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Video surveillance is the process of monitoring the behasi@eople and objects
within public places, e.g. airports and traffic intersecsipby means of visual aids
(cameras) usually for safety and security purposes. Agttoeiat of video data gathered
daily by surveillance cameras increases, the need for aiiosystems to detect and
recognize suspicious activities performed by people afpectdis also increasing.

The first part of the thesis describes a framework for modedind recognition of
events from surveillance video. Our framework is based deardenistic inference us-
ing Petri nets. Events can be composed by combining priengixents and previously
defined events by spatial, temporal and logical relations. pfédvide a graphical user
interface (GUI) to formulate such event models. Our apgr@atomatically maps each

of these models into a set of Petri net filters that representdmponents of the event.



Lower-level video processing modules, e.g. backgroundraation, tracking and clas-
sification, are used to detect the occurrence of primitivenes, These primitive events
are then filtered by Petri nets filters to recognize compasrents of interest. Our
framework is general enough and we have applied it to marseglance domains.

In the second part of the thesis, we address the problem edtiteg carried objects.
Detecting carried objects is the main step to solve the prolf left object detection.
We present two approaches to the left object detection pnebBoth approaches poses
the problem as a classification problem. For both approashedrained SVM clas-
sifiers [19] on a laboratory database that contains exangflpgople seen with and
without two common objects, namely backpacks and suitca¥és used a boosting
technique, AdaBoost [20], to select the most discrimireatdatures used by the SVMs
and to enhance the performance of the classifiers. We giognéwn results for each
approach and then compare both approaches and describdvergages of each one.
We also compare the performance of both approaches on rela wdeos captured at

the Munich airport.
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Chapter 1

Introduction

1.1 Motivation

Video surveillance is the process of monitoring the behasipeople and objects within
public places, e.g. airports, metro stations and traffiergections, by means of visual
aids (cameras) usually for safety and security purposesthédsmount of video data
gathered daily by surveillance cameras increases, the foeeaitomatic systems to
detect and recognize suspicious activities performed lopleeand objects is also in-
creasing. Manual detection and recognition of these dietsvivould require system
operators to monitor a large number of cameras simultahgtmudetect any suspicious
activity and report it in a timely manner. Even in the caseea#rshing video archives
for previous events, as in criminal cases when we are trffmmgexample, to track a
suspicious person back in time to determine where he came d&red with whom he
has interacted, a significant amount of human instrumermtgsired and the process is
subject to human errors and fatigue.

Thus, automating the process of event detection and retmgmé one important

task of computer vision research. The goal is to interpreettain data computed by



lower level vision modules into high level semantics repreggg humans activity. There
are three main challenges here. First, event modeling grdgentation should be gen-
eral enough to handle variabilities in event durations artthié different ways the same
event might be performed by different actors or in differglatces. It is also important
to be able to compose events by combining simpler ones usimgdral and logical
relations. Second, event recognition should be done efflgiso that the large num-
ber of irrelevant observations from low level vision does aifect the performance of
the recognition process. Finally, the recognition proc#ssuld also be able to handle
uncertainties and failures in low-level vision modules.

The problem of event detection and recognition is usuallyepoas an inference
problem, where some inference mechanism is applied toadlaiknowledge (output of
lower level vision modules) to infer the occurrence of thesents in the video data.
Both stochastic inference [1, 2, 3, 4, 5, 6] and deterministference [7, 8, 9, 10]
have been proposed for the problem of event detection amdjméon. Methods us-
ing stochastic inference assume that activity structuresm@own in advance or can be
easily learned from training data. Then, some stochasfiezence method is used to
infer the occurrence of events in video. On the other handhoaks using deterministic
inference usually assume that events can be decomposeslimggents, some of which
can be directly detected by perceptual methods, accoufdmg variety of temporal
constraints. Then constraint propagation algorithms @anded to infer the event oc-
currences. This can be useful in cases where event stra@weerot known in advance
and when training data is not available. This is usually,tasewhat is more important
in surveillance is the detection of rare events (that reagetg and security concerns) for
which training data is natural conditions is exceptiondif§icult to acquire.

