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Our technique is to employ a customized installer software, which decides

the SPM allocation just before the program’s first run, then modifies the program

executable accordingly to implement the decided SPM allocation. Results show

that our benchmarks average a 41% speedup versus an all-DRAM allocation, with

overheads of 1.5% in code-size, 2% in run-time, and 3% in compile-time for our

benchmarks. Meanwhile, an unrealistic upper-bound is approximated only slightly

faster at 45% better than all-DRAM.



MEMORY ALLOCATION FOR EMBEDDED SYSTEMS WITH A

COMPILE-TIME-UNKNOWN SCRATCH-PAD SIZE

by

Nghi Nguyen

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2007

Advisory Committee:
Professor Rajeev Barua, Chair/Advisor
Professor Gang Qu
Professor Bruce Jacob



c© Copyright by

Nghi Nguyen
2007



Acknowledgements

I am very thankful to all the helps of everyone who has been very supporting

in my work for the last couple years. All your helps is directly or indirectly a big

contribution in any achievement that I have in school as well as in life.

To my advisor, Dr. Rajeev Barua, I don’t know how to thank you enough

for all of your mentoring, supporting and teaching all these years. You never give

up on me, and always give me encouragements. Also great thanks to my friends:

Angelo Dominguez, Sumesh Udayakumaran, Steve Haga, Bhuvan Middha, Matthew

Simpson, Thomas Carley, Surupa Biswas, and others in our research group for your

supports and many great advices. I’d like to thank many professors and staffs at the

University of Maryland, especially in ECE department, who have given me great

knowledge as well as good memory. And finally, millions of thanks to my parent,

my sisters, family members, and friends (especially, my girlfriend, Huong) who have

been enormous help throughout all my life.

ii



Table of Contents

List of Tables v

List of Figures v

List of Abbreviations vii

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Method Features and Outline . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 8

3 Scenarios where our proposed method is useful 10

4 Background 13
4.1 Challenges in adapting a compile-time allocator to install-time . . . . 15

5 Method 17
5.1 Profiling Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Compiling Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Linking Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Customized Installer . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Allocation policy in customized installer 26

7 Code Allocation 31

8 Real-world issues 37
8.1 Library Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Separate Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Results 39
9.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 Runtime Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 Energy Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.4 Run Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5 Code Size Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.6 Compile Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.7 Memory Access Distribution . . . . . . . . . . . . . . . . . . . . . . . 47
9.8 Library Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.9 Runtime vs. SPM size . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 Comparison with Caches 50

iii



11 Conclusion 56

Bibliography 58

iv



List of Tables

9.1 Application Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 40

List of Figures

3.1 Example of stack split into two separate memory units. . . . . . . . . 12

5.1 Example accesses to stack variables with instructions at 0x83b4 and
0x83c0 access one variable and 0x83c8 - 83d0 access another. . . . . . 19

5.2 Example access to global variable with ldr instruction at 0x8234 ac-
cesses the literal table location at 0x8348, while the instruction at
0x8238 actually accesses the global. . . . . . . . . . . . . . . . . . . . 20

5.3 Before link-time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 After link-time. In-place linked list is shown. . . . . . . . . . . . . . . 23

6.1 Compiler pre-processing pseudo-code that finds Lim-

ited Lifetime Bonus Set at each cut-off . . . . . . . . . . . . . . . . . . . 27

6.2 (a)program call graph with global and local variables lists (b)the stack
of this application (c)sorted list of all program variables (d)bonus set
(e)SPM variable list (f)DRAM variable list . . . . . . . . . . . . . . . 29

7.1 Program code is divided into code regions . . . . . . . . . . . . . . . 32

7.2 Jump instruction is inserted to redirect control flow between SPM
and DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9.1 Runtime speedup compared to all-DRAM method and Static Optimal
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9.2 Runtime speedup of our method with and without limited lifetime
compared to all-DRAM method . . . . . . . . . . . . . . . . . . . . . 42

9.3 Energy consumption compared to all-DRAM method and Static Op-
timal Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.4 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



9.5 Variation of customized installing time across benchmarks . . . . . . 45

9.6 Variation of code size overhead across benchmarks . . . . . . . . . . . 45

9.7 Compile Time Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.8 Percentage of memory accesses going to SRAM (remaining go to
DRAM or FLASH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.9 Normalized Runtime with Library Variables . . . . . . . . . . . . . . 48

9.10 Runtime Speedup with varying SPM Sizes for Dijkstra Benchmark . . 49

10.1 Comparisons of Normalized Runtime with Different Configurations . 52

10.2 Comparisons of Normalized Energy Consumption with Different Con-
figurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.3 Normalized run-time for different set associativities for a cache-only
configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10.4 Normalized energy usage for different set associativities for a cache-only

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



List of Abbreviations

CPU Central Processing Unit
DRAM Dynamic Random Access Memory
FPB Frequency Per Byte
ILP Integer Linear Programming
ISA Instruction Set Architecture
LFPB Latency Frequency Per Byte
PC Program Counter
ROM Read Only Memory
SPM Scratch-Pad Memory
SRAM Static Random Access Memory

vii



Chapter 1

Introduction

In both desktop and embedded systems, SRAM and DRAM are the two most

common writable memories used for program data and code. SRAM is fast but

expensive while DRAM is slower (by a factor of 10 to 100) but less expensive (by

a factor of 20 or more). To combine their advantages, a large amount of DRAM is

often used to provide low-cost capacity, along with a small-size SRAM to reduce run-

time by storing frequently used data. The proper use of SRAM in embedded systems

can result in significant run-time and energy gains compared to using DRAM only.

This gain is likely to increase in the future since the speed of SRAM is increasing

by an average of 50% per year at a similar rate to processor speeds [1] versus only

7% a year for DRAM [2].

There are two common ways of adding SRAM: either as a hardware-cache or

a Scratch Pad Memory (SPM). In desktop systems, caches are the most popular

approach. A cache dynamically stores a subset of the frequently used data or in-

structions in SRAM. Caches have been a great success for desktops because they are

flexible enough to be used by any executable; a trend that is likely to continue in the

future. On the other hand, in most embedded systems where code is often tied to

particular implementations, the overheads of cache are less justifiable. Cache incurs

a significant penalty in area cost, energy, hit latency and real-time guarantees. A
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detailed study [3] compares the tradeoffs of a cache as compared to a SPM. Their

results show that a SPM has 34% smaller area and 40% lower power consumption

than a cache memory of the same capacity. Further, the run-time with a SPM

using a simple static knapsack-based [3] allocation algorithm was measured to be

18% better as compared to a cache. Thus, defying conventional wisdom, they found

absolutely no advantage to using a cache, even in high-end embedded systems where

performance is important. Given the power, cost, performance and real-time ad-

vantages of SPM, it is not surprising that SPM is the most common form of SRAM

in embedded CPUs today.

Examples of embedded processor families having SPM include low-end chips

such as the Motorola MPC500, Analog Devices ADSP-21XX, Philips LPC2290;

mid-grade chips like the Analog Devices ADSP-21160m, Atmel AT91-C140, ARM

968E-S, Hitachi M32R-32192, Infineon XC166 and high-end chips such as Analog

Devices ADSP-TS201S, Hitachi SuperH-SH7050, and Motorola Dragonball; there

are many others. Recent trends indicate that the dominance of SPM will likely

consolidate further in the future [4, 3], for regular as well as network processors.

A great variety of allocation schemes for SPM have been proposed in the last

decade [5, 3, 6, 7, 8, 9]. They can be categorized into static methods, where the

selection of objects in SPM does not change at run time; and dynamic methods,

where the selection of memory objects in SPM can change during runtime to fit

the program’s dynamic behavior (although the changes may be decided at compile-

time). All of these existing techniques have the same drawback of requiring the SPM

size to be known at compile-time. This is because they establish their solutions by
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reasoning about which data variables and code blocks will fit in SPM at compile-

time, which inherently and unavoidably requires knowledge of the SPM size. This

has not been a problem for traditional embedded systems where the code is typically

fixed at the time of manufacture, usually by burning it onto ROM, and is not changed

thereafter.

There is, however, an increasing class of embedded systems where SPM-size-

portable code is desirable. These are systems where the code is updated after

deployment through downloads or portable media, and there is a need for the same

executable to run on different implementations of the same ISA. Such a situation

is common in networked embedded infrastructure where the amount of SPM is

increased every year, due to technology evolution, as expected by Moore’s law.

