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Chapter 1

Introduction

The use of symmetry is ubiquitous in the study of physics. Understanding

the symmetry of a system eases one’s ability to describe the system and capture

the physics. Simple examples include using translation symmetry to choose a con-

venient origin for a coordinate system and rotational symmetry to choose a con-

venient orientation for a coordinate system. In terms of capturing the physics we

have learned to relate conserved quantities with continuous symmetries. Continuous

time translation symmetry corresponds to conservation of energy. Continuous spa-

tial translation symmetry gives conservation of momentum. Continuous rotation

symmetry corresponds to conservation of angular momentum. These symmetries

are used to make solving certain problems as easy as possible. Imagine solving for

the orbits of planets or the wave function of the hydrogen atom using Cartesian

coordinates! Sometimes, we impose a symmetry just to make finding solutions to

a problem easier. Consider imposing spherical symmetry to find the Schwarzschild

solution in general relativity. Symmetries also show up in a more abstract way.

We have learned to relate the rotation symmetry of the unit circle to the existence

and conservation of electric charge for the electromagnetic interaction. A similar,

though not as intuitive description can be given for the weak, strong, and gravi-

tational interactions. Formally symmetries are naturally described in terms of the
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mathematical topic called group theory. Just as using symmetries gives one better

control over describing the physics of a system, understanding the natural descrip-

tion of the symmetry itself can be of great value in using the symmetry. The study

of group theory is very helpful for particle physicists to understand the relation-

ships between masses of particles, write actions that realize a symmetry, and via

the gauging prescription construct the interactions that correspond to the known

interactions. Group theory not only helps us to describe symmetries, it also helps

us characterize how symmetries are broken and the effects of symmetry breaking on

physics. Our current understanding of the origin of mass requires an understanding

of how the symmetry corresponding to the weak interaction is broken. The descrip-

tion of this process relies on a group theoretic framework. A similar description of

symmetry breaking explains the existence of Nambu-Goldstone particles that arise

from symmetry breaking. The breaking of a symmetry by the quantization proce-

dure, called an anomaly, is responsible for our understanding of the decay π0 → 2γ.

In string theory, group theory is useful in understanding the spectrum of the string

and even the symmetries that can be used to define consistent string theories , for

example the heterotic SO(32) and E8⊗E8 string. There are countless other exam-

ples that can be cited, but the point is hopefully made. In this work will consider a

particular symmetry, supersymmetry, that has various applications in physics. The

natural mathematical framework for describing supersymmetry is called superspace.

Superspace is the natural mathematical framework in which the group theory de-

scription of supersymmetry is realized. We will demonstrate the utility of using this

framework in two calculations in the context of string theory.
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Supersymmetry is a symmetry that relates bosonic and fermionic degrees of

freedom. Intuitively one can think of supersymmetry as imposing the condition that

for every bosonic degree of freedom, there is a corresponding fermionic degree of

freedom. The more supersymmetry one has, the more relations one has between the

bosonic and fermionic degrees of freedom. On a more formal level, supersymmetry

is an extension of the Poincare group that includes fermionic generators Q whose

anti commutators close on translation generators.

{Q, Q̄} = P, (1.0.1)

where {A,B} = AB + BA is the anti commutator, not the Poisson bracket. There

are many reasons to consider supersymmetric theories. A direct reason is that su-

persymmetry is realized in the tri-critical Ising model in condensed matter physics.

While supersymmetry hasn’t been observed in nature in the context of particle

physics, supersymmetric extensions of the standard model of particle physics are

leading candidates to explain the hierarchy problem in the standard model. Super-

symmetry provides a symmetry to protect the Higgs mass from being renormalized

up to the Plank scale. From another perspective, supersymmetry gives more the-

oretical control over certain calculations making them much easier. This allows

theorists to obtain exact results in supersymmetric theories that are prohibitively

hard to obtain in non supersymmetric theories. Supersymmetry can lead to non-

remormalization theorems in perturbative field theory. Another example of this

is the computation of an exact fermion condensate that leads to chiral symmetry

breaking. The first example of this calculation was done in the context of super-
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symmetric Yang-Mills theories when the exact gaugino condensate was calculated

in [1]. Solitons in supersymmetric Yang-Mills theories have helped develop our un-

derstanding of how confinement might occur in an analytic setting. It is a general

feature of supersymmetric field theories that the high energy behavior of the theories

is better than the corresponding non supersymmetric field theory. Supersymmetry

has also provided the first example of a finite quantum field theory, 4D N = 4 super

Yang-Mills theory. It is a general feature that when the superspace description is

known, it greatly helps in the analysis of these theories.

Superspace can be understood as a space where the usual coordinate directions

have been extended to include Grassmann valued coordinates i.e.

Zm(xm) → ZM = (xm, θµ), (1.0.2)

where m = 1 · · · d and θµ transforms as a spinor under SO(1, d−1) and {θµ, θν} = 0.

The concept of a field on a manifold is extended to superspace in terms of superfields.

Superfields are functions on superspace i.e. F (ZM) that are analytic in the variables

θµ. The analyticity property allows us to consider Taylor expanding a superfield in

the Grassmann variables and the nilpotency of the Grassmann variables implies that

the series expansion will terminate at some finite order. For example, if µ = 1, 2

then

F (ZM) = f(xm) + θµψµ(xm) + θ1θ2g(xm) . (1.0.3)

The xm dependent fields at each order of the expansion are the component fields of

the superfields. A given superfield contains both bosonic and fermionic component

fields. This simple example already shows an important feature in supersymmetry,
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the equality of bosonic and fermionic degree’s of freedom i.e. (f, g) are the bosons

and (ψµ) are the fermions. Just as the action of the Poincare group can realized

on fields by differential and matrix operators on flat space realizing the Poincare

algebra, supersymmetry can be realized on superfields by differential and matrix

operators in superspace realizing the supersymmetry algebra. One can think of a

superfield as a vector in the space of fields with the Grassmann variables (and non

vanishing products of the Grassmann variables) as basis vectors. The action of su-

persymmetry is to perform a rotation of the vector mixing the bosonic and fermionic

components just as the rotation of the position vector in R2 mixes the x and y com-

ponents. Because the components of a superfield rotate amongst themselves under

supersymmetry, a superfield generically contains all of the fields necessary to have

a complete representation of a supermultiplet1. When a supersymmetric system is

expressed in superspace, it often simplifies the notation and allows the supersym-

metry to be manifest. The cancellations of divergences in Feynman graphs between

bosons and fermions due to supersymmetry is handled automatically when working

in superspace. Non renormalization theorems are much easier to prove in superspace

and the most elegant proof [2] comes from using very simple concepts required by

superspace. As we will see in a later section, superspace encodes the relationship

between scalar field theories with four supercharges and complex geometry in a very

1The representation is often reducible but that doesn’t impact the spirit of the comments

made based on this property. We are not arguing however, that the problem of finding complete

irreducible representations is in general a simple exercise. Finding superspace formulations of

irreducible multiplets with more than four supercharges is an open challenge.
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beautiful and elegant way. The Green Schwarz formulation of the superstring can

be understood as describing the embedding of a string into superspace. This list of

examples is by no means exhastive in terms of the applications of superspace. It is

only meant to indicate that there are many places where superspace can be used to

ease the study supersymmetry. In this work we will use superspace to derive results

relevant to string theory in the area of effective actions and generalized Kähler ge-

ometry. Since any decent introduction to superspace is an entire volume of work by

itself, we won’t attempt to provide one here. Instead we refer the reader to books

written on the topic [3–5]. A good review is given in [6].

Outline of the dissertation

In chapter 2, we will use a superspace approach to derive the lowest order

string corrections to the 10D N = 1 supergravity low energy effective action for

the heterotic string for both the gauge 2-form and gauge 6-form formulations. We

will describe how the input from string theory is used and discover an interesting

geometric property for one of the tensors in the solution. The content in chapter 2 is

published [7]. We present the calculations that demonstrate the desired results and

refer the reader to [7] for references to the historical development of the approach.

In chapter 3, we will review the relevant features of generalized Kähler geome-

try and how they are connected to two dimensional N = (2, 2) supersymmetric non

linear sigma models. We also review how (2, 2) superspace captures the conditions

on the sigma model target space derived from non-linearly realizing an extra (1, 1)

supersymmetry in (1, 1) superspace.

In chapter 4, we perform the reduction of the (2, 2) non linear sigma model
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with semi chiral superfields from (2, 2) superspace to (1, 1) superspace with the

covariant derivative algebra for the chiral vector multiplet and identify the moment

map and 1-form u associated to the isometry of the target space.

In chapter 5, we explore the relationship between the sigma model derivation

of the moment map and a definition of the moment map given in terms of generalized

Kähler geometry.

In chapter 6, we give a formulation of T duality for sigma models with semi

chiral superfields using the chiral vector multiplet. We work out a simple example

to see the characteristic R→ 1
R

property of T duality on circle where R is the radius

of the circle. The content in chapers 4, 5, and 6 was published in [8].

In chapter 7, we describe a previously unknown N = (2, 2) supersymmetric

vector multiplet, the semi chiral vector multiplet. We argue that this multiplet is

the proper multiplet to use in formulating T duality for sigma models with semi

chiral superfields.

In chapter 8, we give our conclusions. This is followed by appendices that give

the conventions used and that describe details that were omitted in the main body

of the disseration.

7



Chapter 2

Effective Action for the Heterotic String

2.1 String Theory Effective Actions

The effective action for superstring theory provides a useful approach for con-

necting string theory, which lives in 1+9 dimensions, to our 1+3 dimensional expe-

rience. It is important to understand as much about the effective action as possible.

The world sheet theory for the supersting gives the spectrum of massless fields that

go into the effective action. The spectrum is that of 10D N = 1 supergravity plus

super Yang-Mills for type I or heterotic strings and 10D N = 2A and N = 2B

for the type IIA and type IIB strings respectively. At the lowest order in the per-

turbation parameter α′ (the inverse string tension), we know the supergravity plus

super Yang-Mills actions corresponding to each superstring theory. We expect su-

perstring theory to introduce extra terms to the known actions for the corresponding

multiplets to encode stringy effects. To determine the effective action at higher or-

ders in α′, four methods are used. The most fundamental approach is to compute

string scattering amplitudes for the appropriate supergravity or super Yang-Mills

excitations and reconstruct the action that produces the amplitudes. This has the

advantage that stringy effects are automatically incorporated. This approach how-

ever is difficult to perform in practice because one can only consider the bosonic

fluctuations so that the information about the fermions is absent and thus super-
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symmetry is unclear. Another approach is to calculate loop corrections in the non

linear sigma model and require the β functions to vanish. This approach also lacks

the ability to capture information about the fermions. The last two methods use

supersymmetric field theory as the starting point and use some input from the scat-

tering amplitude method to incorporate stringy effects. The extra input normally

comes in the form of a higher order α′ correction to the action. This has the ad-

vantage that the fermion information is obtained along with the information about

the bosons and supersymmetry remains clear. The two methods are the Noether

procedure and superspace methods. The Noether procedure works directly with the

action by proposing new α′ dependent terms to the supersymmetry transformations

and action in order to obtain the terms necessary to regain supersymmetry after

including the scattering amplitude input. The superspace method involves embed-

ding the scattering amplitude input into the supergeometry and using superspace

to derive the complete effective action. The superspace approach has the advantage

that its consistency conditions give a systematic way to obtain the supersymmetric

completion to the scattering amplitude input. In this work we will describe the

derivation of the supersymmetric effective action at first order in α′ for the het-

erotic string. The embedding of the scattering amplitude input was worked out

in [9]. For ease of presentation we will only give the bosonic terms of the effective

action, however the procedure we describe will clearly demonstrate that the fermion

information is under control.

The scattering amplitude input that we will use comes from the Green Schwarz

anomaly cancelation mechanism [10]. It is know that this mechanism requires the
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inclusion of the local Lorentz Chern Simons form with the exterior derivative of the

gauge two form as

H = dB + α′ΩLL (2.1.1)

where ΩLL is the local Lorentz Chern Simons form

ΩLL = Tr(ω ∧R +
1

3
ω ∧ ω ∧ ω). (2.1.2)

The Chern Simons form is written in terms of ω, the local Lorentz connection one

form and R, the Ricci two form. In [9], the local Lorentz Chern Simons form

was included in the 10D N = 1 supergeometry. In this work we describe the

derivation of the effective action based on that stringy input into the supergeometry

and demonstrate that what we find is consistent with what is known for the effective

action of the heterotic string to first order in α′.

The perturbative expansion is organized terms of the superspace torsions and

curvatures which are obtained from the graded commutator of the supergravity

covariant derivatives. The supergravity gauge covariant derivatives are

∇A = EA
MDM − 1

2
ωA

b cMb c (2.1.3)

where EA
M is the super frame field,DM are the flat superspace covariant derivatives,

ωA
bc is the spin connection, and Mbc is the abstract generator of local Lorentz

transformations. The commutator of supergravity covariant derviatives gives the

super-torsions and super-curvatures.

[∇A,∇B} = TAB
C∇C −

1

2
RAB

c dMc d (2.1.4)
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The expansion in α′ coming from string theory corresponds to an expansion of the

super-torsions and super-curvatures of the form

TAB
C =

∑
n

(α′)nT
(n)
AB

C

RAB
c d =

∑
n

(α′)nR
(n)
AB

c d (2.1.5)

Solving the supergravity Bianchi identities1 for the super-torsions and super-curvatures

subject to the appropriate constraints gives a consistent description of the super-

gravity multiplet at least in terms of the physical multiplet spectrum. If the super

Bianchi identities are solved without directly imposing dynamical equations, then

the algebra is said to be off shell and the full super multiplet content is captured. If

dynamical equations are imposed, then the multiplet is said to be on shell. On shell

multiplets correspond to multiplets whose auxiliary fields, (non dynamical fields that

are required for the supersymmetry variations of the fields in the multiplet to close

without the need of dynamical equations), have been replaced by some combination

of dynamical fields. In some cases we can use the dynamical equations to derive an

action that is consistent with the supersymmetry described by the supergravity co-

variant derivatives. It is a general feature of supersymmetric theories that dynamic

equations imposed by closure of a supersymmetry algebra acting on fields can be

consistent with equations of motion derivable from an action. Since the description

of the supergravity theory in [9] is on shell, dynamical equations are implied by the

super Bianchi identities. We use these dynamical equations to derive the action

1Just as in G.R. the supergravity Bianchi identities are given by the superspace Jacobi identity

for the supergravity covariant derivatives.

11



associated to the supersymmetric multiplet. It is this action that is the O(α′) string

corrected effective action.

2.2 A Review of First-Order Corrected 10D, N = 1 Superspace Su-

pergravity Geometry

Let us begin by reviewing the results in [9]. There a solution was given to

the 10D, N = 1 supergravity plus super Yang-Mills Bianchi identities that is correct

to first order in the perturbative parameters β′ and2 γ′. Here we recall the Yang-

Mills truncated version (eliminating the Yang-Mills fields or equivalently putting

β′ = 0) of this solution and we complete the results by the presentation of the

bosonic equations of motion. The solution depends on two assumptions, both valid

at first order in γ′. The first assumption is a constraint on the 0 dimensional torsion

component Tδγ
a and the second is a choice for the usual 1 dimensional auxiliary

field denoted by Aa b c. The choice for the auxiliary field will contain the input from

string theory. After a short digression we will discuss these two inputs and their

consequences in order.

Before considering any non trivial constraints on torsion components it is

always worthwhile to study purely conventional constraints, which do reduce the

number of independent torsion and curvature components, but do not have any

consequence on the dynamics. Using standard methods (see the work in [11]) one

2The parameter γ′ is proportional to α′ with the proportionality coefficient to be determined.
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can show that the following set of constraints is purely conventional:

i (σa)
αβ Tαβ

b = 16 δa
b , i (σc)

αβ Tα b
c = 0 ,

i (σa b c d e)
αβ Tαβ

e = 0 , Tα [d e] = 0 ,

Td e b =
1

8
(σd e)α

β Tβ b
α + i

1

16
(σb)

α β Rα β d e .

(2.2.1)

The role of each of these respective constraints is easy to understand. The first equa-

tion removes Ea
m as an independent variable. The second equation removes Ea

µ as

an independent variable. The third constraint is a coset conventional constraint that

removes part of Eα
µ as an independent variable. The fourth constraint removes ωα b c

as an independent variable and the final constraint removes ωa b c as an independent

variable. It is a simple matter to show that the torsion and curvature super tensors

in [9], satisfy these conditions. Since these are purely conventional constraints, they

may be imposed to all orders in the string slope-parameter expansion.

The first assumption is recalled by noticing that the first and third equations

of (2.2.1) imply that the most general structure of the zero dimensional torsion is

Tδγ
a = i (σa)δγ + i

1

5!
(σ[5])δγ X[5]

a , (2.2.2)

with X[5]
a in the appropriate 1050 dimensional irrep of SO(1, 9). However, in [9]

the following zero dimensional torsion constraint was used

Tδγ
a = i (σa)δγ +O( (γ′)2 ) . (2.2.3)

With regards to potential extensions of this work, we note that Nilsson advocated

in [12] that the assumption X[5]
a = 0 is incompatible with the inclusion of higher

than second order curvature terms in the effective action. This implies that the
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vanishing of this 0 dimensional superfield can be valid only at first order in γ′ –

which is consistent with the limit in which [9] was written. Note the possibility that

X[5]
a can contribute at higher order in γ′,

X[5]
a = O( (γ′)2 ) . (2.2.4)

Now let us begin to write the first order in γ′ solution of the Bianchi identities

for the torsion subject to the conventional constraints (2.2.1) and assumption (2.2.3):

Tαβ
γ = −

[
δγ
(αδ

δ
β) + (σa)αβ(σa)

γδ
]
χδ , (2.2.5)

Tαb
γ =

1

48
(σb σ

[3])α
γA[3] , (2.2.6)

Ta b c = −2La b c , (2.2.7)

Rα β a b = i 2(σc)αβ( La b c −
1

8
Aa b c ) − i

1

24
(σa b c d e)αβA

c d e , (2.2.8)

∇αχβ = −i (σa)αβ∇aΦ + i
1

48
(σ[3])αβ

(
4L[3] + A[3] − i

1

2
(χσ[3]χ)

)
,(2.2.9)

Rαc a b = i (σ[a|)αβTc| b]
β + iγ′ (σ[c|)αβRk l

|a b]Tk l
β , (2.2.10)

with Φ a scalar superfield (the dilaton) transforming into χα (the dilatino) under

supersymmetry,

χα = −2∇αΦ , (2.2.11)

and Aa b c an auxiliary superfield.

The string theory input can be included in two different but equivalent ways.

The first approach is to include the superspace local Lorentz Chern Simons form

directly in the constraints for the super Bianchi identities for the super gauge 2-

form. This is the approach taken in [9]. This results in the auxiliary field Aa b c
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being put on shell and taking a specific form that is related to open-string/closed-

string duality. This conjectured property of the low energy effective action of the

superstring was made even before this property had a name based on an interesting

observation. Bergshoeff and Rakowski [13] noted that in 6D simple superspace the

quantities

T c d γ , Ra b
c d (2.2.12)

share many common properties with the fields of a vector multiplet

λγ Î , Fa b
Î (2.2.13)

and thus asserted that large numbers of higher derivative supergravity terms may

be treated as if one were coupling a vector multiplet to the supergavity multiplet.

A similar relationship exists for the same quantites in 10 dimensions.

