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Software implementations of 3D nonrigid image registration, an essential tool in 

medical applications like radiotherapies and image-guided surgeries, run excessively 

slow on traditional computers. These algorithms can be accelerated using hardware 

methods by exploiting parallelism at different levels in the algorithm. We present 

here, an implementation of a free-form deformation-based algorithm on a field 

programmable gate array (FPGA) with a customized, parallel and pipelined 

architecture. We overcome the performance bottlenecks and gain speedups of up to 

40x over traditional computers while achieving accuracies comparable to software 

implementations. In this work, we also present a method to optimize the deformation 

field using a gradient descent-based optimization scheme and solve the problem of 

mesh folding, commonly encountered during registration using free-form 

deformations, using a set of linear constraints. Finally, we present the use of novel 

dataflow modeling tools to automatically map registration algorithms to hardware like 

FPGAs while allowing for dynamic reconfiguration. 
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1 INTRODUCTION 

1.1 Introduction to Image Registration 

With the rapid advances in technology, many medical imaging technologies like 

computed tomography (CT), positron emission tomography (PET), magnetic 

resonance imaging (MRI), single photon emission computed topography (SPECT), 

etc. are being used in the diagnosis and treatment of different illnesses. Each of these 

imaging modalities has its own specific characteristics, which provide invaluable 

information to a physician making a diagnosis. However, even though the images 

may correspond to the same anatomical structure, they can be misaligned inhibiting a 

doctor’s ability to use them optimally.  Misalignment may occur because the images 

might have been taken at different instances of time or from different points of view. 

Thus a challenging task at hand is to integrate these sets of images, i.e., perform 

image registration, so that there is a correct correspondence of anatomical features, 

giving the physician an integrated image. In the presence of soft-tissue motion during 

image acquisitions, this task becomes more challenging as recovering nonlinear 

motion is more difficult than recovering linear motion like simple translations and 

rotations.  Image registration provides us with an important tool in medical imaging 

to merge or compare these images either from the same modality or from different 

modalities.  

Image registration is the process of finding the best transformation that best aligns 

the two images spatially. For example, in Figure 1, the image on the right is the same 

as the one on the left, but for a small rotation between them.. Image registration 
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allows us to calculate the transformation that is applied on the image on the right so 

that it matches the image on the left exactly.  

 

Figure 1 Image registration is the process to find the best transformation that matches 
the two images 

The transformations that can be applied are of two types, namely, rigid registration 

and nonrigid registration (also referred to as elastic or deformable registration). In 

rigid registration, a set of linear transformations like rotation, translation, shearing 

and scaling are applied and in nonlinear registration, a set of nonlinear 

transformations like warping are applied which aligns the two images. Usually rigid 

registration precedes nonrigid registration as shown in Figure 2 
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Figure 2 Flow of nonrigid registration 

1.1.1 Medical Image Registration and its Applications 

Image registration has the potential of being used extensively in the field of 

medical imaging because of the value added by registering two images of either same 

or different modalities. Combining images of different modalities gives physicians 

additional clinical information by fusing different modality images and alignment into 

the same spatial location before visualization. Figure 3 shows the workflow of the 

entire process. Some of the applications of image registration are in the field of  

1) Cancer detection: Image registration plays an important role in early detection of 

tumors. Localization of tumor is difficult with CT and MR scans because of the low 

intensity contrast between the tumor and the surrounding tissues. SPECT or PET 

imaging makes it possible to acquire high contrast images. However, a lack of 

sufficient anatomic detail in SPECT or PET limit us from determining the exact 

position of a tumor or other lesions, and thus necessitates image registration with CT 

or MRI.[1, 2] 
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2) Radiation therapy: Radiation therapy requires the fusion of PET/MRI images 

with CT images. The MRI/PET images provide localization of tumor and CT images 

are important in the calculation of radiation dose and treatment planning. Nonrigid 

image registration can also recover soft-tissue deformation introduced due to 

breathing artifacts and body motion during continuous scanning, which makes it very 

useful for tumor tracking.[3, 4]  

3) Image-guided interventions: Minimally invasive image-guided interventions 

(IGIs) are increasingly being used in modern medicine. Since these procedures are 

planned using preoperative images and navigated using intraoperative images, there is 

often a need to register these two types of images. Since IGIs increasingly involve 

moving and deformable organs, image registration algorithms must be able to account 

for soft-tissue deformations. Thus, deformable image registration is a primary and 

integral necessity for the continued development of IGIs. Deformable image 

registration quantifies tissue motion on a voxel-by-voxel basis between two 

temporally separated scans of the same anatomy [5]. 

 

Figure 3 Workflow of image registration  
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1.1.2 Need for Faster Registration 

Image registration can be classified as rigid and nonrigid registration algorithms. 

Rigid registration algorithms use global transformation, which is a combination of 

rotation and translation; affine registration algorithms, also a global transformation 

use a combination of rotation, translation, scaling or shear components. In nonrigid 

registration, one of the images is warped using a nonlinear transformation that best 

aligns one image with the other. During image guided tumor tracking, the tumor 

position, which varies depending on the breathing of the patients is recovered by 

registering the CT images taken at successive intervals of time (intra modality image 

registration). For such applications, the value of such deformable image registration 

for modeling the respiratory motion is becoming widely accepted [6]. The number of 

degrees of freedom in the case of affine registration is 12 (comprising of rotation, 

translation, shear and scaling in each of the three dimensions) but in case of nonrigid 

registration this number could be in the thousands. Unfortunately, the time to 

compute such a detailed deformation field can take a prohibitively long time through 

traditional computing. In such cases, where the time requirements are becoming very 

stringent, there is an increasing need to explore alternative computing schemes such 

as custom hardware to accelerate image registration.  

Hybrid PET/CT scanning is now an essential tool for cancer diagnosis, staging and 

treatment planning and evaluation. Recently proposed nonrigid image registration 

algorithms have been shown to be equally effective in fusing standalone PET and CT 

scans as well as improving the fusion of hybrid PET/CT scans by removing 

breathing-induced misalignments [7]. Slow speed, however, is a limitation of the 
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algorithmic approach. Through hardware acceleration, the execution time of nonrigid 

image registration algorithms can be reduced to minute-order, allowing us to create 

PET/CT fusion images efficiently, from standalone scans. Also nonrigid soft-tissue 

misalignments that cannot be corrected with the use of hybrid PET/CT scanners can 

be corrected using nonrigid registration, leading to higher registration accuracy. 

Hybrid PET/CT scans can therefore also be processed using fast and robust 

registration hardware for further refinement of spatial matching. Thus, a hardware-

accelerated image registration system can serve as an adjunct or as an alternative to 

hybrid scanners; providing PET/CT fusion capabilities to standalone PET, while 

enabling hybrid scanners to further refine PET/CT registration. 

1.2 Computational Analysis of Image Registration 

The software implementations of 3D nonrigid image registration algorithms are 

burdened by both computational load & memory access load. The former involves 

smooth B-splines interpolation at each voxel, whereas the latter comprises millions of 

random accesses to the memory for the evaluation of an intensity-based similarity 

measure used for registration during each iteration of the algorithm (chapter 2). 

During image registration, these steps have to be repeated numerous times (i.e., the 

algorithm involved numerous iterations) to arrive at the best transformation field. The 

number iterations is on the order of hundreds for the rigid registration part and on the 

order thousands for the nonrigid registration part.  

While the first problem is mitigated with faster CPUs, evaluating an intensity-based 

similarity measure involves memory access load. Mutual information (MI), which has 

evolved as a robust intensity-based measure, has one of the stringent memory access 



 

 7 
 

requirements (Chapter 2). The MI computation has two steps: first, each voxel of one 

of the two images (referred to as the reference image), is transformed into the other 

image space (referred to as the floating image) by applying a transformation and the 

intensity values in the floating image neighborhood are used to accumulate into a 

mutual histogram (also referred to as joint histogram)  (MH). This process involves 

performing partial volume interpolation (Chapter 2) ‘n’ times, where n is the number 

of voxels in the reference image. The ‘n’ is on the order of 2563, the typical size of a 

3D medical image.. The second step involves calculating entropy from the values 

stored in the MH memory, which involves reading the MH memory ‘m’ times, where 

‘m’ is the size of the MH memory. MH is a 2-dimensional array and thus ‘m’ is one-

order of magnitude smaller than ‘n’. Hence, compared to the second step, it is the first 

step that involves significant memory overhead since each coordinate that is 

transformed in the first step involves 1 read to the reference image memory, 8 reads 

to the floating image memory, and 8 read-accumulate-write operations to the MH 

memory.  

Conventional CPUs cannot accelerate such highly memory intensive processes to a 

great extent since most of the accesses to the floating image and MH memories are 

random and do not benefit from cache-based techniques. Moreover, general-purpose 

processors are sequential in nature and cannot make full use of parallelism in the 

applications.  Hardware implementations like those based on FPGAs have more 

freedom to fully exploit this parallelism and thus have the ability to achieve 

significant acceleration. It has been reported in [8] that approximately 99% or more of 

the registration time during rigid registration is spent on computation of MI, the 
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similarity metric. During nonrigid registration also an equally high percentage of time 

is spent in the computation of MI. Since the main bottleneck comes from the 

computation of MI, acceleration of MI computation though pipelining, parallel 

memory accesses and distributed processing is an essential path towards acceleration 

of image registration. 

1.3 Previous Efforts at Acceleration 

Image registration algorithms have evolved from rigid to affine to nonrigid in the 

quest to more accurately model bodily deformations. With the ever-present 

requirement for real-time processing, there has been an increasing demand for faster 

algorithms and for faster implementations capable of providing accurate results 

rapidly. Several groups have attempted to accelerate image registration. Many of 

these attempts, such as the ones suggested by Ourselin et al. [9] and Stefanescu et al. 

[10], are over a cluster of many CPUs with large amounts of memory. These systems 

are large and expensive with speedup per processor ration less than 1. Moreover, the 

image registration execution time is affected by dynamic factors like cache misses, 

making these systems’ time behavior less predictable.  

Similarly Warfield et al. [11] have implemented an image registration system for 

image guided neuro-surgery using 12 CPUs. The algorithm implemented is not a 

general algorithm, rather it is a volumetric deformation based algorithm, which is 

computationally less intensive and works efficiently for brain images because of high 

surface correspondences. More recently, Ino et al. [12] reported implementation of 

nonrigid image registration algorithm proposed by Rueckert et al. [13] using data 

distribution, data parallel processing, and load balancing techniques on a 128-CPU 
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cluster of PCs interconnected by Myrinet and Fast Ethernet switches. In all these 

systems the speedup per processor ratio is less than 1. Similarly, Rohlfing et al. [14] 

have suggested a shared-memory, multiprocessor-based computer architecture for the 

Rueckert’s algorithm. This architecture provides accurate and fast results, but the net 

speedup per processor ratio was still significantly less than 1.  

In general, these supercomputer-based solutions are not practical solutions in that 

their widespread clinical use can be cost and space prohibitive. A smaller, customized 

and much more compact system that provides identical results, albeit at a fraction of 

the cost is more appropriately suited for clinical use. Recently an implementation of a 

mutual information-based registration scheme on a Cell Broadband Engine (CBE) has 

been reported that can accelerate rigid registration [15]. Even though this method 

achieves rigid registration in less than 1 second, it utilizes a lot of simplifications like 

random sampling of image voxels. Also, this system is not able to perform nonrigid 

registration. Our reconfigurable nonrigid 3D registration architecture, implemented 

on an Altera Stratix FPGA, is unique, fast and accurate with a speedup of 

approximately 40x over general-purpose processors. Thus, our acceleration approach 

promises to play a crucial role in real-time image registration for a variety of 

applications like image-guided interventions. A schematic of our image registration 

system is shown in Figure 4.  
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Figure 4 Image registration system 

1.4 Objectives of the Thesis 

The objective of this thesis is to provide key improvements on a custom processing 

unit built on a field programmable gate array (FPGA) that has a speedup per 

processor ratio of over 40, hence faster, more compact, more power conserving and 

significantly less expensive system resulting in a clinically viable, more economical 

system than the supercomputer implementations using parallel clusters of CPUs. This 

system is a result of the continuous development process both on the hardware as well 

as the algorithm side. On the hardware side we present the integration of the cubic 

interpolation pipeline that was presented in [16] into the existing hardware 

architecture that allows us to extract a more accurate deformation field required for 

nonrigid registration. Also the accuracy of the entropy calculation has been improved, 

which has resulted in the improvement of the registration times and made gradient 
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descent-based optimization feasible with a fixed-point implementation like ours 

(chapter 2). We have compared the accuracy of nonrigid registration in hardware with 

a software implementation of the same algorithm to validate the correctness of the 

hardware implementation. We find that the hardware arrived at similar solutions as 

those provided by the software implementation, but was over 40 time faster (Chapter 

5).  

During nonrigid registration, optimization of the deformation field used to warp 

one of the images is a challenging task. While using a free-form deformation based 

warping technique, we overlay a grid of control points on the reference image and 

optimize the deformation at these control points. In this process, we can choose to 

optimize the deformation at each of the control point individually or optimize the 

deformations at the entire control point space at the same time. On the algorithm side 

of our image registration system, we present in this work, a gradient descent-based 

optimization scheme, where the deformation field is optimized at all control points in 

unison in comparison with the previous implementation which used a downhill 

simplex-based optimization scheme to optimize each control point in a sequential 

manner. One of the main problems with using the free-form deformation model to 

model the nonrigid deformations (chapter 2) is the occurrence of folding. For 

example, in Figure 5, we find that point A has moved more than the physically 

permissible limits, causing tissues to fold upon one another. Without any preventive 

measures in place, there is a possibility of ending up with a solution which is not 

physically feasible. We had previously presented a scheme called 3D chainmail to 

prevent such mesh folding [16] based on a transformation applied to a single control 
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point. Rueckert et al. [13] have presented a smoothing prevention technique which 

constrains the motion at all the control points based on an energy measure called 

csmooth. This kind of folding prevention technique does not guarantee the prevention 

of folding, but only reduces the possibility of folding. Here we present a 3D global 

chainmail scheme which applies a set of constraints to the entire control point space 

to prevent mesh folding which makes it a better folding prevention technique in 

comparison with the ones like regularizing penalty term introduced by Rueckert et al. 

(chapter 4).  

Our hardware makes use of several low-level optimizations that enhance the 

performance of the system. With the use of high-level modeling techniques like 

dataflow modeling, we can exploit certain dynamic behavior of the system. Finally, 

we present a dataflow based modeling technique with the use of dataflow graphs, 

which provides us an effective tool for automatically mapping image registration 

algorithms to reconfigurable hardware like FPGAs (chapter 6). This kind of modeling 

demonstrates the potential to use the dynamic behavior exposed by dataflow 

modeling with the low level optimizations present in the current implementation to 

arrive at very good implementation that provides maximum performance while 

consuming minimum resources.  
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Figure 5 A synthetic example of Mesh Folding; the original image (left), and with mesh 
folding at point A (right) (arrow indicates the direction of folding). 
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2 BACKGROUND 

2.1 Definition 

Image registration is defined as the process of aligning two images that represent 

the same structure from different points of view, at different times or using different 

imaging techniques. The method attempts to find the transformation T̂  that best 

aligns a reference image (RI), with coordinates x, y and z, and a floating image (FI).                 

( ) ( )( )( )ˆ arg max Similarity , , , , ,
T

T RI x y z FI T x y z=  (1) 

The image registration process involves the choice of the transformation applied, 

choice of a similarity metric which measures how well the two images match and the 

choice of an optimization scheme which searches for the transformation that best 

aligns the two images.  

2.2 Affine or Linear Registration 

Affine registration or linear registration is a combination of rotation, translation, 

scaling and shear parameters that maps one of the images (FI) on to the other image 

(RI). The scaling parameters also incorporate voxel scaling necessary to compare 

images with different voxel sizes. Voxel scaling factors are constant for rigid 

registration and as such are excluded from optimization. The remaining parameters 

like rotation, translation and shear parameters are estimated using an optimization 

scheme which searches for the best transformation matrix T
∧

 which maps the FI to the 

RI. The transformation that maps a 3D floating image to the reference image is 
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defined by a 4 × 4 transformation matrix Tglobal. Rigid registration involves a 

combination of rotations and translations only. Figure 1 provides an example of rigid 

registration.  

