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In the electronic market place, the auction is known to be economically efficient, 

allowing players to maximize their own benefits. Through this mechanism, new spot 

markets are created, which connect buyers and sellers. In this new spot markets, many 

problem contexts give rise to competitive decision situations in which players must 

make repeated decisions along with or in response to competitors’ decisions.  

Auction-based electronic marketplaces for freight service procurement are an 

example of such environments, and provide the motivating application context for the 

models presented in this paper.   



 

The specific focus is on the decisions of carriers, as bidders for the loads tendered 

by shippers in spot market situations. This paper is about the learning models used to 

describe a player’s strategy choice behavior using experimental data and explains 

how that choice arises from the nature of multi-player interactions and their dynamics 

over multiple bids. Therefore, the principal focus of this paper is how to model a 

player’s dynamic strategy choice behavior under the pressure of competition.  

A dynamic strategy choice model structure for two type of cognitive learning 

process is formulated, with alternative specifications corresponding to different levels 

of cognition capacity. Furthermore, the dynamic strategy choice model structure for 

mixed learning is developed, which combines both elements of two different learning 

processes.  The model is intended to describe how a player or agent in a non-

cooperative game with no perfect information and bounded rationality chooses a 

bidding strategy. We propose a general dynamic strategy choice model framework 

using the dynamic mixed logit model structure and estimate the model parametrically, 

using two sets of experimental data. The paper also presents econometric issues that 

arise in estimating such models given a time series of auction bids and outcomes, and 

formulates error structures appropriate to the highly interactive dynamic nature of 

competitive auction-based marketplaces.   
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Chapter 1. Introduction 

1.1. Motivation 

The booming world of electronic commerce now provides bidders using electronic 

auction systems with virtual agents to do their bidding. In the electronic market place, 

the auction is known to be a well-established and powerful social information-

processing mechanism. In addition, it is well known to be economically efficient, 

allowing players to maximize their own benefits. Through this mechanism, new spot 

markets are created, which connect buyers and sellers. Electronic market places offer 

benefits to both buyers and sellers by reducing transaction times, costs and effort. 

Buyers can search for and compare providers easily in a marketplace; while, for 

sellers, marketplaces provide access to broad customer bases. However, a 

complicated decision-making process has emerged in the electronic market place, 

wherein auction systems now generate many benefits over traditional electronic 

market places. 

In particular, many problem contexts give rise to competitive decision situations in 

which players must make repeated decisions along with or in response to competitors’ 

decisions. The motivating problem context for this dissertation consists of auction-

based electronic marketplaces for freight service procurement. These virtual 

environments give rise to new classes of decision situations for carriers and shippers. 

The specific example that provides the motivation and the focus for the present study 

are the decisions of carriers, as bidders for the loads tendered by shippers in spot 

market situations. 
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Game theory has been the primary theoretical approach for those seeking to 

understand how markets might evolve under different assumptions on player (carriers 

in this case) behavior. It has placed considerable emphasis on equilibrium, and 

understanding the extent to which equilibria may be reached in markets under 

different information situations and payoff structures. However, most game theoretic 

constructs assume that the players (agents) have complete1 or perfect2 information, 

common knowledge3 and perfect rationality4. In practice, these assumptions are too 

restrictive for most real-world situations, especially in fast-moving dynamic 

environments with repeated auction plays. Relaxation of these assumptions places 

greater emphasis on the cognitive processes and individual characteristics of players 

in analyzing the associated decision-making processes. 

Choice behavior in non-cooperative auction games, under competitive 

environments, differs in several respects from the general travel choice behavior 

                                                 

1 Each player is aware of all other players, the timing of the game, and the set of 

strategies and payoffs for each player.  

(source: http://www.gametheory.net/Dictionary/) 

2 A sequential game is one of perfect information if only one player moves at a time 

and if each player knows every action of the players that moved before him at every 

point. (source: http://www.gametheory.net/Dictionary/) 

3 An item of information in a game is common knowledge if all of the players know it 

and all of the players know that all other players know it, and so on. (source: 

http://www.gametheory.net/Dictionary/) 

4  Players always act in a rational way, and are capable of arbitrarily complex 

deductions towards that end.  

(source: http://en.wikipedia.org/ wiki/) 
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typically considered in transportation demand studies, e.g. to represent the traveler’s 

choice of mode, departure time, residential or other location, etc. In this case, the 

other players’, as well the player’s own, previous decisions and payoffs affect current 

choice and payoff. The high degree of interaction among competitors is a critical 

phenomenon in dynamic game situations. Furthermore, players in a game can 

communicate with each other by exchanging information about strategies and payoffs, 

either explicitly or implicitly, through imitation and adaptation of successful 

strategies. However, typical discrete choice model formulations for everyday 

transportation demand situations do not include the impact of such interaction among 

decision makers in their respective choice behavior, because competition is not a 

consideration in these decision situations. In dynamic auction games, one’s strategy 

depends on whether other players are bidding their value or are shading their bids. 

Players can learn how to play those games over time, and can update their belief by 

learning how to play based on their past experience and acquired knowledge of the 

opponents’ actions and their payoffs. However, that type of information is limited to 

the type of auction and public information disclosed by auctioneers. This dissertation 

uses concepts from both discrete choice models and game theory to develop 

descriptive dynamic strategy choice models in competitive environments. 

 

1.2. Research Objectives  

The main objective of this research has been to develop a theoretical framework 

and methodology to model a player’s dynamic strategy choice behavior within a 



 4 

competitive environment, by extending and adapting the existing model framework. 

This dissertation explores how bidders compete in auction-based electronic 

marketplaces for freight-service procurement. The study considers the carrier’s choice 

of strategy of how much to bid to acquire a tendered load in an auction-based 

marketplace with repeated auctions involving the same set of players. A dynamic 

strategy choice model structure for two type of cognitive learning process is 

formulated, with alternative specifications corresponding to different levels of 

cognition capacity. Furthermore, the dynamic strategy choice model structure for 

mixed learning is developed, which combines both elements of two different learning 

processes.  The model is intended to describe how a player or agent in a non-

cooperative game with no perfect information and bounded rationality chooses a 

bidding strategy. The study also addresses econometric issues that arise in estimating 

such models given a time series of auction bids and outcomes, and formulates error 

structures appropriate to the highly interactive dynamic nature of competitive auction-

based marketplaces. The model structure and estimation process are illustrated using 

a data set obtained from experiments conducted with players in hypothetical bidding 

situations. 

The specific goals of this research are as follows:  

1. To state and formulate a player’s cognitive-process behavior and his or her 

dynamics in bidding behavior under two different assumptions: i) the 

availability of feedback information; and ii) the level of cognitive and 

instrumental rationality.  
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2. To develop mathematical models with which to capture a player’s dynamic 

competitive behavior relating to bidding price choice under different 

assumptions of that player’s level of cognition capability. More specifically, 

a. To provide the mathematical framework for the dynamic multinomial 

probit model (DMNP) 

b. To provide the mathematical framework for the dynamic mixed (or 

kernel) logit model (DML) 

The models described in this dissertation extend previous work (Lam 1991; Liu 

1997; Srinivasan 2000), by incorporating a model framework for a player’s 

competitive bid-price choice behavior. A new error structure is explored to capture 

players’ interactions during their respective choice behaviors, which is different from 

the error structure of the existing model framework. Furthermore, the joint choice 

probability function among players is applied to estimate parameters in learning 

models, and it is formulated differently for both the dynamic multinomial probit and 

the dynamic mixed logit models. 

3. To present the different model specifications of the epistemic and behavioral 

reinforcement learning processes. 

Each cognitive learning model specification is different, depending upon the 

different levels of player cognition capacity and the limit of feedback information.  
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4. To present the model specifications for a mixed-learning process, so as to 

provide a general form of model specification that incorporates both the 

epistemic and behavioral reinforcement learning models. 

The processes can be mixed, if associated with different periods, players or 

mechanisms, and deepened by incorporating the reasoning principles.  

5. To estimate parameters for a dynamic player’s bid-price choice behavior 

model, using experiment panel data in hypothetical bidding situations 

Even though the data are obtained from experiments in which decision-makers are 

in hypothetical bidding situations, the data are useful for developing insights into the 

underlying players’ strategy choice behavioral processes, and into their decision-

making interactions during choice behaviors.  

6. To comparatively analyze and interpret a player’s strategy choice behavior 

between different cognitive learning processes. 

The explanatory analysis results generated for two cognitive learning processes 

and using two types of experimental data are compared, so as to provide insights into 

each player’s underlying behaviors. The estimation results are interpreted and 

compared to explain players’ strategy choice behavior within the context of each 

learning model. Behavioral patterns generated by the two cognitive learning 

processes also are compared. In addition, the possible transferability of behavioral 

insights and models across learning processes are examined. 
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1.3. Research Approach 

This research starts by studying the cognitive dynamics of four learning processes, 

ordered in terms of a player’s decreasing cognitive capacities. Two intermediate 

learning processes, epistemic and behavioral reinforcement, are explored, while two 

extreme processes, eductive and evolutionary, are excluded in this dissertation.  

Based upon these cognitive learning concepts, the mathematical frameworks are 

formulated to incorporate a player’s competitive behavior into a strategic choice 

decision-making process. Also, two experiments including two types of game are 

conducted to collect datasets, including observations of player’s bid price decisions in 

repeated auction games. The dynamic strategy choice models are specified and 

estimated using experimental data and model frameworks associated with the 

different types of cognitive learning behavior. More specifically, the major tasks of 

this dissertation are: 

1. To develop a framework to incorporate a player’s interaction effect into the 

decision-making process by which a player changes his or her strategy for 

winning the next game and maximizing personal payoffs.  

The model framework assumes that players change their strategy based upon their 

past experiences or the beliefs about what other players will do. 

2. To conduct an experimental survey and collect data to observe players’ 

choice-decision behaviors under conditions in which different levels of 

feedback information are available to them.  
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Those experiments include a player’s bidding history in repeated games, including 

past bidding price decisions.  

3. To specify the dynamic strategy choice models for epistemic and behavioral 

reinforcement learning processes.  

The components of these models are derived from the first task by developing a 

framework for the cognitive learning process. The model specifications are different, 

depending upon the assumptions behind each cognitive learning process.  

4. To develop the mixed type of dynamic strategy choice model for use 

formulating the general model specifications that both epistemic and 

behavioral reinforcement learning processes might explain. 

This mixed learning model can combine the elements of two seemingly-different 

approaches and include them as a special case.  

5. To formulate error structures appropriate for the highly-interactive dynamic 

nature of competitive auction-based marketplaces, and to specify the joint 

probability function over players. 

6. To estimate the parameters in the dynamic strategy choice model specification 

system used for epistemic and behavioral reinforcement learning processes, 

using experimental data in hypothetical bidding situations.  

Estimated parameters capture the effect of a player’s past experiences and his or 

her average payoff in a behavioral reinforcement learning model. They also capture 
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the effect of a player’s possible payoff based upon beliefs regarding the type of 

opponent they are facing in epistemic learning model. Moreover, the unobserved 

influences of a player’s competitive interaction on the decision-making process are 

captured in error structures. Both models include habit persistence terms, which 

capture the effect of previous utility and unobserved serial correlations on the current 

player’s strategy choice decision, over various time periods (or games). 

7. To examine the transferability of a player’s bidding behavior between 

epistemic and behavioral-reinforcement learning models, and to compare the 

substantive insights generated from each of these two ‘pure’ cognitive 

learning models to those generated using a mixed (hybrid) dynamic strategy 

choice model. 

8. To estimate the parameters for the mixed learning dynamic strategy choice 

models using experimental data. 

The estimation results indicate the effect of a player’s past experiences and his or 

her average payoff in a behavioral reinforcement learning model and the effect of a 

player’s possible payoff based upon beliefs regarding the type of opponent they are 

facing in epistemic learning model. In addition, estimated parameters show the 

player’s propensity of each cognitive learning process and capture the effect of the 

interaction among players’ cognitive learning rules. 

9. To interpret a player’s choice-decision behavior for each cognitive learning 

process. To compare the results from both cognitive learning processes and 
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explain how players behave differently in response to limited feedback 

information.  

The present dissertation essentially considers how well simple learning models, 

motivated by the psychology of learning, can model who must learn about the game 

and who must learn about their opponent during the course of playing a game, over 

time. Our goal is to model observed behavior, starting with behavior that is observed 

in experimental settings. In conclusion, we also consider the implications of this 

approach for applied economics in naturally-occurring, non-experimental settings. 

We show that experimental data can be both well-described and robustly-predicted by 

relatively simple learning theories. 

The following Figure 1.1 shows the research approach structure.  
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TASK 1

Develop a mathematical

framework to incorporate

strategy choice behavior

TASK 2

Design a experiment survey

in hypothetical bidding

situation

TASK 3

Specify dynamic strategy

choice models for epistemic

learning

TASK 4

Specify dynamic strategy

choice models for behavioral

reinforcement learning

TASK 5

Present the model

specifications of mixed

learning

TASK 7

Estimate parameters in

dynamic strategy choice

models

TASK 8

Interprete player's strategy

choice behavior for each

cognitive learning process

TASK 9

Examine the transferability

of player's strategy choice

behavior

OBJECTIVE

Develop the theoretical framework and

methodology to model the player's

dynamic strategy choice behavior

TASK 6

- Formulate error structures

- Specify joint probability

 

Figure 1.1 Study Approach 
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1.4. Organization of the Dissertation  

The organization of this dissertation proposal is as follows. Already, the 

introduction chapter has provided a brief overview, including problem definitions, the 

motivation behind the project, the approach and the objectives of this dissertation. In 

Chapter 2, the four cognitive learning processes are reviewed. These processes are: 1) 

eductive learning; 2) epistemic learning; 3) behavioral reinforcement learning; and 4) 

evolutionary learning. Chapter 3 summarizes the literatures and, while doing so, 

discuss five related topics: 1) Competitive Environments in Auctions; 2) Nash 

Equilibrium vs. Probabilistic Equilibrium: Noisy Behavior in Auctions; 3) Game 

Theory vs. Discrete Choice Modeling; 4) Game Theoretic Learning Models; and 5) 

Choice Models. 

Chapter 4 presents the methodology used for the current research. The research 

methodology includes both the dynamic multinomial probit and dynamic mixed logit 

model frameworks for both the epistemic and behavioral learning processes. Chapter 

5 presents the results of the explanatory analysis generated using the above-

mentioned methodology, using two experimental datasets. Chapter 6 presents 

estimation results for the dynamic strategy choice model, using a dynamic 

multinomial probit estimation program for all of the cognitive learning processes, and 

then discusses these results. In Chapter 7, the dynamic mixed logit model estimation 

results for the dynamic strategy choice behavior are presented for both experiments.  

The last chapter provides a summary of and conclusions derived from this dissertation. 
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Chapter 2. Cognitive Learning Processes 

2.1. Background Review 

Modeling a player’s choice of bidding strategy in an auction-type electronic 

marketplace, given observations of the sequences of actions and respective payoffs 

for multiple players, entails explicit assumptions about 1) the availability of 

information to the players, and 2) the associated cognitive-learning or adaptation 

process taking place in this environment. The adaptive rule considers each player’s 

cognitive capacity, and results in certain model structures. This section presents the 

four cognitive learning processes principally recognized in the literature. The 

methodology section subsequently introduces two model specifications associated 

with two of these four learning processes, and introduces the framework used to 

estimate the corresponding dynamic strategy choice behavior models. 

Each process is distinguished by the player's cognitive ability, which is broken 

down into two steps:  1) his/her available information to his intended strategy; and 2) 

two types of rationality: cognitive rationality and instrumental rationality (Walliser, 

1998). Cognitive rationality deals with consistency between available information and 

constructed beliefs. Instrumental rationality entails consistency between given 

opportunities and fixed preferences, to determine strategies from prior expectations 

(Walliser, 1998). Each cognitive learning process has a different level of cognitive 

and instrumental rationality. 

The four types of cognitive processes introduced by Walliser (1998) consist of the 
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following, listed in decreasing order of a player’s cognitive capacity:   (1) eductive 

learning; (2) epistemic learning; (3) behavioral reinforcement learning; and (4) 

evolutionary learning. Figure 2.1 shows the decreasing order of cognitive capacity for 

each learning process. As noted, each type of cognitive learning process is 

differentiated from the others by the respective levels of cognitive and instrumental 

rationality. These can be described as follows: 

- Eductive process: “each player has enough information to perfectly 

simulate the others' behavior and gets immediately to the equilibrium” 

(Walliser, 1998).  

- Epistemic learning: “each player updates his beliefs about others' future 

strategies, with regard to their sequentially observed actions.” (Walliser, 

1998). (e.g. Belief Based Model) 

- Behavioral reinforcement learning: “each player modifies his own 

strategies according to the observed payoffs obtained from his past 

actions.” (Walliser, 1998).  

- Evolutionary learning: “each agent has a fixed strategy and reproduces in 

proportion to the utilities obtained through stochastic interactions.” 

(Walliser, 1998).  
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Decreasing Order of Cognitive Capacity

 
Figure 2.1 Order of cognitive rationality by learning process  

This study excludes two extreme cases - eductive learning and evolutionary 

learning - because these two learning processes assume either perfect rationality or 

null rationality. In reality, a player has a limited ability to rationalize his or her 

decisions in an auction game. This study presents two dynamic strategy choice model 

structures, corresponding to the assumptions behind the following two types of 

cognitive learning process: epistemic learning and behavior-reinforcement learning. 

 

2.2. Eductive Learning Process 

The eductive learning process (Binmore, 1987), is generally used for a one-shot 

game; it assumes that a player has complete prior information about the other players' 

rationality and about their characteristics (opportunities, prior beliefs, and 

preferences) (Walliser, 1998). Game structure is assumed to be common knowledge, 

which means that players know others’ knowledge about game. Therefore, a player 

with perfect cognitive rationality can simulate other players’ behavior.  

With eductive learning, each player enjoys perfect instrumental rationality and 

chooses a strategy by optimizing the utility function on his or her strategy set, 
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corresponding to the opponents' expected strategies. Players can simulate the 

opponent’s behavior, as well as their own behavior in a completely strategic situation. 

This strong assumption leads to pure Nash equilibrium. In the eductive process, a 

player’s behavior is perfectly described and there are no variants, since the 

assumption is that the player’s level of rationality is extremely high. 

 

2.3. Epistemic Learning Process 

Epistemic learning assumes that a repeated game is played over a sequence of 

periods. Players always know their own characteristics, but they have only 

incomplete information regarding their opponents' behavior or rationality, as they can 

observe the whole sequence of the others' decisions and draw the distribution of 

opponent’s actions. A player cannot uncover the opponents’ cognitive types from 

their choice decisions, but may simply assume their opponents’ instrumental 

rationality, such as that reflected by some form of stationarity of opponents’ behavior 

(Walliser, 1998). Epistemic learning behavior is observed easily in reality. With 

epistemic learning, a player’s behavior must be different from that observed with 

eductive learning, because beliefs are updated with respect to time and chosen actions. 

However, the observation and computational costs are higher for epistemic versus 

eductive learning. 

Limited cognitive rationality of players is assumed, since they determine their 

strategy through conjecture about their opponent’s future strategy, based on an 

observation of his/her past actions. Accordingly, players choose a best response to 
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their present conjecture regarding others' strategies each period. A player predicts the 

other's future actions as some combination of past occurrences. The important feature 

of this epistemic learning model is specifying prior beliefs and computing an initial 

value of preference, based on that prior belief.  

 

2.4. Behavioral Reinforcement Learning Process 

The behavioral reinforcement learning process is also used for repeated games. A 

player always knows his/her own opportunities, but he/she is no longer aware of the 

type of opponent or his/her past actions and payoffs. A player having weak cognitive 

rationality only knows his/her past experiences, and revises his/her experience 

according to the utility obtained from each strategy in past actions. With behavioral 

reinforcement learning, each player has limited rationality, so that he or she imitates 

past actions, which are reinforced by strategies that have succeeded and inhibited by 

strategies that have failed in past games. Moreover, each player may imitate the 

behavior of other players who have succeeded in the past, if their strategies and 

results are readily observable. Hence, the utility of a player is updated by observing 

his or her sequence of actions and corresponding payoffs.   

Behavioral reinforcement learning behavior again takes place in real time, and 

always is achievable, since behavioral reinforcement learning can be applied easily 

from period to period (Walliser, 1998). In addition, the information and computation 

costs are lower than for epistemic learning, since only the player's own results are 

checked and memorized, and expectations about other players’ actions are not 
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included in the computational process. Specifying the player’s own preference and 

computing the initial value of that preference comprise the crucial features of the 

behavioral reinforcement learning model.  

In epistemic learning, players try to find the maximum payoff, based on their 

opponents’ choice probability, but in this case, even if a player has information about 

his/her opponent’s choice, he/she just observes and imitates the best response of the 

competitors. 

 

2.5. Evolutionary Learning Process 

An evolutionary process also assumes a repeated game. A player is no longer 

aware of the game structure and only has information about his/her actions if the 

strategies depend on it. With evolutionary learning, each player has no cognitive 

rationality. A player behaves in a preprogrammed, time-invariant and unconscious 

way to choose a strategy, and his or her action automatically is decided based upon 

behavior type: ‘if context C, then action A’ (Walliser, 1998). A player does not make 

his/her own decision, since that player’s behavior is not determined at an individual 

level any more but at a population or subpopulation level. Also, each player has null 

instrumental rationality, since a player is not aware of his/her utility; only the modeler 

has that information. This learning process is a highly-adaptive model, since new 

information is used at a subpopulation level to identify a new direction associated 

with better utilities (Walliser, 1998).  
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2.6. Comparison 

2.6.1. Information 

As stated earlier, the four cognitive learning processes, from eductive to 

evolutionary learning, can be ordered by decreasing cognitive capacity and 

decreasing information about one’s strategic environment. In eductive learning, a 

player has complete knowledge about his opponent’s behavioral rules and beliefs, and 

players can forecast their own future strategies in all circumstances. In epistemic 

learning, the player has limited information about others' past actions and payoffs, but 

players are no longer aware of the opponent’s behavior principles. A player can 

formulate expectations regarding their opponent’s strategies. In behavioral learning, 

players can access information about their actions and payoffs by observing their 

successes and failures in the past. With the evolutionary process, the player 

eventually acquires information about their actions from subpopulation decisions, and 

he or she can choose to imitate those subpopulation decisions. 

In addition, progressing from eductive to evolutionary learning, the decision-

maker holds increasingly limited information about his own type, and is endowed 

with decreasing instrumental rationality. With the eductive process, the player 

maximizes his expected utility under known constraints, including information that 

perfectly predicts the opponent’s strategies. In epistemic learning, the player 

considers a utility function limited to short-term effects, since he or she observes 

other opponent’s decisions in the past and then decides his or her action depending on 

that information. In behavioral learning, the player simply adapts his or her behaviors 
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to past utility, in a probabilistic way. In the evolutionary process, the player no longer 

improves his utility, but adapts via a subpopulation utility-increasing mechanism 

(Walliser, 1998).  

2.6.2. Interaction 

A player’s decision is affected by interactions between competitors, and this 

causes stochastic decision-making behaviors. The stochastic elements occur from 

disturbances related to imperfect observations and incomplete modeling. The eductive 

process reduces stochastic elements by providing the possibility of mixed strategies, 

since a player can predict other players’ strategies. In epistemic learning, players' 

beliefs regarding others' behaviors are affected by stochastic uncertainty (Goyal-

Janssen, 1995). Players' observations of other’s results are affected by sample bias in 

behavioral learning, because there is no information about the opponent’s type. Also, 

the player’s own behavior becomes probabilistic. In the evolutionary process, player’s 

meetings to make subgroups are stochastically driven (Walliser, 1998).  

2.6.3. Dynamics 

In general, from eductive to evolutionary learning, the learning processes are less 

and less affected by the virtual dynamics of game simulation in a player’s mind, and 

more and more affected by the real dynamics of game progress, as a result of the 

player’s moves (Walliser, 1998). With eductive learning, there is no dynamic in 

outside reality, since the player completely simulates the player’s behavior, with 

common knowledge in his mind, before making a decision in all games. In epistemic 

learning, the objective dynamic effects are more involved with the opponent’s past 
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actions, which are incorporated in the players' beliefs and expectations. Behavioral 

reinforcement learning shows that subjective dynamics affect a player’s decision-

making behavior and are included in the prediction of his or her own actions in the 

future, resulting from observing the player’s own past actions. In evolutionary 

learning, the reproduction of the next population’s distribution involves stochastic 

matches (as a subgroup) of players, which demonstrate the dynamics (Walliser, 1998). 

Therefore, evolutionary learning assumes that there is pure temporality without 

reasoning.  
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Chapter 3. Literature Review: Theoretical Principles 

This chapter presents the characteristics of auction games and reviews the relevant 

literatures on game and choice theories. The dissertation deals with a sequential-

decision type of game and related cognitive learning models for strategic and 

bounded rational players. We focus on the literatures regarding dynamic learning and 

decision choice models that have been studied fundamentally in game and choice 

theories. In particular, the game theory literature related to decision behaviors in 

sequentially-repeated games is reviewed. This chapter includes an overview of 

existing cognitive learning and dynamic choice model frameworks. 

Section 1 describes the definition and concepts of auctions as pricing mechanisms 

and the competitive circumstances that exist in auction games. In Section 2, Nash 

equilibrium and probabilistic equilibrium are compared. In Section 3, game theory 

and choice theory are compared. Section 4 discusses the assumptions of cognitive-

learning models, based on the game theory in experimental economics, and presents 

the existing model frameworks for cognitive learning processes. Section 5 presents 

two types of dynamic choice model, and discusses the assumptions and estimation 

procedures that exist in choice models 
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3.1. The Competitive Environment of Auctions  

3.1.1. Auctions as a Price Decision Mechanism    

Fixed-pricing or static time-differential pricing mechanisms are widely used in 

many existing electronic markets, because of their simplicity. However, in reality, 

there is variation in customers’ demands over time. For this reason, those fixed 

pricing mechanisms are insufficient. Therefore, the importance issues of e-services 

and efficient pricing have emerged in existing electronic markets. Price is an 

important signal for controlling fair allocation of resources (Lee and Szymanski, 

2005). However, people have difficulty making price decisions, because of the variant 

dynamics of pricing. An auction can be a solution. An auction is a continuously-

adjustable dynamic pricing mechanism that adapts efficiently to changing market 

conditions. 

