

ABSTRACT

Title of Document: HIGH-PERFORMANCE FPAA DESIGN FOR
HIERARCHICAL IMPLEMENTATION OF
ANALOG AND MIXED-SIGNAL SYSTEMS

 Hu Huang, Doctor of Philosophy, 2007

Directed By: Professor Martin Peckerar

Professor Joseph Bernstein
Department of Electrical & Computer
Engineering

The design complexity of today’s IC has increased dramatically due to the high

integration allowed by advanced CMOS VLSI process. A key to manage the

increased design complexity while meeting the shortening time-to-market is design

automation. In digital world, the field-programmable gate arrays (FPGAs) have

evolved to play a very important role by providing ASIC-compatible design

methodologies that include design-for-testability, design optimization and rapid

prototyping. On the analog side, the drive towards shorter design cycles has

demanded the development of high performance analog circuits that are configurable

and suitable for CAD methodologies.

Field-programmable analog arrays (FPAAs) are intended to achieve the benefits

for analog system design as FPGAs have in the digital field. Despite of the obvious

advantages of hierarchical analog design, namely short time-to-market and low non-

recurring engineering (NRE) costs, this approach has some apparent disadvantages.

The redundant devices and routing resources for programmability requires extra chip

area, while switch and interconnect parasitics cause considerable performance

degradation. To deliver a high-performance FPAA, effective methodologies must be

developed to minimize those adversary effects.

In this dissertation, three important aspects in the FPAA design are studied to

achieve that goal: the programming technology, the configurable analog block (CAB)

design and the routing architecture design. Enabled by the Laser MakelinkTM

technology, which provides nearly ideal programmable switches, channel

segmentation algorithms are developed to improve channel routability and reduce

interconnect parasitics. Segmented routing are studied and performance metrics

accounting for interconnect parasitics are proposed for performance-driven analog

routing. For large scale arrays, buffer insertions are considered to further reduce

interconnection delay and cross-coupling noise. A high-performance, highly flexible

CAB is developed to realized both continuous-mode and switched-capacitor circuits.

In the end, the implementation of an 8-bit, 50MSPS pipelined A/D converter using

the proposed FPAA is presented as an example of the hierarchical analog design

approach, with its key performance specifications discussed.

HIGH-PERFORMANCE FPAA DESIGN FOR HIERARCHICAL
IMPLEMENTATION OF ANALOG AND MIXED-SIGNAL

SYSTEMS

By

Hu Huang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor Martin Peckerar, Chair
Professor Joseph Bernstein
Professor Neil Goldsman
Professor Pamela Abshire
Professor Ali Mosleh

© Copyright by

Hu Huang

2007

 ii

Table of Contents

TABLE OF CONTENTS ---------------------------------- -------------------------------- II

LIST OF FIGURES ------------------------------------ ----------------------------------- IV

LIST OF TABLES ------------------------------------- ------------------------------------ VI

LIST OF TABLES ------------------------------------- ------------------------------------ VI

CHAPTER 1 INTRODUCTION-------------------------------------- -------------------- 1

1.1 HIERARCHICAL ANALOG DESIGN--- 4
1.2 MOTIVATION OF THIS STUDY -- 6

1.2.1 Programming Technology --- 7
1.2.2 Configurable Analog Blocks--- 9
1.2.3 Routing Architecture --10

1.3 CONTRIBUTION AND ORGANIZATION OF THIS DISSERTATION-------------12

CHAPTER 2 CHANNEL SEGMENTATION ------------------------------ ----------13

2.1 INTRODUCTION ---14
2.2 PRIOR WORK AND OUR PROBLEM---15
2.3 PARAMETRIC CHANNEL SEGMENTATION--------------------------------------16

2.3.1 Segment length selection--16
2.3.2 Track assignment --18

2.4 NONPARAMETRIC CHANNEL SEGMENTATION--------------------------------20
2.5 EXPERIMENTAL RESULTS --22
2.6 CONCLUSIONS --26

CHAPTER 3 SEGMENTED ROUTING--------------------------------- --------------27

3.1 INTRODUCTION ---28
3.2 PRELIMINARIES ---30
3.3 ANALOG SEGMENTED ROUTING ---35

3.3.1 Parasitic Modeling --36
3.3.2 Performance Metrics --38
3.3.3 Congestion avoidance---39
3.3.4 Cost function definition ---40
3.3.5 Grouped routing ---40

3.4 PERFORMANCE CONSTRAINTS ON THE ROUTING ----------------------------41
3.4.1 Bounding Constraints ---42
3.4.2 Matching Constraints ---42
3.4.3 Incorporating performance constraints using Lagrange multipliers ----43

3.5 CONCLUSIONS --44

CHAPTER 4 INTERCONNECTION DELAY OPTIMIZATION ---------------- 46

4.1 INTRODUCTION ---46
4.2 BUFFER INSERTION ---48

 iii

4.3 COMBINED SEGMENT LENGTH SELECTION ------------------------------------50
4.4 DELAY-DRIVEN ROUTING--52
4.5 EXPERIMENTAL RESULTS --52
4.6 CONCLUSIONS --57

CHAPTER 5 CROSS-COUPLING NOISE DEDUCTION -------------------------58

5.1 INTRODUCTION ---58
5.2 PRELIMINARIES ---61
5.3 BUFFER INSERTION ---63

5.3.1 Coupling noise constrained only---63
5.3.2 Delay optimization with noise constraint -----------------------------------66

5.4 EXPERIMENTAL RESULTS --70
5.5 CONCLUSIONS --72

CHAPTER 6 CONFIGURABLE ANALOG BLOCK DESIGN ------------------ -73

6.1 INTRODUCTION ---73
6.2 EXISTING CAB TOPOLOGIES --75
6.3 HIGH FLEXIBILITY CAB DESIGN --76

6.3.1 CAB Topology--77
6.3.2 Components --78
6.3.3 Symmetrical CAB --80
6.3.4 CAB layout ---81

6.4 CHANNEL SEGMENTATION ---82
6.5 EXPERIMENTAL RESULTS---84
6.6 CONCLUSIONS --90

CHAPTER 7 HIERARCHICAL IMPLEMENTATION OF AN 8-BIT
PIPELINED A/D CONVERTER ---------------------------- ----------------------------92

7.1 INTRODUCTION ---92
7.2 PIPELINE A/D CONVERTER---93
7.3 IMPLEMENTATION OF ONE STAGE ---95
7.4 PLACEMENT AND ROUTING---97
7.5 EXPERIMENTAL RESULTS--- 103

7.5.1 ADC static accuracy specifications-- 104
7.5.2 ADC dynamic accuracy specifications ------------------------------------ 114

7.6 CONCLUSIONS -- 120

CHAPTER 8 CONCLUSIONS AND FUTURE WORK ------------------------ -- 122

REFERENCES -- 125

 iv

List of Figures

Figure 1.1 Representative floor plan of a System-on-a-Chip------------------------ 2

Figure 1.2 Hierarchical partitions of analog circuits---------------------------------- 5

Figure 1.3 Examples of existing FPAA diagrams------------------------------------- 6

Figure 1.4 Schematics of MakeLinkTM (a) top view (b) cross section A-A' ------ 8

Figure 1.5 Cross-section of a vertical link. -- 9

Figure 1.6 Array-based FPAA routing architecture.---------------------------------10

Figure 2.1 Different channel segmentation schemes --------------------------------13

Figure 2.2 Segment length selection from net length distribution -----------------17

Figure 2.3. Illustration of the staggering factors. -------------------------------------18

Figure 2.4 An example of parametric channel segmentation.----------------------20

Figure 2.5 An example of nonparametric channel segmentation-------------------22

Figure 2.6 The effects of δ1, δ2 on 1-segment routability for net distribution Ge1.

 24

Figure 2.7 The effects of δ2 on routability for one-segment routing. --------------25

Figure 2.8 The effects of δ2 on routability for two-segment routing---------------26

Figure 3.1 A typical FPAA design Flow. ---28

Figure 3.2 Lee’s Maze router---30

Figure 3.3 Dijkstra algorithm --31

Figure 3.4 Prim algorithm --32

Figure 3.5 The improved pathfinder negotiated routing algorithm ----------------33

Figure 3.6 Minimum-cost-bipartite-matching --34

Figure 3.7 (a) A segmented channel with eight tracks (b) eighteen nets to be

assigned (c) minimum-cost routing results --35

Figure 3.8 Interconnect capacitance model ---37

Figure 4.1 Placement of buffers for interconnection delay optimization. ---------48

Figure 4.2 Combined segment length selection results------------------------------51

Figure 4.3 The effects of δ1, δ2 on buffer insertion ----------------------------------53

Figure 4.4 The effects of δ1, δ2 on interconnect delay. ------------------------------54

 v

Figure 5.1 Wire segments in a FPAA routing channel ------------------------------59

Figure 5.2 Coupling noise due to multiple aggressor nets. -------------------------61

Figure 5.3 Algorithm for noise-constrained delay optimization. -------------------69

Figure 6.1 Illustration of a high flexibility CAB topology--------------------------77

Figure 6.2 Schematic of the differential OPAMP------------------------------------79

Figure 6.3 Layout of a PCA with 4-bit precision ------------------------------------79

Figure 6.4 Diagram of a symmetrical CAB---81

Figure 6.5 Layout of the CAB ---82

Figure 6.6 Three channel segmentation schemes ------------------------------------83

Figure 6.7 Schematic of the MDAC circuit---84

Figure 6.8 MDAC output waveforms ---85

Figure 6.9 Channel routing results of the MDAC circuits --------------------------86

Figure 6.10 MDAC accuracy with various routing channel--------------------------88

Figure 6.11 MDAC accuracy with respect to input frequency (50MHz Clock) ---89

Figure 6.12 MDAC accuracy with respect to clock frequency (3MHz input) -----90

Figure 7.1 Diagram of a pipelined A/D converter -----------------------------------94

Figure 7.2 Schematic of the MDAC circuit---96

Figure 7.3 Schematic of the comparator --97

Figure 7.4 Placement of the 8-bit A/D converter ---------------------------------- 100

Figure 7.5 Routing results with crossbar channels--------------------------------- 101

Figure 7.6 Routing results with segmented channels ------------------------------ 102

Figure 7.7 Pipelined ADC: Chip Layout-- 103

Figure 7.8 Transfer curve of an 8-bit A/D converter ------------------------------ 105

Figure 7.9 INL error plot of three implementations at 50MSPS ----------------- 109

Figure 7.10 DNL error plot of three implementations at 50MSPS---------------- 111

Figure 7.11 (a) INL and (b) DNL versus sampling rate ---------------------------- 113

Figure 7.12 FFT plot of the ADC output (Fin = 100 KHz, Fs = 50MSPS)------- 118

Figure 7.13 ENOB versus input frequency (50 MSPS)----------------------------- 119

Figure 7.14 ENOB versus clock frequency (with 3MHz input) ------------------- 120

 vi

List of Tables

Table 2.1 Net distributions used in the experiments. ----------------------------------23

Table 4.1 Experimental results for all six net distributions ---------------------------56

Table 4.2 Comparison with a sequential approach-------------------------------------56

Table 5.1 Experimental results when Csi = Cb--71

Table 5.2 Experimental results when Csi = 10Cb---------------------------------------71

 1

Chapter 1

Introduction

Microelectronics technology has allowed a continuously increasing integration

complexity. With today’s advanced CMOS VLSI process, more and more complete

systems that previously require one or multiple printed circuit boards (PCB) are being

fabricated on a single chip. Examples of such systems-on-a-chip (SoC) in recent years

are the new generations of telecommunication systems that include analog, digital and

even radio-frequency (RF) sections on one chip [1.1], WiMAX wireless broadband

platforms [1.2] and completely integrated DVD systems [1.3].

While most functions in such integrated systems are implemented by digital

circuitry, there are some typical functions that will always remain analog [1.4]. Since

all natural signals are analog – at a macroscopic level, mixed-signal circuits like

sample-and-hold (S/H), analog-to-digital converters (ADCs) and digital-to-analog

converters (DACs) are required to interface the real world to the digital world.

Moreover, analog signals usually need to be filtered and amplified to allow

digitization with sufficient signal-to-noise ratio (SNR), or drive the outside load.

Typical analog circuits used here are buffers, low-noise amplifiers (LNA), variable-

gain amplifiers (VGA), filters, oscillators and mixers. In addition, all above circuits

 2

need precise, stable voltage, current and timing references for their operation, which

are generated by analog circuits too. A representative floor plan of a SoC is shown in

Figure 1.1.

Memory

DSP

MCU

Logic

Analog

Analog

Memory

DSP

MCU

Logic

Analog

Analog

Figure 1.1 Representative floor plan of a System-on-a-Chip

Due to higher integration, more complex system architectures and signal

processing algorithms, the design complexity of today’s IC has increased

dramatically. At the same time, many application-specific integrated circuit (ASIC)

and application-specific stand part (ASSP) for consumer electronics, telecom and

computer markets are characterized by shortening product lifecycles and tightening

time-to-market requirements. If the initial market window was missed, the product

can be totally out of competition.

A key to manage the increased design complexity while meeting the shortening

time-to-market requirement is design automation with computer-aided design (CAD)

tools. In the digital domain, today’s CAD tools are fairly well developed and

 3

commercially successful. The system can be described using a hardware description

language such as VHDL or Verilog, either at the behavioral or structural level.

Various synthesis tools can then translate the HDL specifications into a gate-level

netlist, and physical design tools (place & rout) map the netlist into a mask-level

layout based on a cell library specific for the selected technology. In recent years, the

field-programmable gate arrays (FPGAs) have evolved to play a very important role

in digital design by providing ASIC-compatible design methodologies that include

design-for-testability, design optimization and rapid prototyping allowing the

engineers to have direct and immediate access to all resources in the system while

avoiding the encapsulation of standard parts and the high cost of ASICs [1.5]. The

time-to-market pressures and low financial risk has made FPGAs and complex

programmable logic devices (CPLDs) an increasingly popular vehicle for prototyping

and, in many cases, actual production.

The story on the analog side is quite different. Due to the wide variety of

components required for analog systems, the continuous nature and variable levels of

analog signals, the analog design in general is perceived as less systematic and more

knowledge-intensive than digital design. Unlike the digital systems, which can

naturally be represented in terms of Boolean constructs, the larger variety of analog

circuit topologies and the number of conflicting requirements make a unified

description of analog functions very difficult. In addition, the analog circuits are more

sensitive to non-idealities and all kinds of high-order effects and parasitic

disturbances. Therefore, although analog circuits typically occupy only a small

 4

fraction of the total mixed-signal IC, their design is often the bottleneck in both time

and test cost.

Despite of those adversities, analog CAD and design automation over the past two

decades has been a field of profound academic and industrial research activity,

resulting in a slow but steady progress [1.6]. The simulation area has been well

developed since the advent of SPICE. Analog circuit synthesis has recently shown

promising results at the research level [1.7], and the development of analog and

digital hardware description languages like VHDL-AMS and Verilog-A/MS is

intended to provide a unifying trend needed in designing mixed signal ICs and SoCs

of the future. However, the need of efficient analog system design methodologies

beyond individual tools has also been clearly identified [1.8]. Particularly, the drive

towards shorter design cycles for analog integrated circuits has demanded the

development of high performance analog circuits that are configurable and suitable

for high-level CAD methodologies, just like FPGAs in the digital world.

1.1 Hierarchical Analog Design

Hierarchical, or structured design, was already used by hardware designers in the

late 1970s, when the increasing complexity of full-custom design for products such as

microprocessors created serous bottlenecks. Like the traditional “divide and conquer”

engineering methods adopted by software engineers in building complex software

products, ideas such as modularization, information hiding and stepwise refinement

were applied to VLSI design to allow more structured descriptions of the work,

particularly when it contains iterated or conditional features. Digital systems

 5

designed with FPGAs are typical examples of hierarchical design, where the circuits

are divided into sub-circuits that can be realized with the building cells from the

library provided by the vendor, either automatically or by the custom users. Then the

place and route tools are used to map those sub-circuits to the basic logic elements

(BLEs) and set the switches to make necessary connections.

Hierarchical analog design shares the same ideal. Figure 1.2 shows a hierarchical

decomposition of a conceptual analog front-end processing unit.

HP

BP

LP

1 2 7

5

6
10

3

4

8

9

Figure 1.2 Hierarchical partitions of analog circuits

For the same reasons that lagged the development of analog design CAD tools,

hierarchical analog design hasn’t made as much progress as in the digital world. The

advent of Field-programmable analog arrays (FPAAs) is intended to change this

situation. Composed of configurable analog blocks (CABs) than can realized high-

level analog functions like amplifiers, filters and references, and programmable

interconnects to link them up and implement more complex systems, FPAAs are

proposed as a straightforward vehicle for hierarchical analog system design. Steady

 6

progress made at academic institutes ([1.9], shown in Figure 1.3a, [1.10]-[1.11]), and

commercial products introduced recently ([1.12]-[1.13], [1.14], shown in Figure 1.3b)

indicate renewed interest and further accomplishment in achieving this goal.

However, the functionalities they can implement are still relatively limited and the

signal bandwidth they can process is quite small (maximum 2MHz). A general

purpose FPAA with good supporting CAD tool suitable for high frequency

applications has not yet appeared.

(a) (b)

Figure 1.3 Examples of existing FPAA diagrams

1.2 Motivation of This Study

The advantages of hierarchical approach in analog design are obvious. The post-

fabrication configurability and usage of high-level CAD methodologies make short

time-to-market possible. By using pre-qualified software and hardware components,

the non-recurring engineering (NRE) costs are greatly reduced. It is also a perfect

way to build prototype systems that allow quick verification. In the meantime, this

 7

approach has some disadvantages apparent, namely, the extra chip area for redundant

devices and routing resources required by programmability, along with the

performance degradation due to switch and interconnect parasitics. To deliver a high-

performance FPAA, effective methodologies must be developed to minimize those

adversary effects. In this dissertation, three important aspects in the FPAA design are

investigated to achieve that goal: the programming technology, the configurable

analog block (CAB) design and the routing architecture design, which are discussed

in greater details below.

1.2.1 Programming Technology

Among the currently available programming technologies, SRAM programming

is the most popular one [1.15], which uses memory cells to control pass transistors,

multiplexers or tri-state buffers. However, the large space required by the memory

cells and substantially high resistance make it not a good choice for FPAA. Anti-fuse

programmed FPGA uses metal-metal plane capacitors with a very thin layer of

amorphous silicon as insulation layer, producing smaller size and lower resistance

(about 100 - 600Ω) links [1.16]. However, it is not compatible with standard CMOS

process. It also needs programming voltage higher than standard, and has intolerable

leakage current. The EPROM/EEPROM are re-programmable without requiring

external storage, but they normally consume a large chip area and require multiple

voltage sources, which might not otherwise be required [1.17].

For analog applications, ideally we need a programmed switch to behave just like

a short metal wire. MakeLinkTM, a laser-induced metal-to-metal antifuse technology,

is the only viable candidate for this purpose [1.18]. Experimental results show that for

 8

the link structure of 4 × 4 µm2 holes and 3µm line, the average link resistance was

found to be approximately 1.8Ω [1.19]. The principle of this technology is

schematically illustrated in Figure 1.4. The top two levels of metals in a standard

CMOS process are used as the upper frame and the lower line. When the lower metal

line is impinged by laser beam, its temperature increases rapidly due to the absorption

of the laser energy, but the temperature of the dielectric between those two metals

will not changed much because of its low thermal conductivity and light absorbency.