We can instead start by using this relationship between the supergravity mul-

tiplet and super Yang-Mills multiplet to make a choice for the form of the auxiliary

field. We would then find that the local lorentz Chern Simons form is included with

the exterior derivative of the gauge 2-form. The advantage of this approach is that

it doesn’t require one to start the analysis by choosing to have a 2-form gauge field

in the spectrum instead of considering the dual theory which has a gauge 6-form.

In the presentation that follows we will use the open-string/closed string duality

starting point i.e. we make the following choice for the auxiliary field

Aa b c
.
= −i γ′ (Tk l σa b c T

k l) , (2.2.14)

With this choice the theory is put completely on shell. This means that all torsion

and curvature components, as well as the spinorial derivatives of all objects in the
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geometry can be expressed as a function of the dilaton Φ, the dilatino χα, the

gravitino Weyl tensor sitting in its field strength Ta b
γ, the Weyl tensor sitting in

the curvature Ra b c d together with the supercovariant object La b c appearing in the

spacetime torsion.

The object La b c was introduced3 for the ten dimensional theory [9] in order to

permit the simple passage between the 2-form and 6-form formulation of the 10D,

N = 1 supergravity theory. It is not an independent variable but its explicit form

as a function of the component fields is determined only by specifying which of the

two (2-form vs. 6-form) gauge fields is in the supergravity multiplet. This will be

discussed in subsequent sections.

In particular, La b c must satisfy the following conditions

∇αLa b c = i
1

4
(σ[a)αβ ( Tb c]

β − γ′Rk l
b c] Tkl

β ) , (2.2.15)

∇αTa b
β =

1

4
(σc d)α

β Ra b c d − Ta b
γ Tγα

β

+
1

48

[
2La b c(σ

c σ[3])α
β − (σ[a|σ

[3])α
β∇|b]

]
A[3] , (2.2.16)

in order for the Bianchi identities on the superspace torsions and curvatures to be

satisfied. These same Bianchi identities require

∇aχβ = −i 1

2
(σb)αβ(Ta b

α − 2γ′Rk l
ab Tk l

α) , (2.2.17)

(σa b)β
αTa b

β = −i 8 (σa)αβχβ∇aΦ − i
1

24
(σ[3])αβχβ ( 16L[3] + A[3] )

+ 3γ′(σa b)β
αRk l

a b Tk l
β . (2.2.18)

3The first appearance of the L-type variable in the physics literature occurred in the work

of [16]. It was introduced to permit a unified superspace description of theories related

one to another by Poincaré duality.
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The results given above are sufficient to derive the equations of motion for the

spinors, already presented in [9], and we will now use them in order to derive the

bosonic equations of motion. A detailed presentation of using superspace techniques

for deriving equations of motion can be found in [14,15]

In order to find the equation of motion of the scalar let us begin with the

relation (2.2.17) multiplied by a sigma matrix (σa)γα and differentiate it with ∇β,

(σa)γα∇a (∇βχα) = i
1

2
(σa b)α

γ∇β

(
Ta b

α − 2γ′Rk l
a b Tkl

α
)

+ (σa)γα [∇a,∇β]χα .

(2.2.19)

Notice that the LHS contains the spacetime derivatives of both (σb)βα∇bΦ and

(σ[3])βαL[3], while the RHS can be computed using at most three-half dimensional

results recalled above. Therefore, one obtains the equation of motion of the scalar

from (2.2.19) by taking the trace δγ
β

16∇a∇aΦ = 4R − 8γ′Rk l a bRk l a b + fermions . (2.2.20)

Moreover, the same relation (2.2.19), if multiplied by (σe f )γ
β, yields

∇aLa e f = −4La e f∇aΦ + fermions . (2.2.21)

The remaining independent part of (2.2.19) can be projected out if one mul-

tiplies it by (σefgh)γ
β. The obtained relation together with the Bianchi identity for

the torsion with only vectorial indices gives

∇[eLf g h] = −3L[e f
aLg h] a − 3

2
γ′Rk l [e fRk l

g h] + fermions . (2.2.22)

Notice that (2.2.21) and (2.2.22) suggest that the object Labc might be either

related to the field strengths of a two-form or dual field strength of a six-form
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depending on which of these two equations is interpreted as the Bianchi identity

and which is as the equation of motion.

Assuming that (2.2.21) gives the equation of motion for a two-form gauge field,

then (2.2.22) must correspond to its Bianchi identity. Searching for a closed three-

form in the geometry, in which the field strengths of this two-form can be identified,

one might want to use the identity satisfied by a Lorentz Chern-Simons three-form

Q4

∇[eQf g h] −
3

2
T[e f

aQg h] a = − 3

2
R[e f |k lR|g h]

k l + fermions . (2.2.23)

in order to “absorb” the curvature squared term in the RHS of (2.2.22) . However

this doesn’t quite work. It is interesting to consider how this fails.

Observe that the structure of the equations (2.2.22) and (2.2.23) is almost the

same, with the only difference that in the RHS of (2.2.21) the role of the “group” in-

dices and “form” indices of the curvature are exchanged with respect to one another.

Since the curvature is defined by a connection with torsion, it is not symmetric with

respect to the exchange of its pairs of indices. Therefore, (L − γ′Q)abc cannot be

equal exactly to the vectorial component of a closed three-form, but their difference

is an object which serves as a link between the two curvature squared expressions

we have in (2.2.22) and (2.2.23). This object (called “Yabc” in the next chapter)

does exist as was first demonstrated in [9]. After it has been properly identified, we

4The second two indices on the Riemann curvature tensor may be thought of as the Lie

algebraic “group” indices for SO(1,9).
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can use Yabc to show

∇[e(L − γ′Q − γ′Y )f g h] −
3

2
T[e f

a(L − γ′Q − γ′Y )g h] a = fermions (2.2.24)

at first order in γ′. This is the relation, which shows that (at least modulo fermionic

contributions) (L− γ′Q− γ′Y )abc can be identified as the vectorial component of a

closed three-form.

Conversely assuming that (2.2.22) gives the equation of motion for a two-form

gauge field, then (2.2.21) must correspond to its Bianchi identity in the dual theory.

This theory is slightly easier to construct because although it contains the first

order superstring corrections, it does not require a dual Chern-Simons term for its

consistency.

Finally, the Ricci tensor and the scalar curvature can be derived from (2.2.18)

using the dimension three-half results

1

2
R(d c) = 2∇(d∇c)Φ + 2 γ′Rk l d bRk l

c
b + fermions , (2.2.25)

R = −16∇aΦ∇aΦ +
2

3
La b cLa b c + 3γ′Rk l a bRk l a b + fermions .(2.2.26)

Throughout our discussion up to this point, we were working directly with

the superfields of 10D, N = 1 superspace supergravity. So all equations were

superspace equations. For the rest of this discussion, we will set all fermions to zero.

We will utilize the same symbols to denote the various quantities however. We use

the following notation for the purely bosonic equations found from the superspace
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Bianchi identities,

ÊΦ
.
= 4∇a∇aΦ − R + 2γ′Rk l a bRk l a b , (2.2.27)

ÊBef

.
= ∇a

(
e4ΦLa e f

)
, (2.2.28)

Ê eBe f g h
.
= ∇[e(L − γ′Q − γ′Y )f g h] −

3

2
T[e f

a(L − γ′Q− γ′Y )g h]a ,(2.2.29)

Êηdc

.
=

1

2
R(d c) − 2∇(d∇c)Φ − 2γ′Rk l dbRk l

c
b , (2.2.30)

Êη
.
= R + 16∇aΦ∇aΦ − 2

3
La b cLa b c − 3γ′Rk l a bRk l a b . (2.2.31)

In order for the superspace Bianchi identities to be satisfied all of the Ê-quantities

are required to vanish. The question we shall address in this work is, “Does there

exist a component level action whose variations lead to equations of motion that

are compatible with (2.2.27) - (2.2.31)?” This same action must also contain a field

such that either (2.2.28) or (2.2.29) can be interpreted as a Bianchi identity.

2.3 Bosonic Terms of a Component Action for Two-form Formulation

The non-vanishing components of the modified 3-form field strength to this

order can be written as (below we have used a slightly different set of conventions

from [9] as discussed in an appendix)

Hαβ c = i
1

2
(σc)αβ + i 4 γ′(σa)αβ G

a e fGc e f , (2.3.1)

Hαb c = i 2 γ′
[

(σ[b|)αβTef
β − 2(σ[e])αβTf [b|

β
]
Gc]

e f , (2.3.2)

Ha b c = Ga b c + γ′Qa b c . (2.3.3)

In the limit where γ′ = 0 these equations correspond to the superspace geometry in

a string-frame description of the pure supergravity theory. As was pointed out some
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time ago [17], the field independence of the leading term in the Gαβc component of

the 3-form field strength is indicative of this.

The quantity La b c in this formulation is defined by,

La b c
.
= Ga b c + γ′Qa b c + γ′ Ya b c + O((γ′)

2

) , (2.3.4)

where Ga b c is the supercovariantized field strength of a two-form, Qa b c is the Lorentz

Chern-Simons form and

Ya b c
.
= −

(
Re k

[a b| + R[a b|
e k +

8

3
Gd

e
[a|G

d k
|b|

)
G|c] e k . (2.3.5)

This quantity, (which to our knowledge first appeared in [9]) has a remarkable

property. It is a straightforward calculation to show

∇[eYf g h] −
3

2
T[e f

a Yg h] a = − 3

2

(
Rk l[e fRk l

g h] − R[e f |k lR|g h]
k l

)
+ O(γ′) .

(2.3.6)

By keeping terms only up to first order in γ′ we find that a Lagrangian density

of the form

L = e−1e4Φ

[
R(ω) + 16 (eaΦ) (eaΦ) − 1

3
La b c La b c + γ′tr(Ra bRa b)

]
,

(2.3.7)

where ω is the torsion-less spin connection, is compatible with the set of equations

of motion (2.2.25), (2.2.26),(2.2.28), (2.2.29) and Bianchi identity (2.2.27), If we

expand the penultimate term to first order in γ′ we find

L = e−1e4Φ
[
R(ω) + 16 (eaΦ) (eaΦ) − 1

3
Ga b c

(
Ga b c + 2γ′Qa b c

)
− 2

3
γ′Ga b c Ya b c + γ′tr(Ra bRa b)

]
.

(2.3.8)
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It is easily seen that the action to first order in γ′ when written using the Y variable

takes a simple and elegant form.

Variation of this Lagrangian with respect to the dilaton gives

δΦL ∼ −4e−1e4Φ [ Eη + 2EΦ ] δΦ . (2.3.9)

where Eη and EΦ are given by (2.2.31) and (2.2.27).

The variation with respect to the antisymmetric tensor at first seems very

complicated due to the fact that its field strength appears in the Lorentz connection.

However, one can write it simply as

δBL = e−1e4Φ

(
−2

3
La b c δLa b c + γ′δtr (Ra bRa b)

)
. (2.3.10)

Replacing now (2.3.4) into the first term, we obtain the form

δBL ∼ 2EBab
δBa b −

2

3
e−1γ′ e4ΦLa b cδL (Q+ Y )a b c

+ e−1 e4Φγ′δLtr
(
Ra bRa b

)
.

(2.3.11)

The last terms in fact form a combination of variations, (that will appear repeat-

edly), which can be expressed in terms of zero order equations of motion for arbitrary

variations of the object La b c. This is shown in appendix B, where this combination

is denoted symbolically by f(E). In terms of f(E), the variation of the Lagrangian

with respect to the antisymmetric tensor is

δBL ∼ 2EBab
δBa b + γ′ f(E) (2.3.12)
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with

f(E) ∼ 4EBkl
Φk

a bδLl a b

+ 8
[
e4Φ∇a

(
e−4ΦÊBbc

)
+

(
e4ΦÊηak

− ÊBak

)
Lk

b c
]
δLa b c

− 2

3

1

4!
e4Φ E eBabcdδL

(
E eBa b c d

)
+ O(γ′) .

(2.3.13)

2.4 Bosonic Terms of a Component Action for Six-form Formulation

Retaining the same current Aabc specified by (2.2.10) we can introduce a

seven-form N [18] satisfying an appropriate Bianchi identity. At the component level

similar considerations have been carried out for the six-form formulation [19]. One

of the remarkable things about this formulation is that in order to describe lowest

order perturbative contributions to the effective does not require a Chern-Simons

like modification to the seven-form field strength.

Nαβ[5] = i
1

2
e4Φ (σ[5])αβ , (2.4.1)

Nα[6] = − 1

4!
ε[6][4] e

4Φ (σ[4])α
βχβ , (2.4.2)

N[7] =
1

3!
e4Φ

(
L[3] − 13i

8
χσ[3]χ

)
ε[3][7] . (2.4.3)

In particular, it is the equation (2.2.27) which insures that the purely vectorial com-

ponent of the N Bianchi identity is satisfied. Equations (2.2.27), (2.2.28), (2.2.30)

and (2.2.31) contain the bosonic equations of motion for the component fields of the

dual theory. Notice that in this case (2.2.27) identifies Labc as the following function

of the component fields of the dual theory

La b c = − 1

7!
εa b c[7] e

−4ΦN [7] . (2.4.4)

23



upon setting the fermions to zero. In the following we show that the Lagrangian

density

Ld = e−1 e4Φ
[
R(ω) + 16 (eaΦ) (eaΦ) +

1

3
( L − γ′(Q+ Y ))2

a b c

+ γ′ tr(Ra bRa b)
]

,

(2.4.5)

is compatible with the set of equations of motion and Bianchi identity. Since our

results are only valid to first order in γ′ it follows that (2.4.5) should be more

properly written as

Ld = e−1 e4Φ
[
R(ω) + 16 (eaΦ) (eaΦ) +

1

3
La b c La b c

− 2

3
γ′ La b cQa b c −

2

3
γ′ La b c Ya b c + γ′ tr(Ra bRa b)

]
,

(2.4.6)

and in this expression L is replaced by the expression in (2.4.4). When this is

done two points are made obvious. Firstly, this action is not in the string-frame

formulation. This follows in particular since the object Labc depends on the dilaton

through (2.4.4). From the superspace point of view this was already obvious due to

the field dependence exhibited by (2.4.1). A string-frame formulation of the dual

theory does exist after additional field redefinitions are applied to (2.4.5) and (2.4.6).

Secondarily, the Chern-Simons term does not actually appear in this action.

One can perform an integration-by-part on the first term on the second line of (2.4.6)

and this leads to a term

La b cQa b c ∝ εa1 ··· a6 b1 b2 c1 c2 Ma1 ··· a6
tr(Rb1 b2

Rc1 c2
) , (2.4.7)

which can be seen to be precisely the term required by the dual Green-Schwarz

mechanism for anomaly cancellation first given in [18]. Notice the change of sign of
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the L-squared term in (2.4.5) and (2.4.6) compared to (2.3.7) and (2.3.8). This is

the usual sign-flip seen between theories connected by Poincaré duality.

Indeed, now even the variation with respect to the dilaton becomes compli-

cated since Labc appears in the connection. However, just marking the variation and

using δL = −4LδΦ only in the most obvious terms, one ends up again with the

combination of variations f(Ê) with the terms for the equation for the dilaton in

the theory with two-form (2.3.13),

δΦLd ∼ −4 e−1 e4Φ
[
Êη + 2ÊΦ

]
δΦ + γ′f(Ê) . (2.4.8)

The variation with respect to the six-form M is computed in the same manner. The

combination f(Ê) surprisingly appears again and one simply obtains,

δMLd ∼ −2

3

1

4!6!
εa b c d [6]Ê eBabcd

δM[6] + γ′f(E) . (2.4.9)

So the final conclusion is that in the dual theory, the component action in (2.4.6)

is compatible with the equations of motion derived from superspace for the dual

theory.

2.5 Comparison with a Component Level Investigation

Next, we study the relationship of the Lagrangian (2.3.8) with the compo-

nent Lagrangian in [20]. A quick look to the component Lagrangian in [20] convinces

us that using just rescalings of the fields it can be written in the form

L̂ = e−1 e4Φ
[
R(ω) + 16 (eaΦ) (eaΦ) − 1

3
Ga b c (Ga b c + 2γ′Qa,b c )

+ γ′tr(R̂a b R̂a b)
]

,

(2.5.1)
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where hatted objects are defined using a Lorentz connection Ω̂, which may differ

from ours by its torsion. In order to compare this to our Lagrangian (2.3.8), let us

write the difference as

e−1 e−4Φ
(
L − L̂

)
= − 2

3
γ′Ga b c

(
Q− Q̂

)
a b c

− 2

3
γ′Ga b c Ya b c

+ γ′ tr
(
Ra bRa b − R̂a b R̂a b

)
.

(2.5.2)

Observe that the difference is in fact a GY term. The question is whether this

additional term can be removed by field redefinitions.

First of all, notice, that only redefinitions at zero order of the Lorentz con-

nection can affect this difference at first order. For example, let us redistribute the

torsion in the connection using a real parameter k in the simplest way,

Ωa b c = ωa b c − La b c = Ω̂a b c + χa b c , (2.5.3)

Ω̂a b c = ωa b c − (1− k)La b c , (2.5.4)

χa b c = −kLa b c . (2.5.5)

This can be seen as a shift in the connection of type (A.0.13), which we use to find

conventional constraints in supergravity. For k = 0 in fact there is “no redefinition”,

for k = 1 the new connection Ω̂ = ω is torsionfree, while for k = 2 the sign of the

torsion flips.

How does this shift in the connection affect the form of the Lagrangian? One

computes the changes in the Chern-Simons term and the curvature squared term
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using (A.0.16) and respectively (A.0.15)

2

3
Ga b c

(
Q − Q̂

)
a b c

∼ −4k

[
Ra b c d + 2k

(
1− k

3

)
Ga c

k Gb d k

]
Ga b lGc d

l

−4k e−4ΦÊBab
Ω̂b e k Ga

e k + O(γ′) , (2.5.6)

−2

3
Ga b c Ya b c = 8

[
Ra b c d +

4

3
Ga c

k Gb d k

]
Ga b l Gc d

l , (2.5.7)

tr
(
Ra bRa b − R̂a b R̂a b

)
∼ 2k2 (k − 2)2

[ (
Ga b

k Gc d k − Ga c
k Gb d k

) ]
Ga b l Gc d

l

−4k(k − 2)
[
Êηkl

Gl
c d +∇k( e−4ΦÊBc d

)
]
Gk c d

+ 2k(k − 2)Ra b c dG
a b k Gc d

k + O(γ′) , (2.5.8)

and finally we find

e−4Φ
(
L − L̂

)
∼ 2(k − 2)2γ′Ra b c d G

a b k Gc d
k

+(k − 2)2γ′
[
2k2Ga b

k Gc d k +
2

3
(k + 4)Ga c

k Gb d k

]
Ga b l Gc d

l

−4k(k − 2)γ′
[
Êηcl

Gl
k d + ∇k( e−4ΦÊBc d

)
]
Gk c d

−4kγ′ e−4Φ ÊBc d
Ω̂c e k Gd

e k . (2.5.9)

Observe, that for k = 0, indeed, the difference is equal to the GY term, while

for k = 2, the difference is a term proportional to the equation of motion for the

antisymmetric tensor at zero order:

L − L̂ ∼ −8γ′ÊBcd
Ω̂cefGd

ef . (2.5.10)

At first sight it seems that the change of sign of the torsion in the Lorentz

connection just exchanges the GY term to another ”unwanted” one. However,

correction terms which are propotional to equations of motion can be absorbed by
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field redefinitions involving the perturbation parameter and therefore L and L̂ are

equivalent.