Auctions are market institutions with an explicit set of rules determining resource 

allocation and prices, based on bids from market participants (McAffee and McMillan, 

1987). The design of an auction and a specified set of rules determine the type of 

auction model, the outcomes of the auction, and the system by which bidding is 

conducted, how information is revealed, how communication is structured between 

buyers and sellers, and how allocations and payments are settled (Figliozzi, 2004).  

This dissertation does not deal with the design of an auction; rather, it analyzes 

how the dynamic learning process is conducted, or how information is processed in 

an auction game. The study contained herein adopts existing standard auction 
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mechanisms and analyzes the effect of the competitive environment of the auction on 

players’ bidding decisions. The decision problem is strategic in nature, due to the 

interdependence of competitors’ bids, costs and profits (Figliozzi, 2004). Therefore, 

the competitive player’s behavior is analyzed in the dynamic strategy choice model 

context. 

As mentioned before, auctions are mechanisms for determining the price of an 

object or a service in the presence of multiple bidders, and can be analyzed as a 

choice game. In electronic market environments, the use of an auction provides 

several benefits. First, auctions generally are easy to understand, and they are easy to 

access by both customers and service providers. Second, the rules and procedures of 

an auction system usually are easy to implement in automated electronic 

environments (Bichler, 2001). Third, an auction eliminates any need for defining 

complex dynamic pricing structures. Fourth, auctions support decentralized pricing 

and, therefore, avoid abusive market practices (McAfee and McMillan, 1997). Fifth, 

auction mechanisms are remarkable, since the auction form relies on modern social 

information processing technologies (Milgrom, 1998). Interactive network 

technology makes it easy for decision makers to access the auction mechanisms.   

Furthermore, auction-based electronic marketplaces for the procurement of 

transportation services are believed to provide a high level of service for shippers, 

while controlling and reducing their operational costs. Carriers also benefit through 

easier access to the market, and via more efficient operations associated with fewer 

empty movements.  
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3.1.2. Bounded Rationality under Price Competition in a Market 

In the classic model of price competition, named after Bertrand (1883), 

equilibrium, when at least two firms are in the market, exists when price is equal to 

marginal cost. In effect, each firm makes zero profits, even in a duopoly. Since 

observations from real markets are not matched with this result, this phenomenon is 

called the ‘Bertrand Paradox’. It reports the dynamic results of markets in which 

participants compete for prices: the effect of changing the number of competitors on 

outcomes of the market. The next situation explains the Bertrand model, and 

demonstrates the unique circumstance of Nash equilibrium, in which both firms 

choose zero value. 

It is assumed that, if more than two firms intend to compete in the market, at least 

two of them will choose zero in any equilibrium. This game can generate examples of 

common critiques of the Bertrand model and Nash equilibrium. In particular, it has 

been argued, among economists, that certain assumptions of the Bertrand model and 

Nash equilibrium are not realistic. They point out that the Bertrand paradox goes 

away if the assumption is relaxed, if goods are not assumed to be homogeneous, if 

capacity constraints are introduced, or if firms are allowed to compete repeatedly 

(Dufwenberg and Gneezy, 1998). Furthermore, firms may have incomplete 

information about payoffs and cost functions or demands. Economists suggest an 

explanation that relies on bounded rationality. This illustrates the effect of ‘noise’ on 

the variability of decision outcomes, when there is competition among players.  

Dufwenberg and Gneezy (1998) proved that, if any firm in the market may bid 
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differently from Nash equilibrium as the outcome of a Bertrand model, this explains 

why deviations from the Bertrand outcome depend upon competition between a 

number of agents. Based upon this theoretical prediction, all firms are supposed to 

submit the lowest possible bid, irrespective of how many agents are in attendance. 

However, when investigators have tested this model experimentally, they have 

discovered that, during the initial stage (the first game), competitors set prices higher 

than they would with Nash equilibrium. In subsequent rounds, if more than two 

competitors attend the game, the winning bids typically converge rather rapidly 

towards the theoretical prediction, in two out of three treatments. These experimental 

findings suggest that learning plays a role, since behavior tends not to be consistent 

across time in all games.  

In reality, it seems unlikely that each agent is fully convinced that every other 

agent will behave in accordance with equilibrium, since they assume that competitors 

are fully rational and have perfect information. A little bit of irrationality can occur in 

the variability of decision behavior in a game, and this differs from the theoretical 

prediction generated by Nash equilibrium, even if a large enough number of 

competitors interact. Accordingly, the effect of competition among competitors is a 

critical factor to explain a player’s bidding behaviors while decision making.  

3.1.3. Effect of Multiple bidders on Bid Decisions in Online Auctions 

An analysis of sequential auctions can be applied for the same good, ordered in 

time. Online sequential auctions are different from non-internet sequential auctions, 

in that the number of auctions is not fixed. Bidders enter those auctions at different 
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times, and may have participated in different numbers of auctions. This uncertainty in 

bidding behavior is an interesting issue. Few studies have studied the theory of 

optimal bidding strategy in sequential auctions. It is very good model by which to 

show how uncertainty may affect bidders’ bidding strategy.  

Arora et al (2003) assume that uncertainty occurs because of a lack of information 

about the number of bidders. The bidder is assumed to know the distribution of the 

reservation values of the other bidders, but the actual values are private to each bidder. 

Under the certainty assumption, the optimal bidding price is independent of the 

strategies of other bidders during the first auction. These investigators proved that 

bidders would like to bid less than their reservation values in a first auction (a player 

submits the highest bid price win the game). If they have greater payoffs in the 

second auction, a lower bidding price is provided. When the number of bidders 

increases, each bidder faces more competition in the second auction, which makes the 

second auction less valuable to him or her. Hence, bidders increase their bids during a 

first auction (Arora et al, 2003). 

If the number of bidders is unknown, the optimal bidding price is independent of 

the number of bidders participating in the first auction, and it is independent of the 

first auction bidding function. This implies that rational bidders will bid higher if they 

expect a larger number of bidders in a second auction (Arora et. al, 2003). Under 

risky or uncertain circumstances, bidders will bid less in the first auction, in order to 

win the game, if the second auction is anticipated to be more risky. Under conditions 

of bidding uncertainty, these investigators assumed that bidders only perceive the 

distribution functions of a number of bidders. This demonstrates the impact of the 
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mean number of bidders, and its variability on a new bidder’s strategy. Both the mean 

number of bidders and its variability in the subsequent second auction affect a new 

bidder’s decision in the first auction. A larger mean number of bidders in the second 

auction means more competition, therefore less value to new bidders; hence, new 

bidders bid higher during the first auction. In on-line auctions, we are not able to 

observe the market participants’ expected number of bidders, nor are we able to 

observe the perceived variance in the number of bidders.  

It is critical, then, to distinguish what the difference is between online and offline 

sequential auctions. The number of bidders in online auctions is likely to vary 

stochastically. In on-line auctions, more uncertainty can exist than in non-online 

auctions, and this affects the competition between players. Those uncertainty factors 

should be modeled and included as components of the utility function, and as 

unobserved noise factors.  

 

3.2. Nash Equilibrium vs. Probabilistic Equilibrium: Noisy Behavior in Auctions 

This section introduces the probabilistic equilibrium models proposed by Andern, 

Goeree and Holt (1999), especially their logit equilibrium model of noisy behavior in 

auction-like games with a ‘Traveler’s Dilemma’ example. This illustrates why we 

need to study the dynamic learning process and why we need to develop a dynamic 

strategy choice model structure. Additionally, it suggests to which cases those 

suggested models are most appropriately applied.  
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Nash equilibrium (strategic equilibrium) is a list of strategies, one for each player, 

which has the property that no player unilaterally can change his strategy and acquire 

a better payoff (Osborne, 2004). Nash equilibrium in these types of games is 

insensitive to parameter changes. It cannot show the effect of randomness, called 

‘noise’, that can occur, because of unobserved shocks in preference. More often, it 

appears when the observed payoffs become approximately equal. This randomness 

can be modeled using a probabilistic choice function, such as a logit or probit model. 

The probabilistic choice related to noisy behavior is introduced by being incorporated 

within these payoff asymmetry effects. A probabilistic choice function can be applied 

to the expected payoffs or to the utility, and this probability distribution satisfies a 

‘rational expectations’ consistency condition (Anderson, Goeree, and Holt, 1999). 

A probabilistic choice rule is to specify the utility function with a stochastic 

component, reflecting unobserved factors. A player is assumed to choose decision j  

such as claim amounts (bid price) and certain kinds of strategy choice sets. If j

nx  

denotes player n ’s decision j  with expected payoff )( j

nxπ , the utility function is the 

following (Anderson, Goeree, and Holt, 1999): 
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Here, if the coefficient is close to zero ( 0=µ ), then the decision with higher 

values of expected payoff is selected. This result is matched with the expected result 

from Nash equilibrium.  

In this case, this utility function includes only one parameter (payoff), but also an 

error term. In this dissertation, a sequential auction game is considered, and we 

develop different model specifications and error structures associated with the 

uncertainty of a player’s behavior and the player’s level of cognitive capacity, based 

upon that player’s dynamic learning process. 

A choice density is proportional to an exponential function of expected payoffs  

and it is expressed as (Anderson, Goeree, and Holt, 1999):  
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∫
=

x

x

dyx

x
xf

)/)(exp(

)/)(exp(
)(

µπ

µπ
                                                                                         (3.3) 

0)()()( '' =− xfxfx µπ                                                                                              (3.4) 

The above equation shows the differential equation in equilibrium choice density. 

This payoff function can vary with the type of auction. The choice probabilities are a 

smoothly-increasing function of expected payoffs, so that these probabilities are 

affected by the asymmetries in the cost of deviating from the payoff-maximizing 

decision (Anderson, Goeree, and Holt, 1999). The logit rule determines players’ 
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equilibrium distributions. This is known as a logit equilibrium. The logit equilibrium 

equation can be derived by understanding the learning and evolutionary dynamics 

that exist in games. In general, learning can be modeled in terms of beliefs about 

others’ decisions in epistemic learning, and in terms of a player’s own experienced 

payoff during behavioral reinforcement learning. 

The traveler’s dilemma is very good example of what the difference is between 

Nash equilibrium and logit equilibrium. It also explains why the logit equilibrium 

equation is more realistic than the Nash equilibrium concept. The following 

paragraph explains the situation that exists in traveler’s dilemma, as described by 

Basu (1994):  

 “Two travelers returning home from a remote island discover that the identical 

antiques they bought have been lost in the airplane. The airline manager proposes the 

following scheme to bring out the value of the articles. The two travelers are 

instructed to independently submit compensation claims between $80 and $200. The 

airline will reimburse each traveler the minimum of the two claims. In addition, if the 

claims differ, a reward of $80 will be paid to the person making the smaller claim and 

a penalty of $80 deducted from the reimbursement for the larger claimant.” (Basu, 

1994) 

In the traveler’s dilemma game, the unique Nash equilibrium claims $80 for both 

players. However, it seems very unrealistic that any individual, no matter how 

rational, will submit an $80 claim. 

Capra, Goeree, Gomez, and Holt (1997) collected laboratory datasets to test the 
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above traveler’s dilemma experiment. Their laboratory data revealed the frequency of 

claims and that the prediction of this model is sensitive to changes in penalty/reward. 

As the penalty increases, the probability increases that the claim is close to the unique 

Nash prediction. As the penalty decreases, the probability increases that the claim will 

be far from the unique Nash prediction ($80). For the low penalty case, Nash 

equilibrium cannot explain the player’s strategy choice behavior; because there is 

more unobserved stochastic factors affecting the player’s strategy choice decision. 

These examples demonstrate that the probabilistic equilibrium approach can be 

applied to a wide variety of interesting economic contexts. In this case, for both low 

and high-penalty cases, the probabilistic choice model can describe a players’ 

behaviors and can statistically match the actual claims and frequency datasets.  

Anderson, Goeree, and Holt (1999) proposed that logit equilibrium is a one-

parameter generalization of Nash, by including the unobserved shock of preference as 

an error term. It can be evaluated using a maximum likelihood estimation of the 

laboratory data. Logit equilibrium can explain human decision behaviors for both 

one-shot and multiple-shot games. The Nash equilibrium value is probably close to 

the optimal value for the one-shot game case. In this experiment, the investigators 

believed that the error term explained the unobserved behavior. Moreover, the 

coefficient of the error parameter,µ , reflects human behavior, because no one can be 

perfectly rational and have full information. Higher values of the error parameter µ  

make choice probabilities less sensitive to expected payoffs. This means that we need 

to specify what other factors can affect the decision-making process in the game, and 

how differently we can model it. Therefore, we can add more specific public or 
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private information parameters to the utility function, including the payoff function, 

in order to specify more unobserved factors.  

Choice is stochastic, and the distribution of random variables determines the form 

of the choice probability. Therefore, if the random variable is normally distributed, 

the probit model can be applied; whereas the logit model is used for random variables 

with a Gummble distribution. In a simple case, Anderson et al (1999) applied the 

logit model with strong assumptions about the unobserved error term. The random 

components of the utilities of the different alternatives in the MNL model were 

assumed to be independent and identically distributed (IID), and to have a Gumbel 

distribution. Also, the independence of irrelevant alternatives (IIA) property holds in 

the logit model (Ben-Akiva and Lerman, 1985). The above previous researches could 

not consider the interactions among players, because of this strong assumption in 

error terms. We have come to realize the limitations of the MNL model; hence, the 

new dynamic multinomial and mixed logit models are applied in this dissertation. 

 

3.3. Game Theory and Discrete Choice Modeling 

Game theory has developed to provide insight into the outcome of game situations 

under different behavioral assumptions regarding the players’ preferences and 

decision rules, and various assumptions about information availability and other game 

settings. Game theory has provided a natural first approach to analyze auction-based 

electronic marketplaces that have been popularized through the Internet for a variety 

of general-purpose and specialized applications. Such marketplaces for freight service 
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procurement allow carriers to interact dynamically with shippers in the competitive 

acquisition of shipments (loads), and the assignment of loads to carrier fleets. Carriers 

compete by bidding for shipments tendered by the shippers. Recent work by Figliozzi, 

Mahmassani and Jaillet (2003a, 2003b, 2005) has focused on the effect of dynamics 

on bidding behavior, and developed a model framework for examining the 

performance of such marketplaces in terms of carrier profit and shipper service levels. 

That work has also highlighted the limitations of classical game theory in capturing 

dynamic interaction effects on bidders’ behavior in repeated auction games (Figliozzi, 

2004).  

The perspective adopted in this study is that of an analyst or observer (which may 

also be a competitor) seeking to predict the outcome of the bidding process followed 

by a player in a repeated auction game. Because real situations may depart 

significantly from the ideal conditions assumed in classical game theory, especially 

with respect to the dynamics of information in repeated games, we present a dynamic 

strategy choice model framework that recognizes, in specification and 

parameterization, the nature of multi-player interaction and its dynamics over 

multiple bids (plays). Given actual observations of carrier bids under specific 

information availability scenarios, the model can be calibrated to reflect the particular 

interaction patterns present in that situation. The dynamic strategy choice model 

presented in this study uses both concepts from discrete choice theory and game 

theory to model bidder (carrier) behavior in repeated auction-type games. In order to 

understand the nature of the dynamic strategy choice model, this section describes the 

differences and similarities between game theory and discrete choice models.  
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Discrete choice models are commonly used in transportation demand studies, 

marketing and other disciplines to represent and predict decisions made by 

individuals facing discrete choice alternatives. The most commonly used model forms, 

such as generalized extreme value models, multinomial probit and mixed logit, are 

derived from random utility maximization (Ben-akiva and Lerman, 1987; Train, 

2003). Decision-makers are assumed to base their choice on the relative utility they 

associate with each of the available alternatives. This utility is a latent variable, which 

depends in a systematic manner on various observable attributes of the alternative and 

the decision-maker, as well as on unobservable component which may only be known 

in distribution to an analyst interested in representing the decision-maker’s 

preferences and choice process. The form of the distribution of unobservables and its 

properties determines the mathematical form of the choice probability function. In 

typical travel decision situations addressed through discrete choice models, the 

decision maker’s evaluation of the alternatives and subsequent actions are not 

generally directly affected by other individuals’ choices or preferences; exceptions 

include instances of household interactions and/or firm level decisions which take 

place in a cooperative setting. In static applications of discrete choice models, the 

individual’s decision does not directly interact with another player’s action or payoff. 

Even applications to dynamic decision settings have generally only considered the 

individual’s own previous decisions and associated consequences (which may 

nonetheless in turn depend on the users’ collective decisions). Under competitive 

circumstances, this is not a realistic mechanism to apply. 

In game theory, players choose the strategy or action that maximizes their 
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respective payoff. As is common in microeconomic theories, game theory assumes 

that players are perfectly rational, with common knowledge and unbounded 

computational capabilities. The well-known Nash equilibrium theory is also built on 

those strong assumptions. Under a Nash equilibrium (strategic equilibrium), no player 

can attain a better payoff by unilaterally changing his/her strategy (Osborne, 2004). A 

Nash equilibrium in these types of games is insensitive to parameter changes, both 

systematic and random, e.g. unobserved “shocks” in preferences (Anderson, Goeree, 

and Holt, 1999). Experimental evidence suggests that the final equilibrium predicted 

by this theory does not match observed equilibrium conditions too well. Since people 

learn what other people will do, and tend to adjust to it, experimental equilibrium 

values will often deviate from those expected under Nash equilibrium. Furthermore, 

people with different histories and characteristics do not typically attain the same 

common knowledge. Some of the unobserved variation across players could be 

modeled using a probabilistic choice function. However, to complete the 

representation in a repeated game setting, it is necessary to introduce a description of 

the dynamic (cognitive) learning process associated with human choice behavior. 

Game theoretic formulations do not typically include latent variables in the model 

structure to describe individuals’ (or agents’) decision-making processes, under the 

assumption of perfect rationality. In actual games, a player’s decisions will be 

affected by previous payoffs, as well as by current and past actions of competing 

players. The assumptions of perfect rationality and perfect knowledge or information 

under such conditions become difficult to sustain, and bounded rationality becomes a 

more plausible notion in describing the decision-making process and its dependence 
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on individual history. If the player can predict his/her opponent’s action in a game, 

he/she can choose the best action corresponding to the other player’s action. 

Therefore, a player tries to (implicitly) model the opponent’s behavior function based 

on historical data. The existing model framework from classical game theory is 

therefore not sufficient to describe and predict choice behavior under a competitive 

environment, such as repeated auction game situations encountered in electronic 

freight marketplaces. A dynamic strategy choice model is presented in this 

dissertation as a framework to describe players’ choice behavior in such environment. 

 

3.4. Game Theoretic Learning Models 

3.4.1. Introduction 

Since the 1950’s, game theory has became a popular research field among 

economists. Game theory traditionally has been considered to be the theory of 

strategic interactions among players who are perfectly rational, and who exhibit 

equilibrium behavior (Erev, 1998). Game theory, as a part of economic theory, has 

exerted the greatest contribution to design auction mechanisms. Nash equilibrium has 

proven to be a powerful instrument to analyze a player’s perfectly rational behavior. 

As mentioned before, in reality, people do not act in the way postulated by Nash 

equilibrium models. Since the late 1980’s, evolutionary game theory has been studied 

as a means to explain a player’s behaviors in an auction game. This section presents 

the existing mathematical frameworks in evolutionary game theory, and the learning 

assumptions that exist in experimental evolutionary learning models. 
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Several mechanisms have been proposed to explain player’s choice behaviors in 

sequential repeated games. However, most of these perspectives have not been able to 

completely explain the actual time-scale of equilibration in complex games. In a non-

cooperative game, people learn how to play through experience. Consequently, 

evolutionary learning theory is important to understanding equilibration theoretically, 

and to explaining the changes in strategic behavior observed in the lab and in the field. 

In recent years, evolutionary learning theory has been proposed by game theorists 

and experimental economists. They have focused a great deal of their attention on the 

question: how do people learn in repeated games (Nyarko and Schotter, 2002)? The 

goal of this theory is to understand how equilibrium can arise in the long term for 

multiple players who need not to be rational or even conscious decision makers. The 

learning models consider the limitedly-rational player’s adaptive behavior in a game. 

Experimental economists have modeled empirically-observed behavior, based upon 

the foundations of equilibrium theories.  

Arthur (1991), Mookherjee and Sopher (1994), Roth and Erev (1995, 1998), and 

Borgers and Sarin (2000) proposed reinforcement learning models in which people 

learn by looking back at their experiences and seeing what has been successful for 

them in the past. Belief-based models in epistemic learning have been developed by 

several economists: Boylan and El-Gamal (1993), Mookherjee and Sopher (1994, 

1997), Cheung and Friedman (1997), Rankin, Van Huyck, and Battalio (1997), 

Fudenberg and Levine (1998), and Nyarko and Schotter (2002). They focused on a 

player’s epistemic learning behavior and assumed that beliefs are updated by their 

opponent’s future actions. Furthermore, Camerer and Ho (1998, 1999, 2002) offered 
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a mixed model based upon both reinforcement and belief-based models. In the next 

sections, those experimental learning models are reviewed.  

3.4.2. Belief-based Models 

Belief-based models are based on the concept of epistemic learning. Belief-based 

models assume that, while past actions and payoffs are observable, beliefs are 

unobservable and, therefore, must be represented by proxies and inferred (Nyarko and 

Schotter, 2002). In a γ-weighted belief model, the weighted average of past action is 

taken as a proxy of beliefs, and all weights are decreased by the ratio of γ (Rankin, 

Van Huyck, and Battalio, 1997).  

Boylan and El-gamal (1993) proposed two belief-based models: Cournot5 play and 

fictitious6 play. They then compared the predictions generated by these two models. 

They identified which types of game were consistent with the Cournot and which 

with the fictitious play model. Cheung and Friedman (1997) also developed two types 

                                                 

5 The Cournot adjustment model, first proposed by Augustin Cournot (1838) in the 

context of a duopoly, has players select strategies sequentially. In each period, an 

agent selects the action that is its best response to the action chosen by the competing 

agents in the previous period. Cournot learning can be the extreme form of fictitious 

play in which each firm assumes that its competitor is using the same strategy in 

every period which is equivalent to the one most recently used. (source: 

http://www.gametheory.net/Dictionary/) 

6  A process by which players assume that the strategies of their opponents are 

randomly chosen from some unknown stationary distribution. In each period, a player 

selects her best response to the historical frequency of actions of his/her opponents. 

(source: http://www.gametheory.net/Dictionary/) 
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of play, and compared their two different belief-based models. In addition, they 

developed a more general model, a form of hybrid model, which includes both types 

of play. The γ-weighted empirical belief in a hybrid model is defined by Cheung and 

Friedman (1997): 
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Fictitious play is the special case, in which γ=1; and Cournot belief is the special 

case in which γ=0. The optimal γ* can be the value of γ that minimizes the distance7 

between stated beliefs 8 ( )(tSB ) and γ-weighted empirical beliefs ( )(tB ) in terms of 

mean square error. 

Nyarko and Schotter (2002) investigated a belief-based learning model. They 

concluded that people behave in a manner consistent with belief learning. 
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8 the true probability assigned to the chosen action until period t  
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Furthermore, they recommended that the types of belief used as inputs to these 

models need to be specified carefully. They found that the outcomes of stated beliefs 

differ from the outcomes of empirical beliefs, since unobserved factors affect the 

player’s choice of behavior. This demonstrates how important it is for the model to 

capture the effect of unobserved interactions between competitors. By transforming 

an unobservable into an observable interaction, we can witness directly how 

parameter estimates change when new information is introduced (Nyarko and 

Schotter, 2002).  

3.4.3. Reinforcement Models 

Belief-based models assume that players hold beliefs about the likelihood of an 

opponent’s action, and assume that the players choose their actions based upon their 

expected payoff, given these beliefs (Feltovich, 2000). On the other hand, 

reinforcement-based models do not require players to formulate any beliefs about 

their opponent’s actions, since players do not have information about their opponents’ 

type or actions. In reinforcement models, their strategies are reinforced relative to the 

payoffs they themselves earn over time, and players adjust their play to maximize 

these payoffs.  

Mookherfee and Sopher (1997) and Erev and Roth (1998) compared the outcomes 

of a belief-based versus a reinforcement model. They found that a reinforcement 

model is better than a belief-based model in describing player behavior within certain 

types of game, even though enough information was given in the belief-based model 

used in their experiment. However, the generality of their results is questionable, 
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since they only used data from their own experiments. 

Sarin and Vahid (1999) conducted experiments to compare two reinforcement 

models. One is the ‘fixed reference point’ model of Erev and Roth (1998), and the 

other their own ‘SV’ model. The SV model assumes that a player chooses whatever 

strategy maximizes their payoffs, given the belief that the payoffs of each strategy are 

equal to the weighted averages of past payoffs.  They concluded that an SV model 

can describe a player’s behavior in a game better than fixed reinforcement models can.  

Sarin and Vahid (1999) suggested a dynamic reinforcement learning model, which 

investigates how a player chooses action each time, given his or her own utility, 

which is updated with the player’s own experience. Each time, players choose the 

strategy that yields the highest payoff. During this process, players ignore all future 

implications of their current choice, in terms of future choices and payoffs (Sarin and 

Vahid, 1999). 

One form of SV reinforcement model is as follows (Sarin and Vahid, 1999):  

)()1()1()( ϖπλλ j
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where  

)(tU j

n : reinforcement level of player n  to choose strategy j  at period t  

λ : the proportional rate of player’s surprise to previous reinforcement (0<λ <1) 

                                                 

9 for the case of unchosen strategy at current time (λ =0) 
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)(ϖπ j

n : player n  ‘s payoff at period t  from choosing strategy j  given state of world 

(ϖ ) 

In this model, a player does not have information about the true choice 

environment, and does not update his or her subjective reinforcement about the 

payoff provided by other strategies. The above formulation shows that parameter λ  

determines how quickly the reinforcement approaches observed payoffs, and shows 

the effect of observed payoffs on reinforcement levels. 

