
ABSTRACT

Title of Dissertation: Petri Net Models for Event Recognition in Surveillance

Videos

Nagia M. Ghanem, Doctor of Philosophy, 2007

Dissertation directed by: Professor Larry Davis
Department of Computer Science

Video surveillance is the process of monitoring the behavior of people and objects

within public places, e.g. airports and traffic intersections, by means of visual aids

(cameras) usually for safety and security purposes. As the amount of video data gathered

daily by surveillance cameras increases, the need for automatic systems to detect and

recognize suspicious activities performed by people and objects is also increasing.

The first part of the thesis describes a framework for modeling and recognition of

events from surveillance video. Our framework is based on deterministic inference us-

ing Petri nets. Events can be composed by combining primitive events and previously

defined events by spatial, temporal and logical relations. We provide a graphical user

interface (GUI) to formulate such event models. Our approach automatically maps each

of these models into a set of Petri net filters that represent the components of the event.

Lower-level video processing modules, e.g. background subtraction, tracking and clas-

sification, are used to detect the occurrence of primitive events. These primitive events

are then filtered by Petri nets filters to recognize compositeevents of interest. Our

framework is general enough and we have applied it to many surveillance domains.

In the second part of the thesis, we address the problem of detecting carried objects.

Detecting carried objects is the main step to solve the problem of left object detection.

We present two approaches to the left object detection problem. Both approaches poses

the problem as a classification problem. For both approaches, we trained SVM clas-

sifiers [19] on a laboratory database that contains examplesof people seen with and

without two common objects, namely backpacks and suitcases. We used a boosting

technique, AdaBoost [20], to select the most discriminative features used by the SVMs

and to enhance the performance of the classifiers. We give recognition results for each

approach and then compare both approaches and describe the advantages of each one.

We also compare the performance of both approaches on real world videos captured at

the Munich airport.

Petri Net Models for Event Recognition in Surveillance Videos

by

Nagia M. Ghanem

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:

Professor Larry Davis, Chair/Advisor
Professor Rama Chellappa
Dr. David Doermann
Professor Amitabh Varsheny
Professor Eyad Abed

c© Copyright by

Nagia M. Ghanem

2007

DEDICATION

To my parents, my husband, Farah and Sarah

ii

ACKNOWLEDGEMENTS

First of all, I thank Allah (swt) for helping me complete thiswork and I ask

Him to accept it as a good deed and help me use this knowledge ina way

that pleases Him.

I would like to thank my advisor, Dr. Larry Davis, for allowing me the

opportunity to pursue my research within one of the leading computer vision

labs. I also thank him for all the support and guidance he provided to me

during the past years.

I would also like to thank both Dr. David Doermann and Dr. Daniel De-

Menthon. Their discussions and comments are always helpful.

I am very thankful to my parents who have always given me the love and

support I need throughout my entire life. Everyday, I feel blessed by their

prayers. May Allah (swt) help me give it back to them.

I cannot express my gratitude to my husband, Moustafa. Without his help,

support and encouragement, I would not be able to complete this work. No

wards can express my appreciation to him as he stands beside me during the

most difficult times.

iii

Last but definitely not least, I would like to thank my two lovely daughters;

Farah and Sarah for their unconditional love and patience during completing

this thesis.

iv

TABLE OF CONTENTS

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 6

1.3 Organization . 7

1.4 Related Work . 8

1.4.1 Event Recognition . 8

1.4.2 Petri Nets as an Inference Mechanism 12

1.4.3 Carried Object Detection . 14

2 Petri Net Models for Event Recognition 16

2.1 Background . 17

2.2 Event Ontology . 18

2.2.1 Objects . 19

2.2.2 States . 19

2.2.3 Event . 20

2.2.4 Relations . 21

2.3 System Overview . 22

v

2.3.1 Graphical User Interface (GUI) 23

2.3.2 Object Detection and Tracking 26

2.3.3 Primitive Event Detection . 26

2.4 Petri Net-Based Event Modeling .29

2.4.1 Notations . 29

2.4.2 Event Modeling . 30

2.5 Petri Net-Based Composite Event Recognition 33

2.6 Conclusion . 38

3 Experiments I 41

3.1 ETISEO Dataset . 41

3.1.1 Event Definitions . 42

3.1.2 Results . 47

3.2 Traffic Intersection Monitoring .. . 48

3.2.1 Event Definitions . 51

3.2.2 Preprocessing . 53

3.2.3 Results . 57

3.3 Conclusion . 59

4 Carried Object Detection 61

4.1 Introduction . 61

4.2 Background . 63

4.2.1 Support Vector Machines . 63

4.2.2 Feature selection by AdaBoost 64

4.2.3 Integral Images . 66

4.3 Database . 67

vi

4.4 Preprocessing . 70

4.5 First Approach: Direct Classification of Silhouettes 71

4.5.1 Features for Classifiers . 73

4.5.2 The Feature Pool . 74

4.5.3 Experiments . 74

4.6 Second Approach: Human Appearance Change Detection 78

4.6.1 Features for Classifiers . 80

4.6.2 The Feature Pool . 83

4.6.3 Experiments . 84

4.6.4 Effect of Changes in Camera Viewpoints on Performance. . . . 87

4.7 Discussion . 88

4.7.1 Backpack classification . 88

4.7.2 Suitcase classification . 90

5 Experiments II 94

5.1 Event Modeling . 96

5.2 An Example . 97

5.3 Alignment Procedure . 97

5.4 First Approach: Direct Classification of Silhouettes 99

5.5 Second Approach: Human Appearance Change Detection 102

5.5.1 View Selection Problem . 103

5.5.2 Frame Selection Problem . 104

5.5.3 Results . 105

5.6 Discussion . 106

6 Conclusions and Future Work 110

vii

6.1 Summary . 110

6.2 Directions for Future Work . 111

6.2.1 Event Modeling and Recognition 111

6.2.2 Left Object Detection . 112

Bibliography 113

viii

LIST OF FIGURES

2.1 Simple Petri Net Before and After Firing 18

2.2 System Overview . 23

2.3 Snapshots from Graphical User Interface 25

2.4 Primitive Event Detection .28

2.5 Petri Net Models for Example Events32

2.6 Petri Net Representation for Counting Cars 35

2.7 Petri Net Representation for Car Exchange Event 36

2.8 Petri Net Representation for Negative Event N(X,Y) 38

2.9 Petri Net Representation for the generalization of example 3 39

2.10 Petri Net Representation for Car Exchange Event involving multiple

persons . 40

3.1 Annotated Frames from ETISEO Sequences 44

3.2 Traffic Monitoring Events . 54

3.3 Tracking Results . 56

3.4 Right of Way Events . 58

4.1 The AdaBoost algorithm for the binary classification task 65

4.2 A variant of AdaBoost for aggressive feature selection 66

ix

4.3 (a) The integral image at location (x; y) contains the sumof the pixels

above and to the left of (x; y), inclusive. (b) The sum of the pixels within

rectangle D is computed as:ii(4) + ii(1) − ii(2) − ii(3) 68

4.4 Examples from Backpack Dataset Showing Different Ways of Holding

the Backpack . 69

4.5 Examples from Suitcase Dataset Showing Different Ways of Holding

the Suitcase . 70

4.6 (a) Some frames of a sequence of person carrying a backpack with BGS

results (b) Some frames of a sequence of person not carrying abackpack

with BGS results (c) Template for sequence a (d) Template forsequence b 72

4.7 Feature Maps for First Approach .73

4.8 Examples from the backpack dataset with the occupancy maps 77

4.9 Examples from the suitcase dataset with the occupancy maps 77

4.10 The OC-Classifier’s best selected features for the (a) backpack test con-

figuration (b) suitcase test configuration 79

4.11 ‘Before’, ‘After’ and difference occupancy maps for (a) a backpack ex-

ample ,(b) a suitcase example . 81

4.12 (‘Before’, ‘After’ and difference codeword frequencymaps for (a) a

backpack example ,(b) a suitcase example82

4.13 Histogram Intersection for backpack and suitcase examples 83

4.14 (a) Best selected features for the backpack test configuration (b) Best

selected features for the suitcase test configuration 87

4.15 Different viewpoints of a subject carrying a backpack and a suitcase . . 89

4.16 Examples from the backpack dataset 91

4.17 Examples from the suitcase dataset 93

x

5.1 (a)First camera view. (b)Second camera view. Airport Scene Monitored

by 2 Cameras . 95

5.2 Petri Net for the Event ’AccessROI’ 96

5.3 Airport Example . 98

5.4 (a) Sample Blobs Tracked by Blob Tracking Module (b) Aligned Blobs

to be Classified . 100

5.5 Alignment Procedure . 100

5.6 Examples from Airport Dataset . 107

5.7 Feature Maps from Airport Dataset108

xi

Chapter 1

Introduction

1.1 Motivation

Video surveillance is the process of monitoring the behavior of people and objects within

public places, e.g. airports, metro stations and traffic intersections, by means of visual

aids (cameras) usually for safety and security purposes. Asthe amount of video data

gathered daily by surveillance cameras increases, the needfor automatic systems to

detect and recognize suspicious activities performed by people and objects is also in-

creasing. Manual detection and recognition of these activities would require system

operators to monitor a large number of cameras simultaneously to detect any suspicious

activity and report it in a timely manner. Even in the case of searching video archives

for previous events, as in criminal cases when we are trying,for example, to track a

suspicious person back in time to determine where he came from and with whom he

has interacted, a significant amount of human instrument is required and the process is

subject to human errors and fatigue.

Thus, automating the process of event detection and recognition is one important

task of computer vision research. The goal is to interpret uncertain data computed by

1

lower level vision modules into high level semantics representing humans activity. There

are three main challenges here. First, event modeling and representation should be gen-

eral enough to handle variabilities in event durations and in the different ways the same

event might be performed by different actors or in differentplaces. It is also important

to be able to compose events by combining simpler ones using temporal and logical

relations. Second, event recognition should be done efficiently so that the large num-

ber of irrelevant observations from low level vision does not affect the performance of

the recognition process. Finally, the recognition processshould also be able to handle

uncertainties and failures in low-level vision modules.

The problem of event detection and recognition is usually posed as an inference

problem, where some inference mechanism is applied to available knowledge (output of

lower level vision modules) to infer the occurrence of theseevents in the video data.

Both stochastic inference [1, 2, 3, 4, 5, 6] and deterministic inference [7, 8, 9, 10]

have been proposed for the problem of event detection and recognition. Methods us-

ing stochastic inference assume that activity structures are known in advance or can be

easily learned from training data. Then, some stochastic inference method is used to

infer the occurrence of events in video. On the other hand, methods using deterministic

inference usually assume that events can be decomposed intosubevents, some of which

can be directly detected by perceptual methods, accountingfor a variety of temporal

constraints. Then constraint propagation algorithms can be used to infer the event oc-

currences. This can be useful in cases where event structures are not known in advance

and when training data is not available. This is usually true, as what is more important

in surveillance is the detection of rare events (that raise safety and security concerns) for

which training data is natural conditions is exceptionallydifficult to acquire.

The first part of the thesis describes a framework for modeling and recognition of

2

events from surveillance video. Our framework is based on deterministic inference us-

ing Petri nets. Events can be composed by combining primitive events and previously

defined events by spatial, temporal and logical relations. We provide a graphical user

interface (GUI) to formulate such event models. Our approach automatically maps each

of these models into a set of Petri net filters that represent the components of the event.

Lower-level video processing modules (background subtraction, tracking, etc.) are used

to detect the occurrence of primitive events. These primitive events are then filtered

by Petri nets filters to recognize composite events of interest. This approach is general

enough to be applied to any surveillance domain (car parks, airports, indoor scenes, etc.).

Inference about temporal, spatial and logical relations between events is performed by

the engine independently of the characteristics of the primitive events.

A Petri net is an abstract model of the flow of information in a system [11]. Using

Petri nets as a representation and as a filtering mechanism has the following advantages:

• Petri nets can be used for both deterministic and stochasticinference of event

occurrences.

• Petri nets have a nice graphical representation that uses just a few types of el-

ements. This representation has a well-defined semantics sothat it is easy to

understand the model and to learn the language.

• Petri nets have a precise mathematical model that can be usedfor analysis. For ex-

ample, there are well-defined algorithms for detecting deadlock and inconsistency

in the data.

• Petri nets can be used to represent sequentiality, concurrency and synchronization

of events.

3

• Petri nets can be used to represent events in a top-down fashion at various levels

of abstraction, i.e. they can be used to model a composite event hierarchically

from simpler event models.

• Compared to classical rule-based expert systems, in terms of efficiency, Petri nets

are known to be as efficient as expert systems. The RETE algorithm, used in most

expert systems implementations to improve speed [12], is applicable to Petri nets

[13]. The main idea is to exploit temporal data redundancies(coming from the

markings that are not changed during transition firing).

• At any time during the interpretation process, the positions of tokens in the Petri

net summarize what happened in the past (keep history) and predict what will

happen in the future. In this way, composite events are recognized incrementally

and there is no need to reevaluate past events.

In the second part of the thesis, we address the problem of carried object detection.

One important problem in understanding human activities isto detect whether a person

is carrying an object or not at different times. For example,if a person is carrying an

object at time t1 and not carrying it at time t2, we can infer that the person has dropped

the object or give it to another person between times t1 and t2. Another problem is

detecting left packages in public places. Detection of leftpackages is among the goals

of many visual surveillance systems of these places for security and safety concerns. In

some cases, the left package can be detected by the background modeling component

of the surveillance system [14, 15, 16, 17, 18]. On the other hand, if the package is left

in an unseen place (e.g. behind a pillar or in a trash bin), then these methods will fail to

detect it. In this case, we can infer that a package is being left if we detect that a person

is carrying a package at one time and not carrying it at a latertime.

4

Examples where the second approach can be useful include thefollowing. A person

enters a room carrying an object, deposits the object and then after a short time he exits

wearing the same clothes but without the object. Another example is a person in a public

place is observed by one or more cameras, then he disappears for a short period of time

(e.g., behind a pillar) where he drops or picks up an object and he reappears. Even

in cases where this person is continuously observed, he may drop or pickup objects

in places not easily observed by surveillance cameras (e.g., in a trash bin). In these

examples, direct detection of the left object itself is not possible, but could be inferred

by deciding whether the owner is carrying an object at a giventime but not carrying it

at a later time.

In this part of the thesis, we present two approaches to the left package detection

problem. We assume we have different instances of the same person within different

cameras and at different times, and that the time separationbetween different instances

of the same person is small, so that he does not change clothesbetween these instances.

Both approaches poses the problem as a classification problem. The first approach,

direct classification of silhouettes, classifies the subject’s silhouettes for each instance

directly to determine whether he is carrying an object or not. The second approach,

appearance change detection, determines whether there is asignificant change in human

appearance between two different instances or not that might be due to an object being

carried at one time but not the other. If there is a significantchange in the human

appearance, additional analysis is conducted to decide whether the person has dropped

an object or acquired one from the scene.

For both approaches, we trained SVM classifiers [19] on a laboratory database that

contains examples of people seen with and without two commonobjects, namely back-

packs and suitcases. We used a boosting technique, AdaBoost[20], to select the most

5

discriminative features used by the SVMs and to enhance the performance of the classi-

fiers. We give recognition results for each approach and thencompare both approaches

and describe the advantages of each one. We have also tested both approaches on real

world data captured at an airport.

1.2 Contributions

The contributions of this thesis are:

• We provide a framework for modeling and recognition of events from surveillance

video.

– We define an ontology for event modeling. Ontology entities include: ob-

jects, states, events and relations. Events are either primitive events or com-

posite events that can be built hierarchically from simplerevents joined by

temporal and logical relations.

– We define a mapping from each ontology entity into a set of Petri nets mod-

els.

– We develop a GUI, through which users formulate ad-hoc queries about

events.

– We provide a generic mapping from users’ queries into a set ofPetri nets

models that are used for detecting and recognizing event queries.

– We support the ability to define negative events easily in ourframework. A

negative event is detected when an important observation ismissing or not

detected. Negative events are of special importance in surveillance applica-

tion, e.g. security guard does not return with15 minutes.

6

– We tested the system extensively on real world examples in many domains.

Events modeled and detected by the system range from primitive events with

one actor to composite events with many actors and temporal and logical

relations.

• We developed two machine learning approaches to detect carried objects.

– We apply it to the problem of left package detection in the framework of our

event modeling and recognition system.

– We generate a large pool of features capturing the shape and color models of

different instances of a person.