Indeed, let us consider the expression

S[φ] + γ′
∫
dxn δS

δφ
F(φ), (2.5.11)

with S[φ] an action for the fields φ, δS
δφ

= 0 the equations of motion for the fields φ,

F(φ) an arbitrary function of the fields φ and γ′ an infinitesimal parameter. Now

consider the field redefinitions

φ′ = φ+ γ′F(φ), (2.5.12)

and expand S[φ′] around φ using that γ′ is infinitesimal. Then one obtains

S[φ′] = S[φ] + γ′
∫
dxn δS

δφ
F(φ) +O( γ′2 ). (2.5.13)

We have demonstrated here that the bosonic Lagragian (2.3.8), based on the su-

perspace geometry proposed in [9] is equivalent to the component-level first-order

corrected supergravity Lagrangian of [20]. While it is a matter of taste to say

that the superspace approach is preferable to the Noether approach for constructing

effective actions, we have demonstrated that the way superspace keeps supersymme-

try manifest at each step in the calculation makes the computation of the effective

action very straighforward.
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Chapter 3

Generalized Kähler Geometry and N = (2, 2) Supersymmetric Sigma

Models

Two dimensional supersymmetric sigma models play an important role in su-

perstring theory. They are used to provide descriptions of the types of spaces on

which superstrings can propagate. They are also useful for providing descriptions of

constructs used in string theory like T duality and quotients. Interest in (2, 2) sigma

models1 has risen recenly due to the work of Hitchin [21] and Gaultieri [22], which

has established a connection between (2, 2) sigma models and generalized Kähler

geometry which contains generalized CY manifolds that appear in string theory

compactifications with H flux. The purpose of this section is to give a description

of the connection between generalized Kähler geometry and N = (2, 2) supersym-

metric non linear sigma models. It would be of value to understand properties of

such backgrounds in relation to string theory such as what is the effect of T duality

on the background. The construction of quotients, which has a natural sigma model

description, is a useful tool for describing string backgrounds. A complete descrip-

tion of T duality and the construction of quotients is understood for some cases of

generalized Kähler geometry, the cases of bi-hermitian geometries with commuting

complex structures. It is not known how to deal with the more general case i.e. when

1See Appendix C for definition of (p, q) supersymmetry.
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the complex structures do not commute. We would like to be able to understand

whether the T dual or quotient of a generalized Kähler geometry is still generalized

Kähler. In this dissertation we will describe an approach to answer that question.

However the approach we will take will not be in the regular language used to dis-

cuss generalized Kähler geometry. We will discuss the approach in the language of

N = (2, 2) supersymmetric non linear sigma models. In this language the ques-

tions can be rephrased in terms of more tractable questions about preserving (2, 2)

supersymmetry. These questions are easiest to answer when working with the full

power of (2, 2) superspace. We will therefore give a review of the relevant features

of generalized Kähler geometry and how they relate to (2, 2) supersymmetric non

linear sigma models in (2, 2) superspace.

3.1 Complex Geometry

It is easiest to review generalized complex geometry which contains generalized

Kähler geometry by reminding ourselves about complex geometry. An real even

dimensional manifold M of dimension d is said to have an almost complex structure

if it possess a rank (1, 1) tensor, Ja
b, such that

Ja
bJ

b
c = −δca (3.1.1)

From this relation we can see that J has eigenvalues ±i. With such a tensor one

can construct projectors π± = 1
2
(1 ± iJ) that can be used to define the notion of

holomorphic and anti holomorphic. Locally one can always define such a tensor.

If one can find such a tensor that satisfies the property (3.1.1) globally then the
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manifold is said to possess a complex structure or is called complex. The condition

for the almost complex structure to be a complex structure i.e. to be integrable, is

the vanishing of the Nijenhuis tensor

Nij(J)ab
c = Jd

a∂[dJ
c
b] − (a↔ b) = 0. (3.1.2)

This is equivalent to the condition that

π∓[π±X, π±Y ] = 0 ∀ X,Y ∈ TM (3.1.3)

where [ , ] is the Lie bracket. There is additional structure of interest in discussing

complex manifolds. A manifold is said to be hermitian if its metric satisfies the

property

Ja
cgcdJ

d
b = gab (3.1.4)

This implies that in the coordinate basis that diagonalizes the complex structure

the only non vanishing components of metric are the mixed holomorphic and anti

holomorphic components.

g =

 0 gιj̄

gīj 0

 (3.1.5)

Since the hermiticity conditon implies that

gacJ
c
b = −gbcJ

c
a (3.1.6)

the manifold possess a two form ωab = gacJ
c
b i.e. ω ∈ Λ2T ∗M . If the two form is

closed i.e. dω = 0, where here d is the exterior derivative, then the manifold is said

to be Kähler and ω is called the Kähler form. A Kähler manifold has the interesting

property that all of the geometry is locally determined by a single real function,
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K(z, z̄), called the Kähler potential. Let’s see how this works. In the coordinate

basis that diagonalizes the complex structure the two form ω takes the form

ω = 2igij̄dz
i ∧ dz̄ j̄ (3.1.7)

The condition

dω = (∂ + ∂̄)ω = 2i∂[lgi]j̄dz
l ∧ dzi ∧ dz̄ j̄ + 2i∂̄[l̄|gi|j̄]dz̄

l̄ ∧ dzi ∧ dz̄ j̄ = 0 (3.1.8)

implies that

gij̄ = ∂igj̄

gij̄ = ∂̄j̄gi (3.1.9)

These two conditions together imply that

gij̄ = Kij̄ = ∂i∂̄j̄K (3.1.10)

for some function K. This Kähler potential will provide a beautiful geometric in-

terpretation for supersymmetric non linear sigma models.

3.2 Generalized Complex Geometry

The discussion of complex geometry above places emphasis on the role of the

tangent bundle TM to the manifold. The complex structure is a tangent bundle

endomorphism J : TM → TM , whose projectors,π± = 1
2
(1 ± iJ), define integrable

distributions when (3.1.3) is satisfied. Generalized complex geometry was first pro-

posed by Hitchin [21] and later formalized by Gualtieri [22]. We refer the reader
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to [22] for a complete discussion of generalized complex geometry. This review fol-

lows the presentation given in [23]. Generalized complex geometry extends the idea

of complex geometry to the direct sum of the tanget bundle and cotangent bundle

TM ⊕ T ∗M .

A generalized vector in TM ⊕ T ∗M is represented by

V I =

 X i

ηj

 (3.2.1)

or as a formal sum V = X+η with X ∈ TM and η ∈ T ∗M . There is a natural inner

product on the vector space given by < (X + η)|(Y + ρ) > = 1
2
(ρ(X) + η(Y )).

The isometry group preserving the inner product and its canonical orientation is

SO(d, d) where d is the real dimension of M . In a coordinate basis, (∂i, dx
j) the

inner product has the representation

I =

 0 1d

1d 0

 (3.2.2)

One of the SO(d, d) transformations that we will use is the B transform which acts

on a generalized vector as

eb(X + η) = X + η + iXb (3.2.3)

where b : TM → T ∗M is a closed 2-form, i.e. b = bijdx
i ∧ dxj with db = 0. This is

also represented as  1d 0

b 1d


 X

η

 =

 X

η + iXb

 (3.2.4)
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A generalized almost complex structure is a TM ⊕ T ∗M endomorphism, J : TM ⊕

T ∗M → TM ⊕ T ∗M , that preserves the natural inner product

J tIJ = I (3.2.5)

and squares to minus the identity

J 2 = −12d. (3.2.6)

We can represent J in terms of components as

J =

 J P

L K

 (3.2.7)

where the components should be thought of as maps in the following sense.

J : TM → TM, P : T ∗M → TM, L : TM → T ∗M, K : T ∗M → T ∗M (3.2.8)

In a coordinate basis the components have index structure

Ja
b, P ab, Lab, Kb

a (3.2.9)

One can also think of B transformations of the generalized almost complex structure.

In that case one would get

Jb =

 1 0

b 1

J

 1 0

−b 1

 (3.2.10)

As before one can use the generalized almost complex structures to define projectors

Π± = 1
2
(12d ± iJ ). Integrability of the generalized almost complex structures is

defined with respect to the Courant bracket [24]. The Courant bracket of two

generalized vectors is

[X + η, Y + ρ]c = [X, Y ] + LXρ− LY η −
1

2
d(iXρ− iY η) (3.2.11)
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The Courant bracket has the property that it reduces the the Lie bracket on the

tangent bundle and vanishes on the cotangent bundle. Under b transformations of

the Courant bracket we get

[eb(X + η), eb(Y + ρ)]c = eb[X + η, Y + ρ]c (3.2.12)

From this we see that the automorphism group of the Courant bracket is the dif-

feomorphism group times the b transformations. If the generalized almost complex

structure satisfies the integrability condition

Π∓[Π±(X + η),Π±(Y + ρ)]c = 0, ∀ (X + η), (Y + ρ) ∈ TM ⊕ T ∗M (3.2.13)

then J is called a generalized complex structure. Lets look at some examples. A

complex structure also defines a generalized complex structure.

JJ =

 J 0

0 −J t

 (3.2.14)

A symplectic structure also defines a generalized complex structure.

Jω =

 0 −ω−1

ω 0

 (3.2.15)

A generalized Kähler geometry is a generalized complex geometry that possesses

two commuting generalized complex structures J1 and J2 such that G = −J1J2

is a positive definite metric on TM ⊕ T ∗M . A generalized Kähler geometry can

be specified by the geometric data (g,B, J+, J−) i.e. a metric, 2-form, and two

hermitian almost complex structures. There are, as in the discussion on complex

geometry, two 2-forms ω± = gJ±. The generalized almost complex structures are
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given by

J1/2 =

 1 0

B 1


 J+ ± J− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(J t
+ ± J t

−)


 1 0

−B 1

 (3.2.16)

The generalized almost complex structures are integrable if

Nij(J±) = 0

H = dB(X, Y, Z) = dω+(J+X, J+Y, J+Z) = −dω−(J−X, J−Y, J−Z)(3.2.17)

These conditions are equivalent to the statements that H is a type (2, 1) + (1, 2)

form with respect to both J+ and J− and that

∇±J± = 0 (3.2.18)

where ∇± = ∇0 ± g−1H. Here ∇0 is the covariant derivative on tensors with

the metric compatible connection. The H flux acts as torsion for the covariant

derivatives. As an example we can consider Kähler geometry which has J+ = J−

and B = 0. The two generalized complex structures reduce the generalized complex

structures given above for a regular complex structure and symplectic form. We

then see that

G = −JJJω =

 0 g−1

g 0

 (3.2.19)
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3.3 Generalized Kähler Geometry and N = (2, 2) Non Linear Sigma

Models

As before it is easiest to start with the connection between N = (2, 2) Non

Linear Sigma Models (NLSM) and Kähler geometry. This connection was first

made in the seminal work of Zumino [25]. Important geometric structures that

we will consider were understood in this context including the moment map as

well as symplectic and Kähler quotients. Many of these structures were devoloped

independently in the mathematical and physics literature. The use of a Legendre

transform and a symplectic quotient in the study of hyperkähler geometry arose from

their use in supersymmetric sigma models [26–28]. In the context of hyperkähler

geometry a comprehensive review was presented in [29]. The connection to complex

geometry was then furthered by discovery of new sigma models in the works [30,31]

that include more general backgrounds than those in [25]. The goal of this discussion

is to develop an understanding of the sigma models connection to these backgrounds

in N = (2, 2) superspace so that we can use the power of (2, 2) superspace to obtain

our results. This is helpful because (2, 2) superspace hides the background data so

that it isn’t obviously present2. We will start our discussion of (2, 2) NLSMs in

(1, 1) superspace with a non linearly realized extra (1, 1) supersymmetry where the

geometric aspects of the theory are easy to see and the connection to generalized

Kähler geometry is made. The (1, 1) susy algebra looks like

D2
+ = i∂ , D2

− = i∂ , [D+, D−} = 0 (3.3.1)

2However it does so in a very beautiful way.
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The action for a (1, 1) sigma model is

S =

∫
d2xd2θD+φ

aEabD−φ
b (3.3.2)

Here Eab = gab + Bab. We think of gab as the metric for the target space and Bab

is a gauge 2-form on the target space. There are no conditions on the metric or 2-

form required by (1, 1) supersymmetry. The connection to complex geometry comes

from imposing the conditions required to make the theory possess a hidden extra

(1, 1) supersymmetry. This is done by proposing a second (1, 1) supersymmetry

transformation for the field φa and requiring that the action remain invariant under

the proposed transformation and that the extra transformation close on the usual

(1, 1) algebra. The proposed second transformation takes the form

δφa = ε+Ja
(+)bD+φ

b + ε−Ja
(−)bD−φ

b (3.3.3)

The (±) on the tensors J± are not indices but just labels to match the tensor

to the supersymmetry transformation. Requiring that the second supersymmetry

transformation close on the usual supersymmetry algebra requires that

J2
± = −1

Nij(J±) = 0 (3.3.4)

These are the conditions for J± to be separately integrable complex structures.

Requiring that the action is invariant under the second (1, 1) transformation implies

that

gacJ
c
±b = −gbcJ

c
±a
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∇±J± = 0 (3.3.5)

where once again ∇± = ∇0 ± g−1H and H = dB. At this point we see the require-

ments for the extra supersymmetry transformations are equivalent to the integra-

bility conditions for the data necessary to specifiy a generalized Kähler geometry.

The last thing to check is that extra (1, 0) and (0, 1) transformations commute with

each other. The commutator of the supersymmetry transformations is proportional

to the commutator of the complex structures times the e.o.m for the field φa. This

leave us with two choices. We either require that the complex structures commute

or we consider the theory on shell. If we impose that the complex structures com-

mute, then it can be shown that the both complex structures are simultaneously

integrable. That also means that the algebra closes off shell and there is a manifestly

(2, 2) action for the model. That model will be terms of what are called chiral and

twisted chiral superfields.

If we don’t impose the condition that commutator of the complex structures

vanish, the algebra only closes on shell and there will be no manifest (2, 2) action.

However, one can add auxiliary fields that allow one to account for the non com-

mutativity of the complex structures and still have the algebra close off shell. The

model will then have a manifest (2, 2) description in terms of what are called semi

chiral superfields. The (1, 1) action for this model is

S =

∫
d2xd2θ(Sa+E

abSb− − Sa(−D+)φ
a) (3.3.6)

Where Eab is the inverse of Eab. Imposing the Sa± equations of motion gives back

the action (4.0.7). Once again one proposes extra supersymmetry transformations of
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the fields φa and Sa± and consider the requirements for the extra transformations to

close on the regular (1, 1) supersymmetry algebra. We think ofD±φ
a combining with

Sa± to form a generalized vector in TM⊕T ∗M i.e. LA
± = (D±φ

a, Sa±) ∈ TM⊕T ∗M .

In terms of LA
± the general transformations,δ = δ(+) + δ(−), take the form

δ(±)φa = ε±LB
±A

(±)
B

a

δ(±)Sa± = ε±(D±L
B
±B

(±)
aB + LB

±L
C
±C

(±)
aBC)

δ(±)Sa∓ = ε±(D±L
B
∓M

(±)
aB +D∓L

B
±N

(±)
aB + LB

±L
C
±X

(±)
aBC) (3.3.7)

Typically the three index tensors,C
(±)
aBC and X

(±)
aBC are solved for in terms of deriva-

tives of the two index tensors A
(±)
B

a, B
(±)
aB , M

(±)
aB and N

(±)
aB . In [32] it was shown,

for the case of (2, 0) supersymmetry, that the integrability conditions imposed by

supersymmetry contained solutions that correspond to courant integrability of a

generalized complex structure with the two index coefficient terms in the super-

symmetry transformations interpreted as submatrices of the generalized complex

structure.

3.4 N = (2, 2) Non Linear Sigma Models In N = (2, 2) Superspace

In this section we will review how the content of the previous section is cap-

tured by (2, 2) superspace. The review will follow the content and presentation

of [23, 30, 33]. We’ll start our consideration of the (2, 2) formulation of the sigma

models by recalling a property of the fermionic measure, d4θ. On dimensional

grounds,[d4θ] = 2, the only contribution we can consider to the action is a real
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scalar potential function of dimensionless superfields3. We will consider scalar su-

perfields for the action.

S =

∫
d2xd4θK({Φ, Φ̄}) (3.4.1)

where {Φ} is the set of superfields considered for the action. We interpret the lowest

component of the superfield to be the coordinates on the manifold. If the superfields

are unconstrained, then the action will contain no dynamics. Therefore we need to

understand what constraints we can place on scalar superfields. The constraints are

made using the supercovariant derivatives (Dα, D̄α). The algebra of supercovariant

derivatives is

[Dα, Dβ} = 0

[Dα, D̄β} = 2i(γa)αβ∂a (3.4.2)

The constraints that can placed consistently are

Chiral D̄αφ = 0

anti Chiral DαΘ = 0

Twisted Chiral D̄−χ = D+χ

Twisted anti Chiral D−ψ = D̄+ψ

Left Semi Chiral D̄+X = 0

Left Semi anti Chiral D+P = 0

Right Semi Chiral D̄−W = 0

Right Semi anti Chiral D−Y = 0

3By [ ] here we mean the mass dimension. We are also ignoring superpotential terms for the

moment.
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(3.4.3)

It is the constraints on the superfields that will determine the type of geometry

that we have. They will determine the complex structures and, along with the

potential function, the metric and B field. This is done by reducing the action from

(2, 2) superspace to (1, 1) superspace. The details of this reduction has been worked

out for all combinations of fields in [23, 30, 33]. We will describe the simplest case

here to give a flavor for how things are done and then we will give the main results of

the other cases before preceding to a discussion of gauging the sigma models which

is the focus our research. The simplest choice to consider is the case were only

chiral superfields are used. This was the model considered by Zumino [25]. In that

work, Zumino showed that the potential function of superfields corresponds to the

Kähler potential from Kähler geometry discussed above4. The metric for the sigma

model is determined in terms of second derivatives of the Kähler potential just as in

Kähler geometry. Lets see how we can determine the properties of geometry starting

from (2, 2) superspace. This is done by reducing the (2, 2) description to a (1, 1)

description which is done in two part. The first is to reorganize the supercovariant

derivatives into two copies of (1, 1). The appropriate combinations are

D̂α =
1√
2
(Dα + D̄α)

D̃α =
i√
2
(Dα − D̄α) (3.4.4)

4Álvarez-Gaumé and Freedman extended Zumino’s work by showing that further extensions of

supersymmetry to N = (4, 4) required the sigma model metric to be hyperkähler [34].
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The constaints on the chiral field expressed in terms of these derivatives are

D̃αφ
u = iD̂αφ

u

D̃αφ̄
ū = −iD̂αφ̄

ū (3.4.5)

or defining

ZA =

 φu

φ̄ū

 (3.4.6)

the constraints are

D̃αZ
A = JA

BD̂αZ
B (3.4.7)

where

JA
B =

 iδu
v 0

0 −iδū
v̄

 (3.4.8)

At this point we have made contact with one part of the (1, 1) approach. For the

reduction we will ”hide” one of the (1, 1) supersymmetries, the one described by D̃α.