Code-updates that fix bugs, update security features or enhance functionality are

common. Consequently, the downloaded code may not know the SPM size of the

processor, and thus is unable to use the SPM properly. This leaves the designers with

no choice but to use an all-DRAM allocation or a processor with caching mechanism,

in which the well-known advantages of SPMs are lost.

To make code portable across platforms with varying SPM size, one theoretical

approach is to recompile the source code separately using all the SPM sizes that

exist in practice; download all the resulting executables to each embedded node;

discover the node’s SPM size at run-time; and finally discard all the executables

for SPM sizes other than the one actually present. However this approach wastes

network bandwidth, energy and storage; complicates the update system; and cannot

handle un-anticipated sizes used at a future time. Further, un-anticipated sizes will
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require a re-compile from source, which may not be available for intellectual property

reasons, or because the software vendor is no longer in business since it could be

years after initial deployment. This approach is our speculation – we have not found

it being suggested in the literature, which is not surprising considering its drawbacks

listed above. It would be vastly preferable to have a single executable that could

run on a system with any SPM size.

Another alternative is to choose the smallest common SPM size for a particu-

lar platform. We can then make the SPM allocation decision based on this size, and

the resulting executable can be run accurately on this family of system. This alter-

native approach sounds promising since it only requires the production of a single

executable to be used for multiple systems. However, one obvious drawback is that

this scheme will deliver poor performance for systems that have significant differ-

ences in SPM sizes. If an engineer were to use the binary optimized for 4KB SPM

size on a system with 16KB SPM, then 12KB of the SPM would be idle and wasted.

Moreover this alternative performs even worse if the base of the SPM address range

is different in the two systems, which is often the case in practice.

1.1 Challenges

Without knowing the size of the SPM at compile-time, it is impossible to know

which variables or code blocks should be placed in SPM at compile-time. This makes

it hard to generate code to access variables. To illustrate, consider a variable A of

size 4000 bytes. If the available size of SPM is less than 4000 bytes, this variable A
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must remain allocated in DRAM at some address, say, 0x8000. Otherwise, A may

be allocated to SPM to achieve speedup at some address, say, 0x100. Without the

knowledge of the SPM size, the address of A could be either 0x8000 or 0x100, and

thus remains unknowable at compile-time. Hence, it becomes difficult to generate an

instruction at compile-time that accesses this variable since that requires knowledge

of its assigned address. A level of indirection can be introduced in software for each

memory access to discover its location first, but that would incur an unacceptably

high overhead.

1.2 Method Features and Outline

Our method is able to allocate global variables, stack variables, and code re-

gions, for both application code and library code, to SPMs of compile-time unknown

size. Like almost all SPM allocation methods, heap data is not allocated to SPM

by our method. Our method is implemented by both modifying the compiler and

introducing a customized installer.

At compile-time, our method analyzes the program to identify all the locations

in the code that contain unknown variable addresses. These are all occurrences of

the addressing constants of variables in the code representation; they are unknown

at compile-time since the allocations of variables to SPM or slow memory are decided

only later at install-time. Unknown addressing constants are the stack pointer

offsets in instruction sequences that access stack variables, and all locations that

store the addresses of global variables. The compiler then stores the addresses of
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these addressing constants as part of the executable, along with the profile-collected

Latency-Frequency-Per-Byte (LFPB) of each variable. To avoid an excessive code-

size increase from these lists of locations, they are maintained as in-place linked

lists. In-place linked lists are a space-efficient way of storing the list of unknown

addressing constants in the code. Rather than storing an external list of addresses

of these addressing constants, in-place linked lists store the linked lists in bit fields

of instructions that will be changed anyway at install-time, greatly reducing the

code-size overhead.

The next step of our method is when the program is installed on a particular

embedded device. Our customized installer discovers the SPM size, computes an

allocation for this size, and then modifies the executable just before installing it to

implement the decided allocation. The SPM size can be found either by making

an OS call if available on that ISA, or by probing addresses in memory with a bi-

nary search pattern to observe the latency difference for finding the SPM’s address

ranges. Next, the SPM allocation is computed, giving preference to objects with

higher LFPB, while also considering the differing gains of placing code and data

in SPM because of the differing latencies of Flash and DRAM, respectively. At its

end, the installer implements the allocation by traversing the locations in the code

segment of the executable that have unknown variable addresses and replacing them

with the SPM stack offsets and global addresses for the install-time-decided alloca-

tion. In the case of allocating code blocks to SPM, appropriate jump instructions

are inserted before and after the code blocks in DRAM and SPM to maintain pro-

gram correctness. The resulting executable is thus tailored for the SPM size on the
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target device. The executable can be re-run indefinitely, as is common in embedded

systems, with no further overhead.

1.3 Organization of Thesis

The rest of the paper is organized as follows. Chapter 2 overviews related

works. Chapter 3 describes scenarios where our method is useful. Chapter 4 dis-

cusses the method in [5] whose allocation we aim to reproduce, but without knowing

the SPM size. Chapter 5 discusses our method in detail stage-by-stage. Chapter 6

discusses the allocation policy used in the customized installer. Chapter 7 describes

how program code is allocated into SPM. Chapter 8 discusses the real-world is-

sues of handling library functions and separate compilation. Chapter 9 presents the

experimental environment, benchmarks properties, and our method’s results. Chap-

ter 10 compares our method with systems having caches in various architectures.

Chapter 11 concludes.
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Chapter 2

Related Work

Among existing work, static methods to allocate data to SPM include [10, 11,

3, 6, 12, 13, 5]. Static methods are those whose SPM allocation does not change

at run-time. Some of these methods [10, 3, 6] are restricted to allocating only

global variables to SPM, while others [11, 12, 13, 5] can allocate both global and

stack variables to SPM. These static allocation methods either use greedy strategies

to find an efficient solution, or model the problem as a knapsack problem or an

integer-linear programming problem (ILP) to find an optimal solution.

Some static allocation methods [14, 15] aim to allocate code to SPM rather

than data. In the method presented by Verma et. al. in [15], the SPM is used for

storing program code; a generic cache-aware SPM allocation algorithm is proposed

for energy saving. The SPM in this work is similar to a preloaded loop cache, but

with an improvement of energy saving. Other static methods [16, 17] can allocate

both code and data to SPM. The goal of the work in [18] is yet another: to map

the data in the scratch-pad among its different banks in multi-banked scratch-pads;

and then to turn off (or send to a lower energy state) the banks that are not being

actively accessed.

Another approach to SPM allocation are dynamic methods; in such methods

the contents of the SPM can be changed during run-time [19, 7, 20, 9, 21, 22, 8,
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23]. The method in [19] can place global and stack arrays accessed through affine

functions of enclosing loop induction variables in SPM. No other variables are placed

in SPM; further the optimization for each loop is local in that it does not consider

other code in the program. The method in [7] allocates global and stack data to SPM

dynamically, with explicit compiler-inserted copying code that copies data between

slow memory and SPM when profitable. All dynamic data movement decisions are

made at compile-time based on profile information. The method by Verma et. al.

in [8] is a dynamic method that allocates code as well as global and stack data. It

uses an ILP formulation for deriving an allocation. The work in [20] also allocates

code and data, but using a polynomial-time heuristic. A more complete discussion

of the above schemes can be found in [20]. The method in [9] is a dynamic method

that is the first SPM allocation method to place a portion of the heap data in the

SPM.

All the existing methods discussed above require the compiler to know the

size of the SPM. Moreover, the resulting executable is meant only for processors

with that size of SPM. Our method is the first to yield an executable that makes no

assumptions about SPM size and thus is portable to any size. In future work, our

method could be made dynamic; chapter 11 discusses this possibility.
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Chapter 3

Scenarios where our proposed method is useful

Our method is useful in the situations when the application code is not burned

into ROM at the time of manufacture, but is instead downloaded later; and more-

over, when due to technological evolution, the code may be required to run on

multiple processor implementations of the same ISA having differing amounts of

SPM.

One application where this often occurs is in distributed networks such as a

network of ATM machines at financial institutions. Such machines may be deployed

in different years and therefore have different sizes of SPM. Code-updates are usually

issued to these ATM machines over the network to update their functionality, fix

bugs, or install new security features. Currently, such updated code cannot use the

SPM since it does not know the SPM’s size. Our method makes it possible for such

code to run on any ATM machine with any SPM size.