– We use a boosting technique, AdaBoost, to select the most discriminative

features and provide them to a set of Support Vectors Machine(SVM) clas-

sifiers.

– We train the classifiers on a large database recorded in our laboratory and

we test the method extensively on data recorded in the laboratory and on

real world data captured at an airport. High recognition rates were obtained.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, we describe the Petri nets

event modeling and recognition system in detail. Chapter 3 provides experimental re-

sults for the event modeling and recognition system. In Chapter 4, two approaches

to solve the problem of carried object detection are described along with the classifier

design and training. Chapter 5 provides experimental results for the carried object detec-

tion methods based on data captured at an airport. We conclude and provide directions

7

for future research in Chapter 6.

1.4 Related Work

In this section, we review previous work related to topics discussed in this thesis and

compare our work with other work. First, we discuss work related to event recognition

in surveillance video. Second, the use of Petri nets as an inference mechanism in rule-

based expert systems is discussed. Finally, we discuss workrelated to the problems of

human appearance change detection and left package detection.

1.4.1 Event Recognition

Recognition of events from video data is usually posed as an inference problem, where

some inference mechanism is applied to available knowledgeto infer the occurrence of

these events in the video data. Both deterministic and stochastic inferences have been

applied to recognize events from video data. First, we survey methods using stochastic

inference. Then we discuss methods using deterministic inference and compare our

Petri nets-based approach with these methods.

Stochastic Inference

Stochastic inference methods have been applied to event recognition from video data.

Examples include Hidden Markov models, stochastic grammars and Bayesian networks.

Hidden Markov models (HMMs) were chosen to recognize American sign language

[1]. HMMs are suitable for recognizing sequential events with different temporal dura-

tions but not for activities involving more than one actor. Coupled HMMs (CHMMs)

were introduced to alleviate this problem by coupling the states of two HMMs to model

8

interaction between persons[2]. For activities involvingmore than two persons, the

model is complex and the number of parameters is large and difficult to learn from

training data.

Stochastic context free grammars (SCFG) are used in [3] to recognize high-level

activities. The input for this grammar is assumed to be primitive events recognized at

a lower level by HMMs. The limitations of this approach is that representing temporal

and spatial relations between events is difficult. Also, inferring the grammar rules and

their probabilities for each new domain is difficult.

Bayesian networks have also been used by many researchers. Buxton et al. used

Bayesian Belief Networks (BBN) for video interpretation ina traffic surveillance ap-

plication [21]. For simple tasks, like monitoring overtaking and giveaway behavior

involving just two vehicles, this approach works well. But,if the task involves complex

multiple object interpretation or plan-like behaviors, the approach may not scale well.

The system described in [4] supplies textual descriptions for dynamic activities oc-

curring in a dynamic scene that include vehicles and pedestrians. There are two levels

of description. In the first level, the object level, each tracked object is assigned a behav-

ior agent, which uses a Bayesian network to infer fundamental features of the objects’

trajectories. In the second level, the inter-object interaction level, a situation agent is

created dynamically when two objects are in close proximity. But this system does not

provide ways to handle situations involving more than two objects. In [22] Bayesian

networks are used to recognize several activities in a football match. Dynamic Belief

Networks (DBN) are used in [23] in a hierarchical fashion to interpret video taken from

a moving airplane, where humans make up a few pixels in the video. The highest-level

scenario recognition DBNs are built from smaller DBN, whichcan be used in more than

one higher-level network. The structure of the DBN is given in advance and the statisti-

9

cal parameters are learned from data. Smaller networks can be built and experimented

with separately.

In [5], three levels of events are described. Bayesian networks are used to infer the

likelihood of simple events from the mobile objects’ properties. At the second level,

complex single thread events correspond to a linearly ordered time sequence of simple

events (or other complex events). A Probabilistic finite state automaton is used to repre-

sent and recognize these events. At the third level, multiple thread events correspond to

two or more single-thread events with logical and temporal relationships between them.

Many actors may participate in the same event. Allen’s interval-to-interval relations

are used to describe temporal relations between subevents.The recognition is done by

propagating temporal constraints and the likelihood degrees of subevents along the event

graph. The advantage of this approach is that it can verify and propagate temporal con-

straints when events are uncertain, while other techniquesfor constraint satisfaction and

propagation techniques usually assume that events and their durations are deterministic.

A particular form of dynamic Bayesian networks, Recurrent Bayesian Networks

(RBNs), have been used for the recognition of human behaviours through the temporal

evolution of their visual features in [6]. Although RBNs have the advantage of indepen-

dence from the time scale of events, the learning problem is tedious and how to represent

different temporal and spatial relations is not clear.

Deterministic Inference

There have been many methods that apply deterministic inference to detect events

in video data. Most of these methods assume that events can bedecomposed into

subevents, some of whose occurrences can be directly detected by perceptual meth-

ods, and between which there exist a variety of temporal constraints. Then, constraint

10

propagation algorithms can be used.

In PNF-networks [7], Allen’s temporal relationships [24] are used to express paral-

lelism and mutual exclusion between different subevents. Then, Allen’s interval algebra

network is mapped into a simpler 3-valued domain (past- now-future) network, a PNF-

network, to allow fast detection of actions and subactions.The arc consistency algorithm

AC-2 is used to propagate temporal constraints. This algorithm is linear in the number

of constraints. But the computation of PNF restriction is NP-hard.

Declarative models described in [8] are used to describe activities at many levels

(states of the scene, events and scenarios). The activitiesare described by the conditions

between the objects of the scene. Then a classical constraint satisfaction algorithm,

AC-4 (Arc Consistency-4), is used to reduce the processing time for the process of

recognizing activities in video sequences.

To increase the efficiency of processing temporal constraints, Vu et al. [9] sug-

gest that in a preprocessing step, scenario models are decomposed into simpler scenario

models containing at most two sub-scenarios. Then, the recognition of these simpler

scenarios just tries to link two scenario instances insteadof trying to link together a

whole set of combinations of scenario models. However, thismethod cannot be applied

to partially ordered events, where there is single order of events.

Petri nets have been suggested in [10] as an inference mechanism to represent the

dynamic evolution of a car parking scene with humans and vehicles. A symbolic lan-

guage is defined to capture the logical and algebraic conditions that are handled in a set

of prototypes. An Activity prototype is a set of logical and algebraic relations holding on

a finite set of objects and scene elements. A Plan prototype isa set of relations between

some activity prototypes and some state conditions. The plan prototype is interpreted as

a Petri net. Places are associated with activities prototypes and state conditions. Transi-

11

tions are associated with logical conditions and constraints.

Our approach extends this work in the following ways:

• Precise use of the state-of-the-art ontology in video surveillance. We define au-

tomatic mappings of ontology entities into Petri nets. Generic queries can be

modeled by this automatic mapping instead of manual creation of nets as in [10].

• Support of temporal logic is provided by our approach, not bythe approach in

[10].

• We represent each event instance by a token that encapsulates information about

participants in this instance. This makes the total number of nets is the same as

the number of event models. For each new event instance, [10]creates a new Petri

net. So, the total number of existing nets the sum of the number of instances of

all events. In our approach, all instances of the same event are represented by one

Petri net and event instances are represented by tokens in the corresponding Petri

net. So, at any time, the total number of existing nets is fixedand small compared

to the number of events.

1.4.2 Petri Nets as an Inference Mechanism

Petri nets have been used as an inference mechanism for rule-based expert systems. The

rest of this section will survey the use of Petri nets in rule-based expert systems.

In 1987, Sahaoui et al. showed the similarities between a rule-based expert system

and a Petri net: transitions can represent rules, markings can represent facts and the to-

ken player can represent the inference engine. They also showed that using the Petri net

representation increases the efficiency of rule-based expert systems by providing paral-

lelism and pipelining. Since then, many expert systems weredeveloped that use Petri

12

nets as a knowledge representation that guides the inference process. In 1988, Murata

and Zhang [25] used a predicate/transition net model for a subset of Horn clause logic

programs. In 1993, Hura [26] provided a framework for automating the construction

and maintenance of rule-based expert systems using Petri nets as a representation for

the knowledge base. In [27], Petri nets were used to implement logic programs with

negation. In [28], Petri nets were used for reasoning in propositional logic in real-time,

a Petri net is constructed for the given proposition logic rule-based expert system; then,

using Petri net analysis techniques, all logically impliedpropositions are deduced in

real-time.

Many issues need to be addressed to make Petri nets suitable for application as an

inference mechanism in a vision system where data is usuallyuncertain and incomplete,

and where real-time response time is desired. These issues include dealing with uncer-

tainty and efficient implementations.

Researchers have dealt with uncertainty in Petri nets for different purposes. Stochas-

tic Petri nets [29], [30] are a class of Petri nets in which thefiring times are considered

random variables, and a probability distribution over all transition firing times is formed.

Looney was the first to apply Petri nets to fuzzy rule-based reasoning using propositional

logic [31], where transitions serve as rules, places serve as propositions, and markings

are assigned fuzzy values between 0 and 1. Following Looney,many researchers devel-

oped algorithms for reasoning using fuzzy Petri nets. Examples include work done by

Chen et al. [32], by Konar et al. [33] and by Scarpelli et al. [34]. Cardoso et al. [35]

proposed a possibilistic Petri net model that combined possibility theory and Petri nets

to lead to a tool for qualitative representation of uncertain knowledge about a system’s

state.

The issue of efficient implementation of the Petri nets has also been addressed by

13

many researchers. The RETE algorithm has been applied to reduce the complexity of

Petri nets and to achieve linear performance in the number ofknowledge base rules

[12]. It has been also shown that Petri nets can improve the use of working memory by

splitting it into partitions corresponding to places. Petri nets also reduce the tree sizes

used in testing [36].

1.4.3 Carried Object Detection

One important problem in understanding human activities isto detect whether a person

is carrying an object or not at different times. For example,if a person is carrying an

object at time t1 and not carrying it at time t2, we can infer that the person has dropped

the object or give it to another person between times t1 and t2. Another problem is

detecting left packages in public places.The problem of left package detection has at-

tracted many researchers in the last few years due to increasing concerns about safety in

public places, like airports and train stations. In [37], a system is presented that is able

to detect if a person carries an object. Spengler and Schielepropose an approach [17]

for detecting abandoned objects and tracking people using the CONDENSATION algo-

rithm in monocular sequences. A distributed surveillance system for the detection of

abandoned objects in public environments is presented in [15] and [38]. In [18], a mul-

ticamera surveillance and tracking system for monitoring airport activities is discussed.

In [14], abandoned objects are detects in real-world conditions utilizing logic to differ-

entiate between abandoned objects and stationary people. In [39] abandoned objects

are detected using a double background subtraction method.In [40] objects are tracked

using a trans-dimensional Markov Chain Monte Carlo tracking model, then the problem

of determining if a luggage item is left unattended is solvedby analyzing the output

of the tracking system in a detection process. In [16], left luggage detection is consid-

14

ered in an event recognition framework where events are represented as hypotheses and

recognized in a Bayesian inference framework.

Most of these approaches assumes the left package can be detected by the back-

ground modeling component of the surveillance system. If the package is left in an

unseen place (e.g. behind a pillar or in a trash pin), then these methods will fail to detect

it. The two approaches presented in this thesis differ from these methods in that they

don’t depend on detecting the left package itself instead they try to infer if a package is

left by measuring the differences between different instances of the person. We assume

we have different instances of the same person within different cameras and at differ-

ent times, and that the time separation between different instances of the same person

is small, so that he does not change clothes between these instances. Both approaches

poses the problem as a classification problem. The first approach, direct classification

of silhouettes, classifies the subject’s silhouettes for each instance directly to determine

whether he is carrying an object or not. The second approach,appearance change de-

tection, determines whether there is a significant change inhuman appearance between

two different instances or not that might be due to an object being carried at one time

but not the other. If there is a significant change in the humanappearance, additional

analysis is conducted to decide whether the person has dropped an object or acquired

one from the scene.

For both approaches, we trained SVM classifiers [19] on a laboratory database that

contains examples of people seen with and without two commonobjects, namely back-

packs and suitcases. We used a boosting technique, AdaBoost[20], to select the most

discriminative features used by the SVMs and to enhance the performance of the classi-

fiers. We give recognition results for each approach and thencompare both approaches

and describe the advantages of each one.

15

Chapter 2

Petri Net Models for Event Recognition

In this chapter, we describe our system and its components indetails. The main objective

of the system is to detect events in surveillance videos based on event models provided

by the user. We assume that events can be composed by combining primitive events and

previously defined events by spatial, temporal and logical relations. We provide a graph-

ical user interface (GUI) to formulate such event models. Our approach automatically

maps each of these models into a set of Petri net filters that represent the components

of the event. Lower-level video processing modules (background subtraction, tracking,

etc.) are used to detect the occurrence of primitive events.These primitive events are

then filtered by Petri nets filters to recognize composite events of interest. This approach

is general enough to be applied to any surveillance domain (car parks, airports, indoor

scenes, etc.). Inference about temporal, spatial and logical relations between events is

performed by the engine independently of the characteristics of the primitive events.

In this chapter, we give details about our system. First, in section 2.1, we provide

some background information about Petri nets, their structure and dynamics. In sec-

tion 2.2, we define an ontology for events. This ontology describes the main concepts

in a surveillance domain, like objects, states, events and relations. In section 2.3, an

16

overview of the system and its basic modules is given. Modeling events as Petri nets

constructs is described in section 2.4. Petri net models derived from user-defined events

are used to detect and recognize events as explained in section 2.5 along with some

examples.

2.1 Background

In this section, we describe the basic concepts of Petri nets, their structure and their

dynamics. A Petri net is an abstract model of the flow of information in a system [11].

A marked Petri net is a quintuple(P ; T ; I; O; M), where:

• P ={p1; p2; ...} is the set ofnp places (drawn as circles in the graphical represen-

tation);

• T = {t1; t2;} is the set ofnt transitions (drawn as bars);

• I is the transition input relation and is represented by means of arcs directed from

places to transitions;

• O is the transition output relation and is represented by means of arcs directed

from transitions to places;

• M = {m1; m2;} is the marking. The generic entrymi is the number of tokens

(drawn as black dots) in placepi in marking M.

The graphical structure of a Petri net is a bipartite directed graph: the nodes belong to

two different classes (places and transitions) and the edges (arcs) are allowed to connect

only nodes of different classes.

The dynamics of a Petri net is obtained by moving the tokens inthe places by means

of the following execution rules:

17

Before Firing
 After Firing

Figure 2.1: Simple Petri Net Before and After Firing

• A transition is enabled in a marking M if all its input places carry at least one

token;

• an enabled transition fires by removing one token1 per arc from each input place

and adding one token per arc to each output place.

Figure 2.1 shows a Petri net with one transition. The transition has two input places

and two output places. It is shown before and after the firing.Firing the transition

removes one token from every input place and inserts a token in every output place.

For more information about Petri nets basics, readers can refer to [11]. One of the

main disadvantages of ordinary Petri nets is that for large complex systems the sizes

of the nets are unmanageable. High Level Petri Nets(HLPN) are Petri nets whose to-

kens carry information represented by data structures. HLPN also provides hierarchical

structures where compact and manageable descriptions can be obtained while preserv-

ing many properties when nets are composed [41].

2.2 Event Ontology

An ontology is a data model that represents a set of concepts within a domain and the

relationships between those concepts. It is used to reason about the objects within that

1MOS Note that more than one token can be removed, if desired, as explained later in this chapter.

18

domain. In this section, an ontology for event recognition is described. The ontology

is described in terms of a Geometric Scene Description (GSD). A GSD is a quantitative

object-level scene interpretation in terms of recognized objects and their (possibly vary-

ing) locations in the scene. It is assumed that the intermediate vision layer provides this

GSD.

2.2.1 Objects

Tracked objects are assumed to be provided by the intermediate vision layer. The fol-

lowing properties are examples of what a GSD can describe.

• Class: Mobile/Contextual.

• Attributes: Color, Position,Orientation.

• Type: Person/Car/Door/Region-of-interest.

• Identifier.

2.2.2 States

A state is defined as a conceptual entity with one or more object for which a qualitative

predicate is true over a time interval. Examples are:

• One-object states: Moving/Still.

• Two-objects states: Two mobile objects: Far from/Near.

One mobile object and one contextual object: Inside/Outside.

19

2.2.3 Event

We define an event as a significant occurrence that happens at agiven place and time.

One or more objects may be involved in an event. An event may beprimitive or com-

posite.

Primitive Events

A primitive event is the simplest type of events inferred directly from the observables in

the video data (e.g. position, trajectory, speed, etc.). Examples are:

• One-object events: Move/Stop, Accelerate/Deaccelerate.