From this perspective the constraints described in (3.4.7) become the second (1, 1)

supersymmetry transformation as in (3.3.3). The tensor JA
B satisfies JA

BJ
B

C =

−δCA. This is how the complex structure arises starting from the (2, 2). It should be

noted that when comparing(3.4.7) with (3.3.3) the two a priori independent almost

complex structures in (3.3.3) are identified in (3.4.7). The next point is to see how

the metric arises. For that we consider the evaluation of the fermionic measure. The

fermionic measure is normally evaluated as

∫
d4θ = D̄2D2 (3.4.9)
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Using the supercovariant derivative algebra, we can show that up to total derivatives

D̄2D2 = D̂2D̃2 (3.4.10)

Using this we can write

∫
d4θK(φ, φ̄) = D̄2D2K = D̂2D̃2K = D̂2(Kuv̄D

αφuDαφ̄
v̄)

=

∫
d2θ̂Kuv̄D

αφuDαφ̄
v̄ (3.4.11)

where we have used the form of the (1, 1) action that is more compact for working

with complex fields. Comparison with (4.0.7) allows us to identify the target space

metric.

gAB =

 0 Kuv̄

Kūv 0

 (3.4.12)

which is the same as what one gets for Kähler geometry. We can verify that the

metric is hermitian with respect to the complex structure.

ωAB = gACJ
C

B =

 0 −iKuv̄

iKūv 0

 = −gBCJ
C

A = −ωBA (3.4.13)

If we considered the theory with only twisted chiral superfields, we would find the

same result as that for pure chiral superfields. The target space geometry would be

Kähler. A classification of backgrounds consistent with extended supersymmetry5

was given in [35] based on using only chiral superfield representations.

The next case we will consider is what happens when we include both chiral

and twisted chiral superfield representations. We will start as before by considering

the constraints on the superfields from the point of view of the two (1, 1) derivatives.

5By extended we mean greater than (1, 1) supersymmetry.
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In this way we will see the complex structures arise again. The (1, 1) derivatives are

the same as in (3.4.4). The constraints on the chiral superfields are the same as in

(3.4.5). The constraints for the twisted chiral superfieds are

D̃+χ
p = −iD̂+χ

p

D̃−χ
p = iD̂−χ

p

D̃+χ̄
p̄ = iD̂+χ̄

p̄

D̃−χ̄
p̄ = −iD̂−χ̄

p̄ (3.4.14)

We define

ZA =



φu

φ̄ū

χp

χ̄p̄


(3.4.15)

The combined (3.4.5) and (3.4.14) can be expressed as

D̃+Z
A = JA

(+)BD̂+Z
B

D̃−Z
A = JA

(−)BD̂−Z
B (3.4.16)

where

JA
(+)B =



iδu
v 0 0 0

0 −iδū
v̄ 0 0

0 0 −iδp
q 0

0 0 0 iδp̄
q̄


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JA
(−)B =



iδu
v 0 0 0

0 −iδū
v̄ 0 0

0 0 iδp
q 0

0 0 0 −iδp̄
q̄


(3.4.17)

Using the same evaluation of the fermionic measure as before we find a metric and

a b field.

gAB =



0 Kuv̄ 0 0

Kūv 0 0 0

0 0 0 −Kpq̄

0 0 −Kp̄q 0



BAB =



0 0 0 Kup̄

0 0 Kūp 0

0 −Kpū 0 0

−Kp̄u 0 0 0


(3.4.18)

One can check that the metric is hermitian with respect to both complex structures.

The geometry is called bi-hermitian with almost product structure. The complex

structures commute and the metric almost factorizes into product form. What we

have described so far are the cases described in the previous section that could satisfy

the off shell closure of the algebra by requiring that the complex structures commute.

We can us the data to construct generalized complex structures via the perscription

given in [22]. To describe the more general case, we need to consider the (2, 2)

superfield representations that incorporate the extra auxiliary fields necessary for
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the (1, 1) action to possess extended supersymmetry without needing the complex

structures to commute. Those representations are the left and right semi chiral

superfields.

This portion of the review follows directly from [23]. The discussion will go

the same as before. The extra auxiliary fields will show up when we consider the

constraints on the semi chiral superfields. For technical reasons, we need to include

both left and right semi chiral superfields in order to obtain a sigma model we will

consider them both. In terms of the (1, 1) derivatives, the constraints on the semi

chiral superfields are expressed as

D̃−X
a = iD̂−X

a

D̃−X̄
ā = −iD̂−X̄

ā

D̃+Y
a′

= −iD̂+Y
a′

D̃+Ȳ
ā′

= iD̂+Ȳ
ā′

(3.4.19)

We can express these in the compact form by defining, as before

ZA =

 Xa

X̄ ā



ZA′
=

 Y a′

Ȳ ā′

 (3.4.20)

Then we have

D̃−Z
A = JA

BD̂−Z
B

D̃+Z
A′

= −JA′
B′D̂−Z

B′
(3.4.21)
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Where

JA
B =

 iδa
b 0

0 −iδā
b̄



JA′
B′ =

 iδa′

b′ 0

0 −iδā′

b̄′

 (3.4.22)

The constraints don’t tell us how to relate the action of all of the (1, 1) deriva-

tives on the semi chiral superfields. When we reduce to (1, 1) superspace we need to

hide all reference to the extra supersymmetry generated by D̃α. So the actions not

specified by constraints must define extra (1, 1) superfields. We denote them as.

D̃+X
a = Ψa

+

D̃+X̄
ā = Ψ̄ā

+

D̃−Y
a′

= Υa′

−

D̃−Ȳ
ā′

= Ῡā′

− (3.4.23)

These are related to the auxiliary fields added to the (1, 1) action in (3.3.6). We

perform the reduction as before evaluating the fermionic measure using (3.4.10),

pushing the D̃α derivatives onto the potential. This time considering the supersym-

metry transformations of the (1, 1) superfields, we’ll be able to see the full general-

ized complex structures. It is easiest to describe the resulting action and generalized

complex structures in terms of the following matrices

mAA′ = JB
AKB′BJ

B′
A′

nA′A = KA′A

ωAB =
1

2
JC

[AKB]C
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ωA′B′ =
1

2
JC′

[A′KB′]C′

pAA′ = −iJC
AKCA′

qA′A = iJC′
A′KC′A (3.4.24)

The reduced action to (1, 1) superspace is

S = − i
4

∫
d2xd2θ̂(D+Z

tED−Z + SA+u
AA′

SA′−) (3.4.25)

Where uAA′
is the inverse of nA′A,

E = g +B =

 2iωuq m− 4ωuω′

ptuq 2iptuω′

 (3.4.26)

and

uAA′
SA′− = ΨA

− − iuAA′
(qA′BD−Z

B + 2iωA′B′D−Z
B′

)

uAA′
SA+ = ΥA

+ − iuAA′
(−2iωABD+Z

B + pAB′D+Z
B′

) (3.4.27)

The generalized complex structures are read off of the supersymmetry variations of

Z, SA+, and SA′−. The generalized complex structures are

J+ =



J 0 0 0

2utω iutp ut 0

−2(ωJ + iputω) −(n− putp) −iput 0

i(−nJutq + qJ + 4iω′utω) 2(nJuω′ − iω′utp) −2ω′ut nJu



J− =



iuq −2uω′ 0 −u

0 −J ′ 0 0

−2(ntJ ′utω + iωuq) −i(ntJ ′utp+ 4iωuω′ − pJ ′) −ntJ ′ut 2ωu

n− quq −2(iquω′ − ω′J ′) 0 −iqu


(3.4.28)
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The upper left blocks satisfy the conditions for being almost complex structures

independently of the form of the submatices (3.4.24). One can verify that

(J+)2 =

 J 0

2utω iutp


2

= −



δa
b 0 0 0

0 δā
b̄

0 0

0 0 δa′

b′ 0

0 0 0 δā′

b̄′



(J−)2 =

 iuq −2uω′

0 −J ′


2

= −



δa
b 0 0 0

0 δā
b̄

0 0

0 0 δa′

b′ 0

0 0 0 δā′

b̄′


(3.4.29)

This is to be expected. When SA+ and SA′− are put on shell then we must recover

the regular (1, 1) sigma model with second supersymmetry transformation (3.3.3).

It was shown in [33] that all generalized Kähler geometries are locally describable

in terms of N = (2, 2) with chiral, twisted chiral and semi chiral superfields.
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Chapter 4

Generalized Kähler Geometries With Isometries And Gauged Sigma

Models

The focus of research in this dissertation will be on target spaces corresponding

toN = (2, 2) supersymmetric sigma models with U(1) isometries. When such target

spaces have isometries, there is extra geometric data that characterizes the manifold.

This data includes the Killing vector, the moment map [36–38], and a one form [39]

if the background has non trivial three form flux. For supersymmetric sigma models

corresponding to bi-hermitian geometries with commuting complex structures, the

descriptions of the extra data is clear at both the (1, 1) level and manifest (2, 2)

level. However, for the case with non commuting complex structures, only the

(1, 1) level description is known. Since the entire background is determined by the

potential function K, the generalized Kähler potential, the extra geometric data

will be determined using the generalized Kähler potential. We will also investigate

the role that this extra geometric data in generalized Kähler geometry. There are

other issues concerning such target spaces with isometries. Specifically target space

duality, or T duality, and quotient constructions. Since quotients are a special

case of T duality, we will focus on developing a manifestly (2, 2) description of

T duality with the question in mind ”Is the T dual background to a generalized

Kähler geometry still generalized Kähler?”. This amounts to showing showing that
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the procedure for constructing the T dual geometry preserves (2, 2) supersymmetry.

The main tool we will use in the investigation of target spaces with isometries are

the known (2, 2) gauge multiplets.

The presentation will go as follows. We will begin with a description of how

the geometric data arises in the sigma model. Then we will identify the same data

in terms of the generalized Kähler potential and investigate to role of the moment

map and killing vector in generalized Kähler geometry. We will find some interesting

structures that hint at something new in (2, 2) gauge multiplets. Then we will review

T duality in the known cases and describe a proposed description of T duality for

sigma models parameterized by semi chiral superfields. The prescription will have

some very undesirable features that we can trace to a root cause, an insufficiency

of the known (2, 2) gauge mutiplets. This insufficiency of the known (2, 2) gauge

multiplets along with the hints obtained from studying the geometric data associated

to the isometry will lead us to a new (2, 2) gauge multiplet

If the sigma model target space has an isometry group, then a generic Killing

vector can be decomposed in a basis of the Killing vectors kA which generate the

Lie algebra of the isometry group

ξ = ξAkA = ξAki
A∂i, [kA, kB] = fAB

CkC , Lξg = 0. (4.0.1)

The infinitesimal transformation of the sigma-model fields is given by

δφi = εAki
A, (4.0.2)

where εA are rigid infinitesimal parameters. For a sigma model with isometries,

there is additional geometric data. These follow from the integrability conditions
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associated with the additional requirements that the action of the Killing vector

leave invariant not just the metric, but the field strength of the B-field H, and the

2-forms ω± = gJ±:

LξH = 0, Lξω± = 0. (4.0.3)

From the condition that H is invariant, it follows that

LξH = diξH + iξdH = diξH = 0. (4.0.4)

Since the two-form iξH is closed, locally it can be written as

iξA
H = duA, (4.0.5)

where the one-form u is determined up to an exact, Lie-algebra valued one-form.

The ambiguity in u can be fixed, up to U(1) factors in the Lie algebra, by requiring

that it is equivariant LAuB = fAB
CuC .

Besides this one form u, the other geometric data associated with the exis-

tence of an isometry group is the moment map (also known as the Killing poten-

tial). From the condition that the symplectic form is invariant under ξ, and from

dω±(J±X, J±Y, J±Z) = ±H(X,Y, Z), it follows that ω±ξ∓JT
±u is closed. Therefore,

locally one finds

dµ± = ω±ξ ∓ J t
±u, (4.0.6)

where µ± are the moment maps. This expression is the generalization for a manifold

with torsion of the integrability condition for the vector field ξ which satisfies, in

additon to (4.0.3),: LξJ± = 0.

The relevance of these two quantities, the one-form u and the moment map

µ, becomes clear when constructing the gauged sigma model, by promoting the
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rigid (global) isometries 4.0.2 to local ones. This is accompanied, in the usual man-

ner, by introducing a compensating connection (gauge potential) ∂µφ
i −→ ∇µφ =

∂µφ
i + AA

µk
i
A, which transforms as δAA

µ = ∂µε
A + fAB

CAB
µ ε

C . For (1, 0) or (1, 1)

supersymmetric sigma models, the bosonic gauge connection becomes part of a cor-

responding (1, 0) or (1, 1) vector multiplet. Promoting the partial derivatives to

gauge covariant derivatives is not enough in the presence of a B-field [38–40]. New

terms, which depend on the one-form u and the moment map, must be added to

the sigma model action. For a bosonic, (1, 0) or (1, 1) supersymmetric sigma-model,

adding only u-dependent terms is sufficient.

S =

∫
d2xd2θ

(
gij∇+φ

i∇−φ
j +BijD+φ

jD−φ
j − 2uiAA

A
(+D−)φ

i + AA
+A

B
−c[AB]

)
,

(4.0.7)

where D± are flat superspace covariant derivatives and ∇± are superspace gauge

covariant derivatives, and c[AB] = ki
[AuiB].

When the sigma model has additional supersymmetries, then the gauged sigma

model action acquires new terms, which are moment map dependent. The gauged

(2, 2) sigma model action typically contains a term

δS =

∫
d2xd2θSµ, (4.0.8)

where µ is the moment map, and S is a super-curvature that appears in the (2, 2)

gauged superalgebra (more precisely in the super-commutator {∇+, ∇̄−}).

Alternatively, one could chose to perform the gauging directly in (2, 2) super-

space. That is the approach we will use in this work. We shall be interested in

gauging (2, 2) sigma models whose target space has a bihermitian structure, with
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non-commuting almost complex structures. The natural starting point for us then

is the N = (2, 2) superspace formulation of a sigma-model written in terms of (2, 2)

semi-chiral superfields,

left chiral: D̄+X = 0,

right antichiral: D−Y = 0. (4.0.9)

We begin by making the observation that the following transformations are consis-

tent with the contraints1 on X and Y .

X → (A+B)X + C +D,

Y → (F +G)Y +W + Z, (4.0.10)

where A,C are chiral superfields, B,D are twisted anti chiral superfields, F,W are

anti chiral, and G,Z are twisted chiral. When these transformations correspond to

gauge transformations they can be properly accounted for using both the chiral and

twisted chiral vector multiplets.

For simplicity we will consider only the gauge transformations where the semi-

chiral superfields are multiplied and shifted by chiral and anti-chiral superfields. In

this work we shall follow two complementary approaches to constructing the gauged

action in (2, 2) superspace. The first method involves descending to the level of (1, 1)

superspace by following the usual route of substituting the Grassmann integration

by differentiation
∫
dθdθ̄ → DD̄, and by the subsequent replacement of the ordinary

superspace covariant derivatives by gauge covariant derivatives DD̄ → ∇∇̄. This

1This is not the most general set of transformations consistent with the constraints on X and

Y . However, these are the only transformations relevant to our considerations.
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is equivalent to gauging by minimal coupling, if the generalized Kähler potential

is invariant under the action of the isometry generators. The second method [37]

uses the prepotential of the gauge multiplet V explicitly in the generalized Kähler

potential to restore the invariance of the action under local transformations.

For simplicity we restrict ourselves to U(1) isometries. As such we can go to

a coordinate system in which the isometry is realized by a shift of some coordinate.

This implies that the generalized Kähler potentialK(X, X̄, Y, Ȳ ) will be independent

of a certain linear combination of the left and right semi-chiral superfields. For

example, for

K = K(X + X̄, Y + Ȳ , X + Y ). (4.0.11)

we can immediately read off the Killing vector associated with the isometry. In this

case it takes the form

ξ = i
∂

∂X
− i

∂

∂X̄
− i

∂

∂Y
+ i

∂

∂Ȳ
. (4.0.12)

From (4.0.10) we see that this is an example of a generalized Kähler potential, with

a U(1) isometry which can be gauged using the chiral (2, 2) vector multiplet.

4.1 Gauging and the reduction to (1,1) superspace

Let us consider the first of the two approaches to gauging which we have

outlined before. Since we are interested in extracting the geometric data (including

those associated with isometries) from the sigma model, and these are most easily
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seen in the language of (1, 1) superspace, here we describe the bridge from (2, 2) to

(1, 1) superspace, following [30] closely.

We begin by giving the (2, 2) gauge covariant supersymmetry algebra for the

chiral vector multiplet.

[∇α,∇β} = 0,

[∇α, ∇̄β} = 2i(γc)αβ∇c + 2g[CαβS − i(γ3)αβP ]t,

[∇α,∇b} = g(γb)α
βW̄βt,

[∇a,∇b} = −igεabWt, (4.1.1)

With the Bianchi identites

∇αS = −iW̄α, ∇αP = −(γ3)α
βW̄β,

∇αW̄β = 0, ∇αd = (γc)β
α∇cW̄β,

∇αWβ = iCαβd− (γ3)αβW + (γa)αβ∇aS − i(γ3γa)αβ∇aP. (4.1.2)

Having in mind the gauging of a certain isometry of a (2, 2) sigma model, the

abstract U(1) generator t will be related to the Killing vector for the isometry. The

relation takes the form t = −iLξ. According to our previous discussion on gauging

methods, we begin constructing the gauged (2, 2) sigma model by evaluating the

fermionic measure using the gauged supercovariant derivatives,

∫
d2θ̄d2θ =

1

8
[∇α∇α∇̄β∇̄β + ∇̄β∇̄β∇α∇α], (4.1.3)

where we have used the conventions of [41].

In order to reduce the action written in (2, 2) superspace to (1, 1) superspace

we need to express the (2, 2) gauge covariant derivatives in terms of two copies of
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the (1, 1) derivatives:

∇̂α =
1√
2
(∇α + ∇̄α), ∇̃α =

i√
2
(∇α − ∇̄α). (4.1.4)

The (1, 1) derivatives satisfy the following algebra:

[∇̂α, ∇̂β} = 2i(γc)αβ∇c − 2iλ(γ3)αβPt,

[∇̂α,∇b} =
λ√
2
(γb)α

βŴβt,

[∇̃α, ∇̃β} = 2i(γc)αβ∇c − 2iλ(γ3)αβPt,

[∇̃α,∇b} =
λ√
2
(γb)α

βW̃βt,

[∇̂α, ∇̃β} = −2iλCαβSt, (4.1.5)

where W̃β = i√
2
(W̄β −Wβ) and Ŵβ = 1√

2
(W̄β +Wβ).

Next we consider the measure of the (2, 2) action (4.1.3) and we rewrite it in

terms of the (1, 1) derivatives

∇̂α∇̂α∇̃β∇̃β = 2∇α∇α∇̄β∇̄β + 2∇̄β∇̄β∇α∇α + (...)t+ total derivative (4.1.6)

Therefore ∇̂α∇̂α∇̃β∇̃β and 2∇α∇α∇̄β∇̄β+2∇̄β∇̄β∇α∇α are equivalent when acting

on a potential which is invariant under the isometry, that is, satisfies tK = 0.