The stresses concentrating at the upper corner of the lower metal cause the initiation

of a crack toward upper metal due to the thermal conductivity mismatch between the

metal and the dielectrics, and molten metal simultaneously fills in the crack to form

the link sheet. Figure 1.5 shows a FIB cross sectional image of a laser-induced

vertical link between the lower and upper metal.

Lower metal (M1)

Upper
metal
(M2)

Laser beam

SiO2/Si3N4

Link sheet
Link sheet

Cross-section B

Cross-
Section A

Cross-section A

(a) (b)

Figure 1.4 Schematics of MakeLinkTM (a) top view (b) cross section A-A'

 9

Figure 1.5 Cross-section of a vertical link.

1.2.2 Configurable Analog Blocks

As the core building elements, the CABs play a vital role in the realization of high

performance FPAAs. The importance of CAB design is manifested in two aspects:

the circuit design and the configuration topology.

Analog circuits usually cannot be simply described by their input/output transfer

functions. A large variety of topologies exist for a similar analog function, each to

achieve certain advantages on some performance specifications like gain, bandwidth,

input range/output swing or noise. Therefore, it is very difficult to choose one circuit

topology that is suitable for all applications. However, there are a wide set of high-

level analog functions, like sample-and-hold, comparator, active-RC filters, that can

be realized using the same basic elements, namely, OPAMP (or OTA), resistors and

capacitors. In addition, some commonly used analog circuits bear great remembrance

to each other, like a fully differential input pair and a Gilbert cell, which make a

general configurable block for a large variety of applications possible.

 10

On the other hand, different analog function requires different circuit topologies

and element values. In addition, analog function can usually be implemented in both

continuous-time mode and switched-capacitor circuits. While most existing FPAAs

can only be used in either mode [1.20], CABs that are capable of implementing both

of them are usually desirable because customers will have more choices and then

higher chance to meet the design requirements. This demands an internal

configuration topology flexible enough to accommodate all target applications, while

highly efficient to not increase the chip area dramatically or introduce unacceptable

interconnect parasitics.

1.2.3 Routing Architecture

C
A

B

V
er

tic
al

 C
ha

nn
el

I/O Cell

Horizontal Channel Switch Module

Figure 1.6 Array-based FPAA routing architecture.

Routing architecture is as important as the circuit design. Usually, the global

routing architecture distributes the routing resources in the chip, and defines

parameters like array aspect ratio, center/edge capacity ratio and directional-biasing

CAB

programmable switches

Local interconnect

Global resources

Switch buffer

 11

ratio. The detailed routing architecture specifies the connectivity of each wire

segment and input/output pin. An conceptual array-based FPAA architecture is

depicted in Figure 1.6.

Unlike the custom analog system design, the routing resources in an FPAA are

prefabricated, and programming is realized by setting switches to make connections.

A good routing architecture is essential for high performance FPAAs because most

system performance degradation is due to routing rather than circuit, and most of the

area of an FPAA is devoted to routing [1.21]. Moreover, since interconnect does not

scale as well as transistors with process shrinks, the fraction of area and performance

degradation due to routing in FPAAs is increasing with each technology scaling

down. For high-frequency applications, the routing architecture is even important. It

would be impossible for high-bandwidth FPAAs to realize their full potential if the

routing delays and resource utilization were not handled well [1.22].

Due to the great difference in characteristics between analog and digital design,

existing routing architecture for FPGAs cannot be taken over for FPAAs without

major modifications. For example, they only consider topological parameters that

deal with routability issues, which are sufficient for FPGAs since digital circuit are

intrinsically robust to interconnect parasitics. However, for analog systems, the

electrical issues, such as RC delay, cross coupling, voltage dropping and matching

must be considered at the time of routing since they will greatly affect the overall

performance. For those reasons, routing architectures specifically designed for analog

systems are necessary.

 12

1.3 Contribution and Organization of This Dissertation

In this dissertation, we proposed a design methodology for high performance

FPAAs, targeting to facilitate hierarchical analog design approach while minimizing

the performance penalty caused by configuring and routing. Begin with channel

segmentation schemes aiming to improving routability and reduce interconnect

parasitics, we developed performance-driven segmented routing algorithms and

combined channel segmentation and buffer insertion algorithms to minimize

interconnect delay and cross-coupling. The obtained results are applied in the design

of a highly flexible CAB, and symmetrical routing channels for the analog array.

Effectiveness of our design is demonstrated through the implementation of an 8-bit

pipelined A/D converter running at 100 Mega-sample-per-second (MSPS).

The organization of this dissertation is as follows: Chapter 2 presents the channel

segmentation algorithms, both parametric and no-paramedic. Chapter 3 presents the

theory and implementation of a performance-driven segmented router for FPAAs.

Electrical performance enhancement in terms of RC delay and cross-coupling

deduction are investigated by buffer insertion in Chapter 4 and Chapter 5,

respectively. The CAB circuits and its internal routing architecture design were

described in Chapter 6. Finally, the implementation of the 8-bit pipelined A/D

converter was presented in Chapter 7, with its key performance specifications

discussed.

 13

Chapter 2

Channel Segmentation

One important feature of a routing architecture is its channel segmentation

scheme, which defines the lengths and locations of wire segments available in the

routing channel. Just as there is a choice of partitioning the circuits, there is also a

choice in partitioning the wiring scheme. A true hierarchical design would require a

routing channel with wire segments of variable lengths and staggering locations. As

shown in Figure 2.1, the channel segmentation schemes can be categorized into four

different models.

Non-staggered Uniform Length (NUL) Staggered Uniform Length (SUL)

Non-staggered Non-uniform Length (NNL) Staggered Non-uniform Length (SNL)

Figure 2.1 Different channel segmentation schemes

 14

Channel segmentation has been studied for FPGA for years [2.1], yielding a lot of

important results. However, it had never been considered for FPAAs because of the

unacceptable performance degradation caused by the high resistance and capacitance

associated with links offered by popular programming technologies. As shown in the

previous works [2.2], the number of segments/switches, instead of wire length, used

by a net is the most critical factor in determining the routing delay. The impact of

switches on the electrical behavior of the circuit may even change its function.

Therefore, almost all existing FPAAs employ crossbar routing channels that consist

of tracks running through the whole chip to avoid excessive switches. However,

MakeLinkTM technology, produces reliable, high quality, metal-to-metal links with

extremely low-impedance and therefore makes channel segmentation practically

attractive for FPAAs, especially for high bandwidth applications.

2.1 Introduction

Intuitively, there should be a strong correlation between the routing segmentation

and the actual net distribution. Routing tracks composed of long segments usually

have better performance because fewer switches in the signal path, but they also

result in lower routability and higher wire wastage. On the other hand, tracks

composed of short segments provide more flexibility and reduce the waste of wire,

but performance is usually sacrificed [2.3]. Similarly, the locations of segments with

respect to a net span are also very important in determining whether the net can be

routed optimally. It is therefore the main object in constructing a routing architecture

to match the channel segmentation scheme to the actual net distribution as closely as

possible. By choosing segments of appropriate lengths and positions, it has been

 15

clearly demonstrated that a well-segmented channel can greatly help the router to

achieve effectively high routability and resource utilization comparable to a freely

customized routing channel [2.4].

The rest of this chapter is organized as follows. Section 2.2 overviews the existing

channel segmentation algorithms and defines our problem. Section 2.3 and Section

2.4 present the parametric and the nonparametric channel segmentation algorithms,

respectively. Experiment results are presented in Section 2.5 and conclusions are

given in Section 2.6.

2.2 Prior work and our problem

A number of channel segmentation design for FPGAs have been examined in

many literatures. Zhu and Wong presented an algorithm for the channel segmentation

design problem based also on a stochastic analysis [2.5]. K. Roy and M. Mehendale

developed an algorithm which generates channel segmentation with fixed length

tracks to approximate a given segment length distribution [2.6]. Pedram et al.

presented an analytical model for the design and analysis of effective segmented

channel architectures [2.7]. And later W. K. Mak extended the problem to 2-D

symmetrical FPGAS [2.8]. Recently, Jai-Ming Ling et al. presented a unified

segmentation and routing design for array-based FPGAs [2.9].

Here we adopted the staggered, non-uniform length (SNL) segmentation model

[2.10] used by most researchers. The following notations are used in defining the

problem:

L: Length of a channel

 16

T: Total number of tracks in the channel

M: Maximum number of segments for routing a net

h(x,l): Probability of a net with length l originating at x

Our design problem is formulated as follows: Given L, T and h(x,l)c, design a

channel segmentation scheme that maximize success rate for M-segment routing

while minimizing the average interconnection parasitics.

2.3 Parametric channel segmentation

When the theoretical or empirical net distribution of the target application is used

in the channel design, a situation assumed by most existing channel segmentation

algorithms, we call it parametric channel segmentation.

2.3.1 Segment length selection

Like most of previous work, a channel is partitioned into several regions. The

tracks in the rth region are divided into segments of length Λr, also called type r

segments designated to route nets whose lengths fall in the range (MΛr-1, MΛr]

(assuming Λr-1<Λr). The segments are arranged in a staggered fashion to allow the

maximum flexibility of routing nets starting at different locations.

We adopted the One-segment length selection algorithm in [2.5] and extended it

to M-segment routing channels. For an arbitrary net length distribution f(l)=Σx h(x,l),

the Λr’s are determined as follows: We set ΛJ = L, and choose Λr, r = J-1, J-2, … one

by one as the largest value that satisfies

 17

ξ
1

11

11

)()(+
Λ

+Λ=

Λ

+Λ=

Λ
≥⋅ ∑∑

++
r

M

Ml

M

Ml

M
lfllf

r

r

r

r

 (2.1)

The parameter ξ is a constant greater than one and can be tuned to achieve the

best results. An example of this segment length selection result is shown in Figure

2.2.

2 4 7 11 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Net length

P
ro

ba
bi

lit
y

Segment selected

Original length distribution

Figure 2.2 Segment length selection from net length distribution

A few shortcomings of this length selection algorithm were identified in [2.5] and

a reconstruction procedure was suggested. However, during that procedure the short

segments need be combined with their neighbors and result in very irregular segment

lengths, which is not good for layout generation. A regular segmentation model where

each track is divided into segments of equal length was adopted in [2.8], however, the

 18

non-staggering nature of the channel will considerably limit the routability. Here we

retain the segment lengths generated by this algorithm, but improve the track

assignment by taking the staggering factors into account.

2.3.2 Track assignment

The number of tracks in each region should be proportional to the expected usage

of that type of segments. Since the segments in one track are actually placed one by

one, their originations (left ends) can only appear at multiples of the segment length.

Those nets originate from other points (called off-grid nets) may fail to be routed by

any track in their designated region, and require an extra track in regions containing

longer segments. To calculate the expected usage of tracks in region r, we consider

two cases similar to those described in [2.7] and introduce the staggering factors δ1

and δ2 to describe how much the off-grid situations are taken into consideration.

j-1 j j+1

net

δ
1
∆

r

∆
r

(a)

i-1 i i+1 i+2

net

δ
2
∆

r-1

∆r-1

(b)

Figure 2.3. Illustration of the staggering factors.

 19

The first case is those nets have length in the range (MΛr-1, MΛr] and can be

routed using tracks in region r. For a net with origination x in the range of [jΛr,

(j+ δ1)Λr] (0≤ δ1≤1), its length should be no more than (j+M) Λr – x, as illustrated in

Figure 2.3 (a) (M = 2). The expect number of tracks in region r for such nets is given

by

∑ ∑
Λ+

Λ=

−Λ+

+Λ= −

=
r

r

r

r

j

jx

xMj

Ml

r
j lxhn

)()(

1

1

1

),(
δ

 (2.2)

The second case is those nets have length in the range (MΛr-2, MΛr-1], but cannot

be routed using tracks in region r-1. For a net with origination x in the range of [iΛr-1,

(i+ δ2)Λr-1] (0≤ δ2≤1), its length should be more than (i+ 1) MΛr-1 – x, as illustrated in

Figure 2.3(b) (M = 2). The expect number of tracks in region r for such nets is given

by

∑ ∑
−

−

−

−−

Λ+

Λ=

Λ

+−Λ+Λ=

=
12

1

1

12

)(

1})(,{

),(
r

r

r

rr

i

ix

M

xMiMMaxl

r
i lxhm

δ

(2.3)

The total expected number of tracks for type r region is then given by the sum of

the maximum expected usage of both cases

r
i

L
i

r
j

L
j

r mMAXnMAXp rr 1/
0

1/
0

1−Λ
=

−Λ
=

−+= (2.4)

Note that when δ1=δ2=0, ∑
Λ

+Λ= −

Λ=
r

r

M

Ml
r

r
j ljhn

11

),(and 0=r
im , so pr is simply the

probability of a net length falling in the range (MΛr-1, MΛr].

 20

Once pr has been calculated for all r, the number of track allocated to region r is

allocated proportionally to pr. if there exist more than one track in a region, the tracks

are displaced with an offset evenly chosen in [0, Λr). An example of channel

segmented by this method is shown in Figure 2.4.

Region 1

Region 2

Region 3

Region 4

Region 5

Figure 2.4 An example of parametric channel segmentation.

2.4 Nonparametric channel segmentation

To determine Λj and Tj, the procedure above need a net distribution or a large set

of benchmark circuits, which however, as we mentioned before, is not always

available to FPAA designers. To meet this special situation, we propose a novel

channel segmentation scheme without the net distribution information.

 21

Given the channel length, L, we construct Λj as follows: Λ0 = L, Λ1 = λΛ0 +1,

where λ is the section coefficient, and x stands for the maximum integer that is less

than x. The other segment lengths are chosen by the formula

Λj = Λj-2 - Λj-1, j = 2, …, J, (2.5)

stopping at ΛJ = 0 or 1. Therefore, we have

L = Λ0 = Λ1 + Λ2 = 2Λ2 + Λ3 = 3Λ3 + 2Λ4

= F j+1 Λj + F j Λj+1 (2.6)

where Fj is the Fibonacci sequence that F0 = 0, F1 = 1 and Fj = Fj-1 + Fj-2, j = 2, 3, …

The jth region will then be constructed as follows:

The first group contains Tj tracks, each consisting of Fj+1 segments of length Λj,

and Fj segments of length Λj+1, from left to right; A new group is generated by a

circular right shift of the previous group, i.e., put its right-most segment to its left end.

This procedure stops when the new group is identical to the first group.

The procedure may result in uneven regions. Tj’s are used to adjust the region

width in favor of long or short segments, while ensuring the total number of tracks

constructed not exceeding the predefined maximum number of tracks.

A nice property of this construction procedure is it won’t produce unexpected

segment length, that is, tracks are always made of segments of pre-defined lengths.

This makes it easier to realize by commercial processes. An example when L = 16 is

 22

shown in Figure 2.5 (Λ0 = 16, Λ1 = 10, Λ2 = 6, Λ3 = 4, Λ4 = 2, Λ5 = 2, and Λ6 = 0. For

simplicity, Tj = 1 for all j)

Region 0

Region 1

Region 2

Region 3

Region 4

Region 5

Figure 2.5 An example of nonparametric channel segmentation

2.5 Experimental Results

In our experiments, the proposed parametric channel segmentation algorithm was

applied to six different net length distributions based on Geometric, Normal and

Poisson distributions, as listed in Table 2.1. It is assumed that the net left-end points

follow a uniform distribution, which is very close to reality as confirmed by empirical

studies [2.10]. We set the channel length L = 40, total number of tracks T = 20, and

compute the rate of successful routing completion for randomly generated routing

instances according to those distributions.

 23

Table 2.1 Net distributions used in the experiments.

 Ge1 Ge2 No1 No2 Po1 Po2
f(l) l6.0

4/6.0 l 20/2le−

120/2le−
 !2 ll

 !6 ll

First we investigated the effects of staggering factors δ1, δ2 on routability. We

chose three different value of δ1 (0, 0.4 and 1), and let δ2 vary from 0 to 1. For each

value of δ1, δ2, a segmented channel is constructed using the algorithm described in

Section 2.3. Five hundred routing instances, each containing 30 nets, were generated

randomly for each distribution. These were routed in the channels using the

segmented routing algorithm that will be described in Chapter 3.

The one-segment routing success rates for instances with distribution Ge1 are

shown in Figure 2.6. It is seen that the factor δ1 doesn’t have much effect on the

routing results, causing a variation on the success rate of less than 11%. However, the

choice on δ2 does make a huge difference. When δ2 is small, the success rate

increases rapidly with δ2 till it reaches a value around 0.5. After that, the success rate

becomes rather flat and even decreases for larger δ2. By choosing the δ2, the success

rate can be increase from about 10% to more than 95%, an order of magnitude. It can

be explained that when δ2 increases, more tracks are allocated to longer segments,

which are more useful than short segments for 1-segment routing. However, as more

tracks are assigned to long segments, the total number of segments decreases, which

cancels the benefits brought by longer segments and finally makes the success rate

drop.

 24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

Staggering factor δ2

δ
1
=0.0

δ
1
=0.4

δ
1
=1.0

Figure 2.6 The effects of δ1, δ2 on 1-segment routability for net distribution Ge1.

Experiments on other five net distributions revealed similar results. The one-

segment routing success rates for all six distributions are shown in Figure 2.7.

Although the significances of the effect of δ2 on the channel routability are different

for different net distributions, they exhibit almost the same trend. Interestingly, the

highest success rates are reached unanimously when δ2 is around 0.5, indicating an

optimum value rather independent on the actual net length distribution.

 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

Staggering factor δ2

Ge1
Ge2
No1
No2
Po1
Po2

Figure 2.7 The effects of δ2 on routability for one-segment routing.

The two-segment routing success rates for all six distributions are shown in

Figure 2.8. Since two-segment routing have more choices in choosing wire segments,

their success rates also increase with δ2, but less significantly compared to one-

segment routing. For the same reason, there seems no optimum δ2 for all net

distributions, while some value between 0.5 and 0.6 is still a good choice for most of

them.

 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 R
at

e
(%

)

Staggering factor δ2

Ge1
Ge2
No1
No2
Po1
Po2

Figure 2.8 The effects of δ2 on routability for two-segment routing

2.6 Conclusions

In this Chapter, we addressed problem of segmentation scheme in SNL routing

channel design. Multiple-segment length selection algorithm was derived from

existing one-segment algorithm, and a new track assignment algorithm was proposed

to calculate more accurately the actual demand on each type of segments.

Experimental results shown that, by choosing the proper staggering factors that take

the needs of off-grid nets into account, the channel routability can be increased by an

order of magnitude without increasing the channel area or number of tracks.

 27

Chapter 3

Segmented Routing

Aiming at the same goal, high routability and low performance degradation, the

efforts in FPAA designs are divided into two distinct but closely related approaches:

the routing architecture and the placement/routing tools. A well-designed architecture

could not attain its best performance without a corresponding CAD tools that can take

full advantage of it. On the other hand, a sophisticated and efficient CAD tool could

not improve the routing results if it has to deal with an architecture that does not

support its advanced features, just like a CPU and its operating system.