Sarin and Vahid (1999)’s SV model is similar to a belief-based model (fictitious 

play), since both models are assumed to be myopic, ignoring the implications of 

current choices on future choices and payoffs. One’s beliefs are updated each period 

according to what one observes (Sarin and Vahid, 1999). However, the belief-based 

model assumes that beliefs are probabilistic, by observing the opponent’s actions; 

whereas the SV model is concerned with the player’s own payoffs from previous 

choices.  

3.4.4. Mixed Models 

Camerer and Ho (1998, 1999, 2002) developed a general experimental learning 

model (experience-weighted attraction learning (EWA) model) that incorporates 

elements from both the belief-based and reinforcement models. They illustrated that 

experimental learning models require the specification of initial attractions, how 

attractions are updated by experience, and how choice probabilities depend upon 

attractions. The EWA model assumes that each strategy has a numerical attraction, 

which determines the probability of a player choosing that strategy. In the experience-
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weighted attraction learning model, the attraction value, )(tA j

i ,
 
is updated to be the 

sum of a depreciated experience-weighted previous attraction, )1( −tA j

i , plus the 

weighted payoff from period t, normalized by the updated experience weight. 

Therefore, the attraction value and number of experiences are updated over time. The 

EWA model equation is as follows (Camerer and Ho, 2002):  
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ρ : depreciation rate that measures the fractional impact of previous experience, 

compared to one new period  
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)0(jnA : the initial attraction, which might be derived from similarity between 

strategies and strategies which were successful in similar games or from prior belief 

δ : a discount factor for the payoff of unchosen choice 

φ : a discount factor which depreciate previous attraction 

The EWA model utilizes all the information provided by the players and the game 

environment, which clearly is different than the belief-based and reinforcement 

models. Camerer and Ho (1998, 1999, 2002) showed that belief learning and reinforc

ement learning models are special cases of the EWA model. For this reason, they 

concluded that the EWA model combines both learning models and performs better 

than either of these two alternatives, estimating parameters using maximum 

likelihood estimations. Furthermore, the EWA model appeared to perform better than 

either pure model. However, the EWA model is incomplete, because it does not 

explain how a player’s information about opponents’ payoffs might influence 

decisions. In addition, this model does not capture the unobserved impact of 

competitive environment on bidding behavior and interaction among players’ 

cognitive learning processes. 

 

3.5. Choice Models 

3.5.1. Multinomial Probit Models 

Most previous choice theory models in the transportation field have utilized the 

multinomial logit (MNL) form. Two specific forms were used as the probabilistic 
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choice rule in most of the previously-mentioned studies on learning: exponential 

(logit) and power. Although multinomial logit models have the extreme advantage of 

having a choice probability with a simple closed form, which can be calculated easily, 

the models nonetheless are limited by being ‘independent of irrelevant alternatives’ 

(IIA). In order to overcome this problem, the generalized extreme value model (Train, 

1986), the heteroscedastic extreme value model (Bhat, 1995), and the multinomial 

probit model (MNP) have been considered, and these models allow for a more 

flexible correlation structure of the error term, which is assumed to be normally 

distributed.   

Among them, the MNP model provides the general framework to allow for 

interdependence of alternatives, with the most flexible pattern of error correlation 

structure in discrete choice analysis. Through this assumption, any error correlation 

can be postulated to capture the dynamic aspects of individual behavior, including 

state dependence, contemporaneous correlation, and taste variation (Jou, 1994). 

However, the MNP model is limited by computational difficulties associated with the 

evaluation of choice probabilities, including multidimensional normal integrals. The 

dynamic strategy choice model, under conditions of a competitive environment, also 

has multidimensional integrals for the multinomial density function, for which there 

is no closed form solution.  

The dynamic multinomial probit model requires approximation methods to 

estimate parameters. Lerman and Manski (1981) first proposed a simulated maximum 

likelihood method by which to evaluate the multidimensional integrals required by 

the MNP model. A number of approximation methods have been proposed, but most 
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approximation simulators have not been applied widely, because their results have not 

been accurate enough to satisfy empirical researchers.  

Since the late 1980s, there have been steady advances in multinomial probit 

estimations (McFadden, 1989; Lam and Mahmassani, 1990; Bunch, 1991; Bolduc 

and Ben-Akiva, 1991; Bolduc, 1992; Geweke et al, 1994). McFadden (1989) 

proposed an efficient approximation method for multinomial probit applications, 

which exhibited computational efficiency in seeking model parameters. Lam and 

Mahmassani (1990) proposed a new MNP model estimation program, using a VMC 

(vectorized Monte Carlo) simulation procedure and new implementation of quasi-

Newton BFGS (Broyden-Fletcher-Goldfarb-Shanno) nonlinear procedures to handle 

the large numbers of choice alternatives and general specifications. This estimation 

program has been applied successfully to dynamic travel behavior models with up to 

17 alternatives (Mahmassani and Jou, 1996). Bunch (1991) simplified the 

multinomial probit model’s covariance matrix; and Bolduc (1992) used auto-

regressive errors for the multinomial probit estimation method with a large choice set, 

by means of simplifying its covariance matrix. Geweke et al (1994) proposed using a 

method of simulated moments, or alternatively using simulated maximum likelihood 

estimators with the GM recursive probability simulator, in order to estimate 

multinomial probit model parameters. Recently, Liu and Mahmassani (2000) 

presented a GAMNP model that incorporates genetic algorithms (GAs) and nonlinear 

programming (NLP) techniques to achieve a global optimum in maximum likelihood 

estimation.   

The numerous improvements in the estimation algorithms and the simplification of 
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the covariance matrix both encourage the application of multinomial probit models 

more broadly in the field, because they are fundamentally more flexible than the 

multinomial logit model. Therefore, the MNP model estimation program is applied to 

the estimation of dynamic competitive strategy choice model, and these estimation 

procedures are discussed further in Chapter 4. 

3.5.2. Mixed Logit Models 

Multinomial probit models have long been considered infeasible, because 

calculating the choice probabilities requires the evaluation of multiple integrals with 

no simple closed form solutions; in addition, their flexibility in the MNP model 

comes at a cost. Recent studies have shown that the mixed logit probability simulator 

can be one of the solutions to overcome problems in the MNP model, by means of an 

easy-to-compute and unbiased simulator. Adding the i.i.d. Gumbel term to the normal 

error terms leads to a particularly convenient and attractive probability simulator, 

which is the average of a set of logit probabilities.  The mixed logit or kernel logit 

probability simulator has all of the desirable advantages of a simulator, which include 

being convenient, unbiased and smooth (Ben-Akiva, Bolduc, and Walker, 2001). 

The mixed logit model was introduced both by Boyd and Mellman (1980) and by 

Cardell and Dunbar (1980). A more general model structure was required for the 

smooth probability simulators used in estimating mixed logit models. Since 1980, 

several papers have been published investigating various aspects of the mixed logit 

model, such that the model has become extremely popular in the literature (see 

McFadden 1989; Bolduc and Ben-Akiva 1991; Stern 1992; Bolduc, Fortin and 
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Fournier 1996; Bhat 1997 and 1998; Train 1998; Brownstone and Train 1999; 

Brownstone, Bunch and Train 2000; Goett, Hudson, and Train 2000; Srinivasan and 

Mahmassani 2000; Walker 2001 and 2004;  and Srinivasan and Mahmassani 2005). It 

has been used in a wide variety of application areas. 

Train (1998) and Bhat (1999) applied mixed logit formulation to capture 

heterogeneity in behavior across decision-makers for recreational demand and joint 

mode and departure time choice behaviors. These researchers demonstrated that the 

kernel logit model with normal errors is a more general form of mixed logit model, 

which can combine Gumbel errors with multivariate normal distributions (McFadden 

and Train 2000). This kernel logit model can be more flexible and realistic than the 

probit model, with fewer computational costs; it also allows for various model 

specifications.  

While the number of logit kernel applications has been growing rapidly in the 

literature, the identification issue largely has been ignored.  Recently, Ben-Akiva, 

Bolduc, and Walker (2001, 2004) presented a general framework for the specification, 

identification, and estimation of the logit kernel model. Srinivasan and Mahmassani 

(2003, 2005) also investigated the theoretical foundation of the dynamic kernel logit 

model.  

A few investigators have applied the dynamic kernel logit model to longitudinal, 

discrete-choice data (Revelt and Train 1998; Goett, Hudson, and Train 2000). 

Srinivasan and Mahmassani (2005) utilized the dynamic kernel logit method to model 

longitudinal, discrete-choice data. They derived a dynamic kernel logit (DKL) 
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formulation with normal errors for unordered discrete choice panel data. In addition, 

they presented the theoretical identification, suitability and properties of the kernel 

logit model, as well as the computational efficiency of DKL model performance. In 

this dissertation, the mixed logit model estimation procedure is applied for the 

dynamic strategy choice model under competitive environment. We compare those 

results to estimation results provided by the multinomial probit model in Chapters 6 

and 7. 
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Chapter 4. Research Methodology 

4.1. Introduction 

This dissertation is about the learning models used to describe a player’s strategy 

choice behavior using experimental data. Our goal has been to explain, as accurately 

as possible and for every choice in an experiment, how that choice arises from the 

nature of multi-player interactions and their dynamics over multiple bids. Therefore, 

the principal focus of this dissertation is how to model a player’s dynamic strategy 

choice behavior under the pressure of competition. We are most interested in which 

models describe human behavior best, when players make repeated decisions along 

with or in response to competitors’ decisions. We propose a general dynamic strategy 

choice model framework and estimate the model parametrically, using two sets of 

experimental data.  

This chapter presents the dynamic strategy choice modeling methodology to 

represent the dynamics of bidders’ behavior and their learning processes in auction-

based electronic freight marketplaces. As discussed previously, players in non-

cooperative and competitive games try to assimilate a certain amount of feedback 

information concerning their opponents’ bidding behavior, as they take part in similar 

auction games in a particular electronic market environment. This feedback 

information is an important factor in players’ decision-making processes. Previous 

studies of dynamic choice behavior have not generally considered these interactions 

and associated dynamics among individuals in relation to the decision-making 

process. Introducing this concept of competition impact into dynamic choice model 
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structures is this study’s principal contribution to the development of a new 

perspective on transportation behavior modeling in competitive environments.  

The modeling methodology refutes the generic assumptions of perfect player 

rationality and common knowledge. Different players may exhibit varying types or 

“degrees” of rationality, which depend on how much information feedback they 

receive, and their own experience. Between the two extremes of eductive and 

evolutionary learning mechanisms, this study explores two intermediate dynamic 

processes: the epistemic and behavioral reinforcement learning processes. As noted in 

the previous section, the epistemic process assumes that boundedly rational players 

revise incomplete beliefs about their opponents’ behavior, while the behavioral 

reinforcement process assumes that players with bounded rationality choose flexible 

strategies in response to their own past results (Walliser, 1998). Two different types 

of dynamic strategy choice model structures are developed, one for each dynamic 

learning process considered.  

The epistemic and behavioral reinforcement models have been treated as 

fundamentally different since 1950. Recently, a few researchers have asked whether 

the two learning models are related, based on the belief that people do not always 

apply the same learning process to every game. For this reason, two mixed learning 

models are formulated to explain the player’s mixed learning behavior. The epistemic 

and behavioral reinforcement learning models are special cases of the mixed learning 

model that incorporate both kinds of information.   

The dynamic multinomial probit (DMNP) and dynamic mixed logit (DML) 
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models are applied in this dissertation to provide the mathematical framework for 

modeling bidders’ dynamic strategy decisions. The DMNP and DML frameworks can 

be formulated for general discrete choice situations and can incorporate alternative 

behavioral theories, such as random utility maximization and bounded rationality. A 

key advantage of the DMNP and DKL model frameworks is that it allows flexible 

model specifications and realistic correlation structures for the analysis of dynamic 

discrete choices obtained from panel data. Of particular concern in this study is the 

effect of competition on multiple players’ bidding behavior. Accordingly, new 

DMNP and DML model structures are developed to capture players’ behavior in a 

competitive environment over time, including their reaction to the competitors’ 

bidding strategy. DMNP and DML model framework for dynamic decisions in 

competitive environments is introduced next.  The general structure of research 

methodology is illustrated in Figure 4.1.  

The next section presents the general discrete choice model formulation used to 

compare the new model frameworks. In Section 4.3, the model specifications of 

epistemic learning and behavioral reinforcement learning are described. Section 4.4 

shows the dynamic error structure used to represent the competitive interaction 

among players in their respective choice behaviors. The DMNP and DML model 

estimation procedures are discussed in Sections 4.5 and 4.6. Section 4.7 discusses the 

overall maximum likelihood estimation procedures for both models. In Section 4.8, 

the estimation procedure for mixed learning process is discussed.   
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Figure 4.1 Overall structure of research methodology 

 

4.2. General Discrete Choice Model Formulation 

Consider a player n , Nn ,...,1=  where N  is the number of players included in the 

sample, facing a set 
nC of 

nJ  discrete choice alternatives, denoted by i , nJi ,...,1= ; 

the model is written as: 
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it

nU :  the utility of alternative i  as perceived by individual n  

it

nZ : a ( K×1 ) vector of explanatory variables for the utility to individual n  of 

alternative i , including alternative specific dummy variables, as well as alternative 

specific attributes and individual characteristic variables 

β : ( 1×K ) vector of coefficients 

it

nε : a random disturbance term (unobservable) 
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The assumption that the disturbances are multivariate normal distributed results in 

the probit and mixed logit model forms for the choice probability. With this 

specification, the general choice probability of alternative i  for individual n  is given 

by the following expression: 
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where 

it

nd : a binary indicator of whether the condition in parentheses holds. 

This general DMNP and DML models are extended to develop the dynamic 

strategy choice model under a competitive environment.  
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4.3. Model Specification 

This study develops the dynamic strategy choice model under a competitive 

environment, which captures players’ behavior for both epistemic and behavioral 

reinforcement learning processes of four types of cognitive learning behavior 

introduced in Chapter 2. The model specifications for both cognitive learning models 

are described in this section and investigate how players’ bidding reaction or behavior 

can differ according to the players’ cognitive capacities. The utility in the epistemic 

learning model is decomposed into observed and unobserved parts: 
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where 

ℑ : finite set of player = {1,2,…,n} 

n  and m : player, ℑ∈mn,   

n− : opponent player 

h , i , j  and k : alternative, nCkjih ∈,,,  

t : the time period when shipment r  arrives and it is auctioned; auction epochs 

rT ={ qttt ,...,, 21 } 

it

nU : the utility of player n  to choose alternative i  at time (game) t  
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it

nV : the deterministic term of the utility for player n  at time (game) t  for alternative 

i  

it

nε : the normal error term component of the utility of alternative i  at time (game) t  

to player n   

β : ( 1×K ) vector of coefficients on explanatory variables 

Iβ : the coefficient on initial utility at time (game) period t =0 

i

0β : the alternative specific constant for i  
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Y it

n
  

)(ts in : the strategy of player n  at time (game) t  

))(,( tss k

n

i

nn −π : a payoff when player n  choose alternative i  and opponent player n−  

choose alternative k  at time (game) period t  

))(,( tssI n

i

n
: the choice decision indicator: 





−≠

−=
=−

)1(for    otherwise0

 )1(for    period at time  ealternativ chooseplayer  if1
))1(,(

tss

tssti
tssI

i

n

i

n

i

n

i

n

n

i

n  

)1,...,1),()(( −=−−− tqqtstsp k

n

k

n
: the probability of player n ’s belief about choices i  

of others n−  at time (game) period t  

)(tN i

n
: the number of past auction participating experience about the choice i  of 

player n  at time (game) period t  

 

If the player knows the other player’s previous choice, his/her bidding decision can 
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be affected by the player’s belief regarding the opponent’s choice. This model 

assumes that players would prefer a choice which has high expected payoffs, given 

beliefs formed by observing the history of what others did (Camerer and Ho, 1999). 

Players keep track of others’ history from previous play, and form a function of 

player’s belief about the opponent type on that game. Beliefs are updated by summing 

the previous number of experiences and one for the strategy combination the other 

players choose. The expected payoff value over time is achieved by multiplying that 

belief value for all strategies by payoffs at that time corresponding to a player’s 

choice.  

The following Figure 4.2 presents the conceptual framework for epistemic learning. 

 

Source: Cheung and Friedman, 1997 

Figure 4.2 Conceptual decision framework for epistemic learning  
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The other cognitive learning model considered in this study is the behavioral 

reinforcement learning model, which is written as: 
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n
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                                 (4.6) 

where 





=
  otherwise0

    period at time  ealternativ chooseplayer  if1
))((

ti
tsI i

n  

))(( ts innπ : a payoff when player n  choose alternative i  at time (game) period t  

If a player does not have information about another player’s history of decisions, 

he/she could only make a choice based on his/her experience. The reinforcement 

allows that player’s choice decision to be directly reinforced by the previous results, 

and the propensity to opt for choice i  depends on its stock of choice reinforcement 

(Arthur, 1991). The behavioral reinforcement learning model does not capture the 

direct impact of another player’s decision on player own decision because he/she does 

not have records of another player’s previous decisions over time. Based on the 

player’s payoff over time periods, he/she can decide which alternative to choose. 

The initial value ( Iβ ) is included in both learning model specifications, and it 

reflects the influence of prior experience based upon a theory of first-period play and 

the player’s own preference. This initial value can be estimated from the data. Our 
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procedure is more general, because we estimate initial values as part of an overall 

maximization of utility. 

Both epistemic and behavioral reinforcement model specifications include the 

internal habit persistence term, which is composed of two terms: 1) previous 

deterministic utility ( )1( −tV i

n ); and 2) serial correlations ( 2ρ ) in the error term (see 

Section 4.4). Habit persistence is the relative weight given to the lagged utility in 

epistemic and behavioral reinforcement models. In this dissertation, the habit 

persistence term depends upon the history of past actions, and measures the 

sensitivity of the stock of habit to current action. In general, as the preference for 

future expected payoffs increases, the preference for habit persistence10 decreases.  

The conceptual decision framework for behavioral reinforcement learning is 

described in Figure 4.3. 

                                                 

10  Braun, Constantidines and Ferson (1993) consider internal habit persistence 

specified in difference with one lag in action. More specifically, we assume that 

)(tU i

n  takes the form: (0,1)   with )1()()( ∈−−= θθ tVtVtU i

n

i

n

i

n  
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Figure 4.3 Conceptual decision framework for behavioral reinforcement learning 

  

4.4. Dynamic Error Structure 

In the model framework, the random utility term ( it

nε ) is made up of two 

components. The first component has been introduced in the probit disturbance term 

with a multivariate distribution, and it captures the interdependencies among the 

alternatives and shows the effect of serial correlation over time periods. The other 

error component captures the unobserved effect of players’ competition with other 

players for winning the game. The disturbance term is specified as follows:   

it

n

it

n

it

n v Ω+=ε  for mn ≠                                                                                            (4.7) 

),0(~ ∑ v
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),0(~ ∑Ω γMVNit

n  

where 

)( 22

i

it

nvE σ= :    the variance of error term 

)( 1ρ=jt

n

it

n vvE : the covariance across alternatives during the same time period 

)( 2

'

ρ=it

n

it

n vvE : the covariance reflecting serial correlation over time periods 

)( iit

nm

it

m

it

nE γ=ΩΩ : the covariance across players for the same alternative 

)( ijt

nm

jt

m

it

nE γ=ΩΩ : the covariance across players when player n choose alternative i  

and player m  choose alternative j   

The general MNP error term ( it

nv ) captures unobserved preference heterogeneity 

across alternatives and serial correlation over time periods. The new error term ( it

nΩ ) 

indicates the unobserved impact of player’s decision behavior against the 

competitor’s decision and it is specified as follows: 

ijt

nmγ  for mn ≠                                                                                                            (4.8) 

Table 4.1 below shows the variance-covariance matrix in the case of two players, 

two alternatives, and two time (game) periods. 
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Table 4.1 Var-Cov Matrix for 2 players, 2 alternatives, and 2 time periods case 

 Player m=1 

Player 
Alt 
time 

i=1 

t=1 

i=2 

t=1 

i=1 

t=2 

i=2 

t=2 

i=1 

t =1 
2

1σ  1ρ  2ρ  0 

i=2 

t=1 1ρ  2

2σ  0 2ρ  

i=1 

t =2 2ρ  0 2

1σ  1ρ  

n=1 

i=2 

t=2 
0 2ρ  1ρ  2

2σ  

 

 Player m =2 

Player 
Alt 
time 

i=1 

t=1 

i=2 

t=1 

i=1 

t=2 

i=2 

t=2 

i=1 

t =1 
11

12γ  12

12γ  11

12γ  12

12γ  

i =2 

t=1 
21

12γ  22

12γ  21

12γ  22

12γ  

i=1 

t=2 
11

12γ  12

12γ  11

12γ  12

12γ  

n=1 

i=2 

t =2 
21

12γ  22

12γ  21

12γ  22

12γ  

 

 Player m =1 

Player 
Alt 
time 

i =1 

t=1 

i =2 

t=1 

i =1 

t=2 

i =2 

t=2 

i=1 

t=1 
11

21γ  12

21γ  11

21γ  12

21γ  

i=2 

t =1 
21

21γ  22

21γ  21

21γ  22

21γ  

i=1 

t=2 
11

21γ  12

21γ  11

21γ  12

21γ  

n=2 

i=2 

t =2 
21

21γ  22

21γ  21

21γ  22

21γ  
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 Player m=2 

Player 
Alt 
time 

i=1 

t =1 

i=2 

t =1 

i=1 

t =2 

i=2 

t =2 

i=1 

t=1 
2

1σ  1ρ  2ρ  0 

i=2 

t =1 1ρ  2

2σ  0 2ρ  

i=1 

t=2 2ρ  0 2

1σ  1ρ  

n=2 

i=2 

t=2 
0 2ρ  1ρ  2

2σ  

The summary of the error structure for dynamic strategy choice behavior is shown 

in Figure 4.4. 
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Figure 4.4 Summary of error structure for dynamic strategy choice behavior 
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4.5. Dynamic Multinomial Probit Model 

Assuming that each player n  chooses the set of four bid price alternatives i , 

DMNP model formulations for both dynamic learning models are based upon linear-

in-parameter utilities, and are written as follows: 

it

n

it

n

it

n ZU εβ +=                                                                                                         (4.9) 

with 



 ≠∀≥

=
otherwise0

  ,  1 ijUUif
d

jt

n

it

nit

n  

it

n

it

n

it

n v Ω+=ε  for mn ≠                                                                                          (4.10) 

),0(~ ∑ v

it

n MVNv  

),0(~ ∑Ω γMVNit

n  

The random term ( it

nε ) is assumed to be jointly normally distributed, over time, 

and across different alternatives and individuals, with a zero mean and a general 

covariance matrix. it

nε  is composed of MTMT ×  (where M = the number of 

alternative (bid prices) and T = the number of games (time periods) matrices that 

capture the correlations across alternatives, serial correlations due to the persistence 

of unobservable attributes across the sequence of games, and unobserved competitive 

influences on bidding behavior among individuals. One structure of the variance-

covariance matrix in error term is as follows: 

)( 22

i

it

nvE σ= :    the variance of error term 
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)( 1ρ=jt

n

it

n vvE : the covariance across alternatives during the same time period 

)( 2

'

ρ=it

n

it

n vvE : the covariance reflecting serial correlation over time periods 

)( iit

nm

it

m

it

nE γ=ΩΩ : the covariance across players for the same alternative 

)( ijt

nm

jt

m

it

nE γ=ΩΩ : the covariance across players when player n choose alternative i  

and player m  choose alternative j   

It can also be written as follow for the special case of Player 1’s error structure 

with four alternatives and two time (game) periods:  

Alternative 
Time 

i=1 

t=1 

i=2 

t=1 

i=3 

t=1 

i=4 

t=1 

i=1 

t=1 
2

1σ + 11

12γ  1ρ + 12

12γ  1ρ + 13

12γ  1ρ + 14

12γ  

i=2 

t =1 1ρ + 12

12γ  2

2σ + 22

12γ  1ρ + 23

12γ  1ρ + 24

12γ  

i=3 

t=1 1ρ + 13

12γ  1ρ + 23

12γ  2

2σ + 33

12γ  1ρ + 34

12γ  

i=4 

t =1 1ρ + 14

12γ  1ρ + 24

12γ  1ρ + 34

12γ  2

2σ + 44

12γ  

 

Alternative 
Time 

i=1 

t=2 

i=2 

t=2 

i=3 

t=2 

i=4 

t=2 

i=1 

t =1 2ρ + 11

12γ  12

12γ  13

12γ  14

12γ  

i=2 

t=1 
12

12γ  2ρ + 22

12γ  23

12γ  24

12γ  

i=3 

t=1 
13

12γ  23

12γ  2ρ + 33

12γ  34

12γ  

i=4 

t=1 
14

12γ  24

12γ  34

12γ  2ρ + 44

12γ  

 

In choice theory, the matter for choosing between two alternatives is the difference 

in utility between alternatives. Evaluating the log-likelihood function requires 

calculating the joint probability over all individuals in the sample associated with the 
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chosen alternative. We need to derive the utilities into differences, with respect to the 

utility of the chosen alternative, so as to compute the joint choice probability 

simulator. Each time, we use the chosen alternative as the base. With this restriction, 

if alternative 3 is chosen, then the utility from alternative 3 is greater than the utility 

from alternatives 1, 2, and 4. Parameter β  and the parameters in it

nε  are not 

separately identified from observed choice behavior. Considering m  alternatives to 

choose each game (time period), the new model can be written as: 

*** t

n

t

n

t

n ZU εβ += , ∑ ),0(~
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εε MVNt

n                                                                  (4.11) 
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...                                                                                 (4.12) 

The general utility formulation is written in deviation with respect to the utility of 

the chosen alternative. The Cholesky decomposition formulation of the error term is 

derived to impose a positive definite error covariance matrix. 