Another application where our technology may be useful is in sensor networks.

Examples of such networks are the sensors that detect traffic conditions on roads or

the ones that monitor environmental conditions over various points in a terrain. In

these long-lived sensor networks, nodes may be added over a period of several years.

At the pace of technology evolution today, where a new processor implementation is

released every few months, this may represent several generations of processors with
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increasing sizes of SPM that are present simultaneously in the same network. Our

method will allow code from a single remote code update to use the SPM regardless

of its size. Such code updates are common in sensor networks.

A third example is downloadable programs for personal digital assistants

(PDAs), mobile phones and other consumer electronics. These applications may

be downloaded over a network or from portable media such as flash memory sticks.

These programs are designed and provided independently from the configurations of

SRAM sizes on the consumer products. Therefore, to efficiently utilize the SPM for

such downloadable software, a memory allocation scheme for unknown size SPMs is

much needed. There exists a variety of these downloadable programs on the mar-

ket used for different purposes such as entertainment, education, business, health

and fitness, and hobbies. Real-world examples include games such as Pocket DVD

Studio [24], FreeCell, and Pack of Solitaires [25]; document managers such as Phat-

Notes [26] and its manual [27], PlanMaker [28] and its manual [29], and e-book

readers; and other tools such as Pocket Slideshow [30] and Pocket Quicken [31] and

its manual [32]. In all these applications our technology allows these codes to take

full advantages of the SPM for the first time.

Furthermore, we expect that our technology may eventually even allow desktop

systems to use SPM efficiently. One of the primary reasons that caches are popular in

desktops is that they deliver good performance for any executable, without requiring

it to be customized for any particular cache size. This is in contrast to SPMs, which

so far have required customization to a particular SPM size. By freeing programs of

this restriction, SPMs can overcome one hurdle to their use in desktops. However,
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foo()

{

int a;

float b;

…

…

}

Stack in SPM

Stack in DRAM

SP1

SP2 Growth

Growth

a

b

Figure 3.1: Example of stack split into two separate memory units. Variables a and b are

placed on SRAM and DRAM respectively. A call to foo() requires the stack pointers in

both memories to be incremented.

there are still other hurdles to have SPMs become the norm in desktop systems,

including that heap data, which our method does not handle, is more common in

desktops than in embedded systems. In addition, the inherent advantages of SPM

over cache are less important in desktop systems. For this reason we do not consider

desktops further in this paper.

12



Chapter 4

Background

The allocation strategy used by the installer in our method aims to produce

an allocation that is as similar as possible to the optimal static allocation method

presented by Avissar et. al. in [5]. That paper only places global and stack variables

in SPM; we extend that method to place code in SPM as well. Since the ability

to establish an SPM allocation without knowing its size, instead of the allocation

decision itself, is the central contribution of our method, we decided to build our

allocation decision upon [5] since it is an optimal static allocation scheme. This

chapter outlines that method to better understand the aims of our allocation policy.

The allocation in [5] is as follows. In effect, for global variables, the ones

with highest Frequency-Per-Bytes (FPB) are placed in SPM. However, this is not

easy to do for stack variables, since the stack is a sequentially growing abstraction

addressed by a single stack pointer. To allow stack variables to be allocated to

different memories (SPM vs DRAM), a distributed stack is used. Here the stack is

partitioned into two stacks for the same application: one for SPM and the other

for DRAM. Each stack frame is partitioned, and two stack pointers are maintained,

one pointing to the top of the stack in each memory. A distributed stack example

is shown in figure 1. The allocator places the frequently used stack variables in the

SPM stack, and the rest are in the DRAM stack. In this way only frequently-used
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stack variables (such as variable a in figure 1) appear in SPM.

The method in [5] formulates the problem of searching the space of possible al-

locations with an objective function and a set of constraints. The objective function

to be minimized is the expected run-time with the allocation, expressed in terms

of the proposed allocation and the profile-discovered FPBs of the variables. The

constraints are that for each path through the call graph of the program, the size

of the SPM stack fits within the SPM’s size. This constraint automatically takes

advantage of the limited life-time of stack variables: if main() calls f1() and f2(),

then the variables in f1() and f2() share the same space in SPM, and the constraint

correctly estimates the stack height in each path. As we shall see later, our method

also takes advantage of the limited life-time of stack variables.

This search problem may be solved in two ways: using a greedy search and a

provably optimal search based on Integer-Linear Programming (ILP). Our greedy

approach chooses variables for SPM in decreasing order of their frequency-per-byte

until the SPM is full. The ILP solver is the one in [5]. Results show that the

ILP solver delivers only 1-2% better application run-time1. Therefore the greedy

solver is also near-optimal. For this reason and since the greedy solver is much more

practical in real compilers, in our evaluation we use the greedy solver for both the

1This is not the same as the result in [5] which finds that the run-time with greedy is 11.8%

worse than ILP. The reason for the discrepancy is that the greedy method in [5] is less sophisticated

than our greedy method. Their greedy method is a profile-independent heuristic that considers

variables for SPM in increasing order of their size. However, for fairness, we use the better greedy

formulation in this paper for [5] as well in our results chapter.
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method in [5] and in the off-line component of our method, although either could

be used.

4.1 Challenges in adapting a compile-time allocator to install-time

The first thought that we might have in devising an install-time allocator

for SPM is to take an existing compile-time allocator and split into two parts:

the first part which does size-independent tasks such as profiling, and a second

part that computes the allocation at install-time using the same approach as a

existing compile-time allocator. However this approach is not possible or desirable

without solving at least three challenges, listed below. Solving these challenges

constitutes the contribution of the paper. First, even in this approach we need a

method to implement an SPM allocation by only changing the binary. Changing the

allocation of a variable in the binary involves understanding and modifying each of

the many addressing modes of variables, which is an important contribution of this

paper. Second, using a simple minded split as above, most of the tasks other than

profiling are size-dependent and must be done at install-time, including computing

the allocation, the limited-lifetime stack bonus set, the memory layout in SPM,

and the needed number and contents of literal tables in SPM. This will consume

precious run-time and energy on the embedded device during deployment. Our

method avoids these overheads by pre-computing all these quantities at compile-

time for each possible SPM size (see cut-off points in chapter 6) and storing the

resulting information in a customized highly compact form. Our third contribution
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is the representation of all the accesses of a variable using in-place linked lists. If

the list of accesses whose offsets need to be changed were stored in the binary in

a naive way as an external list of addresses, the code size overhead would be large

(at least equal to the percentage of memory instructions in the code, which is often

25% or more.) Our in-place representation reduces this overhead to 1-2%.
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Chapter 5

Method

Although our resulting install-time allocation, including the use of a dis-

tributed stack, will be similar to that in Avissar et. al. [5], our mechanisms at

compile-time and install-time will be significantly different and more complicated

because of not knowing the SPM’s size at compile-time. Our method introduces

modifications to the profiling, compilation, linking and installing stages of code de-

velopment to consider both code and data for SPM allocation. Our method can

be understood as two main parts: first consists of the profiling, compilation, and

linking stages which happen before deploying time, and the second part as the in-

stalling stage happening after deployment. Since the SPM size is not known before

deployment, additional compiler techniques to the method in [5] are introduced to

reduce the overheads, and handle new problems occurring due to the lack of SPM

size. The part after deployment of our method is also very much different from

the part where variables are assigned SPM addresses in the method in [5]. This is

because the SPM size in our scheme is not known until the install-time, when lim-

ited information about the program are available; this makes the variable address

assignment more complicated.

In this chapter we consider the allocation in SPM of data variables only. The

allocation of code in SPM will be discussed in chapter 7. The tasks at each stage
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are described below. Examples are from the 32-bit portion of the ARM instruction

set (not including the 16-bit THUMB instructions.)

5.1 Profiling Stage

The application is run multiple times with different inputs to collect the num-

ber of accesses to each variable for each input; and an average is taken. Input data

sets should represent typical real-world inputs. If the application has more than

one typical behavior (for example, running only one part of the code for one kind of

input, and running another part of the code for another kind of input) then at least

one typical data set should be selected for each kind of input. The average number

of times each variable is accessed across the different data sets is then computed.

Next, this frequency of each variable is divided by its size in bytes to yield its FPB.

With this profiling information, the profiling stage also prepares a list of vari-

ables in decreasing order of their LFPB products. The LFPB for a code or data

object is obtained by multiplying its FPB by the excess latency of the slow memory

it resides in, compared to the latency of SPM (Latencyslow−memory − LatencySPM).