The development of routing architecture and routing algorithm bears some

analogy to the design of an automatic transportation system. The routing architecture

design is to construct the optimum road system, like planning beforehand where

should be a long freeway and where only a local one-way shortcut is needed,

according to the average traffic pattern in that system. It also need to decide how

these roads are connected to one another, their capacities and speed limits so routing

algorithm can properly estimate the congestion and delay. The main purpose of the

routing algorithm is helping the drivers to find the quickest path to their destinations

with the knowledge of the road conditions like the distance and speed limit of each

 28

road, the location of joints, as well as the current traffic conditions. A typical design

flow for FPAA implementations is shown in Figure 3.1.

Partition &
Optimization

Place the Circuit onto FPAA

Routing

netlist of CABs

Global Architecture
Description

Output result

Circuit Description

Detailed Architecture
Description

Target FPAA library

Figure 3.1 A typical FPAA design Flow.

3.1 Introduction

Once a circuit is partitioned into sub-blocks and placed, automatically or

manually, across several CABs in the FPAA, those nets broken in the partition

process need to be restored, which is the main task of the routing algorithm. By

assigning each net to a set of wire interconnects in the routing channel and setting the

proper switches, the router reinstates the connections and therefore the original

circuit.

 29

Unlike digital circuits, which are characterized by intrinsic robustness to parasitic

effects, analog systems usually suffer from interconnection parasitic. Since the

programmable switches introduce significant series resistance and capacitance,

existing FPAAs use single-segment routing channel that consists of crossbar tracks

running through the whole width of the chip to avoid excessive switches. A fast and

effective routing algorithm for this type of FPAAs was presented in [3.2]. However,

research indicates that a good channel-segmentation scheme will not only improve

the channel routability, but also enhance the system performance by reducing

interconnect parasitics [3.2].

Segmented routing algorithms have been studied extensively in the past two

decades. It has been shown that the segmented channel routing problem is in general

a NP-complete problem [3.4]. A routing structure with fixed orthogonal wire

segments is described in [3.5], and in [3.6] a global router for symmetrical-array-

based FPGAs was presented. Research results have shown that an efficient segmented

routing algorithm can achieve nearly the same results of free channel routing [3.7].

Most of the algorithms are routability-driven or timing-driven, which are sufficient

for digital systems. However, the factors that cause performance degradation to

analog systems are not limited to delays. Variations in cross-coupling capacitances

and stray resistances, for example, can dramatically degrade circuit performance or

even cause system instability. Therefore, the existing algorithms cannot be directly

applied to the FPAA routing without some major modifications. In this chapter, we

focus on the routing problem of FPAAs with segmented routing channels. The rest is

organized as follows. Section 3.2 describes the preliminaries of segmented routing.

 30

Section 3.3 presents our performance-driven analog segmented routing algorithm.

Experiments results are given in Section 3.4 and conclusions are given in Section 3.5.

3.2 Preliminaries

In this subsection, a summary of automated routing algorithms in current use is

given. One of the most important algorithms is Lee’s Maze router [3.8], of which

most of existing automated routing algorithms use some variations. Lee’s Maze router

is best illustrated by Figure 3.2. Its task is to find a shortest path from source node s to

target node t. First, grids defining where one wire can cross are marked by its relative

distance to the source. The search begins at the source, finding all the grids at

incremental distances until reaching the destination. This algorithm addresses the

problem in a manner consistent with wave propagation. With this procedure it is

guaranteed that the shortest path will be found.

Figure 3.2 Lee’s Maze router

A Maze router essentially consists of running Dijkstra’s algorithm [3.9], which

solves the single-source, shortest-path problem on a weighted, directed graph G =

 31

(V,E), for the case in which all edge weights are non-negative values, as presented

below:

Dijkstra(G,w,s)

1. for each u∈V[G] {

2. dist(s,u) = ∞;

3. pre(u) = NULL;}

4. dist(s,s) = 0;

5. Done = Φ;

6. Q = G;

7. while Q != Φ {

8. find u ∈ Q with min. dist(s,u);

9. Q = Q – {u};

10. for each v adjacent to u

11. if dist(s,v) > dist(s,u) + dist(u,v) {

12. dist(s,v)=dist(s,u)+dist(u,v);

13. pre[v] = u;}

14. Done = Done∪ {u};

15.}

Figure 3.3 Dijkstra algorithm

The searching strategy is very similar to the one used in Prim’s algorithm [3.9],

where a light edge is added at each step. The shortest path of a new vertex is

calculated, with respect to the existing, partially finished tree (net). This algorithm

applies a greedy strategy. The key to efficiently implementing Prim’s algorithm is to

make it easy to select a new edge to be added to the tree. During execution of the

algorithm, all vertices that are not in the partial tree (net) are stored in a priority

queue.

Prim (G,w,r)

 32

1. for each u∈V[G] {

2. do key [u] <- ∞;

3. p [u] <- NIL

4. key [u] <- 0

5. Q <- V[G];

6. Q = G;

7. while Q != Φ {

8. do u <- Extract Min (Q)

9. for each v ∈ Adj [u]

10. do if v ∈ Q and w (u, v) < key [u]

11. then p [v] <- u

12. key [v] <- w (u, v)

Figure 3.4 Prim algorithm

A pure routability-driven router may produce circuits with poor performance,

while pure performance-driven routing may result in an unroutable circuit. A efficient

way to balance these trade-offs is to incorporate costs into the routing, like the

pathfinder negotiated routing algorithm [3.10], which negotiates routing repeatedly

rips-up and re-routers every net in the circuit until all the congestions are eliminated.

During the first routing iteration, every net is routed for minimum cost, even if this

leads to congestion. The cost of overuse is increased after each iteration. The router

can determine how to arrange the routing resource, based on the cost of each vertex.

Consequently, if overuse exists at the end of a routing iteration, more iterations are

performed to resolve this congestion. The detailed algorithm is shown below:

RT(neti): a linked list used to store the set of vertices in the current routing of net i

While (overused resources exist && max iteration not exceeded) {

For (each net, i) {

 If RT is not empty then Rip-up existing RT(neti) and update p(n) ;

 Initialize RT to the source terminal;

 33

 For(each sink net i) {

 If PQ is not empty then free PQ and re-initialize PQ;

 Initialize PQ to RT;

 Mark all the vertices as un-reached by wave expansion;

 Initialize PriorityQueue to RT(neti) and set pathcost equal to the base cost of

 each vertex in RT;

 If this sink j is not foundd in RT(neti) {

 do {

 Dequeue PQ;

 For (all fanout vertices n of node m){

 If (this fan-out is not a PIN or PAD and un-reached during
previous wave expansion)

 add it to PQ & update pathcost(n) = pathcost(m) + cost(n);

 else if (this fanout is a sink)

 add it to a sink list;

 else continue wave expansion;

 }

 } while (no sink has been found); /* Wave expansion ends here */

 }

 if (more than one sinks are found during this wave expansion) {

 add those sinks and their parents to RT;

 update p(n) only if vertex n is not contained in RT;

 }

 for (all vertices in path from RT(i) to sink,j){ /* Backtrace from the linked list

 of sinks */

 Update p(n) only if vertex n is not contained in RT;

 Add n to RT(i);

 } /* Backtracing ends here */

 Update h(n) for all n;

} /*End of one iteration*/

Figure 3.5 The improved pathfinder negotiated routing algorithm

In addition to dealing with wire segments of various lengths, segmented routing

differs from serial routing algorithms like Maze and Pathfinder Negotiated, which

assume that the FPAA contains wire segments of only one length and find the routing

 34

path by wave propagation, in two aspects. First, all the wire segments required to

finishing routing a net are determined at the same time. Secondly, all nets in the

routing instance are routing simultaneously. Basically, the segment routing is a

weighted bipartite matching problem. , also known as the assignment problem. Since

assigning a net to each of wire segments available in the channel comes with a cost,

the routing algorithm tries to finish the assignment with the minimum total cost.

Figure 3.6 shows the concept of minimum-cost-bipartite-matching.

2
9 3

3

3
3

2
6

4

7

Figure 3.6 Minimum-cost-bipartite-matching

The weighted bipartite matching problem, can be solved by the primal-dual

method — called the Hungarian method, which solves a complete bipartite graph

with 2⋅|V| nodes in O(|V3|) arithmetic operations [3.11]. An example of channel

segmentation and matching-based routing is shown in Figure 3.7.

 35

(a)

1
2

3
4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

(b)

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

(c)

Figure 3.7 (a) A segmented channel with eight tracks (b) eighteen nets to be

assigned (c) minimum-cost routing results

3.3 Analog Segmented Routing

Analog routing aims at not only making the necessary connection, but also

minimizing the performance degradation caused by interconnect parasitics. In this

called performance-driven routing, the right choice of assigning cost function is

essential to achieve the routing results we want. In digital layouts, the dependence of

 36

electric performances on the details of physical implementation is limited to logic

functions and delay requirements. However, more performance specifications are

imposed on analog circuits. For example, the specifications for an operational

amplifier include power, area, gain-bandwidth, DC gain, phase margin, gain margin,

output range, common-mode input range, settling time, PSRR, CMRR, noise, input

and output impedance, slew rate, offset, harmonic distortion, and so forth, which

makes the definition of cost function much more complex in analog routing.

3.3.1 Parasitic Modeling

An accurate parasitic model is essential in define the cost function. Ideally highly

accurate performance estimation can be obtained with a circuit simulator like SPICE,

but the CPU time required to run SPICE on thousands of nets in a typical VLSI

circuit is prohibitive. Though a distributed transmission lines model is more accurate

for modern interconnection wires, most of existing literatures use the lumped RLC

models [3.12], which provide a good trade-off between accuracy and efficiency.

There are two types of parasitic resistance, serial resistance of the programmable

switches and metal wire resistance, which can be calculated by using the follow

equation:

Rw = R
�
L/W + RsM, (3.1)

where the first term stands for the wire resistance, R
�
 is the sheet resistance, in Ω/�,

L is the wire length and W is the wire width, while the second term stands for the

 37

switch resistance, Rs is the on-resistance of a single switch, and M is the number of

switches used in the path.

The typical interconnect capacitance at each node in a circuit is calculated using

the model shown in Figure 3.8. It consists of two conduction layers over the substrate,

considered as a reference plane (ground plane). There are three capacitance

components at any node [3.13]:

• Overlap capacitance between two wires in different layers (C21a and C23a), which

are proportional to the overlap area W⋅L

• Fringing capacitance between two wires in different layers (C21fr and C23fr), which

are proportional to the wire length L.

• Lateral capacitance between two wires in the same plane (C22lat), which are

proportional to the wire length L and inversely proportional to the wire spacing D.

C23fr C23a C23fr

C21fr C21a C21fr

C22lat

Lateral Capacitance

Overlap Capacitance

Substrate

Fringing Capacitance

C22lat

Figure 3.8 Interconnect capacitance model

 38

Interconnect inductance is much more complicated to extract than resistance or

capacitance because of the loop current definition of inductance. If the operating

frequency is not too high or the FPAA scale is not too large, the effect of parasitic

inductance can usually be neglected.

3.3.2 Performance Metrics

While the real impact of interconnect parasitics on the system performance cannot

be exactly evaluated until the system is finally configured, some metrics can be used

to assess the parasitics, and hence performance degradation during the routing

process. Since wire width and spacing are predetermined by the channel design, the

only thing the router considers is the segment length and their locations. We apply the

following metrics when evaluating the soundness of assigning net n to wire segments

available in the routing channel:

� Number of segments, denoted by M. If connection switches are needed to connect

multiple segments to enable the routing, the switches introduce extra resistance.

� Total segment length, defined as ∑
=

=
M

g
gslenS

1

)(, where len(sg) is the length of

segment sg. As indicated by the parasitic models, the interconnect parasitic and

cross-coupling are directly related to the length of the wire;

� Wire wastage ratio, defined as 1)()(),(
1

−=∑
=

nlenslentnU
M

g
g , where len(n) is the

length of net n. Since the unused portion of the wire segments presents as a

loading capacitance, this metric shows how much the channel routing results

deviates from a freely routed circuit.

 39

� Net Priority of net n, denoted by Np(n). Parasitics of the critical nets in the circuits

can be minimized by assigning them a relatively large weight costs compared to

non-critical nets.

In a performance-bounded routing [3.14], those metrics are limited by user-

defined bounds, which are set based on reasonable estimates of parasitic values

extracted from the layout. The router then actually enforces the parasitic constraints

during routing in order to maintain a satisfactory circuit performance. If the net’s

parasitic bound is violated, the net is ripped-up and the routing is retried. In a

performance-driven routing, those metrics are combined properly to reflect the

performance degradation caused by routing, and a routing result with the minimum

overall performance degradation is obtained.

3.3.3 Congestion avoidance

Since each routed net becoming an obstacle for subsequently nets, the routing

feasibility of subsequent nets can be increased significantly by avoiding the resources

that are potentially needed by other nets. We use the concept of resource demand to

help the router to be aware of the needs of future nets. The demand on a segment is

the number of nets that subscribe to it. By incorporating the demand for the segments

into the cost function, the router automatically chooses the segments with fewer

potential subscribers. This increases the chance of routing future nets successfully.

The initial segment demands are computed by routing each net independently as if

all routing resources are available. In the actual routing, the resource demand is

updated as follows: If the net avoided a segment that it initially subscribed to, the

 40

demand for that segment is decreased by one, or, if the net used a resource initially

not subscribed to, the demand for that segment is increased by one.

At first the effect of demand on assignment cost is chosen to be small, so the

router has more freedom to choose the best matching segments. If the circuit routing

failed, then the routing demand is restored to its initial value and retried with tighter

feasibility constraints by increasing its weight on the cost function, and hence

redefining the costs of all routing resources. This gradually forces the router to avoid

over-subscribed resources.

3.3.4 Cost function definition

The cost of allocating net n to M segments (s1 to sM) in track t is then defined as

β

α











•














⋅





















−⋅+⋅+=

∑

∑∑

=

==

m

g
g

p

M

g
g

M

g
g

sDemand

nNnlenslenwslenwMtnC

1

1
2

1
1

)(

)(1)()()(),(

(3.2)

where w1, w2, a and β are weighting factors. The object of the segment router is to

minimize the total allocation costs, which can be solved in polynomial time by a

weighted bipartite matching algorithm.

3.3.5 Grouped routing

Like the matching-based, timing-driven routing algorithm in [3.15], each time the

router takes a maximum clique, defined as the maximum set of nets overlapping each

other from the nets unassigned, and assign it to the wire segments left in the channel

 41

using the minimum cost matching algorithm. Unlike other algorithms that route nets

one by one, this algorithm utilizing routing resources more effectively.

3.4 Performance Constraints on the Routing

The goal of routing is not only to complete all the required connections without

congestion, but also to satisfy a set of performance constraints. For an FPGA/digital

circuit, performance is usually measured by clock speed or/and delay on the critical

path. However, for an FPAA/analog circuit, signal delay is not the only concern. The

system performance is usually measured by its bandwidth, gain, linearity etc. Routing

parasitics can affect the performance of analog system in many different ways. For

examples, in an OPAMP circuit, a small capacitive coupling may degrade the

frequency response due to the Miller effect. Sometimes, stray coupling which gives

rise to positive feedback may lead to oscillations. When a net travels a long distance,

the parasitic capacitance to ground can introduce an extra pole (for example, a pole

very close to the dominant pole) that may deteriorate the op amp’s stability.

The performance constraints (tolerable variation of gain, bandwidth etc.) imposed

on analog array are too abstract for the routing tools to handle directly and must be

converted to a set of routing constraints, i.e. interconnect parasitic constraints. Once

the routing constraints are met by the router, the performance constraints of the

analog circuit should also be satisfied. There are two major kinds of constraints,

namely, the bounding constraints and the matching constraints, as described below:

 42

3.4.1 Bounding Constraints

Bounding constraints can be further divided into two classes: loading constraints,

which are mainly the parasitic capacitance to ground and coupling constraints, which

are coupling capacitance among a set of sensitive nets. Capacitive coupling is present

whenever two nets have segments that cross or are parallel to each other. Thus, it can

be further classified by crossover constraints and adjacency constraints. For FPAA,

the adjacency constraints are the dominant factor because most of the capacitances

induced by crossover can only occur at the intersections of horizontal and vertical

channels.

3.4.2 Matching Constraints

Fully differential topology is frequently used in the FPAA circuit, which results in

an additional need for the interconnect parasitics associated with appropriate nodes or

branches to nominally match, for impedance matching and noise cancellation

purposes. The matching constraints require: (1) For impedance matching, the

capacitances to ground associated with each matched pair of nets should be equal; (2)

When a casual net (the net that does not have any constraints) is close to a matched

pair, the coupling capacitances between that casual net and the pair of matched nets

should match; (3) When two pairs of matched nets come close to each other, it is

necessary to match the direct coupling capacitances and cross-coupling capacitances.

Besides having symmetrical loading, this also ensures that equal levels of noise on the

two nodes of one matched pair causes the same on the other pair, if any coupling is

present.

 43

The performance-constrained routing problem can be then defined as follows:

Definition: For a set of performance functions {Wi}, i = 1, 2, . . .Nw and a set of

parasitics {pj}, j = 1, 2, . . . ,Np, The routing constraints on a subset of {pj} are

defined as:

• Matching constraint : pj = pk

• Bounding Constraint : pj ≤ pjbound

and they ensure: ∆Wi ≤ |∆W i,max|, where |∆Wi,max| is the maximally allowed

performance variation due to the parasitics.

3.4.3 Incorporating performance constraints using Lagrange multipliers

In mathematics, the Karush-Kuhn-Tucker conditions (also known as the Kuhn-

Tucker or the KKT conditions) are necessary for a solution in nonlinear programming

to be optimal. It is a generalization of method of Lagrange multipliers.

Considering the following nonlinear optimization problem:

minimize f(x)
subjected to gi(x) ≤ 0 (i = 1, …, m), hj(x) = 0 (j = 1, …, l) (3.3)

The necessary conditions for inequality constrained problem were first published

by W. Karush [3.16], and renowned by Harold W. Kuhn and Albert W. Tucker [3.17]

as:

Suppose that the objective function, i.e., the function to be minimized, is

RRf n →: and the constraint functions are RRg n
i →: and i. Further,

suppose they are continuously differentiable at a point x*. If x* is a local

minimum, then there exist constants λ ≥ 0, µi ≥ 0 (i = 1, …, m) and νj (j = 1, …,

l) such that

0
11

>++ ∑∑
==

l

j
j

m

i
i νµλ

 44

0)()()(*

11

** =∇+∇+∇ ∑∑
==

xhxgxf j

l

j
j

m

i
ii νµλ

0)(* =xgiiµ for all i = 1, …, m (3.4)

There are no analytical forms for the parasitics or cost functions, therefore it is

nearly impossible to obtain µi andνj in an optimum sense. In order to incorporate the

bounding constraints (pi - pjbound ≤ 0) and matching constraints (pj - pk = 0) into the

search of minimum assigning cost, net ordering is performed, then µi andνj are chosen

according to the severity of each assignment case. The cost function of each nets with

bounding constraint are increased by µi(pi - pjbound). Each pair of matching nets j and k

are routed at the same time, with extra assigning cost of νj(pj - pk)/2 for each of them.

