getTwheel(Tjoint,rover,pw)
%
% calculates transformation matrices from wheel hubs to base frame

function Twheel = getTwheel(Tjoint,rover,pw)

for i=1:rover.n
 for j=1:2
 Tw2j = [eye(3,3),pw{i,j};0,0,0,1];
 Twheel{i,j}=Tjoint{i}*Tw2j;
 end
end

A.10: getplow0.m

% function plow0 = getplow0(Twheel,rover,wheel)
%
% returns the lowest point of each wheel in the base frame

function plow0 = getplow0(Twheel,rover,wheel)

for i=1:rover.n
 for j=1:2
 thetamin = atan2(Twheel{i,j}(1,3),Twheel{i,j}(1,1));
 if thetamin>0
 thetaminother = thetamin - pi;
 elseif thetamin<=0
 thetaminother = thetamin + pi;
 end

 plow0{i,j} = Twheel{i,j}*[wheel.r*cos(thetamin);0;wheel.r*sin(thetamin);1];
 plow0other{i,j} =
Twheel{i,j}*[wheel.r*cos(thetaminother);0;wheel.r*sin(thetaminother);1];

 if plow0{i,j}(1)>plow0other{i,j}(1)
 plow0{i,j} = plow0other{i,j};
 end
 end
end

A.11: getWRframe.m

% function [zdepth,Rwr2w] = getWRframe(plow0,Twheel,Tjoint,rover)
%
% returns the sinkage of each wheel, and the transformation between wheel
% reaction frame and wheel (hub) frame

function [zdepth,Rwr2w] = getWRframe(plow0,Twheel,Tjoint,rover)

for i=1:rover.n
 for j=1:2
 rline = Twheel{i,j}(1:3,4)-plow0{i,j}(1:3);
 rslope0 = rline/norm(rline);

70

 zdepth(i,j) = plow0{i,j}(1)/rslope0(1);
 Xpart = cross(Tjoint{i}(1:3,1:3)*[0;1;0],rslope0);
 Rwr20{i,j} = [Xpart/norm(Xpart),Tjoint{i}(1:3,1:3)*[0;1;0],rslope0];
 Rwr2w{i,j} = inv(Tjoint{i}(1:3,1:3))*Rwr20{i,j};
 end
end

A.12: getJTWheel.m

% function JT = getJTWheel(rover,wheel,joints,Tadjacent,pw)
%
% get jacobian for all wheels in wheel (hub) frames

function JT = getJTWheel(rover,wheel,joints,Tadjacent,pw)

wsign = -1;
for i = 1:rover.n
 for j = 1:2
 % indiv. wheel
 for k = 1:i+5
 Trans = eye(4);
 for m = i+5:-1:k+1
 Trans = Tadjacent{m} * Trans;
 end
 z{k} = Trans(1:3,1:3)'*[0;0;1];
 p1{k} = Trans * [pw{i,j};1];
 p1{k} = p1{k}(1:3);
 p2{k} = Trans(1:3,1:3)'*p1{k};
 zp{k} = cross(z{k}(1:3),p2{k});
 end
 term1 = cell2mat(zp);
 term2 = cell2mat(z);
 lam_joints = diag(joints(1:i+5));
 JT{i,j} = term1*lam_joints + term2*(eye(i+5)-lam_joints);
 wsign = -wsign;
 end
end

A.13: getJTWR.m

% function Jtrans = getJTWR(Jtransw,Rwr2w,rover)
%
% get jacobian for all wheels in wheel reaction frames

function Jtrans = getJTWR(Jtransw,Rwr2w,rover)

for i=1:rover.n
 for j=1:2
 Jtrans{i,j}=Rwr2w{i,j}'*Jtransw{i,j};
 end
end

A.14: getvwheel.m

% function wheelvel = getvwheel(rover,qdot,Jtrans)
%
% wheel velocities in wheel reaction frames

function wheelvel = getvwheel(rover,qdot,Jtrans)

for i=1:rover.n
 qdotloc=qdot(1:i+5);

71

 for j=1:2
 wheelvel{i,j}=Jtrans{i,j}*qdotloc;
 end
end

A.15: getBeta.m

%function betaslip = getBeta(rover,Jtrans,qdot)
%
% calculates slip angle for each wheel

function betaslip = getBeta(wheelvel);

betaslip = abs(atan2(wheelvel(2),wheelvel(1)));

% if on wrong side of wheel
if (betaslip > pi/2)
 betaslip = pi-betaslip;
end

A.16: thetamax.m

% function thm = thetamax(th1, s, soil)
%
% calculate the location of maximum stresses

function thm = thetamax(th1, s, soil)

thm = (soil.a0 + soil.a1*s).*th1;

A.17: DPH.m

% function Fx = DPH(th1, thm, taum, wheel)
%
% calculates soil thrust H

function Fx = DPH(th1, thm, taum, wheel)

Fx = wheel.r*wheel.b./(thm.*(th1-thm)).*(taum.*(th1.*cos(thm)-thm.*cos(th1)-th1+thm));