1000
zzzzyzx

yyzyyyx

xxzxyxx

global drrr
drrr
drrr

T =  

(2) 

The location of a given RI voxel RIv  in the FI is given by: 

1
FI RIv T v−= ⋅  (3) 

2.3 Nonrigid or Elastic Registration 

While rigid registration recovers mostly global misalignments, nonrigid or elastic 

registration is required to recover nonlinear deformations which cannot be recovered 

with rigid registration. A common method for nonrigid registration is to separate the 

local body deformation into a linear component and a nonlinear component. The 

linear component corresponds to the global motion (Tglobal) and is fixed for the entire 

image. For local deformation, we model the nonlinear component in our 

transformation model as: 

( ))( RIlocalRIglobalFI vvvTv rrrr
+×=  (4) 

where RIvr is the location of a voxel in the RI; FIvr is its corresponding location in the 

FI; and )( RIlocal vv rr  is the value of the local deformation field at RIvr .  In practice, 
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during registration, we transform the coordinates of the reference image even though 

we write the equations for the floating image. Figure 2 provides an example of 

nonrigid registration.   

2.3.1 B-splines Based Deformation Field 

It is becoming widely popular to use a free-form deformation model based on cubic 

B-splines for modeling local soft tissue deformations. Quoting Shekhar et al [6] “To 

model the local soft-tissue deformations, thin plate splines (TPS) and B-splines are 

used extensively. The TPS algorithm, first presented by Meyer et al. [17], suffers 

from relative sparseness of control points which affect registration accuracy and has 

the need for identifying landmarks for control points. The free-form deformation 

(FFD) model based on B-splines, developed by Rueckert et al. [13] addresses both 

these issues by placing a dense grid of automatically selected control points over the 

images and using these control points to deform the image.” B-splines have a number 

of properties like a finite volume of support, and ability to model smooth transitions 

in the deformation field which make it suitable to model local tissue deformations. In 

these methods, the deformation field value at a given point is calculated using a linear 

combination of cubic B-splines placed on a regular grid of ni × nj × nk  control points 

φi, j, k, with i < ni , j < nj, k < nk and grid spacing δx(t), δy(t), and δz(t).  

( ) ( ) ( ) ( )∑ ∑ ∑
−= −= −=

+++=
2

1

2

1

2

1
,,,,

l m n
nkmjlinmllocal wBvBuBzyxv φr

 (5) 

where ⎣ ⎦)(/ txi xδ= , ⎣ ⎦)(/ tyj yδ= , ⎣ ⎦)(/ tzk zδ= , ixu x −= δ/ , jyv y −= δ/ , kzw z −= δ/ , 

and the basis functions can be written as: 
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where r is either u, v, or w and t is the current grid resolution level.  

We implement our deformation model based on B-splines based deformation field 

along with specific algorithmic improvements proposed within our group.  

2.3.2 Folding Prevention techniques  

A problem with the use of FFD-based deformation field is the chance of folding of 

control points called mesh folding which occurs when one control point crosses over 

the other. This mesh folding represents a violation of the topology of the original 

distribution of control points causing a situation as shown in Figure 5. There have 

been various efforts to address this issue like using the Jacobian of the vector field 

[18], or constraining the control point from moving beyond a particular radius [19]. In 

the first case, the constraints are phrased as the determinant of the Jacobian of the 

deformation field. Finding a solution for such differential inequality constraints is 

more computationally intensive in 3D. In the second case, each control point is 

simply constrained to move within a local sphere of radius. This kind of radial 

constraints may not work well with all body organs and is not suitable for a generic 

registration algorithm like ours. The constraints applied should take care of relative 

deformations between control points rather than constraining each control point 

within a particular radius.  
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Rueckert et al. [13] have proposed a smoothing technique based on a regularizing 

parameter called csmooth, which reduces the possibility of folding based on the 

second derivative of the deformation field. However these methods cannot prevent 

folding but can only limit large movements of control points. This method also 

involves choosing parameters for which no suitable technique exists and have to be 

chosen manually. To prevent mesh folding, we use a robust folding prevention 

scheme based on 3D Chainmail, which we have presented earlier [16].  3D Chainmail 

imposes a number of geometric constraints on the movement of a control point with 

respect to its neighboring points. These constraints, like minimum and maximum 

distance between adjacent control points, maximum shear between planes, control the 

stretching of the control points along each of the 3 principal directions and shear 

perpendicular to them. If the movement of a control point violates any of the limits, 

its neighboring vertices are moved in tandem to satisfy the limits. Thus the 

deformation at every control point is applied maintaining the original topology 

between the control points while at the same time, restricting any mesh folding 

artifacts. 

2.4 Similarity Measures 

An important problem in image registration is determining how similar the two 

images are; since it indicates to what degree the images are aligned. Two main 

approaches for determining a measure of similarity are those based on intensities of 

the image voxels and those based on features present in the images [20]. Feature-

based measures take into account different shapes or structures in the two images, like 

points, curves or surfaces. Usually this kind of scheme in involves feature extraction, 
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or segmentation, requiring some degree of user interaction and is therefore not a good 

choice for fully automatic registration. The complexity of feature based registrations 

is usually low, but more time is spent on segmentation of different features which are 

also subject to errors.   

Intensity-based measures, on the other hand, only operate on the voxel values 

making it more memory and computationally intensive, but these measures eliminate 

the need for feature segmentation and manual interaction making them best suited for 

fully automatic registration systems. Hence, intensity-based similarity measures are 

gaining more popularity in registration. These measures can be further classified as 

measures using only image intensities, measures using spatial information (i.e. 

intensities in a voxel’s neighborhood) and histogram-based measures. However in our 

implementation, we use mean square error (MSE) which is the simplest of all the 

similarity based measures and mutual information (MI) which has been widely 

accepted as the most robust and accurate currently known image similarity measure 

for image registration [21].  

2.4.1 Mean Square Error (MSE) 

Mean square error (MSE) is defined as  

MSE =
( )

N

FIRI
N

i
ii∑

=

−
1

2

 
(7)

where RIi and FIi are the reference and the transformed floating image intensity 

values respectively, and N is the total number of voxels in the volume of overlap. The 

MSE is the smallest when the images are perfectly aligned. This measure is relatively 
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less computationally intensive than other intensity based similarity measures like MI, 

but is suitable for images of the same modality only.  

2.4.2 Mutual Information  

Mutual Information as a similarity measure was introduced by Wells et al. [22]. MI 

between two images is a measure of the amount of information they contain about 

each other [23]. MI based image registration relies on the maximization of the MI 

between the two images and is a function of the two 3D images (RI(x,y,z) with 

coordinates x, y and z, FI(x,y,z)) and the transformation field T̂  between them.   

( ) ( )( )( )zyxTFIzyxRIMIT
T

,,,,,maxargˆ =  (8) 

MI is calculated from individual and joint entropies using the following equation.  

( ) ( ) ( ) ( )FIRIHFIHRIHFIRIMI ,, −+=  (9) 

The individual entropies, H(RI) and H(FI), and the joint entropy, H(RI,FI), are 

computed as follows:  

( ) ( ) ( )∑−=
a

RIRI apapRIH ln  

 ( ) ( ) ( )∑−=
b

FIFI bpbpFIH ln  

 ( ) ∑−=
ba

FIRIFIRI bapbapFIRIH
,

,, ),(ln),(,  

(10) 

The joint voxel intensity probability ( )bap FIRI ,,  is the probability of a voxel in the 

RI having an intensity a given that the corresponding voxel in the FI has an intensity 
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b. It can be obtained from the joint or mutual histogram of the two images. The 

mutual histogram represents the joint intensity probability distribution. MI-based 

registration aims at reducing the dispersion of values within the mutual histogram. 

Minimizing the dispersion of values corresponds to higher probability values in 

equation (10) which in turn corresponds to lower joint entropy values. Thus 

minimizing the dispersion corresponds to maximizing the MI. 

The calculation of MI starts with the accumulation of the mutual histogram (MH) 

values to the MH memory while each RI coordinate is being transformed. In this 

stage, the following steps have to be repeated for each voxel in the RI  

1) Apply a deformation field on the RI and its coordinates in the FI. 

2) Load corresponding FI 2x2x2 neighborhood around the transformed FI 

coordinate.  

3) Calculate the 8 PV interpolation weights from the fractional part of the 

transformed FI coordinate which correspond to the FI neighborhood obtained in 

step 2. 

4) Accumulate interpolation weights into corresponding MH bins 

This is followed by the MI calculation stage where the values stored in the MH 

memory are used to find the individual and joint entropies; this ensures that only 

voxels inside the volume of overlap figure in the MI calculation. MI as a similarity 

measure can be fully automatic and applicable to single or multimodality images of 

most organs making it suitable for application in a general image registration system.  
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2.5 Interpolation Techniques 

During registration process, when a transformation is applied to a coordinate, the 

transformed location of a voxel of the RI may not coincide with the location of a 

voxel in the FI. In such cases interpolation is needed to account for subvoxel 

accuracy. In this regard nearest neighbor interpolation scheme is disregarded as it 

fails to achieve subvoxel accuracy. Both trilinear interpolation and partial volume 

(PV) interpolation, suggested by Maes et al. [21], can achieve subvoxel accuracy.  

Trilinear interpolation involves calculating a resulting intensity level and 

incrementing that intensity level’s MH count by one. In this method a new intensity 

level is introduced as a result of interpolation, causing unpredictable variations in MH 

values. On the other hand, PV interpolation accumulates the eight interpolation 

weights directly into the MH producing a mutual histogram, whose values change 

smoothly with small changes in the transformation, thus resulting in a smoother MI 

surface. Even though both these schemes involve accessing the 8 neighborhood of a 

FI voxel where the transformed coordinate is mapped, PV interpolation has stringent 

memory access requirements on the MH memory compared to trilinear interpolation 

because of the accessing the MH memory for accumulating all the 8 weights 

separately. Capek et al. [24], in their experiments, studied the smoothness of the MI 

surface when using different interpolation schemes for MI and concluded that MI, 

computed according to Maes, provides the smoothest MI surface among statistical 

voxel similarity measures.  
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2.6 Introduction to FAIR Architecture 

Fast Automatic Image Registration (FAIR) architecture is a custom architecture 

designed by our group for FPGA implementation to accelerate image registration by 

accelerating MI calculation. The main bottleneck areas in image registration are the 

cubic B-splines interpolation and the MI calculation stages which have a lot of 

computational and memory access loads. In order to reduce the overall registration 

time we perform the above two tasks on a FPGA which contains customized 

architecture for acceleration. The nature of the above two tasks allows it to be 

programmed on a FPGA using deep pipelines and parallel units. The optimization 

routine is maintained on the CPU since the optimization routine contains a large 

amount of logical decisions to make which makes it best suited for general purpose 

processors.  

 The first generation architecture, FAIR-I, focused on acceleration of the MH 

calculation, by acceleration of PV interpolation. In the second-generation FAIR-II 

architecture, the entropies were also computed on-chip in order to reduce the 

communication overhead introduced in transferring the MH back and forth between 

FPGA and the host CPU through a peripheral component interconnect bus (PCI). We 

also presented a novel way of calculating the function, plog(p), necessary for entropy 

calculation, in fixed point hardware using look-up tables (LUTs) and piecewise 

approximations.  

2.7 FAIR-I 

The FAIR-I architecture [8] was implemented on an external prototype board with 

a FPGA (Altera ACEX 1K100) for performing rigid registration. Each board 
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contained two processing units using two FPGAs, SDRAMs for storing images and  

SRAMs for the MH memory and communicated with the host computer using a PCI 

bus. Since the MH memory has the stringent read and write requirements (8 reads and 

8 writes for each RI voxel processed), MH memory is best suited for the SRAM 

implementation compared to the dynamic RAMs used for storing the 2 images. In this 

system, PV interpolation was implemented using a 32 bit, fixed-point approach. 8 bits 

were used for the fractional part providing an accuracy of 1/256th of a voxel 

dimension. This system was able to deliver an average speedup per processor ratio of 

approximately 8 compared to a software implementation on a 1 GHz Pentium III 

computer. Figure 6 shows the processing unit of the FAIR-I architecture.  
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Figure 6 FAIR-I architecture Source:[8] 
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2.7.1 Pipelined Architecture 

The FAIR architecture (Figure 6) derives its speedup from pipelining of different 

stages of the design. Within each design, processing of different data entries is 

pipelined. During PV interpolation, in the first stage, a coordinate transform is 

applied to all the RI voxels. Processing of these RI coordinates is also pipelined. In 

the next stage, the integer part of the transformed coordinate from the first stage is 

used to fetch the 8 neighborhood image intensities from the FI. The fractional part of 

the transformed coordinates provides the interpolation weights required for PV 

interpolation. The third stage uses the RI intensity, FI intensities and the interpolation 

weights to accumulate into a MH memory. The independence of each of these stages 

allows the design to make effective use of the pipelined architecture.  

2.7.2 Parallel Memory Access Scheme 

In a system with pipelines stages, the latency of the pipeline is defined by the stage 

with the slowest stage, and thereby we need to improve the speed of this stage. In our 

design the presence of memory accesses presented us with stringent memory access 

requirements. The RI is accessed once per voxel sequentially and therefore benefited 

from burst accesses. However the FI is accessed in a random order, depending on the 

transformation applied and therefore does not benefit from burst accesses. Also 8 

neighborhood image intensities need to be read for each voxel. In the FAIR-I 

architecture we implemented a novel cubic memory addressing technique similar to 

the ones used in volume rendering hardware [25] to access this FI neighborhood. 
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2.7.3 Distributed Processing 

With the use of multiple FPGA units, the processing of the RI voxels can be 

distributed across different FPGAs. MH accumulation lends itself to be parallelized 

by dividing the RI into smaller subvolumes. Each FPGA must contain necessary 

RAM to store its part of RI, complete FI and MH memories. The partial mutual 

histograms from different FPGAs are then merged before calculating the MI value. 

This is made possible by having an input port and an output port on each FPGA, 

where input port takes in the partial MH from the previous unit and the output port 

transmits the results to the next unit or to the host computer.  

2.8 FAIR-II 

The FAIR-I architecture accelerated rigid registration by accelerating MH 

calculation. In its complete design, the FAIR-II architecture concentrated on 

accelerating linear and elastic registration. In the first development of the FAIR-II 

architecture [26], a major communication bottleneck arising from the transfer of the 

MH to the host PC was solved by the calculation of the MI (which includes a 

nonlinear function plog(p)) on the FPGAs itself. Use of dual ported memory which 

can perform simultaneous read and write for the MH memory further increased the 

speed of MH. In its further development of FAIR-II, we present the integration of the 

cubic interpolation pipeline [16] for performing cubic B-splines interpolation required 

for nonrigid registration (presented in the next subsection). Figure 7 provides us a 

schematic diagram of the FAIR-II architecture.  
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Figure 7 Schematic diagram of the FAIR-II architecture. 

2.8.1 Mutual Histogram Computation 

The FI is stored using a special scheme using multiple image copies to allow 

parallel access of 4 in-plane neighborhood values. For achieving this, we stored the FI 

intensities corresponding to the 4 in-plane neighborhood image intensities at every 

voxel position instead of just storing the intensity value of that voxel. Each image 

intensity value being 8 bits, and memory bus being 32 bits, the 4 in-plane values 

could be read in a single clock cycle, thereby allowing us to read the 8 neighborhood 

values in 2 clock cycles. This parallel memory access scheme multiplied the memory 

requirements, however reducing the memory access times. With 64 bit memory buses 

available on latest FPGA boards, and higher memories available we can have the 

entire 8 neighborhood values stored in the same manner thus reducing the FI access 

times by half. The MH accumulator has to use up these four values to accumulate into 

the MH memory, so as to prevent buffer overflow conditions. Thus we need to 

accumulate 4 weights to the MH memory in every clock cycle. This is achieved by 
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distributing the MH accumulation on four parallel partial MH accumulator entities 

that form the MH accumulation unit. Having 4 parallel accumulation units also mean 

that the MH memory size is now quadrupled. However since each copy of MH 

memory is of 20KB, having a block of memory of size 80KB is possible within the 

FPGA internal memory. The MH memories are dual ported which enable 

simultaneous read and write to the MH memory. To avoid possible read after write 

hazards in the accumulation pipeline, a possible situation being when the reference 

and/or FI intensities are constant in a neighborhood, the scheduler groups such same 

intensities values and pre-accumulates before performing the accumulation into the 

MH memory. The values from these partial MH memories are merged into a single 

MH memory before MI calculation. The FI histogram and the RI histogram are also 

accumulated into their respective FI and RI histogram memories. A global counter 

keeps count of the total number of valid voxels processed which is necessary to find 

the probabilities from the histogram values.  