The slow memory for code objects is typically Flash memory, and for data objects

is DRAM. This LFPB-sorted list is stored in the output executable for use by the

installer in deciding an allocation. The installer will later consider variables for SPM

allocation in the decreasing order of their LFPB. The reason this makes sense is that

the LFPB value is roughly equal to the gain in cycles of placing that code or data

object in SPM.
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Address: Assembly instruction:

83b4:        ldr r1, [fp, #-44]  // Load stack var.
83b8:        …

83bc:        …

83c0:        str r4, [fp, #-44]  // Store stack var.

83c4:        …

83c8:        mov r3, #-4160   // Addr computation 1

83cc:        add r3, fp, r3      // Addr computation 2
83d0: ldr r0, [r3, #0] // Load stack var.

Figure 5.1: Example accesses to stack variables with instructions at 0x83b4 and

0x83c0 access one variable and 0x83c8 - 83d0 access another.

5.2 Compiling Stage

Since the SPM size is unknown, the allocation is not fixed at compile-time;

instead it is done at install-time. Various types of pre-processing are done in the

compiler to reduce the customized installer overhead. These are described as the

follows.

As the first step, the compiler analyzes the program to identify all the code

locations that contain variable addresses which are unknown due to not knowing the

SPM’s size at compile-time. These locations are identified by their actual addresses

in the executable file.

To see how these locations are identified, let us first consider how stack accesses

are handled. For the ARM architecture, on which we performed our experiments,

the locations in the executable file that affect the stack offset assignments are the

load and store instructions that access the stack variables, and all the arithmetic

instructions that calculate their offsets. In the usual case, when the stack offset value

is small enough to fit into the immediate field of the load/store instruction, these
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Address:  Assembly instruction:
821c:        <main>:

…

8234: ldr r0,[pc,#16] // Load addr from literal table

8238:        ldr r1,[r0]         // Load global variable

…

8244:        b    linkreg // Procedure return
8248:        address of global variable 1

824c:        address of global variable 2
Literal
table

Figure 5.2: Example access to global variable with ldr instruction at 0x8234 accesses

the literal table location at 0x8348, while the instruction at 0x8238 actually accesses

the global.

load and store instructions are the only ones that affect the stack offset assignments.

The first ldr and the subsequent str instructions in Figure 5.1 illustrate two accesses

of this type, where the offset value of -44 from the frame pointer (fp) to the accessed

stack variable fits in the 12-bit immediate field of the load/store instructions in

ARM.

In some rare cases, when a variable’s offset from the frame pointer is larger

than the value that can fit in the immediate field of load/store instruction, additional

arithmetic instructions are needed to calculate the correct offset. Such cases arise

for procedures with frame sizes that are larger than the span of the immediate field

of the load/store instructions. In ARM, this translates to stack offsets larger than

212 = 4096 bytes. In these rare cases, the offset is first moved to a register and then

added to the frame pointer. An example is seen in the three-instruction sequence

(mov, add, ldr) at the bottom of figure 5.1. Since the mov instruction in ARM

can load a constant that is larger than 4096 bytes to a destination register, the mov
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and add together are able to calculate the correct address of the stack variable

for the load instruction. Here, only the mov instruction needs to be added to the

linked list of locations with unknown addresses that we maintain, since only its

field actually contains the stack variable’s offset and needs to be changed by the

customized installer.

After identifying the locations in the executable that need to be modified

by the customized installer, the compiler creates a linked-list of such locations for

each variable for use in the linking stage. This compiler linked-list is used later to

establish the actual in-place linked-list at link-time, when the exact displacements

of the to-be-modified locations are known.

For ARM global variables, the addresses are stored in the literal tables. These

are tables stored as part of the code that store the full 32-bit addresses of global

variables. Thereafter global variables are accessed by the code in two stages: first,

the address of the global is loaded into a register by doing a PC-relative load from

the literal table; and second, a load/store instruction that uses the register for its

address accesses the global from memory. In ARM, literal tables reside just after

each procedure’s code in the executable file. An example of a literal table is presented

in the figure 5.2. In some rare situations, the literal tables can also appear in the

middle of the code segment of a function with a branch instruction jumping around

it since the literal table is not meant to be executed. This situation occurs only

when the code length of a procedure is larger than the range of the load immediates

used in the code to access the literal tables.

In our method, each global-variable address in the literal tables needs to be
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changed at install-time depending on whether that global is allocated to SPM or

DRAM. Thus literal table locations are added to the linked lists of code addresses

whose contents are unknown at compile-time; one linked list per global variable.

Like the linked lists for stack variables, these will be traversed later by our installer

to fill in install-time dependent addresses in code.

The compiler also analyzes the limited life-times of the stack variables to deter-

mine the additional sets of variables that can be allocated into SPM for better mem-

ory utilization. Details of the allocation policy and life-time analysis are presented

in chapter 6. The final step in the compiling stage is to generate the customized

installer code, and then either insert or broadcast it along with the executable. More

details about the installer is presented below at the installing stage.

5.3 Linking Stage

At the end of the linking stage, to avoid significant code-size overhead, we store

all the compiler-generated linked-lists of locations with unknown variable addresses

in-place in those locations in the executable. This is possible since these locations

will be overwritten with the correct immediate values only at the install-time, and

until then, they can be used to store their displacements, expressed in words, to

the next element in the list. The exact calculation of one location’s displacement

to the next is possible since at this stage the linker knows precisely the position of

each location with an unknown address in the executable. The addresses of the first

locations in the linked-lists are also stored elsewhere in a table in the executable to
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Address:     Assembly instruction:
83b4: ldr r1, [fp, #-44] 
83b8:           … 12
83bc:       …
83c0:       str r4, [fp, #-44]

83c4:       … 8
83c8:       ldr r3, [fp, #-44]

Figure 5.3: Before link-time.

Address:  Assembly instruction:
83b4:        ldr r1, [fp, #12] 
83b8:        …

83bc:        …
83c0:        str r4, [fp, #8]
83c4:        …
83c8:        ldr r3, [fp, #0] // End of linked list

Figure 5.4: After link-time. In-place linked list is shown.

be used at install-time as the starting addresses of the linked-lists. Storing the head

of the linked-lists in this way is necessary to traverse each list at install-time.

An example of the code conversion in the linker is shown in figures 5.3 and 5.4.

Figure 5.3 shows the output code from the compiler stage with the stack offsets

assuming an all-DRAM allocation. Figure 5.4 shows the same code after the linker

converts the separately stored linked-lists to in-place linked-lists in the code. Each

instruction now stores the displacement to the next address. The stack offset in

DRAM (-44 in the example) is overwritten; this is no loss since our method changes

the stack offsets of variables at install-time anyway.

The in-place linked list representation is efficient since in most cases the bit-

width of the immediate fields is sufficient to store the displacement of two consecutive

accesses, which are usually very close together. For example, in ARM architecture,
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the offsets of stack variables are often carried in the 12-bit immediate fields of a ldr.

This yields a displacement up to 4096 bytes, which is adequate for most offsets. In

the rare case when the displacement to next access to the same variable from the

current instruction is greater than the value that can fit in a 12-bit immediate, a new

linked-list for the same variable is started at that point. This causes no difficulty

since more than one linked-list of locations with unknown addresses can be efficiently

maintained for the same variable, each with a different starting address.

For the case of global variables, the addresses are stored in the literal table

whose entries are 32-bits wide. This is wide enough in a 32-bit address space to

store all possible displacements. So a single linked list is always adequate for each

global variable.

Application to other instruction sets Although our method above is illustrated with

the example of the ARM ISA, it is applicable to most embedded ISAs. To apply

our method to another ISA, all possible memory addressing modes for global and

stack variables must be identified. Next, based on these modes, the locations in

the program code that store the immediates for stack offsets and global addresses

must be found and stored in the linked lists. The exact widths of the immediate

fields may differ from ARM, leading to more or fewer linked lists than in ARM.

However because accesses to the same variable are often close together in the code,

the number of linked lists is expected to remain small.
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5.4 Customized Installer

The customized installer is implemented in a set of compiler-inserted codes

that are executed just after the program is loaded in memory. A part of the ap-

plication executable, the code is invoked by a separate installer routine or by the

application itself using a procedure call at the start of main(). In the later case,

care must be taken that the procedure is executed only once before the first run

of the program, and not before subsequent runs; these can be differentiated by a

persistent is-first-time boolean variable in the installer routine. In this way, the

overhead of the customized installer is encountered only once even if the program

is re-run indefinitely, as is common in embedded systems.