The first part of the thesis describes a framework for modedind recognition of



events from surveillance video. Our framework is based deardenistic inference us-
ing Petri nets. Events can be composed by combining priendgixents and previously
defined events by spatial, temporal and logical relations. pfédvide a graphical user
interface (GUI) to formulate such event models. Our apgr@atomatically maps each
of these models into a set of Petri net filters that representdmponents of the event.
Lower-level video processing modules (background subitmactracking, etc.) are used
to detect the occurrence of primitive events. These pnmi@vents are then filtered
by Petri nets filters to recognize composite events of isterehis approach is general
enough to be applied to any surveillance domain (car panmrés, indoor scenes, etc.).
Inference about temporal, spatial and logical relatiorte/ben events is performed by
the engine independently of the characteristics of theifivienevents.

A Petri net is an abstract model of the flow of information inyatem [11]. Using

Petri nets as a representation and as a filtering mechansthé&llowing advantages:

e Petri nets can be used for both deterministic and stochadgoence of event

occurrences.

e Petri nets have a nice graphical representation that uses jfew types of el-
ements. This representation has a well-defined semantitisasat is easy to

understand the model and to learn the language.

e Petri nets have a precise mathematical model that can bdarsathlysis. For ex-
ample, there are well-defined algorithms for detecting iekdand inconsistency

in the data.

e Petri nets can be used to represent sequentiality, comoyresnd synchronization

of events.



e Petri nets can be used to represent events in a top-dowmifaahiarious levels
of abstraction, i.e. they can be used to model a compositet éverarchically

from simpler event models.

e Compared to classical rule-based expert systems, in terefBaency, Petri nets
are known to be as efficient as expert systems. The RETE #iggrused in most
expert systems implementations to improve speed [12],pficgble to Petri nets
[13]. The main idea is to exploit temporal data redundan@esing from the

markings that are not changed during transition firing).

e At any time during the interpretation process, the posgiohtokens in the Petri
net summarize what happened in the past (keep history) auicpmwhat will
happen in the future. In this way, composite events are reézed incrementally

and there is no need to reevaluate past events.

In the second part of the thesis, we address the problem wédabject detection.
One important problem in understanding human activities getect whether a person
is carrying an object or not at different times. For examgle, person is carrying an
object at time t1 and not carrying it at time t2, we can infattihe person has dropped
the object or give it to another person between times t1 andAtibther problem is
detecting left packages in public places. Detection ofpeftkages is among the goals
of many visual surveillance systems of these places forrgg@nd safety concerns. In
some cases, the left package can be detected by the bacigrmdeling component
of the surveillance system [14, 15, 16, 17, 18]. On the othedhif the package is left
in an unseen place (e.g. behind a pillar or in a trash binj these methods will fail to
detect it. In this case, we can infer that a package is befhd ige detect that a person

is carrying a package at one time and not carrying it at a tates.



Examples where the second approach can be useful includi@ltheing. A person
enters a room carrying an object, deposits the object amdatter a short time he exits
wearing the same clothes but without the object. Anothemgiais a person in a public
place is observed by one or more cameras, then he disappearsHort period of time
(e.g., behind a pillar) where he drops or picks up an objedtlan reappears. Even
in cases where this person is continuously observed, he mogyat pickup objects
in places not easily observed by surveillance cameras (@.@ trash bin). In these
examples, direct detection of the left object itself is nosgible, but could be inferred
by deciding whether the owner is carrying an object at a gtirae but not carrying it
at a later time.

In this part of the thesis, we present two approaches to thedekage detection
problem. We assume we have different instances of the samerpwithin different
cameras and at different times, and that the time separta¢ittveen different instances
of the same person is small, so that he does not change clmhgsen these instances.
Both approaches poses the problem as a classification probléhe first approach,
direct classification of silhouettes, classifies the sulgjeilhouettes for each instance
directly to determine whether he is carrying an object or. nbihe second approach,
appearance change detection, determines whether thesgyisfecant change in human
appearance between two different instances or not thattrbegtue to an object being
carried at one time but not the other. If there is a significdrange in the human
appearance, additional analysis is conducted to decidéheththe person has dropped
an object or acquired one from the scene.

For both approaches, we trained SVM classifiers [19] on ar&tboy database that
contains examples of people seen with and without two comoibggcts, namely back-

packs and suitcases. We used a boosting technique, AdaR6jsto select the most



discriminative features used by the SVMs and to enhancedtermance of the classi-
fiers. We give recognition results for each approach and ¢bempare both approaches
and describe the advantages of each one. We have also testeapiproaches on real

world data captured at an airport.