2.8.2 Entropy Accumulation 

The entropy accumulation stage follows the calculation of MH. The MI, individual 

and joint entropies are computed from the MH as in equations (9,10).  As evident 

from equation (10) it is necessary to evaluate the function f(p)= plog(p) for the 

individual and joint image intensity probabilities. Calculation of a nonlinear function 

like log(p), which is unbounded, requires infinite precision. Hardware implementation 

of logarithm calculation use look-up tables (LUTs) to approximate the values using 

series approximations. In our implementation the value of probability ‘p’ ranges from 

[0 1] where the function is continuous and bounded. This makes approximation of the 
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function f(p) using piecewise-polynomial function possible. FAIR-II [26] implements 

a Chebychev’s approximation for f(p) which is simple to calculate and is very close to 

the minimax solution of the approximation function. (Appendix 1 provides the 

equations for Chebychev’s approximation used in the implementation). Using a first 

order approximation for the f(p) we have equations (11,12) to calculate the two 32-bit 

coefficients, k1(i) and k0(i) stored in the position ‘i’ in the LUTs.  
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The LUTs are addressed by pd, where pppd Δ= mod . The approximate values 

calculated from the coefficients stored in the LUTs are given by equation (13).  

( ) dd pkkpP 10 +=  (13) 
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2.9 Summary 

In this section, I present an introduction to the different methods and techniques 

used for nonrigid image registration and the motivation for choosing them. Our 

primary goal is to accelerate an image registration algorithm that is able to recover 

nonrigid misalignments as accurately as possible, while at the same time being able to 

register images of mostly all parts of the body and across different imaging 

modalities. In implementing such a generalized algorithm, I present the different 

challenges and difficulties encountered during our ongoing efforts at accelerating 

image registration. In this chapter, I highlight the development work of a customized 

hardware architecture for image registration before I started working on this project. 

In the successive chapters, (Chapters 3,4) I present the improvements I have made to 

this project both on the hardware side (Chapter 3) and on the algorithmic side 

(Chapter 4).  
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3 HARDWARE IMPROVEMENTS TO THE ARCHITECTURE 

3.1 Introduction 

In this section, I present the key hardware improvements I have made to the FAIR-

II architecture that allows us to perform nonrigid registration in hardware. In previous 

FAIR implementations, a global transformation unit was used on the hardware to 

transform the coordinates of the RI while calculating the MH. We use free-form 

deformations based on cubic B-splines interpolation on a regularly spaced grid to 

warp the image in an elastic manner during nonrigid image registration. For 3D image 

warping on hardware, a cubic interpolation pipeline was presented in [16] that 

accelerates the computation of 3D deformation fields for application where image 

warping is necessary. In this work, I integrate this cubic interpolation pipeline with 

the existing FAIR-II architecture to replace the affine coordinate transform unit that 

existed with the previous FAIR-II implementation. This change enabled me to apply a 

nonrigid deformation field to the RI and perform computation of the similarity 

measure entirely on hardware (Section 3.2).  

During MI computation, the probability values are derived from mutual histogram. 

The values of the probabilities are a function of the images, size of the MH and the 

transformation applied and vary over the range of [0,1]. The hardware 

implementations of the entropy calculator depend entirely on the size of the LUTs 

that hold the coefficients used for Chebychev approximations (Section 2.8.2). For 

each of the probability value, there is a finite error that is introduced due to the 

limited precision of the entropy calculator. This error, accumulated over all the 
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probability values in the MH, causes an error in the MI value. This error in MI value 

causes unwanted variations in the path the optimization routine takes while finding 

the best deformation field. In this work, I have increased the accuracy of the entropy 

calculation pipeline (section 3.3) which has resulted in reduction in the registration 

times and leading to better results. I was able to reduce the error magnitude in the 

plog(p) calculation from 10-4 to 10-8 which also enabled gradient descent based 

optimization which requires very precise entropy calculation for calculating the 

gradients  

3.2 Cubic Interpolation Pipeline for B-splines Based Deformation Fields 

Rueckert et al. [13] suggested using B-splines to model deformation fields for 

nonrigid registration. B-splines based deformation field is well suited for deforming 

medical images during nonrigid registration because of several advantages like a 

finite volume of support, and their ability to model smooth transitions in the 

deformation field. Equations (5,6) provide the equations for finding the value of 

deformation field as a linear combination of cubic B-splines placed on a rectangular 

grid. In [16] we have presented an efficient cubic B-splines interpolation pipeline that 

can be used for 3D image warping. In this section I present the integration of this 

elastic deformation unit with the rest of the system to provide us with a complete 

nonrigid image registration system.  

3.2.1 Control Point Grid Memory 

The previous rigid registration implementation needed to store 12 parameters for 

the transformation vector. However supporting nonrigid registration requires the 
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careful consideration of how each of the potentially thousands of control points are 

stored. Since we needed nonsequential and fast access to the control point memory 

(also referred to as grid memory), the internal SRAM was used to store the control 

point grid memory. The size of the memory should be able to accommodate the 

number of control points at the finest resolution, where each entry which indicates the 

x, y and z displacements at each control point. The control points were stored in the 

two internal 512Kb RAM blocks. The integer part of the deformation at each 

dimension depends on the maximum permissible deformation at each control point 

and the fractional part determines the subvoxel accuracy of the deformation at each 

control points. For cubic interpolation of voxels in the boundary cases, where we 

need control points that lie outside the boundaries of the image, we replicated the 

control points that lie on the boundary by intelligent address generation technique and 

thus, eliminating the need for additional memory. 

3.2.2 Interpolation Kernel Calculation 

While the rigid registration engine only needed simple linear transformation 

capabilities, B-splines interpolation is needed for nonrigid registration. Using a linear 

combination of cubic B-splines placed on a regular grid of ni × nj × nk  control points 

φi, j, k, with i < ni , j < nj, k < nk and grid spacing δx(t), δy(t), and δz(t) we can compute 

the deformation at every voxel x,y,z as given in equations (5) and  (6) 
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where ⎣ ⎦)(/ txi xδ= , ⎣ ⎦)(/ tyj yδ= , ⎣ ⎦)(/ tzk zδ= , ixu x −= δ/ , jyv y −= δ/ , kzw z −= δ/ , 

and the basis functions are given as: 
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where r is either u, v, or w and t is the current grid resolution level.  

We can rewrite the ( ), ,localv x y zr  as a combination of equations (14, 15 and 16).   

For cubic B-splines interpolation in hardware, we have to calculate the basis 

functions required for interpolation. Utilizing the fact that the control point grid 

structure that we overlay on the reference image is parallel to the coordinate axes, we 

can precompute the basis functions. Figure 8 illustrates the precomputation of the 

basis vectors for a 2D case. Within the control point space shown in the figure, we 

can see that the values of i,j remain constant for all the pixels within the shaded 

region. The basis functions for all the pixels in the row can be pre-computed as ‘v’ 

remains constant for all pixels within the horizontal row. Extending this to 3D, for a 

given plane, the basis functions for all the voxels in a given plane can be pre-

computed using equation 14 and for all the voxels in row of the plane can be pre-

computed using equation 15. The range of these basis functions B(u) is [0,1] which 

makes it suitable for hardware implementation. A simple LUT based implementation 

for calculating the basis functions is best suited as the maximum number of voxels in 

any direction is a finite value and can be stored for different values of ‘r’ in the 
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equations for the basis function given above. Using LUTs is also beneficial, as it 

provides us reconfigurability to change interpolation kernels. 

It has been shown in [16] that dividing the image into subvolumes, where each 

control point forms the corner of the subvolume, and traversing through these 

subvolumes, minimize the number of evaluations of the B-splines basis functions and 

provide a more efficient hardware implementation.  

 

 
Figure 8 Precomputation of the basis vectors for a 2D case; can be extended into 3D 

similarly Source: [14] . 

The interpolation pipeline is provided in Figure 9 and is divided into 3 stages. In 

stage 1, the z-coefficients given by equation (14) are calculated. These coefficients 

are constant for a given plane in a subvolume and thus, are held constant for the 

duration of processing of a plane of the subvolume in the z-coefficient buffer. While a 

plane is being processed, the coefficients of the next plane are being calculated. 

Calculation of the coefficients for the subsequent planes is paused till the coefficients 
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in the buffer are completely utilized. This ensures minimal latency. Similarly in stage 

2, the y-coefficients for different rows in a plane are calculated as given in equation 

(15). The y-coefficient buffer holds the coefficients till the current row is completely 

processed, while at the same time, coefficients for the next row are being calculated. 

In the stage 3, the final deformation at every voxel is calculated using the row 

coefficients from the previous stage buffer as given in equation (16). Each stage 

contained their respective LUTs.  
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On top of the three stages, I have added an additional stage, stage 4, as shown in 

Figure 9 to the interpolation pipeline. The localvr , from stage 3 provides the 

deformation field which constitutes the nonrigid portion of the coordinate transform 

applied to the RI. In the stage 4, this deformation field is combined with a global 

transformation, Tglobal, according to equation (4). The optimal global transform 

parameters applied at stage 4 is pre-computed during rigid registration (which 

precedes nonrigid registration) and stored in the internal memory of the FPGA. The 

output of stage 4 provides the final deformation field that is applied during the 

calculation of the MH. 
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Figure 9 Coordinate transform unit with the cubic interpolation pipeline 

3.2.3 Discussion 

The FAIR-II with the cubic interpolation pipeline was implemented on an FPGA 

PCI board. While the cubic interpolation unit was able to run at 150 MHz 

independently [16], the FAIR-II architecture runs at a speed of 50 MHz, thus making 

it possible to integrate the pipeline into the system flow without any timing hazards. 

Also the output rate of the cubic interpolation unit as presented in [16] is one voxel 

per clock cycle. In FAIR-II, the voxel processing rate is one voxel per two clock 

cycle (without taking into account the latency and refresh cycles of the SDRAM) 

because of the FI neighborhood read requirements discussed in section (2.8.1). The 
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effective output rate of a pipelined system is limited by the output rate of the slowest 

unit. Thus the output rate of this pipeline is limited to one voxel every two cycles.  

The control point memory is loaded with a trial deformation field obtained from the 

optimizer running on the host PC. Such a design allows us to optimize either one 

control point at a time, or all control points at the same time (chapter 4). The accuracy 

of the deformation field depends on the number of bits chosen for storing the 

coefficients in the basis function calculation LUTs and the number of bits stored in 

the fractional component of the grid memory; in our case these numbers being 9 bits 

and 2 bits respectively which correspond to a subvoxel accuracy of 0.125 voxel as 

shown in [16]. Using the basis functions and the grid memory, 8-bit deformation field 

at every voxel position is calculated through stages 1-3 and is passed from stage 3 to 

stage 4. This corresponds to an accuracy of 0.004 of a voxel dimension. The grid 

spacing (number of control points between two control points) at the finest grid 

resolution is 16 (minimum should be 8), thus ensuring that there are more than 64 

voxels at each plane. Thus the pipeline throughput of stage 1 is not affected thereby 

preventing buffer under-run conditions. Similarly, by maintaining grid spacing of 16 

in all three dimensions, buffer under-run conditions can be avoided in stage 2 also. 

Buffer overflow condition is prevented by halting the calculation of the coefficients 

for the subsequent plane/row till all the coefficients in the coefficient buffers are 

completely consumed.   

3.3 Entropy Accumulation 

One of the important steps in the calculation of the MI is the calculation of the 

individual and joint entropies. Entropy calculation relies on the plog(p) calculation, 
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where p is the probability distribution derived from the individual and joint 

histograms calculated during the coordinate transform stage. Since the values of 

probability ‘p’ range from [0,1] the values of the log(p) range from [- ∞ , 0]. However, 

fortunately, the values of plog(p)  are bounded within the range [-e-1, 0] and is 

continuous within this range of ‘p’ which makes it suitable for easier hardware 

implementation using linear approximations. In our previous implementation, we 

have used LUTs based on Chebyshev approximations which are simple to calculate 

for continuous functions and are very close to the actual solution. In the previous 

FAIR-II architecture, we had a 2 LUT implementation with 64-bit 1K entries in each 

LUT, where each entry consisted of the two 32-bit coefficients (k0,k1) required for the 

piecewise linear approximation in the first order [27]. The range of the first LUT was 

from [0 0.25] while the range of the second LUT was from [0.25 1].  

3.3.1 Errors Due to plog(p) Approximations  

With the resources on the FPGA being limited which have to be shared among 

different components of the system, there is a tradeoff between the accuracy of the 

plog(p) pipeline and the memory availability to store the values in LUTs required for 

piecewise approximations. Figure 10 shows the accuracy of the plog(p) calculation in 

the FAIR-II architecture with a 2 LUT implementation; the magnitude of the error for 

each value of ‘p’ is plotted on a log scale.  
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Figure 10 Error in plog(p) calculation with a 2 LUT implementation 

The error is calculated as follows  

( ) ( ) ( )pfppPp ii −Δ= modε  (17) 

where f(p) is the actual function value and ( )ppPi Δmod  is the estimated value 

from the LUT-based hardware implementation. We find that the error magnitude is 

on the range of 410− , with the error magnitude decreasing for higher values of ‘p’ as 

we move along the LUT. Whenever we switch LUTs, we see a repetition in the error 

pattern.   
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3.3.2 Error Accumulation During MI computation 

The main problem in the MI computation with the above method arises from the 

calculation of the joint entropy. During the calculation of the MI we have to 

accumulate the plog(p) values over the entries of the individual histogram and the 

joint histogram as given in equation (10). The entries in the reference and floating 

individual histograms are the column sum and the row sum of the MH and hence are 

higher in magnitude compared to the joint histogram entries. Thus, as evident from 

Figure 10, while calculating the entropy, the error contribution from the joint 

histogram entries is higher compared to the error contribution from the individual 

histogram entries. This is because the individual histogram entries tend to be larger in 

magnitude than the joint histogram entries and this have lesser error contributed from 

the hardware computation of plog(p). Also, the number of such entries are higher in a 

joint histogram (4096 entries in a 64 x 64-bin MH) compared to the individual 

histogram (64 bins each for reference and floating histogram of 64 bins). Thus we see 

an accumulation of errors on the right side of the negative sign of equation (9). This 

error plays a considerable role in the registration process as it affects the accuracy of 

the similarity measure. In some cases, it can totally mask minor variations in the MH 

entries for small changes in transformation field; causing the error to offset any minor 

change in the actual MI values. This alters the path taken by the optimization routine 

while arriving at the best deformation field forcing the optimization routine to take 

higher number of iterations to find the optimal value.  
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3.3.3 Increasing the Accuracy of the Entropy Calculation Pipeline 

To reduce the error in the MI computation we could either increase the number of 

entries in the LUT or we could increase the number of LUTs or both. However while 

implementing on a FPGA, we are limited by the hardware resources on the chip 

which has to be shared with all other components. With careful design I was able to 

increase the number of LUTs to 4 with 1K 64-bit entries in each LUT. The ranges of 

the values stored in the LUTs vary between [0, 2-13], [2-13, 2-6], [2-6, 2-2] and [2-2, 20]. 

These ranges were chosen so as to keep the error magnitude as small as possible as 

shown in Figure 11. We have stored more entries toward the smaller values of ‘p’ 

thus increasing the accuracy for lower values. The smallest value of ‘p’ that can be 

addressed directly with such an implementation is 1.19 x 10-7 which is of the range of 

the lowest probability values possible when registering a pair of 2563 images.  

Figure 12 shows the plot of the ratio of the error in plog(p) calculation to the value 

of ‘p’. Here, we note that for values of ‘p’ lower than 10-8, the error in the 

computation of plog(p) in hardware is higher than ‘p’ itself (blue line), causing the 

ratio to increase above 100%. In such cases, where the error is higher than the value 

of ‘p’, the function output is set to zero leading to lesser cumulative errors. Here, we 

assume that the bins with such low probabilities do not contribute significantly to the 

similarity measure. A MH probability value having a value less than 10-8 is very 

unlikely to contribute significantly to the MI as such a probability corresponds to the 

MH bin having one voxel out of 226 voxels. Figure 13 shows the typical distribution 

of the probabilities in the MH. Thus, it is safe to assume that such small number do 

not affect the registration results and hence the output of the plog(p) calculation for 
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such values are made equal to zero. In Figure 12, the red line shows the plot of the 

ratio of error to the value of ‘p’ after bounding the error percentage to 100%.  