A.18: DPR.m

% function Fx = DPR(th1, thm, sigm, wheel)
%
% calculates soil rolling resistance R

function Fx = DPR(th1, thm, sigm, wheel)

Fx = wheel.r*wheel.b./(thm.*(th1-thm)).*(-sigm.*(th1.*sin(thm)-thm.*sin(th1)));

A.19: W.m

% function Fz = W(th1, thm, sigm, taum, wheel)
%
% calculates wheel vertical load

72

function Fz = W(th1, thm, sigm, taum, wheel)

Fz = wheel.r*wheel.b./(thm.*(th1-thm)).*(sigm.*(th1.*cos(thm)-thm.*cos(th1)-
th1+thm)+taum.*(th1.*sin(thm)-thm.*sin(th1)));

% use for no powered wheel contribution to load
%Fz = wheel.r*wheel.b./(thm.*(th1-thm)).*(sigm.*(th1.*cos(thm)-thm.*cos(th1)-
th1+thm));

A.20: Ctau.m

% function Fytau = Ctau(th1, taum, wheel)
%
% calculates wheel side load

function Fytau = Ctau(th1, taum, wheel)

Fytau = 1/2.*taum*wheel.r*wheel.b.*th1;

A.21: plotit.m

% plotit plots a multitude of data from the simulation including joint
% values, positions, torques, slips, powers, etc. over the entire sim time

fcount=1;
rect = [1500 50 1666 970];

figure('Position',rect);
% backwards!
figc = 5;
figr = 2;

subplot(figr,figc,fcount);plot(trec,qrec(4:7,:)*180/pi,'.');legend y z 6
7;fcount=fcount+1;

subplot(figr,figc,fcount);plot(trec,qrecdot(4:7,:)*180/pi,'.');legend dy dz d6
d7;fcount=fcount+1;

fwdvelrec = sqrt(qrecdot(1,:).^2+qrecdot(3,:).^2);
subplot(figr,figc,fcount);plot(trec,sqrt(qrecdot(1,:).^2+qrecdot(3,:).^2),'.');title('
vel');fcount=fcount+1;
hold on;
plot(trec,-qrecdot(1,:),'r.');
hold on;
plot(trec,qrecdot(3,:),'g.');
legend fwd x y;
subplot(figr,figc,fcount);plot(-
qrec(1,:),qrec(3,:),'.');fcount=fcount+1;title('path');axis equal;

subplot(figr,figc,fcount);plot(trec,z0rec,'.');title('wheel depth');legend rearleft
rearright frontleft frontright;fcount=fcount+1;
%figure;plot(trec,th1rec*180/pi,'.');title('theta1');legend rearleft rearright
frontleft frontright;fcount=fcount+1;
subplot(figr,figc,fcount);plot(trec,betarec*180/pi,'.');title('beta');legend rearleft
rearright frontleft frontright;fcount=fcount+1;
subplot(figr,figc,fcount);plot(trec,sliprec,'.');title('slip');legend rearleft
rearright frontleft frontright;fcount=fcount+1;
%figure;plot(trec,Hrec,'.');title('FxH');legend rearleft rearright frontleft
frontright;
%figure;plot(trec,Rrec,'.');title('FxR');legend rearleft rearright frontleft
frontright;
%figure;plot(trec,Fytaurec,'.');title('Fytau');legend rearleft rearright frontleft
frontright;
%figure;plot(trec,Fybullrec,'.');title('Fybull');legend rearleft rearright frontleft

73

frontright;
%figure;plot(trec,Fzrec,'.');title('Fz');legend rearleft rearright frontleft
frontright;
%figure;plot(trec,Torec,'.');title('Torque');legend rearleft rearright frontleft
frontright;fcount=fcount+1;

subplot(figr,figc,fcount);plot(trec,wfxrec,'.');title('Fx actual');legend rearleft
rearright frontleft frontright;fcount=fcount+1;
subplot(figr,figc,fcount);plot(trec,wfyrec,'.');title('Fy actual');legend rearleft
rearright frontleft frontright;fcount=fcount+1;
%subplot(figr,figc,fcount);plot(trec,wfzrec,'.');title('Fz actual');legend rearleft
rearright frontleft frontright;fcount=fcount+1;
subplot(figr,figc,fcount);plot(trec,Porec,'.');title('Power');legend rearleft
rearright frontleft frontright;fcount=fcount+1;

%figure;figure;plot(trec,wvrec,'.');title('wheel vel x');legend rearleft rearright
frontleft frontright;

disp(' ')
disp(['vel = ',num2str(sqrt(qrecdot(1,end).^2+qrecdot(3,end).^2))])
disp(['DP = ',num2str(FxH(end,end)+FxR(end,end))])
disp(['slip = ',num2str(sliprec(end,end))])
disp(['sinkage = ',num2str(z0rec(end,end))])
disp(['R = ',num2str(FxR(end,end))])

A.22: drysand2.soil

% This File Contains Soil Data For
% Dry Sand (Wong 2001, pg 136) & (Dimi 2001, pg 40)
% Created 5/2/07
%
%START
name drysand2
n 1.1
c 1040
phi 38
kc 990
kphi 1528430
kx0 0.0254
ky0 0.0254
dkx 0
dky 0
a0 0.28
a1 0.35
density 1500
%END

74

Appendix B: Mathematica® Dynamic Modeling

The following pages show the Mathetmatica® code used to formulate the dynamic

equations for the articulated rover.