1.2 Contributions

The contributions of this thesis are:

¢ We provide a framework for modeling and recognition of esdéram surveillance

video.

— We define an ontology for event modeling. Ontology entitredude: ob-
jects, states, events and relations. Events are eitheitperavents or com-
posite events that can be built hierarchically from simghegnts joined by

temporal and logical relations.

— We define a mapping from each ontology entity into a set ofi Rets mod-

els.

— We develop a GUI, through which users formulate ad-hoc gseabout

events.

— We provide a generic mapping from users’ queries into a s€tedfi nets

models that are used for detecting and recognizing evemisgue

— We support the ability to define negative events easily inflamework. A
negative event is detected when an important observationsising or not
detected. Negative events are of special importance ireslanvce applica-

tion, e.g. security guard does not return withminutes.



— We tested the system extensively on real world examples imyrdamains.
Events modeled and detected by the system range from praneltents with
one actor to composite events with many actors and tempodalagical

relations.
¢ We developed two machine learning approaches to deteotdadbjects.

— We apply it to the problem of left package detection in theneavork of our

event modeling and recognition system.

— We generate a large pool of features capturing the shapesémdeodels of

different instances of a person.

— We use a boosting technique, AdaBoost, to select the mostrdisative
features and provide them to a set of Support Vectors Madlsud/) clas-

sifiers.

— We train the classifiers on a large database recorded in bardtory and
we test the method extensively on data recorded in the ladrgrand on

real world data captured at an airport. High recognitioesatere obtained.

1.3 Organization

The rest of the thesis is organized as follows. In Chapteredescribe the Petri nets
event modeling and recognition system in detail. Chaptero8iges experimental re-
sults for the event modeling and recognition system. In @ra$, two approaches
to solve the problem of carried object detection are desdrddong with the classifier
design and training. Chapter 5 provides experimental tefui the carried object detec-

tion methods based on data captured at an airport. We canahudi provide directions



for future research in Chapter 6.

1.4 Related Work

In this section, we review previous work related to topicscdssed in this thesis and
compare our work with other work. First, we discuss worktedeto event recognition

in surveillance video. Second, the use of Petri nets as anenfe mechanism in rule-
based expert systems is discussed. Finally, we discussrefatied to the problems of

human appearance change detection and left package detecti

1.4.1 Event Recognition

Recognition of events from video data is usually posed asf@nance problem, where
some inference mechanism is applied to available knowlealgder the occurrence of

these events in the video data. Both deterministic and agiithinferences have been
applied to recognize events from video data. First, we sunvethods using stochastic
inference. Then we discuss methods using deterministerente and compare our

Petri nets-based approach with these methods.

Stochastic Inference

Stochastic inference methods have been applied to evergniion from video data.
Examples include Hidden Markov models, stochastic gram@iad Bayesian networks.
Hidden Markov models (HMMs) were chosen to recognize Anaarsign language
[1]. HMMs are suitable for recognizing sequential eventthwiifferent temporal dura-
tions but not for activities involving more than one actooupled HMMs (CHMMs)

were introduced to alleviate this problem by coupling tteest of two HMMs to model



interaction between persons[2]. For activities involvimgre than two persons, the
model is complex and the number of parameters is large afidullifto learn from
training data.

Stochastic context free grammars (SCFG) are used in [3]dogréze high-level
activities. The input for this grammar is assumed to be pivmievents recognized at
a lower level by HMMs. The limitations of this approach istthepresenting temporal
and spatial relations between events is difficult. Alsoetinhg the grammar rules and
their probabilities for each new domain is difficult.

Bayesian networks have also been used by many researchexsonBet al. used
Bayesian Belief Networks (BBN) for video interpretationartraffic surveillance ap-
plication [21]. For simple tasks, like monitoring overtagiand giveaway behavior
involving just two vehicles, this approach works well. Bifithe task involves complex
multiple object interpretation or plan-like behaviorsg tppproach may not scale well.