 

Figure 11 Error in plog(p) calculation with a 4 LUT implementation 

 

Figure 12 Ratio of the error to the value of ‘p’, before (blue) and after (Red) error 
bounding. 
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Figure 13 Plot of the histogram of the MH values, shows the distribution of the 

probabilities present in the MH 

In Table 1 we report the error in entropy calculation between the hardware 

calculation and actual value from software before and after the correction to the 

plog(p) calculation for a pair of PET and CT images of dimensions 1283 each. We 

registered 2 sets of images, a PET image with a CT image and 2 CT images taken at 

different phases of the breathing cycle to study the effect of the improvement to the 

registration accuracy and speed. Table 2 and Table 3compare the registration speeds 

for the two cases. We can see a reduction in the registration times as an effect of 

increased accuracy of the entropy calculator. For visual validations, Figure 14, Figure 

15 and Figure 16 show two different sections of the PET image overlaid on the CT 

image. We can notice that the heart and tumor as indicated by the two sections in 

these images are mis-registered to begin with. In Figure 15, we see that the mis-

registration has increased as a result of improper registration. The registration 

algorithm was not able to recover nonrigid deformations in the PET/CT case with the 

older pipeline. However, with the improved pipeline we can see the images registered 
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well in Figure 16. It should be noted here that, we were limited by the amount of 

block RAMs required for storing LUTs in the FPGA and the DSP blocks for further 

increasing the accuracy of the entropy calculator.  

Table 1 Comparison of accuracy of entropy calculation between the software and 
hardware implementation for a PET/CT case of 1283 dimension. 

 MI (software) MI (hardware) Error 
Before plog(p) correction 0.4338 0.3894 0.0445 
After plog(p) correction 0.4338 0.4340 0.0002 

 

Table 2 Speedup achieved by improved entropy calculation for the PET/CT case 

 Number of iterations Time for registration (min) 
Before plog(p) correction 10900 21.48 
After plog(p) correction 7892 17.30 

Gain  1.24 

Table 3 Speedup achieved by improved entropy calculation for the CT/CT case 

 Number of iterations Time for registration (min) 
Before plog(p) correction 8370 39.7 
After plog(p) correction 6331 30.0 

Gain  1.32 
 

 

Figure 14 The PET image (pink) overlapped on the CT image (green) before 
registration 
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Figure 15 The PET image (pink) overlapped on the CT image (green) after registration 
with old entropy calculation unit 

 

Figure 16 The PET image (pink) overlapped on the CT image (green) after registration 
with old entropy calculation unit. 
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3.4 Multiresolution in the Grid Space 

During deformable image registration, like previously discussed, we overlay a 

uniform grid of control points. We use the deformations at these control points to 

obtain the deformation field required for nonrigid registration. Figure 17 shows such 

a grid overlaid on a 2D image. The amount of nonrigid deformations that can be 

recovered depends on the spacing of the control point grid on the image. With a 

coarse grid, it is not possible to recover all the deformations. In order to increase the 

accuracy of the registration, we use finer grid resolution as shown in Figure 18. With 

such an approach we are able to recover deformations better. However there is a limit 

on increasing the number of control points. Having finer grid resolutions also means 

that the memory required for storing the grid points in the internal memory of the 

FPGA increases. The number of grid points stored in the FPGA is limited by the 

internal memory resources of the FPGA as we require sequential and fast access to 

the grid memory. Also finer grid resolutions mean that there are more number of 

control points to be optimized and hence registration time will be longer. Thus there 

is a tradeoff between the registration accuracy and the registration speed. One way to 

reduce the registration is to have a multiresolution approach where we first register 

the images with a coarse grid. We register the image at lower grid resolutions by 

using the registration result at the coarse grid as the starting solution. I have 

implemented such a multiresolution approach within the grid structure to find the best 

deformation field. The maximum number of control points that can be overlaid on the 

image is 32 control points in each dimension.  
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Figure 17 A uniform grid of control points overlaid on a 2D image, the square dots 
represent the control point positions.  

 
Figure 18 A uniform grid of control points overlaid on a 2D image at a finer resolution.  

 

3.5 Calculating MSE in Hardware 

As described in chapter 2, MSE as a similarity measure is suitable for images of 

same modality. For intra-modality image registration, equally accurate results are 

achieved by using MSE as the similarity measure [6]. In our hardware 

implementation, together with MI, I have introduced as an additional feature, the 

capacity for finding a MSE based similarity measure for use with images of the same 
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modality as given in equation (7). The MSE calculation occurs concurrently while the 

reference image coordinates are transformed to the floating image domain. Trilinear 

interpolation is used to calculate the corresponding FI intensity value. This requires 

the access to the entire 8 intensities around the transformed floating image coordinate. 

The access of the 8 FI intensities require 2 clock cycles with the memory organization 

of the FI in the FAIR architecture. Thus, even though we do not have the MH 

accumulation and the entropy calculation stages during MSE calculation, effective 

voxel processing rate remains the same.   

3.6 FAIR-II Implementation Results  

The FAIR-II architecture is implemented on a PCI board (Tsunami, SBS 

Technologies, Albuquerque, NM) with an Altera Stratix EP1S40 FPGA and two on-

board 512 MB SDRAMs for storing the reference and floating images, which were 

accessed via a 32-bit bus. Two internal 512Kb RAM blocks were used to store the 

control point values and the lookup tables (LUTs) used for entropy calculation. The 

system was able to run at a frequency of 50 MHz. The speed of the overall system is 

currently limited by the SDRAM access speed, which runs at 50 MHz. At this voxel 

processing rate, the speedup in MI calculation is approximately 100 [8]. Similarly, the 

cubic interpolation pipeline also provides a speedup of approximately 80 [16].  

When a control point is being optimized, in order to bring it into the constraints 

enforced by the 3D chainmail routine, more than one control point may be moved. 

The number of control points moved depends on the amount of deformation at that 

control point and the deformation at the neighboring control points. Whenever the 

control points are moved the control point memory on the FPGA also has to be 
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updated accordingly. Since there are many control points that are moved in the 3D 

chainmail algorithm, we have to transfer the entire grid to the board from the host PC, 

which leads to additional communication times, which adds to the total registration 

time. 

The maximum size of the images in the hardware can be 3512  and the maximum 

size of the control point grid that is overlaid on these images is 332 . We have 6 bits to 

represent each image voxel intensity value, thus necessitating the MH to have 64x64 

bins. The presence of parallel accumulation units as described in section [2.8.1] 

necessitates having 4 copies of MH memory in the internal memory of the FPGA. In 

the design of entities of FAIR-II which involves DSP components and memory 

components, we had to trade-off some accuracy in order to accommodate the 

complete design within the resources available on the FPGA. The logic cell and DSP 

block utilization for the FAIR-II architecture are 54% and 100% respectively. The 

total memory bits utilization is 55%. However, the LUTs used for the entropy 

calculation, which require block RAMs, cannot be further increased as the total RAM 

block bits utilization is 93% (3,195,072 bits out of 3,423,744). The resource 

utilization summary for the FAIR-II with the cubic interpolation pipeline and entropy 

calculator with 4 LUTs is given in Table 4. Also the resource utilization summaries 

for the FAIR-II with 2 LUT entropy calculator and FAIR-II with similarity measure 

based on MSE is also given for comparison. 
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Table 4 Resource utilization summary for the FAIR-II architecture 

Resource Utilization FAIR-II  MSE FAIR-II - 2 LUTs FAIR-II - 4LUTs
Logic cells 17,824 21,264 22,687 

Total combinational functions 15969 19279 20717 
Total registers 8136 9324 9231 

Total logic cells in carry chains 2198 3304 3250 
I/O pins 355 355 355 

Total memory bits 959574 1762125 1893195 
DSP block 9-bit elements 112 112 112 

Total PLLs 1 1 1 
Maximum fan-out 8471 10189 10103 

Total fan-out 72626 94866 99689 
Average fan-out 3.91 4.21 4.16 

 

3.7 Summary 

Software implementations of 3D nonrigid image registration algorithms are 

burdened by both computational load and memory access load. The former involves 

smooth B-splines interpolation at each voxel, whereas the latter comprises numerous 

random accesses to the image memories over multiple passes of the algorithm. 

Together with this, the use of MI as a similarity measure accompanies high memory 

access load. Overall, the two main bottlenecks are spline interpolation and MI 

calculation stages, which have a lot of computational and memory access loads.  

To reduce the overall registration time we have moved these two tasks to an FPGA, 

which contains a customized architecture for acceleration. The nature of these two 

tasks is such that they can be programmed on an FPGA using deep pipelines and 

parallel units. The addition of the cubic interpolation pipeline allows us to perform B-

splines interpolation with minimal error, whereas the pipelined structures of various 

components ensure that there is minimal latency resulting in optimal speeds.  
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Figure 19 System architecture for the hardware accelerated nonrigid image registration 

system 

 

Figure 19 shows the system architecture of the nonrigid registration system. The 

optimizer, residing on the host CPU, supplies a new candidate transformation to the 

FPGA, which applies this transformation to the RI, computes the similarity measure 

and then returns the similarity measure to the CPU. The CPU uses the returned value 

to compute the next transformation to be applied. This kind of acceleration provides 

us with a 100 fold increase in the voxel processing rates compared to software 

implementation of the same algorithm (Chapter 5).  Even though the precision is 

affected by the limited bit widths of different components in the hardware 

architecture (specifically, in the computation of local and global transformation and 

PV interpolation), we are able to register images with subvoxel accuracy (Chapter 5).  

The limited precision of the piecewise linear approximations for the plog(p) 

calculation affects MI computation. In local neighborhoods, where changes in the 

value of MI are small, the error in the MI calculation causes the optimization routine 

to take higher number of iterations than in the absence of this error. We present an 

implementation of a more accurate plog(p) calculation pipeline with 4 LUTs which 

reduces the error magnitude in each plog(p) calculation from the order of 10-4 to 10-7.  
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This increases the accuracy of the MI calculation thus leading to faster and more 

accurate results (Table 2, Table 3 ). The improved accuracy of the plog(p) pipeline 

also enabled us to use gradient descent based optimization scheme as described in 

Chapter 4.  
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4 OPTIMIZATION SCHEMES AND MESH FOLDING 

PREVENTION TECHNIQUES 

4.1 Introduction  

Optimization is an important aspect of the image registration process. The 

optimizer provides trial search points to find the best transformation that matches the 

RI with the FI. The number of parameters varies with the kind of transformation 

applied and equal to the number of degrees of freedom in the transformation vector. 

For example in 3D rigid registration, there are 6 parameters that need to be optimized, 

3 rotations and 3 translations along the principal axes. In case of nonrigid registration, 

this number increases enormously. For example, in our algorithm, where we overlay a 

rectangular grid on the image, we have 3 parameters (shifts along the 3 principal 

axes) at each of the control points. The number of parameters which require 

optimization increases with the number of control points. We can chose to optimize 

all the parameters at the same time or divide the parameters into non-overlapping 

subsets and optimize each set separately.  

Several schemes have been proposed to optimize the parameters for image 

registration [13, 28]. Global optimizers like downhill simplex [29], Powell’s 

multidirectional search [30] are useful when there are a lot of minima/maxima and is 

difficult to locate the global minimum/ maximum. This is particularly true in the case 

of noisy images like ultrasound. In such cases these search techniques explore the 

search space to locate the position of the optimal point. However there is a tradeoff 

between the complexity of the optimization algorithm and the time required to 
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explore the entire volume of the search space to locate the true optimum. In this 

section we chose one such global optimization technique, the downhill simplex and 

compare it with the gradient descent based optimization techniques and their 

suitability for fast nonrigid image registration.  

The global search schemes are used for optimization of the deformation at each 

control point. The control points are usually optimized in a raster order. To prevent 

mesh folding, a major drawback of the free-form deformation based registration 

model, we have previously presented the 3D-chainmail method which applies a set of 

geometrical constraints to limit deformation of control point thereby preventing the 

mesh folding [16]. Our previous implementation of the 3D chainmail fits well with 

the optimization of individual control points using optimization schemes like simplex 

and Powell’s. However, when optimizing the entire control point space, there is a 

need to have a global folding prevention scheme which applies the set of constraints 

to all the control points that are moved by the optimization scheme. In this section, 

we present a novel scheme to prevent mesh folding when multiple points are being 

moved in the control point space called global chainmail (GCM).  

During registration, most of the time is spent in the computation of the cost 

function as compared to the calculation of a trial point. Also, the optimization process 

is usually less memory intensive and involves making a lot of decisions depending on 

the previous evaluations of the cost functions. This makes it very suitable for 

implementation on general purpose processors. Thus we have retained the 

optimization routine on the host PC and have supported the highly computationally 

and memory intensive task of calculation of the similarity measure on the FPGA. This 
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technique allows us the option of having a set of optimization techniques from which 

we can chose depending on the image characteristics. This also allows for dynamic 

tuning of the control parameters of the optimization routines and allows us to have 

measures like chainmail or GCM to prevent mesh folding.  

I would like to thank Dr William Plishker for his helpful insights in the work 

presented in this chapter and his help in implementing the linear program solver 

presented here. His work on the software side of the algorithm has been of 

tremendous help in tackling various issues related to the hardware implementation.   

4.2 Downhill simplex 

In this section we discuss the simplex algorithm [29] which is a function 

minimization method that has the ability to crawl out of local minima to find global 

minima. It is a very simple system that requires only function evaluations, not 

derivatives. It does not use line minimizations or use derivatives of the function like 

Powell’s multi-directional search (MDS) method [30]. It is robust in the presence of 

noise which makes it a desired system while registering images which contain a lot of 

noise like ultrasound images. A simplex is a n-dimensional geometrical figure, 

constructed from n+1 non-degenerate vertices which act as the starting points. For 

example, in 2D, the simplex is a triangle and in 3-D, a tetrahedron. The simplex 

algorithm makes it decision on the function evaluations at the n+1 points and moves 

to a minimum by taking a series of steps like reflection, expansion, and contraction. 

The simplex crawls around the parameter space and gets to the very bottom of the 

narrow valleys.  
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In our implementation, we have 3 parameters that model the deformation at each 

control point, one for each direction. We optimize each control point, one at a time, in 

a raster scan order. This simplifies the search process by reducing the dimensionality 

of the downhill simplex optimization. After a new trial point is given by the 

optimization program, we make sure that there are no folding artifacts by having the 

3D chainmail algorithm [16] (single node) in place. The chainmail algorithm makes 

sure that the movement of the control points has not violated any of the constraints set 

by the user. While doing so, more than one control points are adjusted to make sure 

the limiting constraints are met. Thus at every iteration, the entire control point space 

has to be loaded onto the hardware to ensure that the hardware has the latest 

deformation field before evaluating the cost function. This adds for an additional 

communication delay.  

We use the same scheme of optimization while using other single node 

optimization schemes like Powell’s MDS. In this raster scan ordering of the control 

point optimizations, the optimal shift of a control point is influenced by the shifts of 

its neighbors. Thus, it is important that multiple passes are made, where a single pass 

means a complete sequential optimization of each control point describing the FFD. 

These optimization schemes are labeled as “greedy” algorithms because they seek the 

locally best solution. In our implementation we have performed 2-3 passes at each 

grid resolution and based on the validation results presented in this work, we have 

found this number to provide acceptable registration results.  
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4.3 Gradient Descent 

Rueckert et al. [13] have suggested a simple iterative gradient based optimization 

scheme in which steps are taken in the direction of the local gradients at each control 

point. MI as a similarity measure lends itself suitable for gradient calculations and 

thus enables us to use a gradient descent (GD) based optimization scheme. The 

algorithm has two phases, the gradient computation phase and the trial phase. In the 

gradient computation phase the gradients at each of the control points are calculated 

as given by equation (18) from the hardware. 

( )l

l

CC φ
φ

∂
∇ =

∂
 (18) 

where C is the cost function, (similarity measure) and lφ is the control point at 

location ‘l’.  

 In the trial point phase, suitable step size μ  is applied in the direction calculated 

by the gradient C∇ , thus calculating the new deformation field Φ  to be applied 

according to equation (19).  

C
C

∇
∇

+Φ=Φ μ  (19) 

The hardware loads the entire control point space Φ  after the application of the 

step size μ  and evaluates the cost function C. Based on whether the new deformation 

field was a more suitable field or not, a different step size μ  is applied for the same 

gradient vector by dividing the step size by half until a better solution point is 

obtained. Once a better point has been located, the gradients are recalculated with the 
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new deformation field as the starting point. This process is repeated till either the step 

size reaches a small value, or the change in the similarity measure is smaller thanε , a 

small constant, after which the algorithm stops. The same process is repeated for finer 

grid resolutions.  

4.3.1 Capture of gradients 

While evaluating gradients in hardware, the accuracy of the entropy calculator is 

very essential. The gradients are calculated using the finite difference approximations. 