75

76

77

78

79

80

81

Appendix C: Soil Parameters

Soil Parameter Symbol Units Dry Sand Lunar Soil
Simulant

Exponent of
sinkage

n - 1.1 1.0

Soil cohesion c kPa 1.04 0.8
Internal friction
angle

φ deg 38 37.2

Cohesion modulus kc kN/mn+1 0.99 1.37
Friction modulus kφ kN/mn+2 1528.43 814
Longitudinal shear
deformation
modulus

kx m 0.0254 0.036

Lateral shear
deformation
modulus

ky m 0.0254 0.013

Maximum stress
parameter

a0 - 0.28 0.4

Maximum stress
parameter

a1 - 0.35 0.15

Soil density ρ kg/m2 1500 1600

References: [Apostolopoulos,01], [Wong,01], and [Ishigami,07]

82

References

[Azad,05] Azad, N.L. et al. “Off-road lateral stability analysis of an articulated
steer vehicle with a rear mounted load,” International Journal of
Vehicle Systems Modeling and Testing, Vol. 1, Nos. 1/2/3, pp. 106-
130, 2005.

[Azad,07] Azad, N.L. et al. “Robust state feedback stabilization of articulated
steer vehicles,” Vehicle Systems Dynamics, Vol. 45, No. 3, pp. 249-
275, 2007.

[Apostolopoulos,01] Apostolopoulos, D.S. “Analytical Configuration of Wheeled
Robobtic Locomotion,” Ph.D. Thesis, Carnegie Mellon University.
Pittsburgh, PA, 2001.

[Bekker,60] Bekker, M.G. Off-the-road Locomotion. The University of Michigan
Press, Ann Arbor, MI, 1960.

[Craig,05] Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.,
Prentice Hall, Upper Saddle River, NJ, 2005.

[He,05] He, Y. et al. “Dynamic modeling and stability analysis of articulated
frame steer vehicles,” International Journal of Vehicle Systems, Vol.
12, No. 1, pp. 28-59, 2005.

[Holm,70] Holm, I.C. “Articulated, Wheeled Off-The-Road Vehicles,” Journal of
Terramechanics, Vol. 7, No. 1, pp. 19-54, 1970.

[Iagnemma,01]Iagnemma, K.D. “Rough-Terrain Mobile Robot Planning and Control
with Application to Planetary Exploration,” Ph.D. Thesis,
Massachusetts Institute of Technology. Cambridge, MA, 2001.

[Ishigami,05] Ishigami G. et al. “Steering Trajectory Analysis of Planetary
Exploration Rovers Based on All-Wheel Dynamics Model,”
Proceedings of The 8th International Symposium on Artificial
Intelligence, Robotics, and Automation in Space, Munich, Gernmany,
2005.

[Ishigami,07] Ishigami, G. et al. “Terramechanics-Based Model for Steering
Maneuver of Planetary Exploration Rovers on Loose Soil,” Journal of
Field Robotics, Vol. 24, No. 3, pp. 233-250, 2007.

[Miller,02] Miller, D.P. and Lee, T.L. “High-Speed Traversal of Rough Terrain
Using a Rocker-Bogie Mobility System,” Proceedings of Robotics
2002: The 5th Inernational Conference on Robotics for Challenging
Situations and Environments, Albuquerque, New Mexico, March
2002.

[Oida,87] Oida, A. “Turning Behavior of Articulated Frame Steering Tractors –
Part 2. Motion of Tractors With Drawbar Pull,” Journal of

83

Terramechanics, Vol. 24, No. 1, pp. 57-73, 1987.
[Sullivan,94] Sullivan, T.A. Catalog of Apollo Experiment Operations, NASA

Reference Publication 1317, 1994.
[Wong,67] Wong, J. and Reece, A.R. “Prediction of Rigid Wheel Performance

Based on the Analysis of Soil-Wheel Stresses Part I. Performance of
Driven Rigid Wheels,” Journal of Terramechanics, Vol. 4, No. 1, pp.
81-98, 1967.

[Wong,01] Wong, J. Theory of Ground Vehicles, 3rd ed., Wiley-Interscience,
2001.

[Yoshida,98] Yoshida, K. et al. “Dynamic Simulation of an Articulated Off-Road
Vehicle,” AIAA Modeling and Simulation Technologies Conference
and Exhibit, pp. 257-261, Boston, Massachusetts, 1998.

[Yoshida,04] Yoshida, K. and Ishigami, G. “Steering Characteristics of a Rigid
Wheel for Exploration on Loose Soil,” Proceedings of the IEEE
International Conference on Intelligent Robotics and Systems, Sendai,
Japan, 2004.