With the above error term and utility specifications, the joint choice probability 

( ( )θtin
it dd

'

,....,Pr 1 ) of alternative i  for individual n  is given by the following DMNP 

formula: 

( ) { }0)( ,....,0)(Pr,....,Pr
''''

1111 ≤−≤−= ti

n

tj

n

ti

n

itjtitti

n

it UUdUUddd θ                              (4.13) 

)  ,  ,,,,( '''' jiandjiCjjii n ≠∀≠∀∈  

where 
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i  and 'i : chosen alternative 

j  and 'j : unchosen alternative 

),( Eβθ = : the joint vector of parameters 

β : the vector of unknown parameters in the systematic portion of the utility  

E : the vector of unknown parameters in the error structure 



 ≠∀∈≥

=
otherwise0

  ,,  ,  1 jiCjiforUUif
d n

jt

n

it

nit

n  

The difficulty with the DMNP model is that the resulting choice probabilities are 

multiple integrals. To solve this problem, the following DMNP estimation procedure 

is applied, using the Monte Carlo Simulation method.  

First, make D  draws of dε  from the normal density; this process then is repeated 

D  times. Second, calculate the joint choice probability ( ( )θtin
it dd

'

,....,Pr 1 ). The results 

of D  draws are averaged to calculate the value of the log-likelihood function. 

( ) ( )∑
=

− 



=

D

d

dit

n

it

n

ti

n

itti

n

it dd
D

dd
1

11

^

,,....,Pr
1

,....,Pr
''

εεθ                                                  (4.14) 

The estimation method considered is based upon the maximization of the natural 

logarithm of the simulated likelihood function. The simulated log-likelihood function 

is written as:  

( )θβ ti

n

it ddEL
'

,....,Prln),(log 1

^^^

=                                                                              (4.15) 

Once the simulated joint probabilities are obtained, the parameters in the above 
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DMNP model structure can be estimated using maximum likelihood. Those 

procedures are described in the Section 4.7 of this chapter. 

 

4.6. Dynamic Mixed Logit Model 

The multinomial probit (MNP) structure allows flexibility in the error structure for 

the covariance among the unobserved attributes of the alternatives. Unfortunately, in 

most choice contexts, the increase in flexibility of the MNP structure comes at the 

prohibitive cost of evaluating very high-dimensional multivariate normal integrals for 

choice probabilities. Over the past few years, researchers have discovered that 

simulation techniques, using a mixed or kernel logit model, can approximate the 

multi-dimensional integrals with smooth, unbiased and efficient simulators (Ben-

Akiva et al, 2001). 

The dynamic mixed logit model presented here is extended to consider mixed error 

structures, such as mixed or kernel logit variants of the MNP. This framework 

combines the flexibility and realism of the probit structure with some of the 

computational simplicity of the logit model. With the mixed logit framework, 

unobserved disturbance terms for each alternative can be divided into two 

components: a multivariate normally-distributed error component in the MNP, and a 

Gumbel-distributed error component in the MNL framework.  

Gumbel error terms are assumed to be independent and identical over times, as 

well as across alternatives and individuals in the MNL model. Limitations in the i.i.d 
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Gumbel error term in MNL can be overcome by mixing the variance and covariance 

structure of the error term in MNP. Therefore, the Gumbel error terms in a mixed 

logit model can provide computational flexibility, by exploiting the closed logit-

likelihood functional form, conditional upon the MVN error terms (Srinivasan and 

Mahmassani, 2005). The unconditional probability of choosing alternatives can be 

obtained by integrating the logit probability over the MVN error terms, by means of 

Monte Carlo integration. In this section, we discuss the calibration procedure for the 

dynamic mixed logit model. We develop the model formulation in the context of the 

model of a player’s bid price choice. We use the same structures of utility 

specification and error structure for both cognitive learning processes as in the above 

DMNP model.  

Assume M  bid price choices, N individuals, and T time periods (games) in the 

choice set. Let the utility it

nU  that an individual associates with the bid price choice 

alternative be the sum of a deterministic component it

nV  that depends upon observed 

attributes of the alternative, as well as an individual and random component. In this 

discrete choice model, the utility that player n, n = 1,..., N,  where N is the sample size, 

receives from choosing alternative i, i = 1, ..., Jn (=M ) is given by: 

it

n

it

n

it

n

it

n

it

n

it

n

it

n

it

n

it

n

it

n vVVEVU ηηε +Ω++=++=+=                                              (4.16) 

The random vectors  it

nv  and it

nΩ  are assumed to be mutually independent, and 

independent of it

nη . The it

nη  terms are assumed to be independent and identically 

standard-Gumbel distributed across alternatives and individuals. In general, the 
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dynamic mixed logit model accommodates a flexible covariance structure across 

alternatives and times. In our case, the dynamic mixed logit model can allow different 

correlations across individuals, which are expressed as follows: 

it

n

it

n

it

nE ηε +=                                                                                                          (4.17) 

with 

it

n

it

n

it

n v Ω+=ε  for mn ≠  

),0(~ ∑ v

it

n MVNv  

),0(~ ∑Ω γMVNit

n  

),0(...~ ∑ ηη Gumbeldiiit

n  

The random terms ( it

nε ) are assumed to be jointly, normally distributed, over time 

periods, alternatives and individuals, with a zero mean and a general covariance 

matrix. The it

nε  matrices capture correlations across alternatives, serial correlations 

due to the persistence of unobservable attributes across the sequence of games, and 

unobserved competitive influences on bidding behavior among individuals, as in the 

above DMNP model. A structure of the variance-covariance matrix in the error term 

is as follows: 

)( 22

i

it

nvE σ= : the variance of error term 

)( 1ρ=jt

n

it

n vvE : the covariance across alternatives during the same time period 

)( 2

'

ρ=it

n

it

n vvE : the covariance reflecting serial correlation over time periods 

)( iit

nm

it

m

it

nE γ=ΩΩ : the covariance across players for the same alternative 
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)( ijt

nm

jt

m

it

nE γ=ΩΩ : the covariance across players when player n choose alternative i  

and player m  choose alternative j   

For given values of it

nv  and ijt

nγ  in the DML model, we get the familiar MNL form 

for the conditional probabilities that the choice i is given as it

nε  and it

n−ε : 
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Since it

nε  is not known, the unconditional probability of choosing alternative i now 

can be obtained by integrating the conditional multinomial choice probabilities in 

equation (4.18) with respect to the assumed normal and independent distributions for 

the vectors it

nv  and ijt

nγ : 
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where )( it

nf ε  is the joint density function of it

nε , which is the sum of standard 

normals: 

it

n
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n

it

n v Ω+=ε  for mn ≠                                                                                          (4.20) 

For the maximum likelihood estimate, the probability of each sampled individual's 

sequence of observed choices over time is needed, which is: 
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The unconditional probability of the sequence of choices over time is written as: 
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With the above error term and utility specifications, the joint choice probability 

among individuals, based upon the above probability of each sampled individual's 

sequence of observed choices over time of alternative i , is given by: 

( ) { }0)( ,....,0)(Pr,....,Pr
''''
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it UUdUUddd θ                            (4.23) 

)  ,  ,,,,( '''' jiandjiCjjii n ≠∀≠∀∈  

We rewrite this joint probability for DML model as: 
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where 

i  and 'i : chosen alternative 

j  and 'j : unchosen alternative 

),( Eβθ = : the joint vector of parameters  

β : the vector of unknown parameters in the systematic portion of the utility  

E : the vector of unknown parameters in the error structure ( it

nε ) 
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The unconditional probability of the sequence of choices over times is given by: 
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We assume a linear-in-parameter specification for the systematic utility of each 

choice alternative, given by it

n

it

n ZV β=  for individual n and alternative i. The 

composite random error term for individual n is given by 

it

n

it

n

it

n

it

n

it

n

it

n vE ηηε +Ω+=+= . We assume that it

nv , it

nΩ  and it

nη  each are 

independently and identically distributed.  

The purpose of estimation is to obtain model parameters by maximizing the 

likelihood function over all individuals in the sample. The parameters to be estimated 

in the DML model are the parameter vectors β  in the systematic portion of utility, 

the variance-covariance matrix vΣ  and the variance-covariance matrix γΣ . The 

Cholesky decomposition formulation of the error term is derived to impose a positive 

definite error covariance matrix. Then, the log-likelihood function for a given value 

of the parameter vector ( ),( Eβθ = ) is written as:  
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Unfortunately, the log-likelihood function for the estimate of the parameters 

involves a multi-dimensional integral, which must be evaluated numerically, since it 

does not have a closed-form solution. The Monte Carlo simulation technique is 

applied to approximate the choice probabilities in the log-likelihood function of 

equation (4.26), by taking draws of ),( Eβθ =  from the population density and 

calculating the joint probability among individuals over time, and then maximizing 
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the resulting simulated log-likelihood function. The average of  ),Pr( it

n

it

ni −εε  over D 

draws yields the simulated probability among individuals: 
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where 

)(Pr i
∧

: the simulated joint choice probability among individuals choosing alternative 

i  given parameter vector  θ  

( )dit

n

it

n −εε , : the dth realization of Monte-Carlo draws from the multi-variate normal 

distribution   

This simulated joint probability is an unbiased estimator; and we expect that, as 

the number of draws (D) increases, the variance will decrease. This variance is 

smooth and sums to one over all alternatives (Train, 2003). The simulated log-

likelihood of the sample is the sum of the natural logarithm of the simulated joint 

choice probabilities over all individuals: 
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The above simulation technique approximates the joint choice probabilities. Since 

the elements within the vectors it

nε , including it

nv , it

nΩ  and it

nη  are independent of 

each other, we generate a matrix it

nε  of standard normal random numbers, and 

compute the corresponding joint choice probabilities for a given value of the 

parameter vector θ . The process is repeated D times for a given value of the 
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parameter vector θ . The parameter vector θ  is estimated as the vector value that 

maximizes the above-simulated function.  

The maximum simulated log-likelihood (MSL) estimator has been considered to 

be simulated loglikelihood estimators, which is consistent, asymptotically efficient, 

and asymptotically normally distributed (Hajivassiliou, McFadden, and Ruud 1996; 

Lee 1992). The bias of the MSL estimator can be decreased, as the number of D 

draws increases. In the current study, we use 3000 repetitions for accurate simulations 

of the choice probabilities, and to reduce simulation variance of the MSL estimator. 

 

4.7. Maximum  Likelihood  Estimation Process for Epistemic and Behavioral 

Reinforcement Learning Models 

The general structure of the DMNP and DML models parameter estimation 

procedure is illustrated in Figure 4.5. The procedure shows the iterative approach to 

search for the maximum likelihood estimates. The likelihood function is evaluated 

each iteration, and the process is terminated when the specific convergence criterion 

is achieved (Jou and Mahmassani, 1994). The probit and mixed logit probability 

functions consist of multi-dimensional integrals that do not have closed-form 

solutions, and must be approximated numerically. Therefore, the Monte Carlo 

Simulation is applied to evaluate the both DMNP and DML choice probabilities. All 

estimations and computations are carried out using the FORTRAN programming 

language.  
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Source: Lam and Mahmassani (1991) 

Figure 4.5 General Model Estimation Procedure  

As mentioned earlier, the new DMNP model framework is presented to develop 

the dynamic strategy choice models for bidding behavior. To introduce competitive 

behaviors between players into the model estimation process, the following maximum 

likelihood parameter estimation process is described: 

 

Step 1. Take the attribute sets and each individual’s chosen alternative as inputs 

and specify the model structure. 

Step 2. Specify the error structure to provide the error matrices for each 

individual. 

1) Draw values of two error components from a normal density with a 

zero mean and covariance.  

2) Apply the initial values for the parameters and the variance-
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covariance terms. 

3) Sum the two error components:  

it

n

it

n

it

n v Ω+=ε      

Step 3. 1 Reduce the dimension of the above variance-covariance matrices: 

)(
* it

n

jt

n

it

n εεε −=
 

where i  = the chosen alternative at time t , and  j  = the unchosen 

alternative at time t . 

2) Provide the Cholesky decomposition matrix 

Step 4. Use the configured error structure to generate realizations for the error 

components of the utilities. 

Step 5. Calculate the deterministic utility values ( it

nV ) 

Step 6. Reduce the dimension of the above deterministic utility: 

)(
* it

n

jt

n

it

n VVV −=  

where, i : the chosen alternative at time t , and j : the unchosen 

alternative at time t . 

Step 7. Monte Carlo Simulation  

1) Using those values of errors and deterministic utility, calculate the 

total utility for each alternative: 
*** it

n

it

n

it

n VU ε+=  

2) Provide the joint choice probability, which is the likelihood of a 

sequence of decisions over all players and time periods: 
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itjtitti

n

it UUdUUddd θ                       
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)  ,  ,,,,( '''' jiandjiCjjii n ≠∀≠∀∈  

3) Perform the Monte Carlo simulation until the choice probabilities of 

alternatives for each observation converge to steady values. 

Step 8. Sum the probabilities of the chosen alternatives, which are the 

proportion of draws that are accepted:  
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Step 9. Determine the next direction and step-size using the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) quasi-Newton algorithm with a central 

difference gradient to increase the non-linear likelihood function value 

(Jou and Mahmassani, 1994). 

Step 10. Repeat the above steps until the convergence criterion is achieved. 

In addition, the new DML model framework is explored to develop dynamic 

strategy choice models for the bidding behavior. The maximum likelihood parameter 

estimation procedure for the DML model is presented separately as follows:  

 

Step 

1~6. 

Same as in DMNP model estimation procedure  

Step 7. Monte Carlo Simulation  

1) Using the values of errors and deterministic utility, calculate the total 

utility for each alternative: 
*** it

n

it

n

it

n VU ε+=  

2) Provide the joint choice probability, which is the likelihood of a 
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sequence of decisions for all players over all time periods: 
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3) Perform Monte Carlo simulations until the choice probabilities of the 

alternatives for each observation converge to steady values. 

Step 8. Sum the joint probabilities of the chosen alternatives, which is the 

proportion of draws that are accepted:  ( )∑
=
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Step 

9~10. 

Same as in DMNP model estimation procedure 

The following Figure 4.6 shows the overall estimation procedure for the dynamic 

strategy choice model. 
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Step 1: Read the input data sets

Step 2: Provide the Var-Cov Matrix

Step 3: Reduce the Dimension of

Var-Cov Matrix

Cholesky Matrix

Step 4: Generate the Value of

 the Error Term Parameters

Step 5: Calculate the Deterministic Utility

Values

Step 6: Reduce the Dimension of

Deterministic Utility Values

Step 7: Provide the Utility of each alternative

Monte Carlo Simulation Process

Step 8: Estimate the Joint Choice Probability

 
Figure 4.6 General Maximum Likelihood Parameter Estimation Procedures 

 

4.8. Mixed Learning Model Specification and Estimation Process  

We investigate two cognitive learning models in Section 4.1. These model 

specifications differ according to the level of cognitive capacity used for the given 

information. In this process, we expect that players make a decision based on their 

cognitive learning beliefs in sequential games. However, we question whether players 

continuously keep their learning beliefs for all games, if these players have enough 
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information for epistemic learning game. People are not always rational when making 

decisions; hence, their decisions vary depending on the learning process for each 

game. Since players can change their beliefs or learning process based on their 

payoffs and their cognitive capacity, the player’s strategy for each game can change 

with the corresponding either or both of cognitive learning process. This is called as 

the mixed learning process. Therefore, we propose the mixed learning model 

estimation procedure in this section and then estimate the model parametrically using 

epistemic learning datasets in Chapters 6 and 7. 

The mixed learning model combines elements of two learning approach by 

including them as special cases. One approach is the epistemic learning model, which 

assumes that players keep track of the history of previous plays by others and form 

beliefs about what others will do based on past observation (Camerer and Anderson, 

2000).  Players make a best-response decision and expect that this strategy will 

maximize their expected payoff. In contrast, the behavioral reinforcement learning 

model assumes that strategies are reinforced by previous payoffs, and the propensity 

to choose a strategy depends on its reinforcement (Camerer and Anderson, 2000). 

Players care only about past payoffs, not about the mixed choice strategy of play that 

created those payoffs.  

For a long time, researchers thought that these two approaches could not be 

combined since they rely on different cognitive capacity and information. Recently, 

however, some researchers have explored how the approaches might be related. The 

epistemic learning model does not consider the effect of past successes of chosen 

strategies, and the behavioral reinforcement model does not consider other players’ 
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reactions. Players make sequential decisions that rely on mixed beliefs created by 

their payoffs and the cognitive capacity to review other players’ reactions. Based on 

this, the mixed learning model can combine appropriate elements of the epistemic and 

behavioral reinforcement learning approaches.  

In the epistemic learning model, these mixed strategies, which represent the 

interdependence among players’ choices, build players’ beliefs about competitors’ 

choices. The mixed learning model assumes that the player’s decision is affected by 

competitors’ learning beliefs, which decide the competitor’s strategy.  Therefore, 

mixed learning model structures are specified to provide each player’s degree of 

propensity for following the mixed learning process (epistemic and behavioral 

reinforcement).  

This dissertation proposes two mixed learning model structures. As previously 

mentioned, players do not always keep the same learning beliefs about the success or 

failure of a strategy; hence, players do not follow the same learning process in 

sequential games. In addition, players can change their decisions and learning process 

based on other players’ reactions and their learning beliefs. Players can switch the 

strategic learning belief from either of the two learning processes to the other 

(epistemic and behavioral reinforcement). Therefore, two types of mixed learning 

models are formulated that have different assumptions about the interdependence of 

players’ decisions with opponents’ cognitive learning processes. One model makes an 

assumption about the interdependence among cognitive learning processes, while the 

other shows the independence of these processes. 
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We examine these mixed learning structures for parameters with clear 

psychological interpretations using statistical chi-square tests. To test the empirical 

usefulness of the mixed learning model, we derive maximum-likelihood parameter 

estimates from two epistemic learning datasets. The following process shows the first 

type of mixed learning model specification and estimation process. In this mixed 

learning model I, we consider that impact of independence among players’ cognitive 

learning processes related to choice. In other words, the player’s decision is not 

affected by other player’s learning belief, which decides each competitor’s decision. 

Therefore, we calculate each player’s utility for each learning process and then 

provide the joint probability among players. We assume that players do not response 

to other competitor’s cognitive learning belief in order to make a decision; thus, we 

do not consider the mixed strategy associated with the combination of players’ 

cognitive learning processes to provide joint probability. We then verify the degree of 

impact of each learning process on each player’s choice decision in the Monte Carlo 

simulation process. The utility specification for each learning model is same as in 

Section 4.1.  

  

Step 

1~4. 

Same as in the above non-mixed learning model maximum likelihood 

estimation process 

Step 5. Calculate the deterministic utility values for each player  
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where  

it

nVE : player n ’s deterministic utility with epistemic learning rule of 

choice i at game (time) t   

it

nVR : player n ’s deterministic utility with behavioral reinforcement 

learning rule of choice i at game (time) t  

Step 6. Reduce the dimension of the above player n ’s deterministic utility for 

each learning process 
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jt
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it

n VEVEVE −=  
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n

jt

n

it

n VRVRVR −=  

where, i : the chosen alternative at time t , and j : the unchosen 

alternative at time t . 

Step 7. Monte Carlo Simulation  

1) Using those values of errors and deterministic utility, calculate the 

total utility for each alternative and each draw:  

*** itD

n

itD

n

itD

n
EnEnEn VEUE ε+= , 

*** itD

n

itD

n

itD

n
RnRnRn VRUR ε+=  

where  

*itD

n
EnUE : player n ’s difference in utility between chosen i  and 
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unchosen j  for epistemic learning process at game (time) t  for 
EnD

th 

draw 

*itD

n
RnUR : player n ’s difference in utility between chosen i  and 

unchosen j  for behavioral reinforcement learning process at game 

(time) t  for RnD
th draw 

2) Provide the joint choice probability of each learning process among 

players, which is the likelihood of a sequence of decisions over all 

players and time periods. 

 two-player experiment: 
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where 

it

nU : player n ’s utility with either of epistemic or behavioral 

reinforcement learning rule of choice i  at game (time) t  

i  ,  'i  and ''i : chosen alternative 

j , 'j  and ''j : unchosen alternative 

),( Eβθ = : the joint vector of parameters 

 3) Perform the Monte Carlo simulation until the choice probabilities of 

alternatives for each observation converge to steady values. 
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Step 8. Sum the probabilities of each learning process of the chosen 

alternatives, which are the proportion of draws that are accepted:  
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 where  

E

nD : player n ’s number of draws for epistemic learning rule 

R

nD : player n ’s number of draws for behavioral reinforcement learning 

rule 



 88 

D : total number of Monte Carlo simulation draws 

 E

nα : parameter value for player  n ’s degree of propensity for the 

epistemic learning process over all games  

E

nα−1 : parameter value for player  n ’s degree of propensity for the 

behavioral reinforcement learning process over all games 

Step 

9~10. 

Same as in the above non mixed learning model maximum likelihood 

estimation process 

The next process presents the second type of mixed learning model specification 

and estimation process. The mixed learning model II considers the impact of 

interdependence among players’ learning rules related to choice decision. Players can 

switch their learning processes or choices according to competitors’ learning beliefs, 

which influence their strategies. Based on this hypothesis, we provide each player’s 

utility and the joint probability for the mixed combination of players’ learning 

processes. In this process, the interdependence impact of the mixed combination of 

learning processes among players can be investigated by providing the sum of the 

partial joint probability for each mixed learning process. The following procedure 

shows the mixed learning model II estimation process. 

  

Step 

1~6. 

Same as in the above mixed learning model I estimation process 

Step 7. Monte Carlo Simulation  

1) Using those values of errors and deterministic utility, calculate the 
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total utility for each alternative:  
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where  

*it

nUE : player n ’s difference in utility between chosen i  and unchosen 

j  for epistemic learning process at game (time) t  for EnD
th draw 

*it

nUR : player n ’s difference in utility between chosen i  and unchosen 

j  for behavioral reinforcement learning rule of choice i  at game (time) 

t   

2) Provide the partial joint choice probability of each combination of 

learning process among players, which is the likelihood of a sequence 

of decisions over all players and time (game) periods.  
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3) Provide the total joint probability for all combinations of learning 

processes among players 
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for three-player 
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where 

i  ,  'i  and ''i : chosen alternative 

j , 'j  and ''j : unchosen alternative 

),( Eβθ = : the joint vector of parameters 

m

nα : parameter value for player’s degree of propensity for the m  type 

of mixed cognitive learning process over all games 

 
3) Perform the Monte Carlo simulation until the choice probabilities of 

alternatives for each observation converge to steady values. 

Step 8. Sum the probabilities of the chosen alternatives, which are the 

proportion of draws that are accepted:  
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Step 

9~10. 

Same as in the above mixed learning model I estimation process 
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Chapter 5. Explanatory Analysis 

5.1. Introduction 

The previous chapter discussed the research methodology of the current study, 

including the epistemic and behavioral learning modeling frameworks using the 

dynamic multinomial probit (DMNP) and dynamic mixed logit (DML) structure. 

Those model structures were applied to data sets obtained from two experiments in 

which decision-makers are in hypothetical bidding situations. The first experiments 

included two players who separately participated in the two types of games (epistemic 

and behavioral reinforcement) 80 games (times) each, and who were able to choose 

between four discrete alternative bid prices each time. The former type of game 

provided subjects with enough information for behavioral reinforcement, but not 

enough for epistemic learning. The latter game provided subjects with enough 

information for epistemic learning. The first price auction11 was applied to the first 

experiment introduced. 

To extend our modeling structure and evaluate the performance of the dynamic 

strategy choice model, the second experiment is necessary. In these experiments, 

three people play a sequential auction game 80 times with the same opponent under 

                                                 

11 In a procurement auction, the winner is the bidder who submits the lowest bid, and 

is paid an amount equal to his or her bid. (source: http://www.gametheory.net/ 

Dictionary/) 
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various treatments/scenarios. The second price auction12 was applied. The estimation 

results for DML model is provided using the data from this second experiment. Those 

results were compared to the estimation results using the first experiment data.  

Each player was asked to provide a choice decision among the four bid prices for 

the two types of game. For the behavioral reinforcement learning case, players did not 

have information about the opponent’s previous choice; they only knew their own 

history of decisions, and who had won each prior game. In the epistemic learning 

survey, each player was notified after each game about all players’ choices. Players 

were able to track their opponent’s decision history as well their own decisions.  

The rule for winning was that whichever player bid the lower bid price would win 

the game. Each player sustained different costs during each game and his or her 

payoff depended upon the different costs each time, since the payoff was the 

difference between the chosen bid price and the cost at any given time. If both players 

bid the same price, a given player’s payoff is half the difference between the chosen 

bid price and the corresponding cost. The player’s payoff and history of choice 

decision index were used as alternative specific explanatory variables. Estimations 

were performed for epistemic, behavioral reinforcement, and mixed learning models. 

Note that while the decision-makers are professionals, they do not work for freight 

                                                 

12 In a procurement auction, the winner is the bidder who submits the lowest bid, and 

is paid an amount equal to the next lowest submitted bid. (source: http://www. 

gametheory.net/Dictionary/) 
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carriers, nor are their responses intended for any other purpose than to illustrate 

application of the models introduced in this study, and how the parameter values 

would be interpreted in light of the particular specifications of interest. 

In this study, it is assumed that private and public information are the same across 

different games. A player’s cost information only is revealed to the player him or 

herself. Accordingly, the payoff also is private information. 

 

5.2. Input Data Description  

As previously mentioned, the datasets were collected through two experiments 

designed to examine epistemic and behavioral reinforcement learning. The first 

experiment included two players in a first price auction, while the second experiment 

consisted of three players in a second price auction. These data were derived from 

experiments involving 80 repetitions of two games under different informational 

assumptions and payoff structures.  