The µ’s andν’s are initially chosen to be relatively large so that those constraints will

precede other assigning costs. The router then performs the weighted bipartite

matching on the updated cost matrix and finds the minimum-cost assignment with the

performance constraints enforced.

3.5 Conclusions

MakeLinkTM high performance programming technology has made segmented

routing practical for FPAAs. We have proposed a performance-driven segmented

router based on weighted bipartite matching algorithms. Performance metrics and

cost functions are proposed for analog routing to properly reflect the performance

degradation caused by interconnects. Resource demands are incorporated into the cost

to avoid congestion, and maximum clique routing are used to enhance effectiveness

in resource utilization. The next two chapters will discuss with more details on two

 45

important electrical performance of the routing channel, namely, RC delay and cross-

talk reduction.

 46

Chapter 4

Interconnection Delay Optimization

4.1 Introduction

One of the most perceptible performance degradation caused by routing parasitics

is the interconnection delay [4.1], which directly limits the signal and system

bandwidth. Existing routability-driven channel segmentation algorithms have paid

little consideration to it. This is acceptable for small scale FPAAs where the routing

channels are short enough not to impact the system performance severely. However,

as the scale of the FPAA grows, the interconnect delay becomes so significant that it

must be taken into account at the earliest stage. Research on minimizing

interconnection delays in array- based FPGAs shows that the routing architectures of

the chips, as well as the CAD tools dramatically affects speed-performance [4.2].

There are usually three techniques to reduce the delay of an existing topology:

transistor sizing, wire sizing and buffer insertion, which have been studied

extensively for free channel routings. The optimum transistor sizing, metal width and

metal spacing for programmable interconnect have been studied in [4.3]. Once the

channel area and number of tracks are given, the optimum metal width and spacing

 47

can be determined regardless the segmentation scheme. Therefore, in this Chapter we

focus on the buffer insertion technique, which can either directly reduce the RC delay

of a long wire or reduce the net delay by decoupling a large load off the critical path

[4.4].

The optimality of Van Ginneken’s dynamic programming algorithm [4.5] has

inspired numerous variants. Among them, theoretical results have been derived and

algorithm proposed for computing the optimum buffer insertion for fixed net trees

[4.6], when the library contains only a single, non-inverting buffer. However, routing

wires are pre-fabricated in the FPAAs, and then buffer insertions are made while the

net tree topology is still unknown. This makes it very difficult to find an overall

optimum buffer planning scheme for all circuits to be implemented. In this study, we

adopted a greedy approach by inserting the optimum number of buffers for each wire

segment in the channel. The lengths and staggering of the segments are chosen to

construct the segmentation scheme that requires the fewest buffers while satisfying

the delay constraints and routability requirement.

In this Chapter, we propose a design approach combining segmentation and buffer

insertion in each stage of the channel design, from segment length selection to track

assignment. Experiments show that, compared to a sequential segmenting-then-

buffering design, our approach can significantly reduce the total number of buffers

required, while achieving improved routability and maintaining the same average

interconnect delay. The rest of this Chapter is organized as follows. Section 4.2

overviews some preliminary results of buffer insertion and defines our problem.

Section 4.3 presents the combined channel segmentation and buffer insertion

 48

approach, while the experiment results are presented in Section 4.4 and conclusions

are given in Section 4.5.

4.2 Buffer insertion

Rso Csi

x y y

Figure 4.1 Placement of buffers for interconnection delay optimization.

We use the π-model for wire segments and the Elmore model [4.8] to compute the

RC delay, which preserves the property that the Elmore delay is the same for a given

wire no matter how the wire may be subdivided. For the buffer, we use a switch-level

RC model with input capacitance Cb, output resistance Rb and intrinsic delay Tb. Here

is a brief summary of the results of [4.6]:

Assuming a uniform-sized buffer, it has been proven that the optimal placement

of k buffers is to space them at equal increments except the first one, as shown in

Figure 4.1. Let xd be the distance between the source and the first buffer, and yd be the

distance between two consecutive buffers, Rso be the source resistance, Csi be the sink

capacitance, the Elmore delay caused by the interconnect is given by

 49

[]
()()

[] sibdd

bsibdd

bddbbdb

bddbdsodd

CRykxlRC

TRCCRykxl

CRyRCyTCCyRk

CRxRCxCCxRyxkD

+−−−+

++−−−+
++++−

++++=

2)1(

)1(

2)()1(

2)(),,(

2

2

2

 (4.1)

where k is the number of buffers inserted, l is the wire length, R and C is the unit

resistance and capacitance for the wire. The Elmore delay is minimized when








 −
+

−
−

+
=








 −
+

−
+

+
=

C

CC

R

RR
l

k
ky

C

CC

R

kRkR
l

k
kx

bsisob
d

bsisob
d

1

1
)(

1

1
)(

 (4.2)

and the optimized delay is given by

)1(2

)()(

1
))(()(

22
2

+

−−−−
++

+
+++++=

k
R

RRkC

C

CCkR
RCl

kT

k

RkRCkCClCkCRl
D

sobsib

b

sobsibsib
k

(4.3)

The optimum number of buffers for the wire is found to be









++−=

V

U
kopt

4
1

2

1

2

1

(4.4)

where

[]

)(
2

)()(2

bbb

bsobsi

CRKV
RC

RRCCCRRCl
U

+=

−+−+
=

(4.5)

 50

In a performance-constraint routing, it is usually preferable to have the

interconnect delay constrained by Dc. To find the minimum number of buffers, k(l),

to be inserted satisfying that constraint, from (4.3) we note that

V
k

U

k

U
DD kk −

+
−=−− 11

(4.6)

Assuming
optkc DD > , we have

[])(
11)(

12)(1)(1)()(

)(

lkkV
k

U

lk

U

DDDDDD

DDDD

opt
opt

kklklklklk

klkkc

optopt

optopt

−−
+

−
+

=

−++−+−=

−≥−

−+++ L

(4.7)

Solving for k(l) yields









−−=

V

U
Q

Q
lk

4

2

1

2
)(2

(4.8)

where
V

DD
k

kV

U
Q optkc

opt
opt

−
+++

+
=)1(

)1(
, U and V is given by (4.5). If

optkc DD ≤ , we set k(l) = kopt..

4.3 Combined segment length selection

For a combined buffer insertion and channel segmentation, to minimize the

number of buffers to be inserted, as well as the number of types of segments, Λr is

chosen as following

 51

{ }



Λ=ΛΛ
Λ=ΛΛ

=Λ +

elsekkMAX

kkif

rm

rrmrm
r)()(,

)()(1 (4.9)

where Λrm is the segment length given by the length selection algorithm defined by

equation (2.1). The working principle here is to reduce the designated net length

range to type r+1 segments, which requires more buffers than type r segments, by up-

shifting Λr to the longest segments that requires the same number of buffers as Λrm.

An example of this combined segment length selection algorithm is shown in Figure

2.2.

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Net length

P
ro

ba
bi

lit
y

Sequential Approach

Combined Approach

Figure 4.2 Combined segment length selection results

 52

4.4 Delay-driven routing

When minimizing the interconnection delay is the primary object, the cost

function of allocating net n to M segments (s1 to sM) in track t is then defined as

βα











•










⋅= ∑∑

==

m

g
gp

M

g
g sDemandnNsDelaytnC

11

)()()(),(

(4.10)

where Np(n) is the priority weight of net n, and Demand(sg) is the current demand on

segment sg, as defined in Chapter 3, and a and β are weighting factors. The object of

the segment router is to minimize the total interconnection delay, weighted by net

priorities.

4.5 Experimental Results

To evaluate the robustness of the proposed channel segmentation and buffer

insertion algorithm over different net distributions, we designed channels for six

different net length distributions based on geometric, normal and Poisson

distributions, the same as those used in Chapter 2. We evaluate the routability and the

average interconnection delay of the generated channels using randomly generated

routing instances according to these six distributions.

We set the channel length L = 20, total number of tracks T = 20. For proprietary

reasons, the electrical properties of the CMOS process we used are not disclosed here.

Instead, the parameters for buffer insertion are chosen from the 0.18µm technology in

NTRS’97 roadmap [2.10], which is quite close to those of the actual process: the unit

wire resistance R = 0.075Ω/µm and the unit wire capacitance C = 0.118fF/µm. The

 53

buffer output resistance Rb = 180Ω, the buffer input capacitance Cb = 23.4fF, the

intrinsic buffer delay Tb = 36.4ps. The source and sink of a wire are also assumed to

be a buffer. The unit length of the channel is assumed to be 100µm.

The total numbers of buffer inserted for one and two-segmentation are shown in

Figure 4.3 with respect to the channel staggering factors δ1 and δ2 defined in Chapter

2. It’s seen that larger δ2 generally results in more buffers because it means more

tracks are allocated to long segments. Since two-segmentation channels contain wire

segments much shorter than those in the one-segmentation channels, they also require

much less buffers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

T
ot

al
 n

um
be

r
of

 b
uf

fe
rs

 r
eq

ui
re

d

Staggering factor δ2

δ1=0.0

δ1=0.4

δ1=1.0

M = 1

M = 2

Figure 4.3 The effects of δ1, δ2 on buffer insertion

 54

Figure 4.4 shows the unit-length delays, which are the average net delay per one

logic block length. It’s seen that for one-segmentation the unit-length delay increases

with δ2, since longer segments usually results in larger delay. Note that in Chapter 2

we found out that a staggering factor δ2 greater than zero usually improves the

routability. Therefore, there exists a tradeoff between the channel routability and

interconnection delay for one-segmentation channels. On the contrary, the unit-length

delay actually decreases with δ2 for two-segmentation channels, because longer

segments reduce the usage of connection switches, which contribute a considerable

portion to the overall interconnect delays.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

14

16

18

20

22

24

26

U
ni

t-
le

ng
th

 d
el

ay
 (

ps
)

Staggering factor δ2

δ
1
=0.0

δ
1
=0.4

δ1
=1.0

M = 2

M = 1

Figure 4.4 The effects of δ1, δ2 on interconnect delay.

 55

Obviously the value of δ2 can be chosen to provide a tradeoff among routability,

speed and area costs. We use the metric σνγ −−= DKSA to evaluate the quality of

different channel segmentation and buffer insertion schemes, where S is the success

rate, K is the number of buffers required and D is the unit-length delay. The

parameters γ, ν and σ are used to trade off between routability and area/speed costs.

For γ = 3, ν = 1 and σ = 3 (i.e., routability and interconnection delay are more

important concerns than area increase), the experimental results for all six

distributions are given in Table 4.1. Over the simple case of δ1 = δ2 = 0, the optimized

channel segmentations have an average improvement of 66.5% (46.4%) on the

routing success rate, at the cost of an increase of 16.7 (12.7) on the number of buffers

and 1.8ps increase (4.1ps decrease) on the unit-length delay for one-segmentation

(two-segmentation) designs.

Table 4.2 shows the comparison results of the combined approach to a sequential,

i.e., buffer insertion after channel segmentation approach. It seen that the combined

approach can reduce the number of buffers by an average 13.7% (27.2%) and achieve

a 1.5% (2.4%) increase on the routing success rate, with only 0.4% (3.0%) increase

on the unit-length delay for one-segmentation (two-segmentation) designs.

 56

Table 4.1 Experimental results for all six net distributions

Optimized δ1 = δ2 = 0

S K D (ps) S K D (ps)

Ge1 86.4% 30 14.51 6.2% 11 12.41

Ge2 74.0% 69 12.91 39.8% 58 11.69

No1 65.0% 31 16.40 2.6% 9 14.30

No2 85.4% 71 13.87 27.0% 51 11.61

Po1 91.4% 14 15.12 4.8% 2 13.99

M=1

Po2 84.2% 55 12.73 7.2% 39 10.95

Ge1 98.4% 19 17.95 13.0% 2 22.91

Ge2 84.6% 43 19.16 62.8% 32 21.27

No1 76.4% 4 23.63 51.0% 0 25.82

No2 86.0% 37 19.98 59.2% 26 22.57

Po1 98.2% 0 25.11 38.2% 0 24.54

M=2

Po2 98.8% 42 16.70 39.6% 9 30.29

Table 4.2 Comparison with a sequential approach

M=1 M=2

∆S ∆K ∆D ∆S ∆K ∆D

Ge1 -3.6% -38.8% 5.4% -0.6% -60.4% 1.5%

Ge2 1.4% -8.0% -1.7% -12.2% -32.8% 7.3%

No1 5.5% -3.1% 2.0% 3.5% 0.0% -9.4%

No2 -3.2% -5.3% 0.2% -10.4% -32.7% 8.6%

Po1 0.0% 0.0% 0.0% 34.5% 0.0% -14.4%

Po2 9.1% -26.7% -3.4% -0.4% -37.3% 24.1%

Avg 1.5% -13.7% 0.4% 2.4% -27.2% 3.0%

 57

4.6 Conclusions

In this Chapter, we addressed the problem of minimizing the interconnection

delay of FPAA routing. A combined channel segmentation and buffer insertion

approach was proposed, and delay-driven analog routing developed. Staggering

factors are used to provide tradeoff among routability, interconnect delay and area

costs. Experiments show that the combined approach can significantly reduce the

total number of buffers required, while improving the routability and minimizing the

interconnect delay.

 58

Chapter 5

Cross-coupling Noise Deduction

5.1 Introduction

As modern IC processes scale to smaller size, wire spacing diminishes and coupling

capacitance increases. Furthermore, the thickness of the wires is increased to maintain

the same resistance per unit length, which increased the ratio of coupling to total

parasitic capacitance. As a result, crosstalk has become an increasingly important design

metric to timing, noise and area in VLSI designs. Analog systems are more susceptible

to noise distortion because of their continuous nature. The situation is made even worse

in a routing channel for FPAAs, where many wire segments are placed adjacent to one

another in parallel, as shown in Figure 5.1, while the spacing between them is stringently

limited by the available die area.

A number of works have been addressed on on-chip interconnect optimization

problem. Among the popular techniques, buffer insertion has gained wide acceptance in

deep submicron design. Closed form solution for computing the optimum number and

location of buffers that minimize the Elmore delay of a two-pin net has been found by

Alpert in [5.1]. Pioneering works on buffer block planning for interconnect-driven

 59

floorplanning were presented by Cong, Kong and Pan in [5.2], and by Sarkar et al in

[5.3], which compute the feasible regions of buffer insertion for timing optimization.

Figure 5.1 Wire segments in a FPAA routing channel

Various techniques have been proposed over the past few years on noise analysis and

avoidance. Since circuit simulation techniques, such as SPICE, are not suitable for a

physical design system due to the prohibitive computational cost, an effective noise

metric suitable for high level CAD tools is required. Vittal and Marek-Sadowska model

a coupled network as a simplified RC circuit and derived analytical expressions for noise

from the resultant circuit [5.6]. The recently proposed noise metric of Devgan [5.7]

considers circuit effects such as input slew rate, line resistance and coupling capacitance.

Its similarity to the Elmore delay metric is particularly amenable for use within a

physical design optimization tool. Using this metric, Alpert et al [5.1] presented buffer

insertion techniques for noise avoidance for single sink and multiple sink trees, and

simultaneous noise and delay optimization, while Li, Cherng and Chang proposed buffer

insertion at the floorplanning stage instead of routing and post-layout stages [5.5].

 60

Most of previous works on noise-avoiding buffer insertion are for digital signals,

where a buffer working as a restoring stage. If an intermediate buffer is present, the

noise computation begins from the output of that buffer, which is not the case for analog

buffering. An analog buffer will replicate exactly what it receives, and therefore cannot

distinguish the noise from the signal but pass it to the next stage. Instead, analog buffers

reduce coupling noise by breaking the long wire into pieces and then preventing the

downstream induced-current from adding noise to wire segments after it. Those

differences make the behavior of buffer insertion quite different from it in digital

systems. In this Chapter, we investigated noise and delay optimization by buffer

insertion for analog systems. Similarities between the noise metric and Elmore delay

model are exploited. Analytical results for both noise optimization alone and noise

constrained delay optimization are derived. The results are then applied to the design of

segmented routing channels for three different target net distributions. Experiments

show that coupling noise optimization alone can reduce the noise by 30%. Compared to

delay optimization only, the noise constrained delay optimization can eliminate the

coupling noise violation with only 8% increase on the number of buffers and a delay

performance penalty less than 4.5%.

The rest of this Chapter is organized as follows. Section 5.2 gives some preliminaries

and Section 5.3 presents the analysis of buffer insertion for noise optimization and noise

constrained delay optimization for analog signals. Analytical formulae are derived and

optimal buffer insertion algorithms are proposed. The results are then applied in the

design of a FPAA routing channel as described in Section 5.4. Experiment results are

given in Section 5.5 and conclusions are presented in Section 5.6.

 61

5.2 Preliminaries

The Devgan noise estimation metric, which depends on the victim net resistance, the

driving gate resistance, coupling capacitances to the aggressor nets and the slops of the

signals on the aggressor nets, is an upper-bound for RC and over-damped RLC circuits.

The preliminary results in [5.7] and [5.1] are repeated here.

C
1

C
2

C
3

C
4

C
5

Figure 5.2 Coupling noise due to multiple aggressor nets.

For a wire e coupled to t aggressor nets, as shown in Figure 5.2, let Ci be the

coupling capacitance from net i to wire e, and µi be the slopes (voltage changing rate) of

the signal on net i, the total current induced by the aggressor nets is given by

∑
=

=
t

i
iie CI

1

µ (5.1)

The coupling capacitance is proportional to the coupling length l i, and inversely

proportional to di, the distance between the aggressor and the victim,

iici ddlCC min= (5.2)

 62

where Cc is the coupling capacitance for unit length and spacing dmin, the minimum wire

distance specified by the design rule.

Often, information about neighboring aggressor nets is unavailable before routing.

To perform buffer insertion in an estimation mode, we assume µ as the slope for all

aggressor signals. In the worst case that the victim is fully coupled from both sides, and

the distance to be the minimum wire distance specified by the design rule, we have

e

t

i
ice IllCI == ∑

=1

µ (5.3)

where cCI µ2= is the unit length coupling current.

A path from the source node so to the sink node si may consist of multiple wires. For

a wire e = (u,v), let IT(v) be the total downsteam current seen at v. The total coupling

noise perceived at the sink si is given by

()∑
−∈

++=−
)(

)()(2)(
sisopathe

vTeesoTso IIRIRsisoNoise (5.4)

where Re is the resistance of wire e.

A buffer prevents the downstream induced-current from adding noise to wire

segments after it. If one buffer is inserted at each node in the path, the coupling noise

perceived at the sink si is reduced to

 ()∑
−∈

+=−
)(

2)(
sisopathe

eeeu IRIRsisoNoise (5.5)

where Ru is the buffer output resistance at node u.

 63

5.3 Buffer insertion

Since each wire segment can be viewed as a two-pin net, therefore, we first study the

noise optimization problem and the noise constrained delay optimization problem on a

two-pin net with fixed length, derive closed form formulae and then apply the results in

constructing the segmented routing channel.

In buffering planning for routing channel of FPAAs, there are usually two problems

similar to those in [5.1]. The first one is to find the optimum number and placement of

buffers to optimize the noise only, which is useful in handling non-critical nets. For

critical nets where delay optimization is necessary, the second problem formulation

seeks to minimize the delay while satisfying the noise constraint. We will discuss those

two problems in more details below.