When a small deformation is applied at each control point to capture the gradient at 

that point, there is a small perturbation to the MH. It is the amount of change to the 

MH that defines the entropy change, which in turn defines the gradient at this control 

point. However while calculating entropy in hardware there is a finite amount of error 

which has noise like characteristics as discussed in section (3.3). This error in the 

entropy calculation was adversely affecting the gradient computation. It had a 

masking effect, where the errors introduced by the plog(p) calculations masked the 

perturbations caused by the application of a small deformation at the control point 

during gradient computation. Thus the gradient descent optimization scheme was not 

able to proceed in the direction of the actual gradient, which caused the gradient 

descent based registration to fail. With the increase in the accuracy of the plog(p) 

calculation pipeline as discussed in section (3.3), I was able to correct this masking 

effect. From Table 1, we can see that the error in the gradient computation is on the 

order of 410− which is acceptable as the stopping criterion set for terminating the 

optimization routine is higher than this error margin.  
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4.4 Advantages of GD–based optimization scheme 

Each of the optimization schemes has a set of advantages that make it suitable for 

implementation for a specific application. While choosing an optimization routine we 

have to consider several factors like the nature of two images, presence of noise, 

degree of deformation etc. In an automatic registration scheme like FAIR-II, by 

having implementation of several such optimization schemes, the user is possible to 

choose the optimization scheme that best suits the images that are being registered.  

The gradient descent based optimization scheme has several advantages in our 

hardware accelerated image registration scheme compared to other optimization 

schemes.  

4.4.1 Local Gradient Computation 

One of the major advantages of GD is the computation of gradients in the local 

neighborhood. During the first phase of optimization, gradients at all the control 

points are calculated. We observe that more than 90% of the time is spent in the 

computation of the gradients. Since the cubic interpolation involves a neighborhood 

of 4x4x4 control points, while calculating gradients we can calculate gradients in this 

finite subvolume only. For gradient computation at nodes residing on the boundaries, 

the boundary nodes are replicated. By calculating local gradients, we reduce the time 

required for gradient computation as the number of voxels processed will be less. 

However, at very fine grid resolutions, calculating local gradients create a very sparse 

MH (because of the small number of voxels involved). While calculating entropy in 

hardware, we observe that the percentage of error in plog(p) calculations is higher for 

small values of p. Thus if the MH becomes very sparse, computation of local 
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gradients is affected. This can be resolved by having a MH with smaller number of 

bins so that dispersion of mutual histogram is reduced.  

4.4.2 Communication Times 

By using a GD-based optimization scheme, the communication times are reduced. 

In the simplex based optimization scheme, there was a need to load the grid to the 

hardware through the PCI bus at the start every iteration because of the movement of 

more than one control points by chainmail. This leads to a lot of communication time 

overhead in the form of time required to load the control points to the FPGA memory 

where it is stored. In GD, during the second phase, where a step size is applied to the 

gradient vector according to equation (19), the entire grid needs to be loaded on to the 

hardware. However, the communication time overhead introduced by this is very 

small since we have a very small number of iterations through the second phase as 

compared to the number of iterations of complete grid transfer in the simplex case. 

Thus using the GD-based optimization scheme leads to lesser communication times. .  

4.4.3 Parallel Implementation  

In the previous implementation where a single node is optimized with simplex and 

chainmail (single–node) each control point is optimized in a sequential manner, with 

mesh folding prevented by running the chainmail algorithm at each iteration of the 

optimization routine. With multiple processing nodes available, this scheme is not 

parallelizable since the optimal point of a control point might depend on the position 

of the neighboring control points. Even if we are able to use multiple nodes for 

optimizing different control points, it is difficult to merge the deformations at all of 
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these control points keeping the deformations within the chainmail limits. When 

using multiple nodes to calculate optimal deformation at two neighboring control 

points, there might be potential conflicting solutions. In such cases, multiple passes 

may be required to optimize the control point space. However with GD-based 

optimization scheme, more than 90% of the time is spent in the calculation of the 

gradients. This becomes higher at finer deformation levels, because the total number 

of control points significantly increases after mesh refinement. The calculation of 

gradients at each control point is independent of its neighbors. Thus the calculation of 

gradient of the cost function at each control point can be parallelized and redistributed 

to different nodes. The FPGA interacts with the host PC taking in the best 

deformation field known previously and calculating gradients at each control points 

separately. I have designed the communication between the FPGA and the host PC in 

such a way that it preserves the independence of the control points during gradient 

calculation and thus lends itself well to parallelization. Ino et al. [12] have shown that 

the registration time decreases linearly with the number of nodes. Thus by having 

multiple FAIR-II nodes in parallel, the gradient computation can be shared across all 

the nodes thereby decreasing registration times further. Since FAIR-II can achieve a 

40 fold speedup of registration (Chapter 5), having multiple such nodes for 

parallelizing the gradient calculation is instrumental in driving the registration times 

under a minute.  

4.4.4 Disadvantages  

The gradient descent optimization scheme has some drawbacks when compared to 

the gradient–free optimization schemes like the downhill simplex and Powell 
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methods, like the need to evaluate gradients and possibly the Hessian matrix. 

(Gradient–free optimization doesn't mean that the derivatives don't exist but only 

means that they are not used explicitly in the calculation of a trial point.) Also 

gradient descent is prone to get isolated in local minima. To tackle this situation, with 

the availability of fast hardware, we can register the images again with the RI and FI 

exchanged. Thus we reduce the probability of getting isolated in local minima. 

Another major drawback of using gradient descent optimization scheme is its 

difficulty in converging in the presence of noise. In such cases we revert back to the 

more robust optimization schemes like simplex.  

4.5 Prevention of Mesh Folding 

One of the main problems of the use of FFD based deformation field is the 

occurrence of folding of control points (called mesh folding) which occurs when one 

control point crosses over the other (section 2.3.2) . This mesh folding represents a 

violation of the topology of the original distribution of control points.  To address this 

issue Rueckert et al. [13] proposed a smoothing penalty term  called csmooth which 

reduces the possibility of folding.  

4.5.1 Smoothing Technique 

The csmooth parameter, a regularizing penalty term, is calculated as given in 

equation (20). The similarity measure is now the combination of the original cost 

function selected and the regularizing penalty term calculated and is given by 

equation (21). Physically, this smoothing parameter stands for the energy component 

of the deformed object.   
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where V is the volume of the image and λ  represents the elastic coefficient for the 

body structure in consideration. 

)(csmoothCC λ+=′  (21) 

We must note that the regularization term introduced by csmooth parameter is zero 

for any affine transformation and, therefore, penalizes only non-affine 

transformations. λ  is the weighting parameter which defines the tradeoff between the 

alignment of the two image volumes and the smoothness of the transformation. In the 

previous implementations, λ  has been selected experimentally and there has not  

been a fixed method to estimate this parameter.  

This kind of correction based on csmooth parameter is suitable for applying to 

global GD methods and is easy to compute (second derivatives with respect to the 

deformations at the control points). However this method cannot prevent folding but 

can only hinder large movement of control points. Also the weighting parameter,λ , is 

difficult to adjust. For the PET/CT case which we considered earlier, we derived the 

deformation field for 2 values of λ , one at a very low value, 01.0=λ  and one at a 

very high value 10=λ .  
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Figure 20 Deformation field with very less smoothing 01.0=λ  

 

Figure 21 Deformation field with very high smoothing 10=λ . 

Figure 20 and Figure 21 illustrates the deformation field across a 5x5x5 grid 

overlaid on the reference CT image. We can see that when the parameter is too small, 

we can see a high degree of deformation and mesh folding becomes evident in this 

case. Similarly, when the parameter is too large, it hinders the actual movement of the 

control points resulting in a high degree of smoothness that does not model the actual 

deformation field.   
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4.5.2 3D Chainmail 

In order to prevent mesh folding in the case of single node optimization, we use a 

robust folding prevention scheme based on 3D Chainmail, which we have presented 

earlier [16].  3D Chainmail imposes a number of geometric constraints on the 

movement of a control point with respect to its neighboring points. These constraints, 

like minimum and maximum distance between adjacent control points, maximum 

shear between planes, control the stretching of the control points along each of the 3 

principal directions and shear perpendicular to them. If the movement of a control 

point violates any of the limits, its neighboring vertices are moved in tandem to 

satisfy the limits. Thus the deformation at every control point is applied while 

maintaining the original topology between the control points, thus restricting any 

mesh folding artifacts. Figure 22 shows an example of a control point ‘A’ being 

moved and the application of chainmail algorithm to adjust the neighboring control 

points so as to satisfy the limits set by the user. When extended to 3D, there are a total 

of 9 parameters: 6 controlling stretching (dminx, dmaxx, dminy, dmaxy, dminz, dmaxz) and 3 

controlling shear (smaxx, smaxy, smaxz) which allow one control point to  move freely 

(within the constraining limits) without hindering the motion of other control points 

unlike the smoothing parameter which hinders the motion of all control points 

equally.  
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Figure 22 Local deformation propagation example.(a) Control point A affected by the 
optimization algorithm. (b) Propagation of the local deformation to the immediate 

neighbors. (c) Final grid after the deformation has propagated through all the necessary 
control points.  

 

This system works well in the simplex optimization scheme where only one control 

point is moved at a time. While such a technique is implemented in a global 

optimization scheme like the GD, there are multiple points moved whenever the 

optimization algorithm tries to take a suitable step based on the gradients. This might 

lead to situations where there is a point, ‘A’, which is being pulled in two different 

directions in order to meet the constraints (for points B and C) as shown in Figure 23.  

 

Figure 23 Multinode optimization; points B and C pulling point A in opposite directions 
to meet the individual constraints. 
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4.5.3 3D Global Chainmail 

Figure 23 shows a situation where a conflict occurs when multiple points are being 

moved. In this case the point A is being pulled in two opposite directions in order to 

satisfy the standard Chainmail constraints set by the points B and C. In such cases, we 

can chose to either anchor the point A, without moving it or move points B and C to 

meet the constraints with respect to point A. Also we can split the difference 

proportionately. In the first case, this method locks up the control points from moving 

and in the second case; the problem becomes increasingly hard to split among 

multiple points.  

In order to model the deformation field in the best way, while allowing for the 

maximum allowable deformation at every control point we propose a scheme called 

3D global chainmail (GCM).  GCM allows deformations at all the control points to 

satisfy the given set of constraints while moving the points as little as possible. This 

problem is increasingly hard at higher grid resolutions as the number of control points 

increases cubically with the grid size. We model an objective function that is the sum 

of the movements at all the control points subject to set of constraints as shown in 

equation (22).Since the objective function and chainmail constraints are all linear, we 

can use linear programming for solving the set of constraints given by equation (23) 

subject to the condition that the total distance of all the control points moved, D, is 

minimum.  
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Figure 24 Deformation field with GCM 

In our implementation, we use the GNU linear programming kit (GLPK) for 

solving the set of linear equations. The amount of time taken by the GPLK to solve 

the equations is very small, in the order of milliseconds. The GPLK solves the 

equations for movement along each of the three axes separately and gives a new 

deformation field in which control points are moved according to the gradients, while 

keeping the distance moved in order to satisfy the constraints applied to a minimum. 

Figure 24  shows the same grid as in Figure 21 but with global chainmail controlling 

the movement of the control points. In this case, we allow the control points to move 

about with respect to the local gradients to the maximum amount possible within the 

permissible limits as set with equation (23).  
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where zyxp ,,
0 and zyxp ,,  are the deformations at control point (x,y,z) before and after 

the grid adjustment; GridSpaceMM is the grid spacing between the control points; 

MaxD, MinD are the maximum and minimum distances between the control point in 

each direction, MaxSheary and MaxShearz are the shear parameters between the 

adjacent planes; and ε is a positive constant.  

The flow of the GD-based optimization scheme with the 3D GCM is given below.  

Loop { 

Loop { 

Get gradient vector C∇  for current grid resolution; 

Loop {  

  Create a potential new grid based on a step size of μ ;   

Bring new grid into chainmail specifications using linear program solver (GLPK);  
Solve separately for each dimension; 

  If (new grid is better) break; else μ = μ  /c; (c being a constant) 

  If μ is too small exit with last known good grid; 

} 

Recalculate the gradient vector, C∇ ; 
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If ( δ<∇C ) break; (where δ   is a small positive constant) 

} 

Grid = Grid at a finer resolution;  

If finest resolution reached, then exit; 

} 

4.6 Comparison of Speed 

The running times vary greatly between a single node optimization scheme like 

simplex and multimode optimization scheme like gradient descent. In this section we 

study the speed comparison between the two implementations for a CT-CT 

registration case and PET-CT registration case, all images being of size 1283. In 

Table 5, we show the speed for the simplex optimization, GD-based optimization 

scheme where all the voxels are used for calculating the gradients (referred for 

simplicity as global gradients), and GD with local gradients as discussed in section 

(4.4.1). For both of these cases, we can find that the simplex was faster when 

compared to the GD with global MI computation whereas the GD with local gradient 

computation was faster than the simplex optimization scheme. However, as 

previously discussed in section (4.4.3), we must note here that the GD-based methods 

lend themselves very well to parallelization during gradient computation which can 

bring out further reduction is speed. 

Table 5 Comparison of speed for single node optimization, GD-based optimization with 
global gradients and GD-based optimization with local gradients 

Total Registration 
time 

Simplex  
(sec) 

GD with Global 
Gradients (sec) 

GD with Local 
Gradients (sec) 

CT-CT 872 1903 640 
PET-CT 1038 2092 604 
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4.7 Comparison of Accuracy 

In this section, I compare the accuracy of the registration between a pair of 

representative Lung CT images taken during the inhale and exhale phases of the 

breathing cycle. I registered the exhale image with the inhale image using simplex 

optimization and GD-based optimization. I used expert-traced contours drawn on the 

floating and reference image to validate the results of the registration. I compared the 

accuracy of registration based on 3 metrics, namely overlap index, RMS distance and 

Haursdoff distance between contours drawn on different body structures like lung and 

tumor by expert on the RI and the contours transferred from the FI (drawn by an 

expert on the floating image) after registration. We validate the registration accuracy 

by matching the two contours using the above mentioned metrics. If A represents the 

organ/tumor volume using automatically propagated contours and B represents the 

lung/tumor volume using expert-drawn contours, we defined the overlap index as 

)/( BABA ∩∪ . The RMS distance between the surface boundaries of A and B is the 

average of surface mismatches along radial lines emanating from the center of mass 

of the expert-delineated shape. For even stricter validation, we also computed the 

Hausdorff distance between the two volumes (the method and the measures are 

discussed in detail in chapter 5).  Table 6 shows these results for the left lung, right 

lung and the tumor. We find that the results from the simplex implementation and the 

gradient descent implementation match closely. Both optimization schemes were able 

to recover a large degree of deformation between the end-exhale and end-inhale 

images for this representative case. For comparison, the metric values before 

registration are also given in the table. We can notice an improvement in all the three 
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metrics using both the optimization schemes. This shows that GD and simplex 

optimization scheme perform similarly on hardware and can be used interchangeably. 

Table 6 Comparison of accuracy between GD/simplex for a representative case 

Overlap Index RMS distance Haursdoff distance Structure 

Before GD SIM Before GD SIM Before GD SIM 
Left Lung 0.85 0.94 0.95 4.4 2.2 2.2 34.8 21.4 16.8 

Right Lung 0.90 0.92 0.93 4.6 2.8 2.5 25.4 19.3 19.0 
Tumor 0.57 0.78 0.78 4.5 2.3 2.6 8.7 7.1 5.2 

Before: before registration, GD: registration with GD, SIM: registration with simplex 
 

4.8 Summary 

In chapter we present the different optimization schemes that we have used in the 

registration system. For nonrigid registration, the number of degrees of freedom is 

very large which poses a challenging task to optimize all the control points in the 

least amount of time. We have used downhill simplex based optimization schemed in 

our previous works [31] for optimizing the control points on software. However the 

optimization schemes like downhill simplex, Powell’s MDS etc are sequential in 

nature and cannot benefit much from the use of multiple nodes.  

Gradient descent based optimization schemes work well with the same modality 

image registration, and also with cases where the noise levels in the image are low. 

Gradient descent lends itself very well for parallelization and is well suitable for 

hardware implementation. We discuss in this chapter the various issues that affect the 

computation of gradients and hardware and methods to tackle such situations.  

In GD-based optimization, at every evaluation of the similarity metric, there are a 

number of control points that are moved. While using free-form deformation based 

nonrigid registration, mesh folding is a common problem that leads to unrealistic 
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deformations. In order to address the issue of mesh folding while using GD-based 

schemes, we present the 3D global chainmail scheme which applies a set of 

constraints to the control points while moving the control points.  

Our development of the gradient descent based optimization scheme coupled with 

the GCM is not to replace the simplex optimization scheme but to complement it in 

cases where registration can be easily guided by the calculation of gradients as in the 

case of CT-CT registration. 