The installer routines perform the following three tasks. First, they discover

the size of SPM present on the device, either by making an OS system call (such

calls are available on most ISAs), or by probing addresses in memory using a binary

search and observing the latency to find the range of the SPM addresses. Second, the

installer routines compute a suitable allocation to the SPM using its just-discovered

size and the LFPB-sorted list of variables. The details of the allocation are de-

scribed in chapter 6. Third, the installer implements the allocation by traversing

the locations in the code that have unknown addresses and replacing them with

the stack offsets and global addresses for the install-time-decided allocation. The

resulting executable is now tailored for the SPM size on that device, and can be

executed without any further overhead.
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Chapter 6

Allocation policy in customized installer

The SPM-DRAM allocation is decided by the customized installer using the

run-time discovered SPM size, the LFPB-sorted list of variables and information

about the life-times of stack variables that the compiler provides. The greedy profile-

driven cost allocation in the installer is as follows. The installer traverses the list of

all global and stacks variables stored by the compiler in a decreasing order of their

LFPBs, placing variables into SPM until their cumulative size exceeds the SPM size.

This point in the list is called its cut-off point.

We observe, however, that the SPM may not actually be full on each call

graph path at the cut-off point because of the limited life-times of stack variables.

For example, if main() calls f1() and f2(), then the variables in f1() and f2() can

share the same space in SPM since they have non-overlapping life-times, and simply

cumulating their sizes over-estimates the maximum height of the SPM stack. Thus

the greedy allocation under-utilizes the SPM.

Our method uses this opportunity to allocate an additional set of stack vari-

ables into SPM to utilize the remaining SPM space. We call this the limited-lifetime-

bonus-set of variables to place in SPM. To avoid an expensive search at install-time,

this set is computed off-line by the compiler and stored in the executable for each

possible cut-off point in the LFPB-sorted list. Since the greedy search can cut-off at
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Define:

A: is the list of all global and stack variables in decreasing LFPB order

Greedy Set: is the set of variables allocated greedily to SPM

Limited Lifetime Bonus Set: is the limited-lifetime-bonus-set of variables SPM

GREEDY SIZE: is the cumulated size of greedily allocated variables to SPM at each cutoff point

BONUS SIZE: is the cumulated size of variables in limited-lifetime-bonus-set

MAX HEIGHT SPM STACK: the maximum height of the SPM stack during lifetime of current

variable

void Find allocation(A) { /* Run at compile-time */

1. for (i = beginning to end of LFPB list A) {

2. GREEDY SIZE ← 0; BONUS SIZE ← 0;

3. Greedy Set ← NULL; Limited Lifetime Bonus Set ← NULL;

4. for (j = 0 to i) {

5. GREEDY SIZE ← GREEDY SIZE + size of A[j]; /* jth variable in LFPB list */

6. Add A[j] to the Greedy Set;

7. }

8. Call Find limited lifetime bonus set(i, GREEDY SIZE);

9. Save Limited Lifetime Bonus set for cut-off at variable A[i] in executable;

10. }

11. return;}

void Find limited lifetime bonus set(cut-off-point, GREEDY SIZE) {

12. for (k = cut-off-point to end of LFPB list A) {

13. Add stack variables in Greedy Set ∪ Limited Lifetime Bonus Set to SPM stack;

14. if (A[k] is a stack variable) {

15. Find MAX HEIGHT SPM STACK among all call-graph paths from main() to leaf

procedures that go through procedure containing A[k];

16. } else { /* A[k] is global variable */

17. Find MAX HEIGHT SPM STACK among all call-graph paths from main() to leaf procedures;

18. }

19. ACTUAL SPM FOOTPRINT ← (Size of globals in Greedy Set ∪ Limited Lifetime Bonus Set)

+ MAX HEIGHT SPM STACK;

20. if (GREEDY SIZE - ACTUAL SPM FOOTPRINT ≥ size of A[k]) { /* L.H.S. is

over-estimate amount */

21. add A[k] into the Limited Lifetime Bonus Set;

22. BONUS SIZE ← BONUS SIZE + size of A[k];

23. }

24. }

25. return;}

Figure 6.1: Compiler pre-processing pseudo-code that finds Limited Lifetime Bonus Set

at each cut-off
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any variable, a bonus set must be pre-computed for each variable in the program.

Once this list is available to our customized installer at the start of run-time or as

we call the install-time, it implements its allocations in the same way as for other

variables.

The compiler algorithm to compute the limited-lifetime-bonus-set of variables

at each cut-off point in the LFPB list is presented in figure 6.1. Lines 1-11 show the

main loop traversing the LFPB-sorted list in decreasing order of LFPB. Lines 4-7

find the greedy allocation for the cut-off point at variable i. Line 8 makes the call

to a routine to find the limited-lifetime-bonus-set at this cut-off point; the routine

is in lines 12-25. The un-utilized space in SPM is computed as the difference of the

greedily-estimated size and the actual memory footprint (line 20), which may be

lower because of limited life-times. Additional variables are then found to fill this

space in decreasing order of LFPB among the remaining variables. This search of

bonus variables considers the stack allocation only along paths through the current

variable’s procedure if it is a stack variable (line 15); therefore it does not itself

over-estimate the memory footprint.

Figure 6.2 illustrates our allocation algorithm with an example. Figure 6.2(a)

shows the call graph of an application. It also shows the program’s global variables

and the local variables for each procedure in a list next to each node. From this call

graph, the stack of the application are derived in figure 6.2(b)1. In this figure, each

1For simplicity, only the program variables in the stack are shown; not the overhead words

such as return address and old frame pointer, since the overhead words do not contend for SPM

allocation.
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stack frame, consisting the local variables of each procedure, is added and removed

from the stack as it grows and sinks at runtime. This figure also shows that the

local variables (b1,b2) have disjoint lifetimes both with local variables (a1,a2) and

with (l1,l2). Figure 6.2(c) shows the sorted list of all variables of the application in

the decreasing order of their LFPB. There is a cut-off point after each variable. For

a particular SPM size assume that the first seven variables fit, and thus the chosen

cut-off point at install-time is as shown. The seven variables are the original set

of variables allocated to SPM. However, since (b1,b2) have disjoint lifetimes with

already-allocated variables a1,a2 and l1, the former are contenders for the limited-

lifetime bonus. Suppose size(b1) + size(b2) ≤ size(a1) + size(a2) + size(l1), then

both b1 and b2 are in the bonus set as shown in figure 6.2(d). With this choice the

set of SPM-allocated variables increases to the nine variables in figure 6.2(e). The

remaining variables in figure 6.2(f) are placed in DRAM.

Two factors limit the code-size increase arising from storing the bonus sets at

each cut-off. First, the bonus sets are stored in bit-vector representation on the set of

variables, and so are extremely compact. Second, in a simple optimization, instead

of defining cut-off at each variable, a cut-off is defined at a variable only if the cumu-

lative size of variables from the previous cut-off exceeds CUT OFF THRESHOLD,

a small pre-defined constant currently set to 10 words. This avoids defining a new

cut-off for every single scalar variable; instead groups of adjacent scalars with simi-

lar LFPBs are considered together for purposes of computing a bonus set. This can

reduce the code space increase by up to a factor of 10, with only a small cost in

SPM utilization.
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Chapter 7

Code Allocation

Our method is extended to allocate program code to SPM as follows. Code is

considered for placement in SPM at the granularity of regions. The program code is

partitioned into regions at compile-time. The allocator decides to place frequently

accessed code regions in SPM. Thereafter at install-time, each such code blocks are

copied from its current location in slow memory (usually Flash) to SPM at run-time.

To preserve the intended control flow, a branch is inserted from the code’s original

location to its SPM location, and another branch at the end of the code in SPM

back to the original code. These extra branches are called patching code and are

detailed later.

Some criteria for a good choice of regions are (i) the regions should not too

big thus allowing a fine-grained consideration of placement of code in SPM; (ii) the

regions should not be too small to avoid a very large search problem and exces-

sive patching of code; (iii) the regions should correspond to significant changes in

frequency of access, so that regions are not forced to allocate infrequent code in

them just to bring their frequent parts in SPM; and (iv) except in nested loops, the

regions should contain entire loops in them so that the patching at the start and

end of the region is not inside a loop, and therefore has low overhead.