5.3.1 Coupling noise constrained only

In Section II we see the Devgan noise metric works in analog buffering exactly the

same way as Elmore model for delays, by replacing C with I except that there are no

terms corresponding to Cb, Tb and Csi since buffer itself does not incur coupling current.

Most of the conclusions on delay optimization can be applied directly here. For example,

following the same arguments in [5.1], we conclude that the optimal placement of

buffers is to space them at equal increments except the first one. Let xn be the distance

between the source and the first buffer, and yn be the distance between two consecutive

buffers, the coupling noise perceived by the sink node is given by

 64

[]
[] [] 2)1()1(

2)1(2),,(
2

22

nnnnb

nnbnnsonn

ykxlRIykxlIR

RIyIyRkRIxIxRyxkN

−−−+−−−+

+−++=
 (5.6)

The optimum coupling noise by inserting k buffers for a given wire of length l is

achieved when








 −
−

+
=








 −
+

+
=

R

RR
l

k
ky

R

kRkR
l

k
kx

sob
n

sob
n

1

1
)(

1

1
)(

 (5.7)

and the optimized coupling noise is given by

1
2

)(

2
)(

)(

22

+

−
−++

=
k

R

RRkIRIl
RkRIl

kN

sob
sob

(5.8)

From (5.8) we note that

)1(
)()1(

+
=−−

kk

U
kNkN

(5.9)

where

[]
RI

RRIRIl
U bso

2

)(2−+
= (5.10)

Let N(0) be the coupling noise perceived by the sink node when no buffer is inserted,

we have

[] U
k

k
iNiNkNN

k

i 1
)()1()()0(

1 +
=−−=− ∑

=

 (5.11)

 65

which shows we can obtain a noise reduction of U/2 by inserting the first buffer. By

inserting more buffers, we can still get some more reduction on the coupling noise, but

less significant as the number of buffers increase. Eventually, U is the maximum

coupling noise reduction that can be achieved by buffer insertion.

From (5.8) we also have

IlRl
RI

N so+= 2

2
)0((5.12)

which increases as the square of the wire length l. The minimum coupling noise we can

achieve by inserting infinite buffers is given by

2

2
)0()(







 −
−=−=∞

R

RRRI
IlRUNN bso

b (5.13)

which is linear in terms of l. therefore, buffer insertion reduces the cross-talk by

decrease the order of the coupling noise with respect to the wire length. Practically, we

need only insert nine buffers to achieve 90% of the maximum reduction.

To find the minimum number of buffers, kn, to satisfy the noise constraint, N(kn) ≤

Nc, we have

cn NNkNN −≥−)0()()0((5.14)

Solving for kn yields

()







−−
−

=
C

C
n NNU

NN
k

)0(

)0(

(5.15)

 66

5.3.2 Delay optimization with noise constraint

This problem formulation integrates the delay into the solution, trying to minimize

the delay while satisfying the noise constraint. Since the optimal buffer placement for

both delay and noise optimization is to space them at equal increments except the first

one, this conclusion still applies here. Let k be the number of buffers to be inserted, x be

the distance between the source and the first buffer, and y be the distance between two

consecutive buffers, we first try to find a placement (x, y) that minimize D(k, x, y) while

N(k, x, y) ≤ Nc.

First, if N(k, xd(k), yd(k)) ≤ Nc , we already find the solution because (xd(k), yd(k)) is

optimum placement for delay. Otherwise, the optimal (x, y) can be found by Lagrange's

method as

0
),,(),,(=

∂
∂−

∂
∂

x

yxkN

x

yxkD λ

0
),,(),,(=

∂
∂−

∂
∂

y

yxkN

y

yxkD λ (5.16)

under the condition that

cNyxkN =),,((5.17)

From (5.16) we have

yyxkN

yyxkD

xyxkN

xyxkD

∂∂
∂∂=

∂∂
∂∂

),,(

),,(

),,(

),,(
 (5.18)

 67

which yields

() 0=






 −
+−−

R

RR
yxCC bso

sib (5.19)

When Csi = Cb, any (x, y) will satisfy (23). Also from (2) and (11) we see xn(k) =

xd(k), yn(k) = yd(k) when Csi = Cb, which means the same placement of buffers

simultaneously optimize the delay and coupling noise, that is also the optimum

placement for this problem.

When Csi ≠ Cb, we have

R

RR
xy bso −

+= (5.20)

Let y = yn(k) + ∆n, using Taylor’s expansion we have

2

2

)(
2

2

)(

)1(
2

2

1

))(),(,(),,()(

n

n

ky

n

ky

nnc

kk
RI

dy

Nd

dy

dN

kykxkNyxkNkNN

nn

∆+=

∆+∆=

−=−

 (5.21)

Note that (xd(k), yd(k)) and (xn(k), yn(k)) also satisfy (24), therefore those three points

are actually in a line on the XY plate. Since we know (x, y) must lie somewhere between

(xd(k), yd(k)) and (xn(k), yn(k)), we have

RIkk

kNNc
n)1(

)(
2

+
−

=∆ κ (5.22)

 68

where ()bsi CCsign −=κ .

Let y = yd(k) - κ∆d, we have

RIkk

kNN

Ck

CC cbsi
d)1(

)(
2

)1(+
−

−
+
−

=∆ (5.23)

When ∆d > 0, the optimum delay is given by

2

2

)(
2

2

)(

)(
2

12
)(

2

1
)()(













 −
−

+
⋅

−
+=

∆+∆+=

RI

kNN

k

k

C

CCRC
kD

dy

Nd

dy

dD
kDkD

cbsi

d

ky

d

ky

p

dd

κ
 (5.24)

When ∆d ≤ 0, which means N(k, xd(k), yd(k)) ≤ Nc , the optimum solution is (xd(k),

yd(k)) and the optimum delay is D(k). Note that dk ∆+)1(is a decreasing function of k.

Let

() 








−−−−
−

=
22 2)()0(

)0(

CCCRINNU

NN
k

bsiC

C
p (5.25)

(If () 22
0 2)(CCCRINNU bsiC −≤−− , kp = ∞), then for all k ≥ kp,

∆d ≤ 0. Compare

(5.25) and (5.15) we see that kp is always no less than kn, the minimum number of

buffers required to satisfy the noise constraint, which means the noise constraint is

satisfied for all k ≥ kp.

 69

When kp ≤ kd, the optimum number of buffers for delay optimization only, the case is

simple: we have kopt = kd. When kp > kd, the optimum k is the first one in the range [kn,

kp] which satisfies

0)()1(≥−+ kDkD pp (5.26)

which can be found by numerical methods. Figure 5.3 presents the algorithm, which

returns an optimal solution to the noise constrained delay optimization problem for a

two-pin net.

Algorithm : Buffer Insertion for Noise Constrained Delay
Optimization

Inpu t: { l, R, C0, Rso, Csi} ≡ two-pin net
 {Rb, Cb, Tb} ≡ buffer type
 {Cc, µ } ≡ coupling parameters
 Nc ≡ Coupling noise constraint
Output : k ≡ number of buffers
 {x, y} ≡ placement of buffers
C = C0 + 2Cc; I = 2µ Cc;
1. Compute the solution to delay optimization only, kd and {xd(k),

yd(k)}, from (4) and (2) respectively;

2. Compute the solution to noise optimization only, kn and {xn(k),
yn(k)}, from (5.15) and (5.7) respectively;

3. if Csi = Cb then
 k = MAX(kd, kn);

4. else
compute kp from (5.25);
if kp ≤ kd then k = kd;
else

find km in [kn, kp] which minimize Dp(k) defined by (5.24);
k = km;

5. x = xn(k) + ∆n; y = yn(k) + ∆n;

where ∆n are given by (5.22).

Figure 5.3 Algorithm for noise-constrained delay optimization.

 70

5.4 Experimental Results

The parameters for buffer insertion are chosen from the 0.18µm technology in

NTRS’97 roadmap [2.10]: the unit wire resistance R = 0.075Ω/µm, the unit plate wire

capacitance C0 = 0.118fF/µm and the coupling capacitance Cc = 0.09fF/µm. The buffer

output resistance Rb = 180Ω, the buffer input capacitance Cb = 23.4fF, the intrinsic

buffer delay Tb = 36.4ps. Same as [5.1], we assume a maximum aggressor voltage

changing rate of 7.2V/ns. Let N∞ be the limit on noise achievable by inserting buffers on

the longest wire segment, the noise constraint is set to be 1.3 times N∞.

The buffer insertion algorithms proposed in Section IV are used to obtain buffer

requirement information that are incorporated in designing channels for three different

net length distributions, namely, geometric, Poisson and bi-peak distributions, the same

as in Chapter 4. We set the channel length to be 40 analog blocks, each having a width

of 300µm. There are totally 40 tracks in each channel.

For each of the three channel constructed, we randomly generated 200 instances,

each with 50 nets using the target length distribution, and assigned them to the routing

segments in the channel. Table 5.1 and Table 5.2 show the number of buffers required,

average/maximum delay, average/maximum noise and the number of noise violation

detected for the case Csi = Cb (for example, the sink is also a buffer) and Csi = 10Cb,

respectively.

It is seen that though the average noise resulted by delay optimization may be lower

than the noise constraint, delay optimization alone cannot eliminate noise violations.

 71

Noise optimization alone can fix the violations with an increase of 10% on delay. Note

that it requires much less buffers than the delay optimization. The noise constrained

delay optimization requires an average 8% more buffers than delay optimization alone,

and cause a delay increase of only 0.06% on average and 4.5% maximum.

Table 5.1 Experimental results when Csi = Cb

Delay(ps) Noise (V)

Buffers Avg. Max. Avg. Max.

Noise

Viol.

Ch1 24 65.08 1151.8 0.25 4.01 18

Ch2 119 380.28 1151.8 1.43 4.01 1 Delay Opt only

Ch3 94 175.54 1151.8 0.66 4.01 11

Ch1 13 65.65 1202.7 0.26 3.53 0

Ch2 15 456.74 1202.7 1.93 3.53 0 Noise Opt. only

Ch3 14 191.98 1202.7 0.80 3.53 0

Ch1 28 65.17 1202.7 0.25 3.53 0

Ch2 123 380.28 1202.7 1.43 3.53 0
Noise Const.

Delay Opt.
Ch3 98 175.60 1202.7 0.66 3.53 0

Table 5.2 Experimental results when Csi = 10Cb

Delay(ps) Noise (V)

Buffers Avg. Max. Avg. Max.

Noise

Viol.

Ch1 81 213.45 1269.9 0.39 3.94 1

Ch2 222 547.52 1269.9 1.53 3.94 61
Delay

Opt
Ch3 198 284.20 1269.9 0.64 3.94 38

Ch1 14 227.91 1324.3 0.42 3.53 0

Ch2 122 661.87 1324.3 1.93 3.53 0
Noise

Opt.
Ch3 10 339.41 1324.3 0.79 3.53 0

 72

Ch1 85 213.45 1323.3 0.39 3.53 0

Ch2 266 548.03 1323.3 1.52 3.53 0
Noise Const.

Delay Opt.
Ch3 202 284.40 1323.3 0.64 3.53 0

5.5 Conclusions

Interconnect optimization is an important step in design of field programmable

devices. In this Chapter, we investigated the coupling noise avoidance problem for

analog signals using the Devgan noise metric. Analytical results of buffer insertion for

noise optimization and delay optimization with noise constraint for two-pin net are

derived, and applied in the design of routing channels for a field programmable analog

array. Experiments show that, compared to optimizing delay only, optimizing both the

noise and delay only causes increase of 8% on the number of buffers required and only

0.06% on the average interconnection delay.

 73

Chapter 6

Configurable Analog Block Design

6.1 Introduction

The design of the Configurable Analog Block the basic cell used in FPAAs, is

essential in the FPAA design. It is usually influenced by a number of factors,

including the class of circuits to be implemented, area-efficiency, routing resources

available and versatility requirements. There are several important choices need to

be made before the routing architecture can be determined. Those choices will

strongly influence the area, performance and variety of circuits that can prototyped

by the device, which are discussed in details below.

The first issue to be considered is the level of granularity. Fine-grained

architectures (reconfigured at the transistor level) will be versatile than a coarse-

grained architecture (reconfigured at a macro-block level. e.g. amplifiers), but also

require more routing resources and will have more switches in the signal path, which

prohibit them to realize high-complexity, high-speed circuits. Except in some

research on evolvable hardware [6.1], coarse-grained CABs are adopted by the

 74

majority of current commercial and academic FPAAs. Therefore, we chose to design

a coarse-grained CAB in our design.

The operation mode is also a key choice when design the CAB. Discrete-time

approaches, such as switched-capacitor circuit techniques, are more robust to noise

and offset and hence do not require the use of on-chip tuning circuitries. However,

such sampled-data techniques require that input signals be band-limited to at least

one-half the sampling frequency, and hence anti-aliasing and reconstruction filters

must be used. On the other hand, continuous-time circuits do not need band-limited

input signals, but are more sensitive to noise, mismatch and process variations. They

also require more complicated implementations to have circuit components

programmable over a large dynamic range. Existing FPAAs can only implement

circuits in either discrete-time mode or continuous-time mode. However, it is highly

desirable to have a CAB with the capability of implementing both kinds of circuits,

and therefore provide the customer more ways to optimize the system performance.

The signal parameter is another important choice: voltage or current. The simple

implementation of some operations (e.g., algebraic addition) and possible larger

linearity range with low power supply make current-mode circuits very attractive.

However, voltage-mode circuit techniques are well-developed, and voltage signals

have a high fanout. Moreover, discrete-time approaches such as switched-capacitor

circuits have been predominantly voltage mode. Based on those considerations, we

chose voltage as the signal parameter.

Other issues include whether to make the distinct CABs for different circuits, or

make them all identical but programmable to implement different functions. While

 75

some commercial devices designed for a targeted application have different CABs

for specific functions (like digital, analog and I/O), others and most academic

devices assume a uniform CAB structure, which was also considered in our study.

The rest of this chapter is organized as follows. Section 6.2 gives some literature

review of existing CAB topologies, and Section 6.3 presents our high flexibility

CAB and its internal routing architecture design. Routing channels with different

segmentation schemes are investigated, and experimental results are given in Section

6.4. The conclusions are presented in Section 6.5.

6.2 Existing CAB Topologies

Various topologies have been proposed for coarse-granularity CABs. Most of

them fall in either of the two categories: continuous-time mode and discrete-time

mode.

Lee and Gulak presented a CAB in there pioneering work on FPAAs [6.2],

where pass transistors controlled by SRAM based memory elements, were used as

the active switch elements that connected basic resources such as differential pairs,

current mirrors and transistors. A transconductor-Based FPAA described later [6.3]

consists of operational amplifiers and programmable capacitors linked by a

transconductor based interconnection array. A more general, continuous-time FPMA

prototype IC that allows analog and digital signals to be exchanged on-chip was

described in [6.4]. For CABs using other core building blocks, a CAB consisting of

the programmable OTA, capacitor and MOSFET switches was proposed in [6.9]. A

digitally controllable Gm-cell achieved by a set of binary weighted unit-

 76

transconductor is presented [6.10]. Recently, floating–gate pFET switches have been

explored to help FPAAs to enter the realm of large–scale reconfigurable devices

such as modern FPGAs [6.11]. Instead of using voltage as the signal parameter,

current-mode bipolar FPAA was presented in [6.5], [6.6], [6.7], [6.8], which

employed current-mode techniques to avoid the penalty of switches in the signal

path to achieve high performance.

CABs based on discrete-time approaches, such as switched-capacitor circuit

techniques have been announced by IMP [6.12], and many other researchers [6.13],

[6.14], [6.15], aimed at general-purpose signal conditioning tasks in medical,

industrial, or other instrumentation and control systems. Switch capacitor techniques

show good promise for further development for applications below 1MHz. The

technology is quite mature and well understood. However, inherent limitation exists.

Namely, switched capacitor technique is a sampled data technique which requires

continuous time filters for anti-aliasing and reconstruction. To minimize continuous

time filtering, it is usually required to have the switched-capacitor filter cutoff

frequency one order of magnitude lower than the sampling frequency. A similar

CAB using pulse-width modulated digital signals to convey analog signal

information between programmable analog cells is presented in [6.16], which faces

the same shortcoming.

6.3 High flexibility CAB design

As mentioned above, all existing CAB are designed to implement either

continuous-mode or discrete-mode circuits, and are usually optimized for certain

 77

kind of target circuits like filters. In each implementation, the allowable

configurations are usually very limited, so are the analog functions that can be

realized. To take advantages of both circuit techniques, a CAB that can be

configured to implement both continuous-time and switched-capacitor circuit is very

desirable, which essentially requires a high flexibility internal CAB routing

architecture allowing arbitrary connections of its components.

6.3.1 CAB Topology

Vyn

Vyp

Vxn

Vxp

Von

Vop

PCA

PRA

PRA

PCA

Figure 6.1 Illustration of a high flexibility CAB topology

In our study, a general routing approach was adopted in the internal CAB

topology. All terminals of the CAB components have access to a routing channel,

 78

which allows any two or more of them to be connected. The number of

configurations is limited only by the available routing resources, namely, the number

of routing tracks in the channel. Figure 6.1 shows an Illustration of a high flexibility

CAB.

6.3.2 Components

Though the resources available in a CAB vary widely between different devices

commercially available and those still in research, it usually contains an operational

amplifier (or an operational transconductor), some passive elements like

programmable capacitor arrays (PCAs) and programmable resistor arrays (PRAs),

plus a set of pass transistor switches if switched-capacitor circuit techniques are to

be utilized.

Operational Amplifier

The ideal operational amplifier is one with high gain and bandwidth, a wide

dynamic range, a low power dissipation and good power supply rejection ratio. A

fully differential configuration is desired because it is less susceptible to common-

mode/coupling noise, providing larger output swing and better linearity by reducing

even-order harmonics. The OPAMP used in out design features a telescopic

cascoding input stage that can work alone as a high speed OTA or preamp, and a

detachable Class AB second stage for resistive load, larger output swing and slew

rate. Its schematic is shown in Figure 6.2

 79

Vcmfb Vbp1

Vbp2

Vbn2 Vbn2

Vxn Vxp

Vbn1

Vbp1

Vbp2

Vbn2

VynVyp

Vbn1 Vbn1

VopVon

Figure 6.2 Schematic of the differential OPAMP

Programmable capacitor array

Usually PCA are made of capacitors adding in parallel, each of which must have

a capacitance significantly larger than the parasitic capacitance associated with the

substrate and interconnect. Therefore, PCAs usually occupy a large amount of area

of the CAB. The way to realize a PCA with 4-bits precision by 31 equal parts is

shown in Figure 6.3.

8X 4X 2X 1X

8

8

8

8

4

4

8

8

2

-

4

8

1

2

4

8

Figure 6.3 Layout of a PCA with 4-bit precision

 80

Programmable resistor array

Various methods may be used to implement programmable resistors, including

the use of polysilicon resistors switched into circuits, complementary MOS

transistor pairs with controlled gate voltages and more complex transistor

implementations of programmable resistive elements such as MOS transconductors.

Controllable switches

In order to realized dynamic circuits like sample-and-hold, and to facilitate the

implementation of switched-capacitor circuits, pass-transistors or transmission gates

are included not for configuring the circuits, but as routable components themselves

whose terminals can be connected to other components to form the circuit wanted.