All games were designed to allow players to choose from four bid prices with 

different assumptions for each of two players.  In each game, each player’s bid price 

and cost determine that player’s payoff. Table 5.1 shows the bid price index as a 

choice alternative. We used a uniform distribution to generate random cost values 

between 10 and 20 for each player. Each player’s costs are different each game, as is 

shown in Figures 5.1 and 5.2.  
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Table 5.1 Choice set for bid price 

Index Bid Price (BP) 

Alternative 1 10 

Alternative 2 15 

Alternative 3 20 

Alternative 4 25 
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Figure 5.1 Players’ costs for each time period (two-player experiment) 
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Figure 5.2 Players’ costs for each time period (three-player experiment) 

 

Payoff in these games (for players) is a critical factor to determine the player’s 

bidding strategy. The formulation to calculate payoffs for the first experiment is: 
















 −
−

=
Otherwise

2

ealternativ price biddifferent   thechoosesplayer each  If
t

n

it

n

t

n

it

n

it

n
CostBP

CostBP

π  (5.1) 

where 

it

nπ : player n ’s payoff for choosing the alternative bid price i  at time (game) t  

it

nBP : player n ’s bid price as alternative i  at time (game) t  

t

nCost : player n ’s cost at time (game) t  

The following tables, Tables 5.2 and 5.3, show each player’s payoffs using the 

mixed strategy. 
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Table 5.2 Player 1’s payoffs given mixed strategy (two-player experiment, first price 

auction) 

Player 2 
Bid price 

10 15 20 25 

10 
2

10 1

tCost−
 

tCost110 −  tCost110 −  tCost110 −  

15 0 
2

15 1

tCost−
 

tCost115 −  tCost115 −  

20 0 0 
2

20 1

tCost−
 

tCost120 −  

Player 1 

25 0 0 0 
2

25 1

tCost−
 

 

Table 5.3 Player 2’s payoffs given mixed strategy (two-player experiment, first price 

auction) 

Player 1 
Bid price 

10 15 20 25 

10 
2

10 2

tCost−
 

tCost210 −  tCost210 −  tCost 210 −  

15 0 
2

15 2

tCost−
 

tCost215 −  tCost215 −  

20 0 0 
2

20 2

tCost−
 

tCost220 −  

Player 2 

25 0 0 0 
2

25 2

tCost−
 

 

The player with the lowest bid price wins the game in the first price auction. For 

the three-player experiment and second price auction, the payoff is determined by the 

second lowest bid and the player’s given cost in that game. Therefore, players in the 

second price auction can expect a greater payoff than the players in the first price 

auction. The payoff function for the second price auction game is as follows:  
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where 

it

nπ : player n ’s payoff for choosing the alternative bid price i  at time (game) t  

it

nSBP : player m ’s bid, which is the second lowest price, as alternative j  at time 

(game) t  

t

nCost : player n ’s cost at time (game) t  

 

5.3. Two-Player Experimental Data Analysis 

Figures 5.3 and 5.4 show the player’s actual frequency of bid price choices for 

two-player experiment, given epistemic learning data. The actual frequency ( )(iF t

n ) 

of bid price alternative i  is calculated by: 

∑∑
=

nC

j t

t

n

t

nt

n

jN

iN
iF

)(

)(
)(                                                                                                 (5.2) 

)(iF t

n
: the player n ’s actual frequency for choosing alternative bid price i  at time 

(game) t  

)(iN t

n : the player n ’s total number of choice for choosing alternative bid price i  at 

time (game) t  
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Figure 5.3 Player 1’s actual frequency of bid price choice for epistemic learning data 

(two-player experiment) 
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Figure 5.4 Player 2’s actual frequency of bid price choice for epistemic learning data 

(two-player experiment) 
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Figures 5.3 and 5.4 illustrate that the actual frequency of bid price 15 for both 

players, using epistemic learning data, is higher than for all alternative choices after 

ten to twenty games (t=10~20). As games are repeated, Player 1’s actual frequency of 

choosing bid price 15 (BP=15) increases relative to the other bid price choices. 

However, as games are repeated, Player 2’s frequency of bid price 10 (BP=10) 

dramatically increases after 40 games (t=40), but the frequency of bid price 15 

(BP=15) remains largely unchanged after 45 games. As mentioned before, the players 

have knowledge about their opponents’ previous choices (actions). Player 2 prefers to 

choose alternative 10 (BP=10) after 40 games, because he or she learned that Player 1 

is more likely to choose bid price 15 (BP=15) than any other choice. These patterns 

are depicted clearly in Figures 5.4 and 5.9. In Figure 5.9, Player 2’s probability of 

winning is increased after 40 games (t=40), since Player 2 chooses the lowest bid 

price 10 more often than any other choices.  

Figure 5.5 presents the players’ probability13 of each alternative over 80 games, 

using the epistemic learning experimental data. The probability of each bid price 

choice for each player shows the player’s bidding strategy and his or her own risk 

management preference. From this perspective of risk management, Player 2 is a 

greater risk taker than Player 1. Player 2 is more likely to choose bid price 20 or 25 

than Player 1, if he or she can have more payoffs.  

 

                                                 

13 
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Figure 5.5 Probability of choice over 80 games for epistemic learning (two-player 

experiment) 

 

We estimate a linear regression model, with bid price as the dependent variable, to 

test whether a winning payoff variable has a significant effect on bid price choice. 

The following linear regression structure is examined to show the relationship 

between the chosen bid price and payoffs, if a player wins that game. Table 5.4 

presents the regression results for the epistemic learning experimental data. 

t

n

t

n payoffBP ×+= βα                                                                                              (5.3) 

where 

α : a constant 

β : the coefficient of winning payoff variable 

t

nBP : player n ’s chosen bid price at time (game) t  

t

npayoff : player n ’s payoff at time  (game) t  if player wins that game 
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Table 5.4 Regression results for epistemic learning data (two-player experiment) 

 Player1 Player2 Both 

 B t-value B t-value B t-value 

(Constant) 14.976 40.545 15.061 41.725 15.008 60.535 

Payoff 0.789 5.049 0.753 6.597 0.767 8.637 

R2 0.246 0.358 0.321 

SSE 618.032 799.146 1418.028 

SSR 201.968 445.854 669.472 

SST 820.000 1245.000 2087.500 

 

 

As can be seen from Table 5.4, all variables have significant t-values at a 95% 

confidence level. This means that the winning payoff effect on bid price choice is 

significant. It also shows that Player 2 is more concerned about the winning payoff to 

choose bid price than Player 1, as seen by the R-square value. However, the R-square 

values for goodness of fit are not high enough to explain either player’s bidding 

behavior. In particular, the interaction between players affects each player’s decisions 

in the epistemic learning experiment. This implies that a player cannot choose a bid 

price alternative based upon the winning payoff.  

Figures 5.6 and 5.7 present the actual frequency of bid price choices for the 

behavioral reinforcement experiment data. Figure 5.8 shows the probability of each 

bid price choice across 80 games. In the behavioral reinforcement experiment, players 

only know their own actions. The rank order of Player 1’s frequency of bid price 

choices at the end of sequential games is the same as the corresponding rank order 

observed in the epistemic learning experiment. On the other hand, Player 2 is more 

likely to choose bid price 10 (BP=10) than bid price 15 (BP=15). After 40 games, 
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Player 1 prefers to choose bid price 15 (BP=15), but Player 2 is more likely to choose 

bid price 10 (BP=10). Therefore, Player 2’s winning probability is higher than Player 

1’s winning probability after 40 games (see Figure 5.10).  

As mentioned before, the probability of each bid price choice for each player, 

shown in Figure 5.8, demonstrates each player’s bidding strategy and his or her own 

risk management preference. Player 1 takes greater risks in the behavioral 

reinforcement game than in the epistemic learning game. However, Player 2 behaves 

in a more risk neutral manner, by choosing bid prices 10 and 15 at almost the same 

frequency.   
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Figure 5.6 Player 1’s actual frequency of bid price choice for behavioral 

reinforcement learning data (two-player experiment) 
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Figure 5.7 Player 2’s actual frequency of bid price choice for behavioral 

reinforcement learning data (two-player experiment) 
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Figure 5.8 Probability of choice over 80 times for behavioral reinforcement (two-

player experiment) 
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A linear regression model, with bid price as the dependent variable, was 

constructed to test whether a winning payoff variable has a significant effect on bid 

price choice. The following linear regression structure, using behavioral 

reinforcement experimental data, shows the relationship between chosen bid price 

and payoff, if a player wins that game (see Table 5.5). 

 

Table 5.5 Regression results for behavioral reinforcement learning data (two-player 

experiment)  

 Player1 Player2 Both 

 B t-value B t-value B t-value 

(Constant) 15.076 46.359 15.088 38.499 15.075 59.653 

Payoff 0.813 7.688 0.928 7.099 0.868 10.434 

R2 0.431 0.393 0.408 

SSE 608.029 843.615 1456.443 

SSR 460.721 545.135 1003.557 

SST 1068.750 1388.750 2460.000 

 

The winning payoff variable has a significant t-value at a 95% confidence level for 

all cases. The R-square value for the behavioral reinforcement game is higher than for 

the epistemic learning game, since players only consider their own payoffs in this 

game. Distinct from the epistemic result, Player 1 is more concerned about the 

winning payoff when choosing bid price than Player 2, as seen by the R-square value.  

Figures 5.9 and 5.10 present players’ winning and tying probabilities for each 

experiment. Table 5.6 shows the number of ties and probability of bid price choices 

for each experiment. 
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Figure 5.9 Players’ winning frequency 14  for epistemic learning data (two-player 

experiment) 
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Figure 5.10 Players’ winning frequency for behavioral reinforcement learning data 

(two-player experiment) 

 

                                                 

14 Winning frequency includes the number of tie game 
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Table 5.6 Frequency of tie for epistemic and behavioral reinforcement learning (two-

player experiment) 

 Epistemic Behavioral Reinforcement 

Bid Price # of Tie % # of Tie % 

10 8 27.6 14 38.9 

15 19 65.5 17 47.2 

20 2 6.9 5 13.9 

25 0 0.0 0 0.0 

total 29 100.0 36 100.0 

 

As a player chooses a lower bid price, a player achieves less as a payoff. In the 

epistemic learning experiment, each player knew who had chosen which bid price 

after each game. Accordingly, each player was very sensitive to the other’s actions. 

The probability of a tie is less in the epistemic learning game than in the behavioral 

reinforcement learning game (see Figures 5.9 and 5.10, and Table 5.6). This implies 

that, in the epistemic learning game, players choose different bid prices, because 

players can predict other player’s actions. For this reason, the number of ties with bid 

price 15 (BP=15) is much higher than the other choices in the epistemic learning 

game (see Table 5.6). In the behavioral reinforcement experiment, players cannot 

predict the other player’s actions; they only know the opponent’s choice if they bid 

the same price. Therefore, ties occur with bid prices 10 and 15 more often than with 

any other bid price. 
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5.4. Three-Player Experimental Data Analysis 

The second experiment was conducted to evaluate the performance of the dynamic 

strategy choice model. In these experiments, three players attended 80 games, most of 

which were the same as in the first experiment (except for the price award 

assumption). Players were notified that the game winner would receive a payoff 

based not on their bidding price but on the second lowest bid. We expected that 

players in this second price auction would bid lower than the players in the first price 

auction. Accordingly, the player’s reaction against other competitors’ strategies 

should differ compared to the players’ behavior in the first price auction. In addition, 

it was difficult for players to determine their bid, since players did not know their true 

value of their choice. In classic second price auctions, players often fail to adjust their 

value estimates to the information revealed by winning; hence, players have less 

confidence in their understanding of the auction and prefer to avoid behavior that 

appears extreme (Kagel, 1995). Under such conditions, the results of this second 

experiment should differ from those of the first experiment. The following analysis 

for the three-player experiment demonstrates each player’s preference for each 

strategy and their bidding behavior for each cognitive learning process. 

Figures 5.11 through 5.13 show the player’s actual frequency of bid price choices, 

given epistemic learning data.  
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Figure 5.11 Player 1’s actual frequency of bid price choice for epistemic learning data 

(three-player experiment) 
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Figure 5.12 Player 2’s actual frequency of bid price choice for epistemic learning data 

(three-player experiment) 
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Figure 5.13 Player 3’s actual frequency of bid price choice for epistemic learning data 

(three-player experiment) 

 

Figures 5.11 through 5.13 show that the actual frequency of bid price 15 (BP=15) 

for all players is higher than for other choices after 10 to 25 games (t=10–25). The 

rank order of bidding frequency at the end of sequential games is the same as the 

corresponding order observed in the two-player experiment. As games repeated, the 

actual frequency of choosing bid price 15 (BP=15) among all players increased 

relative to the other bid price choices. In particular, this bid was a dominant choice 

for Players 2 and 3 in all games. Players’ payoffs for bidding a price of 10 was mostly 

negative, since the given cost range was between 10 and 20. Players could not take 

the risk of bidding 10, even in the second price auction game, since they had full 

information of other player’s bidding history. However, in the second price auction 

game, the winning player’s payoff is the difference between the second lowest price 
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and given player’s own cost. Therefore, the frequency of bid price 15 increased 

overall for all games compared to prices 20 and 25, since players can expect more 

payoffs and opportunity to win that game by choosing a bid price of 15.  
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Figure 5.14 Probability of choice over 80 games for epistemic learning game (three-

player experiment) 

 

Figure 5.14 indicates the players’ probability15 of selecting each alternative over 

the 80 games, using the epistemic learning data, as well as each player’s risk 

management preference. From this perspective, all players were risk neutral 

compared to those in the first experiment. Players were more competitive in this 

second experiment. Therefore, because all players had information about competitors’ 

                                                 

15 

∑∑
= =

=
4

1

80

1

80
80

)(

)(
)(

j t

t

n

n

n

jN

iN
iF  



 112 

history, they could not afford to take the same risks as those players in the first 

experiment.   

A linear regression model is estimated using the epistemic learning data. The bid 

price is a dependent variable, and the winning payoff is an independent variable. In 

the second auction game, this winning payoff used in a regression model is not an 

exact payoff that players can have after that game if they win that game. However, we 

use this payoff as an independent variable, since players cannot predict the real values 

of their payoffs. They expect that they will have more payoffs than this winning 

payoff, which is the difference between the player’s bid price and given costs, if they 

win that game. This model tests whether a winning payoff variable has a significant 

effect on the choice of bid price. The linear regression formulation (equation (5.3)) 

shows the relationship between the chosen bid price and the payoffs received. Table 

5.7 presents the regression results for the epistemic learning experimental data. 

 

Table 5.7 Regression results for epistemic learning data (three-player experiment)  

 Player1 Player2 Player3 All 

 B t-value B t-value B t-value B t-value 

(Constant) 14.802 43.550 15.414 48.685 15.328 44.212 15.203 80.257 

Payoff 0.924 6.462 0.971 10.721 0.858 4.987 0.943 13.469 

R2 0.346 0.593 0.239 0.429 

SSE 719.623 639.181 701.389 2082.166 

SSR 380.377 929.954 220.833 1567.423 

SST 1100.000 1569.136 922.222 3649.588 
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We found a significant positive correlation between payoffs and bid price based on 

the t-values at a 95 percent confidence level. Players having more winning payoffs 

bid higher prices. The Table 5.7 shows that Player 2 is more concerned about the 

winning payoff than other players in the epistemic learning game, as indicated by the 

R-square value. This R-square value indicates that 59.3 percent of the variance in bid 

price can be predicted from the player’s winning payoffs variable.  Note that this is an 

overall measure of the strength of association; however, the R-square values for 

goodness-of-fit are not high enough to explain either player’s bidding behavior. In the 

multi-player and the second price auction games, players could consider the other 

competitor’s strategies by observing their sequence of choice. Thus, more related 

factors must be included in the model structure. 

Figures 5.15, 5.16, and 5.17 present the actual frequency of bid price choices for 

each player using behavioral reinforcement data. In this experiment, players could 

track their own history of bidding choices over several games. The rank order of 

player’s frequency of bid price choices at the end of sequential games differs from the 

corresponding rank order observed in the three-player epistemic learning experiment. 

Players are more likely to choose bid price 15 (BP=15) than other prices. Accordingly, 

players prefer to choose bid price 20 (BP=20) over bid prices 10 (BP=10) and 25 

(BP=25). Player 3 prefers to choose bid price 20 over bid price 15 until 35 games 

(t=0~35). This example shows that players try to avoid choosing between two 

extreme bid prices (highest and lowest), since players may have low payoffs and a 

low probability to win. In this experiment, the second price auction was applied, 

which can be riskier for players, since players can rely on the auction type and their 
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payoffs in the behavioral reinforcement learning game. In the epistemic learning 

game, players cannot take as many risks as those in the behavioral reinforcement 

game, since players know each other’s choices. Therefore, the probability of choosing 

bid price 10 in the epistemic learning game for the three-player experiment is higher 

than choosing bid prices 20 or 25 (see Figures 5.11 through 5.13).  
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Figure 5.15 Player 1’s actual frequency of bid price choice for behavioral 

reinforcement learning experiment data (three-player experiment) 
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Figure 5.16 Player 2’s actual frequency of bid price choice for behavioral 

reinforcement learning experiment data (three-player experiment) 
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Figure 5.17 Player 3’s actual frequency of bid price choice for behavioral 

reinforcement learning experiment data (three-player experiment) 
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Figure 5.18 shows the probability of each bid price choice across 80 games using 

behavioral reinforcement data. The probability of each bid choice reveals each 

player’s bidding strategy and risk management preference. Player 2 chooses bid price 

10 less often than other players. Player 2 takes greater risks in the behavioral 

reinforcement experiment than other players. By choosing bid prices 10 and 15, 

Players 1 and 3 are more risk neutral compared to Player 2.   
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Figure 5.18 Probability of choice over 80 times for behavioral reinforcement (two-

player experiment) 

 

Table 5.8 shows the linear regression model estimation results using behavioral 

reinforcement learning data.  We try to determine the relationship between two 

variables: bid price and winning payoffs.  
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Table 5.8 Regression results for behavioral reinforcement learning experiment data 

(three-player experiment)  

 Player1 Player2 Player3 All 

 B t-value B t-value B t-value B t-value 

(Constant) 14.886 42.583 15.657 48.691 15.527 49.999 15.384 81.658 

Payoff 0.931 7.407 0.738 6.870 0.654 6.682 0.759 12.033 

R2 0.410 0.374 0.361 0.375 

SSE 719.493 595.107 610.510 1968.314 

SSR 499.643 355.510 345.045 1182.509 

SST 1219.136 950.617 955.556 3150.823 

 

Table 5.8 presents the value of the R-square, which is less than 0.5. This means 

that this model is not a good reflection of the relationship between bid price and 

winning payoffs. The winning payoff variable has a significant t-value at a 95 percent 

confidence level for all cases. This demonstrates that our estimates are still 

statistically unbiased but are infected with more noise. Unlike with the epistemic 

results, Player 1 is more concerned about the winning payoff when choosing a bid 

price than Players 2 and 3, as seen by the R-square value. From the above results, we 

can conclude that the winning payoff cannot explain each player’s bidding behavior; 

such relationships cannot be linearly described. Therefore, we consider different types 

of variables, the average payoff for behavioral reinforcement learning, and possible 

payoffs based on the player’s mixed strategy choice for epistemic learning to describe 

bidding behavior.  

Figures 5.19 and 5.20 show the probability of winning or tying for each 

experiment. In the epistemic learning game, players received information about other 



 118 

players’ choices after each game. Therefore, each player could make a decision after 

considering other players’ actions. Accordingly, the frequency of ties for players in 

the epistemic learning game was less than in the behavioral reinforcement game. The 

epistemic learning game in Figure 5.19 shows that the winning frequency for Player 1 

is higher than for other players in all 80 games; Player 1 is a dominant winner. At the 

end of game, the frequency of winning for all players is very similar. For the two-

player experiment, on the other hand, there was a dominant winner in the epistemic 

learning game (see Figure 5.9). This implies that a player with more winning 

experience can retain winning probability, since that winner has a greater ability to 

predict other player’s bidding behavior using epistemic learning information.  

In the behavioral reinforcement game, however, we could not say which player 

was the dominant winner. The behavioral reinforcement learning process assumes 

that players cannot track competitor’s choices; they can only review their own past 

payoffs before making a decision. Therefore, no player can predict their competitor’s 

next action.  A player whose bid choice resulted in high payoffs in the past will have 

more payoffs.   
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Figure 5.19 Players’ winning frequency16  for epistemic learning experiment data 

(three-player experiment) 
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Figure 5.20 Players’ winning frequency for behavioral reinforcement learning 

experiment data (three-player experiment) 

                                                 

16 Winning frequency includes the number of tie game 
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Chapter 6. Dynamic Multinomial Probit Estimation 

Results 

6.1. Introduction  

The previous chapter discussed the results of the explanatory analysis on two 

experimental datasets. This chapter focuses on providing empirical results and 

estimates of the two models, using data from the two sequential choice experiments 

described in Chapter 5. Before the estimation, we must classify the two learning 

models corresponding to the two experimental datasets and the two types of mixed 

learning model corresponding to the epistemic experimental datasets. In addition, 

three types of learning model specifications (epistemic, behavioral reinforcement, and 

mixed learning) are investigated for DMNP and DML model frameworks. Three 

different models of learning procedures are estimated to further demonstrate the 

capability of the developed MLE estimation procedure for DMNP models with a 

large number of parameters, alternatives, and error structures. 

We interpret the estimation results for cognitive learning models by evaluating the 

performance of the learning sequences of choices mentioned earlier in the DMNP 

model. In this chapter, we first discuss the epistemic learning estimation results 

generated by the DMNP model (Section 6.2); then, we present the behavioral 

reinforcement learning estimation results (Section 6.3); In Section 6.4, the statistical 

test results are presented to test the mis-specification for both learning models; finally, 

we specify the mixed learning models and provide the estimation results of the mixed 
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learning model (Section 6.5). All numerical experiments in this study were 

implemented using FORTRAN as the programming language. 

To simplify the estimate, the same variance and covariance were assumed in 

it

nv and it

nΩ : 22

ji σσ = , jjt

nm

iit

nm γγ = , jit

nm

ijt

nm γγ = , and 
'ijt

nm

ijt

nm γγ =  . The estimation results 

for the behavioral reinforcement, epistemic, and mixed learning models are shown, 

with error structure in the following sections. 

 

6.2. Epistemic Learning Behavioral Interpretation  

The explanatory variables included in the empirical epistemic learning model 

specification (Table 6.1) are the player’s expected payoffs given their beliefs17 

regarding the opponent’s type and habit persistence. Average payoff, cumulative 

choice sequence, and habit persistence variables are used in the behavioral 

reinforcement learning model specification in Tables 6.2 and 6.3.  

Table 6.1 presents the estimation results using the datasets for the epistemic 

learning case. As expected, the coefficients for the player’s expected payoffs, given a 

belief regarding the opponent’s type in the epistemic learning model, is positive and 

strongly significant. The empirical results for the epistemic learning model indicate 

that, given a belief regarding the opponent’s type, players who feel more positively 

about the expected payoff have a greater utility for the alternative bid price than 

                                                 

17 the form of stationarity of opponents’ behavior 
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players who have less expected payoff. These results imply that a player who follows 

the epistemic learning rule is sensitive to other players’ choice decisions, since mixed 

strategies given by players’ choice combinations determine the payoffs. However, the 

results also demonstrate the decreasing utility of bid price with increasing utility of 

previous time periods in habit persistence term. A player adopting the epistemic 

learning rule is more concerned with other players’ current possible choices than with 

his or her own previous utility. Players tend to believe that the previous high utility of 

that bid price choice cannot guarantee the high utility of that bid price in the current 

game. Players prefer to know the opponent’s type before making a decision each 

game.  

In order to test the player’s epistemic learning behavior, epistemic learning 

datasets were applied to the behavioral reinforcement model specification and the 

estimation results are presented in Table 6.2. The hypothesis of this experiment is that 

even though a player has knowledge of an opponent’s type, the player will behave in 

a manner consistent with the behavioral reinforcement learning rule. The results in 

Table 6.2 show that the coefficients for the explanatory variables and error terms are 

significant, but the log likelihood ratio in Table 6.2 is less than that of Table 6.1 (the 

epistemic learning model).  This may imply that players who hold to the epistemic 

learning rule are more likely to use all information about their opponent’s type to 

make a decision.  
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Table 6.1 Estimated parameters of the epistemic learning DMNP model using 

epistemic learning data for the two-player experiment 

 Epistemic Learning Model
18

 

Attributes Estimates T-value 

Initial Value ( Iβ ) -0.842 -5.836 

Constant(alt1, 1

0β ) -0.087 -8.720 

Constant(alt2, 2

0β ) -0.712 -3.369 

Constant(alt3, 3

0β ) -0.507 -4.412 

Payoff based on the belief of opponents 

action ( 1β ) 
1.770 4.505 

Habit persistence 1 ( 2β ) -0.288 -3.296 

1ρ  0.408 4.823 

2ρ  (Habit persistence 2) 0.369 9.950 
12

12γ  0.356 2.634 
13

12γ  0.481 2.006 
14

12γ  -0.005 -3.568 
23

12γ  0.003 7.173 
24

12γ  -0.003 -1.639 
34

12γ  0.029 4.500 
12

21γ  -0.594 -1.989 
13

21γ  -0.008 -7.579 
14

21γ  0.853 1.302 
23

21γ  -1.241 -4.569 
24

21γ  1.162 4.144 
34

21γ  -0.081 -2.810 

Log-likelihood at convergence -0.4175 
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Table 6.2 Estimated parameters of the behavioral reinforcement learning DMNP 

model using epistemic learning data for the two-player experiment 

 
Epistemic learning data to 

Behavioral Reinforcement Model
19

 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.000 -7.777 

Constant(alt1, 1

0β ) -0.207 -4.996 

Constant(alt2, 2

0β ) 0.671 5.842 

Constant(alt3, 3

0β ) 0.408 3.343 

Avg. payoff ( 1β ) 0.490 3.539 

Sequence of choice ( 2β ) 0.517 3.374 

Habit persistence 1 ( 3β ) -0.140 -2.056 

1ρ  0.469 11.335 

2ρ  (Habit persistence 2) -0.136 -4.258 
12

12γ  0.131 2.693 
13

12γ  0.145 3.147 
14

12γ  0.000 -5.519 
23

12γ  -0.429 -1.958 
24

12γ  -0.076 -3.930 
34

12γ  0.500 8.144 
12

21γ  -0.484 -2.609 
13

21γ  0.207 3.247 
14

21γ  0.065 9.365 
23

21γ  -0.334 -1.844 
24

21γ  0.074 13.652 
34

21γ  0.290 2.791 

Log-likelihood at convergence -0.9039 

 

                                                 

19 Behavioral Reinforcement Learning Model: 

it

n

it

n

i

n

t

p

p

q

n

i

nJ

h

h

n

t

p

n

i

nnn

i

n

it

n

iit

nI

it

n

YtV

qtssI

tN

ptssptssI

YYU

n

εβ

β
π

β

ββ

+−−+

−+



















−

−⋅−

+

−+=

∑∏
∑

∑ −

= =

=

−

=
−

)1)(1(

))(,(

)1(

))(,())(,(

)1(

3

1

1 1

2

1

1

1

1

0

 



 125 

6.3. Behavioral Reinforcement Learning Behavioral Interpretation  

Table 6.3 shows the empirical results for the behavioral reinforcement case. The 

average payoff (normalized by each player’s number of trials) and the cumulative 

sequence of the player’s choice variables in the behavioral reinforcement learning 

model are statistically significant. Two variables capture the effects of a given 

player’s learning, based on their own payoff and the bid price choice. Players with 

high payoffs for a certain alternative bid price throughout the game prefer to choose 

that bid price in order to secure more payoffs. Players who choose high bid prices are 

considered risk takers, since the probability of winning with the high bid is less than 

winning with a low bid. In addition, players having low payoffs cannot take the risk 

of choosing a high bid price choice as often as players with high payoffs. Such 

players prefer to win, even though they receive lower payoffs associated with a low 

bid price.  