Reducing the (2, 2) Lagrangian amounts to evaluating

L =

∫
d2θ̄d2θK =

1

4
∇̂2∇̃2K(X, X̄, Y, Ȳ ). (4.1.7)

Then, using the relation

∇̃α∇̃α = −2i∇̃+∇̃− − 2iλP t, (4.1.8)

we only need to evaluate ∇̃+∇̃−K. Additionally, we must decompose the (2, 2) left

and right semi-chiral superfields into (1, 1) superfields

ϕ = X|, Ψ = ∇̃−X|, χ = Y |, Υ = ∇̃+Y |. (4.1.9)
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We end up with:

∇̃+∇̃−K = ∇̂+ϕ
ImII′∇̂−χ

I′
+ ΥI′

+nI′IΨ
I
− + ΨI

−(2ωIJ∇̂+ϕ
J + ipII′∇̂+χ

I′
)

+ΥI′

+(2ωI′J ′∇̂−χ
J ′ − iqI′I∇̂−ϕ

I)− 2iλSKi′(tY
i′) + 2igSKī′(tȲ

ī′)

+2iλ(S + iP )Ki(tX
i)− 2iλ(S − iP )Kī(tX̄

ī)

= ∇̂+Z
t · E · ∇̂−Z + S+Iu

II′
S−I′ − 2iλSKi′(tY

i′) + 2iλSKī′(tȲ )ī′

+2iλ(S + iP )Ki(tX
i)− 2iλ(S − iP )Kī(tX̄

ī), (4.1.10)

where we have used the notation Ki = ∂ϕiK,Ki′ = ∂χi′K. The index I is a collective

index: I = {i, ī}, and Φ = {φ, φ̄, χ, χ̄}. The matrices m,n, ω, p, q, expressed in terms

of the second order derivatives of the generalized Kähler potential, are the same as

in (3.4.24) [23]. Also, analogous to (3.4.24) [23]

S+Iu
II′

= ΥI′

+ − 2uII′
ωIJ∇̂+ϕ

J − iuII′
PIJ ′∇̂+χ

J ′

uII′
S−I′ = ΨA

− + 2uII′
ωI′J ′∇̂−χ

J ′ − iuII′
qI′J∇̂−ϕ

B

E = g +B =

 2iωuq m− 4ωuω′

ptuq 2iptuω′

 . (4.1.11)

At a first glance it appears that we have an asymmetric coupling of the field strength

P between the fields ϕI and χI′
. However, this is just an artifact of our choice in

evaluating the covariant derivatives. Note that

tK(ϕ, χ) = 0 → Ki(tX
i) +Kī(tX̄

ī) +Ki′(tY
i′) +Kī′(tȲ

ī′) = 0. (4.1.12)

This means that the reduced Lagrangian is given by

L = −2i∇̂α∇̂α

(
∇̂+Z

t · E · ∇̂−Z + S+Iu
II′
S−I′

+2iλ(S +
i

2
P )Ki(tX

i)− 2iλ(S − i

2
P )Kī(tX̄

ī)
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−2ig(S +
i

2
P )Ki′(tY

i′) + 2ig(S − i

2
P )Kī′(tȲ

ī′)

)
= −2i∇̂α∇̂α

(
∇̂+Z

t · (g +B) · ∇̂−Z + S+Iu
II′
S−I′

+2iλS(Ki(tX
i)−Kī(tX̄

ī)−Ki′(tY
i′) +Kā′(tȲ ī′))

−λP (Ki(tX
i) +Kī(tX̄

ī)−Ki′(tY
i′)−Kī′(tȲ

ī′))

)
. (4.1.13)

This is the gauged sigma model we were after, and such it is one of our main results.

To understand the various terms that appear in (4.1.13), it is useful to compare

this action with (4.0.7), given that both actions represent gauged sigma models

with manifest (1, 1) supersymmetry. This explains the obvious common elements

∇̂αZt · g · ∇̂αZ+ D̂αZt ·B · D̂αZ. The gauging of the B-field terms is done in (4.0.7)

by including the u-dependent terms. To see how this is reflected in (4.1.13) requires

some extra consideration. The extra terms required for the gauging of the B-field

terms can be combined into iξB · D̂(−ΦA+). As a consequence of the condition

tK = 0 → ξK = 0, we find that LξB = 0. This is a stronger condition than

LξH = 0, and it implies the latter. Since LξB = 0, we find

u = −iξB + dσ, (4.1.14)

where dσ is an exact one-form invariant under the action of the isometry group.

This is exactly what is required to match the minimal coupling of the B-field terms

against the u-terms in (4.0.7). The cAB terms in (4.0.7) vanish in the case of a U(1)

gauging. Otherwise, they, too, could be recognized in the minimal coupling gauging

of (4.0.7).

We shall see that the ambiguity in defining u, namely the exact one-form

dσ, is reflected in (4.1.13) in the term which multiplies the field strength P . The
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expression −gd(KIξ
I −KI′ξI′

) is d(σ). We verify that it is invariant under the U(1)

action:

Lξdσ = d(iξdσ) ∼ d

(
(ξI∂I + ξI′

∂I′)(ξJ∂J − ξJ ′
∂J ′)K

)
=

= 2d

(
(ξI∂I + ξI′

∂I′)ξI∂J K

)
= 2d

(
(−ξI∂Iξ

I′
∂I′ + ξI′

∂I′ξI∂I)K

)
= 0,

(4.1.15)

where in the last step we used that we can go to a coordinate system where the U(1)

action is realized by a shift of some coordinate, which implies [ξI∂I , ξ
I′
∂I′ ] = 0.

The remaining terms in (4.1.13), such as those dependent on the auxiliary

superfields S± and which have no counterpart in (4.0.7), are present because our

starting point was a (2, 2) supersymmetric action with off-shell (2,2) superfields.

Lastly, we recognize in the terms proportional to the superfield strength S, a linear

combination of the moment maps. Their presence is required to insure the invariance

of the gauged sigma model action. While the expression proportional to S in (4.1.13)

is not immediately relatable to the moment map given in (4.0.6),it does have a form

similar to that given in [38,42,43] for the moment map. There the moment map is

identified as the imaginary part of the holomorphic transformation of the generalized

Kähler potential under the action of the Killing vector.

Thus we conclude with the identifications:

Moment map ∼ i(Kiξ
i −Kīξ

ī −Ki′ξ
i′ +Kī′ξ

ī′) (4.1.16)

σ ∼ Kiξ
i +Kīξ

ī −Ki′ξ
i′ −Kī′ξ

ī′ . (4.1.17)

These identifications, and especially the rapport between (4.1.16) and (4.0.6), will

be verified in the next section. At this point we note a peculiarity. The two function
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we have identified are derivable from the condition ξK = 0. A third function,

i(Kiξ
i −Kīξ

ī +Ki′ξ
i′ −Kī′ξ

ī′) (4.1.18)

is also derivable from this condition yet doesn’t seem to play a role in the gauged

sigma model. We speculate that this function does play a role that will be hinted

at in the last chapter.

4.2 An example: the SU(2)× U(1) WZNW model

In this section we apply our previous construction of a (2, 2) gauged sigma

model to a concrete example: the SU(2) × U(1) WZNW model. The (2, 2) su-

persymmetric SU(2) × U(1) WZNW sigma model was first formulated in terms

of semi-chiral superfields in [44]. The authors discovered non-commuting complex

structures on SU(2)×U(1) and constructed a duality functional that maps between

the known description in terms of chiral and twisted chiral superfields and a de-

scription in terms of semi-chiral superfields. The explicit form of the generalized

Kähler potential was given in [45,46]. A discussion on the various dual descriptions

which can be obtained by means of a Legendre transform can be found in [46]. The

SU(2)× U(1) generalized Kähler potential is

K = −(φ̄+ η)(φ+ η̄) +
1

2
(η̄ + η)2 − 2

∫ η̄+η

dxln(1 + exp(x/2)), (4.2.1)

where D̄+φ = D−η = 0. Because K = K(φ̄+η, φ+η̄, η+η̄) we cannot directly gauge

the theory, using only the coupling with the chiral (2, 2) vector multiplet. However,
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there is an easy remedy to this problem, namely we shall use a dual description,

found via a Legendre transform [46]:

K(r, r̄, η, η̄) = K(φ, φ̄, η, η̄)− rφ− r̄φ, (4.2.2)

where r is semi-chiral, D̄+r = 0, and φ is unconstrained. By integrating over r, we

recover the previous generalized Kähler potential. On the other hand, by integrating

over φ, that is eliminating it from its equation of motion, we find a generalized Kähler

potential K = K(r+η, r̄+ η̄, η+ η̄) (up to terms that represent a generalized Kähler

transform 1
2
η2 + 1

2
η̄2). This is an example of a “duality without isometry” [46],

where the generalized Kähler potential of a semi-chiral superfield sigma model can

be mapped via Legendre transforms into four different, but equivalent expressions,

all involving only semi-chiral superfields.

The new form taken by the SU(2)× U(1) generalized Kähler potential

K̃ = (r̄ + η̄)(r + η)− 2

∫ η̄+η

dxln(1 + exp(x/2)) (4.2.3)

indicates that the U(1) isometry is realized by the transformations

r → r + iε, η → η + (iε), (4.2.4)

where ε is a constant real parameter. However, when promoting this symmetry to

a local one, according to our previous discussion, ε is to be interpreted as a chiral

superfield, and ε̄ as an anti-chiral superfield.

The generalized Kähler potential is left invariant under the action of the (2, 2)

Killing vector

ξ = i
∂

∂r
− i

∂

∂r̄
− i

∂

∂η
+ i

∂

∂η̄
. (4.2.5)
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From (4.1.11) we can now calculate the B field, its field strength and their contrac-

tions with the Killing vector:

B = (1− 2f)(dr ∧ dη̄ + dr̄ ∧ dη)

iξB = i(1− 2f)dη̄ − i(1− 2f)dη + i(1− 2f)dr̄ − i(1− 2f)dr

H = dB = 2(
∂f

∂η
dr − ∂f

∂η̄
dr̄) ∧ dη ∧ dη̄

iξH = d(2if [−dr + dr̄ − dη + dη̄]) = du, (4.2.6)

where

f = f(η̄ + η) =
exp[1

2
(η̄ + η)]

1 + exp[1
2
(η̄ + η)]

. (4.2.7)

We also find that LξB = 0, in accord to the expectation that the gauging is done

via minimal coupling [39, 40]. As discussed before, it implies that u = −iξB + dσ

where dσ is an exact one-form, invariant under the action of the Killing vector.

As to the term proportional to P in (4.1.13) we find that is equal to 2iλσ, where

dσ = d(r̄ − r + η̄ − η). Indeed, this one-form satisfies the condition iξdσ = 0.

Next, we show how the term proportional to S corresponds to the moment

map.

4.2.0.1 The Moment Map
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Here we verify that the term proportional to the super-curvature S in (4.1.13)

i(Kr −Kr̄ −Kη +Kη̄) = 2i

[
r + r̄ + η + η̄ − 2ln(1 + exp(

η + η̄

2
))

]
≡M (4.2.8)

is a certain linear combination of the two moment maps of the bihermitian geometry.

We recall their definition

gijξ
j ± ui = Ij

±i∂jµ±. (4.2.9)

Before we consider (4.2.9) we must first address the ambiguity in the expression

for the one form u. The one-form u is defined only up to an exact one form that

satisfies Lξdσ = 0: u = 2if [−dr + dr̄ − dη + dη̄] + di(Crr + Cr̄r̄ + Cηη + Cη̄η̄)

with Cr,r̄,η,η̄ constants, constrained only by Cr − Cr̄ − Cη + Cη̄ = 0. However, our

previous considerations have eliminated most of the freedom in dσ, given that, from

the gauged action we have identified Cr = −1, Cr̄ = 1, Cη = −1, Cη̄ = 1. Armed

with the concrete expressions of the moment maps we find the following relationship

with M :

M = −(µ+ + µ−). (4.2.10)

We speculate that had one chosen to gauge the U(1) isometry using instead the

twisted chiral vector multiplet, the term proportional to the super-curvature S in

(4.1.13) would have involved other linear combination of the two moment maps

µ+ − µ−.

4.3 Alternative gauging procedure: the prepotential
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In section 4.1 we gauged the sigma model by replacing the Grassmann inte-

gration measure with gauge supercovariant derivatives and thus reducing the (2, 2)

action to a gauged action with (1, 1) manifest supersymmetry. Here we take the

alternative approach of using the gauge prepotential superfield V to arrive at a

gauge-invariant generalized Kähler potential. This procedure is done in (2, 2) su-

perspace, and all supersymmetries remain manifest. Therefore this gauging method

has the advantage of facilitating the discussion of duality functionals, which we will

address in the next section.

In simple cases, the gauging is done by adding the prepotential V to the

appropriate combination of superfields in the generalized Kähler potential. For the

example K = K(X+ X̄, Y + Ȳ , X+Y ), the global symmetry is promoted to a local

one by

K(X + X̄, Y + Ȳ , X + Y ) → K(X + X̄ + V, Y + Ȳ + V,X + Y + V ), (4.3.1)

if the gauging is done using the prepotential for the chiral vector multiplet, i.e.

if the gauge parameter is a chiral superfield. On the other hand, if the gauge

parameter is a twisted chiral superfield, then we must use the gauge prepotential

associated with the twisted chiral vector multiplet Vt. For example, we could gauge

K = K(X + X̄, Y + Ȳ , X + Ȳ ) by

K(X + X̄, Y + Ȳ , X + Ȳ ) → K(X + X̄ + Vt, Y + Ȳ + Vt, X + Ȳ + Vt). (4.3.2)

For concreteness we continue to address only the gauging done using the cou-

pling to the chiral vector multiplet. In general, the isometry transformations of a

66



given superfield are given by:

X → eiεtX ⇒ X̄ → eiε̄tX̄, (4.3.3)

where t denotes the isometry generator and ε is a real valued constant parameter.

For our purposes, it is better to think of the gauging in terms of the Killing vector

that generates the isometry. That means we make the following replacement in the

above expression for the global transformations of the fields

X → eεξX ⇒ X̄ → eε̄ξX̄, (4.3.4)

When promoting this global symmetry to a local one, the gauge parameter ε becomes

a chiral superfield, and ε̄ an anti-chiral superfield. The invariance of the potential is

lost because the fields no longer transform with the same parameter. The invariance

is restored by introducing the gauge prepotential superfield V , transforming as

V → V + i(ε̄− ε). (4.3.5)

We include V through the replacement:

X̄ → eiV ξX̄. (4.3.6)

Now X̄ transforms in the same way as in the global case and thus the invariance

has been restored.

Although we have used the whole Killing vector ξ in constructing the field that

transforms properly (4.3.6), to be more specific, it is only the part of the Killing

vector that induces a transformation with the anti-chiral gauge parameter which

contributes to this definition. In the example that we gave, K = K(X + X̄, Y +
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Ȳ , X + Y ), X, Ȳ transform with a chiral gauge parameter, and X̄, Y , with an anti-

chiral parameter. The Killing vector will generally factorize ξ = ξc + ξc̄ such that

ξc and ξ̄c induce a chiral parameter, respectively an anti-chiral parameter gauge

transformation. In the SU(2)⊗ U(1) example we have ξc̄ = −i ∂
∂r̄
− i ∂

∂η
.

Therefore we define

X̃ = eLX̄, L = iV ξc̄. (4.3.7)

The new field, X̃, transforms under the gauge transformation in the exact same way

as X̄ did under the global isometry. Therefore by replacing X̄ in the generalized

Kähler potential by X̃ we insure that the transformation of the generalized Kähler

potential under the local transformation is the same as for the global isometry,

namely it is a generalized Kähler transformation. Of course, the other semi-chiral

superfield Y undergoes a similar treatment:

Ỹ = eLY. (4.3.8)

If the generalized Kähler potential remains invariant under the action of the

Killing vector i.e. ξK(X, X̄, Y, Ȳ ) = 0, the minimal coupling perscription is given

by replacing X̄ with X̃ and Y with Ỹ . Specifically, the gauged (2,2) Lagrangian is

given by the replacement

K(X, X̄, Y, Ȳ ) → K(X, X̃, Ỹ , Ȳ ). (4.3.9)

At this point we can use the relation K(X, X̃, Ỹ , Ȳ ) = eLK(X, X̄, Y, Ȳ ) to rewrite

the Lagrangian as

K(X, X̃, Ỹ , Ȳ ) = eLK(X, X̄, Y, Ȳ ) = K(X, X̄, Y, Ȳ ) +
eL − 1

L
LK
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= K(X, X̄, Y, Ȳ ) +
eL − 1

L
VM, (4.3.10)

where in M = iξc̄K we recognized the same object which we have identified from

the gauged (1,1) action as the moment map (5.2.4).

Next, we address the case of a generalized Kähler potential which under the

action of the isomtery generator transforms with terms that take the form of gener-

alized Kähler transformations

ξK = f(X) + f̄(X̄) + g(Y ) + ḡ(Ȳ ). (4.3.11)

The trick is to introduce new coordinates and add them to the generalized Kähler

potential in such a way that the new generalized Kähler potential is invariant under

the transformation generated by the new Killing vector. Specifically we introduce

α, β with D̄+α = D−β = 0. We construct the new generalized Kähler potential and

Killing vector

K ′(X, X̄, Y, Ȳ , α, ᾱ, β, β̄) = K(X, X̄, Y, Ȳ )− α− ᾱ− β − β̄

ξ′ = ξ + f(X)
∂

∂α
+ f̄(X̄)

∂

∂ᾱ
+ g(Y )

∂

∂β
+ ḡ(Ȳ )

∂

∂β̄
. (4.3.12)

Now the new generalized Kähler potential K ′ is invariant under the new Killing

vector Lξ′K ′ = 0 and we can proceed as before. We replace all fields which transform

with the parameter ε̄ with the combination which transforms with the field ε by using

eL′
where L′ = iV ξ′c̄. Next we define the tilde versions of X̄, Y, ᾱ, β as follows

X̃ = eL′
X̄, Ỹ = eL′

Y, α̃ = eL′
ᾱ β̃ = eL′

β. (4.3.13)
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The gauged Lagrangian is obtained by the same substitution as before. Finally we

get

K ′(X, X̃, Ỹ , Ȳ , α, α̃, β̃, β̄) = K(X, X̃, Ỹ , Ȳ )− α− α̃− β̃ − β̄

= eLK(X, X̄, Y, Ȳ )− i
eL − 1

L
V (f̄(X̄) + g(Y ))

= K(X, X̄, Y, Ȳ ) +
eL − 1

L
(LK − iV f̄(X̄)− iV g(Y ))

= K(X, X̄, Y, Ȳ ) +
eL − 1

L
VM. (4.3.14)

70



Chapter 5

Eigenspaces of Generalized Complex Structures

5.1 Hamiltonian action and moment map in the mathematical liter-

ature

In the context of generalized complex geometry, the origin of subsequent def-

initions of the Hamiltonian action can be found in Gualtieri’s thesis [22] where it

was shown that certain infinitesimal symmetries preserving the generalized complex

structure J can be extended to second order.

Intuitively, given a Hamiltonian action on a generalized complex manifold, the

moment map is a quantity that is constant along the action of the group elements.

More formal definitions of the moment map were given, for example, in [47–50];

in [49], Hu considered the Hamiltonian group globally. For concreteness here we will

explore one of the definitions put forward by Lin and Tolman [47] in the simplest

setting without H-twisting, namely, definition 3.4:

Let a compact Lie group G with Lie algebra g act on a manifold M , preserving

a generalized complex structure J . Let L ⊂ T ⊕ T ∗ denote the
√
−1-eigenbundle of

J . A generalized moment map is a smooth function µ : M → g∗ so that

(i) ξM −
√
−1 dµξ lies in L for all ξ ∈ g, where ξM denotes the induced vector
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field on M.

(ii) µ is equivariant.