With these considerations, we define a new region to begin at (i) the start of
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int foo()  {   

code 1

code 2

loop 1  {

code3

loop 2 

}

code 4

code5

}

Region 1

Region 2

Region 3

Region 4

Figure 7.1: Program code is divided into code regions

each procedure; and (ii) just before the start, and at the end of every loop (even

inner loops of nested loops). Other choices are possible, but we have found this

heuristic choice to work well in practice. An example of how code is partitioned

into regions is in Figure 7.1. As the following step, each region’s profiled data such

as its size, LFPB, start and end addresses are collected at the profiling stage along

with profiled data for program variables.

Since code regions and global variables have the same life-time characteristics,

code-region allocation is decided at customized install-time using the same allocation

policy as global variables. The greedy profile-driven cost allocation in the customized

installer is modified to include code regions as follows. The customized installer

traverses the list of all global variables, stacks variables, and code regions stored by

the compiler in a decreasing order of their LFPBs, placing variables and transferring

code regions into SPM, until the cumulative size of the variables and code allocated
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START
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Region 1 Jump SPM instruction

Jump DRAM instruction

Region 1

END

START

Figure 7.2: Jump instruction is inserted to redirect control flow between SPM and

DRAM

so far exceeds the SPM size. At this cut-off point, an additional set of variables and

code regions, which are established at compile-time by the limited-lifetime-bonus-set

algorithm for both data variables and code regions, are also allocated to SPM. The

limited-lifetime-bonus-set algorithm is modified to include code regions, which are

treated as additional global variables.

Code-patching is needed at several places to ensure that the code with SPM

allocation is functionally correct. Figure 7.2 shows the patching needed. At cus-

tomized install-time, for each code region that is transferred to SPM, our method

inserts a jump instruction at the original DRAM address of the start of this region.

The copy of this region in DRAM becomes unused DRAM space1. Upon reaching

1We do not attempt to recover this space since it will require patching code even when it is not

moved to SPM, unlike in our current scheme. Moreover, since the SPM is usually a small fraction
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this install-time inserted instruction, execution will jump to the SPM address this

region is assigned to, as intended.

Similarly, patching also inserts an instruction as the last instruction of the

SPM-allocated code region, which redirects program flow back to DRAM. The dis-

tance from the original DRAM space to the newly allocated SPM space of the region

usually fits into the immediate field of the jump instructions. In the ARM archi-

tecture, which we use for evaluation, jump instructions have a 24-bit offset which is

large enough in most cases. In the rare cases that the offset is too large to fit in the

space available in the jump instruction, a longer sequence of instructions is needed

for the jump; this sequence first places the offset into a register and then jumps to

the contents of the register.

Besides incoming and outgoing paths, side entries and exits in the middle

of regions in SPM also need modification to ensure correct control flow. With

our definition of regions, side entries are mostly caused by unstructured control

flows from “goto” statements, which are rare in applications. Our method does

not consider regions which are the target of unstructured control flow for SPM

allocation; thus, no further modification is needed for side entries of SPM-allocated

regions. However, side exits such as procedure calls from code regions are common.

They are patched as follows. For each SPM-allocated code region, the branch offsets

of all control transfer instructions that branch to outside of the region they belong

to, are adjusted to new corrected offsets. These new branch offsets are calculated by

adding the original branch offsets to the distance between DRAM and SPM starting

of the DRAM space, the space recovered in DRAM will be insignificant.
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addresses of the transferring regions. The returns from these procedure calls do not

need any patching since their target address is automatically computed at run-time.

The final step in code patching is needed to modify the load-address instruc-

tions of global variables that are accessed in the SPM-allocated regions. In ARM,

the load-address instruction of a global variable is a PC-relative load that loads the

address of the global variables from the literal table, which is also in the code. Allo-

cating code regions with such load-address instructions into SPM makes the original

relative offsets invalid. Besides, for ARM, the relative offsets of the load-address in-

structions are 12-bit. Thus, it is likely that the distance from the load-address

instructions in SPM to the literal tables in DRAM is too large to fit into those

12-bit relative offsets.

To solve this problem of addressing globals from SPM, our method generates

a second set of literal tables which reside in SPM. During when code objects are

being placed in SPM one-after-another, a literal table is generated at a point in

the SPM layout if code about to be placed cannot refer to the previously generated

literal table in SPM since it is out of range. This leads to (roughly) one literal table

per 212 = 4096 bytes of code in SPM. These secondary SPM literal tables contain

the addresses of only those global variables that refer to it. Afterward, the relative

offsets of these load-address instructions are adjusted to the corrected offsets, which

are calculated by the distance from the load-address instructions to the SPM literal

table. Architectures other than ARM that do not use literal tables do not need this

patching step.

The installer must account for the increase in size from patching code and
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secondary literal tables. First, the installer adds the size of the jump instruction

at the end of each code block to the size needed for allocating that block to SPM.

This sum is used in both the calculation of code block’s FPB number as well as in

satisfying the space constraint. The size of the jump to the SPM block does not

need to be added since it overwrites the unused space left in slow memory when

that block is moved to SPM. Further, patching side exits does not increase code size

either. Second, the SPM space required for secondary literal tables is also added.

Since each cutoff point specifies an exact set of global variables and code blocks

allocated, the size of the literal table for each cut-off point is known at compile-

time, and stored with the cut-off point in the code. This size is added to the space

required for the cut-off point by the customized installer.
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Chapter 8

Real-world issues

8.1 Library Variables

Many downloadable applications make at least some use of functions from

system libraries such as libC, newlib, and libM for the C and C++ languages. For

this reason, we have extended our method to consider library variables for SPM

allocation. This is accomplished by compiling all library functions used from their

sources with our optimizing compiler1. They can still be separately compiled as

usual. The linker links the library codes, and thereafter in the linker, library stack

and global variables are then treated in the same way as program variables. Profile

information for library variables is collected per application, and supplements the

static compile-time information gathered. The linked-lists of unknown addresses

for library variables is stored with the library object-code for reuse across various

applications.

The above method requires that library routines be statically linked with each

application that uses them. For dynamically linked shared libraries, which can be

1Libraries should be re-compiled for best performance. However, if the library sources are

not available, then this handling of library variables can be omitted and our method can still be

used for application variables. Results in figure 18 show that allocating library variables to SPM

improves run-time by only a little for our benchmarks. Over 90% of the gain from SPM allocation

is realized because of allocating application variables to SPM.
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shared across applications, the same library allocation must be followed for every

application that uses that library routine. For this reason, we expect that in a

deployed system only a few frequently executed library routines would use static

linking; the rest can use dynamic linking if desired with little loss in performance.

8.2 Separate Compilation

Our method does not use any whole-program analysis at compile-time; hence,

separate compilation of the different files in an application can be maintained. How-

ever, during separate compilation, care must be taken for external and global vari-

able references since the compiler produces a distinct linked-list of locations with

unknown addresses for these variables in each file. This results in multiple linked-

lists for the same global variable declaration across different object files. These

linked lists must be correlated and marked as belonging to the same variable, since

otherwise multiple allocations would result for the same variable, violating cor-

rectness2. This simple step in the linking stage ensures that separate compilation

remains possible.

2The multiple lists for a variable also can be merged into a single list if the displacements

permit, but this is not essential for correctness.
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Chapter 9

Results

This chapter presents our results by comparing the proposed allocation scheme

for unknown size SPMs against an all-DRAM-allocation and against Avissar et. al’s

method in [5]. We compare our method to the all-DRAM-allocation method since

all other existing methods are inapplicable in our target systems where the SPM size

is unknown at compile-time; thus, they have to force all data and code allocation

to DRAM. We also compare our scheme to [5] to show that our scheme obtains a

performance which is close to the un-achievable optimal upper-bound.

9.1 Experimental Environment

Our method is implemented on the GNU tool chain from CodeSourcery [33]

that produces code for the ARM v5e embedded processor family [34]. The process

of identifying variable accesses and addresses, analysis of variable limited life-times,

and customized installer code generation are implemented in the GCC v3.4 cross-

compiler. The modifications of the executable file are done in the linker of the

same tool chain. An external DRAM with 20-cycle latency, Flash memory with

10-cycle latency, and an internal SRAM (SPM) with 1-cycle latency are simulated.