• Two-objects events: Two mobile objects: Approach/Leave, Pickup/Putdown. One

mobile object and one contextual object: Enter Area/Exit Area, Open/Close.

Composite Events

A composite event, or a scenario, is composed of states and simpler events connected

by spatial, temporal or logical relations. Examples of composite events are:

• Sequences: A sequence is a succession of two or more events.

• Repetitions: Detecting more than one occurrence of the sameevent may have a

special meaning in its context. For example, the different occurrences of the event

may be performed by different mobile objects with respect tothe same contextual

object.

• Negative Events: A negative event is triggered by the absence of some critical

observation (e.g a security guard has left his duty positionand does not return

within 15 minutes).

20

2.2.4 Relations

Logical Relations

Logical Relations (e.g. AND, OR, NOT) are used in their usualmeaning to express

different compositions of events.

Temporal Relations

A binary temporal relation is a relation between two events.As an event is represented

by an interval or by one point in time. Point-interval temporal logic [42], which is an

extension to Allen’s interval logic [24], is used to handle different possibilities, which

are

• both events are intervals

• both events are points

• one event is an interval and the other is a point.

It is suitable also for representing incomplete information. For example, if there are

two events represented by intervals X,Y and it is required todetect instances of X and

Y where X’s startpoint happens during interval Y. In this case, the relation between the

endpoint of X and interval Y is not known (or not significant).

Spatial Relations

A binary spatial relation is a relation between two spatial entities. These entities may

be points, lines or regions. A spatial relation can be topological, directional or distance

relation [43]. Topological and directional relations are qualitative relations while a dis-

tance relation is a quantitative measure of the distance between two objects. A primitive

spatial relation is a combination of a topology and a direction.

21

2.3 System Overview

Figure 2.2 shows the system overview. With the goal of designing a general system that

can be configured in different settings, we provide the user agraphical user interface

(GUI) that can be used to provide contextual information about the scene by drawing

polygons around regions of interest and naming them. Through the GUI, the user can

also specify events to be modeled and recognized by buildingevent templates hierarchi-

cally from primitive events and previously defined events and joining them by spatial,

temporal and logical relations. The Petri net for the event query is inferred from the

Petri nets of its components.

The input video is preprocessed by low level vision modules that detect objects by

background subtraction. The detected objects are classified and tracked across frames

to provide object trajectories. Object trajectories are analyzed to detect primitive events

that are parts of the final event query. The detected primitive events represent inputs to

Petri net-based recognition modules.

Once an event is recognized by the system, it is reported to the user through a panel

so appropriate actions can be taken. The panel displays a keyframe for the event and

other information including event time with the ability to rerun video streams where the

event takes place.

We will discuss the GUI, the object detection and tracking and the primitive event

detection modules in the following subsections. Section 2.4 discusses the Petri net-

based event modeling and section 2.5 discusses composite event recognition based on

Petri net models.

22

Figure 2.2: System Overview

2.3.1 Graphical User Interface (GUI)

With the goal of designing a general system that can be configured in different settings,

we are providing the user a graphical user interface (GUI) that can be used to build event

models hierarchically and provide contextual informationabout the scene. Figure 2.3.a

is a snapshot of the query design interface.

For each input video source, the view captured by the camera is displayed so that

ROIs can be marked on it. There are five lists where information about event models

can be edited (added, deleted or modified). These lists are:

23

• Variables: Variables of the event model should be defined before building the

event model. A variable is defined by its name and type. The name is a string

unique for this variable. The type is one of the following: Person, Vehicle, ROI or

Other.

• ROIs: Regions of interest can be marked by drawing polygons around them. Each

region should also have a unique name.

• Primitives: Primitive events that are part of the event model can be selected from

a library of predefined primitive events and then assigned variables. The same

primitive event can be used more than once in building the same event model

but each time with different variables. For example, if the event model has two

vehicle variables:V 1 andV 2, the same primitive eventStopscan be used twice,

each time with different variable so we will haveStops(V1)andStops(V2)as parts

of the event model.

• Spatial Relations:

• Temporal and Logical Relations: Event models are built incrementally by defin-

ing new relations on existing primitive events and existingevent models. Defin-

ing a new temporal or logical relation requires selecting two operands. These two

operands are either primitive events from thePrimitives list, two previously de-

fined relations fromTemporal and Logical Relationslist or one from each list.

A separate window is used to allow the user to enter a name for the relation and

select the relationship between the starting and ending points of the two operands.

A snapshot of this window is shown in Figure 2.3.b.

24

(a) Query Design Interface

(b) Logical and Temporal Relation Design Interface

Figure 2.3: Snapshots from Graphical User Interface

25

2.3.2 Object Detection and Tracking

Detecting and tracking moving objects are widely used as low-level tasks of computer

vision applications, such as video surveillance and robotics. Software development

of low-level tasks is especially important because it influences the performance of all

higher levels of various applications.

Many surveillance systems use background modeling to detect moving objects. One

of the problems with most algorithms is the need of an empty scene for initialization.

Often this is hard to obtain, and each time something changesin the scene, the initializa-

tion needs to be redone. Other problems include changing illumination, waving trees,

water, scene changes and shadows. On the other hand, multiple object tracking has been

also a challenging research topic in computer vision. It hasto deal with the difficul-

ties existing in single object tracking, such as changing appearances, non-rigid motion,

dynamic illumination and occlusion, as well as the problemsrelated to multiple object

tracking including inter-object occlusion, multi-objectconfusion. Good surveys about

object detection and tracking algorithms can be found in [44, 45].

With the goal of developing a high level event modeling and recognition module

independent of these lower level vision modules, we have designed our system so that

the detection and tracking results are either pre-computedor performed online by the

system. Experiments in Chapter 3 shows examples of both cases.

2.3.3 Primitive Event Detection

As mentioned in Section 2.2, a primitive event is the simplest type of events inferred

directly from the observables in the video data (e.g. position, trajectory, speed, etc.).

Primitive events are detected by a separate module whose function is to interpret the

data provided by the object detection and tracking module and keep information about

26

objects state in the scene, their position, speed and acceleration. Any change in these

features signals the detection of an event.

In the following, we will give some examples of the detectionand recognition of

six commonly used primitive events, which are: “Appears, Disappears, Moves, Stops,

EntersROI, Exits ROI”.

An instance of the primitive eventAppearsis said to be detected of an object appears

for the first time and remains as a foreground object for at least k frames. On the other

hand, an existing object that cannot be tracked for at leastk frames is said to disappear,

an instance of the primitive eventDisappearsis said to be detected.

Based on the trajectories computed by the object detection and tracking module, the

motion of a tracked object is described in terms of its position, speed and acceleration.

When the object is moving, it starts decelerating and when the change in object position

during a specified number of frames is under a given threshold, an instance of the prim-

itive eventStopsis detected. On the other hand, if the object is not moving andthen it

starts accelerating, an instance of the primitive eventMovesis detected.

For each ROI, there is a boolean that indicates whether or notthe object is inside

the ROI. A change in the value of that boolean indicates that either EntersROI or

LeavesROI is detected.

To Test if an object is inside or outside a given ROI, we test whether there is overlap

between the bounding box around the object and the ROI polygon. But this can result

in a large number of false positives as while the bounding boxof an object may over-

lap the ROI polygon, the object itself may be completely outside the ROI. Figure 2.4a

shows a pedestrian whose bounding box intersects a crosswalk ROI, which causes the

primitive eventEntersROI to be detected, while the pedestrian is completely outside

the crosswalk.

27

(b) Estimating Vehicle Motion Direction
(a) False Positive Example

Figure 2.4: Primitive Event Detection

To solve this problem, we use the bounding box information only. For example, for

a pedestrian to be inside a ROI polygon, the bottom line of itsbounding box should be

inside the ROI polygon. In other words, the pedestrian’s feet are inside the ROI polygon,

since the bottom line of the bounding box usually touches thepedestrian’s feet. For a

vehicle to be inside a ROI polygon, we need to ensure that its wheels are inside the

polygon. Since we only have the 2D information about the objects, it is not practical

to find the wheels. Instead, we estimate the bounding box sidethat touches the front

side of the vehicle. To do this, we first measure the directionin which the vehicle is

moving and then identify the bounding box side in this direction. Assuming that this

side represents the front of the vehicle, to detect a vehicleEntersROI, we test whether

this line lies inside or at least intersects the ROI polygon.Figure 2.4b demonstrates this

approach. We also wait until the overlap area is above a predefined percentage of the

ROI area. This approach reduces the false positives rate.

28

2.4 Petri Net-Based Event Modeling

2.4.1 Notations

In this section, we will describe some notations about Petrinet elements that we are

going to use in our framework. These notations include examples of ways into which

HLPNs extend the ordinary Petri nets [13, 41].

Transitions

• Immediate Transitions: The same as transitions in ordinary Petri nets. This

means that the transition fires immediately when every inputplace has the required

tokens for firing.

• Conditional Transitions: A conditional transition has additional firing conditions

that should be satisfied for the transition to fire. In other words, the transition fires

when every input place has the required tokens and the associated conditions are

satisfied. A conditional transition is represented by a thinbar.

• Composite Transitions: In order to simplify the structure of large nets, composite

transitions can be used as normal transitions in a Petri net but represent subnets

themselves. A composite transition is connected to the outside net by a set of

incoming and outgoing edges and places. A composite transition is represented

by an unfilled rectangle.

Note that for all these types of transitions, the conditionscan be set based on the

numberof tokens that satisfy a certain condition in the input places. In this case, when

the transition fires, more than one token can be removed from each of the input places.

This can be useful in a number of applications as explained inthe next section.

29

Tokens

• Regular Tokens: Regular tokens are used for marking only and don’t hold any

specific information. A regular token is drawn as a black filled circle.

• Colored Tokens: Colored tokens hold information represented by data structures

suitable for the application.

2.4.2 Event Modeling

In our framework, an event in modeled as a Petri net whose structure is derived from the

event structure. Each token is represented by an array, where each object variable has

a position in the array. Different instances of the same event are represented by tokens,

one for each instance. Each token of them will have the same structure, i.e. array, but,

maybe, with different values for the variables.

The simplest case is for a primitive event. Figures 2.5.a and2.5.b show examples

of the Petri net models for the primitive eventsE1: Stops(V)andE2: ExitsVehicle(P,V).

From the figures we can see that, for a primitive event, the Petri net model consists of a

source place, a conditional transition, and a sink place:

• Source Place: A dummy token representing the primitive event is initially placed

in the source place. The associated variables of the primitive event are unassigned

in the array representing the token. These variables are setwhen the conditional

transition fires.

• Conditional Transition : The firing condition for this transition represents the

occurrence of the primitive event, as detected by the lower vision modules. At

that time, the variables of the dummy token are instantiatedby the values obtained

from the lower vision modules and the token is moved from the source place to

30

the sink place. A new dummy token, with unassigned variables, is placed in the

source place. Note that this represents a self loop in the Petri net. We do not

show these self loops in the models for sake of clarity of the figures.

• Sink Place: Tokens reaching this place represent detected instances of the event

model.

As mentioned above, a token in this model is an array of lengthequals the number of

variables in the primitive event. Tokens in the first example, in Figure 2.5.a, are arrays

of one entry, for the variableV, whereas for the second example, in Figure 2.5.b, tokens

are arrays of two entries, for the variablesP andV.

As explained before, composite events are built incrementally by joining simpler

events, two at a time, by temporal and logical relations. In the same way, models for

these composite events are constructed from models of its subevents joined by appropri-

ate connections, i.e. transitions and places, to reflect these temporal and logical relations.

For example, Figure 2.5.c shows the Petri net model for the composite eventE3: E1(V)

Before E2(P,V), whereas Figure 2.5.d shows the Petri net model for the composite event

E4: E1(V1)And E2(P,V2). From the figures we can see that, for a composite event, the

Petri net model consists of a source place, one or more composite transitions, and a sink

place:

• Source Place: Similar to primitive events, a dummy token representing the union

of all different variables of its subevents is initially placed in the source place. The

associated variables of the primitive event are unassignedin the array representing

the token.

• Composite Transition: Each composite transition represents a subevent.

31

E1 Stops(V)

(a)

E2 Exits_Vehicle(P,V)

(b)

E3

(c)

E1

E2

E4

(d)

E1 E2

V

P V

P V

P V1 V2

Token Structure

E3: E1(V) Before E2(P,V)

E4: E1(V1) And E2(P,V2)

E2: Exits_Vehicle(P,V)

E1: Stops(V)

Figure 2.5: Petri Net Models for Example Events

32

• Sink Place: Similar to primitive events, tokens reaching this place represent de-

tected instances of the composite event.

Tokens in a composite event is the union of the tokens of the subevents such that every

variable has only one entry. For example, tokens in this model are arrays of two en-

tries, for the variablesP andV. Tokens in this model are arrays of three entries, for the

variablesR, V1andV2.

2.5 Petri Net-Based Composite Event Recognition

The detected primitive events are the input for the Petri netrecognition module whose

function is to recognize composite events. The use of Petri nets for event recognition

has two important advantages:

• Petri nets reduce the number of checked events whenever a primitive event is

detected.

• Petri nets facilitate the process of binding labels (generated by the tracking mod-

ule) to token variables.

For each composite event to be recognized, we maintain a listof enabled transitions.

An enabled transition is a transition where all its input places have tokens but the asso-

ciated event has not occurred yet. The Petri nets are reevaluated only when a primitive

event is detected. When this occurs, we check only the list ofenabled transitions to test

if any of them is waiting for this primitive to fire. So, we neednot check all transitions in

the net. When a transition is enabled and the associated primitive is detected, the transi-

tion fires. Firing a transition removes tokens from input places, inserts tokens in output

places and updates the list of enabled transitions. The factthat we check only the list

33

of enabled transitions provides an efficient implementation, since usually the number of

enabled transitions is small.

When a primitive event is detected, its objects have to be matched with tokens from

input places. If there are more than one input place to the same transition, then tokens

from these places have also to be matched to see whether thereis a combination of

actors that satisfy the event so far. For a given transition to fire, every possible combi-

nation of tokens is tested and a new token is placed in the output place only if a match

occurs. The fact that only a small number of these combinations will match reduces the

expected number of times this matching process is required.In this way, the Petri net

transitions act as filters to filter the large amount of detected primitive events and only

keeps information about the relevant ones.

In the following, we give examples to illustrate basic ideasdescribed in this section

and the previous sections.

Example 1

Assume we have a parking area and we want to count the number ofvehicles that used

this area during a given period of time. Here, we have two variables, a variable repre-

senting the vehicle,V 0, and a variable representing the parking area region,R0. The

Petri net model in this case is a sequence of the following primitives: “Appears(V0),

EntersROI(R0, V0), Stops(V0)andLeavesROI(R0,V0)”. In Figure 2.6, the Petri net

corresponding to this sequential order is shown. VariableV 0 is assigned many labels

during the recognition process. Whenever a car appears, a new token is inserted in the

first place, P1. Whenever a car enters the parking area, its token is moved from P1 to

P2, and so on. At the end of the detection, the number of tokensin the place P4 is the

number of cars that stopped in the parking area and then left,and the number of tokens

34

Count cars that park in region A0, during the video

clip

Objects: Car C0, Region A0.

Subevents:

E1 Car C0 appears

E2 Car C0 enters region A0

E3 Car C0 stops

E4 Car C0 leaves region A0

Temporal Relations:

(((E1 Before E2) Before E3) Before E4)

E1

E2

E3

E4

P1

P3

P2

P4

Figure 2.6: Petri Net Representation for Counting Cars

in P3 are the number of cars that stopped in the parking area and have not left yet.

Example 2

Another event, isVehicleExchangeevent. In this event, two vehicles enter the parking

area and park. Then a person leaves one vehicle and enters thesecond vehicle. After

that, the second vehicle should leave. In this example, there are three variables,V 0 and

V 1 representing the vehicles and variableP0 representing the person. The Petri net for

this event is shown in Figure 2.7. In this event, we are not interested which vehicle

arrives first, so there is no relation between E1 and E2. Whenever a vehicle arrives in

the parking area and parks, a token is placed in both places P1and P2. A token in

P1 will not be moved to P3 until a person exits the vehicle represented by this token.

Now, a token in P3 represents the combination of this person and this vehicle, and hence

35

Figure 2.7: Petri Net Representation for Car Exchange Event

contains two colors. In the same way, tokens from P2 and P3 arenot matched until the

primitive eventEntersVehicleis detected with person matching the person in P3’s token

and a car matching the car in P2’s token. A new token is created(now representing the

two vehicles and the person) and inserted in P4.