In subsequent works, the definition of Hamiltonian action was generalized to

include the H-twisted case [48, 49]. In [51], the authors arrived at a definition of

moment map in terms of the action of a Lie algebra on a Courant algebroid.

In what follows we will explore the particular definition cited above, and com-

pare it with the expressions that we gave for the moment map in the previous

sections. We leave for future work the issue of the equivalence of the various defini-

tions given in the math literature, and their relationship with the physical point of

view advocated in this paper, via the gauging of the (2, 2) sigma model.

5.2 Generalized Kähler geometry and the eigenvalue problem

In a series of papers [23,33] the authors established that chiral, twisted chiral,

and semi-chiral superfields are the most generic off shell multiplets for D=2 N =

(2, 2) supersymmetric non linear sigma models and that they give generalized Kähler

geometries.

To practically use the above definition of moment map in the case of Kähler

geometry we recall that according to Gualtieri (see Chapter 6 in [22]), the gen-

eralized complex structures of the generalized Kähler geometry take the following
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expressions:

J1/2 =
1

2

 1 0

B 1


 J+ ± J− −(ω−1

+ ∓ ω−1
− )

ω+ ∓ ω− −(J t
+ ± J t

−)


 1 0

−B 1

 (5.2.1)

where g is a Kähler metric, which is bihermitian with respect to both almost complex

structures J±, while B is a 2-form field. We leave a discussion about its relationship

with the B-field of the sigma model for section 3.4.

First, we shall derive the conditions for a generic element of T ⊕ T ∗ (ξ,±idµ)

to be an eigenvector of the generalized complex structures. By identifying ξ ∈ T

with a Killing vector, we solve for the one form dµ ∈ T ∗. Next, after verifying that

dµ is an exact one-form, we shall compare it with the the moment map and enquire

whether these expressions are compatible. We discuss two concrete settings: the

almost product structure spaces, with their commuting almost complex structures,

and as an example of bihermitian geometry we turn to our favorite example, the

SU(2)× U(1) sigma model.

We begin with some formal statements. The condition that an element of

T ⊕ T ∗ lies in the eigenbundle of J1 is

J1

 ξ

icdµ

 = ai

 ξ

icdµ

 , (5.2.2)

where c = ±1, a = ±1. After a bit of massaging, we find that this eigenvalue

problem is equivalent to the following linear homogeneous equation system1

(J+ − ai)(Γ− ξ) = 0

(J− − ai)(Γ + ξ) = 0, (5.2.3)

1For the eigenvalue problem associated with the other generalized almost complex structure J2,
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where

Γ = G−1(Bξ − icdµ) (5.2.4)

Then, by solving (5.2.3) we find ξ and Γ. The number of independent solutions is

equal to the number of zero eigenvalues of J± − ai. However, after identifying ξ

with a certain Killing vector, we generically find a corresponding Γ. This allows us

to solve for µ

dµ = ic(GΓ−Bξ). (5.2.5)

To test the compatibility between this expression and the moment map (4.0.6) we

explore in the next sections two concrete examples of bihermitian geometry.

5.3 Specialization to spaces with almost product structure

In the case of a space with almost product structure, which is realized by

a (2,2) sigma model written in terms of chiral and twisted chiral superfields [30],

we may choose to work in a coordinate system where the two commuting complex

structures are diagonal:

J+ =

 J1 0

0 J2

 J− =

 J1 0

0 −J2

 . (5.3.1)

we find a similar linear homogeneous system:

(J+ − ai)(Γ− ξ) = 0, (J− + ai)(Γ + ξ) = 0.
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In the same coordinate system, the metric and B-field are also block-diagonal:

g =

 g1 0

0 g2

 B =

 0 b

−bt 0

 . (5.3.2)

The expressions taken by G,B, J+, and J− suggest that we should consider a similar

decomposition for ξ,Γ and dµ. Specifically,

ξ =

 ξ1

ξ2

 Γ =

 Γ1

Γ2

 dµ =

 dµ1

dµ2

 . (5.3.3)

Under this decomposition Γ1,2, ξ1,2 are solutions to (5.2.3):

(J1 − ai)Γ1 = (J1 − ai)ξ1 = 0

aiΓ2 = −J2ξ2. (5.3.4)

and (5.2.5) becomes

dµ1 = icg1Γ1 − icbξ2

dµ2 = icg2Γ2 + icbtξ1, (5.3.5)

How does this compare with the moment maps which are given by dµ± = ω±ξ∓JT
±u?

When we specialize to the case where the Lie derivative of B with respect to ξ

vanishes, LξB = 0, we can use that u = −Bξ + dσ. Taking the appropriate linear

combinations that match up most closely with the generalized complex structures

we get the following for the components of the moment map

dM̃ =
1

2
(dM+ + dM−), dM̂ =

1

2
(dM+ − dM−) (5.3.6)

where  dM̃1

dM̃2

 =

 ω1ξ1

−J t
2b

tξ1

 ,

 dM̂1

dM̂2

 =

 −J t
1bξ2

ω2ξ2

 . (5.3.7)
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First we notice that the appropriate expression to match with (5.3.7) is dM̂ . Second,

in order for (5.3.7) and (5.3.5) to match we need Γ1 = ξ1 = 0. The condition

ξ1 = 0 is automatically satisfied for almost product structure geometries, where

J1,2 are both diagonal. Then the requirement that ξ is holomorphic (i.e. it leaves

invariant the complex structures) implies that a Killing vector is such that either

ξ1 or ξ2 vanish [38]. Next to complete the matching of (5.3.7) and (5.3.5) we need

Γ2 = ±iJ2ξ2, but is exactly the expression of Γ2 which we get from (5.3.4).

Now that we have verified the compatibility of two moment map definitions,

(5.2.5) and (4.0.6), for the almost product structure geometry, we want to inves-

tigate their compatibility in a more generic case of bihermitian structure. Since

the complex structures do not commute in this case, it is difficult to analyze what

happens in general. However we can consider the concrete SU(2) ⊗ U(1) example

and see how things work out there.

5.4 The SU(2)⊗ U(1) example

In this case the non-commuting complex structures, read off from the super-

symmetry transformations of the non-linear sigma model [23,44], are:

J+ =



i 0 0 0

0 −i 0 0

−2i 0 −i 0

0 2i 0 i


J− =



i 0 2i(1− f) 0

0 −i 0 −2i(1− f)

0 0 −i 0

0 0 0 i


,(5.4.1)
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where f = f(η + η̄). The U(1) Killing vector is ξ = (i,−i,−i, i). The B-field was

given in (4.2.6), and the metric takes the form

g =



0 2 0 2(1− f)

2 0 2(1− f) 0

0 2(1− f) 0 2(1− f)

2(1− f) 0 2(1− f) 0


. (5.4.2)

The moment map dµ+ = ω+ξ − JT
+u reads

dµ+ = (−2f,−2f, 0, 0)− (−2f,−2f,−2f,−2f)− (iCr − 2iCη,−iCr̄ + 2iCη̄,−iCη, iCη̄)

= (iCr − 2iCη,−iCr̄ + 2iCη̄, 2f − iCη, 2f + iCη̄). (5.4.3)

wheare the last term on the first line represents the ambiguity in u, JT
+dσ. The

constants Cr,r̄,η,η̄ satisfy the constraint Cr − Cr̄ − Cη + Cη̄ = 0.

We find that the solution to (5.2.3), corresponding to a +i eigenvector, (a = 1),

is given by (ξ,Γ1,±), where ξ = (i,−i,−i, i) and

Γ1,+ =

(
−i,−i, i, i1 + f

1− f

)
. (5.4.4)

For a −i eigenvector (a = 1), we find

Γ1,− =

(
i, i,−i1 + f

1− f
,−i

)
, (5.4.5)

for the same Killing vector ξ. For completeness we record the eigenvectors (ξ,Γ2,±)

of the second generalized almost complex structure J2: Γ2,+ = (−i,−i, i,−i) corre-

sponds to the +i eigenvalue and Γ2,− = (i, i, i,−i) to the −i eigenvalue.

From (5.3.7), substituting Γ1,± as well as the the metric, B-field, and Killing
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vector we get

icGΓ1,+ = c(−2f, 2f,−4f, 0), icBξ = c(−1+2f, 1−2f,−1+2f, 1−2f), (5.4.6)

where we recall that c = ±1. We have also identified the 2-form B in the generalized

almost complex structure with the B-field. Notice that in order to be able to recover

an expression compatible with (5.4.3), we must take the sum ic(GΓ +Bξ), and not

the difference of the two terms in (5.4.6)! The reason for an apparent discrepancy

between the two expressions that we have for the moment map, (4.0.6) and (5.2.5)

lies in the identification of the sigma model B field and the 2-form B that appears

in the generalized almost complex structure (5.2.1). The agreement is restored upon

making the identification between minus the sigma model B-field and the object by

the same name present in (5.2.1). It is essential that in replacing B → −B in

(5.2.1), with B the sigma model B-field, we haven’t spoiled any of the properties of

the generalized Kähler geometry objects.

To complete our argument, we have to make the following assignments for the

constants which enter in the one-form dσ: Cr = Cr̄ = Cη = Cη̄ = i.

We still find it possible to obtain the moment map from the condition that

together with the Killing vector it forms a pair (ξ, icdµ) which lies in the eigenbundle

of the generalized almost complex structure. However, we must exercise caution

and interpret the 2-form B in (5.2.1) as minus the sigma-model B-field. We have

also seen that the matching between (5.2.5) and (4.0.6) requires making use of

the ambiguity in defining the one-form u. The exact, U(1) invariant one-form dσ

required by the matching between the two moment map definitions led us to a
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different one-form dσ than the one we identified in Section 2.2 by matching u with

the gauged sigma model action. The understanding based on this result isn’t clear

because the choice of dσ only satisfies the condition for one of the expressions in

(4.0.6) to be a moment map.

79



Chapter 6

T Duality For Semi Chiral Superfields With The Chiral Vector

Multiplet

Target space duality or T duality is a symmetry of string theory that relates

the geometry and topology of different string backgrounds. This symmetry was

first discovered by considering toroidal compactifications. It is easiest to see when

considering strings in flat space with one direction compactified on a circle of radius

R. The spectrum of the string is invariant under the change R→ α′

R
along with the

exchange of the momentum and winding modes of the string. At the sigma model

level, this is best understood in terms of gauging the isometry transformations of

the background in the sigma model without including gauge kinetic terms and con-

structing a duality functional that reduces to either sigma model by integrating out

fields in a specific order. This understanding was first introduced in [52]. Consider a

sigma model with a metric, b field and dilaton. The duality functional is constructed

by adding a lagrange multiplier times the gauge field strength to the gauged action.

Integrating out the lagrange multiplier forces the gauge field to be pure gauge and

the sigma model reduces to the original theory. If instead one itegrates out the

gauge field first, one obtains a new sigma model with new metric, b field and di-

lation given in terms of the original metric, b field and dilaton according to the

Buscher rules [53]. An excellent review of the topic is given in [54]. The description
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of how this procedure works for N = (2, 2) sigma models in (2, 2) superspace was

first given in [52]. There they worked with chiral and twisted chiral superfields only

and showed that T duality amounts to a Legendre transformation of the Kähler po-

tential. An interesting point is that the duality exchanges superfield representations

i.e. it exchanges chiral superfields for twisted chiral superfields. In the following

we will present a (2, 2) superspace description of T duality when the sigma model

includes semi chiral superfields. We will see that the description has some very

serious drawbacks related to an insufficiency of the chiral vector multiplet. We will

then present a new (2, 2) vector multiplet that should resolve the problems and give

a satisfactory description of T duality for sigma models with semi chiral superfields

in (2, 2) superspace. The discussion here will be entirely classical and we will leave

the quantum description of T duality to future work. Since the transformation of

the dilaton is a purely quantum mechanical effect, we will ignore it for now and

consider only the metric and b field.

T-duality can be implemented for chiral and twisted chiral superfields while

preserving the manifest (2, 2) supersymmetries of the sigma model, by performing a

Legendre transformation of the Kähler potential. This procedure amounts to start-

ing from the gauged sigma model, introducing a Lagrange multiplier that enforces

the condition that the gauge field is pure gauge, and eliminating the gauge field

from its equation of motion. In terms of the geometric data, it was shown in [55] by

descending to the level of (1, 1) superspace, that under T-duality, the metric and b

field transform according to the Buscher rules. Let us begin with some review mate-

rial detailing the execution of T-duality in (2, 2) superspace. The simplest example
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of T-duality involves a non-linear sigma model written in terms of either chiral or

twisted chiral superfields with an U(1) isometry. Under T-duality the chiral mul-

tiplets are mapped into twisted anti-chiral and vice-versa. Specifically, we choose

a coordinate system such that the isometry is realized by a shift in a particular

coordinate. Then the Kähler potential has the form

K = K(Φ̄ + Φ, Za), (6.0.1)

where Za are spectator fields that can be either chiral or twisted chiral. According

to the discusion in Section 2.3, the gauged action is obtained by replacing Φ̄ + Φ

with Φ̄+Φ+V where V is the usual superfield prepotential for the gauge multiplet.

The gauged Kähler potential is

Kg = K(Φ̄ + Φ + V, Za). (6.0.2)

To construct the duality functional we introduce a Lagrange multiplier that forces

the gauge multiplet field strength to vanish:

KD = Kg + U(S + iP ) + Ū(S − iP ). (6.0.3)

Since (S + iP ) = i
2
D̄+D−V we see that the U and Ū equations of motion force V

to be pure gauge, i.e., V = Λ + Λ̄, with Λ a chiral superfield. For the next step, by

choosing a gauge such that Φ + Φ̄ have been completely gauged away

Kg = K(V, Za) (6.0.4)

we arrive at the duality functional

KD = K(V, Za)− U(S + iP )− Ū(S − iP ). (6.0.5)
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The original Kähler potential is recovered by integrating out U and Ū . The T-dual

theory is obtained by integrating out the gauge field. Its equation of motion is

∂K

∂V
− (Ψ + Ψ̄) = 0, (6.0.6)

where Ψ = i
2
D̄+D−U is a twisted anti-chiral superfield. This defines V = V (Ψ +

Ψ̄, Za). The dual potential

K̃ = K(V, Za)− (Ψ + Ψ̄)V (6.0.7)

is the Legendre transform of the original potential (6.0.1).

When one introduces semi-chiral superfields the story becomes somewhat more

complicated. In [46], Grisaru et al. gave a detailed discussion of the various de-

scriptions of a (2, 2) sigma model, which can be obtained by means of a Legendre

transform. Starting with a (2, 2) Kähler potential written in terms of semi-chiral

superfields K(X, X̄, Y, Ȳ ), one constructs the duality functional

K(r, r̄, s, s̄)−Xr − X̄r̄ − sY − s̄Ȳ (6.0.8)

where r, r̄, s, s̄ are unconstrained superfields. Depending which fields are integrated

out (X,Y ), (r, s), (r, Y ), (s,X) one finds four equivalent formulations. In the absence

of isometries, this amounts to performing a sigma-model coordinate transformation.

The authors of [46] investigated the consequences that the existence of an isometry

have on the duality functional. For instance if the Kähler potential has a U(1)

isometry K = K(X + X̄,X + Ȳ , X̄ + Y ), the duality functional reads K(r + r̄, r̄ +

s, r+ s̄)−(X+X̄−Y − Ȳ )(r+ r̄)/2+(X−X̄+Y − Ȳ )(r− r̄)/2−(r+ s̄)Y −(r̄+s)Ȳ .

By integrating over r − r̄, ultimately leads to expressing X and Y as the sum and

83



difference of a chiral and twisted chiral superfield. In this case, the dual description

of the sigma model involves chiral and twisted chiral superfields. The SU(2)×U(1)

WZNW model has two such dual descriptions [44]. The geometry does not change

as we pass from one description to the other, but the pair of complex structures

does change, from non-commuting complex structures, to commuting ones.

On the other hand, not all the dualities following from (6.0.8) can be derived

from gauging an isometry. The reason is that Lagrange multipliers in (6.0.8) are

semi-chiral superfields. Following the discussion given at the beginning of this sec-

tion, one would need a gauge multiplet with a semi-chiral field strengths, in order

to cast the gauged action duality functional (6.0.5) into (6.0.8). However, no known

(2, 2) gauge multiplet contains such field strengths.

Therefore we choose to pursue the construction of the T-dual action of a

sigma model with semi-chiral multiplets following the steps which led to (6.0.5). We

add Lagrange multiplier terms to the gauged action as described previously, and

construct the duality functional as in [52]. However, a technical difficulty, related

to gauge fixing, prevents a straightforward application of this procedure.

The U(1) invariant Kähler potential, which generically takes the form given

in (4.0.11), can be gauged by adding the prepotential V to the appropriate field

combinations. The gauged Kähler potential is Kg = K(X + X̄ + V, Y + Ȳ + V,X +

Y + V ). Because the semi-chiral superfield is not generically reducible in terms of

chiral and twisted chiral superfields1 one cannot completely gauge away X or Y ,

as it was possible for the chiral and/or twisted chiral superfields. Trying to gauge

1We thank Martin Roček for explaining this point to us.
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away X we could fix X| = DαX| = D2X| = 0, where | means evaluation with all

the Grassmann variables set to zero. Since X has higher order components which

are independent of the lower components we realized that we have not gauged away

all the X components. The independent left over components form a (1, 1) Weyl

spinor multiplet. We shall address the resolution to this question in the following

section.

6.1 Dualizing With Chiral and Twisted Chiral Superfields.

For simplicity we will consider a Kähler potential, parameterized by chiral

and twisted chiral superfields, which is strictly invariant under the isometry. The

potential is given by (6.0.1). We begin in the slightly more general setting:

Kg = K(Φ̄ + Φ, Za) +
eL − 1

L
VM. (6.1.1)

The moment map, M , is given by M = iξc̄K, and in this case ξc̄ = −i ∂
∂Φ̄

. To

construct the duality functional we add Lagrange multiplier terms that force the

superfield strength to vanish. This gives the Lagrangian

KD = K(Φ̄ + Φ, Za) +
eL − 1

L
VM + (Ψ̄ + Ψ)V. (6.1.2)

The final step is chosing a gauge. Instead of setting Φ + Φ̄ = 0, we choose the

Wess-Zumino gauge for the prepotential V

V | = DαV | = D2V | = 0. (6.1.3)
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This gauge choice will allow a better comparison with the semi-chiral case. To see

that we do get back the original Lagrangian, we integrate out Ψ and Ψ̄. This implies

that

V = Λ̄ + Λ, (6.1.4)

where Λ is a chiral superfield. However, consistency with the gauge choice requires

that V = 0 and this give us back the original Kähler potential. To find the dual

potential we integrate out V . Since (V )3 = 0 in the Wess-Zumino gauge, this allows

us to solve for V explicity. We obtain

V = i
Ψ̄ + Ψ +M

ξc̄M

K̃ = K(Φ̄ + Φ, Za) +
i

2

(Ψ̄ + Ψ +M)2

ξc̄M
. (6.1.5)

The important thing to note here is that consistency of the solution for V with the

gauge fixing conditions require that

V | = 0 = i
Ψ̄ + Ψ +M

ξc̄M
| ⇒ (Ψ̄ + Ψ)| = −M | (6.1.6)

It should be understood that this is a component equation, and not a superfield

equation. With this in hand we can show the following;

∂2K̃

∂Φ̄∂Φ
| = 0,

∂2K̃

∂Za∂Φ
| = 0,

∂2K̃

∂Ψ̄∂Φ
| = −1. (6.1.7)

The implication which follows from these equations is that the contribution of Φ|

to the geometry has been replaced by Ψ| up to a surface term that comes from the

new b field. Let us demonstrate how this works with a simple example, specifically

R→ 1
R

for one of the cycles on T 2. The Kähler potential and moment map are:

K =
R

2
(Φ̄ + Φ)2
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M = R(Φ̄ + Φ). (6.1.8)

The dual potential is

K̃ = − 1

2R
(Ψ̄ + Ψ)2 − (Φ̄ + Φ)(Ψ̄ + Ψ). (6.1.9)

While this looks as though both directions of T 2 were dualized, one must remember

that the real part of Ψ| is proportional to R times the real part of Φ|. Only the

direction parameterized by the imaginary part of Φ| was dualized.