Since these players do not know their opponents’ type and future payoffs, their 

decisions are related more to their own past payoffs and choices. Hence, the 

coefficient for the cumulative sequence of choice variable is positive and significant. 

However, the coefficient for the previous deterministic utility (habit persistence I) is 

negative, as in the epistemic learning model (see Table 6.1). Habit persistence 

represents the intensity of habit formation and introduces the concept of non-

separability of preferences over time. Under this condition, an increase in current 

utility lowers the marginal utility in the current period and increases it in the next 

period. Intuitively, more players have a positive preference for that alternative in the 

current game, and players are more likely to choose that alternative in the next game. 
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Table 6.3 Estimated parameters of the behavioral reinforcement learning20 DMNP 

model using behavioral reinforcement data for the two-player experiment 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.011 11.325 

Constant(alt1, 1

0β ) -0.014 -6.480 

Constant(alt2, 2

0β ) -0.013 -1.848 

Constant(alt3, 3

0β ) 0.018 3.560 

Avg. payoff ( 1β ) 0.008 6.871 

Sequence of choice ( 2β ) 0.009 3.540 

Habit persistence 1 ( 3β ) -0.013 -2.367 

1ρ  -0.001 -1.788 

2ρ  (Habit persistence 2) 0.018 4.264 
12

12γ  0.019 6.877 
13

12γ  0.031 2.643 
14

12γ  0.002 2.690 
23

12γ  0.016 4.639 
24

12γ  0.015 2.418 
34

12γ  0.004 5.217 
12

21γ  0.011 26.486 
13

21γ  0.037 4.780 
14

21γ  0.004 4.489 
23

21γ  -0.011 -3.904 
24

21γ  -0.033 -2.305 
34

21γ  0.015 4.219 

Log-likelihood at convergence -1.4180 
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The estimates for the variance and covariance terms for bid price choice are 

significant at a reasonable confidence level (Tables 6.1– 6.3). This indicates that we 

must specify the error incorporating the impact of a player’s competitive bid price 

choice. In particular, the coefficients for the error term for competition that impact the 

bid price choice for each player ( ij

nmγ  and ij

mnγ ) differ, which implies that each player 

responds differently to other player’s choice decisions, relative to the competitive 

impact of his or her own decisions.  

 

6.4. Statistical Test for Epistemic vs. Behavioral Reinforcement Learning Model 

We observe that some players do not follow the epistemic learning rule over all 

games, even though they have full information about competitors’ actions. As 

previously mentioned, the behavioral reinforcement model estimation results were 

provided using the epistemic learning datasets to verify whether the player behaved in 

a manner consistent with the behavioral reinforcement learning process in the 

epistemic learning game. Thus, we applied the observed datasets from epistemic 

learning game to the epistemic and behavioral reinforcement model structures (see 

Table 6.4 for the estimation results).  
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Table 6.4 Estimated parameters of the epistemic (restricted) learning and behavioral 

reinforcement (unrestricted) learning DMNP models using the epistemic learning 

datasets (two-player experiment) 

 Epistemic  
Behavioral 

Reinforcement 

Attributes Estimates T-value Estimates T-value 

Initial Value ( Iβ ) -0.842 -5.836 0.011 11.325 

Constant(alt1, 1

0β ) -0.087 -8.720 -0.014 -6.480 

Constant(alt2, 2

0β ) -0.712 -3.369 -0.013 -1.848 

Constant(alt3, 3

0β ) -0.507 -4.412 0.018 3.560 

Possible Payoff ( 1β ) 1.770 4.505 - - 

Avg. payoff ( 2β ) - - 0.008 6.871 

Sequence of choice ( 3β ) - - 0.009 3.540 

Habit persistence 1  

( 4β ) 
-0.288 -3.296 -0.013 -2.367 

1ρ  0.408 4.823 -0.001 -1.788 

2ρ  (Habit persistence 2) 0.369 9.950 0.018 4.264 
12

12γ  0.356 2.634 0.019 6.877 
13

12γ  0.481 2.006 0.031 2.643 
14

12γ  -0.005 -3.568 0.002 2.690 
23

12γ  0.003 7.173 0.016 4.639 
24

12γ  -0.003 -1.639 0.015 2.418 
34

12γ  0.029 4.500 0.004 5.217 
12

21γ  -0.594 -1.989 0.011 26.486 
13

21γ  -0.008 -7.579 0.037 4.780 
14

21γ  0.853 1.302 0.004 4.489 
23

21γ  -1.241 -4.569 -0.011 -3.904 
24

21γ  1.162 4.144 -0.033 -2.305 
34

21γ  -0.081 -2.810 0.015 4.219 

Log-likelihood at convergence -0.4175 -0.9039 

 

The following procedure shows the difference between both cognitive learning 

models and verifies the effects of the related payoffs and sequential choice variables 

on bidding behavior.  
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In Table 6.4, both learning models show the statistical significance of the player’s 

bidding behavior. To explain this behavior, we must determine whether the epistemic 

and behavioral reinforcement models differ. On one hand, only one learning model 

can be used to describe the player’s choice behavior; on the other hand, we can 

conclude that both models are useful for explaining the bid price choice behavior in 

the epistemic learning game. The Hausman specification test is performed to 

determine this.  

First proposed by Hausman (1978), this test evaluates model mis-specification. We 

first test the following null hypothesis: 

 :0H  Our model is mis-specified against the alternative model 

The Hausman test statistic is 

[ ] [ ] [ ]rururu VVH ββββ −−−= −1'
 

where 

uβ : the coefficients of variables in behavioral reinforcement learning (unrestricted) 

model 

rβ : the coefficient of variables in the epistemic learning (restricted) model 

uV : the variance of variables in behavioral reinforcement learning (unrestricted) 

model 

rV : the variance of variables in epistemic learning (restricted) model 

This incorporates the test conducted between the restricted model r, estimated for 

the epistemic learning models in Table 6.4, and the full model u, estimated for the 
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behavioral reinforcement learning model in Table 6.4.  If the model is correctly 

specified, then the null hypothesis will be rejected, and we can conclude that two 

models are different and the epistemic learning model structure is well-specified. The 

test statistic [ ] [ ] [ ]rururu VVH ββββ −−−= −1'
 is asymptotically chi-square distributed 

with 
rK  degrees of freedom, where 

rK  is the number of coefficients in the restricted 

choice set model; uβ  and rβ  are the coefficient vectors estimated for the unrestricted 

and restricted choice sets, respectively; and uV  and rV  are the variance-covariance 

matrices for the unrestricted and restricted choice sets, respectively. The Hausman 

statistics value for the two-player experiment is: 

[ ] [ ] [ ] 05.265
1' =−−−= −

rururu VVH ββββ  

The chi-square value for 20 degrees of freedom and 95% confidence level is 31.41 

( 41.312

05.0,20 =χ ). Because the chi-square value is less than 265.05, we can reject this 

null hypothesis.  We can also conclude that both models are well-specified and that 

there is difference between two learning models to describe player’s bidding behavior.  

This result demonstrates that both the epistemic and behavioral reinforcement 

model specifications are different but useful to describe the player’s bid choice 

behavior in the epistemic learning game. It also implies that players behave in a 

manner consistent with both cognitive learning processes. This means that the mixed 

type of learning rule can be applied, since the player’s bidding dynamics cannot be 

fully explained by either cognitive learning model for the two-player experiment.  

From this, we can suggest the general type of learning model specification to explain 



 131 

player’s behaving in both cognitive learning rules. Thus, the mixed learning model is 

investigated for this general learning model to include two learning models as a 

special case. This mixed learning model can be better than the epistemic and 

behavioral reinforcement learning model to describe the player’s bidding behavior by 

incorporating both elements from the epistemic and behavioral reinforcement 

learning processes.  

We must specify the different model specifications and structures for the mixed 

learning process. The estimation procedure and model structures for mixed learning 

process were presented in the Chapter 4. The mixed learning model estimation results 

for the two-player experiment using the DMNP model are shown in the following 

section. 

 

6.5. DMNP Mixed Learning Models 

Mixed learning models integrate appropriate elements of behavioral reinforcement 

and epistemic learning approaches. We have already shown that both learning models 

can describe the player’s bidding behavior for the epistemic learning game. 

Accordingly, the mixed learning model can be useful to improve their predictive 

accuracy, since it includes two learning models as special cases. This section 

demonstrates the important features of the mixed learning model. The maximum-

likelihood parameter estimates are derived to test the empirical usefulness of mixed 

learning models using the two-player epistemic learning experiment datasets.  The 

estimation process and the definition of parameters are described in Section 4.8. The 
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following Table 6.5 illustrates the estimation results of the mixed learning DMNP 

model I using the epistemic learning data. 

 

Table 6.5 Estimated parameters of the mixed learning DMNP model I using the 

epistemic learning datasets (two-player experiment) 

Attributes Estimates T-value 

Initial Value (
Iβ ) 0.184 5.341 

Constant(alt1, 1

0β ) 0.086 3.643 

Constant(alt2, 2

0β ) 0.471 3.216 

Constant(alt3, 3

0β ) -0.247 -2.534 

Possible Payoff ( 1β ) 0.838 2.504 

Avg. payoff ( 2β ) 0.467 4.591 

Sequence of choice ( 3β ) 0.132 3.344 

Habit persistence 1 ( 4β ) -0.092 -6.242 
E

1α  0.344 3.846 
E

2α  0.072 4.506 

1ρ  -0.168 -3.208 

2ρ  (Habit persistence 2) -0.577 -4.458 
12

12γ  -0.433 -1.995 
13

12γ  -0.060 -3.485 
14

12γ  -0.575 -4.670 
23

12γ  -0.062 -5.683 
24

12γ  0.078 3.641 
34

12γ  -0.602 -2.760 
12

21γ  -0.207 -4.471 
13

21γ  0.627 5.200 
14

21γ  0.001 4.804 
23

21γ  0.294 7.204 
24

21γ  0.490 3.041 
34

21γ  0.432 1.902 

Log-likelihood at convergence -0.994 
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The mixed learning model I includes all explanatory variables in the epistemic and 

behavioral reinforcement models: initial attraction, possible payoff, average payoff, 

sequence of choice, and habit persistence. In this model, the players’ utilities of 

strategies are affected by the number of choices for that strategy, the average payoffs 

for the strategies provided, and the expected payoffs associated with the combination 

of strategies among players, which are updated after each game. In addition, the 

mixed learning models require the specification of the player’s degree of propensity 

for each epistemic and behavioral reinforcement learning rule ( E

nα  and R

nα ).  

According to Table 6.5, the coefficients of explanatory variables in mixed learning 

model I are statistically significant. Players who feel positive about their strategies 

and payoffs have a greater utility for the bid price that provided more payoffs and 

wins. Habit persistence has a negative coefficient; these estimation results are 

consistent with the results in Section 6.2 for the epistemic and behavioral 

reinforcement models using the epistemic learning datasets. The degree of propensity 

for the epistemic learning rule is 0.344 for Player 1 and 0.072 for Player 2; the degree 

of propensity for the behavioral reinforcement learning rule is 0.656 for Player 1 and 

0.928 for Player 2. The probability of both players behaving in a manner consistent 

with the epistemic learning is less than the probability for the behavioral 

reinforcement learning players. However, Player 2 has a greater probability to be a 

behavioral reinforcement player over all games than Player 1.  

The mixed learning model I assumes that players’ choice decisions corresponding 

to his/her cognitive learning type are independent from other players’ cognitive 
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learning rules. This means that the competitor’s cognitive learning belief on the bid 

price choice does not affect the player’s choice of cognitive learning rules and related 

decisions. However, we expect that the players will dynamically adjust to the 

competitive environment and make the best response by observing competitors’ 

choice decisions and their cognitive learning rules and beliefs. To evaluate the 

interaction among players, the estimation results for the mixed learning model II are 

presented in Table 6.6.  

The coefficient for the explanatory variables in mixed learning model II (Table 

6.6) is statistically significant, and the behavioral interpretations for the effect of 

those explanatory variables on players’ bidding behavior are same as the mixed 

learning model I estimation results. As explained in Section 4.8, mixed learning 

model II includes parameters for the degree of propensity for mixed cognitive 

learning processes among players. It shows both players’ preferences for each type of 

mixed cognitive learning. For two players, there are four types of mixed learning 

processes, described in Table 6.7.  

In Table 6.6, the parameter values for the degree of propensity for each mixed type 

of learning process demonstrate that both players are more likely to behave according 

to the behavioral reinforcement learning process in 58% of games. This implies that 

players have strong interaction when both players behave in a manner consistent with 

the behavioral reinforcement learning process. Both players exhibit epistemic 

learning behavior for 25% of games; this behavior is consistent with the behavioral 

interpretation shown in mixed learning model I, which implies that both players’ 

decisions are strongly involved with the behavioral reinforcement learning process. 
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To test the independence of players’ cognitive learning processes, estimation results 

from both mixed learning models are provided in Tables 6.7 and 6.8. 

 

Table 6.6 Estimated parameters of the mixed learning DMNP model II using the 

epistemic learning datasets (two-player experiment) 

Attributes Estimates T-value 

Initial Value (
Iβ ) 0.849 2.377 

Constant(alt1, 1

0β ) 0.204 6.339 

Constant(alt2, 2

0β ) 0.747 7.551 

Constant(alt3, 3

0β ) -0.198 -5.195 

Possible Payoff ( 1β ) 0.301 5.063 

Avg. payoff ( 2β ) 0.460 5.573 

Sequence of choice ( 3β ) 0.044 1.920 

Habit persistence 1 ( 4β ) -0.546 -11.412 
EE

12α  0.251 7.115 
ER

12α  0.000 2.021 
RR

12α  0.581 2.861 

1ρ  0.369 21.606 

2ρ  (Habit persistence 2) 0.127 2.951 
12

12γ  -0.374 -2.200 
13

12γ  -0.106 -3.337 
14

12γ  0.313 1.821 
23

12γ  0.266 5.552 
24

12γ  0.035 2.005 
34

12γ  -0.455 -2.117 
12

21γ  -0.223 -2.516 
13

21γ  0.028 2.310 
14

21γ  -0.291 -5.783 
23

21γ  -0.667 -3.142 
24

21γ  0.783 2.506 
34

21γ  -0.050 -5.416 

Log-likelihood at convergence -1.240 
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Table 6.7 The mixed cognitive learning (MCL) index and estimation results from the 

mixed learning DMNP model II for the two-player experiment 

Player 1 Player 2  
m

nα  # of 80 games21 

Epistemic Epistemic EE

12α  0.251 20 

Epistemic 
Behavioral  

Reinforcement 

ER

12α  0.000 0 

Behavioral  

Reinforcement 
Epistemic RE

12α  0.168 14 

Behavioral  

Reinforcement 

Behavioral 

 Reinforcement 

RR

12α  0.581 46 

 

 

Table 6.8 The mixed cognitive learning (MCL) index and estimation results from the 

mixed learning DMNP model I for the two-player experiment 

Player 1 Player 2  
m

nα 22 # of 80 games 

Epistemic Epistemic EE

12α  0.025 2 

Epistemic 
Behavioral  

Reinforcement 

ER

12α  0.319 26 

Behavioral  

Reinforcement 
Epistemic RE

12α  0.047 4 

Behavioral  

Reinforcement 

Behavioral 

 Reinforcement 

RR

12α  0.609 48 

 

                                                 

21 game ofnumber  totalgame ofnumber ×= m

nα  

22 
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Figure 6.1 Comparison of the propensity for the mixed cognitive learning process 

between mixed learning DMNP models I and II 

 

If there is no interaction among players in terms of making decisions according to 

their cognitive learning rules, then the degree of propensity for mixed cognitive 

learning processes in Table 6.7 must equal that of Table 6.8. Based on the assumption 

that players’ cognitive learning processes are independent, the joint probability for the 

degree of propensity for mixed cognitive learning processes among all players ( m

nα ) 

is calculated using the degree of propensity for each player’s cognitive learning 

process ( E

nα  and R

nα ): 

EEEE

2112 ααα ×=  

REER

2112 ααα ×=  

ERRE

2112 ααα ×=  

RRRR

2112 ααα ×=                                                                                                           (6.1)
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Figure 6.1 compares the propensity values for the mixed cognitive learning 

processes among all players in mixed learning models I and II.  The degree of 

propensity for the behavioral reinforcement learning process (RR) in both learning 

models is higher than any other mixed learning process. The propensity of the 

epistemic learning process for both players (EE) is higher than the propensity for the 

Player 1’s epistemic and Player 2’s behavioral reinforcement learning (ER) or Player 

1’s behavioral reinforcement and Player 2’s epistemic learning (RE) in mixed 

learning model II. However, the propensity for the Player 1’s epistemic learning and 

Player 2’s behavioral reinforcement learning process (ER) is higher than the 

propensity for the epistemic learning for both players (EE) and the behavioral 

reinforcement learning for Player 1 and the epistemic learning for Player 2 (RE) in 

mixed learning model I. As shown in Figure 6.1, the propensity value for each mixed 

learning process differs between mixed learning model I and II, especially for the EE, 

ER, and RE cases. Therefore, the following statistical test is required to evaluate the 

difference between two mixed learning models. 

Both results in Tables 6.7 and 6.8 provide the input values for the cross-tabulation 

and chi-square test to assess the independence of players’ cognitive learning 

processes, which are presented in Tables 6.9 and 6.10.   
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Table 6.9 Model *MCL cross-tabulation for the two-player DMNP model 

  Player’s Mixed Cognitive Learning (MCL) Total 

  EE ER RE RR  

Model I Count 2 26 4 48 80 

 
% within 

Model I 
2.5% 32.5% 5.0% 60.0% 100.0% 

 
% within 

MCL 
9.1% 100.0% 22.2% 51.1% 50.0% 

 % of Total 1.3% 16.3% 2.5% 30.0% 50.0% 

Model II Count 20 0 14 46 80 

 
% within 

Model I 
25.0% 0.0% 17.5% 57.5% 100.0% 

 
% within 

MCL 
90.9% 0.0% 77.8% 48.9% 50.0% 

 % of Total 12.5% 0.0% 8.8% 28.8% 50.0% 

 Count 22 26 18 94 160 

 
% within 

Model 
13.8% 16.3% 11.3% 58.8% 100.0% 

 
% within 

MCL 
100.0% 100.0% 100.0% 100.0% 100.0% 

 % of Total 13.8% 16.3% 11.3% 58.8% 100.0% 

 

Table 6.10 Chi-Square Tests for the two-player DMNP model 

 Value df 
Asymp. Sig. 

(2-sided) 

Pearson Chi-Square 46.325 3 0.000 

Likelihood Ratio 59.065 3 0.000 

Linear-by-Linear 

Association 
0.700 1 0.403 

N of Valid Cases 160   
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The chi-square test is used to find the difference between frequencies for the 

propensity for each mixed cognitive learning process in models I and II. The null 

hypothesis for the chi-square test follows: 

0H : There is no difference between mixed learning models I and II. 

In Table 6.9, the cross-tabulation result illustrates that the degree of propensity for 

each mixed cognitive learning process differs between the mixed learning models. In 

addition, the chi-square test result in Table 6.10 indicates that there is strong 

interaction among players’ cognitive learning processes related to the choice decision. 

From this, we can conclude that a player considers competitors’ cognitive learning 

type and their beliefs; hence a player switch his/her cognitive learning type according 

to his/her belief about compeitotor’s cognitive learning type. Therefore, mixed 

learning model II is preferred to explain players’ mixed cognitive learning behavior in 

sequential games. 



 141 

Chapter 7. Dynamic Mixed Logit Estimation Results 

7.1. Introduction  

This chapter presents the empirical results and estimates of the learning models, 

using learning game datasets for the two and three-player sequential choice 

experiments. Before the estimation, we classify and specify two learning models 

corresponding to the two types of experimental game datasets described in Section 

4.3. In addition, the mixed learning models are investigated to describe players’ 

mixed learning behavior on bid price choice, as described in Section 4.8.  

We apply the dynamic mixed logit (DML) model to existing bidding data from the 

two types of learning games for each experiment. Two different model structures for 

each cognitive learning procedure and mixed learning process are estimated to further 

demonstrate the capability of the developed MLE estimation procedure for DML 

models with a large number of parameters, alternatives, and error structures. We 

interpret the estimation results for learning models by evaluating the performance of 

the learning choice sequence. All numerical experiments in this study were 

implemented using FORTRAN as the programming language. 

The same variance and covariance terms were assumed in it

nv  and it

nΩ  in order to 

simplify the estimate as follows: 

22

ji σσ = , jj

nm

ii

nm γγ = , ji

nm

ij

nm γγ = , and ji

nl

ij

nm γγ =   

where 
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i  and j : alternative bid prices 

n , m , and l : a players 

2

iσ  and 2

jσ : the variance of error term 

ii

nmγ : the covariance across players for the same alternative 

ij

nmγ : the covariance across players when each player choose different choice 

In our analysis, we consider several error component specifications in the DML 

model to introduce correlation in the utilities.  The best statistical result included error 

components to accommodate correlation across alternatives ( 1ρ ), serial correlation 

( 2ρ ), and correlation among competitors ( ij

nmγ ).  

As presented in Chapter 6, the DMNP estimation results using the same two-player 

experiment dataset were provided for the epistemic, behavioral reinforcement, and 

mixed learning processes. We expect that DML model will easily allow for the 

estimation of learning models for multiple players. Our analysis indicates that the 

DML structure is as statistically good as the DMNP structure. 

 

7.2. Epistemic Learning Behavioral Interpretation  

The fundamental hypothesis underlying our empirical analysis is that players’ 

bidding decisions are largely due to sequential history of choice, payoff, and habit 

persistence, which are related to players’ cognitive learning processes. The final 

variable specifications for the epistemic learning model (see Tables 7.1 and 7.2) are 
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initial attraction, player’s expected payoffs given opponents’ beliefs, habit persistence, 

and variance-covariance terms.  

 

Table 7.1 Estimated parameters of the epistemic learning DML model using 

epistemic learning data for the two-player experiment 

Attributes Estimates T-value 

Initial Value (
Iβ ) 0.475 50.480 

Constant(alt1, 1

0β ) 0.118 30.481 

Constant(alt2, 2

0β ) 0.201 32.683 

Constant(alt3, 3

0β ) -0.393 -48.633 

Possible payoff ( 1β ) 0.707 18.520 

Habit persistence 1 ( 4β ) -0.188 -38.435 

1ρ  0.480 22.190 

Habit persistence 2 ( 2ρ ) 0.130 25.713 
12

12γ  -0.060 -32.171 
13

12γ  -0.158 -190.645 
14

12γ  0.500 55.697 
23

12γ  0.098 18.685 
24

12γ  -0.033 -19.447 
34

12γ  0.241 29.687 
12

21γ  0.346 46.208 
13

21γ  -0.005 -44.532 
14

21γ  -0.026 -38.424 
23

21γ  -0.271 -29.182 
24

21γ  0.170 24.468 
34

21γ  -0.005 -110.547 

Log-likelihood at convergence -178.809 
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Table 7.2 Estimated parameters of the epistemic learning DML model using 

epistemic learning data for the three-player experiment 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.124 48.788 

Constant(alt1, 1

0β ) 0.011 18.692 

Constant(alt2, 2

0β ) -0.140 -17.251 

Constant(alt3, 3

0β ) -0.105 -15.528 

Possible payoff ( 1β ) 0.392 26.599 

Habit persistence 1 ( 4β ) 0.157 65.856 

1ρ  0.358 26.239 

Habit persistence 2 ( 2ρ ) 0.486 27.102 
12

1mγ  -0.031 -21.051 
13

1mγ  0.035 17.095 
14

1mγ  0.280 108.171 
23

1mγ  0.139 22.320 
24

1mγ  0.070 49.181 
34

1mγ  0.006 15.357 
12

2mγ  0.088 8.172 
13

2mγ  -0.001 -9.147 
14

2mγ  -0.313 -76.756 
23

2mγ  -0.086 -26.998 
24

2mγ  0.474 79.457 
34

2mγ  -0.598 -34.679 
12

3mγ  0.003 14.364 
13

3mγ  -0.044 -65.633 
14

3mγ  0.195 20.742 
23

3mγ  -0.004 -15.754 
24

3mγ  0.107 22.955 
34

3mγ  0.063 51.468 

Log-likelihood at convergence -279.805 

 

The coefficients indicate the effects of these variables on players’ propensity for 

certain bid prices. As expected, the coefficients for the expected payoffs ( 1β ), given a 

player’s belief regarding their opponents’ type in the epistemic learning model, are 
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positive and strongly significant. The impact of the possible payoff23 in Tables 7.1 

and 7.2 indicates that the propensity associated with the level of bid prices increases 

with the possible expected payoffs, which are calculated by multiplying the 

probability of other players’ past bid choices by the corresponding player’s payoff 

from the mixed strategy; this is consistent with the findings presented in the previous 

chapter. Furthermore, players who feel more positively about the expected payoff, 

given a belief regarding the opponent’s type, choose that bid price more often to 

achieve greater payoffs. Through this process, players can build beliefs about 

competitors’ choices in the current game by observing their past choices. Given that 

updated belief about competitor’s type, players can calculate their expected payoffs 

for each bid price alternative. Therefore, epistemic learning players have a greater 

capability for concern about their beliefs of competitors’ choices than behavioral 

reinforcement learning players.  