 

 75 
 

5 CHARACTERIZATION OF IMAGE REGISTRATION 

HARDWARE 

5.1 Introduction 

In this section I present the registration results obtained from the FAIR-II 

architecture described in the previous chapters. I compare the registration results from 

the hardware with the registration results obtained from a similar software 

implementation on an Intel Xeon workstation running at 3.6 GHz. I used the result of 

registration to propagate expert-traced contours from one breathing phase to another. 

I validated the results using 4 metrics detailed in this chapter.  

5.2 Experiments 

In order to evaluate our hardware accelerated image registration system, we 

considered CT scans of different body organs acquired at different breathing phases. 

We selected these set of images since they had considerable amount of soft-tissue 

deformations introduced due to respiratory movements. Breath-hold and respiratory 

gated CT scans of 5 lung cancer patients and 4 abdominal cancer patients undergoing 

radiation treatment were considered. We registered end-exhale images with end-

inhale images (referred to as exhale and inhale images), motivation being that if we 

were able to recover deformation between these extreme cases, deformation between 

any other set can be recovered easily. We recently presented a software 

implementation of an accurate registration-based segmentation approach, in which 

organ contours drawn by an expert in the exhale scan can be used to detect the organ 
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contours in the inhale scan [31]. Treating the results of the software implementation 

as the reference, we compared the results obtained by the hardware registration.  

Automatic segmentation, which refers to the propagation of organ contours from 

one CT scan to another, was used to validate the results. Expert generated contours 

were used to segment the tumors and different body organs were identified by using a 

commercial threshold-based segmentation tool (Pinnacle, Phillips medical systems, 

Cleveland, OH). Treating the exhale image as RI and inhale image as the FI, the 

images were registered using the hardware and the deformation field obtained was 

used to deform the contours on the inhale image, which were then transferred on to 

the exhale image. The expert/Pinnacle generated contours on the exhale image were 

used to validate the results by comparing with the contours transferred from the 

inhale image.  

5.3 Validation 

Validation of image registration has been a challenging task because of the absence 

of a gold standard. Since expert generated contours are used extensively for treatment 

planning, use of such contours for validation is a feasible and acceptable approach.  

For validation we compared the organ and tumor contours generated by the 

registration in hardware with the expert contours. A software implementation of the 

same algorithm was used to generate automatic contours and the validation results 

from the software implementation were used to compare with the results of the 

hardware implementation which gave a measure of the accuracy of the hardware. We 

considered four metrics for validating the results, namely the mean square difference 

(MSD) between the unregistered and registered images, overlap index (OI), root 
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mean square (RMS) distance and Hausdorff distance between the surface boundaries 

of the registered contour and the expert contour.  

5.3.1 MSD 

We considered the mean square difference (MSD) as a validation measure between 

the exhale and the inhale images before and after registration. Also we compared the 

MSD between the exhale image and the registered inhale image obtained with the 

software implementation.  

 MSD is defined as  

MSD =
( )

N

FIRI
N

i
ii∑

=

−
1

2

 
(24) 

 

where RIi and FIi are the CT numbers of the reference and transformed floating 

images respectively and N is the total number of voxels in the volume of overlap. 

While calculating MSD, we considered the entire 12 bits in the CT number. The MSD 

must be minimal when the two images are perfectly aligned.  

5.3.2 Overlap Index 

Overlap Index gives a measure of how well the contours of the volumes considered 

overlap [6]. If A is the volume using expert/Pinnacle traced contours and B represents 

the volume of the contour propagated after registration then the overlap index is given 

by  
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OI = 
BA
BA

U

I  (25) 

An OI of 1.0 corresponds to the perfect overlap between the two volumes. However 

OI is influenced by the size of the organ, and is less sensitive to disagreement 

between the 2 contours in these cases.  

5.3.3 RMS distance 

RMS distance is given by  

RMS = ∑
=

−
n

i
ii ba

n 0

2)((1
 (26) 

where ai and bi are vertices along the radial lines emanating from the center of mass 

of the volumetric regions. RMS distance between the surface boundaries of A and B 

measure the average of surface mismatches along these radial lines [6]. It provides a 

better validation tool compared to the overlap index as it can identify disagreement 

between contours even in the large volume organs.  

5.3.4 Haursdoff distance 

Hausdorff distance (HD) is defined as the maximum of the closest distances 

between the 2 volumes, where the closest distance is computed for each vertex in the 

2 volumes[6]. Mathematically, Hausdorff distance is given by 

HD =  { } { }[ ]),(minmax,),(minmaxmax badbad
AaBbBbAa ∈∈∈∈

 (27) 
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where a is a volume A vertex, b is a volume B vertex, and d(a,b) is the Euclidean 

distance between vertices a and b. Hausdorff distance reflects the distance of the point 

of A that is farthest from any point of B and vice versa. Haursdoff distance can 

therefore capture the worst-case mismatch as the absence of the averaging process 

can identify outliers. It can give a measure of the worst case misalignment between 

the two contours considered here. We evaluated all these measures on 5 lung cases 

and 4 abdominal cases and present the hardware registration results in comparison 

with the software registration results.  

5.4 Voxel Processing Rates and Communication Overhead 

Voxel processing rate is defined as the ratio of the total number of voxels processed 

to the total time consumed. During MI calculation, this is the ratio of the number of 

voxels in the RI to the time taken for one MI calculation.  We compared the voxel 

processing rates from the hardware and compared it with the voxel processing rate of 

a similar software implementation on an Intel Xeon workstation running at 3.2 GHz. 

Table 7 shows the MI computation time in the hardware (HW) for different sized 

images in comparison with the software (SW) implementation of the same algorithm. 

With the hardware implementation, we can see a 100 fold increase in the voxel 

processing rates of the system (compare the hardware and software voxel processing 

rates in Table 7). In the hardware implementation, the reference image and the 

floating image (4 copies) have to be loaded on to the hardware board once before the 

registration begins. The time required for loading the images on to the hardware is 

also shown.  



 

 80 
 

For nonrigid registration, we have to load the control point deformation field given 

by the optimization routine to the hardware at the beginning of every iteration. As 

previously discussed, we store the control point deformation field in the internal 

memory of the FPGA. Loading of the control point memory to the internal memory 

over the PCI constitutes a communication overhead. Table 8 shows the time required 

to load the control point memory (grid memory) to the hardware which constitutes the 

communication overhead. The grid transfer time is a function of the size of the 

overlaid grid and increases cubically with the resolution of the grid. 

Table 7 Voxel processing rate comparison between hardware and software  

MI computation time
(sec) 

Voxel processing rate
(Million voxels/sec) 

Image load times 
in hardware (sec) 

Image  
dimension 

HW SW HW SW Ref Img Flt Img 
643 0.02 1.83 16.38 0.14 0.72 2.71 

1283 0.12 7.28 16.78 0.28 5.45 21.49 
2563 0.78 63.59 21.48 0.26 42.41 169.73 

HW: Hardware, SW: Software, Ref Img: Reference Image, Flt Img: Floating Image 

Table 8 Communication overhead 

Grid dimension Grid load time (s) 
5 0.0001 
9 0.0149 

17 0.0470 

5.5 Comparison of Hardware and Software Implementation 

The software implementation used for comparison with the hardware used simplex 

based optimization (single node optimization) with 2-3 passes at each optimization 

level. In the hardware implementation also, we used the same optimization scheme 

along with chainmail to prevent mesh folding, thus we are comparing two exactly 

similar implementations in hardware and software. Table 9 shows the speed 

comparison between the hardware and software implementations for the registration 

of inhale and exhale images of size 256 x 256 x 80. The table provides the number of 
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iteration at the two grid resolutions taken by the simplex optimization scheme and the 

total time required for registration at these levels. The time required for rigid 

registration and the time required for elastic registration are given separately and the 

total registration time is also provided for comparison between the hardware and the 

software implementations. As described, rigid registration precedes nonrigid 

registration in our algorithm. The rigid registration step showed a speedup of 

approximately 100. The speedup in the case of nonrigid registration is 40. Even 

though the voxel processing rate was roughly approximately 100 times faster in 

hardware, as shown in Table 7 (compare hardware and software numbers in the voxel 

processing rate column), the net speedup compared to software was less than 100, 

because of different factors.  

The hardware implementation had fixed precision at various stages like coordinate 

transform, MH accumulation and entropy calculation. The loss of precision in the 

case of entropy accumulation on hardware affects the MI calculation directly, which 

leads to a higher number of iterations taken by the optimization routine. The 

increased number of iterations is due to the oscillations experienced by the 

optimization routine in small neighborhoods, where changes in MI values are very 

small and thus the error in MI computation hinders the optimization routine from 

taking the most optimal path. The speedup in the nonrigid registration was further 

reduced because of the grid loading at every iteration which accounts for 

communication time overhead. The rigid registration does not suffer from this 

communication latency. Overall, the hardware implementation was 40 times faster 
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than the software implementation on a 3.6 GHz Intel Xeon processor with 1.5 GB of 

RAM. 

Table 9 Time comparison for a representative CT/CT case 

Rigid Registration Nonrigid Registration Implementation 
Iterations Time 

(min) 
Iterations 

(Level1,Level2) 
Time 
(min) 

Total Time
(min) 

SW 158 52.3 540, 3060 1192.0 1244 
HW 123 0.5 1115, 5093 29.5 30 

Speedup  104.6  40.4 41.5 
 

Table 10 through Table 15 report the accuracy of registration-based segmentation 

of the CT-CT registration for all the 9 cases described above. For each case, we 

present the segmentation results for the left lung, right lung and tumor in the lung 

images and liver, left kidney, right kidney and tumor in the abdominal images. We 

compare the validation measures like overlap index, RMS distance and Haursdoff 

distance for all the different structures mentioned for the 9 CT cases. We compare the 

metric values obtained from registration with hardware with the metric values before 

registration and the metric values after registration from an equivalent 

implementation on software.  

For visual assessment of the registration results, in Figure 25 we show the lung 

tumor segmentation for a representative lung image. We can see that the registration 

results from hardware (red) matches closely with those from the software (blue) and 

the expert results (green). Figure 26 shows the difference image for the same axial 

slice before and after registrations from hardware and software taken from the same 

lung image. Nonrigid image registration corrected misalignment in most major 

structures; any residual misalignment was near finer structures. To measure the 

amount of misalignment recovered, we computed the mean squared difference (MSD) 
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between the exhale and inhale images. Table 16 shows the MSD before and after 

registration for all the cases. We can see that there is a noticeable decrease in the 

MSD after registration, which further indicates that the images are well aligned after 

nonrigid registration.  

Table 10 Overlap index for the Lung cases 

 Right lung Left lung Tumor 
 Before SW HW Before SW HW Before SW HW 

Lung1 0.90 0.97 0.93 0.85 0.95 0.95 0.57 0.91 0.78 
Lung2 0.88 0.98 0.93 0.86 0.97 0.93 0.63 0.83 0.78 
Lung3 0.88 0.96 0.94 0.90 0.97 0.91 0.32 0.73 0.27 
Lung4 0.88 0.99 0.95 0.91 0.99 0.95 0.57 0.82 0.64 
Lung5 0.84 0.94 0.92 0.82 0.95 0.92 0.10 0.56 0.20 

Before: before registration, HW: Hardware, SW: Software 

 

Table 11 RMS distance for the Lung cases 

 Right lung Left lung Tumor 
 Before SW HW Before SW HW Before SW HW 

Lung1 4.6 2.5 2.8 4.4 2.4 2.2 4.5 2.2 2.6 
Lung2 4.9 2.2 2.2 4.1 2.6 1.8 2.7 1.8 1.9 
Lung3 4.9 2.3 3.8 5.4 1.8 3.1 5.8 2.1 4.2 
Lung4 5.6 1.2 2.2 3.5 1.3 2.0 5.3 2.2 3.2 
Lung5 5.4 2.6 2.9 6.3 2.5 3.0 14.7 4.5 8.5 

Before: before registration, HW: Hardware, SW: Software 
 

Table 12 Haursdoff distance for the Lung cases 

 Right lung Left lung Tumor 
 Before SW HW Before SW HW Before SW HW 

Lung1 25.4 14.0 19.0 34.8 15.9 16.8 8.7 3.9 5.2 
Lung2 20.1 16.3 15.2 19.1 21.2 12.3 7.1 6.5 5.1 
Lung3 30.4 21.2 28.1 27.3 15.6 19.5 19.4 5.9 8.3 
Lung4 27.2 26.3 21.3 23.6 25.6 12.5 18.7 18.5 12.7 
Lung5 32.7 22.8 21.7 34.9 18.5 16.8 29.8 15.8 27.3 

Before: before registration, HW: Hardware, SW: Software 
 

Table 13 overlap index for the Abdominal cases 

 Right kidney Left kidney Liver Tumor  
 Before SW HW Before SW HW Before SW HW Before SW HW 

Abd1 0.71 0.83 0.81 0.67 0.89 0.79 0.81 0.92 0.87 0.54 0.77 0.64 
Abd2 0.68 0.81 0.84 0.72 0.84 0.84 0.77 0.91 0.90 0.57 0.74 0.77 
Abd3 0.72 0.89 0.84 0.78 0.90 0.83 0.82 0.94 0.87 0.32 0.82 0.75 
Abd4 0.79 0.89 0.86 0.84 0.92 0.90 0.85 0.95 0.93 0.37 0.67 0.59 
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Before: before registration, HW: Hardware, SW: Software 
 

 

Table 14 RMS distance for the Abdominal cases 

 Right kidney Left kidney Liver Tumor  
 Before SW HW Before SW HW Before SW HW Before SW HW

Abd1 3.6 2.9 2.2 5.2 2.8 2.5 4.5 3.1 2.6 3.6 2.7 3.4 
Abd2 5.4 3.3 3.3 8.7 2.6 2.7 9.4 3.4 3.6 4.4 3.3 4.1 
Abd3 7.8 2.7 2.7 5.1 2.6 2.3 5.1 3.2 3.3 5.1 3.0 2.4 
Abd4 3.5 2.8 2.7 3.1 2.7 2.7 4.0 2.5 3.1 5.6 3.6 3.5 

Before: before registration, HW: Hardware, SW: Software 

 

Table 15 Haursdoff distance for the Abdominal cases 

 Right kidney Left kidney Liver Tumor  
 Before SW HW Before SW HW Before SW HW Before SW HW 

Abd1 11.9 7.8 12.2 10.1 6.9 12.4 23.0 13.7 14.6 12.9 6.1 9.9 
Abd2 17.5 8.8 11.3 16.4 6.6 9.3 20.4 9.5 11.3 18.7 9.1 9.7 
Abd3 18.0 8.2 9.8 20.2 7.4 9.5 32.1 11.5 15.3 14.5 6.1 7.7 
Abd4 9.5 7.1 7.0 8.8 7.2 7.9 10.7 6.6 8.0 11.0 6.8 11.0 

Before: before registration, HW: Hardware, SW: Software 
 

Table 16 MSD after and before registration in software and in hardware for all the 
cases 

 MSD 
 Before SW HW 

Lung1 232.1 136.3 136.7
Lung2 252.0 138.5 141.0
Lung3 214.3 133.1 134.0
Lung4 269.0 127.0 122.5
Lung5 209.1 142.0 141.1
Abd1 196.7 152.0 153.1
Abd2 104.8 62.2 66.6 
Abd3 126.5 94.7 90.4 
Abd4 88.7 51.4 53.0 
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Figure 25 Lung tumor segmentation for a representative case shown in axial (top row) 

and sagittal (bottom row) planes: (a) inhale CT + expert contour; (b) exhale CT + 
contour from (a) (shows prominent misalignment of tumor); (c) exhale CT + expert 

contour; and (d) exhale CT + expert (green), software(blue) and hardware (red) 
contours. (Zoomed-in for better visualization) 

 
Figure 26(L-R) Difference images before registration (used for computing MSD), after 

registration in hardware, and after registration in software 

  

5.6 Discussion 

After looking at the validation results, we find that the hardware and software 

results match closely in most of the cases. Deformable image registration corrected 

misalignment in most major structures. Although the hardware uses finite precision 

arithmetic, it had minimal effect on the accuracy of segmentation (and hence 

registration). A remarkable improvement in all the metrics after registration for both 

hardware and software implementations can be seen. Any residual misalignment was 
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near finer structures. The misalignment at finer structures can be corrected by 

registration at a finer grid resolution. Due to memory limitations, sometimes it is not 

possible to reduce the grid resolutions to finest levels as compared to the software 

implementations which have very high memory resources. In such cases, like in the 

case of lung tumor of case 5, it was not possible to recover deformation at such finer 

structures completely. However, with larger FPGAs available, in the future 

developments, we should be able to register at very fine levels so that the accuracies 

of registration can be made more closely matching to the software results. Overall, 

the hardware implementation produced results that closely matched the software 

results, while providing a 40-fold improvement in speed for a single processor (i.e., 

FPGA chip).  