Example 3 - Negative Events

As mentioned in Section 2.2.3, a negative event is triggeredby the absence of some

critical observation, e.g. a security guard has left his duty position and does not return

within 15 minutes. To detect the absence of event X, we need toset a limiting event

Y, so that if Y is detected we can safely infer that X has not occurred. For the given

example:

36

• Event(X) – Security guard appears in his duty position.

• Event(Y) – 15 minutes has passed since last guard appearance.

In this case, events X and Y are represented by transitions that share the same input

place p, as shown in Figure 2.8. If a token t in place p performsevent X before Y,

token t moves to place p1 and is ignored. If t does not perform event X until event Y

is detected, token t moves to place p2 and participates as an output of negative event

N(X,Y).

Note also that this example shows a non-trivial loop, where the security guard peri-

odically returns to the duty position. If event X is detected, a token is placed in place

p1, indicating that the guard is in his duty position. When the guards leaves the position,

represented by the firing of transition A, a new token is placed in the common place p

and the timer for event Y is reset, starting a new loop. Figure2.9 shows a generaliza-

tion of the negative event example, where the guard has to visit a number of positions

in sequence periodically within a certain amount of time. The figure also show a longer

loop.

Example 4 - Counting Events

By a counting event we mean an event that requires the Petri net to count the number

of certain events. Examples include counting the number of people or cars that enter a

certain area of interest (as in Example 1), detecting eventsthat involve more than one

entity, etc.

Counting events can be detected by counting the tokens in places that satisfy cer-

tain conditions. In additions, the conditions of the transitions can be set such that the

transition do not fire unless a number of tokens are available.

37

Events:

Event(X) Security guard appears in

his duty position.

Event(Y) 15 minutes has passed

since last guard appearance.

Event(A) Security guard leaves his

duty position.

N(X,Y)
Y X

p2 p1

p

A

Figure 2.8: Petri Net Representation for Negative Event N(X,Y)

Figure 2.10 show the car exchange example, where the user is interested of ex-

changes that involves more than two persons from one car to the other. Note that the

Petri net model for this case is exactly the same as the one in Figure 2.7, with the excep-

tion of the condition on the composite transition E5. The transition E5 will be enabled

if the vehicle movesand the number of tokens that have the structure(V 1, P i), for any

i. is more than two.

2.6 Conclusion

We have described our event modeling and recognition systemin details. Using our

event modeling approach based on Petri nets, we have shown that models for new events

can be built easily by combing simpler event models by temporal, logical and spatial

relations using our GUI. The mapping into Petri net models are performed automatically.

Petri nets also provide a formal and natural method that is easy to understand. One of the

main advantages of event recognition based on Petri net models is that the large number

38

Events:

Event(X1) Security guard appears

in his first duty position.

Event(X2) Security guard appears

in his second duty position.

Event(X3) Security guard appears

in his third duty position.

Event(Y) 15 minutes has passed

since last guard appearance.

Event(A) Security guard leaves his

third position.

N(X,Y)
Y

p2

p

X1

p1

A

X2

p3

X3

p4

Figure 2.9: Petri Net Representation for the generalization of example 3

of irrelevant observations does not affect the performanceof the recognition process.

39

E2

E3

E1

E4

E5 and #(V1, P)>2

Event: More than two persons move from

Vehicle V0 to Vehicle V1.

Objects: Person: P0, Vehicle: V0, V1.

Events:

E1 Stops(V0)

E2 Stops(V1)

E3 Exits_Vehicle(P,V0)

E4 Enters_Vehicle(P,V1)

E5 Moves(V1)

Relations:

P1

P2

P3

P4

P5

(((E1 Before E3) Ends_before (E2 Before E4)) Before E5)

Figure 2.10: Petri Net Representation for Car Exchange Event involving multiple per-

sons

40

Chapter 3

Experiments I

Our goal is to evaluate the performance of the system across different natural scenes and

in detecting events with increasing level of complexity ranging from primitive events

involving one object to more complex events involving multiple objects and multiple

logical and temporal relations. In the first set of experiments, we applied our system on

a dataset of video sequences provided as a part of ETISEO project [46]. The length of

these sequences range from 800 frames to 3000 frames. In these sequences, required

events to be detected range from single primitives to simplesequences of two or three

primitives. In the second set of experiments, we applied oursystem on a longer video se-

quence (14 minutes= 14×60×30 = 25200frames) to detect and recognize events and

violations performed by pedestrians and vehicles in a traffic intersection. Events in this

case are more complex and include multiple actors and multiple logical and temporal

relations.

3.1 ETISEO Dataset

We applied our system on a dataset of video sequences. Those videos are provided as a

part of ETISEO project [46], a research project sponsored bythe French government,

41

whose aim is to evaluate vision techniques for video surveillance applications. It focuses

on the treatment and interpretation of videos involving pedestrians and (or)vehicles,

indoors or outdoors, obtained from fixed cameras. Information about these video se-

quences is provided in Table 3.1. The first sequence (ETI-VS2-AP-11) was taken at an

apron scene, from two camera views. The second sequence (ETI-VS2-RD-6) and the

fifth sequences (ETI-VS2-RD-10) were taken at different road scenes, from only one

camera. The third sequence (ETI-VS2-BE-19) was taken at a building entrance, from a

camera monitoring the outdoor scene and another camera monitoring the indoor scene

of the entrance. The fourth sequence (ETI-VS2-MO-1) was taken at a metro station,

from one camera view. Information about events to be detected for each sequence is

provided along with other contextual information about thescenes. Table 3.1 shows the

set of events modeled and detected by our system. More information can be obtained

from [46]. Figure 3.1 shows frames representing each of these sequences, with regions

of interest marked up.

3.1.1 Event Definitions

In this section, we will discuss the representation of the events to be detected in our Petri

nets framework. The primitive library used has nine primitive events. In the following,

we list these primitives along with the time span associatedwith each primitive, based

on ETISEO definitions and other assumptions we made.

• Appears: the object appears and remains as a foreground object for atleast 10

frames +/- 5.

• Moves: the object starts moving and the change in object position for the last k

frames is above a given threshold +/- 5.

42

Table 3.1: ETISEO Video Sequences Summary

Sequence Name ETI-VS2-AP-11 ETI-VS2-RD-6 ETI-VS2-BE-19 ETI-VS2-MO-1 ETI-VS2-RD-10

Number of 2 1 2 1 1

available

views

Scene Outdoor Outdoor Indoor-Outdoor Indoor Outdoor

information Apron Road Building Entrance Metro Road

Number of 804 1200 1025 1255 2936

frames

Objects types vehicle person person person person

vehicle vehicle bag vehicle

Events stopped; getsin; stopped; waiting; getsin;

insidezone; getsout; getsout; picks up; getsout;

enterszone; stopped insidezone; putsdown; stopped

emptyarea enterszone; exchangeobject

exits zone;

changeszone;

door control

43

Figure 3.1: Annotated Frames from ETISEO Sequences
44

• Stops: the change in object position for the last k frames is below agiven thresh-

old +/- 5.

• Enters ROI : first part of the vehicle in the zone until the whole vehicle is inside

zone OR first foot inside zone for a person +/- 5 frames.

• Exits ROI : first part of the vehicle outside zone until the whole vehicle is outside

zone OR last foot inside zone for a person +/- 5 frames.

• Enters vehicle: the person disappears in the vicinity of the vehicle +/- 5.

• Exits vehicle: the person appears in the vicinity of the vehicle +/- 5.

• puts down: last frame carried object is connectedwith the person +/- 10 frames.

• picks up: 1st frame the carried object is connectedwith the holder +/- 10 frames.

In our system, we model other events as simple scenarios (a sequence of two or three

primitives). In the following, we list these scenarios along with its components based

on ETISEO definitions and other assumptions we made.

• inside zone:

– Variables Vehicle: V, ROI: R

– Primitive Events P1:EntersROI(V,R), P2:Exits ROI(V,R)

– Scenario insidezone:P1BeforeP2

• empty area:

– Variables Vehicle: V, ROI: R

– Primitive Events P1:EntersROI(V,R), P2:Exits ROI(V,R)

45

– Scenario emptyarea :P2BeforeP1

• gets in:

– Variables Vehicle: V, Person: P

– Primitive Events P1:movestowards(V,P), P2:Entersvehicle(V,P)

– Scenario getsin :P1BeforeP2

• gets out:

– Variables Vehicle: V, Person: P

– Primitive Events P1:Exits vehicle(V,P), P2:movesaway from(V,P)

– Scenario getsout :P1BeforeP2

• changeszone:

– Variables Object: O, ROI: R1, ROI: R2

– Primitive Events P1:Exits ROI(O,R1), P2:EntersROI(O,R2)

– Scenario changeszone:P1BeforeP2

Object O may be a person or vehicle.

• exchangeobject: the second person holds the object + 30 frames

– Variables Object: O, Person: P1, Person P2: R2

– Primitive Events P1:putsdown(P1, O), P2:picks up(P2, O)

– Scenario changeszone:(P1BeforeP2)Or (P1MeetsP2)

46

3.1.2 Results

Based on the detection and tracking results1, our system is used to model and detect the

set of events described on Table 3.1. The output of the systemwas converted into XML

format, where for each event instance, the following attributes are computed:

• Id : Integer characterizing the event, unique for a video clip,

• Name: Name of the event (identification of the event). The list of event names to

recognize in a sequence is delivered with the video,

• Start and end time: Integers corresponding to First and last frame of event de-

tection,

• Physical objects: List of physical objects ID involved in this event (Id of objects

used in the tracking phase),

• Contextual objects: List of contextual objects ID involved in this event (Id of

objects described in the context, provided with the video data set),

The output was then evaluated by the ETISEO group and resultsare provided to each

participant. Two metrics based on the number of detected events are provided, namely,

precision and sensitivity. For each sequence we define:

• The True Positive(TP): the system has detected a real event (exists in reference

data and results).

• The False Negative(FN): a real event has been missed by the system (exists only

in reference data).

1We thank Son Dinh Tran for providing us with the detection andtracking results.

47

• The False Positive(FP): the system has detected a situation that is not real (exists

only in results).

• Precision: TP / (TP + FP).

• Sensitivity: TP / (TP + FN).

Table 3.2 shows the detection results for sequence ETI-VS2-AP-11, First Camera.

Table 3.3 summarizes the detection results for all sequences. As shown in these tables,

good recognition results are obtained. A precision value of1.00 is obtained for all

sequences - no false positives are detected. On the other hand, the sensitivity is not

as good as precision - a value of0.76 is obtained, which means that a large number

of false negatives has been detected by the system. This can be explained by the high

dependency of the event detection module on results provided by lower level vision

modules, the background subtraction and tracking. We have also found that most of

these false negatives areStopsandMovesevents that have not taken place but detected

by the event detection module. The thresholds set by the event detection module for the

StopsandMovesevents are domain-dependent. The current thresholds are learned by

training on other longer videos and hence resulting in largenumber of false negatives

when applied to the Etiseo videos.

3.2 Traffic Intersection Monitoring

We applied our system to monitor a traffic intersection. Our purpose is to analyze pedes-

trians and vehicles behaviors and detect and record traffic violations as they occur; traffic

citations could then be issued to vehicle owners. This also can be used as a tool to ana-

lyze video archives to study pedestrians and vehicle behaviors in the intersection; based

48

Table 3.2: ETISEO Results for Sequence ETI-VS2-AP-11, C4

Results for scenario emptyarea

True Positives 2

False Positives 0

False Negatives 0

Precision 1.00

Sensitivity 1.00

Results for scenario enterszone

True Positives 2

False Positives 0

False Negatives 0

Precision 1.00

Sensitivity 1.00

Results for scenario insidezone

True Positives 2

False Positives 0

False Negatives 0

Precision 1.00

Sensitivity 1.00

Results for scenario stopped

True Positives 1

False Positives 0

False Negatives 1

Precision 1.00

Sensitivity 0.50

Overall Performance for ETI-VS2-AP-11-C4

Number of True Positives 7

Number of False Positives 0

Number of False Negatives 1

Precision 1.00

Sensitivity 0.88

49

Table 3.3: ETISEO Performance Results for All Sequences
Performance results for ETI-VS2-AP-11-C4.xml is:

Number of True Positives 7

Number of False Positives 0

Number of False Negatives 1

Precision 1.00

Sensitivity 0.88

Performance results for ETI-VS2-AP-11-C7.xml is:

Number of True Positives 7

Number of False Positives 0

Number of False Negatives 1

Precision 1.00

Sensitivity 0.88

Performance results for ETI-VS2-RD-6-C7.xml is:

Number of True Positives 2

Number of False Positives 0

Number of False Negatives 0

Precision 1.00

Sensitivity 1.00

Performance results for ETI-VS2-BE-19-C1.xml is:

Number of True Positives 5

Number of False Positives 0

Number of False Negatives 3

Precision 1.00

Sensitivity 0.62

Performance results for ETI-VS2-BE-19-C4.xml is:

Number of True Positives 9

Number of False Positives 0

Number of False Negatives 3

Precision 1.00

Sensitivity 0.75

Performance results for ETI-VS2-MO-1-C1.xml is:

Number of True Positives 4

Number of False Positives 0

Number of False Negatives 0

Precision 1.00

Sensitivity 1.00

Performance results for ETI-VS2-RD-10-C4.xml is:

Number of True Positives 4

Number of False Positives 0

Number of False Negatives 4

Precision 1.00

Sensitivity 0.50

Overall Performance results:

Number of True Positives 38

Number of False Positives 0

Number of False Negatives 12

Precision 1.00

Sensitivity 0.76

50

on this analysis, redesign steps can be taken to reduce the risk of accidents, for exam-

ple. Here, we define and detect three types of safety violations and compare them to the

expected normal behaviors. Specifically, we are interestedin detecting:

• Stop Sign Events: Vehicles that stop at the stop sign and vehicles that don’t stop

• Road Crossing Events: Pedestrians who cross the road using marked crosswalks

and those who don’t use the crosswalks

• Right of Way Events: Vehicles that yield to pedestrians in crosswalks and those

that don’t yield to pedestrians

In the following, we will define these events and show some experimental results.

3.2.1 Event Definitions

In this section, we will discuss the representation of the traffic intersection events in

our Petri nets framework. The primitive library used has sixprimitive events, which

are: “Appears, Disappears, Moves, Stops, EntersROI, Exits ROI”. Figure 3.2 shows

the Petri net representations of the traffic intersection events. A place marked with * is

the output place for the event.i.e. tokens in this place represent recognized instances of

the event.

Stop Sign Events Figure 3.2a shows the Petri net representation of the event ”A vehi-

cle stops before the stop sign”. It has two variables, R whichrepresents the ROI where

vehicles should stop before the stop sign and V which represents the vehicle. It also has

3 primitive events,EntersROI(R,V), Stops(V) andExits ROI(R,V). A vehicle entering

the region R and stopping before leaving the region should satisfy this event model.

51

To detect vehicles that do not stop at the stop sign, we model this as a negative event

whose limiting event isExits ROI(R,V). Normal behavior and violation can be modeled

as follows:

• Variables Vehicle:V, ROI:R

• Primitive Events P1: EntersROI(V,R), P2:Stops(V), P3: Exits ROI(V,R)

• Temporal RelationsT1:P2BeforeP3, T2:NOT(P2)BeforeP3, T3:P1BeforeT1,

T4:P1BeforeT2

• Normal Behavior N1(V,R):T3

• ViolationV1(V,R):T4

Road Crossing Events To cross the road legally, a pedestrian goes from one road side

to another side using the crosswalk. If he does not use the crosswalk, it is considered a

safety violation. This violation is modeled as a negative event whose limiting event is

that the pedestrian changes the roadside without using the crosswalk. These events are

modeled as follows:

• Variables Pedestrian: P, ROI: crosswalk, ROI: roadside1, ROI: roadside2

• Primitive Events P1: Exits ROI(P,roadside1), P2:EntersROI(P,crosswalk), P3:

EntersROI(P,roadside2)

• Temporal RelationsT1: P2BeforeP3, T2: NOT(P2) BeforeP3, T3: P1Before

T1, T4: P1BeforeT2

• Normal Behavior N1(P,crosswalk,roadside1,roadside2): T3

• ViolationV1(P,crosswalk,roadside1,roadside2): T4

52

Figure 3.2b shows the Petri net representations.