The system described in [4] supplies textual descriptionglynamic activities oc-
curring in a dynamic scene that include vehicles and padastr There are two levels
of description. In the first level, the object level, eacltked object is assigned a behav-
ior agent, which uses a Bayesian network to infer fundanhéeddures of the objects’
trajectories. In the second level, the inter-object intBom level, a situation agent is
created dynamically when two objects are in close proxinBiyt this system does not
provide ways to handle situations involving more than twgeots. In [22] Bayesian
networks are used to recognize several activities in a &btbatch. Dynamic Belief
Networks (DBN) are used in [23] in a hierarchical fashionrterpret video taken from
a moving airplane, where humans make up a few pixels in theovi@he highest-level
scenario recognition DBNs are built from smaller DBN, whiaem be used in more than

one higher-level network. The structure of the DBN is givemadvance and the statisti-



cal parameters are learned from data. Smaller networks eduiti and experimented
with separately.

In [5], three levels of events are described. Bayesian néswvare used to infer the
likelihood of simple events from the mobile objects’ prapes. At the second level,
complex single thread events correspond to a linearly ecléme sequence of simple
events (or other complex events). A Probabilistic finitéestautomaton is used to repre-
sent and recognize these events. At the third level, malthrlead events correspond to
two or more single-thread events with logical and tempagkitionships between them.
Many actors may participate in the same event. Allen’s uakto-interval relations
are used to describe temporal relations between subevEmésiecognition is done by
propagating temporal constraints and the likelihood degyoé subevents along the event
graph. The advantage of this approach is that it can verifypgopagate temporal con-
straints when events are uncertain, while other techniffe®nstraint satisfaction and
propagation techniques usually assume that events amdithrations are deterministic.

A particular form of dynamic Bayesian networks, Recurrealy&ian Networks
(RBNSs), have been used for the recognition of human behevibwough the temporal
evolution of their visual features in [6]. Although RBNs leathe advantage of indepen-
dence from the time scale of events, the learning probleedistis and how to represent

different temporal and spatial relations is not clear.

Deterministic Inference

There have been many methods that apply deterministiceinéer to detect events
in video data. Most of these methods assume that events caedmnposed into
subevents, some of whose occurrences can be directly eeétbygtperceptual meth-

ods, and between which there exist a variety of temporaltcaings. Then, constraint

10



propagation algorithms can be used.

In PNF-networks [7], Allen’s temporal relationships [24kaised to express paral-
lelism and mutual exclusion between different subeverttenT Allen’s interval algebra
network is mapped into a simpler 3-valued domain (past- riature) network, a PNF-
network, to allow fast detection of actions and subactidi arc consistency algorithm
AC-2 is used to propagate temporal constraints. This algoris linear in the number
of constraints. But the computation of PNF restriction is-hded.

Declarative models described in [8] are used to descriligitaes at many levels
(states of the scene, events and scenarios). The acta@atescribed by the conditions
between the objects of the scene. Then a classical corissatisfaction algorithm,
AC-4 (Arc Consistency-4), is used to reduce the processing for the process of
recognizing activities in video sequences.

To increase the efficiency of processing temporal conggavu et al. [9] sug-
gest that in a preprocessing step, scenario models are gesenhinto simpler scenario
models containing at most two sub-scenarios. Then, thegrewon of these simpler
scenarios just tries to link two scenario instances instdaying to link together a
whole set of combinations of scenario models. However ittgghod cannot be applied
to partially ordered events, where there is single ordevehts.

Petri nets have been suggested in [10] as an inference mschmrepresent the
dynamic evolution of a car parking scene with humans andclehi A symbolic lan-
guage is defined to capture the logical and algebraic camditihat are handled in a set
of prototypes. An Activity prototype is a set of logical arigebraic relations holding on
a finite set of objects and scene elements. A Plan prototygees of relations between
some activity prototypes and some state conditions. Theiatotype is interpreted as

a Petri net. Places are associated with activities proéstgmd state conditions. Transi-

11



tions are associated with logical conditions and condisain

Our approach extends this work in the following ways:

e Precise use of the state-of-the-art ontology in video slianee. We define au-
tomatic mappings of ontology entities into Petri nets. Grngueries can be

modeled by this automatic mapping instead of manual creatimets as in [10].

e Support of temporal logic is provided by our approach, nothsy approach in

[10].

e We represent each event instance by a token that encasuiftienation about
participants in this instance. This makes the total numbeets is the same as
the number of event models. For each new event instanceciéflffes a new Petri
net. So, the total number of existing nets the sum of the nummbmstances of
all events. In our approach, all instances of the same evemepresented by one
Petri net and event instances are represented by tokens aotresponding Petri
net. So, at any time, the total number of existing nets is fagdismall compared

to the number of events.