The memory latencies assumed for Flash and DRAM are representative of those in

modern embedded systems [35, 36]. Data is placed in DRAM and code in Flash
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Data Lines # of

Application Source Description Size of asm

(Bytes) Code instr.

CRC MIBench 32 BIT ANSI X3.66 CRC checksum 1068 187 504

Dijkstra MIBench Shortest path Algorithm 4097 174 501

EdgeDetect UTDSP Edge Detection in an image 196848 297 701

FFT UTDSP Fast Fourier Transform 16568 189 478

KS PtrDist Minimum Spanning Tree for Graphs 27702 408 1327

MMULT UTDSP Matrix Multiplication 120204 164 416

Qsort MIBench Quick Sort Algorithm 7680000 45 116

PGP MIBench Public Key Encryption 64576 24870 55609

Rijndael MIBench AES Algorithm 22160 1142 9225

StringSearch MIBench A Pratt-Boyer-MooreStringSearch 12820 3037 4433

Susan MIBench Method for DigitallyProcessing Images 380212 2120 9886

Table 9.1: Application Characteristics

memory. Code is most commonly placed in Flash memory today when it needs to

be downloaded. A set of most frequently used data and code is greedily allocated

to SPM by our compiler. The SRAM size is configured to be 20% of the total data

size in the program1. This percentage is varied in additional experiments. The

benchmarks’ characteristics are shown in table 9.1.

The energy consumed by programs is estimated using the instruction-level

power model proposed in [37]. In that model, the overall energy used is estimated

as the sum total of energy consumed by each instruction, where the energy for each

1We could have also chosen a different SRAM size – 20% of total code + data size – when

evaluating the methods for both code and data. However, to make comparisons between methods

for data only and for both code and data, we had to choose one consistent SRAM size (20% of

data size alone) so that the comparison is fair.

40



0

10

20

30

40

50

60

70

80

90

100

CRC
Dijkstra

Edge_detect

FFT
K

S
M

M
ult

PG
P

Q
sort

Rijndael

StringSearch

Susan

Average

N
O

R
M

A
L

IZ
E

D
 R

U
N

T
IM

E

DRAM
Our Method For Data 
Optimal Upper-bound For Data
Our Method For Data + Code 
Optimal Upper-bound For Data + Code 

Figure 9.1: Runtime speedup compared to all-DRAM method and Static Optimal

Method

instruction type (opcode) is estimated using synthetic workloads composing only of

that instruction in an infinite loop and measuring the current drawn by the circuit.

Thereafter no current measurements are needed per application; instead the pre-

calculated energy per instruction type is used to calculate the total. Experimental

results in that paper show that the approach is quite accurate and has a small

percentage error in estimating the energy use. The energy numbers for each ARM

instruction are extracted from [38]. We modified our simulator to add the energy of

each instruction, based on its opcode, to a counter measuring the total energy.

9.2 Runtime Speedup

The run-time for each benchmark is presented in figure 9.1 for five config-

urations: all-DRAM, our method for data allocation only, optimal upper bound

obtained by using [5] for data allocation only, our method enhanced for both code
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Figure 9.2: Runtime speedup of our method with and without limited lifetime com-

pared to all-DRAM method

and data allocations, and the optimal upper bound obtained by using [5] for both

code and data allocations. Averaging across the eleven benchmarks, our full method

(the fourth bar) achieves a 41% speedup compared to all-DRAM allocation (the first

bar). The provable optimal static allocation method [5], extended for code in addi-

tion to data (the fifth bar), achieves a speedup of 45% on the same set of benchmarks.

This small difference indicates that we can obtain a performance that is close to that

in [5] without requiring the knowledge of the SPM’s size at compile-time.

The figure also shows that when only data is considered for allocation to SPM,

a smaller run-time gain of 31% is observed versus an upper bound of 34% for the

optimal static allocation. This shows that considering code for SPM placement

rather than just data yields an additional 41%-31%=10% improvement in run-time

for the same size of SPM.

The performance of the limited-lifetime algorithm is showed in figure 9.2. The

difference between the first and second bars gives the improvement using our limited
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Figure 9.3: Energy consumption compared to all-DRAM method and Static Optimal

Method

life-time analysis, as compared to a greedy allocation, for each benchmark. Although

the average benefit is small (4% on average), for certain benchmarks (for example,

PGP and Rijndael), the benefit is greater. This shows that the limited life-time

enhancement is worth doing but not critical.

9.3 Energy Saving

Figure 9.3 compares the energy consumption of our method against an all-

DRAM allocation method and against the optimal static allocation method [5] for

the benchmarks in table 9.1. As the results of more frequently-accessed objects

allocated in SRAM, our method is able to achieve a 42% gain in energy consumption

compared to the all-DRAM allocation scheme. The optimal static scheme in [5] gets

a slightly better result of 47% gain in energy for when the SPM size is provided at

compile-time.
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Figure 9.4: Runtime Overhead

9.4 Run Time Overhead

Figure 9.4 shows the increase in the run-time from the customized installer as

a percentage of the run-time of one execution of the application. The figure shows

that this run-time overhead averages only 2% across the benchmarks. A majority

of the overhead is from code allocation including the latency of copying code from

DRAM to SRAM at install-time. The overhead is an even smaller percentage when

amortized over several runs of the application; re-runs are common in embedded sys-

tems. The reason why the run-time overhead is small can be understood as follows.

The customized install-time is proportional to the total number of appearances in

the executable file of load and store instructions that accesses the program stack,

and the locations that store global variable addresses. These numbers are in-turn

upper-bounded by the number of static instructions in the code. On the other hand,

the run-time of the application is proportional to the number of dynamic instruc-

tions executed, which usually far exceeds the number of static instructions because

of loops and repeated calls to procedures. Consequently the overhead of the installer
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Figure 9.5: Variation of customized installing time across benchmarks
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Figure 9.6: Variation of code size overhead across benchmarks

is small as a percentage of the run-time of the application.

Another metric is the absolute time taken by the customized installer. This

is the waiting time between when the application has finished downloading and is

ready to run after the installer has executed. For a good response time, this number

should be low. Figure 9.5 shows that this waiting time is very low, averaging 100

micro-seconds across the eleven benchmarks. It will be larger for larger benchmarks,

and is expected to grow roughly linearly in the size of the benchmark.

9.5 Code Size Overhead

Figure 9.6 shows the code size overhead of our method for each benchmark.

The code-size increase from our method compared to the unmodified executable
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Figure 9.7: Compile Time Overhead

that does not use the SPM averages 1.5% across the benchmarks. The code-size

overhead is small because of our technique of reusing the un-used bit-fields in the

executable file to store the linked lists containing locations with unknown stack

offsets and global addresses. In addition, the figure shows the code size overhead

from its constituent two parts: the customized installer codes and the additional

information about each variable and code region in the program which is stored

until install-time. These additional information are the starting addresses of the

location linked-lists, region sizes, region start and end addresses, variable sizes,

original stack offsets and global variable addresses.

9.6 Compile Time Overhead

Figure 9.7 shows the compile-time overhead of our technique as a percentage

of the time required to compile and link the applications using the unmodified

GNU toolchain. Each bar in the figure is further made up of the overheads in the

initial compilation and final linker stages. On an average across the benchmarks
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or FLASH).

the compile-time overhead for our method is only 3%. In this overhead, the ratio of

extra time spent in the linking stage versus the compilation stage is approximately

2 to 1.

9.7 Memory Access Distribution

Figure 9.8 shows the percentage of application memory accesses going to

SRAM (the remaining accesses go to DRAM or FLASH). It shows that on aver-

age, 50% of memory references access SRAM for our method; vs. 58% for Avissar

et. al’s method in [5], explaining why our method is close in performance to the

un-achievable upper bound in [5].
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Figure 9.9: Normalized Runtime with Library Variables

9.8 Library Variables

In figure 9.9, we show the normalized run-time (all-DRAM = 100) of our

method for two different SPM allocation strategies which target (i) program code,

stack variables and global variables, or (ii) library variables and program code,

stack variables and global variables. We see that by considering library variables for

SPM allocation, an additional 4% run-time speedup is obtained, taking the overall

speedup from our method vs. all-DRAM from 41% to 45%. To be fair to [5], a

comparison of our method placing library data in SPM versus the optimal static

method in [5] is not made since that method does not place library functions in

SPM.