Right of Way Events Pedestrians have the right of way over vehicles in crosswalks. A

vehicle arrives at the stop sign area after a pedestrian starts crossing the road using cross-

walk should not move until he leaves the crosswalk (normal behavior). If the vehicle

starts moving while the pedestrian is still in the crosswalk, this vehicle has committed a

violation. These events are modeled as follows:

• Variables Pedestrian: P, Vehicle: V, ROI: crosswalk, ROI: stopsignarea

• Primitive Events P1: EntersROI(P,crosswalk), P2:Exits ROI(P,crosswalk), P3:

EntersROI(V,crosswalk), P4:Exits ROI(V,crosswalk)

• Composite EventsC1: N1(V,stopsignarea)

• Temporal RelationsT1: P1BeforeP2, T2: P3BeforeP4, T3: T2During T1

• Normal Behavior N3(P,V,crosswalk,stopsignarea):T1OverlapsC1

• Violation V3(P,V,crosswalk,stopsignarea): T3

Figure 3.2c shows the Petri nets representations.

3.2.2 Preprocessing

The low level processing includes the background subtraction and the tracking. In our

system, we used an adaptive background subtraction technique to segment foreground

regions from the background. Adaptive background subtraction techniques, in gen-

eral can adapt to slow changes of illumination by recursively updating the background

model. We use the kernel density estimation method described in [47] to model back-

ground pixels. The model keeps a sample of intensity values for each pixel in the image

53

Exits_ROI
(V,stopsignare
a)

*

b.Violation

Enters_ROI
(V,stopsignarea)

Exits_ROI
(V,stopsignarea)

Stops(V)

*

Enters_ROI
(V,stopsignarea)

Stops(V)

a. Normal

(a) Stop Sign Events

Exits_ROI
(P,roadside1)

Enters_ROI
(P,roadside2)

Enters_ROI
(P,crosswalk
)

*

Exits_ROI
(P,roadside1)

Enters_ROI
(P,roadside2)

Enters_ROI
(P,crosswalk
)

*

a. Normal b.Violation

(b) Road Crossing Events

Enters_ROI
(P,crosswalk)

Exits_ROI
(P,crosswalk)

Enters_ROI
(V,stopsignarea)

Exits_ROI
(V,stopsignar
ea)

Stops(V))

Enters_ROI
(P,crosswalk)

Exits_ROI
(P,crosswalk)

Enters_ROI
(V,crosswalk)

Exits_ROI
(V,crosswalk)

* *
a. Normal

b. Violation

(c) Right of Way Events

Figure 3.2: Traffic Monitoring Events

and uses this sample to estimate the probability density function of the pixel intensity

using kernel density estimation. The model can handle situations where the background

of the scene is cluttered and not completely static but contains small motion due to

moving branches and bushes. The model is updated continuously and therefore adapts

to changes in the scene background. Blobs are constructed bya connected component

module that groups foreground pixels into corresponding blobs.

Tracking objects through the scene is done by finding correspondence between ob-

jects in two consecutive frames. These correspondences aredetermined by finding over-

lapping blobs in these two frames, assuming that the change between consecutive frames

is limited. Occlusions and object interactions lead to blobmerging and splitting making

the tracking complex. In our system, we keep a list of the current entities. An entity is

either a single object or a group of objects whose blobs are merged.

For the current frame, and for each blob, we find all entities that overlap with this

54

blob in the previous frame. If the blob overlaps a single entity, then this entity’s current

position is updated to reflect this new data. If the blob overlaps more than one entity,

this signals either an occlusion or objects becoming near toone another. Once this

merge is detected, a new entity is created and added to the list of current entities. The

overlapping entities are also removed from the list and added as children for the new

entity. An appearance-based model is built for each entity before removing it and stored

in the new entity to be used in matching entities when they split. If more than one blob

overlap a single entity, there are two possibilities. If theentity represents a single object,

this means that object fragmentation has occurred and in this case, we consider the new

object bounding box as the union of these blobs’ bounding boxes. Whereas if the entity

represents more than one object, i.e. group split, we need torestore the identity of each

object after the split. Since we are storing the appearance models before merging, we

can match these models with the current blobs’ appearance models so that each blob

describes a single entity before merge.

Figure 3.3 shows an example of merging and splitting with objects being correctly

matched before a merge and after a split. We ignore all blobs whose size is below a

threshold. Two blobs are said to overlap if the overlap area is at least 50% of the smaller

blob.

Generally, using only blob information to track objects haslimitations. This can be

enhanced by augmenting the tracker with object location andshape estimator such as

Kalman filter to predict position and shape of the object.

Object classification is based on the geometry of the objects, mainly the aspect ratio

of height and width of the object bounding box. Training dataare provided to the clas-

sifier off-line and objects are classified into the followingclasses: pedestrian, vehicle,

large vehicle (e.g. buses and trucks) and bicycle.

55

Figure 3.3: Tracking Results

56

3.2.3 Results

The system has been tested on a 14-minute video stream captured from a fixed camera

monitoring a traffic intersection. The system is used to model and detect all types of

normal behaviors and violations described in Section 3.2.1. Once a violation is detected,

an alert is made by the system displaying the vehicle or the pedestrian committing the

violation and the time when it happens.

Figure 3.4 shows 2 recognized instances of Rightof Way event. In figure 3.4a,

pedestrian 20 enters the crosswalk region in frame 344. Thenvehicle 21 enters the stop

sign marked region in frame 367, stops in frame 404 but does not leave until pedestrian

20 leaves the crosswalk region in frame 479 - normal behavior. In figure 3.4b, pedestrian

315 enters the crosswalk region in frame 20558. Then vehicle316 enters the crosswalk

in frame 20576. The vehicle does not give the right of way to the pedestrian and con-

tinues moving until it leaves the crosswalk in frame 20607 - aviolation. Pedestrian 315

leaves the crosswalk in frame 20733.

We compared the system results with ground truth for the 14-minutes video. The

comparisons are shown in Table 3.4. From this table, we observe that more than 50%

of the total number of vehicles do not obey the stop sign rule .The system was able

to detect about 80% of these violations. Errors in object classifications and threshold

selections explain the missed instances. Also, about 25% ofthe pedestrians do not use

the crosswalks to cross the road. The system is able to detectall instances with a few

false positives. Bicycles classified as pedestrians and dealing with a group of pedestrians

as a single pedestrian explain these false positives.

57

Frame 344

20

21

Frame 367

2
0

2
1

21

20

Frame 404

20

21

Frame 479

21

20

Frame 520

21 20

(a) Normal

Frame 20558

312

313

316

315

Frame 20576

316
312

313

315

Frame 20607

312

313

316315

Frame 20733

316

318

315

(b) Violation

Figure 3.4: Right of Way Events

58

Table 3.4: Traffic Intersection Event Detection Results

Event Name True False False

Positives Positives Negatives

Vehicles stop before stop sign 21 3 0

Vehicles don’t stop before stop sign 22 5 0

Pedestrians use crosswalks 26 5 0

Pedestrians not using crosswalks 10 0 3

Vehicles not yielding to Pedestrians in crosswalks 2 0 1

3.3 Conclusion

We have applied the system to different natural videos to detect events with increasing

level of complexity ranging from primitive events involving one object to more complex

events involving multiple objects and multiple logical andtemporal relations. In the first

set of experiments, we applied our system on a dataset of video sequences whose length

ranges from 800 frames to 3000 frames. In these sequences, the required events to be

detected range from single primitives to simple sequences of two or three primitives.

In the second set of experiments, we applied our system on a longer video sequence

(25200frames) to detect events and violations performed by pedestrians and vehicles

in a traffic intersection. Events in this case are more complex and include multiple actors

and multiple logical and temporal relations.

We have tested the system into 2 modes - offline mode, and online mode. For the

first set of experiments, we have:

• The detection and tracking results are pre-computed.

• Event definitions and other contextual information are provided in XML format

59

to the system.

• The output of the event detection and recognition module hasalso been written to

XML format. The video sequences are then annotated by these results.

For the second set of experiments (monitoring traffic intersection), we have:

• The detection and tracking are performed online by the system.

• Event definitions and other contextual information are provided through the GUI

of the system.

• Whenever a violation is detected, an alert is displayed on the screen showing the

vehicles and pedestrians involved in the violation.

.

We have also shown that the system performance depends heavily on lower level vi-

sion modules (e.g. detection and tracking). Any enhancement on these modules should

also enhance the system performance. Independence of high level event detection and

recognition modules from lower level vision modules makes applying these enhance-

ments -once available- an easy task and does not require manychanges in the code.

60

Chapter 4

Carried Object Detection

4.1 Introduction

One important problem in understanding human activities isto detect whether a person

is carrying an object or not at different times. For example,if a person is carrying an

object at time t1 and not carrying it at time t2, we can infer that the person has dropped

the object or give it to another person between times t1 and t2. Another problem is

detecting left packages in public places. Detection of leftpackages is among the goals

of many visual surveillance systems of these places for security and safety concerns. In

some cases, the left package can be detected by the background modeling component

of the surveillance system [14, 15, 16, 17, 18]. On the other hand, if the package is left

in an unseen place (e.g. behind a pillar or in a trash bin), then these methods will fail to

detect it. In this case, we can infer that a package is being left if we detect that a person

is carrying a package at one time and not carrying it at a latertime.

Examples where the second approach can be useful include thefollowing. A person

enters a room carrying an object, deposits the object and then after a short time he exits

wearing the same clothes but without the object. Another example is a person in a public

61

place is observed by one or more cameras, then he disappears for a short period of time

(e.g., behind a pillar) where he drops or picks up an object and he reappears. Even

in cases where this person is continuously observed, he may drop or pickup objects

in places not easily observed by surveillance cameras (e.g., in a trash bin). In these

examples, direct detection of the left object itself is not possible, but could be inferred

by deciding whether the owner is carrying an object at a giventime but not carrying it

at a later time.

In this part of the thesis, we present two approaches to the left package detection

problem. We assume we have different instances of the same person within different

cameras and at different times, and that the time separationbetween different instances

of the same person is small, so that he does not change clothesbetween these instances.

Both approaches poses the problem as a classification problem. The first approach,

direct classification of silhouettes, classifies the subject’s silhouettes for each instance

directly to determine whether he is carrying an object or not. The second approach,

appearance change detection, determines whether there is asignificant change in human

appearance between two different instances or not that might be due to an object being

carried at one time but not the other. If there is a significantchange in the human

appearance, additional analysis is conducted to decide whether the person has dropped

an object or acquired one from the scene.

For both approaches, we trained SVM classifiers [19] on a laboratory database that

contains examples of people seen with and without two commonobjects, namely back-

packs and suitcases. We used a boosting technique, AdaBoost[20], to select the most

discriminative features used by the SVMs and to enhance the performance of the classi-

fiers. We give recognition results for each approach and thencompare both approaches

and describe the advantages of each one.

62

The rest of the chapter is organized as follows. Section 4.2 provides background

information about some theoretical methods used in this part of the thesis, namely Sup-

port Vector Machines, AdaBoost and integral images. We describe the database used in

training the classifiers in section 4.3. The preprocessing step used by both approaches

is discussed in section 4.4. We describe the first approach, direct classification of sil-

houettes, in section 4.5. The second approach, human appreance change detection, is

discussed in section 4.6. Section 4.7 compares the results of both approaches.

4.2 Background

4.2.1 Support Vector Machines

SVMs were originally introduced by Vapnik and co-workers [19] and successfully

extended by a number of other researchers. SVMs belong to theclass of maximum

margin classifiers. They perform pattern recognition between two classes by finding

a decision surface that has maximum distance to the closest points in the training set

which are termed support vectors [48]. We start with a training set of pointsxi ∈ IRn,

i = 1, 2,; N where each pointxi belongs to one of two classes identified by the label

yi ∈ {−1, 1}. Assuming linearly separable data, the goal of maximum margin clas-

sification is to separate the two classes by a hyperplane suchthat the distance to the

support vectors is maximized. This hyperplane is called theoptimal separating hyper-

plane (OSH). The OSH has the form:

f(x) =
ℓ

∑

i=1

αiyixi.x + b, (4.1)

The coefficientsαi and theb in Eq. (4.1) are the solutions of a quadratic programming

problem. Classification of a new data pointx is performed by computing the sign of the

63

right side of Eq. (4.1). In the following we consider the equation

d(x) =

∑ℓ

i=1
αiyixi.x + b

||
∑ℓ

i=1
αiyixi||

(4.2)

where the sign of d is the classification result for x, and|d| is the distance from x to

the hyperplane. Intuitively, the farther away a point is from the decision surface, i.e. the

larger|d|, the more reliable the classification result.

The entire construction can be extended to the case of nonlinear separating surfaces.

Each point x in the input space is mapped to a pointz = Φ(x) of a higher dimensional

space, called the feature space, where the data are separated by a hyperplane. The key

property in this construction is that the mappingΦ(.) is subject to the condition that the

dot product of two points in the feature spaceΦ(x).Φ(y) can be rewritten as a kernel

functionK(x, y). The decision surface has the equation:

f(x) =
ℓ

∑

i=1

yiαiK(x, xi) + b, (4.3)

again, the coefficientsαi andb are the solutions of a quadratic programming problem.

Note thatf(x) does not depend on the dimensionality of the feature space.

An important family of kernel functions is the polynomial kernel:

K(x, y) = (1 + x.y)d, (4.4)

where d is the degree of the polynomial. In this case, the components of the mapping

Φ(x) are all the possible monomials of input components up to degree d.

4.2.2 Feature selection by AdaBoost

The AdaBoost classifier can be used to boost the classification performance of a simple

learning algorithm (e.g. a simple perceptron) [20]. It doesthis by combining a collec-

tion of weak classifiers to form a stronger classifier. AdaBoost calls a weak classifier

64

Figure 4.1: The AdaBoost algorithm for the binary classification task

repeatedly in a series of roundst = 1, 2, ..., T . For each call, a distribution of weights

Dt is updated that indicates the importance of examples in the data set for the classifica-

tion. On each round, the weights of each incorrectly classified examples are increased,

so that the new classifier focuses more on those examples. Thealgorithm for the binary

classification task is shown in figure 4.1 [20].

On the other hand, AdaBoost can also be used as a feature selection technique [49].

In this process, each feature is treated as a weak classifier.As a result each stage of the

boosting process, which selects a new weak classifier, can beviewed as a feature selec-

tion process. On each round, AdaBoost chooses the feature with the best classification

performance for the current boosting distribution. The weighting distribution for the

training examples is updated to reflect how well every example was classified. The final

strong classifier is a weighted combination of weak classifiers. The AdaBoost algorithm

65

• Given example images (x1,y1) , … , (xn,yn) where yi = 0, 1 for negative and positive
examples respectively.

• Initialize weights w1,i = 1/(2m), 1/(2l) for training example i, where m and l are the
number of negatives and positives respectively.

For t = 1 … T
1) Normalize weights so that wt is a distribution
2) For each feature j train a classifier hj and evaluate its error εj with respect to wt.
3) Chose the classifier hj with lowest error.
4) Update weights according to:

β ε−=
+

1
,,1

i

titit ww

where ei = 0 is xi is classified correctly, 1 otherwise, and

ε
εβ −

=
1 t

t

t

• The final strong classifier is:





 ≥= ∑ ∑= =

otherwise

xxh
T

t

T

t ttt h
0

2

1
)(1)(1 1αα , where)

1
log(βα

t

t
=

Figure 4.2: A variant of AdaBoost for aggressive feature selection

adapted for feature selection process is shown in figure 4.2 [49].

4.2.3 Integral Images

Rectangle features can be computed very rapidly using an intermediate representation

for the image; the integral image [49]. The integral image atlocation x; y contains the

sum of the pixels above and to the left of x; y, inclusive:

ii(x; y) =
∑

x′≤x,y′≤y

i(x′; y′); (4.5)

whereii(x; y) is the integral image andi(x; y) is the original image (see Figure 4.3.a).

Using the following pair of recurrences:

s(x; y) = s(x; y − 1) + i(x; y) (4.6)

66

ii(x; y) = ii(x − 1; y) + s(x; y) (4.7)

(wheres(x; y) is the cumulative row sum,s(x;−1) = 0, andii(−1; y) = 0) the integral

image can be computed in one pass over the original image. Using the integral image

any rectangular sum can be computed in four array references, e.g. the sum of the pixels

within rectangle D in Figure 4.3.b can be computed as:ii(4) + ii(1) − ii(2) − ii(3)

. Clearly the difference between two rectangular sums can becomputed in eight refer-

ences. Since the two rectangle features defined above involve adjacent rectangular sums

they can be computed in six array references, eight in the case of the three-rectangle

features, and nine for four-rectangle features.