The fast nature of the hardware also affords us the opportunity to register the 

reference and the floating images twice, after interchanging their roles, for improved 

accuracy and robustness. This provides for automatic validation of data as the 

deformation field in one case should be the inverse obtained after interchanging the 

images. Even though the hardware processed voxels 100 times faster, the effective 

speedup for the overall registration algorithm was approximately 40 for a single 

hardware node as a result of factors such as higher number of iterations required in 

hardware, communication time and the latencies in the SDRAM. The accuracy of the 

entropy calculator is an influencing factor in the registration speed and accuracy as 

the optimizer has to base its decision on the output of the entropy calculator. With 

more hardware resources available in newer FPGAs we are able to increase the 

accuracy of the hardware stages leading to better accuracies and faster convergence.  
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5.7 Summary 

In the previous chapters, we have presented a novel custom hardware approach to 

accelerate nonrigid image registration. In this chapter we provide the comparison of 

our system (finite precision) with an equivalent software implementation (infinite 

precision) which runs on an Intel Xeon workstation both in terms of accuracy and 

speed. Our current implementation provides a 40-fold improvement in speed. Even 

though the hardware uses finite precision arithmetic, we observed no significant 

reduction in the accuracy of the registration algorithm. In fact, for the test case of CT-

CT registration, the results from the hardware and the software were comparable. 

Further improvements, such as the use of a finer grid, can further equalize the 

hardware and software implementations. While precision is slightly affected in 

hardware due to fixed-point arithmetic, the optimizer was still able to recover the 

deformation, as our results show. The reconfigurable characteristic of the FPGA 

allows us to make algorithmic changes, which ensures flexibility in our approach to 

accelerate image registration. If needed, additional FPGA-based preprocessing steps 

can also be added to the pipeline, thus ensuring additional processing at no extra time 

cost [32].  
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6 USE OF MODELING TECHNIQUES FOR MAPPING 

APPLICATIONS ONTO RECONFIGURABLE HARDWARE 

6.1 Introduction to DSPCAD tools 

In the previous chapters we have discussed the complexity of the medical image 

registration application and the need for system that can perform registration at 

clinically viable speeds. For achieving this, we have suggested a FPGA based 

architecture that can achieve speedups up to 40, while delivering comparable 

accuracy with the software implementations. Using conventional high-level 

languages it is not possible to exploit various dynamic parallelism exhibited by 

certain systems DSP systems. Modeling of DSP applications based on the coarse-

grain dataflow graphs allows designers to exploit desirable properties like dynamic 

reconfigurability and design reuse. There has been a growing set of tools that allow us 

to models DSP applications and also provide us with semantics for such modeling. In 

this chapter we look in to the possibility of using such automated design tools for 

mapping registration applications to reconfigurable hardware like FPGAs. Also we 

examine having a reconfigurable system which can dynamically reconfigure itself 

depending upon performance parameters selected through careful study of the 

behavior of the system. Modeling the applications like image registration with 

dataflow graphs provide a method to analyze such performance parameters and a 

framework for high level optimization of these applications. Modeling applications 

using dataflow modeling also provide designers the ability to arrive at more accurate 

solutions within given time constraints.  
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In this chapter, I study the use of a novel dataflow model, homogeneous 

parameterized dataflow (HPDF) model as presented in [33], which allows for data 

dependent behavior among its functional units, for mapping image registration onto a 

reconfigurable architecture like FPGA [34]. By the use of such model-based 

mapping, I explore the design to expose concurrencies and different levels of 

parallelism that would have been very difficult to explore otherwise. In this study I 

use the dataflow modeling to exploit the different levels of parallelism and data 

dependencies and identify performance parameters like the percentage of valid voxels 

(PVV) which can be used to optimize the design. Exploiting the reconfigurable nature 

of FPGAs, and the dynamic behavior of the registration system, we suggest the use of 

this metric for reconfiguration of the system to further optimize the design by 

exploiting parallelism as presented in [35]. The work presented in this section 

contributed significantly to the development of HPDF as a meta-modeling technique 

where we demonstrate the integration of other modeling semantics like cyclo-static 

dataflow (CSDF) model into the HPDF meta-modeling framework. This work was a 

joint effort between us and the research group of Dr Shuvra Bhattacharyya, 

University of Maryland, College Park. In particular, I would like to thank Dr Mainak 

Sen for his help during the various stages of the work presented in this chapter.  

6.2 Dataflow Models 

DSP applications have a varying degree of complexity and resource requirements. 

Modeling an application in dataflow graphs allows designers to efficiently exploit 

different tradeoff parameters like resource utilization, area and speed, allowing them 

to customize the design for a particular platform. Verification, analysis and 
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optimization of the final design can be done after careful exploration of the high level 

design structure exposed by these dataflow graphs. Also, some application structures 

that get obscured in the final design can also be exposed using dataflow modeling. 

High level optimization routines serve as efficient tools to evaluate and optimize the 

design for different performance parameters.  

In dataflow model of computation, the computational DSP elements are called as 

actors. Actors in dataflow representation stand for functional units that can have 

varying level of complexity depending on the granularity of the design. Actors are the 

vertices in the dataflow graphs. An actor might be a ‘C’ function of several lines or 

may be a description of the function in hardware description language (HDL) 

depending on the target platform where the computation is desired. However the 

dataflow modeling does not take into account the functionality of the actor but relies 

on the amount of input data samples that it consumes in one execution (called as 

consumption rate) and the number of data samples it outputs in one execution (called 

as production rate). Actors in the dataflow graphs are connected with edges which 

stand for first in first out (FIFO) queues which hold tokens that are produced by the 

source actor of the edge until they are consumed by the sink actor of the same edge. 

An actor execution is called as a ‘firing’ of the actor and corresponds to one complete 

execution of the functionality of the actor. The order of actor execution is determined 

by the compiler or hardware or both according to the design. Each actor can have 

several attributes like code length (cost), execution times etc. Edges can also have 

different attributes like communication costs, delays etc. An edge attribute, “D” 

represents units of delay; each unit of delay is analogous to the z-1 operator in signal 
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processing, and is typically implemented by placing an initial data value on the 

corresponding dataflow edge. By examining data transfer patterns between actors, a 

schedule can be created that provides a way to coordinate the execution of all actors 

in the data flow graph.  

6.2.1 Different Forms of Dataflow 

Different forms of dataflow models have been proposed. The firing semantics of 

actors vary between these different forms of dataflow. The synchronous dataflow 

(SDF) model [36] enforces that a given actor must consume (or produce) a 

predetermined number of tokens at each firing. This restriction allows for strong 

compile time predictability properties. SDF has been adopted for various DSP 

application modeling and hardware synthesis [37]. However stringent restrictions 

imposed by SDF hinder modeling applications with dynamic production and 

consumption rates like in data dependent applications such as computer vision 

applications.  

Other forms of dataflow graphs have been developed which allow a more flexible 

firing semantics. Cyclo-static dataflow graph is one such dataflow graph which can 

accommodate multiphase actors exhibiting different production and consumption 

rates, as long as the variations across the phases form statically-known, periodic 

patterns. Even though this model can provide additional flexibility compared to SDF 

these models do not permit data dependent production and consumption rates. To 

address data dependent production and consumption rates, HPDF graphs which 

allows a restricted form of data dependent behavior was suggested in [33].  
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6.2.2 Homogeneous Parameterized Dataflow  

Homogeneous parameterized dataflow [33] models use a set of dynamically 

adjusted parameter values to adapt the actor behavior in a structured way to address 

data dependent behavior of actors. HPDF actors may change their production and 

consumption rates at run-time in between successive iterations of the graph, but at 

any given point in time, any HPDF edge will have the same data production and 

consumption rates for its respective sink and source actors. However HPDF models 

impose restrictions in the model to ensure that the HPDF subsystems are 

homogeneous across any level of hierarchy. This also ensures homogeneity in terms 

of the average rate in which the actors execute. This restricted form of data-dependent 

behavior supported by HPDF permits useful modeling flexibility, and also provides 

for efficient scheduling and resource allocation for actors, as well as verification of 

bounded memory requirements and deadlock avoidance.  

Furthermore, since HPDF is a meta-modeling technique, hierarchical actors in an 

HPDF model can be refined using any dataflow modeling semantics that provides a 

well-defined notion of subsystem iteration. For example, a hierarchical HPDF actor 

can have SDF, CSDF, or HPDF actors as its constituent modules. When HPDF is 

applied with CSDF (referred to as HPDF/CSDF), it allows a dynamic number of 

phases for the actors with dynamic production and consumption rates on each phase. 

However the model ensures that the total number of tokens produced in a given 

iteration (invocation of the actor) on a given edge is equal to the total number of 

tokens consumed by the sink actor of the same edge, thus satisfying HPDF constraints 

[38].  
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6.3 Dataflow Representation of Image Registration 

After studying the dynamic behavior of the image registration application, 

HPDF/CSDF approach is used for modeling this application as it best represents the 

lower-level, multiphase interaction between the actors. Modeling in this way allows 

us to describe the inherent concurrency in applications, identify potential bottleneck 

areas and extract potential areas that are best suited for parallelization. We have seen 

the complexity issues regarding the image registration application in section (1.2). In 

this chapter we analyze the application from a dataflow point of view to tradeoff 

certain design parameters like area and speed to obtain an optimal design. We identify 

potential areas that can be parallelized and we also suggest a reconfigurable 

architecture that exploits intra and inter voxel parallelization capabilities. We give 

valid schedules for the different actor executions which allow us to calculated buffer 

sizes, execution times and execution order. Representing the actor schedules in the 

form of “looped schedules” will allow us to represent successive repetitions of the 

execution sequence. Each entry in the loped schedule represents either an actor or 

another looped schedule (to express nested looped schedules). 

6.3.1 Top-level Application Modeling 

In this section, I present the hierarchical dataflow representation of the MI-based 

image registration algorithm using the HPDF/CSDF meta-modeling approach for 

modeling lower-level, multi-phase interactions between actors. Figure 27 shows our 

top level HPDF model of the application. The MI actor consumes one data value 

(token) on every execution. (This token can be a binary value, or a word, or a vector 

of data entries). The token contains co-ordinates of the RI and the FI. After ‘s’ 
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executions, each consuming one token (coordinate values in this case), where ‘s’ of 

the order of the total number of voxels in the image, the MI actor produces the 

entropy between the reference and floating images. This value is then sent to the 

optimizer as a single token.  

 

Figure 27 Top level modeling of the image registration application 

Optimization of the transformation parameters also depends on the nature of the 

images and the amount of misalignment between the two images. In the simplex 

method discussed previously, in order to optimize a transformation with “m” parame-

ters, the optimizer needs to store “m+1” previous values. The optimizer sends “m” 

tokens to the MI actor which corresponds to the next transformation that needs to be 

applied to the RI. Since “m” can vary depending on the number of parameters used to 

represent the desired transformation (6 for rigid, 12 for affine and thousands for 

nonrigid), the associated edge represents a variable-rate edge of the HPDF graph. A 

valid schedule for this HPDF graph is βαα )(s .  



 

 95 
 

6.3.2 Mutual Information Subsystem Modeling 

Figure 28 shows the internal representation of the hierarchical MI actor. A token 

here refers to each RI coordinate processed while applying the transformation (rigid 

or elastic). The RI controller (A) and the coordinate transform (B) consume one token 

each and B produces one token, which represents the transformed coordinates. A 

voxel is valid if it falls within the boundaries of the FI. If this voxel is valid it is 

passed on to the weight calculator (D) and FI controller (E). Now since all voxels 

may not be valid, r tokens ( sr ≤ ) are produced from the “Is Valid” (C) actor, (s-r) 

voxels being invalid voxels. The actors D and E output tokens those are essential for 

PV interpolation, which is done only if the voxel is valid as indicated by C. This actor 

also produces tokens on the edge that connects it to the MH memory (G). For every 

input token in D and E, eight output tokens are produced on both the outgoing edges. 

The corresponding eight intensity locations in G are updated based on the tokens 

produced by D. After all coordinates are processed, which occurs during the first 8r 

phases of the MH Memory actor or equivalently after s phases of the actor B, one 

token of size ( qq × ) is sent to the decomposer (Z ), which in turn sends out tokens to 

the entropy calculator (H) actor. The actor H consumes all of these tokens, and 

produces a single token that contains the MI value. The actor Z was added for ease of 

representation and was later subsumed into the actor G during final synthesis. A valid 

schedule for the MI subsystem based on Figure 28 is )))(8()(( 2ZHqFGrDEsABC  



 

 96 
 

 
Figure 28 Dataflow modeling of the mutual information subsystem 

In [34] we studied the application of such modeling for the case to rigid registration 

only. After studying the case for nonrigid registration, I find that the difference in the 

two cases is the actor B, which represents the type of coordinate transform. The 

subsystem modeling of the actor B might change from the conversion from rigid to 

nonrigid, however at the hierarchical level as seen in this section, the general 

dataflow remains the same. Thus the same calculations can be easily used for 

nonrigid registration. In the actor B, there is an additional input edge which inputs 

tokens from the optimizer. This corresponds to communication cost, taking in the new 

transformation parameter. The number of elements in the transformation vector varies 

from rigid to nonrigid. Figure 28 only represents the steady-state behavior of MI 

subsystem for simplicity. Figure 29 represents the initialization and the steady-state 

behavior of B - where the initial “m” tokens are used to calculate the new 
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transformation field and hence it updates the values inside the actor without 

producing any data. Considering the steady state behavior of B, we can give the 

schedule of the system as )))(8()()(( 2ZHqFGrDEsABCmB  

 
Figure 29 Steady state modeling of the coordinate transform actor 

6.3.3 Parameterized Entropy Calculator 

The entropy calculator, H, can be further represented by a lower level 

parameterized dataflow representation as shown in Figure 30. The RI and FI 

histograms are computed from the MH so that the voxels in the overlap areas (valid 

voxels) are taken into account. Row sum (I) executes once every time it gets one row 

(q elements) to produce one token, the RI histogram for that bin of the MH. ‘q’ 

depends on the number of bits used to represent an image intensity. For example, ‘q’ 

is 64 in this implementation and every image voxel intensity value should be at least 

6 bits for using this implementation. The column sum (L) can only produce an output 

for every input after it has already received )1( −× qq elements corresponding to 

rows )1( −q . There are many valid schedules that can be proposed for Figure 30. As 

shown in [34] we can give the schedule for this as 

)))()(1( IJKOUVqZLTNIJqZLTq − which exposes a very high buffering overhead. We 
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can combine the above schedule with the schedule for the MI subsystem by replacing 

H and thus obtaining 

)))()(1))(8()()(( IJKOUVqZLTNIJqZLTqFGrDEsABCmB −  

 

Figure 30 Parameterized entropy calculator 

6.3.4 Parallel Architecture for Mutual Histogram Accumulation 

By representing the system in the form of dataflow graphs, we can exploit potential 

parallelizable structures within this system. For example, extensive “intra-voxel” 

(within the processing structure for a single voxel) parallelism is possible for F and G. 

From Figure 28, we can see a data-rate mismatch between D,F; and E,G. This 

exposes a potential parallel structure as described in Figure 31. In this case we can see 

that there are 8 accumulate operations that are repeated ‘r’ times. By having multiple 

copies (eight in the illustration) of the actors F, G we have a parallel implementation. 

This reduces the buffer sizes, increases the speed of processing however at more 

memory and area cost. We also note that the resultant graph in Figure 31 becomes 

HPDF as all the parameterized actors now have the same production and consumption 
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rates and hence fire at the same rate. We find that there is another degree of 

parallelization that can be exploited referred to as inter-voxel parallelism. We found 

that actors A and B have “s” distinct phases, where s is the number of voxels. This 

involves dividing the image into subvolumes and processing these subvolumes 

separately by having multiple sets of such actors. In [34] we have developed an 

architecture that applies intra-voxel parallelism and in [35] we discuss inter and intra 

voxel parallelism in comparison with each other.  

 
Figure 31 Parallel architecture for MH update exposing intra-pixel parallelism 

6.4 Implementation  

A parallel architecture was suggested as evident from the dataflow modeling that 

can exploit both intra and inter voxel parallelism [34, 35]. Thus, we varied the degree 

of parallelism as shown in Figure 31 and studied the resulting relationship between 

performance and area. We find that the parallelism is affected by the amount of 

voxels that are invalid. Invalid voxels are pretty high during the initial phases of the 

registration process. This happens because the optimization scheme tries larger steps 

through the exploration space. However when the optimizer converges onto the 

optimal value, smaller steps are taken and higher number of valid voxels are 
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expected. Also in cases where the FI has a smaller field of view than the RI, there is 

higher percentage of voxels that are classified invalid. Thus studying the performance 

of the system under different percentage of valid voxels (PVV) helped us understand 

the parallelizable potential of the registration application.  