6.2 Dualizing with semi-chiral superfields

Now we can give a straightforward extension of the previous discussion to the

case when we dualize an isometry of a sigma model parametrized by semi-chiral

superfields. We start with equation (4.3.10), add the Lagrange multipliers enforcing

that V is pure gauge, and choose the same gauge Wess-Zumino gauge as in the

previous section. The dual Kähler potential is:

K̃ = K(X, X̄, Y, Ȳ , Za) +
i

2

(Ψ̄ + Ψ +M)2

ξc̄M
. (6.2.1)

The analogue of (6.1.7) reads:

(ξc)(ξc̄)K̃| = 0,
∂(iξc̄K̃)

∂Za
| = 0

∂(iξc̄K̃)

∂Ψ
| = −1. (6.2.2)

From (6.2.2) we see that the coordinates in the combination of semi-chiral superfields

corresponding to ξc have been replaced by coordinates in a twisted chiral superfield

in the dual geometry. This is analogous to what happened in the case of chiral and
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twisted chiral superfields. It was also expected from gauge fixing considerations,

although it was not a propri clear exactly how it would happen. We now have an

explicit description of the T dual of a theory with semi-chiral superfields at the

manifest (2, 2) sigma model level.

6.3 An example: T-duality with semi-chiral superfields in flat space

In this section we try to develop some intuition about the dualization prescrip-

tion described in the previous section. Given that we perform a duality transforma-

tion by gauging away part of a certain combination of semi-chiral superfields, and

in doing so we trade it for a twisted chiral superfield, it is not a priori obvious that

this is equivalent to the Buscher rules. In particular, we would like to check this in

a simple example, namely flat space with a U(1) isometry.

We start with four-dimensional flat space as our simplest example because one

needs both left and right pairs of chiral and anti-chiral superfields in order to be

able to eliminate the auxiliary components of the semi-chiral superfields and obtain

a sigma-model action. Therefore we begin with the following (2,2) Kähler potential

K = R(X̄ + Ȳ )(X + Y )− R

4
(Y + Ȳ )2 (6.3.1)

where D̄+X = D−Y = 0. By descending to the level of (1,1) superspace using [33],
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we find the sigma model metric

G =



0 2R R 0

2R 0 0 R

R 0 0 R

0 R R 0


, (6.3.2)

where the rows and columns are labelled by X|, X̄|, Ȳ |, Y |. This gives us the action

for the bosonic components

S =

∫
d2σR(∂aX∂aX̄ + ∂a(X̄ + Ȳ )∂a(X + Y )), (6.3.3)

where for simplicity we denoted by X the bosonic component of the (1,1) superfield

X|. Denoting Z = X + Y we notice that it is inert under the global shift symme-

try. By performing a diffeomorphism transformation to (X, X̄, Z, Z̄), we obtain the

metric in canonical form

G =



0 R 0 0

R 0 0 0

0 0 0 R

0 0 R 0


. (6.3.4)

The T-dual sigma model is obtained from the dual (2, 2) Kähler potential given in

(6.2.1). In this particular case, (6.2.1) reads:

K̃ = R(X̄+Ȳ )(X+Y )−R
4

(Y +Ȳ )2− 1

3R

(
ψ+ψ̄+R(X̄+X+

1

2
(Ȳ +Y ))

)2

(6.3.5)
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and the corresponding T-dual sigma-model metric is equal to:

9

2
G =



−4R 5R 4R −5R 5 −4

5R −4R −5R 4R −4 5

4R −5R −4R 5R −5 4

−5R 4R 5R −4R 4 −5

5 −4 −5 4 − 4
R

14
R

−4 5 4 −5 14
R

− 4
R



, (6.3.6)

where the rows and columns are labelled byX, X̄, Ȳ , Y, ψ, ψ̄. At first sight this result

is puzzling, because we claim that we found the T-dual of a sigma model whose

target space is flat four-dimensional space. At the same time, the dual sigma-model

involves six fields, and so, apparently the target space is six-dimensional. These two

seemingly contradictory statements are reconciled when one takes a closer look at

the T-dual metric, and finds that it actually describes a four dimensional subspace.

This is obvious when expressing the previous T-dual metric in terms of the following

coordinates: (X, X̄,W = Y − X̄, W̄ , ψ, ψ̄)

9

2
G =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −4R 5R 4 −5

0 0 5R −4R −5 4

0 0 4 −5 − 4
R

14
R

0 0 −5 4 14
R

− 4
R



, (6.3.7)

where we make the observation that W = Y − X̄ is also inert under the global

U(1) action. The final step in getting the metric in its canonical form is to make a
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coordinate transformation to T = W − 1
R
ψ:

9

2
G =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −4R 5R 0 0

0 0 5R −4R 0 0

0 0 0 0 0 9
R

0 0 0 0 9
R

0



. (6.3.8)

This form of the T-dual metric makes it clear that the T-dual geometry is four-

dimensional and that the Buscher rules, which in this case amount to R→ 1/R, are

obeyed.
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Chapter 7

The Semi Chiral Vector Multiplet

The discussion of T duality given in the previous section has a very unpleas-

ant feature, the need to introduce a higher dimensional auxiliary space in order to

describe the T dual background. While the auxiliary space is definitely a general-

ized Kähler geometry, it is unclear if the effective geometry is generalized Kähler.

These problems can be traced directly to the vector multiplet used to implement T

duality. Using the chiral vector multiplet is inadequate for the purpose of describing

T duality because one cannot entirely gauge away a semi chiral superfield whose

gauge transformation is to shift by a chiral superfields. This leads us to ask the

question ”Is there a vector multiplet with prepotentials that shift by semi chiral su-

perfields?”. We begin our investigation by noticing that the known vector multiplets,

the chiral and twisted chiral vector multiplets, have a direct relationship between

the gauge transformation parameter representation and the constraints consistent

with the gauged supercovariant derivative algebra. Specifically, the gauged superco-

variant derivative algebra for the chiral vector multiplets is consistent with setting

covariantly chiral constraints and has chiral gauge transformation parameters. The

analogous statement is true for the twisted chiral vector multiplet. This suggests

that we look for a gauged supercovariant derivative algebra that is consistent with

setting covariantly semi chiral constraints. It should be noted that both the chiral
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and twisted chiral vector multiplets are already consistant with imposing covariantly

semi chiral constraints. That is the covariant way of stating that one can couple semi

chiral superfields to the chiral or twisted chiral vector multiplets. Since the semi

chiral constraint is weaker than the chiral or twisted chiral constraint, we should

look for an gauged supercovariant derivative algebra that isn’t as constrained as the

chiral or twisted chiral vector multiplet. Said another way, we want to look for a

gauged supercovariant derivative algebra that is only compatible with imposing semi

chiral constraints. In this section we will describe such a vector multiplet, the semi

chiral vector multiplet. We will give the gauged supercovariant derivative algebra,

the kinetic terms for the multiplet and describe how to couple the multiplet to semi

chiral matter using the prepotentials. We will then give comments on describing T

duality using the semi chiral vector multiplet.

7.1 The Algebra and B.I.’s

We start by introducing gauge supercovariant derivatives ∇A = DA − iΓAt

where ΓA is the supergauge field and t is the abstract generator of the U(1) sym-

metry we wish to gauge. We then impose the following constraints on the gauge

supercovariant derivative algebra. For conventional constraints we impose the con-

dition

(γa)
αβ[∇α, ∇̄β} = −4i∇a (7.1.1)

The constraints that preserve semi chiral representations are

(γa)
αβ[∇α,∇β} = 0. (7.1.2)

93



The algebra and bianchi identites for the above constraints are

[∇α,∇β} = 4ig(γ3)αβT̄ t

[∇α, ∇̄β} = 2i(γc)αβ∇c + 2g[CαβS − i(γ3)αβP ]t

[∇α,∇b} = g(γb)α
βW̄βt− g(γ3γb)α

βΩ̄βt

[∇a,∇b} = −igεabWt (7.1.3)

and

∇αS = −iW̄α

∇αP = −(γ3)α
βW̄β

∇̄αT = 0

∇αT = Ωα

∇αΩβ = −Cαβσ

∇αΩ̄β = 2i(γa)αβ∇aT̄

∇αW̄β = 0

∇αWβ = iCαβd− (γ3)αβ(σ1 +W) + (γa)αβ∇aS − i(γ3γa)αβ∇aP

∇αd = (γa)α
β∇aW̄β

∇ασ = 0

∇̄ασ = 2i(γa)α
β∇aΩβ (7.1.4)

It is of interest to note that the B.I.s require that T is chiral and Π = S − iP is

twisted chiral. At first glance one might think that this algebra is direct sum of the

algebra’s for a chiral and twisted chiral vector multiplet. That this isn’t the case

can be seen in at least two different ways. The first is mixing of the auxiliarly field
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σ in the B.I.’s, specifically in the ∇αWβ and ∇αΩβ terms. The discussion of the

second argument is better suited to take place after the discussion of prepotentials.

7.2 Prepotentials

The description given above is an off shell description and thus the field

strengths can be solved for in terms of unconstrained prepotentials. To find the

prepotentials we consider the representation preserving constraint (7.1.2) and see

what they imply for the potentials Γα. In terms of the super field strengths we have

F++ = 2D+Γ+ = 0 → Γ+ = D+V̄1

F−− = 2D−Γ− = 0 → Γ− = D−V̄2 (7.2.1)

The prepotentials have two types of gauge transformation. Since the super field

strengths are invariant under ΓA → ΓA+DAL where L is an arbitrary real superfield,

this implies that V1 and V2 share a common gauge transformation

V1 → V1 + L, V2 → V2 + L (7.2.2)

V1 and V2 also have a priori independent gauge transformations. For D̄+Λ = 0 and

D̄−U = 0 the super field strengths are invariant under the transformations

V1 → V1 + Λ (7.2.3)

and

V2 → V2 + U (7.2.4)

Here we see that we have found a vector multiplet with prepotentials that shift by

semi chiral superfields under gauge transformations. At this point we can also give
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the second argument as to why the semi chiral vector multiplet can’t be obtained

as a direct sum of the chiral and twisted chiral vector multiplets. Recall for the

chiral vector multiplet that after fixing the gauge symmetry parameterized by the

analog of L gauge transformation, it has only one real prepotential. The same is

true for the twisted chiral vector multiplet. One would expect that a direct sum of

the chiral and twisted chiral vector multiplet would be described in terms of two

real prepotentials. However, for the semi chiral vector multiplet given above, there

are three real prepotentials after L gauge fixing.

The solutions for the field strengths in terms of the prepotentials are

T =
1

4
D̄2(V2 − V1)

T̄ =
1

4
D2(V̄2 − V̄1)

Π = S − iP =
1

2
D+D̄−(V2 − V̄1)

Π̄ = S + iP =
1

2
D−D̄+(V̄2 − V1) (7.2.5)

7.3 Duality between Chiral and Twisted Chiral Vector multiplets

While the semi chiral vector multiplet isn’t reducible in terms of a chiral and

twisted chiral vector multiplet, it contains both the chiral and twisted chiral vector

multiplet. This can be seen in the following way. Starting with equation (7.1.3)

and setting the field strength T̄ = 0, one finds that the B.I.’s require that Ωα =

σ = 0. The resulting algebra and B.I.’s are identical to the those for the chiral

vector multiplet [41]. Similarly if one sets S = P = 0 then the B.I.’s require that

Wα = d = 0 and σ1 = −W . This then gives the algebra and B.I.’s for the twisted
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chiral vector multiplet. In this way we can view the semi chiral vector multiplet as

the parent multiplet that gives rise to the chiral and twisted chiral vector multiplet.

This isn’t very surprising in hind sight. The semi chiral constraint is weaker that

the chiral or twisted chiral constraint. It is only the zero modes allowed for a

massless representation that distinguishes a semi chiral superfield from the sum of

a chiral and twisted chiral superfield. From this point of view, one could expect

the semi chiral vector multiplet to incorporate both the chiral and twisted chiral

vector multiplets in its structure. Then setting the field strengths to zero in the

way described above is just how one enlarges the types of constraints that can be

imposed on matter representations. The observed duality between the chiral and

twisted chiral superfields can be seen as the origin of the mirror nature between

chiral and twisted chiral vector multiplets described in [41].

7.4 The Gauge Field Action

At this point we have only established that the representation is irreducible.

We need to find the action that governs the dynamics for the multiplet. We can guess

the form of the action on dimensional grounds. Since [d4θ] = 2, then the action must

be a function of dimensionless fields. Since the action must also be gauge invariant,

this suggest that we can use the mass dimension zero field strengths from the algebra

S, P , and T . What is particularly nice is that we will see the mechanism the theory

uses to demonstrate that it is not a direct sum of the chiral and twisted chiral vector
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multiplets. Consider the following actions

S1 = −1

4

∫
d2xd4θS2 (7.4.1)

and

S2 =
1

2

∫
d2xd4θT̄T (7.4.2)

Both actions are manifestly supersymmetric since they are written directly in su-

perspace. However both terms are necessary in order to obtain the field strength

squared termW2 in the action. Lets see how that works. Evaluating the Grassmann

measure with ∫
d4θ =

1

8
[∇α∇α∇̄β∇̄β + ∇̄β∇̄β∇α∇α], (7.4.3)

we get the component actions

S1 =
1

2

∫
d2x[2i(λ̄β)(γa)β

α∇a(λα)+∇aS∇aS+∇aP∇aP +(σ1 +W)2 +d2] (7.4.4)

where Wα|=λα and

S2 =
1

2

∫
d2x[σ̄σ + 2iρ̄β(γa)β

α∇aρα + 4∇aT̄∇aT ] (7.4.5)

with Ωα| = ρα. If we just used S1, we would see the e.o.m for σ1 would eliminate the

presence of W in the action and thus the gauge field wouldn’t have kinetic terms.

We would get the same result if we just used S2 for the more simple reason that

W doesn’t appear in the action. It is only the sum of the two terms, S1 + c0S2,

that will generate kinetic terms for the gauge field. Since each action is separately

supersymmetric, the remaining issue to settle is what should the relative coefficient

be. Looking at the kinetic terms for the scalars we see that c0 must be positive with
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no extra restriction from requiring the appropriate sign for the gauge field kinetic

terms in this case +W2. For simplicity we set c0 = 1 and consider the action

S =

∫
d2xd4θ[−1

4
S2 +

1

2
T̄ T ].

=
1

2

∫
d2x[2i(λ̄β)(γa)β

α∇a(λα) +∇aS∇aS +∇aP∇aP + (σ1 +W)2 + d2

+ σ̄σ + 2iρ̄β(γa)β
α∇aρα + 4∇aT̄∇aT ] (7.4.6)

7.5 Fayet-Iliopoulos terms

Since the semi chiral vector multiplet has three real prepotentials, it has room

for three F.I. terms [56] in the action. They are given by

SFI =

∫
d2x[aD2T + āD̄2T̄ + D̄αDα(bΠ + b̄Π̄)]

= 4

∫
d2x[r1(σ1 +

1

2
W) + r2σ2 + r3d]. (7.5.1)

The relations between the complex constants a, b and the real constants r1, r2, r3 are

r1 =
1

4
(a+ ā) +

i

2
(b̄− b)

r2 =
i

4
(a− ā)

r3 =
1

2
(b+ b̄) (7.5.2)

7.6 Coupling to Matter

Coupling the new multiplet can be described in two ways. One is to evalu-

ate the measure in terms of the covariant derivatives, push the derivatives onto the

Kähler potential, and evaluate the fermionic derivatives acting on the matter super-

fields in terms of the covariantly defined components of the matter superfields. The
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other way is to use the prepotentials to adjust the local gauge transformations of

the matter field to make the action invariant under the local transformations. Here

we describe the second method because of its greater ability to describe the gauging

of target space isometries in non linear sigma models. Lets recall the process for

gauging chiral matter described in [37]. A chiral superfield transforms under the

global transformation as

Φ → eiεtΦ, Φ̄ → eiεtΦ̄ (7.6.1)

where ε is the constant real transformation parameter. The kinetic terms for the

chiral fields are given by the Kähler potential, K = K(Φ̄,Φ) which is invariant under

the above transformations (and not to be confused with the gauge parameter dis-

cussed above). When the transformation is made local, the parameter ε is promoted

to a chiral superfield and thus ε̄ is anti chiral. However, this means that Φ̄ no longer

transforms with the same parameter as Φ and the invariance of the Kähler potential

is lost. To restore the invariance we need to find a way to get Φ̄ and Φ to transform

with the same transformation parameter. To do so we use the real prepotential1 ,V ,

from the chiral vector multiplet which transforms as δV = i(ε̄− ε). We define a new

field

Φ̃ = e−V tΦ̄, (7.6.2)

and replace Φ̄ in the Kähler potential with Φ̃, i.e. K = K(Φ̃,Φ) and we find that

the potential is invariant under local transformations.

A similar procedure will be used to gauge the Kähler potential with left and

1This is actually the imaginary part of the complex prepotential for the chiral vector multiplet.
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right semi chiral superfields, however we need to make a few adjustments. The

Kähler potential is a function of the left and right semi chiral superfields, K =

K(X̄,X, Ȳ , Y ). It is invariant under the following transformations.

X → eiεtX, X̄ → eiεtX̄, Y → eiεtY, Ȳ → eiεtȲ , (7.6.3)

where once again ε is a constant real parameter. To make the transformation local

we, as before, would look to promote ε a superfield. The issue is choosing the

representation to use. The only consistent choice is to promote the parameter for

each superfield to a parameter of the same representation. The transformations take

the form

X → e−iΛtX, X̄ → e−iΛ̄tX̄, Y → e−iUtY, Ȳ → e−iŪtȲ . (7.6.4)

Once again the invariance of the Kähler potential is lost with the above local trans-

formations. In order to restore the invariance we define new fields using the pre-

potentials, as before, that will transform properly to restore the invariance of the

Kähler potential. This will happen in a way that looks different from chiral case.We

recall that the prepotentials actually have two gauge transformations. We can use

the left and right semi chiral transformation of the prepotentials to compensate

for the local transformations and exchange them for L gauge transformations. We

define new fields with the prepotentials transforming as in (7.2.3) and (7.2.4)

X̃ = eiV1tX

˜̄X = eiV̄1tX̄

Ỹ = eiV2tY
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˜̄Y = eiV̄2tȲ (7.6.5)

The new fields all transform with the same parameter and the invariance of the

action is restored with the replacements

K(X̄,X, Ȳ , Y ) → K( ˜̄X, X̃, ˜̄Y, Ỹ ). (7.6.6)

The discussion of the gauged action via use of the prepotentials is completed by

giving the gauge fixing conditions for the L gauge freedom and choosing the appro-

priate Wess Zumino gauge. To start we need to give the components for the left

and right semi chiral transformation parameters.