4.3 Database

Our database contains 180 training examples recorded in thekeck lab [50] using 25

subjects, 2 bag types (backpack and suitcase). These examples are generated from se-

quences recorded using two cameras. We divided the dataset into into two subsets, the

backpack dataset that contains100 training examples and the suitcase dataset that con-

tains80 training examples. The combined dataset is the union of these two sets. We

assume the default walking direction is fronto-parallel from right to left with possible

small variations in the view angles. We have no restriction about how the subjects are

carrying the bags. Figure 4.4 shows examples from the backpack dataset where subjects

are carrying the backpack either on both shoulders or on onlyone shoulder. Figure 4.5

shows examples from the suitcase dataset where subjects areholding their bags with the

hand facing the camera or the other hand. Both figures also show slightly different view

angles.

We performed background subtraction for all data using the codebook BGS method

67

(a)

(b)

Figure 4.3: (a) The integral image at location (x; y) contains the sum of the pixels above

and to the left of (x; y), inclusive. (b) The sum of the pixels within rectangle D is

computed as:ii(4) + ii(1) − ii(2) − ii(3)

68

Figure 4.4: Examples from Backpack Dataset Showing Different Ways of Holding the

Backpack

69

Figure 4.5: Examples from Suitcase Dataset Showing Different Ways of Holding the

Suitcase

described in [51]. The frames in each sequence represent an integral number of walking

cycles (one or two walking cycle depending on the available data). We applied the

preprocessing described in section 4.4 to generate templates of size64 × 48 pixels.

4.4 Preprocessing

The purpose of the preprocessing step is to construct a template for each frame sequence

that captures its features in both space and time. In this step, for each sequence, we use

the codebook background subtraction method [51] to extractthe silhouettes of the per-

70

son in all frames. To construct a template of a predefined sizeH × W , we resize all

the silhouettes to that size, align them to the silhouettes’major axis and then superim-

pose these resized and aligned silhouettes to obtain the template. To resize a silhouette

whose bounding box size ish × w pixels to the predefined template size ofH × W

pixels, we rescale the height to H pixels and maintaining theaspect ratioh : w we cal-

culate the scaling factor for the width. For each resized silhouette of heightH and width

(H/h) × w, we calculate a major axis. We take the vertical line that passes through

the median of the silhouette pixels as this major axis. Figure 4.6.a and 4.6.b show the

background subtraction results for two sequences;the firstsequence is for a person car-

rying a backpack and the second sequence is for the same person without the backpack.

Figures 4.6.c and 4.6.d show the constructed templates for these sequences.

4.5 First Approach: Direct Classification of Silhouettes

In this approach, we classify the silhouettes of a given person’s instance into two classes:

person is carrying an object and person is not carrying an object. An instance of a person

is represented by a set of frames captured at a given time by a given camera. We apply

this approach in the framework of the event modeling and recognition system. The GUI

of the system is used to mark regions in the scene, and the system is tasked to detect

whether people accessing those regions are carrying an object. A person entering this

area is tracked until he exits the area. We approximately align the detected silhouettes of

the person and then generate features describing the aligned silhouette, as described in

Section 4.6. The features in this case are an occupancy countmap, ones’ maximum run

length map and zeros’ maximum run length map. From the generated maps, we create

the feature pool to be used by the classifiers.

71

(a)

(b)

(c) (d)

Figure 4.6: (a) Some frames of a sequence of person carrying abackpack with BGS

results (b) Some frames of a sequence of person not carrying abackpack with BGS

results (c) Template for sequence a (d) Template for sequence b

72

Backpack

Suitcase

Occupancy Count
Map

Ones’ Maximum
Run Length Map

Zeros’ Maximum
Run Length Map

Figure 4.7: Feature Maps for First Approach

4.5.1 Features for Classifiers

Figure 4.7 shows the three feature maps used in this approach.

Occupancy Count Map

The first feature map is the occupancy count map, where the value of aligned pixel (x,y)

represents the ratio between the number of frames where thispixel is foreground to the

total number of frames.

OCs(x, y) =

∑

i FGi(x, y)

Ns

(4.8)

wheres denotes the template name,Ns is the total number of frames in templates and

FGi(x, y) =











1; if (x, y)is foreground in frame i

0; otherwise
(4.9)

73

Ones’ Maximum Run Length Map

For each pixel in the aligned silhouette, we compute the maximum run length of ones.

Zeros’ Maximum Run Length Map

For each pixel in the aligned silhouette, we compute the maximum run length of zeros.

4.5.2 The Feature Pool

We create three feature maps for every instance of the person. Instead of using the values

of these maps directly by the classifier, we divide each map into overlapping blocks of

different sizes and different aspect ratios. The features for each block are the averages

over these blocks. To speed up the computation of these rectangle features, we use the

integral image representation proposed by [49] and described in section 4.2.3.

For each of the three feature maps, we compute the corresponding integral image.

We use these integral images to compute features for different blocks.

To generate the feature vector for each training example, assuming template size

48x64, we used blocks of sizes ranging from8 × 8 to 32 × 32, aspect ratios of1 : 1,

1 : 2 and2 : 1 and step sizes of 4 and 8. This results in 915 blocks for each map.

4.5.3 Experiments

In this section, we have three test configurations: the backpack test, the suitcase test, and

the combined backpack-suitcase test. We start by evaluating the performance of the sup-

port vector machine classifier on the carried object detection on each test configuration

using two different sets of features:

74

• Features from the occupancy count map only; we call the classifier in this case

OC-classifier.

• Features from the three feature maps; we call the classifier in this caseExtended-

OC-classifier..

Following that, we evaluate the performance of each classifier by performing feature

selection through AdaBoost followed by the support vector machine classifier. We also

discuss the best features selected by the AdaBoost feature selector.

We used 5-fold cross-validation to estimate the generalization error of the classi-

fier [52]. In a k-fold cross-validation, the data set is divided intok subsets of (ap-

proximately) equal size. The classifier is trainedk times, each time leaving out one

of the subsets from training, but using only the omitted subset to compute the error

criterion [52].

Support Vector Machine Classifiers

The results for the OC-Classifier and the Extended-OC-Classifier using support vector

machines only are summarized in Table 4.5.3.

As shown from this table, the performance of both classifiersis significantly better

for the suitcase case compared to the backpack case. This canbe explained as follows.

For the backpack case, the subject can hold the backpack in different ways, i.e. on one

shoulder: near or away from the camera, or on both shoulders,the size of the backpack

blob varies. This also occurs due to the slightly different view angle. For example, in

Figure 4.8, the number of the pixels occupied by the backpackin Example 1 is much

less than the case of Example 2. We can note that, for Example 1, it is difficult to

distinguish between the person with or without the backpack.

75

Backpack Suitcase Combined

OC-Classifier 82% 93% 88%

Extended-OC-Classifier 85% 90% 89%

Table 4.1: SVM Recognition Rates on Training Datasets for OC-Classifier and

Extended-OC-Classifier.

The suitcase classification problem is the opposite of the backpack classification

problem: Again, in the suitcase case, the subject can hold the suitcase in different ways,

i.e. near or away from the camera. The shape of the suitcase can also change due to the

variations of the view angle. Figure 4.9 shows two examples from the suitcase dataset

with the occupancy count maps representing the person with and without the suitcase.

The suitcase position is clear, regardless of the position of the suitcase relative to the

camera or person.

On the other hand, there is a slight change in the performanceof the OC-Classifier

compared to the Extended-OC-Classifier. Using features from the ones’ and zeros’ max-

imum run length maps enhances the performance of the OC-classifier by 3% in the case

of the backpack and worsens the performance of the OC-classifier by 3% in the case of

the suitcase.

Feature Selection Classifiers

Table 4.5.3 summarize the results for selecting the best features using an AdaBoost

classifier and applying a support vector machine classifier on the selected features. The

table shows that the feature selection classifier significantly enhances the performance

over the plain SVM classifier. The enhancement can be up to 9% as in the backpack test

configuration.

76

Example 1 Example 2

Bag No Bag Bag No Bag

Figure 4.8: Examples from the backpack dataset with the occupancy maps

Example 1 Example 2

Bag No Bag Bag No Bag

Figure 4.9: Examples from the suitcase dataset with the occupancy maps

77

Backpack Suitcase Combined

OC-Classifier 90% 97% 93%

Extended-OC-Classifier 96% 93% 96%

Table 4.2: AdaBoost&SVM Recognition Rates on Training Datasets for OC-Classifier

and Extended-OC-Classifier.

Backpack Suitcase Combined

Number of features 58 1 128

Table 4.3: Number of Features Selected by AdaBoost for OC-Classifier.

Moreover, tables 4.5.3 and 4.5.3 show that the number of selected features is much

less than the original number of features (915 for OC-Classifier and 2745 for Extended-

OC-Classifier). The feature selection classifier reduces the number of features by more

than an order of magnitude for the backpack and combined testconfigurations and se-

lects only one feature for the suitcase test configuration corresponding to the location of

the suitcase.

Figure 4.10 shows the location of the best selected featuresfor the backpack and

the suitcase test configurations for the OC-classifier. For the suitcase, the feature corre-

sponding to the location of the suitcase is the best feature selected by AdaBoost.

4.6 Second Approach: Human Appearance Change De-

tection

We apply this approach in the framework of the event modelingand recognition system.

The GUI of the system is used to mark critical regions in the scene (e.g. regions around

78

Backpack Suitcase Combined

OC 27 1 44

1s run’ 6 0 27

0s run’ 10 0 43

Total Number 43 1 114

Table 4.4: Number of Features Selected by AdaBoost for Extended-OC-Classifier.

Figure 4.10: The OC-Classifier’s best selected features forthe (a) backpack test config-

uration (b) suitcase test configuration

79

trash bins, pillars or building entrances), and the system is tasked to detect significant

appearance changes of people accessing those regions. To detect changes in a person’s

appearance, we track the person from the moment he enters thecritical region and back

in time to obtain a video sequence, which we will refer to as the ‘Before’ sequence. We

also track the person from his exit from the critical region and forward to obtain a video

sequence, which we will refer to as the ‘After’ sequence.

For each instance of the person, we approximately align the frames and then gen-

erate features that captures the shape and color information of the person’s silhouette,

as described in Section . The features in this case are an occupancy map and a color

codebook (based on a vector quantization of the set of colorsand frequencies) at each

aligned pixel. To capture differences in shape and color between the ‘Before’ and ‘After’

sequences, we generate three maps, namely the occupancy difference map, the code-

word frequency difference map and the histogram intersection map. Finally, from the

generated maps, we create the feature pool to be used by the classifier.

4.6.1 Features for Classifiers

Occupancy Difference Map

To capture changes in the shape between the ‘Before’ and the ‘After’ sequence, we

compute the occupancy difference map as the difference between the occupancy map

representing the ‘Before’ sequence and the occupancy map representing the ‘After’ se-

quence.

OCDiff(x, y) = OCBefore(x, y) − OCAfter(x, y) (4.10)

The top row of figure 4.11 shows the ‘Before’, the ‘After’ and the difference oc-

cupancy maps of a person carrying a backpack in the ‘Before’ sequence and not in the

80

Suitcase

Backpack

Before After Difference

Figure 4.11: ‘Before’, ‘After’ and difference occupancy maps for (a) a backpack exam-

ple ,(b) a suitcase example

‘After’ sequence. The bottom row of figure 4.11 shows the samefor the suitcase luggage

type. As can be seen in these two examples, dropping the bag leads to large change in

the person’s appearance that appears as a white (or black) blob in the difference map.

Codeword Frequency Difference Map

For each aligned pixel(x, y), we compute a codeword frequency - the average number

of codewords per occurrence.

CCs(x, y) =
#codewordss(x, y)

OCs(x, y)
(4.11)

wheres denotes the template name,#codewordss is the number of codewords in the

codebook of pixel(x, y) andOCs(x, y) is the occupancy map value at pixel(x, y).

One way to capture changes in the color between the ‘Before’ and the ‘After’ se-

81

Suitcase

Backpack

Before After Difference

Figure 4.12: (‘Before’, ‘After’ and difference codeword frequency maps for (a) a back-

pack example ,(b) a suitcase example

quence is to compute the codeword frequency difference map as the difference between

the codeword frequency map representing the ‘Before’ sequence and the codeword fre-

quency map representing the ‘After’ sequence.

CCDiff(x, y) = CCBefore(x, y) − CCAfter(x, y) (4.12)

The top row of figure 4.13 shows the ‘Before’, the ‘After’ and the difference code-

word frequency map of a person carrying a backpack in the ‘Before’ sequence and not

in the ‘After’ sequence. The bottom row of figure 4.13 shows the same for the suitcase

luggage type. As can be seen in these two examples, dropping the bag leads to a large

change in the person’s appearance that appears in the difference map.

82

Figure 4.13: Histogram Intersection for backpack and suitcase examples

Histogram Intersection Map

Another way to represent the color changes between two templates is to measure the

similarity between the codebooks representing corresponding pixels in the two tem-

plates. We use the color histogram intersection as a measureof similarity between these

two codebooks. The color histogram intersection was proposed for color image retrieval

in [53]. The intersection of histograms h and g is given by:

d(h, g) =

∑

A

∑

B

∑

C min(h(a, b, c), g(a, b, c))

min(|h|, |g|)
(4.13)

where| h | and| g | gives the magnitude of each histogram, which is equal to the

occurrences of this pixel.

4.6.2 The Feature Pool

We have created three maps that describe the differences between two different image

sequences of the same person. Instead of using the values of these maps directly by the

83

classifier, we divide the image into overlapping blocks of different sizes and different

aspect ratios. The features for each block are the averages over these blocks. To speed

up the computation of these rectangle features, we use the integral image representation

proposed by [49] and described in section 4.2.3.

For each of the three feature maps, we compute the corresponding integral image.

We use these integral images to compute features for different blocks.

To generate the feature vector for each training example, assuming template size

48x64, we used blocks of sizes ranging from8×8 to 32×32, aspect ratios of1 : 1, 1 : 2

and2 : 1 and step sizes of 4 and 8. This results in 915 blocks. The features for each

block are the averages taken over this block in the three feature maps computed using

the integral images. The feature vector of each training example is the concatenation of

the features of all blocks. This results in a feature vector of length 2745.

4.6.3 Experiments

In this section, we have three test configurations: the backpack test, the suitcase test,

and the combined backpack-suitcase test. We start by evaluating the performance of the

support vector machine classifier on the human appearance change detection on each

test configuration. Following that, we evaluate the performance of the classifier that

performs feature selection through AdaBoost followed by the support vector machine

classifier. We also discuss the best features selected by theAdaBoost feature selector.

We used 5-fold cross-validation to estimate the generalization error of the classi-

fier [52]. In a k-fold cross-validation, the data set is divided intok subsets of (ap-

proximately) equal size. The classifier is trainedk times, each time leaving out one

of the subsets from training, but using only the omitted subset to compute the error

criterion [52].

84

Support Vector Machine Classifier

The results for the support vector machine classifier are summarized in Table 4.6.3. As

shown from the table, the performance of the SVM classifier issignificantly better for

the backpack case compared to the suitcase case. This is due to a number of factors:

(1) the backpack is always visible in all frames from at leastone side-view camera.

This is not true for the suitcase where the suitcase may be occluded behind the person

in all frames in the side-view. (2) The location of the backpack behind the person’s

back makes its blob easily detectable from the person’s bodyblob. For the suitcase, its

location overlaps with the person’s body and thus is harder to distinguish.

Feature Selection Classifier

Table 4.6.3 summarizes the results for selecting the best features using an AdaBoost

classifier and applying a support vector machine classifier on the selected features. The

table shows that the feature selection classifier significantly enhances the performance

over the plain SVM classifier. The enhancement can be up to 10%as in the suitcase

test configuration. Moreover, the table shows that the number of selected features is

much less than the original number of features (2745). The feature selection classifier

reduces the number of features by more than an order of magnitude for the suitcase

and combined test configurations and by more than two order ofmagnitudes for the

backpack test configuration. The next subsection discussesthe selected features for the

different test configurations.

Best Features for Human Appearance Change Detection

Table 4.6.3 summarizes the distribution of the best selected features among the three

main features: OCDiff, CC Diff, and Histogram Intersection. For the backpack test

85

Backpack Suitcase Combined

SVM 92% 78% 88%

AdaBoost and SVM 96% 88% 90%

Table 4.5: Recognition Rates on Training Datasets.