6.3.3 Symmetrical CAB

There are some other considerations that need to be taken care of in designing

the routing channel. The first one is symmetry. To take full advantage of the

differential OPAMP in combating common-mode noise, a totally symmetrical

routing structure between the differential input and output terminals of the OPAMP

is used. Considering the fact that input signals to those two terminals are usually

independent to each other in a fully differential circuit topology, the routing

channels can be divided in to two identical branches, which ensure the symmetry

while reducing the area cost by half. Since some global nets like the reference

voltages that need to access both branches, global nets are provides which are

usually long lines. The improved CAB diagram is shown in Figure 6.4.

 81

Differential OPAMP

Vop

Vxp

Vxn

Von

Vyp

Vyn

PCA

PRA

PCA

PRA

Global nets

Figure 6.4 Diagram of a symmetrical CAB

6.3.4 CAB layout

The layout of the whole CAB is shown in Figure 6.5. The digital portion (latch,

inverter and buffers) are confined in the upper comer and surrounded by guard ring.

The programmable resistor arrays are placed under the routing channel.

 82

AmpCore

Programmable
Capacitor Array

Latch, Delay buffer

Routing
Channels

Figure 6.5 Layout of the CAB

6.4 Channel Segmentation

The main design problem in this universal CAB routing architecture is obviously

the channel design. We compare three channel segmentation schemes in this study.

One is used by almost all existing FPAAs, where the channel consists of long tracks

running through the whole chip. We called it single segment scheme. The other

scheme is widely used by FPGAs, where the channels consist of unit-length

segments (only connecting two neighboring terminals), and connection switches are

needed to route longer nets. The third is a staggered non-uniformly segmented

 83

channel generated by the algorithm described in Chapter 2, where the net

distribution was obtained empirically.

To save the silicon area, we always want to design a routing channel with the

minimum length and width while satisfying the requirements. By limiting the

components to one differential OPAMP, one programmable capacitor array and six

controllable switches for each input branch, we need a channel length of 23. In a

trade off between the flexibility and area cost, a channel width of 8 was chosen. The

three channels are shown in Figure 6.6.

SNL Channel

Unit-length Channel

Crossbar Channel

Figure 6.6 Three channel segmentation schemes

 84

6.5 Experimental results

The improvements of SNL channel on routability over crosbar channel have

been investigated in Chapter 1 and 2. It’s effectiveness in reducing parasitic

capacitance and cross-coupling was also studied in Chapter 3 and 4. Here we show

the improvements of SNL channel on performance of real circuits in terms of

accuracy and speed. The test vehicle is a switched-capacitor circuit block called

multiplying DAC (MDAC) shown in Figure 6.7.

S S
-

CLK1 CLK1 CLK2 CLK1

S S
-

CLK1 CLK1 CLK2 CLK1

Cs Cf

Cs Cf

OPAMP

V
yn

V
yp

V
xp

V
yn

V
on

V
op

Vcmrf

Vref+ Vref-

Vin+

Vin-

Vout+

Vout-

Vcm

Figure 6.7 Schematic of the MDAC circuit

During phase 1, the bottom plates of both the sample capacitor Cs and the

feedback capacitor Cf are connected to the input, while the OPAMP is in a unit-gain

setting, which provides input-offset cancellation. In phase 2, the bottom plate of the

 85

Cf is connected to the OPAMP output, while the bottom plate of the Cs is connected

the DAC input, Vref+ or Vref- determined by S and S . Ideally the output of the MDAC

at the end of CLK2 will be

() () ()−+−+−+ −⋅−−−













+=− refref

f

s
inin

f

s
outout VV

C

C
SSVV

C

C
VV 1 (6.1)

A simulation result is shown in Figure 6.8.

40 50 60 70 80 90 100 110 120 130

-600

-400

-200

0

200

400

600

Time (ns)

V
ol

ta
ge

 (
m

v)

Input

Tracking
Output

Figure 6.8 MDAC output waveforms

To implement this circuit, two capacitors and six pass-transistors are required for

each of the differential input. There are seven nets to be routed for each input

branch. The routing results for the three channels described above are shown in

Figure 6.9.

 86

1

2

3

4
5

6

7

SNL Channel

1

2
3

4
5

6
7

Unit-length Channel

1

2

3

4
5

6
7

Crossbar Channel

Figure 6.9 Channel routing results of the MDAC circuits

First, we compared the accuracy of the MDAC with clock frequency of 50MHz

and a 3MHz sinusoid wave as the input. The output errors and corresponding bits of

accuracy of 24 samplings are shown in Figure 6.10. As a reference, the output errors

and bits of accuracy with schematic are also given, in which no effects of

interconnect parasitics were taken in to account, and therefore stands for the best

 87

performance of any channel segmentation scheme can ever achieve. It is seen that a

unit-length channel results in the biggest performance degradation, with an average

output error of 9.02mv, corresponding to only 7.36 bits of accuracy, which is

expected because the large number of connection switches it requires introduce

significant series resistance. The crossbar channel performs no better, with an

average output error of 7.65mv and 7.80 bits of accuracy. The SNL channel achieves

an average output error of 3.78mv and 8.90 bits of accuracy, which is only 5%

degradation to schematic results.

2 4 6 8 10 12 14 16 18 20 22 24

-10

0

10

Sample

E
rr

or
 (

m
v)

2 4 6 8 10 12 14 16 18 20 22 24

6

8

10

12

Sample

B
its

 o
f

A
cc

ur
ac

y

2 4 6 8 10 12 14 16 18 20 22 24

-10

0

10

Sample

E
rr

or
 (

m
v)

2 4 6 8 10 12 14 16 18 20 22 24

6

8

10

12

Sample

B
its

 o
f

A
cc

ur
ac

y

Ideal channel Crossbar Channel

 88

2 4 6 8 10 12 14 16 18 20 22 24

-10

0

10

Sample

E
rr

or
 (

m
v)

2 4 6 8 10 12 14 16 18 20 22 24

6

8

10

12

Sample

B
its

 o
f

A
cc

ur
ac

y

2 4 6 8 10 12 14 16 18 20 22 24

-10

0

10

Sample

E
rr

or
 (

m
v)

2 4 6 8 10 12 14 16 18 20 22 24

6

8

10

12

Sample

B
its

 o
f

A
cc

ur
ac

y

Unit-length Channel SNL Channel

Figure 6.10 MDAC accuracy with various routing channel

With increased input signal frequency, the interconnect parasitics degrade the

performance more because of the sampling jitter. The accuracy of the three MDAC

implementations with respect to the frequency of the input sinusoid signal is given

in Figure 6.11. Once again we see that a unit-length channel yields the worst

performance because the larger RC delay worsen the sampling jitter. And as the

input frequency increases, the degradation becomes more obvious. SNL channel

remains one bit more accurate than the single segment channel for input frequency

up to (larger than the Nyquist frequency). Beyond that, their difference diminishes

because the sampling jitter dominates the output error.

 89

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

Input Frequency (MHz)

O
ut

pu
t

E
rr

or
 (

m
v)

Ideal Channel

SNL Channel

Crossbar Channel

UnitLength Channel

0 5 10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

Input Frequency (MHz)

B
its

 o
f

A
cc

ur
ac

y

Figure 6.11 MDAC accuracy with respect to input frequency (50MHz Clock)

The speed performance of the three MDAC implementations was found by

varying the clock frequency. The results are given in Figure 6.12. It shows that for

the whole clock frequency range, the SNL channel remains approximately one bit

more accurate than the single-segment channel, which is one bit more accurate than

the unit-length channel. Interestingly, the simulation results show that the SNL

channel performs even better than pure schematic at high clock frequencies. This

phenomenon can be explained as follows: the parasitic capacitance loads the

OPAMP and reduces its phase margin, and therefore causes overshooting at the

output. When the clock is so fast that the sampling ends before the output reaches its

settling value the first time, this overshooting actually helps to improve its accuracy.

 90

50 55 60 65 70 75 80 85 90 95 100
0

10

20

30

40

50

CLK Frequency (MHz)

A
ve

ra
ge

 E
rr

or
 (

m
v)

Ideal Channel

SNL Channel

Crossbar Channel

UnitLength Channel

50 55 60 65 70 75 80 85 90 95 100
5.5

6

6.5

7

7.5

8

8.5

CLK Frequency (MHz)

B
its

 o
f

A
cc

ur
ac

y

Figure 6.12 MDAC accuracy with respect to clock frequency (3MHz input)

6.6 Conclusions

As one of the essential parts of the high-performance FPAA, a highly flexible

CAB designated to implement both continuous-time and discrete-time circuits is

proposed. Containing a configurable two-stage differential OPAMP, programmable

passive elements and controllable switches, the CAB can implement various high-

level analog functions, like sample-and-hold amplifier, comparator, precision

amplifier and first-order filters. An internal routing architecture enables arbitrary

connections among all its components, while the total number of configuration

limited only by the routing resources available. To reduce the effects of interconnect

 91

parasitics, channel segmentation techniques described in previous chapters are

applied in designing the routing channel. The results show that a proper channel

segmentation scheme is shown the achieve significantly less performance

degradation than those commonly used in existing FPAAs or FPGAs, while

requiring much less routing resources and processing efforts.

 92

Chapter 7

Hierarchical Implementation of An 8-bit

Pipelined A/D Converter

7.1 Introduction

Providing the link between the real analog world and digital signal processing

and data storage, analog-to-digital conversion is one of the most widely needed

analog functions. High-speed A/D converters find applications in digital

oscilloscopes [7.1], disk drive read channel [7.2] and wireless communication

systems [7.3], while high-resolution A/D converters enable digital audio [7.4] and

video-imaging systems [7.5].

There are different ADC architectures targeting at different applications, each

has its own advantages and disadvantages [7.6]. While the low-sampling-rate, high-

resolution applications are still the domain of successive approximation register

(SAR) and integrating architectures (more recently oversampling/sigma-delta

ADCs), and the high-sampling-rate (Giga sample per second or higher) but low

resolution are still obtained using flash ADCs and their variants, it is safe to say that

pipelined ADCs of various forms have become the most popular ADC architecture

for anything between them [7.7], with sampling rates from a few MSPS up to

 93

several hundred MSPS [7.8], and resolutions from 8 bits up to 16 bits [7.9], covering

a wide range of applications including CCD imaging, ultrasonic medical imaging,

digital communications, digital video, xDSL, cable modem and fast Ethernet.

The rest of this chapter is organized as follows. Section 7.2 provides some

preliminaries on pipelined A/D converters, and Section 7.3 describes the detailed

hierarchical design flow, including circuit partition, CAB configuration, sub-block

placement and routing. Experimental results are presented in Section 7.4, focusing

on the impacts of routing parasitics on the static and dynamic performance of the

ADC. The conclusions are given in Section 7.5.

7.2 Pipeline A/D Converter

A typical block diagram of a pipeline A/D converter is shown in Figure 7.1. It

consists of a cascade of N identical stages. Each stage samples the output of the

previous stage and quantizes it coarsely into B+1 bits (effective per-stage resolution

is B, and one extra bit is used foe digital correction). The quantized signal is then

converted back to analog signal using a DAC and subtracted from the sampled

signal. The residue is amplified by the interstage amplifier with a factor of 2B and

fed to the subsequent stage. The same procedure is repeated by each stage down

along the pipeline to finish the whole conversion, yielding a total resolution of N⋅B

bits. All the bits corresponding to the same sample are time-aligned with shift

registers before being fed to the digital-error-correction logic. Since the S/H function

in each stage allows all stages to operate concurrently, the pipelined ADC achieves a

throughput of one output per clock cycle, with a latency of N clock cycles.

 94

Vin Stage 0

B+1

Stage 1

B+1

Stage 2

B+1

Stage N-2

B+1

Stage N-1

B+1

Time Alignment & Digital Error Correction

N⋅B

S&H Σ
+

-

×2B

Coarse ADC DAC

B+1

Figure 7.1 Diagram of a pipelined A/D converter

Depending on how many bits each stage resolves and the number of bits in the

LSB flash ADC, there can be many variations of pipelined ADC. The partition of

bits per stage is determined in part by the targeting speed and resolution. In general,

higher-speed CMOS pipelined ADCs tend to favor a lower number of bits per stage

because it is difficult to realize wideband amplifier of very high gain. On the

contrary, lower-speed CMOS pipelined ADCs tend to favor more bits per stage,

which reduce the accuracy requirement of the coarse flash ADC in each stage and

results in less latency. To maximize the interstage amplifier bandwidth, the

dominant limiting factor of the conversion speed, a resolution of 1.5 bits per stage

[7.10] (i.e., 2 decision levels) is chosen in this pipeline implementation, which also

allows a correction range for comparator offsets up to ±VREF /4 and eliminate a

dedicated front-end S/H circuit [7.11].

 95

7.3 Implementation of One Stage

The objective of partition is transforming the circuit to be implemented into an

interconnection of components of the given target library with a minimum covering

cost. In the case of 1.5-bit per stage, the flash ADC section is just two comparator,

and the DAC is simply a multiplexing of voltages +VREF and -VREF, controlled by the

comparator output S. In practice, a single switched-capacitor circuit block called

multiplying DAC (MDAC), as shown in Figure 7.2, performs the functions of

sample-and-hold, subtraction and interstage amplification. The circuit was already

presented in Chapter 6 as a test vehicle of the CAB, and its working principles and

implementation was described there too.

S&H Σ
+

-

×2

Coarse ADC DAC

1.5

MDAC

V
Ref

V
in

b
0

b
1

V
out

 96

B1 B1

CLK1 CLK1 CLK2 CLK1

CLK2

B0 B0

CLK1 CLK1 CLK2 CLK1

CLK2

Cs Cf

Cs Cf

OPAMP

V
yn

V
yp

V
xp

Vyn

V
on

V
op

V
cmrf

Vref+ Vref-

Vin+

Vin-

Vout+

Vout-

Vcm

Figure 7.2 Schematic of the MDAC circuit

The coarse ADC in each stage is a flash ADC comprised of two comparators.

Figure 7.3 shows the circuit of a high-speed latched comparator with offset

cancellation. It consists of a preamplifier followed by a track-and-latch stage. The

preamplifier typically has some gain to improve the resolution, but usually no

greater than 10 because the time constant would be too large and the speed is

limited. It can be simply a unit-gain buffer if very high speed but only moderate

resolution is required [7.12]. The preamplifier also prevents kickback, the charge

transfer either into or out of the inputs when the track-and-latch stage goes from

track mode to latch mode, caused by the charge needed to turn the transistors in the

positive-feedback circuitry on and turn the transistors in the tracking circuitry off.

Without the preamplifier, this kickback will enter the driving circuitry and causes

very larger glitches.

 97

1.5 bit ADC

COMP
Vth

Vin

b-

b

COMP
Vth

Vin

b-

b

Vin

Vref/4

-Vref/4

B1

B0

CLK2 CLK1 CLK1 CLK1 CLK1

CLK2 CLK1 CLK1 V
gn

V
gp

CLK1PreAMP

V
yn

Vyp

Vxp

Vyn

Von

Vop

Vcmrf

V
op

V
on

V
in+

V
in-

V
ref+

V
ref-

V
cm

V
gp

V
gn

Figure 7.3 Schematic of the comparator

7.4 Placement and Routing

The objective of the placement is assigning each sub-circuit to a CAB in the

FPAA, ensuring no overlap, as well as 100% routability and minimum performance

degradation. Usually the placement should work closely with the routing. In case the

routing results are unsatisfactory, the placement maybe rearranged and rerouted.

 98

Automatic placement algorithm for VLSI synthesis has been studied extensively

[7.13] and will be a good topic of our future study, but is beyond the scope of this

work. The sub-circuit placement is quite straightforward here and hence done

manually. Each stage of the ADC is conveniently placed into three CABs near to

each other, and the stages are placed one by one following the signal flowing path.

The whole 8-bit ADC is partitioned and placed into a 6×4 array of CABs, as shown

in Figure 7.4, where the expected connections are made with dashed lines. For

simplicity, differential signals are represented by a single line, and global nets like

power supplies and biases are not shown.

The input to the router is a netlist of CABs, which describes how the terminals

should be connected. The format of a netlist used in this work is described as

follows:

• A terminal is represented as a three-component vector that defines its

coordinates in the array: [row, column, pin].

• A net is a connection with multiple terminals. It will be represented as a

series of terminals. For example, [1 2 3; 1 3 3; 1 4 3] represents a net that

connects three terminals.

There are totally 19 nets in our placement of the circuit to be routed, and the

netlist of CABs is given as

net 1. [6 1 1; 3 1 1;2 2 1;5 2 1;6 3 1; 3 3 1;2 4 1;5 4 1] % Vref/4

net 2. [5 1 1; 2 1 1;1 2 1;4 2 1;5 3 1; 2 3 1;2 4 1;4 4 1] % -
Vref/4

net 3. [4 1 1;1 1 1;3 2 1;6 2 1;4 3 1;1 3 1;3 4 1;6 4 1] % Vref

net 4. [6 1 2;5 1 2;4 1 2] % input

net 5. [6 1 3;4 1 4] [5 1 3;4 1 3] %comparator output

net 6. [4 1 5;3 1 2;2 1 2;1 1 2] % stage2 input

 99

net 7. [3 1 3;1 1 4] [2 1 3;1 1 3] %comparator output

net 8. [1 1 5;1 2 2;2 2 2;3 2 2] % stage3 input

net 9. [1 2 3;3 2 3] [2 2 3;3 2 4] %comparator output

net 10. [3 2 5;4 2 2;5 2 2;6 2 2] % stage4 input

net 11. [4 2 3;6 2 3] [5 2 3;6 2 4] %comparator output

net 12. [6 2 5;4 3 2;5 3 2;6 3 2] % stage5 input

net 13. [6 3 3;4 3 4] [5 3 3;4 3 3] %comparator output

net 14. [4 3 5;3 3 2;2 3 2;1 3 2] % stage6 input

net 15. [3 3 3;1 3 4] [2 3 3;1 3 3] %comparator output

net 16. [1 3 5;1 4 2;2 4 2;3 4 2] % stage7 input

net 17. [1 4 3;3 4 3] [2 4 3;3 4 4] %comparator output

net 18. [3 4 5;4 4 2;5 4 2;6 4 2] % stage8 input

net 19. [4 4 3;6 4 3] [5 4 3;6 4 4]} %comparator output;

The routing result with a crossbar routing channel is shown in Figure 7.5, where

the routing segments run through the whole length and width of the array. The used

routing segments are plotted as solid lines, while the unoccupied resources are

plotted as dotted lines. A solid circle at the intersection of two tracks means they are

connected by the router. It shows a minimum of nine tracks per channel for this

architecture are required to complete the routing. Most of the time a short

connection is forced to use a long line, which not only results in ineffective resource

utilization but also deteriorates the performance, because the unused portion of the

segment presents as a loading capacitance and increases cross-coupling.

The routing result with a segmented channel is shown in Figure 7.6. It is seen

that without increasing the number of switches, the routing can be completed with

only six tracks, while the wire wastage and the chance of cross-coupling are also

greatly reduced.