9.9 Runtime vs. SPM size

Figure 9.10 shows the variation of run-time for the Dijkstra benchmark with

different SPM size configurations ranging from 5% to 35% of the data size. When
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Figure 9.10: Runtime Speedup with varying SPM Sizes for Dijkstra Benchmark

the SPM size is set to lower than 15% of the data size, both our method and the

optimal solution in [5] do not gain much speedup for this particular benchmark.

Our method starts achieving good performance when the SPM size is more than

15% of the data size since at that point more significant data structures in the

benchmark start to fit in the SPM. When the SPM size exceeds 30% of the data

set, a point of diminishing returns is reached in that the variables that do not fit

are not frequently used. The point of this example is not so much to illustrate the

absolute performance of the methods. Rather it is to demonstrate that our method

is able to closely track the performance of the optimal static allocation in a robust

manner across the different sizes by using the exact same executable. In contrast

the optimal static allocation uses different executables for each size.
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Chapter 10

Comparison with Caches

The key advantage of our method over all existing SPM allocation schemes

is that we are able to deliver near-optimal performance while not requiring the

knowledge of the SRAM size at compile-time. In cache-based embedded systems,

frequently used data and code are moved in and out of SRAM dynamically by hard-

ware at run-time; therefore caches are also able to deliver good results without the

compile-time knowledge of SRAM sizes. For this reason, it is insightful to evaluate

our performance versus cache-based systems. In this chapter, we discuss several

comparisons in term of performance of our method for SPM versus alternative ar-

chitectures, using either cache alone or cache and SPM together.

It is, however, important to note that our method is useful regardless of the

results of the comparisons with caches. This is because there are a great number

of embedded architectures which have a SPM and DRAM directly accessed by the

CPU, but have no cache. Examples of such architectures include low-end chips

such as the Motorola MPC500 [39], Analog Devices ADSP-21XX [40], Motorola

Coldfire 5206E [40]; mid-grade chips such as the Analog Devices ADSP-21160m

[41], Atmel AT91-C140 [42], ARM 968E-S [34], Hitachi M32R-32192 [43], Infineon

XC166 [44] and high-end chips such as Analog Devices ADSP-TS201S [45], Hitachi

SuperHSH7050 [46], and Motorola Dragonball [47].
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We have found at least 80 such embedded processors with no caches but with

SRAM and external memory (usually DRAM) in our search but have listed only the

above eleven for the lack of space. These architectures are popular because SPMs

provide better real-time guarantees [48], power consumption, access time and area

cost [14, 17, 15, 3] compared to caches.

Nevertheless, it is interesting to see how our method compares against pro-

cessors containing caches. We compare three architectures (i) an SPM-only archi-

tecture; (ii) a cache-only architecture; and (iii) an architecture with both SPM and

cache of equal area. To ensure a fair comparison the total silicon area of fast memory

(SPM or cache) is equal in all three architectures. For an SPM and cache of equal

area, the cache has lower data capacity because of the area overhead of tags and

other control circuitry. Area and energy estimates for cache and SPM are obtained

from Cacti [49, 50]. The cache area available is split in the ratio of 1:2 among the I-

cache and D-cache. This ratio is selected since it yielded the best performance in our

setup compared to other ratios we tried. The caches simulated are direct-mapped

(this is varied later), have a line size of 8 bytes, and are in 0.5 micron technology.

This technology may seem obsolete in high-end desktop system, but with its afford-

able price, it is a common choice in embedded systems nowadays, where competitive

performance, power, and productivity are required at an effective price point. The

SPM is of the same technology except we remove the tag memory array, tag column

multiplexers, tag sense amplifiers and tag output drivers in Cacti since they are not

needed for SPM. The Dinero cache simulator [51] is used to obtain run-time results;

it is combined with Cacti’s energy estimates per access to yield the energy results.

51



0

10

20

30

40

50

60

70

80

90

CRC
Dijkstra

Edge_detect

FFT
KS M

Mult

PGP
Qsort

Rijndael

StringSearch

Susan

Average

N
O

R
M

A
L

IZ
E

D
 R

U
N

T
IM

E

SPM Only Cache Only SPM and Cache

Figure 10.1: Comparisons of Normalized Runtime with Different Configurations

Figure 10.1 compares the run-times of different architectures, normalized with

respect to an all-DRAM allocation (=100). The first bar shows the run-time with

our method in a SPM-only system allocating variables, code and library data. The

second bar shows the run-time of a pure cache-based system. The third bar shows

the run-time of our method in a cache and SPM design. In this cache and SPM

design, all less-frequently accessed data and code that our method presumes to be

in DRAM is placed in cached-DRAM address space instead; thus the slow memory

transfers are accelerated1. By comparing the first and second bar, we see that our

method for SPM-based systems has slightly lower, but nearly equal, run-time to

that of cache-based systems. The third bar shows that applying our method in a

cache and SPM system delivers the best run-time.

Figure 10.2 shows the normalized energy consumption, normalized with re-

1This may not be the best way to use a memory system with both cache and SPM [15]. Future

work could consider how to make an install-time allocator such as ours cache-aware.
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Figure 10.2: Comparisons of Normalized Energy Consumption with Different Con-

figurations

spect to the all-DRAM allocation scheme (=100) for the same configurations as

in figure 10.1. Our energy results are collected as the total system-wide energy

consumption of application programs. It consists of the energy usage of DRAM,

SRAM, FLASH, and the main processor. By comparing the first and second bar of

figure 10.2, we see that SPM-only consumes less energy than cache-only architecture.

Further, the SPM + Cache combination delivers the lowest energy use.

Figures 10.3 and 10.4 measure the impact of varying cache associativity on the

run-time and energy usage, respectively, on the cache-only architecture. The two

figures show that with increasing associativity the run-time is relatively unchanged

although the energy gets worse; for this reason a direct-mapped cache is used in the

earlier experiments in this chapter.

In conclusion, the results show that our method for SPM is comparable to

a cache-only architecture and that a SPM + cache architecture provides the best
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Figure 10.3: Normalized run-time for different set associativities for a cache-only

configuration
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Figure 10.4: Normalized energy usage for different set associativities for a cache-only

configuration
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energy and run-time. Since the differences are not great, we can only conclude that

the overall performance of our method and a cache-based method is comparable.

Despite the similar performance vs. caches, our method still has merit because of

two other advantages of SPMs over caches not apparent from the results above.

First, it is widely known that for global and stack data, SPMs have significantly

better real-time guarantees than caches [48, 17, 5]. Second, as described above,

there are a great number of important embedded architectures which have SPM

and DRAM but no caches of any type.
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Chapter 11

Conclusion

In this paper, we introduce a compiler technique that, for the first time, is

able to generate code that is portable across different SPM sizes. With technologi-

cal evolution every year leading to different SPM sizes for the same ISA’s processor

implementations, there is a need for a method that can generate such portable code.

Our method is also able to share memory between stack variables that have mutu-

ally disjoint life-times. Our results indicate that on average, the proposed method

achieves a 41% speedup compared to an all-DRAM allocation without knowing the

size of the SPM at compile-time. The speedup is only slightly higher (45% vs all-

DRAM) with an unattainable optimal upper-bound allocation that requires knowing

the SPM size [5].

A possible direction of future work is to devise a dynamic allocation scheme

for SPM for unknown-size SPMs. Dynamic schemes can better match the allo-

cation to the program’s access patterns at each instant, and may lead to better

performance. Having said that, install-time dynamic SPM allocation schemes suffer

increased install-time, run-time and energy overhead on the target device. These

device overheads are not seen in off-line compile-time dynamic schemes [7, 20, 8].

These overheads include (i) the dynamic allocator itself, which is inherently more

complex than static allocators; (ii) the overheads of binary rewriting to change the
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offsets of branches whose displacements are changed as a result of new copying code

inherent to dynamic schemes; and (iii) the SPM memory layout will need to be com-

puted at run-time, further complicating the addressing mechanisms and install-time

algorithms. Finally, our earlier work on compile-time dynamic schemes [7, 20] shows

that the gain for dynamic schemes over static are low or zero for SPM sizes beyond

a few Kbytes. In the future, when large SPM sizes will be common (are already

common?) the benefit of dynamic schemes will limited.

Another direction of future work is extending our install-time method to al-

locate heap data to SPM. The compile-time allocator for heaps in SPM in [9] will

likely be a good starting point.
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