Backpack Suitcase Combined

OC_Diff 0 9 28

CC_Diff 0 8 22

Histogram 9 26 50

Intersection

Total Number 9 43 100

Table 4.6: Number of Features Selected by AdaBoost.

configuration, all of the nine best features belong to the Histogram Intersection. We

believe that this is because the backpack case is easily classified due to the reasons

described in the previous section. As the classification problem becomes harder, as in the

suitcase and combined test configurations, the features that depend on the OCDiff and

CC Diff features becomes more important. Moreover, the numberof selected features

increases.

Figure 4.14 shows the location of the best selected featuresfor the backpack and the

suitcase test configurations. It is interesting to see that for the backpack case, one of the

best features is related to the person’s head location. A person carrying a backpack will

change his head position to accommodate the weight of the backpack. As expected, the

features corresponding to the location of the backpack and the suitcase are among the

best features.

86

50 100 150 200

50

100

150

200

250

50 100 150 200

50

100

150

200

250

Figure 4.14: (a) Best selected features for the backpack test configuration (b) Best se-

lected features for the suitcase test configuration

4.6.4 Effect of Changes in Camera Viewpoints on Performance

In order to evaluate the performance of the change detectionmethod across large

changes in camera viewpoint, we used the Keck multi-perspective lab [50] to capture

sequences of walking people from multiple cameras at the same time. Assuming the

horizontal direction going from right to left is the zero direction, Figure 4.15.a shows a

subject carrying a backpack captured from angles0, 15, 30, 45,−15,−30. Figure 4.15.b

shows a subject carrying a suitcase captured from angles0, 15, 30, 45,−15,−30,−60.

Using ‘Before’ and ‘After’ sequences captured from the sameview, we tested our clas-

sifier trained on the dataset described in section 4.5.1, to detect a package drop/pickup

in each of the above directions.

The package drop/pickup was detected in the following directions: 0, 15, 30,−15

for the backpack,0, 15, 30,−15 for the suitcase, but not for the remaining directions.

87

An intuitive explanation for this is the following. Most of the cases used in training

the classifiers are for near-fronto-parallel views. So, fora small change in the view

angle (between -15 and 30), the location of some features used by the classifiers does

not change and hence the results are good. On the other hand, big changes in the view

angles results in changes in the location of the backpack or suitcase with respect to the

subject’s silhouette and hence not detected by the classifiers.

Adding the view angle as a new feature to the classifiers, and training on a larger

dataset containing different views of the subjects would make the approach scalable to

handle larger changes in the view angle of the subject.

4.7 Discussion

In this chapter, we have presented two approaches to the problem of carried object de-

tection.

Comparing the results for both approaches, we can see that the same performance

is obtained for Extended-OC-classifier and the change detection classifier- both of them

outperform the OC-classifier for the backpack case by 6%. On the other hand, the OC-

classifier is outperforming the Extended-OC-classifier by 4% and the change detection

classifier by 9% for the suitcase bag type.

4.7.1 Backpack classification

Since the subject can hold the backpack in different ways, i.e. on one shoulder: near or

away from the camera, or on both shoulders, the size of the backpack blob varies. This

also occurs due to the slightly different view angle. For example, in Figure 4.16, the

number of the pixels occupied by the backpack in Example 1 is much less than the case

88

(a) Backpack

(b) Suitcase

Figure 4.15: Different viewpoints of a subject carrying a backpack and a suitcase

89

of Example 2.

We can note that, for Example 1, it is difficult to distinguishbetween the person with

or without the backpack, corresponding to the Before and After sequences respectively.

The backpack presence is more visible using the difference features. In other words,

using the difference helps reduce the noise introduced by the person’s body. This makes

the job of the change detection classifier easier than the OC-classifier. In addition, the

change detection classifier uses more features in the classification process, i.e. histogram

intersection and the codeword count map. This further explains the better performance

of the change detection classifier compared to the OC-classifier. The change detection

classifier uses 9 features, all from the histogram intersection map. Although the feature

pool contains all the features used by the OC-classifier, none of them were selected by

the AdaBoost as important features for the change detectionclassifier.

On the other hand, the Extended-OC-classifier can reach the same performance of

the change detection classifier by using about 40% of its features from the ones’ and

zeros’ maximum run length maps. We believe that the Extended-OC-classifier reaches

this high recognition rate since for the laboratory data thebackground subtraction re-

sults are usually good and hence features depending on pixelstatistics can be computed

efficiently. If the background subtraction results are noisy, these pixel statistics will not

be meaningful.

4.7.2 Suitcase classification

The case here is the opposite of the backpack classification problem: Again, in the suit-

case case, the subject can hold the suitcase in different ways, i.e. near or away from

the camera. The shape of the suitcase can also change due to the variations of the view

angle. Figure 4.17 shows two examples from the suitcase dataset with the occupancy

90

Before After Difference

Example 1 Example 2

Before After Difference

The OC-Classifier and Extended-OC-Classifier fail to
detect the change.

The change detection classifier has detected the
change.

All classifiers can detect the change.

Figure 4.16: Examples from the backpack dataset

91

count maps representing the ’Before’ and the ’After’ sequences and the difference oc-

cupancy map.

The person’s legs usually interfere with a large number of pixels of the suitcase. This

makes large parts of the suitcase treated as body parts in thecase of the change detection

classifier, as shown in Figure 4.17 in the Difference subfigures.

Since both the OC-classifier and the Extended-OC-classifieruse the same selected

feature from the occupancy count map and the OC-classifier outperforms the Extended-

OC-classifier, we will compare only the OC-classifier to the change detection classifier.

In the case of the OC-classifier, the suitcase position is clear, regardless of the position

of the suitcase relative to the camera or person. The suitcase presence is more visible

using the OC-classifier features. This makes the job of the OC-classifier easier than

the change detection classifier. Actually, it use only one feature, which captures the

position of the suitcase, to achieve its higher accuracy. Onthe other hand, the change

detection classifier uses 43 features from the three featuremaps, 9 of them is from the

OC difference map. Even with the use of these 9 features, the noise introduced by the

interference of the person’s legs cannot be handled by the change detection classifier.

92

Before After Difference Before After Difference

OC-Classifier and Extended-OC-Classifier have
detected the change.

The change detection classifier fails to detect the
change.

Example 1 Example 2

All classifiers can detect the change.

Figure 4.17: Examples from the suitcase dataset

93

Chapter 5

Experiments II

In this chapter, we test the carried object detection methods explained in Chapter 4 on

videos captured at the Munich airport1. These videos were captured during the day

where many people are moving around the scene and some scenarios are staged for

event detection purposes. Figure 5.1 shows one scene taken by 2 cameras where we

applied our analysis. The trash bin marked in the scene is used by subjects to drop

their bags inside or behind, and then these bags are picked upby their owners or other

persons.

We applied our analysis in the framework of the event modeling and detection sys-

tem. Section 5.1 explains the Petri net event model for the left package detection prob-

lem. The alignment procedure used to solve some of the segmentation errors is discussed

in section 5.3. We report results for the first approach in section 5.4 and the results for

the second approach in section 5.5. We discuss these resultsand conclude in section 5.6.

1We thank Jan Neumann from Siemens for providing us with thesevideos

94

(a)

(b)

Figure 5.1: (a)First camera view. (b)Second camera view. Airport Scene Monitored by

2 Cameras

95

Enters_ROI(p,r)

Build_Model(p,’Before’)

Build_Model(p,’After’)

Exits_ROI(p,r)

Compare_Models

Figure 5.2: Petri Net for the Event ’AccessROI’

5.1 Event Modeling

In our example application, we mark the region around the trash bin as a region of inter-

est. Then we define the event templateAccess ROI(p, r) from the two primitive events

P1 = Enters ROI(p, r) andP2 = Leaves ROI(p, r) joined by the temporal relation

P1BeforeP2, wherep andr are the person and the region variables that are bound at run

time. Figure 5.2 shows the Petri net representation of the eventAccess ROI(p, r). As

can be seen in that figure, detecting the primitiveEnters ROI initiates the process of

building a ’Before’ template of the subject entering the ROIwhile detecting the primitive

Leaves ROI initiates the process of building an ‘After’ template of thesubject leaving

the ROI. Once both templates are built, we apply our methods (either classify each tem-

plate independently by the direct classification methods orcombine both templates and

classify the resulting template by the change detection method) to detect whether the

subject has abandoned an object in the ROI, acquired an existing one or left with no

change.

96

5.2 An Example

We applied our carried object detection methods on many airport examples. We used the

event modeling and detection system to detect people entering and leaving the marked

ROI around the trash bin. Figure 5.3.a shows a frame from the first camera, where a

person is detected entering the ROI and 5.3.b shows the same frame from the second

camera. The person then drops the his backpack in the trash can and leaves the ROI.

The tracking results are overlaid on these frames to show theperson trajectories before

and after accessing the ROI.

One problem is as figures 5.3.c and 5.3.d show, the segmentation results of the person

before entering the ROI and after leaving contains many errors. As shown from these

figures, in some frames the complete silhouette of the personis detected while in other

frames some parts are not detected due to the complexity of the scene and the similarity

between the clothes colors and the floor tiles colors. We apply an alignment procedure

to align the detected parts in a fixed size template to reflect their actual position with

respect to the whole body, as discussed in section 5.3.

5.3 Alignment Procedure

In the training data captured at the laboratory, the scene background was simply empty

and only one subject is moving through the scene. This leads to good background sub-

traction results and simple tracking and hence good silhouettes can be obtained. In

contrast to this simple setting, for the airport data, the background is more complex,

there are no frames of the empty scene to initialize a background model, there are many

people walking around the scene, and other conditions leading to bad segmentation and

inaccurate tracking. Hence, the assumption that good silhouettes are available for ap-

97

(a)
(b)

(e)

(c) (d)

Figure 5.3: Airport Example

98

pearance change detection is not typically valid. Figure 5.4.a shows examples of bad

segmentation where only parts of the silhouette are detected.

Figure 5.5 shows the procedure we use to align the detected parts of the silhouettes

to reflect their actual position with respect to the completebody. Here we summarize

the procedure. The BGS is applied to select foreground pixels on each frame. Blobs

are extracted by a connected component analysis and trackedby computing overlapping

bounding boxes.

From this tracking data, we compute the maximum heightH max and maximum

width W max of all tracked silhouette. We generate a template with height H max and

width W max. We also estimate the walking direction of the subject as thedirection

of the subject trajectory detected by the tracking module. Using this computed walking

direction, each tracked silhouette is positioned in the template image to reflect the actual

position of the detected parts of the human body with respectto the whole body. Figure

5.4.b shows the silhouettes in 5.4.a after this alignment.

5.4 First Approach: Direct Classification of Silhouettes

We tested the direct classification of silhouettes on subjects from the airport video. Us-

ing the event detection GUI, we marked two regions. The first is around the trash bin,

as discussed in section 5.2. The second is a randomly selected polygon on the empty

space of the airport floor. Detecting15 people entering and leaving the specified ROIs,

we applied our analysis to detect whether each subject is carrying a bag or nor before

he enters the ROI and after leaving it to identify people dropping or picking objects.

Here, we show the results for both the OC-classifier and the Extended-OC-classifier and

discuss these results. For each classifier, we show the results in two ways. First, we

99

alignment.bmp

Figure 5.4: (a) Sample Blobs Tracked by Blob Tracking Module(b) Aligned Blobs to

be Classified

BGS
Connected
Component

Analysis
Tracking Alignment P(good | silhouette)Original

Frames
Ranking Selected

Silhouettes

Figure 5.5: Alignment Procedure

100

show the classifier performance in classifying each subjectinstance as carrying a bag

or not. Second, we will show the results in terms of detectingthe change in the subject

resulting from dropping or picking up a bag while accessing the ROI.

Tables 5.4 and 5.4 show the recognition rates for the ‘Bag/NoBag’ case for both

classifiers. The performance of both classifiers is comparable. Both classifiers detect

only 5 out of 18 cases where the subject has a bag (backpack or suitcase)- (i.e. the

number of true positives is 5 and false positives is 13). Bothclassifiers also classify

almost all ‘No Bag’ cases correctly. For the OC-Classifier, the recognition rate is 57%.

For the Extended-OC-Classifier, the recognition rate is 53%. Comparing these results

to the laboratory data results in Chapter 4, we can see the great drop in the recognition

rates. This can be explained by the bad segmentation resultsobtained from the airport

data compared to the good ones obtained from the laboratory data.

Bag No Bag

Bag 5 13

Nobag 0 12

Table 5.1: Recognition Results for Airport Dataset for OC-Classifier - Format 1.

Bag No Bag

Bag 5 13

Nobag 1 11

Table 5.2: Recognition Results for Airport Dataset for Extended-OC-Classifier - Format

1.

101

No. of Correctly Incorrectly

cases Classified Classified

Nobag-Nobag 4 4 0

Bag-Bag 7 6 1

Bag-Nobag 3 1 2

Nobag-Bag 1 0 1

Table 5.3: Recognition Results for Airport Dataset for OC-Classifier - Format 2.

Tables 5.4 and 5.4 show the recognition rates for the ‘Change/No Change’ case for

both classifiers. For the OC-Classifier, the overall recognition rate is 73%. When there

is no change, 10 out of 11 cases are correctly classified, recognition rate is 91%. When

there is a change, only 1 out of 4 cases is correctly classified, recognition rate is 25%.

For the Extended-OC-Classifier, the overall recognition rate is 66%. When there is no

change, 9 out of 11 cases are correctly classified, recognition rate is 82%. When there is

a change, only 1 out of 4 cases is correctly classified, recognition rate is 25%. Although

the recognition rates is not good enough, we have found that some cases are classified

correctly but for the wrong reason. Many cases where the subject is carrying a bag in

the before and the after sequences, the bag is not detected inboth sequences - so the

classifier decision is that there is no change.

5.5 Second Approach: Human Appearance Change De-

tection

For the example in section 5.2, we can see that the walking direction of the person is not

the same in the before and the after sequences. In the first camera, the person is walking

102

No. of Correctly Incorrectly

cases Classified Classified

Nobag-Nobag 4 3 1

Bag-Bag 7 6 1

Bag-Nobag 3 1 2

Nobag-Bag 1 0 1

Table 5.4: Recognition Results for Airport Dataset for Extended-OC-Classifier - Format

2.

in a near-diagonal direction in the ‘Before’ sequence and heis walking fronto-parallel

in the after sequence. In the second camera, the person is walking fronto-parallel in

both the ‘Before’ and the ‘After’ sequences. To apply the appearance change detection

procedure, we need both sequences to represent a similar view, preferably, the fronto-

parallel view. We discuss the view selection problem in section5.5.1.

Assuming the tracker is able to track the person for large number of frames, we need

to select around20 good silhouettes to apply the appearance change detection procedure.

We discuss the frame selection problem in section 5.5.2.

5.5.1 View Selection Problem

The performance of any image based appearance analysis is inherently view-dependent.

Since we are detecting appearance changes resulting from dropping or picking objects

like a backpack or a suitcase, these objects are most visiblewhen the person is walking

fronto-parallel to the camera plane. Detecting these appearance changes also compares

the ‘Before’ sequence and the ‘After’ sequence and tests whether the difference between

them is significant or not. For this comparisons to be meaningful, the ‘Before’ sequence

103

and the ‘After’ sequence should represent the same or almostthe same view of the

person, preferably fronto-parallel views.

We achieve this view-selection in the multi-camera system by dynamically selecting

the camera (or cameras) that capture the subject from the most similar views. For each

camera, and for both the ‘Before’ and the ‘After’ sequences,we estimate the walking

direction of the subject as the direction of the subject trajectory detected by the tracking

module. To perform the comparisons required to detect changes in the appearance,

we compare only the ‘Before’ and the ‘After’ sequences with the most similar walking

direction.

For the example in section 4.2, the person is walking in a near-diagonal direction

in the ‘Before’ sequence and fronto-parallel in the after sequence, for the first camera.

In the second camera, the person is walking fronto-parallelin both the ‘Before’ and

the ‘After’ sequences. Thus, we compared the ‘Before’ sequence captured by the sec-

ond camera and the ‘After’ sequence captured by both cameras. The change detection

module has detected the backpack drop in both cases.

5.5.2 Frame Selection Problem

Assuming we have applied the alignment procedure discussedin section 5.3 to all sil-

houettes produced by the tracker, then we need to select a small number of these frames

where the person’s silhouette is as complete as possible to use these frames for the

change detection procedure. For each aligned silhouette, aprobability measure that es-

timates how good the silhouette represents a good one is calculated. This measure is

calculated as follows. We build a database of about 600 silhouettes extracted from the

airport data. Each silhouette is labeled manually as good orbad. For each silhouette,

we divide the silhouette into k horizontal strips of equal length and compute a feature

104

vector of length k, where the value of thejth feature is the percentage of foreground

pixels in thejth horizontal strip. We train a classifier on these two classes.Then for

each test silhouette, the classifier outputs the most probable class for that silhouette.