 100

MDAC
VRef

Vin

b0

b1

Vout

COMP
Vth

Vin

b
MDAC

VRef

Vin

b0

b1

Vout

COMP
Vth

Vin

b

COMP
Vth

Vin

b
COMP

Vth

Vin

b
COMP

Vth

Vin

b
COMP

Vth

Vin

b

COMP
Vth

Vin

b
MDAC

VRef

Vin

b0

b1

Vout

COMP
Vth

Vin

b
MDAC

VRef

Vin

b0

b1

Vout

MDAC
VRef

Vin

b0

b1

Vout

COMP
Vth

Vin

b
MDAC

VRef

Vin

b0

b1

Vout

COMP
Vth

Vin

b

COMP
Vth

Vin

b
COMP

Vth

Vin

b
COMP

Vth

Vin

b
COMP

Vth

Vin

b

COMP
Vth

Vin

b
MDAC

VRef

Vin

b0

b1

Vout

COMP
Vth

Vin

b
MDAC

VRef

Vin

b0

b1

Vout

1/4VRef

-1/4VRef

VRef

Vin

Figure 7.4 Placement of the 8-bit A/D converter

 101

MDAC
VRef

Vin
b0

b1

Vout

COMP
Vth

Vin

b
MDAC

VRef

Vin
b0

b1

Vout

COMP
Vth

Vin

b

COMP
V

th

Vin

b
COMP

V
th

Vin

b
COMP

V
th

Vin

b
COMP

V
th

Vin

b

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

MDACV
Ref

Vin
b

0

b1

V
out

COMPV
th

Vin

b
MDACV
Ref

Vin
b

0

b1

V
out

COMPV
th

Vin

b

COMP
Vth

Vin

b
COMP

Vth

Vin

b
COMP

Vth

Vin

b
COMP

Vth

Vin

b

COMP
V

th

Vin

b
MDAC

V
Ref

Vin
b

0

b1

Vout

COMP
V

th

Vin

b
MDAC

V
Ref

Vin
b

0

b1

Vout

Figure 7.5 Routing results with crossbar channels

 102

MDAC
V

Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b

COMP
V

th

V
in

b
COMP

V
th

V
in

b
COMP

V
th

V
in

b
COMP

V
th

V
in

b

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

MDAC
V

Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b

COMP
V

th

V
in

b
COMP

V
th

V
in

b
COMP

V
th

V
in

b
COMP

V
th

V
in

b

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

COMP
V

th

V
in

b
MDAC

V
Ref

V
in

b
0

b
1

V
out

Figure 7.6 Routing results with segmented channels

 103

7.5 Experimental results

To investigate the performance penalty caused by the routing interconnections,

the whole array was laid out and the interconnect parasitics were extracted, while a

programmed switch is simply modeled as a single via between metals. In our

experiments, three ADCs are implemented, using the crossbar, unit-length and a

segmented routing channel, respectively. Figure 7.7 shows the layout of the ADC

chip.

S
tage 1

S
tage 2

S
tage 3

S
tage 4

S
tage 5

S
tage 6

S
tage 7

S
tage 8

Figure 7.7 Pipelined ADC: Chip Layout

 104

7.5.1 ADC static accuracy specifications

The absolute accuracy of an A/D converter includes the offset, gain and linearity

errors. The relative accuracy is the accuracy after the offset and gain errors have

been removed. It is also referred to as the integral non-linearity (INL), which is

defined to be the deviation of the output signal from a straight line drawn through

zero and full scale. A conservative measure of non-linearity is to use the endpoints

of the converter’s transfer response to define the straight line, while an alternative

definition is to find the best-fit line such that the maximum difference is minimized.

The best straight-line approach is generally preferred, because it produces better

results. The INL specification is measured after both static offset and gain errors

have been nullified, and can be described as follows:

() DVVVINL LSBzeroD −−= , (7.1)

where 0 < D < 2N-1 is the digital output code, N is the ADC's resolution, VD is the

analog value represented by D, Vzero is the minimum analog input corresponding to

an all-zero output code, and VLSB is the ideal spacing for two adjacent output codes.

If the maximum INL error is less than 0.5 LSB, the A/D converter is guaranteed not

to have any missing codes [7.6].

Another term, differential non-linearity (DNL) is defined as the variation in

analog step sizes away from 1 LSB. DNL is specified after the static gain error has

been removed. It is defined as follows:

() 11 −−= + LSBDD VVVDNL , (7.2)

 105

where 0 < D < 2N-2. Similarly, an A/D converter is guaranteed not to have any

missing codes if its maximum DNL error is less than 1 LSB. In Figure 7.8 the

transfer curve of an 8-bit A/D converter is shown. The drawn line shows the ideal

transfer characteristic, while a dashed line indicates the measured transfer curve of a

practical converter. LNL and DNL are shown partly as a function of the LSB error

between the drawn line and the dashed line.

Figure 7.8 Transfer curve of an 8-bit A/D converter

In the applications where it is necessary to distinguish the slight difference

between adjacent values like color densities in imaging processing, DNL is the

important measurement of linearity. However, in an application in which widely

varying parameters like speed must be continuously monitored, INL is usually more

important. INL and DNL can be measured with either a quasi-DC voltage ramp or a

low-frequency sine wave as the input [7.14]. A simple DC (ramp) test can

 106

incorporate a logic analyzer, a high-accuracy DAC (optional), and a high-precision

DC source for sweeping the input range of the device under test (DUT).

There are many factors in defining INL and DNL of an pipelined ADC. The

following are the dominant ones:

• Reference voltage variations: As the ADC output is the ratio between the analog

signal voltage and the reference voltage, any variation or noise on the analog

reference will cause a change in the converted digital value. As the comparators

are placed all around the FPAA, it is essential to make sure the IR drops caused

by the routing wires are low enough, or at least the reference voltage at all

blocks are affected in the same direction. It’s also important to keep the wire

track used to route reference voltage far away from the quasi-digital nets like the

comparator outputs to avoid excessive switching noises.

• Non-ideal OPAMP: Limited gain, CMRR and PSRR of the OPAMP cause

conversion errors at each stage of the pipelined ADC, and therefore need to be

optimized. OPAMP non-linearity generates harmonics which directly add to the

non-linearity of the ADC. In the aspect of routing, unbalanced input/output

loading deteriorates it and therefore need to be avoided as long as possible.

• Routing parasitic resistance and capacitance: The impedance of the analog signal

source or series resistance between source and pin will cause a voltage drop

across it because of current flowing into the pin. When there is parasitic

resistance in series, the sampling time for each stage will be changed, which is

not uniform across the chip and contribute to non-linearity too. The parasitic

capacitance will not allow the sampling capacitor to be charged to exactly to the

 107

input. If the analog input signal varies, the sampling errors at different stages are

non-uniform either and increase the DNL and INL of the ADC. Therefore, a

router minimizes the routing parasitics naturally gain better INL and DNL

performance.

• Signal cross-talk: cross-talk between nets cause changes in the input level and

timing in an obviously no-linear way. A router with cross-coupling noise

deduction will possibly improve the linearity of the ADC as well.

For comparison, the simulation results of INL of the 8-bit ADCs implemented

using those three routing channels are plotted in Figure 7.9, at a sampling rate of

50MSPS. Also plotted is the results of an ideal routing channels (the interconnect

parasitics are not extracted in the simulation). It is seen that while the ideal routing

channel will yield a maximum INL less than 0.5 LSB, which guarantees the

monotonicity, the interconnect parasitics in other three channels results in larger INL

and therefore worse linearity. Among them, the conventional crossbar routing

channel results in a maximum INL about 2.5 LSB, which may exclude it from many

high-linearity applications. However, a segmented channel can reduce the

maximum INL to about 0.8 LSB, meeting specification for most applications on an

8-bit ADC.

The DNL of the ADCs implemented with different routing channels are plotted

in Figure 7.10, which also demonstrates the effectiveness of the segmented channel

in reducing parasitics over the crossbar channel. It is seen that a segmented channel

not lonely reduces the maximum value of the DNL but also reduces the frequency

when DNL is greater than 0.5 LSB.

 108

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Output Code

IN
L

(L
S

B
)

Ideal Channel

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Output Code

IN
L

(L
S

B
)

Crossbar Channel

 109

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Output Code

IN
L

(L
S

B
)

Unit-length Channel

0 50 100 150 200 250
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Output Code

IN
L

(L
S

B
)

Segmented Channel

Figure 7.9 INL error plot of three implementations at 50MSPS

 110

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Output Code

D
N

L
(L

S
B

)

Ideal Channel

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Output Code

D
N

L
(L

S
B

)

Segmented Channel

 111

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Output Code

D
N

L
(L

S
B

)

Crossbar Channel

0 50 100 150 200 250
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Output Code

D
N

L
(L

S
B

)

Unit-length Channel

Figure 7.10 DNL error plot of three implementations at 50MSPS

 112

The above plots may indicate that the unit-length routing channel is comparable

to a segmented channel in accuracy performance. However, since a unit-length

channel requires much more connection switches in the signal path, its processing

cost is much higher while the system reliability is significantly lower because each

switch setting does come with a failure rate, though extremely small. Moreover,

though the series resistance of the connection switches implemented by the

MakelinkTM technology is very low, and therefore doesn’t cause significant

degradation at low frequency, its impact on the system performance will be revealed

at high frequencies. The INL and DNL performance of the three channels with

respect to the sampling rate is plotted in Figure 7.11. It shows that as the clock

frequency increases, the improvement of segmented channel over the unit-length

channel become more obvious. When the clock frequency is quite high, the DNL

performance of the unit-length channel is even worse than that of the crossbar

channel.

 113

45 50 55 60 65 70 75 80

2

4

6

8

10

12

14

16

Clock Frequency (MSPS)

M
ax

im
um

 I
N

L
(L

S
B

)

Ideal Channel

Segmented Channel
Crossbar Channel

UnitLength Channel

(a)

45 50 55 60 65 70 75 80

2

4

6

8

10

12

14

16

18

20

22

Clock Frequency (MSPS)

M
ax

im
um

 D
N

L
(L

S
B

)

Ideal Channel

SNL Channel
Crossbar Channel

UnitLength Channel

(b)

Figure 7.11 (a) INL and (b) DNL versus sampling rate

 114

7.5.2 ADC dynamic accuracy specifications

While the DC-specifications are for the static linearity, dynamic specifications of

A/D converters give a better insight into the applicability of a converter in a high

frequency system, where linearity and spectral purity are essential. Popular

specifications for quantifying ADC dynamic performance are signal-to-noise ratio

(SNR), total harmonic distortion (THD) and spurious free dynamic range (SFDR).

The quantization process introduces an irreversible error, which sets the limit for

the dynamic range of an A/D converter. Assuming that the quantization error of an

ADC is evenly distributed, the SNR for a single-tone sinusoidal signal can be

obtained to be

()dBNSNR 76.102.6 += (7.3)

Any nonlinearity in an A/D converter creates harmonic distortion. In differential

implementations, the even order distortion components are ideally canceled.

However, the cancellation is not perfect if any mismatch or asymmetry is present.

The THD describes the degradation of the signal-to-distortion ratio caused by the

harmonic distortion. By definition, it can be expressed as an absolute value with

()
()in

N

j in

fP

fjP
THD

d∑ =
⋅

= 2
 (7.4)

Where Nd is the number of harmonics to be considered, and P(f) is the power

spectrum density of the ADC output at frequency f. When large oversampling ratios

are used and the spectral purity of the ADC is important, like wireless

 115

telecommunication applications, a proper specification is the ratio between the

powers of the signal component and the largest spurious component within a certain

frequency band. The SFDR is usually expressed in dBc as

()
()spur

in

fP

fP
SFDR log10⋅= (7.5)

For an exact SFDR definition, the power level of the fundamental signal relative to

the full-scale must also be given. Normally the limiting factor of the SFDR in ADCs

is harmonic distortion. In most situations, the SFDR should be larger than the signal-

to-noise ratio of the converter [7.15].

A more realistic figure of merit for an ADC is the signal-to-noise and distortion

ratio (SINAD), which is the ratio of the signal energy to the total error energy

including all spurs and harmonics. SINAD is determined by employing the sine-fit

test, in which a sinusoidal signal is fitted to a measured data and the errors between

the ideal and real signal are integrated to get the total power of noise and distortion

[7.16]. Effective number of bits (ENOB) is defined as

dB

dBSINAD
ENOB

02.6

76.1−= (7.6)

And the effective resolution bandwidth (ERB) is defined as the maximum analog

frequency for which the ENOB is 1/2 LSB lower with respect to the theoretical

value.

The spectral outputs of the four ADCs with 100 KHz sinusoidal input and 50

MSPS clock is plotted in Unit-length Channel

 116

Figure 7.12. It shows that an ideal routing channel achieves an ENOB of 7.77

bits, but the parasitics associated with non-ideal routing channel reduces it from that

value. Compared to a crossbar channel, the segmented channel improves the SNR by

2.4 dB, while reducing the THD by 3.2 dB, and therefore achieves a 0.5 bit higher

ENOB. The segmented channel also achieves a 3.55 dB higher SFDR.

0 5 10 15 20 25
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

dB

SNR = 49.34dB

THD = 56.19dB

SINAD = 48.52dB

ENOB = 7.77bit

SFDR = 59.66dB

Ideal Channel

 117

0 5 10 15 20 25
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

dB

SNR = 48.66dB

THD = 47.17dB

SINAD = 44.84dB

ENOB = 7.16bit

SFDR = 48.19dB

Segmented Channel

0 5 10 15 20 25
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

dB

SNR = 46.26dB

THD = 43.97dB

SINAD = 41.96dB

ENOB = 6.68bit

SFDR = 44.64dB

Crossbar Channel

 118

0 5 10 15 20 25
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

dB

SNR = 47.87dB

THD = 46.66dB

SINAD = 44.21dB

ENOB = 7.05bit

SFDR = 47.66dB

Unit-length Channel

Figure 7.12 FFT plot of the ADC output (Fin = 100 KHz, Fs = 50MSPS)

The ENOB of the ADCs versus input frequency (50 MSPS) is plotted in Figure

7.13. While he plot shows that the ac performance of all ADCs degrades due to

sampling uncertainties caused by high-frequency distortion, the ADC implemented

using the segmented channel maintains a higher ENOB over ADCs implemented

with other two channels over a wide range of input signal bandwidth. It also has the

widest ERB of 11MHz. At very high input frequency, the interconnect parasitics on

longer dominates the noise and distortion, and the ENOB of all ADCs deteriorates

rapidly and falls to about the same level without regards to which routing channel

they are implemented with.

 119

10
5

10
6

10
7

5

5.5

6

6.5

7

7.5

Input Frequency (Hz)

E
N

O
B

 (
bi

ts
)

Ideal Channel

Segmented Channel

Crossbar Channel

UnitLength Channel

Figure 7.13 ENOB versus input frequency (50 MSPS)

The ENOB of the ADCs versus clock frequency (with 3MHz input frequency) is

plotted in Figure 7.14. Unlike the previous plot, it shows that the impact of

interconnect parasitics become more obvious as the clock frequency increases, since

the loading capacitance and series resistance directly affect the settling time of the

OPAMP. Since the crossbar channel introduces the largest interconnect capacitance,

the ADC implemented with it has the worst performance. At low frequencies, the

ADC implemented with the unit-length channel performs about the same as that

implemented with the segmented channel, but become inferior at high frequencies

due to its high interconnection series resistance.

 120

45 50 55 60 65 70 75 80

5

5.5

6

6.5

7

7.5

Clock Frequency (MSPS)

E
N

O
B

 (
bi

ts
)

Ideal Channel

Segmented Channel

Crossbar Channel

UnitLength Channel

Figure 7.14 ENOB versus clock frequency (with 3MHz input)

7.6 Conclusions

In this Chapter, an example of hierarchical analog system design is presented.

An 8-bit pipelined ADC is implemented using the FPAA developed. The design

flow (circuit partition, placement, routing and post-layout simulation) are illustrated,

and detailed configurations of the CABs to realize sub-circuits like the MDAC and

comparators are described. The key performance (static and dynamic) of the ADCs

implemented with different routing channels are compared and discussed. The

results show that a well designed routing architecture can not only greatly improves

 121

the routability but also reduce the interconnect parasitics and therefore the

performance degradation.

 122

Chapter 8

Conclusions and Future Work

In this dissertation, design methodologies of high-performance FPAA for

hierarchical implementation of analog and mixed-signal systems are examined. Key

aspects like programming technology, routing architecture optimization, analog

performance-driven routing, flexible CAB circuit and topology are addressed in

details. The main contributions of this work can be summarized as follows:

1. Innovative programming technology, laser MakelinkTM is used to minimize the

non-ideality of programmable switches. Providing metal-to-metal links with

extremely low resistance and negligible capacitance, it is the enabling technology

of configurable analog devices with high-performance, which will be severely

limited by popular programming technologies like SRAM-controlled pass

transistor used in configurable digital devices.

2. Channel Segmentation schemes are investigated to improve the routability while

reducing interconnect parasitics and cross-talk. Compared to the crossbar routing

channel employed by the majority of existing academic and commercial FPAA

devices, a well segmented routing channel consisting of wire segments of various

lengths and staggering locations can better match the actual net distribution, and

 123

therefore allow more nets to be routed without increasing the channel area, or

require less channel area at the same capacity At the same time, since a better

matched routing greatly reduces wire wastage, which causes unnecessary parasitic

capacitance and cross-coupling, a segmented channel is shown to significantly

reduce interconnect parasitics and then enhance both the speed and accuracy of

the system.

3. In large scale arrays where long connections are expected, the channel

segmentation alone cannot guarantee the interconnect delays and cross-couplings

are within the performance bound. Buffer insertion algorithms are studied for

several scenarios, namely, delay optimization, cross-coupling noise optimization

and noise-constrained delay optimization. Analytical results are derived for a

single net, and combined channel segmentation and buffer insertion algorithms

are proposed for each scenario.

4. A high-flexibility CAB is built using a fully differential internal routing

architecture. Consisting of an high-gain, high bandwidth two-stage OPAMP,

whose second stage is detachable, programmable capacitor array and resistor

array, and controllable pass-transistors, the coarse-granulized CAB can realized a

wide range of commonly used analog functions like sample-and-hold,

comparator, precise gain amplifier and analog filters, in both continuous-time

mode and switched-capacitor circuits.

5. As a demonstration, an 8-bit pipelined A/D Converter is hierarchically

implemented via the proposed FPAA. Detailed design flow is described, including

circuit partition, sub-block placement and routing results. Key performances of

 124

the ADCs implemented with different routing architectures are presented and

discussed.

However, for FPAAs to play more vigorously in analog design automation, and

eventually achieve a similar role as FPGAs in the digital world, the work done in this

dissertation is still in the infant stage. The following work is expected to be continued

in the future:

1. Analog IP Library Development: To properly drive the off-chip load, various

application specific circuit functions at a higher design level should be added into

the IP module library as the pre-qualified design for the end users. Those may

include but not limited to: ADCs, PLLs, high-order filters, control circuits and I/O

block

2. Automatic circuit partition and placement, which takes the block-level signal flow

diagram or even the design descriptions and specifications as the input, chooses

the necessary modules from the IP library with proper parameters, and place them

in the CABs available in the device.

3. High-level Design Methodology: Instead of a traditional bottom-up design, a top-

down process can be employed. Design entry can start from description languages

like Verilog-A or AHDL. The overall system performance can be estimated at the

early design stage thus preventing the risk of insufficient design or over-design.