Λ| = λ, U | = u

DαΛ| = ψα, DαU | = χα

D̄−Λ| = ξ−, D̄−U | = 0

D̄+Λ| = 0, D̄+U | = η+

D2Λ| = F, D2U | = G

D̄2Λ = 0, D̄2U = 0

[D+, D̄+]Λ = −i∂ λ, [D+, D̄+]U | = B

[D−, D̄−]Λ| = C , [D−, D̄−]U | = −i∂ u

[D−, D̄+]Λ| = 0, [D−, D̄+]U | = θ′

[D+, D̄−]Λ| = θ, [D+, D̄−]U | = 0

D2D̄+Λ| = 0, D2D̄+U | = ω+

D2D̄−Λ| = τ−, D2D̄−U | = 0

D̄2D+Λ| = ∂ ξ−, D̄2D+U | = 0

D̄2D−Λ| = 0, D̄2D−U | = ∂ η+ (7.6.7)
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To perform the L gauge fixing we need to decompose the prepotentials into the linear

combination of fields that transforms under the L gauge symmetry, and the orthog-

onal combinations that are inert under the L gauge symmetry. The combination

that L gauge transforms is

V̂ = Re(V1) +Re(V2) (7.6.8)

And the orthogonal combinations are

Ṽ = Re(V2)−Re(V1)

Ṽ1 = Im(V1)

Ṽ2 = Im(V2) (7.6.9)

We use the L gauge to fix V̂ = 0. Then we consider the transformations of the

remaining prepotentials components under the remaining gauge transformations to

see which we can set to zero in the Wess Zumino gauge. We set to zero all of the

fields that transform by a shift and here give the remaining components. The gauge

field sits in Ṽ1 and Ṽ2 as

A = −1

4
(γ )++[D+, D̄+]Ṽ1|

A = −1

4
(γ )−−[D−, D̄−]Ṽ2|. (7.6.10)

The remaining components that cannot be set to zero in the Wess Zumino gauge

are related to the field strengths given in the algebra (7.1.3) and are given by

i

4
D̄2(Ṽ2 − Ṽ1)| = T | = T

i

2
D+D̄−(Ṽ2 + Ṽ1)| = S − iP | = π
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i

4
D̄2Dα(Ṽ1 + Ṽ2)| = −Wα| = −λα

i

4
DαD̄

2Ṽ2| = Ωα| = ρα

1

8
{D2, D̄2}Ṽ | = (σ1 +

1

2
W)|

1

8
{D2, D̄2}(Ṽ2 − Ṽ1)| = σ2|

1

8
{D2, D̄2}(Ṽ2 + Ṽ1)| = d| = d (7.6.11)

This completes the description of the Wess Zumino gauge.

7.7 Comments On T Duality With The Semi Chiral Vector Multiplet

The discussion of the coupling of the semi chiral vector multiplet above is the

analog of the standard discussion of gauged sigma models for chiral and twisted

chiral vector multiplets. In order to discuss T duality, we need to be able to gauge

away the entire semi chiral superfield. The tranformations of the prepotentials,

(7.2.3) and (7.2.4), allow the semi chiral vector multiplet to be gauged fixed in this

way. This should allow for a formal discussion of T duality for semi chiral superfields

analogous to the treatment given in [52]. We also have a description quotients since

the construction of quotients is a special case of T duality. A formal development

of this discussion is work in progress.
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Chapter 8

Conclusion

In this work we have demonstrated the utility of using superspace techniques

to study supersymmetric theories in two cases. In the first case we used superspace

to derive the first order in α′ corrections to the 10D N = 1 supergravity low energy

effective action for the heterotic string. We worked with both the gauge 2-form and

gauge 6-form multiplets. This was accomplished by using the dynamical equations

implied by the super Jacobi identities for the supergravity covariant derivatives

to construct an action. We then demonstrated that this action is equivalent to

what is obtained via the Noether procedure. Along the way, we saw an interesting

tensor appear, the Ya b c tensor, that played the role of exchanging the group and

form indices on the wedge product of the Ricci 2-form in the exterior derivative

of the Chern Simons form. Though we argued that at linear order in α′ this new

tensor doesn’t affect the effective action, it remains to be seen if this stays true at

second order. It would interesting to investigate the geometrical significance of the

Ya b c tensor on general grounds. One can potentially obtain other ”R2” terms by

considering additional terms for the auxiliary field Aa b c. This could generate the

complete supersymmetric completion of the ”R2” terms. If one also turns on the

Yang-Mills coupling, this procedure would generate the supersymmetric completion

for this coupling as well.
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In the second case, we used superspace techniques to derive a formalism for

discussing T duality in the context of generalized Kähler geometries via the use of

N = (2, 2) supersymmetric non linear sigma models with semi chiral superfields.

There we saw the beautiful way that manifest (2, 2) superspace encoded all of the

information concerning the background into a single potential function. This was

done by starting in (2, 2) superspace and performing a reduction to (1, 1) superspace

with a non linearly realized extra (1, 1) supersymmetry. All of the geometric infor-

mation associated to generalized Kähler geometry with an isometry was captured

very naturally by superspace without the need to give any input except for what

scalar superfield representations we would use. The moment map and one form u

associated to the presence of a B field were obtained. Working directly in (2, 2)

superspace we used the chiral vector multiplet to give a formulation of T duality in

terms of the sigma model. This formulation has the advantage of giving an explicit

dual potential, but at the cost of introducing extra fields. These extra fields are

a highly unwanted feature as they require us to think of the dual model as being

embedded in degenerate auxiliary space. The problem of introducing extra fields

was traced back to the fact that the chiral vector multiplet can not gauge away a

semi chiral superfield. This lead to an investigation that resulted in a previously un-

known (2, 2) vector multiplet, the semi chiral vector multiplet. This vector contains

the degrees of freedom necessary to completely gauge away a semi chiral superfield.

The formulation of T duality for sigma models with semi chiral superfields using

the semi chiral vector multiplet is work in progress. After establishing a complete

description of T duality using the semi chiral vector multiplet another important
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issue must be addressed. The discussion of T duality in this work has been entirely

classical. However, for T duality to be a symmetry of string theory it must persist at

the quantum level. Along the way, we also used the derivation of the moment map

in the sigma model language to investigate a mathematical definition of the moment

map in terms of eigenspaces of generalized complex structures. In the cases where

the complex structures of the generalized Kähler geometries commute, we were able

to show complete agreement with sigma model derivation of the moment map and

the mathematical definiton. We were unable to obtain conclusive results in the case

where the complex structures do not commute.
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Chapter A

Appendix A: 10D Definitions & Conventions

The basic tool we use is ten dimensional chiral superspace with structure

group SO(1, 9). Definitions and properties (such as multiplication table and Fierz

identities) of ten dimensional chiral sigma matrices we adopted here can be found

in [57]. Given the super frame EA = (Ea, Eα), conventions for superforms and

Leibniz rule for the exterior derivative are

ω =
1

p!
EA1 ...EAp ωAp...A1 , (A.0.1)

d(ωpωq) = ωp(dωq) + (−)q(dωp)ωq . (A.0.2)

Representation matrices acting on the tangent space are blockdiagonal,

X =

 Xb
a 0

0 Xβ
α

 , (A.0.3)

and the vectorial and spinorial representations are related by the two-index sigma

matrix,

Xα
β =

1

4
(σa b)α

βXa b, Xa b = −1

8
(σa b)α

βXβ
α. (A.0.4)

As soon as the action of the structure group is fixed,

δE = βEX, (A.0.5)

the covariant derivative

∇E = dE + αEΩ (A.0.6)
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can be defined using the Lorentz connection Ω with transformation law

δΩ = −β (dX + αX · Ω) . (A.0.7)

The torsion T , the curvatureR and field strengths Fp of an abelian (p−1)-form

are defined by

∇E = γT, R = dΩ + αΩΩ, Fp = dAp−1, (A.0.8)

and they satisfy the following Bianchi identities

γ∇T = αER, ∇R = 0, dFp = 0. (A.0.9)

The curvature in particular appears in the double covariant derivative of covariant

vectors

∇∇u = αuR. (A.0.10)

Dragon’s theorem states that in supergravity the Bianchi identity for the torsion

together with (A.0.10) implies that the Bianchi identity for the curvature is auto-

matically satisfied.

The Chern-Simons form

Q = tr
(
ΩR− α

3
ΩΩΩ

)
(A.0.11)

satisfies

dQ = tr(RR) . (A.0.12)

Finally, let us consider a redefinition

Ω = Ω̂ + χ (A.0.13)
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of the connection. This shift in the connection affects the torsion, the curvature and

the Chern-Simons form in the following way:

γ(T − T̂ ) = αEχ , (A.0.14)

R− R̂ = ∇χ− αχχ , (A.0.15)

Q− Q̂ = tr

(
2Rχ− χ∇χ+

2α

3
χχχ+ d(Ωχ)

)
. (A.0.16)

Let us display the above relations in terms of form-components. First of all,

(A.0.10) gives the algebra of covariant derivatives acting on covariant vectors

(∇P ,∇B)uA = −γTPB
F∇Fu

A + αRPBF
AuF . (A.0.17)

The Bianchi identities become

γ∇(∇TPB)
A + γ2T(∇P |

FTF|B)
A − αR(∇PB)

A = 0 (A.0.18)

∇(A1FA2...Ap+1) + γ
p

2
T(A1A2|

FFF|A3...Ap+1) = 0 . (A.0.19)

The components of the Chern-Simons form are

QABP = tr

(
1

2
Ω(ARBP ) +

α

3
Ω(AΩBΩP )

)
, (A.0.20)

while the redefinitions take the form

γ(T − T̂ )PB
A = αχ(PB)

A ,

(R− R̂)BA = ∇(BχA) + γTBA
FχF + αχ(BχA) ,

(Q− Q̂)PBA = tr
[
R(PBχA) − χ(P

(
∇BχA) +

γ

2
TBA)

FχF +
2α

3
χBχA)

)
,

−∇(P (ΩBχA) −
γ

2
Ω(Fχ(A)TPB)

F
]

.

(A.0.21)
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The conventions of Wess and Bagger correspond to the choice α = 1, γ = 1,

while the conventions in [9] correspond to α = −1, γ = −1. Also, the Chern-Simons

term denoted by X in [9] is X = −Q.

The graviton and gravitino is identified in the super frame EA = (Ea, Eα),

Ea = dxmem
a, Eα =

1

2
dxmψm

α. (A.0.22)

The torsion, T = −∇E, satisfies the Bianchi identity

∇T = ER. (A.0.23)

The two-form gauge potential of the pure 10 dimensional supergravity multiplet is

identified in a two-form on the superspace

B =
1

2
dxmdxnBn m. (A.0.24)

Its fieldstrengths G = dB satisfies the Bianchi identity

dG = 0. (A.0.25)

The Green-Schwarz mechanism teaches us that in order to deal with anomaly free

supergravity the field strength of the antisymmetric tensor has to be accompanied

by both the Yang-Mills and gravitational Chern-Simons terms. Here we consider

only the gravitational part.

Q = tr(RΩ +
1

3
ΩΩΩ), dQ = tr(RR). (A.0.26)

Therefore, it is convenient in general to define a new object on superspace,

H
.
= G + γ′Q, (A.0.27)
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and consider the Bianchi identity satisfied by this three-form H,

dH = γ′tr(RR). (A.0.28)

The six-form gauge potential of the dual pure 10 dimensional supergravity multiplet

is identified in a six-form on the superspace

M =
1

6!
dxm1 ...dxm6Mm6 ... m1

. (A.0.29)

Its fieldstrengths N = dB satisfies the Bianchi identity

dN = 0. (A.0.30)
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Chapter B

Appendix B: 10D Variations

For arbitrary variation of the connection δΩ the curvature squared terms

and the Chern-Simons form Q change according to

δ tr
(
RabRab

)
= −4 tr

[
(∇aRab) δΩb

]
+ 4 ∂m

(
ea

m tr(Rab δΩb)
)

,(B.0.1)

δQ = tr [ 2RδΩ + d(ΩδΩ) ] . (B.0.2)

The scalar curvature transforms also:

δR = ea
m eb

n δRm n
a b (B.0.3)

= 2ea
m ∂m(δΩb

a b) − Ta b
c δΩc

a b . (B.0.4)

In the case where δΩa b c = 1
2
δTa b c with totally antisymmetric torsion this yields

δR = −δ(1
4
Ta b cT

a b c). In particular this implies also that the combination R +

1
4
Ta b cT

a b c is independent of a redefinition (A.0.13) provided that χ is totally anti-

symmetric.

Using the above formulae one may compute the following variations with re-

spect to an object Labc appearing in the Lorentz connection as

Ωa b c = ωa b c − La b c, (B.0.5)
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with ω the torsion free spin connection:

e−1 e4ΦδLtr
(
Ra bRa b

)
∼ −4e−1∇a( e4ΦRa b c d) δL

b c d

+ 4e−1 e4ΦRa b c d L
a b

k δL
kc d

+ O(γ′) , (B.0.6)

−2

3
e−1 e4ΦLa b cδLQa b c ∼ 4EBkl

Ωk
a b δLl a b − 4e−1 e4ΦRa b c d L

a b
kδL

k c d

+ O(γ′) (B.0.7)

−2

3
e−1 e4ΦLa b cδLYa b c = 4 e4Φ(Ra bc d +Rc da b)Lk

a b δLk c d

−2

3
e4ΦLa b

k Lc d kδL

(
E eBabcd

)
+ O(γ′). (B.0.8)

However, the first term in the variation (B.0.6) may be recast in the form

−4
[
∇a( e4ΦRa b c d)

]
δLb c d ∼ − 4 e4Φ(Ra bc d + Rc da b)Lk

a b δLk c d

+ 8
[
e4Φ∇a

(
e−4ΦÊBb c

) ]
δLab c

+ 8
[ (

e4ΦÊηak
− ÊBak

)
Lk

b c
]
δLab c

+
2

3
e4Φ

[
La b

k Lc d k −
1

4!
E eBabcd

]
δL

(
E eBabcd

)
+O(γ′). (B.0.9)

Now observe that the sum of the variations written above is expressed as a com-

bination of the equations we derived from superspace geometry. We denote this
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combination of variations simbolically by f(E):

f(E)
.
= e−1 e4ΦδLtr

(
Ra bRa b

)
− 2

3
e−1 e4Φ La b c δL ( Q + Y )a b c ,(B.0.10)

f(E) ∼ 4EBkl
Ωk

a bδLl a b

+ 8
[
e4Φ∇a

(
e−4ΦÊBbc

)
+

(
e4ΦÊηak

− ÊBak

)
Lk

b c
]
δLa b c

− 2

3
e4Φ 1

4!
E eBa b c dδL

(
E eBabcd

)
(B.0.11)

+ O(γ′). (B.0.12)

Therefore the superspace equations imply the vanishing of the above combination

for an arbitrary variation of the object Labc. In particular, this is valid at zero order

in γ′ both for the anomaly free supergravity and for its dual.
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Chapter C

Appendix C: 2D Spinor Conventions

ηab = (1,−1) , εabε
cd = −δ[acδb]

d , ε01 = +1

(γa)α
γ(γb)γ

β = ηabδα
β − εab(γ3)α

β . (C.0.1)

The last relation implies

γaγa = 2I , γ3γa = −εabγb . (C.0.2)

Some useful Fierz identites are

CαβC
γδ = δ[α

γδβ]
δ ,

(γa)αβ(γa)
γδ + (γ3)αβ(γ3)γδ = −δ(αγδβ)

δ ,

(γa)(α
γ(γa)β)

δ + (γ3)(α
γ(γ3)β)

δ = δ(α
γδβ)

δ ,

(γa)(α
γ(γa)β)

δ = −2(γ3)αβ(γ3)γδ ,

2(γa)αβ(γa)
γδ + (γ3)(α

γ(γ3)β)
δ = −δ(αγδβ)

δ ,

(γa)α
δδβ

γ + (γ3γa)α
γ(γ3)β

δ = (γ3γa)αβ(γ3)γδ (C.0.3)

For an explicit representation we chose to represent the γ-matrices in terms of the

Pauli matrices as

(γ0)α
β = (σ2)α

β , (γ1)α
β = −i(σ1)α

β , (γ3)α
β = (σ3)α

β (C.0.4)
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The spinor metric Cαβ and its inverse Cαβ can be identified as

Cαβ ≡ (σ2)αβ , Cαβ ≡ −(σ2)αβ (C.0.5)

The exlicit representation imply the following symmetry properties

(γa)αβ = (γa)βα , (γ3)αβ = (γ3)βα , Cαβ = −Cβα

(γa)αβ = (γa)βα , (γ3)αβ = (γ3)βα , Cαβ = −Cβα (C.0.6)

The complex conjugation rules follow from the explicit representation

[(γa)α
β]∗ = −(γa)α

β , [(γ3)α
β]∗ = (γ3)α

β (C.0.7)

[(γa)αβ]∗ = (γa)αβ , [(γ3)αβ]∗ = −(γ3)αβ , [Cαβ]∗ = −Cαβ

[(γa)αβ]∗ = (γa)αβ , [(γ3)αβ]∗ = −(γ3)αβ , [Cαβ]∗ = −Cαβ (C.0.8)

The N = (2, 2) supercovariant derivative algebra in the complex basis is

[Dα, Dβ} = 0

[Dα, D̄β} = 2i(γa)αβ∂a (C.0.9)

Meaning of (p, q) supersymmetry In two dimensions a

Dirac spinor is a two component complex spinor. In two dimensions one can im-

pose both the Weyl and Majoranna conditions on spinors. This means that the

irreducible representations of spinors are one component real left or right handed

spinors. Supersymmetric theories are labeled by the number of left handed and right

handed supercharges they posses. This is usually denoted by saying the theory has

(p, q) supersymmetry, where p is the number of left handed supercharges and q is

the number of right handed supercharges.
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Chapter D

Appendix D: Algebraic Aspects of Superspace

The supersymmetry algebra is the extension of the Lie algebra for the Poincare

group to a Z2 graded Lie algebra. The grading is in terms of even (bosonic)

elements and odd (fermionic) elements, where even(odd) refers to the elements

commuting(anti-commuting) property. We use a collective index for graded ten-

sors denoted by capital roman letter i.e. A = (a, α) where a is vector (even) index

and α is a spinor (odd) index. The exchange of order for two elements is determined

by the grading of the elements. The even elements are assigned weight 0 and the

odd elements are assigned weight 1. Then the exchange of order of two elements is

given by

O1O2 = (−)w(1)w(2)O2O1 (D.0.1)

Derivatives act on products via a graded product rule.

∇A(O1O2) = (∇AO1)O2 + (−)Aw(1)O1(∇AO2), (D.0.2)

where A is also used to denote the weight of the tensor. The extension of the

Lie bracket is just to chose the regular commutator if one of the elements under

consideration is even and the anti-commutator if both elements under consideration

is odd. This is easily denoted by defining the graded Lie bracket as

118



[O1,O2} = O1O2 − (−)w(1)w(2)O2O1 (D.0.3)

The major tool used in studying both topics in this dissertation is the consis-

tency of the gauge supercovariant derivative algebra, either for supergravity or super

Yang-Mills. The consistency is determined requiring that the covariant derivative

algebra satisfy the extension of the Jacobi identity for lie algebras, the super Jacobi

identity

(−)AC [[∇A,∇B},∇C}+(−)BA[[∇B,∇C},∇A}+(−)CB[[∇C ,∇A},∇B} = 0 (D.0.4)
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