The results for the two-player experiment in Table 7.1 demonstrate that the utility 

of bid price decreases as the utility of the previous game increases, which is observed 

in habit persistence ( 4β ) term. The player behaving in a manner consistent with the 

epistemic learning rule is more concerned about the other player’s choices and the 

corresponding expected payoffs than his or her own previous utility.  However, in 

Table 7.2, the coefficient for the habit persistence for the three-player experiment is 

positive and significant. For the three-player experiment, since there are more 

possible combinations of mixed strategies among competitors, it is more difficult for 
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players to predict expected payoffs.  Players are required to calculate the 

corresponding payoffs of mixed strategies and to build their beliefs about competitors, 

since players have more competition. This implies that a more competitive game 

environment causes players to depend on their own past utility related to that bid 

price. Tables 7.3 and 7.4 present the DML estimation results for behavioral learning 

model specification using epistemic learning data. 

 

Table 7.3 Estimated parameters of the behavioral reinforcement learning DML model 

using epistemic learning data for the two-player experiment 

Attributes Estimates T-value 

Initial Value ( Iβ ) -0.279 -29.109 

Constant(alt1, 1

0β ) 0.390 54.961 

Constant(alt2, 2

0β ) -0.036 -79.996 

Constant(alt3, 3

0β ) 0.021 161.573 

Avg. payoff  ( 2β ) 0.226 92.516 

Sequence of choice ( 3β ) 0.160 29.666 

Habit persistence 1 ( 4β ) -0.067 -110.777 

1ρ  0.305 33.806 

Habit persistence 2 ( 2ρ ) 0.134 37.225 
12

12γ  0.258 47.219 
13

12γ  0.272 69.052 
14

12γ  -0.105 -89.946 
23

12γ  -0.404 -35.735 
24

12γ  0.500 215.525 
34

12γ  0.174 18.697 
12

21γ  0.334 54.440 
13

21γ  -0.056 -61.795 
14

21γ  0.005 96.417 
23

21γ  -0.161 -29.803 
24

21γ  0.037 85.682 
34

21γ  0.019 234.150 

Log-likelihood at convergence -242.526 

 



 147 

Table 7.4 Estimated parameters of the behavioral reinforcement learning DML model 

using epistemic learning data for the three-player experiment 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.017 49.478 

Constant(alt1, 1

0β ) 0.157 39.994 

Constant(alt2, 2

0β ) -0.647 -15.679 

Constant(alt3, 3

0β ) 0.223 36.748 

Avg. payoff  ( 2β ) -0.162 -58.909 

Sequence of choice ( 3β ) 0.125 40.044 

Habit persistence 1 ( 4β ) -0.100 -17.005 

1ρ  0.227 31.171 

Habit persistence 2 ( 2ρ ) 0.711 16.612 
12

1mγ  0.057 19.962 
13

1mγ  -0.125 -13.329 
14

1mγ  -0.332 -34.825 
23

1mγ  0.178 49.494 
24

1mγ  0.283 37.323 
34

1mγ  -0.297 -35.248 
12

2mγ  -0.184 -230.516 
13

2mγ  -0.113 -42.051 
14

2mγ  -0.019 -27.437 
23

2mγ  0.329 8.154 
24

2mγ  0.094 18.358 
34

2mγ  -0.479 -23.029 
12

3mγ  -0.082 -13.943 
13

3mγ  0.375 72.809 
14

3mγ  0.500 37.009 
23

3mγ  0.351 35.394 
24

3mγ  0.181 54.912 
34

3mγ  -0.122 -89.938 

Log-likelihood at convergence -309.497 

 

The coefficients of explanatory variables and variance-covariance terms are 

statistically significant for both experiments. The signs of the coefficients of 
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explanatory variables in the DML estimated results for the two-player experiment are 

same as those results in DMNP results for the two-player experiment (see Table 6.1). 

Therefore, the behavioral interpretation is as same as in Section 6.2. The goodness-of-

fit is measured by the likelihood ratio. The log likelihood ratio value in Table 7.3 (-

242.526) is less than the log likelihood ratio value in Table 7.1 (-178.809). This 

means that the epistemic learning model can describe players’ bidding behavior better 

than the behavioral learning model using epistemic learning game data.  

Table 7.4 presents the estimation results of the behavioral reinforcement learning 

model for the three-player experiment using epistemic learning data. The coefficient 

of explanatory variables and variance-covariance terms are statistically significant in 

Table 7.4 (three-player experiment). However, the coefficients for the average payoff 

and habit persistence I variables are negative; this differs from the estimation results 

for the two-player experiment in Table 7.3, implying that players consider their 

possible payoffs given beliefs about opponents’ type rather than their own past 

payoffs. In other words, players are more likely to use information about opponents’ 

past choices to predict their next action. In addition, the log likelihood ratio in Table 

7.4 (-309.497) is less than the log likelihood ration in Table 7.2 (-279.805). From 

these results, players’ bidding behavior for the three-player experiment is well 

explained by the epistemic learning model specification compared to the behavioral 

reinforcement leaning model specification for the epistemic learning game.  
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7.3. Behavioral Reinforcement Learning Behavioral Interpretation 

In this section, we apply the behavioral reinforcement learning model to the 

existing behavioral reinforcement learning datasets. Average payoff, cumulative 

sequence of choice, and habit persistence are used as the explanatory variables in the 

behavioral reinforcement learning model specifications in Tables 7.5 and 7.6 to 

illustrate the impact of these variables on players’ bidding behavior in the behavioral 

reinforcement learning game.  

Tables 7.5 and 7.6 present the estimated parameters of the explanatory variables 

for the behavioral reinforcement model and the error components. The average 

payoff24 (normalized by each player’s number of trials) and the cumulative sequence 

of the players’ choice25 variables in the behavioral reinforcement learning model for 

both experiments are positive and statistically significant. These results are consistent 

with the DMNP estimation results from the behavioral reinforcement learning model 

for the two-player experiment. The estimation results from the average payoff and 

sequence of choice variables show the player’s behavioral learning belief about their 

own payoff for that bid price choice. Players believe that the bid price providing high 

past payoffs can continuously produce high payoffs in future games. They also 

believe that competitors have the same belief about their decisions, which is 
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reinforced by the previous preference for that bid price. Accordingly, the coefficient 

for the cumulative sequence of choice variable is positive and significant.  

The coefficient of habit persistence in deterministic utility is negative and 

statistically significant (Table 7.5). As previously mentioned habit persistence 

represents the intensity of habit formation and introduces non-separability of 

preferences over time. If players do not have the opportunity to choose a certain bid 

price in the past or have less expected payoff for that bid price, even though they 

believe that it is possible to have more payoffs by choosing that bid price, they eager 

to choose that bid price in the future games.  

In Table 7.6, the coefficient of habit persistence for the three-player experiment is 

positive and statistically significant. This indicates that the past choice experience for 

that bid price continues to provide high utility in the current period, but it makes the 

current choice less desirable. In the three-player experiment, players must predict 

more combinations of mixed strategies, because they are competing against more 

players. Therefore, players are not confident that they will win the next game, 

because there is more pressure as a result of observing competitors’ reactions over 

games. 
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Table 7.5 Estimated parameters of the behavioral reinforcement learning DML model 

using behavioral reinforcement data for the two-player experiment 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.313 47.337 

Constant(alt1, 1

0β ) -0.003 -95.871 

Constant(alt2, 2

0β ) -0.088 -17.764 

Constant(alt3, 3

0β ) 0.299 5.859 

Avg. payoff  ( 2β ) 0.437 31.916 

Sequence of choice ( 3β ) 0.043 5.792 

Habit persistence 1 ( 4β ) -0.345 -11.629 

1ρ  0.473 34.536 

Habit persistence 2 ( 2ρ ) 0.526 62.494 
12

12γ  -0.422 -47.573 
13

12γ  -0.140 -21.602 
14

12γ  -0.197 -25.089 
23

12γ  -0.365 -53.131 
24

12γ  -0.061 -18.170 
34

12γ  0.150 29.485 
12

21γ  0.278 6.044 
13

21γ  0.455 14.268 
14

21γ  -0.115 -37.822 
23

21γ  -0.162 -11.798 
24

21γ  0.262 17.913 
34

21γ  0.200 12.732 

Log-likelihood at convergence 192.182 

 

 



 152 

Table 7.6 Estimated parameters of the behavioral reinforcement learning DML model 

using behavioral reinforcement data for the three-player experiment 

Attributes Estimates T-value 

Initial Value ( Iβ ) -0.426 -32.416 

Constant(alt1, 1

0β ) 0.923 61.830 

Constant(alt2, 2

0β ) 0.287 38.732 

Constant(alt3, 3

0β ) -0.078 -31.497 

Avg. payoff  ( 2β ) 0.189 41.618 

Sequence of choice ( 3β ) 0.363 20.317 

Habit persistence 1 ( 4β ) 0.526 31.579 

1ρ  0.684 67.794 

Habit persistence 2 ( 2ρ ) 0.290 26.628 
12

1mγ  -0.221 -30.369 
13

1mγ  -0.095 -92.164 
14

1mγ  -0.281 -41.969 
23

1mγ  1.012 53.951 
24

1mγ  0.253 27.814 
34

1mγ  0.092 66.266 
12

2mγ  -0.507 -37.935 
13

2mγ  0.187 15.031 
14

2mγ  0.132 50.752 
23

2mγ  -0.271 -34.383 
24

2mγ  -0.059 -83.839 
34

2mγ  -0.280 -45.416 
12

3mγ  0.454 17.938 
13

3mγ  0.384 32.052 
14

3mγ  -0.092 -61.246 
23

3mγ  0.247 39.482 
24

3mγ  -0.207 -25.815 
34

3mγ  -0.023 -47.433 

Log-likelihood at convergence -313.129 

 

 The error components introduced in the utility function generate covariance in 

unobserved factors across alternatives, time, and players. The estimates for the 

variance and covariance terms for bid price choice are significant at a reasonable 
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confidence level (Tables 7.1–7.6). We expect that these error terms can capture the 

unobserved competition effect on bidding behavior in learning games; the estimation 

results demonstrate that the error term incorporating the impact of a player’s 

competition must be specified. This implies that player’s decision is affected by other 

players’ choices and corresponding expected payoffs or their own average payoffs. 

This is also observed in the error terms, which indicates the player’s unobserved 

impact of competition among players on the strategy choice decision.   

 

7.4. Statistical Test for Epistemic vs. Behavioral Reinforcement Learning Model 

In Section 7.2, the estimation results show that both the epistemic and behavioral 

reinforcement models are well-fitted to describe the player’s bidding behavior for the 

epistemic game. Here, we evaluate whether those learning models are well-specified. 

Table 7.7 shows the estimation results of both learning models for the two-player 

experiment using the same epistemic learning data.  
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Table 7.7 Estimated parameters of the epistemic (restricted) learning and behavioral 

reinforcement (unrestricted) DML model using epistemic learning data (two-player 

experiment) 

 Epistemic 
Behavioral  

Reinforcement 

Attributes Estimates T-value Estimates T-value 

Initial Value ( Iβ ) 0.475 50.480 -0.279 -29.109 

Constant(alt1, 1

0β ) 0.118 30.481 0.390 54.961 

Constant(alt2, 2

0β ) 0.201 32.683 -0.036 -79.996 

Constant(alt3, 3

0β ) -0.393 -48.633 0.021 161.573 

Possible Payoff ( 1β ) 0.707 18.520 - - 

Avg. payoff ( 2β ) - - 
0.226 92.516 

Sequence of choice ( 3β ) - - 0.160 29.666 

Habit persistence 1 ( 4β ) -0.188 -38.435 -0.067 -110.777 

1ρ  0.480 22.190 0.305 33.806 

2ρ   

(Habit persistence 2) 

0.130 25.713 
0.134 37.225 

12

12γ  -0.060 -32.171 0.258 47.219 
13

12γ  -0.158 -190.645 0.272 69.052 
14

12γ  0.500 55.697 -0.105 -89.946 
23

12γ  0.098 18.685 -0.404 -35.735 
24

12γ  -0.033 -19.447 0.500 215.525 
34

12γ  0.241 29.687 0.174 18.697 
12

21γ  0.346 46.208 0.334 54.440 
13

21γ  -0.005 -44.532 -0.056 -61.795 
14

21γ  -0.026 -38.424 0.005 96.417 
23

21γ  -0.271 -29.182 -0.161 -29.803 
24

21γ  0.170 24.468 0.037 85.682 
34

21γ  -0.005 -110.547 0.019 234.150 

Log-likelihood at Convergence -178.809 -242.526 

 

To verify that the epistemic learning model is correctly specified, the Hausman 

specification test is applied. This test can be used to obtain an estimator that is 

efficient and consistent under the following hypothesis. 
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0H : Our model is mis-specified against the alternative model 

The Hausman test statistic is 

[ ] [ ] [ ]rururu VVH ββββ −−−= −1'
 

where 

uβ : the coefficients of variables in behavioral reinforcement learning (unrestricted) 

model 

rβ : the coefficients of variables in epistemic learning (restricted) model 

uV : the variances of variables in behavioral reinforcement learning (unrestricted) 

model 

rV : the variances of variables in epistemic learning (restricted) model 

The Hausman statistics value is: 

[ ] [ ] [ ] 2.432764
1' =−−−= −

rururu VVH ββββ  

The Hausman statistical value for the two learning models is 432764.2. The chi-

square value for 20 degrees of freedom and 95% confidence level is 31.41 

( 41.312

05.0,20 =χ ). This Hausman statistical value (432764.2) is higher than the chi-

square value (31.41); therefore, the null hypothesis is rejected. This result is 

consistent with the findings in Section 6.4. The Hausman test evaluates the 

significance of estimators compared to an alternative estimator. Therefore, this result 

demonstrates that the epistemic learning model is well-specified and that there is a 

difference between the learning models in describing bidding behavior. 

Table 7.8 provides the estimation results of the epistemic and behavioral 

reinforcement learning models for the three-player experiment. 
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Table 7.8 Estimated parameters of the epistemic (restricted) learning and behavioral 

reinforcement (unrestricted) learning DML model using epistemic learning data 

(three-player experiment) 

 Epistemic 
Behavioral 

Reinforcement 

Attributes Estimates T-value Estimates T-value 

Initial Value ( Iβ ) 0.124 48.788 0.017 49.478 

Constant(alt1, 1

0β ) 0.011 18.692 0.157 39.994 

Constant(alt2, 2

0β ) -0.140 -17.251 -0.647 -15.679 

Constant(alt3, 3

0β ) -0.105 -15.528 0.223 36.748 

Possible Payoff ( 1β ) 0.392 26.599 - - 

Avg. payoff ( 2β ) - - -0.162 -58.909 

Sequence of choice ( 3β ) - - 0.125 40.044 

Habit persistence 1 ( 4β ) 0.157 65.856 -0.100 -17.005 

1ρ  0.358 26.239 0.227 31.171 

2ρ  (Habit persistence 2) 0.486 27.102 0.711 16.612 
12

1mγ  -0.031 -21.051 0.057 19.962 
13

1mγ  0.035 17.095 -0.125 -13.329 
14

1mγ  0.280 108.171 -0.332 -34.825 
23

1mγ  0.139 22.320 0.178 49.494 
24

1mγ  0.070 49.181 0.283 37.323 
34

1mγ  0.006 15.357 -0.297 -35.248 
12

2mγ  0.088 8.172 -0.184 -230.516 
13

2mγ  -0.001 -9.147 -0.113 -42.051 
14

2mγ  -0.313 -76.756 -0.019 -27.437 
23

2mγ  -0.086 -26.998 0.329 8.154 
24

2mγ  0.474 79.457 0.094 18.358 
34

2mγ  -0.598 -34.679 -0.479 -23.029 
12

3mγ  0.003 14.364 -0.082 -13.943 
13

3mγ  -0.044 -65.633 0.375 72.809 
14

3mγ  0.195 20.742 0.500 37.009 
23

3mγ  -0.004 -15.754 0.351 35.394 
24

3mγ  0.107 22.955 0.181 54.912 
34

3mγ  0.063 51.468 -0.122 -89.938 

Log-likelihood at convergence -279.805 -309.497 
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The Hausman specification test is applied to evaluate the difference between the 

epistemic and behavioral reinforcement learning models. The Hausman statistic can 

be viewed as a measure of distance between the epistemic and the behavioral 

reinforcement learning model estimators. If this distance is short, then these models 

are not significantly different. The null hypothesis is: 

0H : Our model is mis-specified against the alternative model 

The Hausman statistic value for two learning models is: 

[ ] [ ] [ ] 61.91739
1' =−−−= −

rururu VVH ββββ  

The chi-square value for 26 degrees of freedom and 95% confidence level is 38.89 

( 89.382

05.0,21 =χ ). The above Hausman static value (91739.6) is much higher than the 

chi-square value (38.89). From this chi-square test result, the above null hypothesis 

can be rejected. Accordingly, we conclude that the epistemic learning model for the 

three-player experiment is well-specified and that there is a difference between the 

epistemic and behavioral reinforcement learning model specifications in the epistemic 

learning game. Thus, both learning models describe the player’s bidding behavior 

well but in different ways. 

These estimation results and Hausman statistical tests show that players did not 

behaved consistent according to only one of the cognitive learning rules in sequential 

games. The results of the Hausman test prove that both models are well-specified and 

fit the epistemic learning game datasets well. Based on this, we cannot determine 

which model is better to describe behavior in the epistemic learning game. Therefore, 
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the mixed learning model should be developed to describe this player’s mixed 

cognitive bidding behavior. This mixed learning model can describe the learning 

process and can capture the impact of players’ interactive cognitive learning 

processes. The next section presents the mixed learning models. 

 

7.5. DML Mixed Learning Models 

We found that some players did not use all of the available information, such as 

competitors’ past choices in the epistemic game. Accordingly, some decisions were 

made by players based on the behavioral reinforcement learning rule, even though 

they participating in the epistemic learning game.  The either or both of cognitive 

learning rules determined how players behaved during each round of the epistemic 

learning game. The estimation results in the previous section support this 

phenomenon. Based on this, we propose model specifications and estimation 

procedures for the mixed learning process described in Chapter 4.  

The dynamic mixed logit model structure can provide the estimation results for 

two types of mixed learning models. The first model assumes that players behave 

independently according to either cognitive learning rule for each game and do not 

consider the competitors’ cognitive learning rules before making a decision in the 

epistemic learning game. For the second model, the players’ cognitive learning 

beliefs are dynamically affected by competitors’ cognitive learning rules, maximizing 

their utility in the epistemic learning game. Therefore, mixed learning model II can 

capture the effect of interdependence among players for cognitive learning process on 
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bidding behavior. Tables 7.9 and 7.10 show the estimation results for the mixed 

learning model I for the two-player experiment using epistemic learning data. 

 

Table 7.9 Estimated parameters of the mixed learning DML model I using epistemic 

learning data (two-player experiment) 

Attributes Estimates T-value 

Initial Value (
Iβ ) -0.100 -26.618 

Constant(alt1, 1

0β ) 0.058 28.599 

Constant(alt2, 2

0β ) 0.023 9.601 

Constant(alt3, 3

0β ) -0.087 -35.257 

Possible Payoff ( 1β ) 0.002 34.981 

Avg. payoff ( 2β ) 0.322 6.847 

Sequence of choice ( 3β ) 0.250 13.824 

Habit persistence 1 ( 4β ) -0.056 -28.276 
E

1α  0.441 10.464 
E

2α  0.194 15.621 

1ρ  0.613 38.410 

2ρ  (Habit persistence 2) 0.375 85.485 
12

12γ  0.346 33.498 
13

12γ  -0.246 -33.748 
14

12γ  -0.118 -29.336 
23

12γ  -0.075 -52.230 
24

12γ  0.023 37.169 
34

12γ  0.099 76.517 
12

21γ  -0.202 -12.283 
13

21γ  0.580 56.308 
14

21γ  0.245 43.217 
23

21γ  -0.156 -42.791 
24

21γ  -0.116 -31.736 
34

21γ  -0.165 -17.361 

Log-likelihood at convergence -177.745 

 

The explanatory variables in mixed learning model I have a significant positive 

impact on bid choice behavior. The coefficients and behavioral interpretation for 
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those results are consistent with the findings presented in Section 7.2. The 

coefficients for the expected payoffs and choice experience related to the player’s 

epistemic and behavioral reinforcement learning process are positive and strongly 

significant. The degree of propensity ( E

nα ) for players 1 and 2 in the behavioral 

reinforcement learning process is almost 0.6 and 0.8, respectively, over 80 games. 

The players’ bidding preference increases with the increasing effects of all 

explanatory variables included in the behavioral reinforcement learning model.  

Mixed learning model I assumes that players independently follow cognitive 

learning rules without considering competitors’ cognitive rules. Table 7.9 indicates 

that the degree of propensity for the epistemic learning rule for players 1 and 2 is 

0.441 and 0.194, respectively. This implies that both players prefer to conduct 

themselves like the behavioral reinforcement learning players. Player 2 is more likely 

to behave according to the behavioral reinforcement learning process than Player 1.  

Player 1 is more likely to behave according to the epistemic learning process than 

Player2. These results imply that, for the two-player experiment, players apply both 

cognitive learning rules in the decision-making process for all games. 
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Table 7.10 Estimated parameters of the mixed learning DML model II using 

epistemic learning data (two-player experiment) 

Attributes Estimates T-value 

Initial Value ( Iβ ) -0.551 -41.718 

Constant(alt1, 1

0β ) -0.306 -12.438 

Constant(alt2, 2

0β ) -0.107 -13.877 

Constant(alt3, 3

0β ) -0.134 -22.762 

Possible Payoff ( 1β ) 0.299 52.079 

Avg. payoff ( 2β ) 0.283 20.734 

Sequence of choice ( 3β ) 0.201 34.548 

Habit persistence 1 ( 4β ) -0.011 -14.332 
EE

12α  0.170 18.665 
ER

12α  0.166 108.246 
RR

12α  0.502 18.533 

1ρ  0.509 31.540 

2ρ  (Habit persistence 2) 0.128 19.782 
12

12γ  0.123 18.898 
13

12γ  0.301 26.945 
14

12γ  -0.394 -78.561 
23

12γ  -0.009 -52.424 
24

12γ  0.443 128.395 
34

12γ  0.050 39.778 
12

21γ  0.232 40.825 
13

21γ  -0.435 -30.693 
14

21γ  0.453 31.839 
23

21γ  0.086 138.850 
24

21γ  0.500 17.756 
34

21γ  0.026 45.805 

Log-likelihood at convergence -201.622 

 

Table 7.10 illustrates the estimation results of mixed learning model II for the two-

player experiment using the epistemic learning game datasets.  This model II can 

capture the effect of the interaction among players’ cognitive learning processes on 

the bidding behavior. This impact is represented by the parameters ( m

nα ) as the 
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degree of propensity for the m  type of mixed cognitive learning process over all 

games, which is also presented in Table 7.11 for the two-player experiment. The 

coefficients for possible payoff, average payoff, and sequence of choice are positive, 

indicating that players are more likely to choose that bid price with high expected 

payoffs in the epistemic learning model, high average payoffs, and more recent 

choice experience in the behavioral reinforcement learning model. The coefficient for 

habit persistence is negative, which is consistent with the results in Section 7.2.    

 

Table 7.11 The mixed cognitive learning (MCL) index and estimation results from 

the mixed learning DML model II for the two-player experiment 

Player 1 Player 2  
m

nα 26 # of observation 

Epistemic Epistemic EE

12α  0.170 14 

Epistemic 
Behavioral  

Reinforcement 

ER

12α  0.166 13 

Behavioral  

Reinforcement 
Epistemic RE

12α  0.162 13 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

RR

12α  0.502 40 

 

Table 7.11 presents the mixed cognitive learning index and estimation results 

associated with MCL from mixed learning model II. The parameter for the behavioral 
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reinforcement learning propensity for both players ( RR

12α ) is the highest value for the 

mixed cognitive learning processes. This is consistent with the findings for the two-

player DMNP mixed learning model II shown in Table 6.6. We expect this 

phenomenon, since both players also show a high degree of propensity for the 

behavioral reinforcement learning process in the DML mixed learning model I (see 

Table 7.10). However, this does not mean that both models describe players’ mixed 

learning processes in the same way. Table 7.12 presents the mixed cognitive learning 

index and the estimation results associated with MCL from mixed learning model I; 

we could compare these results to the previous estimation results in Table 7.11.  