 125

References

[1.1] Cofler, A.M., et al., “A reprogrammable EDGE baseband and multimedia

handset SoC with 6-mbit embedded DRAM,” IEEE Journal of Solid-State

Circuits, vol. 41, pp. 97 – 106, January 2006.

[1.2] “Innovation for WiMAX Fixed Wireless Broadband Platforms,”

http://www.intel.com/network/connectivity/products/wireless/prowireless_5

116.htm

[1.3] Okamoto, K., et al., “A fully integrated 0.13 µm CMOS mixed-signal SoC

for DVD player applications,” IEEE Journal of Solid-State Circuits, vol. 38,

pp. 1981 – 1991, November 2003.

[1.4] Behzad Razavi, Design of analog CMOS integrated circuits, McGraw-Hill,

2001

[1.5] John V. Oldfield and Richard C. Dorf, Field-programmable gate arrays:

reconfigurable logic for rapid prototyping and implementation of digital

systems, John Wiley & Sons, 1995

[1.6] Carley, L.R., et al., “Synthesis tools for Mixed-Signal ICs: progress on

frontend and backend strategies,” Design Automation Conference 1996, pp.

298 – 303

 126

[1.7] Geert Van der Plas and Georges Gielen, A Computer-Aided Design and

Synthesis Environment for Analog Integrated Circuits, Kluwer Academic

Publishers, 2002

[1.8] Nicolas Williams, Facing the challenges in analog design,

http://www.eet.com/news/design/showArticle.jhtml?articleID=181502541

[1.9] E. K. F. Lee and P. G. Gulak, “A CMOS field programmable analog array,”

IEEE Journal of Solid-State Circuits, vol. 26, pp. 1860–1867, December

1991.

[1.10] R. T. Edwards, K. Strohbehn and S. E. Jaskulek, “A Field-Programmable

Mixed-Signal Array Architecture Using Antifuse Interconnects,” ISCAS

2000, pp. 319-322

[1.11] Bogdan Pankiewicz, et al., “A Field Programmable Analog Array for CMOS

Continuous-Time OTA-C Filter Applications,” IEEE Journal of Solid-State

Circuits, vol. 37, pp. 125-136, February 2002.

[1.12] “MPAA020 Field Programmable Analog Array Datasheet,” Motorola, 1997.

[1.13] “New Dimensions in ISP Programmable Analog Circuit,” Lattice

Semiconductor Corp., Hillsboro, OR, 1999.

[1.14] The AN10E40 Field Programmable Analog Array. Anadigm Co, Crewe,

U.K. [Online]. Available: http://www.anadigm.com.

[1.15] S. Trimberger, Field-Programmable Gate Array Technology, Kluwer

Academic Publishers, 1994

[1.16] http:// www.actel.com

 127

[1.17] M. John and S. Smith, Application-Specific Integrated Circuits, VLSI

Systems Series, 1997

[1.18] Zhuo Gao, Ji Luo, Hu Huang, Wei Zhang and J. B. Bernstein, ”Reliable

laser programmable gate array technology,” Proc. International Symposium

on Quality Electronic Design 2002, pp. 252 –256.

[1.19] J. B. Bernstein, W. Zhang and C. H. Nicholas, “Laser Formed Metallic

Connections”, IEEE Trans. on Components, Packaging, and Manufacturing

Technology, Part B: Advanced Packaging, Vol. 21, No. 2, pp. 194, May

1998.

[1.20] Glenn Gulak and Dean R. D’MJZLLO, “A Review of Field Programmable

Analog Arrays,” SPIE Vol. 2914, pp. 152-169

[1.21] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs, Kluwer Academic Publishers, 1999.

[1.22] J. Rose and D. Hill, “Architectural and physical design challenges for one-

million gate FPGA’s and beyond,” in ACM/SIGDA Int. Symp. Field-

Programmable Gate Arrays, Monterey, CA, Feb. 1997, pp. 129–132.

[2.1] V. betz and J. Rose, “FPGA Routing Architecture: Segmentation and

Buffering to Optimize Speed and Density,” FPGA’99, pp. 59-68

[2.2] Rose, J. and Brown, S., “Flexibility of interconnection structures for field-

programmable gate arrays,” IEEE Journal of Solid-State Circuits, vol. 26,

pp.277 – 282, March 1991

 128

[2.3] Kaushik Roy and Sudip Nag, "Automatic Synthesis of FPGA Channel

Architecture for Routability and Performance," IEEE Tran. on VLSI Systems,

vol. 2, pp. 508-511, December 1994.

[2.4] El Gamal, J. Greene, and V. Roychowdhury, "Segmented channel routing is

nearly as efficient as channel routing (and just as hard)," Proc. Advanced

Research VLSI, Santa Cruz, CA, pp. 193-221, 1991.

[2.5] K. Zhu and D.F. Wong, "On channel segmentation design for row-based

FPGAs," Proc. ICCAD, pp. 26-29, 1992.

[2.6] Roy, K. and Mehendale, M., “Optimization Of Channel Segmentation For

Channeled Architecture FPGAs,” CICC’1992, pp. 4.4.1 - 4.4.4

[2.7] M. Pedram, B. S. Nobandegani, and B. T. Preas, "Design and analysis of

segmented routing channels for row-based FPGAs," IEEE Trans. on

Computer Aided Design, vol. 13, no. 12, pp. 1470-1479, Dec. 1994.

[2.8] W. K. Mak and D. F. Wong, “Channel segmentation design for symmetrical

FPGAs,” ICCD97, pp. 496–501.

[2.9] Jai-Ming Lin, Song-Ra Pan and Yao-Wen Chang, "Graph matching-based

algorithms for array-based FPGA segmentation design and routing," Proc.

ASP-DAC, pp.851-854, 2003

[2.10] Burman, S., Kamalanathan, C. and Sherwani, N., “New channel

segmentation model and associated routing algorithm for high performance

FPGAs,” ICCAD’92, pp. 22 -25

[3.1] Semiconductor Industry Association, National technology Roadmap for

Semiconductors, 1997.

 129

[3.2] S. Ganesan and R. Vemuri, “FAAR: A Router for Field-Programmable

Analog Arrays”, 12th Intl. Conf. VLSI Design ‘99, pp.556-563.

[3.3] Kaushik Roy and Sudip Nag, “Automatic Synthesis of FPGA Channel

Architecture for Routability and Performance,” IEEE Tran. on VLSI

Systems, vol. 2, pp. 508-511, December 1994.

[3.4] Roychowdhury, V.P., Greene, J.W. and El Gamal, A. “Segmented channel

routing,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, vol. 12, pp. 79-95, Jan 1993.

[3.5] Yachyang Sun, Ting-Chi Wang, Wong, C.K and Liu, C.L., “Routing for

symmetric FPGAs and FPICs,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 16, pp. 20-31, Jan 1997.

[3.6] Kai Zhu, Yao-Wen Chang and Wong, D.F., “Timing-driven routing for

symmetrical-array-based FPGAs,” ICCD98, pp. 628-633.

[3.7] El Gamal, J. Greene, and V. Roychowdhury, “Segmented channel routing is

nearly as efficient as channel routing (and just as hard),” Proc. Advanced

Research VLSI, Santa Cruz, CA, pp. 193–221, Mar. 1991.

[3.8] C. Lee, “An Algorithm for Path Connections and its Applications”, IRE

Trans. Electron. Comp, vol. 10, 1961.

[3.9] T. Cormen, C. Leiserson et. al, Introduction to Algorithms, McGraw-Hill,

2001.

[3.10] L. McMurchie, C. Ebeling, “Pathfinder: A Negotiation-based Performance-

Driven Router for FPGAs”, Univ. of Washington, 1996.

 130

[3.11] Bernhard Korte, Jens Vygen, Combinatorial Optimization: theory and

algorithms, Springer, 2006.

[3.12] W. Kao, C. Lo, M. Basel and R. Singh, “Parasitic Extraction: Current State

of the Art and Future Trends,” Proceedings of the IEEE, vol. 89, No. 5, May

2001.

[3.13] N.D. Arora, K.V. Raol, R. Schumann and L.M. Richardson, “Modeling and

Extraction of Interconnect Capacitances for Multilayer VLSI Circuits,”

IEEE Transactions on Computer Aided Design of Integrated Circuits and

Systems, 15(1):58-66, Jan. 1996.

[3.14] U. Choudhury, and A. Sangiovanni-Vincentelli, “Constraint-Based channel

routing for analog and mixed analog/digital circuits” IEEE Tans. Computer-

Aided Design of Integrated Circuits and Systems, Vol. 12, No. 4, 1993.

[3.15] Jai-Ming Lin, Song-Ra Pan and Yao-Wen Chang, "Graph matching-based

algorithms for array-based FPGA segmentation design and routing," Proc.

ASP-DAC, pp.851-854, 2003.

[3.16] W. Karush, “Minima of Functions of Several Variables with Inequalities as

Side Constraints,” M.Sc. Dissertation. Dept. of Mathematics, Univ. of

Chicago, Chicago, Illinois. 1939.

[3.17] Kuhn, H. W. and Tucker, A. W., “Nonlinear programming,” Proceedings of

2nd Berkeley Symposium: 481-492, Berkeley: University of California Press,

1951.

 131

[4.1] Zhou, D., Preparata, F.P., Kang, S.M., “Interconnection delay in very high-

speed VLSI,” IEEE Transactions on Circuits and Systems, vol. 38, pp. 779 -

790, July 1991

[4.2] Khellah, M., Brown, S., Vranesic, Z., “Minimizing interconnection delays in

array-based FPGAs,” CICC, pp.181 - 184, 1994

[4.3] V. Betz and J. Rose, “Circuit design, transistor sizing and wire layout of

FPGA interconnect,” CICC, pp. 171 -174, 1999.

[4.4] Pamunuwa, D., Tenhunen, H., “Repeater insertion to minimise delay in

coupled interconnects,” International Conference on VLSI Design, pp. 513 -

517, January 2001

[4.5] L. P. P. P. van Ginneken, “Buffer Placement in Distributed RC-tree

Networks for Minimal Elmore Delay”, Proc. International Symposium on

Circuits and Systems, 1990, pp. 865-868.

[4.6] C. Alpert and A. Devgan, “Wire Segmenting for Improved buffer Insertion,”

Proc. DAC, pp. 588-593, 1997.

[4.7] C.J. Alpert, A. Devgan and S. T. Quay, “Buffer Insertion for Noise and

Delay Optimization,” IEEE Trans. on Computer-Aided Design, vol. 18, pp.

1633-1645, November 1999.

[4.8] W. C. Elmore, “The Transient Response of Damped Linear Networks with

Particular Regard to Wide Band Amplifiers,” Journal of Applied Physics,

vol. 19, pp. 55-63, 1948.

[4.9] Semiconductor Industry Association, National technology Roadmap for

Semiconductors, 1997.

 132

[5.1] C. Alpert and A. Devgan, “Wire Segmenting for Improved buffer Insertion,”

Proc. DAC, 1997, pp. 588-593.

[5.2] J. Con, T. Kong and D. Z. Pan, “Buffer Block Planning for Interconnect-

Driven Planning,” Proc. ICCAD, 1999, pp. 358-363.

[5.3] P. Sakar and C. K. Koh, “Routability-Driven Repeater Block Planning for

Interconnect-Centric Floorplanning,” IEEE Trans. on Computer-Aided

Design, vol. 20, pp. 660-671, May 2001.

[5.4] C.J. Alpert, A. Devgan and S. T. Quay, “Buffer Insertion for Noise and

Delay Optimization,” IEEE Trans. on Computer-Aided Design, vol. 18, pp.

1633-1645, November 1999.

[5.5] S. M. Li, Y. Cherng and Y. Chang, “Noise-Aware Buffer Planning for

Interconnect-Driven Floorplanning,” Proc. ASP-DAC, 2003, pp. 423-426.

[5.6] Vittal and M. Marek-Sadowska, “Crosstalk Reduction for VLSI,” IEEE

Trans. on Compute-Aided Design, vol. 16, pp. 290-298, March 1997.

[5.7] Devgan, “Efficient Coupled Noise Estimation for On-Chip Interconnects,”

Proc. ICCAD, 1997, pp. 147-151.

[5.8] W. C. Elmore, “The Transient Response of Damped Linear Networks with

Particular Regard to Wide Band Amplifiers,” J. Appl. Phys., vol. 19, pp. 55-

63, 1948.

[5.9] Hu Huang, J. B. Bernstein, M. Peckerar and J. Luo, “Combined Channel

Segmentation and Buffer Insertion for Routability and Performance

Improvement of Field programmable Analog Arrays,” Proc. ICCD, 2004,

pp. 490-495.

 133

[5.10] Bogdan Pankiewicz, et al., “A Field Programmable Analog Array for CMOS

Continuous-Time OTA-C Filter Applications,” IEEE J. Solid-State Circuits,

vol. 37, pp. 125-136, Feb. 2002.

[5.11] The AN10E40 Field Programmable Analog Array. Anadigm Co, Crewe,

U.K. [Online]. Available: http://www.anadigm.com.

[5.12] K. Zhu and D.F. Wong, “On channel segmentation design for row-based

FPGAs,” Proc. ICCAD, pp. 26-29, 1992.

[5.13] Jai-Ming Lin, Song-Ra Pan and Yao-Wen Chang, “Graph matching-based

algorithms for array-based FPGA segmentation design and routing,” Proc.

ASP-DAC, pp.851-854, 2003

[5.14] Semiconductor Industry Association, National technology Roadmap for

Semiconductors, 1997.

[6.1] R. Zebulum, et al, “A reconfigurable platform for the automatic synthesis of

analog circuits,” The Second NASA/DoD Workshop on Evolvable

Hardware, 2000, pp. 91 - 98

[6.2] E. Lee and G. Gulak, “A CMOS field-programmable analog array,” IEEE

Journal of Solid-State Circuits, vol. 26, pp.1860 – 1867, Dec. 1991

[6.3] E. Lee and G. Gulak, “A Transconductor-Based Field-Programmable

Analog Array”, ISSCC Digest of Technical Papers, Feb. 1995, pp. 198-199.

[6.4] P. Chow, P. Chow, P.G. Gulak, “A Field-Programmable Mixed-Analog-

Digital Array,” ACMISIGDA FPGA'95, Monterey, CA, Feb. 12-14,1995,

pp. 104-109.

[6.5] E. Pierzchala, M. Perkowski, Paul Van Halen Rolf Schaumann, “Current-

 134

Mode Amplifier-Integrator for a Field-Programmable Analog Array,”

ISSCC Digest of Technical Papers, pp. 196-197, Feb. 1995.

[6.6] C. Premont, R. Grisel, N. Abouchi and J.-P. Chante, “Current-conveyor

based field programmable analog array,” MWSCAS’96, pp.155 – 157.

[6.7] S.T. Chang, B.R. Hayes-Gill and C.J. Paull, “Multi-function block for a

switched current field programmable analogue array,” MWSCAS’96, pp.158

– 161.

[6.8] X. Quan, S.H.K. Embabi and E. Sanchez-Sinencio, “A current-mode based

field programmable analog array architecture for signal processing

applications,” CICC’98, pp. 277 – 280

[6.9] Bogdan Pankiewicz, et al., “A Field Programmable Analog Array for CMOS

Continuous-Time OTA-C Filter Applications,” IEEE J. Solid-State Circuits,

vol. 37, pp. 125-136, Feb. 2002.

[6.10] Joachim Becker and Yiannos Manoli, “ A Continuous-Time Field

Programmable Analog Array (FPAA) consisting of digitally reconfigurable

Gm-cells.,” ISCAS’04, pp. 1092-1095.

[6.11] J.D. Gray, C.M. Twigg, D.N. Abramson and P. Hasler, “Characteristics and

programming of floating-gate pFET switches in an FPAA crossbar

network,” ISCAS’05, pp. 468 – 471.

[6.12] F. Goodenough, "Analog Counterparts of FPGAs Ease System Design",

Electronic Design, Oct. 14, 1994, pp. 63-73.

[6.13] Bratt and I. Macbeth, “Design and Implementation of a Field Programmable

Analogue Array,” FPGA '96, pp.88 – 93.

 135

[6.14] H. Kutuk and Sung-Mo Kang, “A field-programmable analog array (FPAA)

using switched-capacitor techniques,” ISCAS '96, pp. 41 – 44.

[6.15] D. Anderson, et al., “A field programmable analog array and its

application,” CICC’97, pp. 555 – 558.

[6.16] K. Papathanasiou, T. Brandtner and A. Hamilton, “Palmo: pulse-based

signal processing for programmable analog VLSI,” IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, pp.

379 – 389, June 2002.

[6.17] R.T. Edwards, K. Strohbehn and S.E. Jaskulek, “A field-programmable

mixed-signal array architecture using antifuse interconnects,” ISCAS’00,

pp.319 – 322.

[6.18] Ji Luo, J.B. Bernstein, J.A. Tuchman, Hu Huang, et al., “A high

performance radiation-hard field programmable analog array,” ISQED’04,

pp.522 – 527.

[7.1] http://www.agilent.com/labs/news/2003features/fea_adc03.html

[7.2] http://www.planetanalog.com/features/showArticle.jhtml?articleID=209000

03

[7.3] http://lib.tkk.fi/Diss/2002/isbn9512262231/

[7.4] http://audacity.sourceforge.net/manual-1.2/tutorial_basics_1.html

[7.5] http://www.videsignline.com/showArticle.jhtml?printableArticle=true&artic

leId=181502565

[7.6] Plassche, Rudy J. van de., CMOS integrated analog-to-digital and digital-to-

analog converters, Kluwer Academic Publishers, 2003

 136

[7.7] http://www.maxim-ic.com/appnotes.cfm/appnote_number/634

[7.8] Varzaghani, A.; Yang, C.-K.K., “A 600-MS/s 5-bit pipeline A/D converter

using digital reference calibration,” IEEE Journal of Solid-State Circuits,

vol. 41, pp. 310 - 319, February 2006

[7.9] Zanchi, A.; Tsay, F., “A 16-bit 65-MS/s 3.3-V pipeline ADC core in SiGe

BiCMOS with 78-dB SNR and 180-fs jitter,” IEEE Journal of Solid-State

Circuits, vol. 40, pp. 1225 – 1237, June 2005

[7.10] S. H. Lewis, et al., “10-b 20-Msample/s analog-to-digital converter,” IEEE

journal of. Solid-State Circuits, vol. 27, pp. 351-358, March 1992.

[7.11] Cho, T.B., Gray, P.R., “A 10 b, 20 Msample/s, 35 mW pipeline A/D

converter,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 166 - 172,

March 1995

[7.12] David Johns, Ken Martin, Analog integrated circuit design, John Wiley &

Sons, 1997

[7.13] Nam, G.-J. , et al., “A Fast Hierarchical Quadratic Placement Algorithm,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 25, pp. 678 - 691, April 2006

[7.14] http://www.maxim-ic.com/appnotes.cfm/appnote_number/283

[7.15] B. Razavi, Principles of Data Conversion System Design, IEEE Press, New

York, 1995.

[7.16] “IEEE Standard for Terminology and Test Methods for Analog-to-Digital

Converters, Standard, Measurements,” IEEE Standard 1241-2000,

December 2000.