6.4.1 Degree of Parallelism and Relation with PVV 

When a coordinate is transformed in the coordinate transformed, the actor E in 

Figure 28 uses the integer part of the transformed voxel coordinate as the base 

address in the FI space and generates the FI values (corresponding to the 

neighborhoods) and provides it to the MH memory for updating the MH with the 

weights generated by the weight calculator actor. When we have just one set of actors 

(floating image, weight calculator and the MH memory), actors DEFG, it takes eight 

firings of this set of actors to perform PV interpolation, for every input that is 

processed by the coordinate transform actor. As we multiply the set of actors DEFG 

by multiples of 2, the PV interpolation can be performed in parallel, thus reducing the 

time by an equal factor of 2. The limit of such parallel set of actors is 8, since after 8 

units there is no additional benefit obtained. As updating the MH is a crucial part of 

the algorithm, such parallel execution should result in significant improvement of the 

whole application. However as a result of the parallelization, we can find an increase 

in the resource requirement of the FPGA resources and external memory.  

 Our system was a self timed system in which each actor required a ready signal 

generated by the actors preceding it to indicate its readiness for execution. When the 

transformed coordinate falls in the valid region, there are eight firings of the actor set 

F,G.  However when C does not generate a signal (indicating that for the given input 
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coordinates, the transformation produces invalid coordinates) the iteration of the 

graph stops for those input coordinates and the next token is processed by the 

coordinate transform actor indicating a new iteration. For our implementation, any 

isolated invalid signal causes a two cycle penalty, but consecutive invalid signals 

cause only one cycle penalty for each invalid signals as there is already an invalid 

signal established in the pipeline.  

6.5 Experimental Results 

 Our architecture was simulated for functional correctness and synthesis was 

performed with Quartus (Altera Corporation) targeting the Stratix-II family (device 

1EP2S). Verilog HDL was used to develop functional modules which represented the 

pipelined execution of the actors. FIFO buffers were also developed in verilog with 

separate read and write pointers to monitor the FIFO buffer executions. The code was 

synthesized for different degrees of parallelism of the floating image and weight 

calculator actor. Next, we simulated the performance of the various configurations of 

the circuit with four different PVVs as 100, 90, 50 and 10 in terms of number of clock 

cycles. We assumed that when PVV is low, invalid signals are contiguous and they 

are sparse when PVV is high which has an impact on the run times as discussed in the 

previous section.  

In this section, I present hardware synthesis results for various proposed 

configurations of the image registration application. Table 17 presents the synthesis 

results for various configurations - the columns represent the different resource 

allocation and maximum operating frequency for the circuitry in these configurations. 

The resource allocation is independent of PVV. Figure 33 shows the area of the 
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FPGA in terms of ALUTs and performance trade-off curve when we vary the number 

of parallel data paths in the MH update actor for different PVV. The area is measured 

by the number of ALUTs utilized in the circuit without considering the external 

memory, while the performance is measured by the number of execution cycles. The 

trend in all of the above mentioned cases reflect that the number of execution cycles 

decreases with increasing amounts of parallel data paths, although the corresponding 

area increases. Figure 32 shows the tradeoff between performance and external 

memory requirements. We notice that the PVV is an important metric for 

performance. However increasing the number of parallel data paths yields less 

relative performance gain at lower PVV than when at higher PVV.  

Table 17 Resource utilization summary for the MH update subsystem 

Number of parallel paths 1 2 4 8 
External Memory 256KB 512KB 1MB 2MB 

LC registers in FPGA 427 575 871 1463 
DSP elements 30 30 30 30 

Total FPGA area (Number of ALUTs) 598 878 1439 2588 
Max Frequency of operation (MHz) 74.0 72.2 74.0 70.1 
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Figure 32 External memory requirement versus clock cycles required for complete 
execution for different PVV 

 
Figure 33 Total area in terms of ALUTs for different PVVs for different number of data 

paths. 
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6.5.1 Dynamic Reconfiguration 

We find that with the increase in PVV, the run-time increases and memory access 

becomes more of a bottleneck, and gradually, it becomes more performance-effective 

to trade-off inter-pixel parallelism in the architecture for intra-pixel parallelism in the 

form of multiple (parallel) memories that alleviate the memory bottleneck. PVV is 

dependent on the input images. So we need reconfigurability with the knowledge of 

the input characteristics of the images. In the resource allocation table, Table 17, we 

find that the area utilization for a 1voxel- 8 data path implementation is about 8 times 

the area for the 1 voxel – 1 data path implementation. In Table 18, I show the 

comparison of performance for different PVV values, of a 1 voxel-8 data path 

architecture (intra-pixel parallelism) to a 8 voxel architecture with 1 data path module 

per voxel (inter-pixel parallelism) architecture. The units of performance in Table 18 

are microseconds per voxel per co-ordinate transform and the frequencies of 

operation of the different memory architectures vary between 70 MHz and 74 MHz 

for various configurations. We must note here that the inter pixel parallelism can be 

increased with additional resources available on the FPGA, compared to intra pixel 

parallelism which cant be increased further than 8 parallel data paths (as PV 

interpolation requires just 8 weights to be accumulated). In [35] we suggested a 

similar comparison with a 7-voxel architecture than a 8 voxel architecture. Choosing 

8-voxel architecture in inter pixel parallelization is also more logical as it is easier to 

divide a 3D image into 8 subvolumes than 7 subvolumes leading to easier control 

features and memory organization.  
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Table 18 Comparison between intra and inter voxel parallelism for different PVV 
values 

Voxel Validity Performance of  eight 
1 voxel – 1 data path 

Performance of  one 
1voxel- 8 data path 

10% 0.78 2.54 
50% 2.22 2.91 
90% 3.47 2.50 

100% 3.75 2.33 
 

In the Figure 34 we plot the performance of the system with the PVV for the two 

configurations. We find that the performance of 1 voxel-1 data path architecture is 

better than that of a 1 voxel-8 data path architecture, however this trend changes as 

the voxel validity percentage increases. Therefore, our image registration architecture 

monitors the PVV metric at run-time and dynamically reconfigures the architecture 

from inter-pixel parallelism mode to intra-pixel parallelism mode once the transition 

point is observed. Thus when there is a high PVV, we use the 1 voxel- 8 data path 

representation to achieve better performance. For the given configuration under 

consideration, from the Figure 34 we can find that a suitable threshold point is around 

70%. In order to prevent rapid change in architecture in case the PVV oscillates 

around the transition point, often referred to as trashing; we assign a threshold T, such 

that the architecture gets reconfigured when a (70-T)% PVV state is followed by a 

(70 + T)% PVV state or vice-versa. T can be set by the user depending on image 

characteristics such that the dynamic reconfiguration happens only if necessary in 

terms of performance. 
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Figure 34 Comparison of performance at different PVV with the two different 

configurations  

 During reconfiguration, with intelligent design, the reconfiguration cost can be 

reduced with the use of simple switching logic. During the synthesis of the system, by 

keeping actors as common as possible between the two systems and having a 

composite design which switches data-buses depending on the configuration desired, 

the reconfiguration cost can be minimized. Actors such as coordinate transform, RI 

and optimizer in Figure 27 and Figure 28 can be reused across different 

configurations. However the actors involved in the MH update part like the floating 

image and weight calculator require changes with respect to the production and 

consumption rates during reconfiguration.   
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6.6 Summary 

In this chapter we study the use of dataflow models for mapping image registration 

onto a reconfigurable architecture like FPGA. By the use of model-based mapping 

based on HSDF/CSDF, automatic mapping a memory and computationally intensive 

application like image registration onto configurable hardware by use of computer 

aided design (CAD) has been possible. We also explore the design to expose inter- 

and intra-voxel parallelism and thus arrive at optimal designs. We explored various 

levels of intra- and inter voxel parallelism and presented area-performance trade-offs 

for different parallel configurations. Our experiments quantify how increasing the 

number of parallel data-paths results in increased area but decreased runtime. Also we 

show that the parameter PVV is an important metric in exploring the design space. 

We also suggest the use of this metric for reconfiguration of the system to further 

optimize the design by exploiting parallelism.  

The FAIR architecture discussed in chapters (2-4) is not a dataflow based system 

and has been developed using a statically configured model. However since my work 

with FAIR architecture was a continuation of previous work ongoing in our lab, it 

was not possible to redesign the complete system with the dataflow based model. 

Useful directions for further work include integration of the modeling insights and 

dynamic reconfiguration techniques developed in work with relevant design aspects 

of the FAIR architecture.  

Use of dataflow interchange format (DIF) for modeling applications like image 

registration  and having a library of hardware and software description entities allow 

us to map parts of the algorithm onto different platforms depending upon different 
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attributes like complexity, resource requirements and suitability to the particular 

platform. The concepts presented in this chapter can be extended to other DSP 

applications as shown in [38].  
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7  CONCLUSIONS 

Nonrigid image registration can be accelerated using hardware methods by    

exploiting parallelism in the algorithm. However, any performance benefits may be 

mitigated by issues such as limited precision of the computational data path and 

communication overheads, if the system is not carefully designed. In this work, we 

present a hardware accelerated 3D nonrigid registration system that built upon the 

previous efforts at acceleration of bottleneck areas like MH computation, and MI 

calculation. We added a cubic interpolation pipeline to the existing FAIR architecture 

to perform cubic B-splines interpolation required for nonrigid registration based on 

free-form deformation. We evaluated the system performance both in terms of speed 

and accuracy compared to a software implementation running on a general purpose 

computer like the Intel Xeon workstation.  

We validated the results obtained from the hardware by comparing it with the 

registration results obtained from the software implementation. Based on the 

validation results presented in this work we can conclude that the hardware accuracies 

are equivalent to the software accuracies. Even though the hardware uses finite 

precision arithmetic, we observed no significant reduction in the accuracy of the 

registration algorithm.  

The hardware showed voxel processing rates approximately 100 times higher than 

the equivalent software implementation. However due to the communication 

overhead, memory access latencies and limited precision of the hardware the effective 

speedup achieved by the hardware is approximately 40 compared to general purpose 

processor, which is still the highest speedup per processing unit reported for nonrigid 
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registration of 3D medical images. The fast nature of the hardware also affords us the 

opportunity to register the reference and the floating images twice, after interchanging 

their roles, for improved accuracy and robustness. The reconfigurable nature of the 

FPGAs allows for algorithmic enhancements through software upgrades. 

In this work we also presented a gradient descent optimization scheme that fits well 

with the hardware implementation of the registration system.  The gradient descent 

based registration system optimize all the control points together and has several 

advantages like ability to work locally, ability for parallelism which make it better 

suitable for registration with hardware. However, with gradient descent based 

optimization scheme there are more than one control point that are moved which 

makes folding prevention more challenging. We have presented in this work, a mesh 

folding prevention scheme that applies a set of linear constraints to all the control 

points thereby preventing mesh folding. In order to find the best deformation field 

that conforms to the set of linear constraints applied while keeping the movement of 

the control points to a minimum we use a linear program solver which provides the 

best possible solution within milliseconds. With the use of such a mesh folding 

prevention scheme along with the gradient descent based optimization scheme while 

registering images on hardware, we arrive at similar results compared to the single 

node optimization schemes like simplex.  

Finally we look at the registration algorithm with the help of dataflow modeling 

techniques based on homogeneous parameterized dataflow (HPDF) graphs. With the 

help of dataflow graphs we are able to exploit parallelism present at various levels 

like inter-pixel parallelism and intra-pixel parallelism. Based on these observations 
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we have suggested here a reconfigurable architecture that reconfigures itself based on 

the percentage of valid voxels so that performance is maximized while keeping area 

consumption to a minimum.  

 
Figure 35 Overview of the FAIR registration system 
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7.1 Future Directions 

Further improvements, such as the use of a finer grid, can further equalize the 

hardware and software implementations. With FPGAs with larger internal memory, 

the LUTs used at various stages can be made larger thus increasing accuracy. With 

higher DSP resources and higher memory resources, a second order approximation 

can be used to improve the accuracy of the entropy calculator. With a more accurate 

entropy calculator the registration times are driver further down while improving the 

registration accuracies.  

With 64 bit memory buses available on latest FPGA boards, and higher memories 

available we can have the entire 8 neighborhood values of the FI stored at every voxel 

position, thus reducing the FI access times by half. Along with this, having 8 copies 

of the MH can effectively double the voxel processing rates in the hardware. With the 

use of new generation FPGAs which can run at very high speeds compared to the 

FPGA used and use of memories run at higher frequencies than the SDRAMs used in 

the current implementation can further increase the voxel processing rates. Using 

multi-resolution strategies like image sub-sampling during registration at lower grid 

resolutions allows for further increase in speed. If needed, additional FPGA-based 

preprocessing steps can also be added to the pipeline, thus ensuring additional 

processing at no extra time cost.  

7.1.1 Exploiting Various Degrees of Parallelism 

The future development work in this system can concentrate on exploiting the 

various levels of parallelism in the system in conjunction with the existing FAIR 

architecture. With multiple FPGA nodes available containing the similar designs, 
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there is a potential to use parallel nodes to exploit parallelism between the 

optimization schemes, i.e. allowing multiple optimization schemes running on 

different nodes to find the best transformation (optimization level parallelism). With 

gradient descent based optimization scheme, it is possible to achieve inter-node 

parallelism which will reduce registration times by calculation of gradients for 

different control points on different FPGAs as previously described. Parallel 

implementations of simplex based optimization scheme can also be utilized for 

optimizing more than one control point at any instance which will drive registration 

times lower (inter-node parallelism). There is a potential for parallelism by dividing 

the image into different subvolumes and processing parts of the image on different 

nodes (inter-pixel parallelism). With FPGAs with larger memory bandwidth 

available, the PV interpolation can be further parallelized to 8 data-paths from the 

existing 4 data-paths (intra pixel parallelism). With these techniques the registration 

times can be reduced to second-order which will make image registration an 

indispensable tool for a variety of time-critical medical applications like image 

guided interventions and surgeries.  
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Appendices 
 

1. LUT-based Entropy Calculation 
(Described in detail in [26]) 
 

The function )( pf  is approximated in the range [0, 1] by using the piecewise-

polynomial function )(ˆ
, pf mN  with m segments, defined in equation (28) below. 
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where mp 1=Δ  is the segment size of )(ˆ
, pf mN  and Pi is a polynomial of order N-

1. To minimize the maximum approximation error, each Pi is obtained by calculating 

the Chebyshev approximation for )( pf , for pippi Δ⋅+<≤Δ⋅ )1( . The Chebyshev 

approximation is simple to calculate for continuous functions and has the advantage 

that it is very close to the minimax approximation, the most accurate polynomial 

approximation.  

Equation (29,30) is used to calculate the coefficients.  
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The Chebyshev polynomials are defined by ))arccos(cos()( xnxTn ⋅= , for -1 ≤ x ≤ 

1. The Chebyshev polynomials of order zero to three are shown in equation(31,32). 

Since each polynomial is used to approximate )( pf  in a specific ])1(,[ pipi Δ⋅+Δ⋅  

range, whereas the Chebyshev polynomials are defined in [-1, 1], the variable 

conversion shown in (32) is applied to the equations. 

 ( ) 10 =xT , ( ) xxT =1 , ( ) 12 2
2 −= xxT , ( ) xxxT 34 3

3 −=  (31) 

( )( ) ppppx ΔΔ−Δ= mod2  (32) 

To keep the arithmetic pipeline simple, only the first, second and third-order 

approximations in are considered for the hardware implementation. Equation (33) 

defines the ith polynomial component of )(ˆ pf N : 

  

( ) 0,1,
2

2,
3

3, ididididi kpkpkpkpP +⋅+⋅+⋅=  (33) 
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where pd = pmodΔp . The polynomial coefficients ki,j are stored in the ith entry of 

the LUT. They are calculated from the Chebyshev coefficients as shown in equations 

(34), which are derived from equations  (29), (30) and (31).  

     

3,2,1,0,0, 5.0 iiiii cccck −+−⋅=

( ) ( )pccck iiii Δ⋅⋅+⋅−= 294 3,2,1,1,

( ) ( )2
3,2,2, 2122 pcck iii Δ⋅⋅−⋅=  

( )3
3,3, 24 pck ii Δ⋅⋅=  

(34) 
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