 

Table 7.12 The mixed cognitive learning (MCL) index and estimation results from 

the mixed learning DML model I for the two-player experiment 

Player 1 Player 2  
m

nα  # of observation 

Epistemic Epistemic EE

12α  0.086 7 

Epistemic 
Behavioral  

Reinforcement 

ER

12α  0.355 28 

Behavioral  

Reinforcement 
Epistemic RE

12α  0.108 9 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

RR

12α  0.451 36 
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Figure 7.1 Comparison of the propensity for the mixed cognitive learning process 

between mixed learning DML models I and II 

 

The joint probability equation (6.1) in Section 6.5 provides the parameter values 

for each type of mixed learning process among players, based on that assumption that 

players’ cognitive learning processes are dependent on one another. In Figure 7.1, 

both models show the players’ high propensity for the behavioral reinforcement 

learning process (RR). In mixed learning model II, the propensity for three types of 

mixed learning processes among players (EE, ER, and RE) is nearly identical.  In 

mixed learning model I, Player 1’s propensity for epistemic learning and Player 2’s 

propensity for behavioral reinforcement learning (ER) is higher than the other two 

types of mixed learning processes (EE and RE), which demonstrates the difference 

between the two modeling frameworks. The following cross-tabulation and chi-

square test are applied to determine the difference between the models in terms of 

describing mixed cognitive learning behavior.  
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Table 7.13 Model *MCL cross-tabulation for the two-player DML model 

  Player’s Mixed Cognitive Learning (MCL) Total 

  EE ER RE RR  

Model I Count 7 28 9 36 80 

 
% within 

Model I 
8.8% 35.0% 11.3% 45.0% 100.0% 

 
% within 

MCL 
33.3% 68.3% 40.9% 47.4% 50.0% 

 % of Total 4.4% 17.5% 5.6% 22.5% 50.0% 

Model II Count 14 13 13 40 80 

 
% within 

Model I 
17.5% 16.3% 16.3% 50.0% 100.0% 

 
% within 

MCL 
66.7% 31.7% 59.1% 52.6% 50.0% 

 % of Total 8.8% 8.1% 8.1% 25.0% 50.0% 

 Count 21 41 22 76 160 

 
% within 

Model 
13.1% 25.6% 13.8% 47.5% 100.0% 

 
% within 

MCL 
100.0% 100.0% 100.0% 100.0% 100.0% 

 % of Total 13.1% 25.6% 13.8% 47.5% 100.0% 

 

Table 7.14 Chi-Square Tests for the two-player DML model  

 Value df 
Asymp. Sig. 

(2-sided) 

Pearson Chi-Square 8.759 3 0.033 

Likelihood Ratio 8.938 3 0.030 

Linear-by-Linear 

Association 
0.124 1 0.725 

N of Valid Cases 160   
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The chi-square statistical test results in Table 7.14 show that the mixed learning 

models describe players’ behavior differently. More specifically, player’s bidding 

behavior is affected by other competitors’ epistemic or behavioral cognitive learning 

process. This result is consistent with the results in Section 6.5 for the two-player 

mixed learning DMNP models. 

As noted, the additional datasets for the different auction types and multiple-player 

cases were collected to test the dynamic strategy choice modeling framework. The 

basic estimation results for each cognitive learning model are presented in Tables 7.1 

and 7.2. Here, two additional mixed learning models are investigated using the three-

player experimental datasets. Tables 7.15 and 7.16 present the estimation results. 
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Table 7.15 Estimated parameters of the mixed learning DML model I using epistemic 

learning data (three-player experiment) 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.330 151.824 

Constant(alt1, 1

0β ) -0.217 -37.420 

Constant(alt2, 2

0β ) -0.334 -86.953 

Constant(alt3, 3

0β ) -0.292 -65.758 

Possible Payoff ( 1β ) 0.182 40.314 

Avg. payoff ( 2β ) 0.004 192.846 

Sequence of choice ( 3β ) 0.555 47.691 

Habit persistence 1 ( 4β ) 0.129 152.221 
E

1α  0.480 24.535 
E

2α  0.335 42.865 
E

3α  0.801 156.102 

1ρ  0.343 47.004 

2ρ  (Habit persistence 2) 0.363 31.535 
12

1mγ  -0.174 -262.313 
13

1mγ  0.019 27.345 
14

1mγ  0.707 49.719 
23

1mγ  -0.231 -79.349 
24

1mγ  -0.091 -52.204 
34

1mγ  -0.280 -94.530 
12

2mγ  0.072 38.562 
13

2mγ  0.312 41.965 
14

2mγ  -0.206 -25.220 
23

2mγ  0.584 54.203 
24

2mγ  0.440 32.980 
34

2mγ  -0.433 -152.919 
12

3mγ  -0.486 -41.135 
13

3mγ  0.276 29.024 
14

3mγ  0.388 44.104 
23

3mγ  -0.260 -136.209 
24

3mγ  -0.115 -47.564 
34

3mγ  0.491 136.097 

Log-likelihood at convergence -344.833 
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The coefficients for the explanatory variables included in Table 7.15 are positive 

and statistically significant. This implies that past payoffs and choice experience are 

important determinants of bidding strategy. The degree of propensity for the 

epistemic learning process for Players 1, 2, and 3 is 0.480, 0.335, and 0.801, 

respectively. The propensity for the behavioral reinforcement learning propensity is 

0.520, 0.665, and 0.199 for Players 1, 2, and 3, respectively. Mixed learning model I 

assumes that there is no interaction among players in terms of making decisions 

according to their cognitive learning rules; hence, a player only relies on their own 

cognitive learning rules to make their decision, but they can switch learning rules by 

considering payoffs and choice experience. Under this assumption, Players 1 and 2 

behave according to the behavioral reinforcement learning process in over 50% of all 

games, while Player 3 behaves according to the epistemic learning rule for almost 

80% of all epistemic games. 

Table 7.16 presents the mixed learning model II estimation results for the three-

player experiment. The statistical significance and coefficient signs for the 

explanatory variables are same as those for the estimation results in Section 7.2. 

Accordingly, the behavioral interpretations related to those variables remain 

consistent. The coefficient for average payoff is negative, which is consistent with the 

results presented in Table 7.4, since mixed learning model II combines elements from 

both the epistemic and behavioral reinforcements learning models. 
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Table 7.16 Estimated parameters of the mixed learning DML model II using 

epistemic learning data (three-player experiment) 

Attributes Estimates T-value 

Initial Value ( Iβ ) 0.0143 56.893 

Constant(alt1, 1

0β ) -0.0095 -39.357 

Constant(alt2, 2

0β ) -0.0150 -102.142 

Constant(alt3, 3

0β ) -0.0133 -98.177 

Possible Payoff ( 1β ) 0.0080 100.789 

Avg. payoff ( 2β ) -0.0008 -200.474 

Sequence of choice ( 3β ) 0.0249 36.455 

Habit persistence 1 ( 4β ) 0.0068 56.804 
EEE

123α  0.0220 59.790 
EER

123α  0.0942 208.301 
ERE

123α  0.0647 140.693 
ERR

123α  0.1664 86.668 
REE

123α  0.0391 63.507 
RER

123α  0.0000 -99.299 
RRR

123α  0.0000 -76.174 

1ρ  0.0153 25.221 

2ρ  (Habit persistence 2) 0.0160 468.396 
12

1mγ  -0.0072 -83.772 
13

1mγ  0.0019 80.596 
14

1mγ  0.0319 57.231 
23

1mγ  -0.0100 -81.452 
24

1mγ  -0.0045 -55.092 
34

1mγ  -0.0123 -49.235 
12

2mγ  0.0037 171.160 
13

2mγ  0.0138 63.165 
14

2mγ  -0.0086 -143.835 
23

2mγ  0.0264 80.806 
24

2mγ  0.0198 29.456 
34

2mγ  -0.0199 -46.507 
12

3mγ  -0.0217 -43.350 
13

3mγ  0.0123 35.141 
14

3mγ  0.0175 43.303 
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23

3mγ  -0.0122 -65.604 
24

3mγ  -0.0064 -72.919 
34

3mγ  0.2771 30.589 

Log-likelihood at convergence -423.292 

 

Table 7.17 shows the index and estimation results for the propensity of  m  type of 

mixed cognitive learning process from the mixed learning DML model II. The degree 

of propensity coefficients for seven types of mixed cognitive learning is statistically 

significant, as shown in Table 7.16.   

 

Table 7.17 The mixed cognitive learning (MCL) index and estimation results from 

the mixed learning DML model II for the three-player experiment 

Player 1 Player 2 Player 3  
m

nα  
# of  

observation 

Epistemic Epistemic Epistemic 
EEE

123α  0.022 2 

Epistemic Epistemic 
Behavioral  

Reinforcement 

EER

123α  0.094 8 

Epistemic 
Behavioral  

Reinforcement 
Epistemic 

ERE

123α  0.065 5 

Epistemic 
Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

ERR

123α  0.166 13 

Behavioral  

Reinforcement 
Epistemic Epistemic 

REE

123α  0.039 3 

Behavioral  

Reinforcement 
Epistemic 

Behavioral  

Reinforcement 

RER

123α  0.000 0 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

RRR

123α  0.000 0 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 
Epistemic 

RRE

123α  0.614 49 
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In mixed learning model II, each player’s decision is affected by the competitor’s 

cognitive learning rules. Therefore, the interaction among players in terms of making 

decisions according to their cognitive learning rules result in the above parameters for 

the degree of propensity for each type of mixed cognitive learning process.  

The estimation results in Table 7.17 indicate that the degree of propensity for 

Players 1 and 2 in the behavioral reinforcement learning process and Player 3 in the 

epistemic learning process ( RRE

123α ) is 0.614, which is the highest value for all mixed 

cognitive learning processes. This phenomenon is consistent with the results 

presented in Table 7.15 ( E

1α =0.480, E

2α =0.335, and E

3α =0.801). Players 1 and 2 

behave more like behavioral reinforcement learning players, while Player 3 behaves 

more like the epistemic learning player. However, from this result, we cannot 

conclude that both mixed learning models are the same statistically, which means that 

there is independence among players in terms of making decisions according to their 

cognitive learning rules. 

The following chi-square test for independence is used to evaluate the statistically 

significant difference between proportions for each m  type of degree of propensity 

for players’ mixed cognitive learning processes from the mixed learning models, 

using epistemic learning dataset. To perform the chi-square test, we recall the 

estimation results in Table 7.15. From these results ( E

1α =0.480, E

2α =0.335, and 
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E

3α =0.801), we provide the joint probability 27  values for each mixed type of 

cognitive learning process ( m

nα ). In mixed learning model I, we assume the 

independence of cognitive learning processes among players. Therefore, the joint 

probability of mixed three-player cognitive learning process is calculated by: 

EEEEEE

321123 αααα ××= , REEEER

321123 αααα ××= , 

EREERE

321123 αααα ××= , RREERR

321123 αααα ××= , 

EERREE

321123 αααα ××= , RERRER

321123 αααα ××= , 

RRRRRR

321123 αααα ××= , ERRRRE

321123 αααα ××=                                                              (7.1) 

Table 7.18 shows the joint probability for the each type of cognitive learning 

process, calculated using the mixed learning model I estimation results for each 

player’s degree of propensity for each type of cognitive learning process ( E

1α =0.480, 

E

2α =0.335, and E

3α =0.801). Using these values along with the estimation results in 

Table 7.17, we provide the following cross-tabulation analysis and chi-square results 

in Tables 7.19 and 7.20 for the three-player experiment.  

 

                                                 

27  Joint probability is the probability of two events in conjunction and the 

probability of both events together.  
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Table 7.18 The mixed cognitive learning (MCL) index and estimation results from 

the mixed learning DML model I for three-player experiment 

Player 1 Player 2 Player 3  
m

nα 28 
# of  

observation 

Epistemic Epistemic Epistemic 
EEE

123α  0.129 10 

Epistemic Epistemic 
Behavioral  

Reinforcement 

EER

123α  0.032 3 

Epistemic 
Behavioral  

Reinforcement 
Epistemic 

ERE

123α  0.256 20 

Epistemic 
Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

ERR

123α  0.064 5 

Behavioral  

Reinforcement 
Epistemic Epistemic 

REE

123α  0.140 11 

Behavioral  

Reinforcement 
Epistemic 

Behavioral  

Reinforcement 

RER

123α  0.035 3 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 

RRR

123α  0.069 6 

Behavioral  

Reinforcement 

Behavioral  

Reinforcement 
Epistemic 

RRE

123α  0.277 22 

 

                                                 

28 
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Figure 7.2 Comparison of the propensity for the mixed cognitive learning process 

between mixed learning DML models I and model II (three-player experiment) 

 

Figure 7.2 presents the propensity among players to behave according to each 

mixed cognitive learning process. There are eight types of mixed learning processes 

for the three-player experiment. The propensity for the RRE29 type is higher than for 

any other mixed cognitive learning process for both models. However, the degree of 

propensity for the RRE mixed learning process provided by mixed learning model II 

is much higher than mixed learning model I estimation results. Mixed learning model 

I provides a higher value of propensity for the ERE mixed learning process compared 

to the other types (EEE, EER, ERR, REE, RER, and RRR). 

The following cross-tabulation displays the joint distribution of the estimation results 

                                                 

29 Players 1 and 2 in the behavioral reinforcement process and Player 3 in the 

epistemic learning process 
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from the mixed learning models I and II. It shows the different degrees of propensity 

for each type of mixed cognitive learning process among players.  To evaluate the 

significant difference between the models, the chi-square test is performed and the 

test results are included in Table 7.20. The null hypothesis is that there is no 

interaction among players in terms of making decisions according to their cognitive 

learning rules.  

Table 7.20 demonstrates that we can reject that null hypothesis, which means that 

player’s cognitive learning belief on the choice decision is correlated to competitor’s 

choice decision associated with his/her cognitive learning process. Therefore, the 

mixed learning model II is preferred to mixed learning model I. 
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Table 7.19 Model *MCL cross-tabulation for the three-player DML model 

  Player’s Mixed Cognitive Learning (MCL)  

  EEE EER ERE ERR REE RER RRR RRE Total 

Count 10 3 20 5 11 3 6 22 80 

% 

within 

Model I 

12.5% 3.8% 25.0% 6.3% 13.8% 3.8% 7.5% 27.5% 100.0% 

% 

within 

MCL 

83.3% 27.3% 80.0% 27.8% 78.6% 100.0% 100.0% 31.0% 50.0% 

Model I 

 

 

 

% of 

Total 
6.3% 1.9% 12.5% 3.1% 6.9% 1.9% 3.8% 13.8% 50.0% 

Count 2 8 5 13 3 0 0 49 80 

% 

within 

Model II 

2.5% 10.0% 6.3% 16.3% 3.8% 0% 0% 61.3% 100.0% 

% 

within 

MCL 

16.7% 72.7% 20.0% 72.2% 21.4% 0% 0% 69.0% 50.0% 

Model 

II 

 

 

 

% of 

Total 
1.3% 5.0% 3.1% 8.1% 1.9% 0% 0% 30.6% 50.0% 

Count 12 11 25 18 14 3 6 71 160 

% 

within 

Model 

7.5% 6.9% 15.6% 11.3% 8.8% 1.9% 3.8% 44.4% 100.0% 

% 

within 

MCL 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Total 

% of 

Total 
7.5% 6.9% 15.6% 11.3% 8.8% 1.9% 3.8% 44.4% 100.0% 

 

 



 177 

Table 7.20 Chi-Square Tests for the three-player DML model 

 Value df 
Asymp. Sig. 

(2-sided) 

Pearson Chi-Square 44.001 7 .000 

Likelihood Ratio 49.368 7 .000 

Linear-by-Linear 

Association 
10.575 1 .001 

N of Valid Cases 160   
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Chapter 8. Conclusions 

8.1. Summary of Research Accomplishments  

The main objective of this dissertation is to develop a theoretical framework and 

methodology to model a player’s dynamic strategy choice behavior under the 

competitive environment, by extending and adapting the existing model framework. 

This research is different from the previous studies in experimental economics and 

traditional transportation demand studies. First of all, this dissertation introduces the 

advanced discrete choice model, and cognitive learning process into the modeling of 

bidder's behavior, in contrast to the traditional game theory approach. In particular, 

the multinomial probit and mixed logit modeling frameworks were applied to the 

estimation of dynamic strategy choice behavior models, for the data obtained from 

two experiments, by allowing for a more flexible correlation structure of the error 

term. Furthermore, we present the concept of competition impact into dynamic choice 

model structures. Therefore, this dissertation introduces a new perspective on 

transportation behavior modeling in competitive environments to show how learning 

models can describe a player’s choice behavior in a sequential auction type of game. 

Additionally, it shows the possibility of how those learning processes can be 

combined to make a better model and combines methodological strengths of earlier 

studies by estimating the cognitive learning models. 

The interaction among players’ decisions was examined with the observations of 

bidding behavior, since the decision problem is related to players’ strategies due to 

the interdependence of competitors’ bids, costs, and payoffs. Two experiments were 



 179 

conducted in which decision-makers are in hypothetical bidding situations. The first 

experiments included two players who each separately participated 80 times in the 

two types of games, and who were able to choose between four discrete alternative 

bid prices each time, and the first price auction game was applied. The second 

experiment included three players with the same conditions as the first experiment 

except the auction type; the second price auction was applied. Initially, this 

dissertation focuses on the two types of cognitive learning processes; thus two types 

of games were performed related to two types of cognitive learning rules: epistemic 

and behavioral reinforcement learning processes. The behavioral reinforcement game 

provided subjects with enough information about the player’s own payoffs and 

his/her choice records, while the epistemic learning game gave full information about 

the player’s own experience, as well as competitors’ choice history. Those 

experiments were performed to observe actual players’ game-to-game dynamic 

decision in a different type of auction game. The data acquired from the two 

experiments allows researchers to investigate the processes determining players’ 

strategies, choice decisions in response to different levels of cognitive capacity and 

information. 

In the previous works from the experimental economics, the simple power or logit 

form of probability choice modeling framework was applied to experimental datasets 

which included the dynamic bidding choice behavior. In this dissertation, the 

dynamic multinomial probit and dynamic mixed logit models were used to allow 

more flexible model specification through parameters in the variance-covariance 

matrix. Moreover, the unobserved influences of a player’s competitive interaction on 
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the decision-making process, state dependence, and auto correlation were captured in 

error structures.  

Two learning model structures were developed for the strategy choice in a 

sequential auction type of game addressing both epistemic and behavioral 

reinforcement learning processes. The epistemic learning model assumes that in a 

repeated game, players always know their own characteristics, but they have 

incomplete information regarding their opponents' learning belief, or rationality. 

Players can draw the distribution of competitors’ action by observing the whole 

sequence of the others' decisions. A player does not know the opponents’ cognitive 

learning types, or belief from their choice decisions, but they can conjecture the 

competitors’ instrumental rationality, which is some form of stationarity of the 

competitors’ behavior (Walliser, 1998). In the behavioral reinforcement learning 

model, players with limited rationality have knowledge about their own opportunities 

and payoffs in repeated auction games, but they could not predict the type of 

opponent or his/her past actions and payoffs. Players revised their experience 

according to the utility obtained from each strategy in past actions. In this process, the 

player imitates past actions reinforced by successful strategies in past games. Hence, 

a player’s utility is updated by observing his or her sequence of actions and 

corresponding payoffs. 

The estimation results from two cognitive learning models were provided to 

describe the players’ bidding behavior. It confirmed that players who hold to the 

epistemic learning rule are more likely to use all information about their opponent’s 

type to make a decision. Furthermore, in the epistemic learning game, players also 
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adopted the behavioral reinforcement learning rule, as well as the epistemic learning 

rule in strategy decisions. The Hausman statistical test was performed to test for 

model miss-specification. The test results illustrated that players did not always 

behave in a consistent manner with only one of the cognitive learning rules in 

sequential games. Through the Hausman test, the epistemic learning model was found 

to be well specified and fitted to the epistemic learning game datasets. In the 

behavioral reinforcement game, the estimation results demonstrated that players 

relied on their own historical payoffs, and choice decisions to determine their strategy 

for the next game because that player does not know the opponent’s type and future 

payoffs. 

In the epistemic learning game, the estimation results showed that both epistemic 

and behavioral reinforcement models were well fitted to describe the players’ bidding 

behavior for the epistemic game. The results implied that players behave in a manner 

with the mixed learning process, which incorporates both elements from the epistemic 

and behavioral reinforcement learning processes. Players can switch the strategic 

learning belief from either one of the two learning processes to the other (epistemic 

and behavioral reinforcement). Therefore, the mixed learning model was investigated 

to explain the players’ bidding behavior corresponding to the mixed learning process. 

Two types of mixed learning models were investigated in a sequential epistemic 

learning auction game. The mixed learning models incorporated appropriate elements 

of behavioral reinforcement and epistemic learning approaches and were found to be 

useful in improving their predictive accuracy, since it included two learning models 

as special cases. The models also utilized all the information provided by the players 



 182 

and the game environment. One mixed learning model made an assumption about the 

interdependence among players’ cognitive learning processes, while the other showed 

the independence of these processes. Both mixed learning models provided the 

players’ degree of propensity toward each type of mixed learning process. We 

compared and examined these mixed learning structures for parameters with clear 

psychological interpretations using statistical chi-square tests. These tests proved that 

that player’s cognitive learning belief on the choice decision was correlated to 

competitor’s choice decision associated with his/her cognitive learning process. 

The error components provide the covariance in unobserved factors across 

alternatives, times, and players. The estimates for the variance and covariance terms 

for bid price choice were statistically significant at a reasonable confidence level. 

From The coefficients for the error term for competition that impact the bid price 

choice for each player were different, which implies that each player responds 

differently to other players’ choice decisions, relative to the competitive impact of his 

or her own decisions. Consequently, we found that the error term incorporating the 

impact of a player’s competition on bid price choice needs to be specified. This 

demonstrates how important it is for the model to capture the effect of unobserved 

interactions between competitors. By transforming an unobservable into an 

observable interaction, we can witness directly how parameter estimates change when 

new information is introduced 

The perspective adopted in this study is that of an analyst or observer (which may 

also be a competitor) seeking to predict the outcome of the bidding process followed 

by a player in a repeated auction game. The dynamic strategy choice model 
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framework was presented to recognize, in specification and parameterization, the 

nature of multi-player interaction and its dynamics over multiple bids (plays). A 

dynamic strategy choice model, which uses concepts from both discrete choice theory 

and game theory to model bidder (carrier) behavior in repeated auction-type games, 

can explain people’s adjustment patterns when dealing with complicated 

transportation-related decision-making problems. This type of modeling can be 

applied in spot market situations related to transportation auctions.  

 

8.2. Applications and Future Researches 

While motivated by and intended for freight service procurement marketplaces, the 

model framework and structure developed in this study is applicable to other 

competitive situations that entail repeated decisions over time. For example, air 

carriers must continually make service and pricing decisions in anticipation of or in 

response to competitors’ actions. Urban travelers have cognitive learning rules that 

correspond to behavioral reinforcement learning in a low information environment. 

They do not model the impact of their actions on other passengers’ utilities or their 

environment. However, using information technology in an urban network system 

allows people to behave according to epistemic learning rules; they consider other 

traveler’s reactions to the IT system with respect to route choice and mode choice.  

For the freight service market, the dynamic choice model can be applied to 

carriers’ bidding behavior in an Internet transportation marketplace. Carriers model 

the behavior of other carriers and shippers in order to maximize profits. Given the 
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assumption of the auction and the player types of a strategic problem, carriers may 

behave according to epistemic or behavioral reinforcement learning rules, depending 

upon their level of rationality. Shippers also predict behavior using the dynamic 

strategy choice model; thus, their actions can be predicted depending on their rational 

and computational capabilities and the complexity of their own logistic problems. In 

addition, air travel agents can use this model framework to consider interactions 

between carriers and passengers. Based on this information, they can model their own 

behavior to obtain profits.  

There are many ways to extend this study for future research. This study 

introduced two characteristic types of cognitive learning processes. Two separate 

model structures were presented in the methodology section, using different 

assumptions of players’ skill to collect information on player interactions. Both 

models can be applied in the low information environment. With the behavioral 

reinforcement learning model, if a player does not know his or her own payoff, a 

different model specification is required. The epistemic model only uses the form of 

stationarity of opponent type (past choices). In epistemic learning model, we must be 

careful to specify the type of beliefs that must be used as inputs into these models. 

The model can be improved by collecting more information on such factors as 

opponent payoffs. The use of this information allows for the player’s behavior to be 

explained in certain types of games. However, the above model specification, 

incorporating low information, is important in the construction of a more general 

model in real low information environments.  
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From the myopic perspective on the learning model specification, we do not 

consider the depreciation effect of the amount of game experience used for 

calculating the average payoff, cumulative sequence of choice, and probability of 

competitor’s choice decision variable values. As players have more experience, the 

effect of the previous experience on the current choice will be depreciated. Therefore, 

we need to consider those parameters for each variable included in model 

specifications for both learning models.  

We used two experimental datasets for two and three-player cases. As a result, the 

models are limited to applying to various types of auction game datasets. Therefore, 

we need more experiments to provide the general model specification for each 

cognitive learning process. Moreover, if we can have more players, the model 

structures for the error terms and utility specification can be changed and the 

subsequent estimation results will be different. We expect that a more competitive 

environment allows players to behave in different ways to show the adjustment 

learning patterns compared to a less competitive environment. Furthermore, we need 

to consider the impact on the players’ bidding behavior between on-line and off-line 

sequential games. The number of players in a game is fixed throughout all games in 

this dissertation. However, the number of bidders in online auctions is likely to vary 

for each game. Therefore, more uncertainty can exist in on-line game than in non-

online auctions. Those uncertainty factors should be modeled and included as the 

component of the utility function, and as unobserved noise factors.  

Despite the above contribution and possible applications, we do not believe that 

our learning model captures all significant aspects of learning in games. In this 
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dissertation, we did not consider the private information for each player, which can 

determine their cost, and more public information (e.g. fleet size, number of players, 

auction type, player’s previous experience, fleet status at a given time; location or 

time window of available truck on schedule, etc). We need to specify what other 

factors can affect the decision-making process in the game, and how we can model it 

differently. Therefore, more specific public or private information parameters can be 

considered in the utility function, in order to specify more unobserved factors.  
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