For each class, the classifier also estimates the posterior probabilities that this class was

the source of that silhouette, i.e.p(good|silhouette) andp(bad|silhouette). We use

p(good|silhouette) as the probability measure on which we rank the silhouettes.Then

we select the top k silhouette to be used for change detectionanalysis.

5.5.3 Results

In section 5.2, we provided an example from the airport data and discussed the view

selection problem and the frame selection problem. For frame selection, we applied the

alignment process described in section 5.3 to both the ‘Before’ and ‘After’ sequences,

ranked the frames and selected the top 20 frames in each sequence to perform the anal-

ysis for appearance change detection. Figures 5.3.e and 5.3.f shows the silhouettes in

figures 5.3.c (from the second camera) and 5.3.d (from the first camera) after applying

this alignment process. We compared the ‘Before’ sequence captured by the second

camera and the ‘After’ sequence captured by both cameras. Generating the features

and providing them to the SVM classifier, the change detection module has detected

the backpack drop in both cases. We tested the appearance change detection on other

subjects from the airport video. Using the event detection GUI, we marked two regions.

The first is around the trash bin, as in the previous example. The second is a randomly

selected polygon on the empty space of the airport floor. Detecting 15 people entering

and leaving the specified ROIs, we applied the same analysis to compare the appearance

of each person before and after accessing the ROI to identifypeople dropping or picking

objects. Figure 5.6 shows a drop example and a pickup example. Table 5.5.3 summa-

105

No. of Correctly Incorrectly

cases Classified Classified

Nobag-Nobag 4 4 0

Bag-Bag 7 7 0

Bag-Nobag 3 2 1

Nobag-Bag 1 1 0

Table 5.5: Recognition Results for Airport Dataset for Change Detection Classifier.

rizes the classification results. The SVM classifier classifies all cases where there is no

change (Nobag-Nobag or Bag-Bag) correctly. The classifier also detects 3 out of 4 cases

where a change takes place (Bag-Nobag or Nobag-Bag). The only change that was not

detected by the classifier was due to very bad segmentation results.

5.6 Discussion

Moving to real world video required addressing problems such as bad segmented sil-

houettes. Our frame alignment process tries to reduce thesebad results.

Using these real world data, we have compared the performance of the first approach,

where we classify features computed using silhouettes of a given instance directly to de-

termine if the person is carrying a bag or not to the performance of the second approach,

where we classify features computed using silhouettes of 2 instances of the same person

to determine if there is a significant change in the person’s appearance due to bag drop

or pickup or not. It has been shown that the change detection classifier outperforms

both the OC-Classifier and the Extended-OC-Classifier. Thiscan be explained by the

robustness of the change detection classifier to segmentation errors. Using the difference

106

‘Before’ sequence ‘Before’ sequence

‘After’ sequence ‘After’ sequence

Feature Maps Feature Maps

‘Drop’ Example ‘Pickup’ Example

Figure 5.6: Examples from Airport Dataset

107

(a) Nobag - Nobag

(b) Bag - Bag

(c) Bag - Nobag

(d) Nobag - Bag

Figure 5.7: Feature Maps from Airport Dataset

108

removes the noise introduced by the segmentation errors.

109

Chapter 6

Conclusions and Future Work

6.1 Summary

The first part of the thesis describes a framework for modeling and recognition of events

from surveillance video. Our framework is based on deterministic inference using Petri

nets. Events are composed by combining primitive events andpreviously defined events

by spatial, temporal and logical relations. We described the system’s graphical user

interface (GUI) where such event models can be formulated. An automatic mapping

mechanism is devised to map each event structure into a set ofPetri net models that rep-

resent the components of the event. Lower-level video processing modules (background

subtraction, tracking, etc.) are used to detect the occurrence of primitive events. These

primitive events are then filtered by the Petri nets models torecognize composite events

of interest.

We have evaluated the performance of the system across different natural scenes to

detect events with increasing level of complexity ranging from primitive events involv-

ing one object to more complex events involving multiple objects and multiple logical

and temporal relations. In the first set of experiments, we have applied our system on a

110

dataset of video sequences provided as a part of ETISEO project. The length of these

sequences range from 800 frames to 3000 frames. In these sequences, required events to

be detected range from single primitives to simple sequences of two or three primitives.

In the second set of experiments, we applied our system on a longer video sequence

(25200 frames) to detect and recognize events and violations performed by pedestrians

and vehicles in a traffic intersection. Events in this case are more complex and include

multiple actors and multiple logical and temporal relations.

In the second part of the thesis, we have addressed the problem of detecting car-

ried objects. We have presented two machine learning approach to detect whether the

subject has an object at one time and not at another time. We applied both approaches

to the problem of left package detection. We trained SVM classifiers on a laboratory

database that contains 180 examples of people seen with and without two common ob-

jects, namely backpacks and suitcases. A recognition rate of 96% was obtained in the

case of backpacks,93% for suitcases and90% for the combined case. Using a boosting

technique, AdaBoost, to select the most discriminative features, we reduced the number

of features used by the SVM classifier to less than4% of the total original number of

features. We have also tested both approaches on videos captured at the Munich airport.

We plan to refine and extend our work in the following ways:

6.2 Directions for Future Work

6.2.1 Event Modeling and Recognition

• Since uncertainty is inherit in video data, we plan to extendour framework to

deal with these uncertainties. For Petri nets, there is a great deal of research

handling uncertainty in inference using them. Examples include fuzzy Petri nets,

111

possibilistic Petri nets and stochastic Petri nets. As probabilities are the most

intuitive and accepted measures of uncertainty, the same inference capabilities of

Bayesian networks can be applied to Petri nets.

• Extend our event detection framework to deal with multiple cameras simultane-

ously as multiple camera-based visual surveillance systems can be extremely help-

ful because the surveillance area is expanded and multiple view information can

overcome occlusion and reduce uncertainties .

6.2.2 Left Object Detection

• Since any human appearance analysis method is inherently view-dependent, we

need to extend our approach by extracting other features that are independent of

the camera view.

• Apply a similar classification approach to interpret a subject’s body movement,

e.g. to determine whether his movement in a critical region can be interpreted as

a drop or pickup action.

112

BIBLIOGRAPHY

[1] T. Starner, A.Pentland. Real-time American Sign Language Recognition from

Video Using Hidden Markov Models.Proceedings of International Symposium on

Computer Vision, pages 265 –270, November 1995.

[2] Nuria Oliver, Barbara Rosario and Alex Pentland. A Bayesian Computer Vision

System for Modeling Human Interactions.Proceedings of Intl. Conference on

Vision Systems ICVS99. Gran Canaria. Spain., January 1999.

[3] Ivanov, Y.A.; Bobick, A.F. Recognition of Visual Activities and Interactions by

Stochastic Parsing.IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 22:852–872, 2000.

[4] P. Remagnino, T. Tan, K. Baker. Agent Oriented Annotation in Model Based

Visual Surveillance.ICCV, 4-7 January 1998,Bombay, India, pages 857–862, Jan-

uary 1998.

[5] Somboon Hongeng, Ramakant Nevatia. Multi-Agent Event Recognition. ICCV,

pages 84–93, 2001.

[6] Nicolas Moenne-Loccoz, Francois Bremond, Monique Thonnat. Recurrent

Bayesian Network for the Recognition of Human Behaviors from Video. ICVS,

pages 68–77, 2003.

113

[7] Claudio S. Pinhanez, Aaron F. Bobick. Human Action Detection Using PNF Prop-

agation of Temporal Constraints.CVPR, January 1998.

[8] Nathanael Rota, Monique Thonnat. Activity Recognitionfrom Video Sequences

using Declarative Models.ECAI 2000, pages 673–680, 2000.

[9] Van-Thinh Vu, Francois Bremond, Monique Thonnat. Automatic Video Interpre-

tation: A Recognition Algorithm for Temporal Scenarios Based on Pre-compiled

Scenario Models.ICVS, pages 523–533, 2003.

[10] Charles Castel, Laurent Chaudron and Catherine Tessier. What Is Going On? A

High Level Interpretation of Sequences of Images.4th European conference on

computer vision, Workshop on conceptual descriptions fromimages, Cambridge

UK, 1996.

[11] J.L. Peterson. Petri Nets.ACM Computer Surveys, 9:223–252, 1977.

[12] C. L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem.Artificial Intelligence, 19:17–37, 1982.

[13] D.D. Burdescu, M. Brezovan. High Level Petri Nets and Rule Based Systems for

Discrete Event System Modelling.International Journal of Smart Engineering

System Design, 3:81–97, 2001.

[14] N. Bird, S. Atev, N. Caramelli, R. Martin, O. Masoud, andN. Papanikolopoulos.

Real time, online detection of abandoned objects in public areas.Proceedings 2006

IEEE International Conference on Robotics and Automation,2006, pages 3775 –

3780, 2006.

114

[15] G. L. Foresti, L. Marcenaro, and C. S. Regazzoni. Automatic detection and in-

dexing of video-event shots for surveillance applications. IEEE Transactions on

Multimedia 2002, 4(4):459–471, December 2002.

[16] Fengjun Lv, Xuefeng Song, Bo Wu, Vivek Kumar Singh, and Ramakant Nevatia.

Left-luggage detection using bayesian inference.Proceedings 9th IEEE Interna-

tional Workshop on PETS, New York, June 18, 2006, pages 83–90, 2006.

[17] M. Spengler and B. Schiele. Automatic detection and tracking of abandoned ob-

jects.Joint IEEE International Workshop on Visual Surveillance and Performance

Evaluation of Tracking and Surveillance 2003, 2003.

[18] D. Thirde, M. Borg, J. Ferryman, J.Aguilera, M. Kampel,and G. Fernandez. Multi-

camera tracking for visual surveillance applications.11th Computer Vision Winter

Workshop 2006, 2006.

[19] V.N. Vapnik. An overview of statistical learning theory. IEEE Transactions on

Neural Networks, 10(5):988– 999, 1999.

[20] R. E. Schapire. A brief introduction to boosting.IJCAI, pages 1401–1406, 1999.

[21] Hilary Buxton, Shaogang Gong. Visual Surveillance in aDynamic and Uncertain

World. Artificial Intelligence, 78(1-2):431–459, 1995.

[22] Stephen S. Intille, Aaron F. Bobick. A Framework for Recognizing Multi-Agent

Action from Visual Evidence.AAAI/IAAI, pages 518–525, 1999.

[23] Douglas Ayers, Rama Chellappa. Scenario Recognition from Video Using a Hier-

archy of Dynamic Belief Networks.ICPR, pages 1835–1838, 2000.

115

[24] J.F. Allen. Maintaining Knowledge about Temporal Intervals.Communications of

the ACM, 26(11):832–843, November 1983.

[25] Tadao Murata, Du Zhang. A Predicate-Transition Net Model for Parallel Interpre-

tation of Logic Programs.IEEE Transactions on Software Engineering, 14(4):481–

497, 1988.

[26] Hura, G.S. Representation and Processing of Rule-Based Expert System Using

Petri Nets: A Viable Framework .Proceedings of the 36th Midwest Symposium on

Circuits and Systems, 2:934 –937, 1993.

[27] Liwu Li. High-level Petri Net Model of Logic Program with Negation . IEEE

Transactions on Knowledge and Data Engineering, 6:382 –395, 1994.

[28] Murata, T.; Jaegeol Yim;. Petri net Methods for Reasoning in Real-Time Control

Systems. 1995 IEEE International Symposium on Circuits and Systems, 1:517

–520, 1995.

[29] P. Kemper. Transient Analysis of Superposed GSPNs.IEEE Transactions on

Software Engineering, 25:182 –193, March-April 1999.

[30] Lin, C.; Marinescu, D.C. Stochastic High-Level Petri Nets and Applications.IEEE

Transactions on Computers, 37:815 –825, July 1988.

[31] C.G. Looney. Fuzzy Petri Nets for Rule-Based Decisionmaking. IEEE Transac-

tions on Systems, Man and Cybernetics, 18:178 –183, Jan.-Feb. 1988.

[32] Shyi-Ming Chen; Jyh-Sheng Ke; Jin-Fu Chang. KnowledgeRepresentation Using

Fuzzy Petri Nets .IEEE Transactions on Knowledge and Data Engineering, 2:311

–319, September 1990.

116

[33] Konar, A.; Mandal, A.K. Uncertainty Management in Expert Systems Using Fuzzy

Petri Nets. IEEE Transactions on Knowledge and Data Engineering, 8:96 –105,

Febraury 1996.

[34] Scarpelli H., Gomide F., Yager R.R. Reasoning Algorithm for High-Level Fuzzy

Petri Nets.IEEE Transactions on Fuzzy Systems, 4:282 –294, August 1996.

[35] J. Cardoso, R. Valette and D. Dubois. Possibilistic Petri Nets . IEEE Transactions

on Systems, Man and Cybernetics B, pages 573 –582, October 1999.

[36] P. Muro-Medrano and J. Banares and J. Villarroel. Knowledge Representation-

Oriented Nets for Discrete Event System Applications.

[37] I. Haritaoglu, R. Cutler, D. Harwood, and L. S. Davis. Backpack: Detection of

people carrying objects using silhouettes.IEEE International Conference on Com-

puter Vision 1999, 1:102–107, 1999.

[38] C. Sacchi and C. S. Regazzoni. A distributed surveillance system for detection

of abandoned objects in unmanned railway environments.IEEE Transactions on

Vehicular Technology 2000, 49(5):2013–2026, September 2000.

[39] Jesus Martinez del Rincon, J. Elias Herrero-Jaraba, Jorge Raul Gomez, and Car-

los Orrite-Urunuela. Automatic left luggage detection andtracking using multi-

camera ukf.Proceedings 9th IEEE International Workshop on PETS, New York,

June 18, 2006, pages 59–66, 2006.

[40] Kevin Smith, Pedro Quelhas, and Daniel Gatica-Perez. Detecting abandoned lug-

gage items in a public space.Proceedings 9th IEEE International Workshop on

PETS, New York, June 18, 2006, pages 75–82, 2006.

117

[41] High-level Petri Nets - Concepts, Definitions and Graphical Notation.Final Draft

International Standard ISO/IEC 15909, October 2000.

[42] Abbas K. Zaidi. On Temporal Logic Programming Using Petri Nets. IEEE Trans-

actions on Systems, Man and Cybernetics A, 29(3):245 –254, May 1999.

[43] Egenhofer,M. J. and Herring, J. Categorizing Binary Topological Relationships

Between Regions, Lines, and Points in Geographic Databases. Technical Report,

Department of Surveying Engineering, University of Maine., 1991.

[44] W. Hu, T. Tan, L. Wang, and S. Maybank. A Survey on Visual Surveillance of Ob-

ject Motion and Behaviors.IEEE Transactions on Systems, Man, and Cybernetics,

Part C: Applications and Reviews, 34(3), August 2004.

[45] Fatih Porikli. Achieving real-time object detection and tracking under extreme

conditions.Journal of Real-Time Image Processing, 1(1):33–40, October 2006.

[46] Etiseo project. http://www.silogic.fr/etiseo/.

[47] A. Elgammal, R. Duraiswami, and L. S. Davis. Backgroundand Foreground Mod-

eling using Non-parametric Kernel Density Estimation for Visual Surveillance.

Proceedings of the IEEE, July 2002.

[48] B. Heiseley, P. Hoz, and T. Poggio. Face recognition with support vector ma-

chines:global versus component-based approach.International Conference on

Computer Vision, ICCV2001, 2001.

[49] P. Viola and M. Jones. Robust real-time object detection. International Journal of

Computer Vision, 1(2), 2002.

118

[50] E. Borovikov, R. Cutler, T. Horprasert, and L. Davis. Multi-perspective analysis of

human actions.Third International Workshop on Cooperative Distributed Vision,

1999.

[51] K. Kim, T.H. Chalidabhongse, D. Harwood, , and L. Davis.Background modeling

and subtraction by codebook construction.International Conference on Image

Processing, pages 3061– 3064, 2004.

[52] J.S.U. Hjorth.Computer Intensive Statistical Methods Validation, ModelSelection,

and Bootstrap. London: Chapman and Hall, 1994.

[53] M. J. Swain and D. H. Ballard. Color indexing.International Journal of Computer

Vision, 7(1), 1991.

119