1.4.2 Petri Nets as an Inference Mechanism

Petri nets have been used as an inference mechanism fdraséet expert systems. The
rest of this section will survey the use of Petri nets in roésed expert systems.

In 1987, Sahaoui et al. showed the similarities betweenelvaked expert system
and a Petri net: transitions can represent rules, markiagsepresent facts and the to-
ken player can represent the inference engine. They alseeshiinat using the Petri net
representation increases the efficiency of rule-basedesyp&tems by providing paral-

lelism and pipelining. Since then, many expert systems wexeloped that use Petri

12



nets as a knowledge representation that guides the infeq@ocess. In 1988, Murata
and Zhang [25] used a predicate/transition net model foibaetuof Horn clause logic
programs. In 1993, Hura [26] provided a framework for autbngathe construction
and maintenance of rule-based expert systems using P&trase representation for
the knowledge base. In [27], Petri nets were used to impléhogic programs with
negation. In [28], Petri nets were used for reasoning in gsdjpnal logic in real-time,
a Petri net is constructed for the given proposition logle4hased expert system; then,
using Petri net analysis techniques, all logically impl@@positions are deduced in
real-time.

Many issues need to be addressed to make Petri nets suibalapdiication as an
inference mechanism in a vision system where data is usuadigrtain and incomplete,
and where real-time response time is desired. These isscieslé dealing with uncer-
tainty and efficient implementations.

Researchers have dealt with uncertainty in Petri nets ffardnt purposes. Stochas-
tic Petri nets [29], [30] are a class of Petri nets in whichfihag times are considered
random variables, and a probability distribution overmhsition firing times is formed.
Looney was the first to apply Petri nets to fuzzy rule-basadaring using propositional
logic [31], where transitions serve as rules, places sesy@@positions, and markings
are assigned fuzzy values between 0 and 1. Following Loonagy researchers devel-
oped algorithms for reasoning using fuzzy Petri nets. Examinclude work done by
Chen et al. [32], by Konar et al. [33] and by Scarpelli et ak][3Cardoso et al. [35]
proposed a possibilistic Petri net model that combinedipii$g theory and Petri nets
to lead to a tool for qualitative representation of uncertaiowledge about a system’s
state.

The issue of efficient implementation of the Petri nets hae Bken addressed by
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many researchers. The RETE algorithm has been applied tcedtie complexity of
Petri nets and to achieve linear performance in the humb&noivledge base rules
[12]. It has been also shown that Petri nets can improve te@iorking memory by
splitting it into partitions corresponding to places. Peéts also reduce the tree sizes

used in testing [36].

1.4.3 Carried Object Detection

One important problem in understanding human activities detect whether a person
is carrying an object or not at different times. For examgle, person is carrying an
object at time t1 and not carrying it at time t2, we can infextttine person has dropped
the object or give it to another person between times t1 andAt®ther problem is
detecting left packages in public places.The problem afdatkage detection has at-
tracted many researchers in the last few years due to inegeesncerns about safety in
public places, like airports and train stations. In [37]yatem is presented that is able
to detect if a person carries an object. Spengler and Sghiefgse an approach [17]
for detecting abandoned objects and tracking people use\@ONDENSATION algo-
rithm in monocular sequences. A distributed surveillancsesn for the detection of
abandoned objects in public environments is presentedbijgdd [38]. In [18], a mul-
ticamera surveillance and tracking system for monitorimngaat activities is discussed.
In [14], abandoned objects are detects in real-world camdstutilizing logic to differ-
entiate between abandoned objects and stationary peapl9] abandoned objects
are detected using a double background subtraction meth@#0] objects are tracked
using a trans-dimensional Markov Chain Monte Carlo tragkimodel, then the problem
of determining if a luggage item is left unattended is solbgdanalyzing the output

of the tracking system in a detection process. In [16], lefiglage detection is consid-
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ered in an event recognition framework where events aresepted as hypotheses and
recognized in a Bayesian inference framework.

Most of these approaches assumes the left package can loteddby the back-
ground modeling component of the surveillance system. dfghckage is left in an
unseen place (e.g. behind a pillar or in a trash pin), thesethgethods will fail to detect
it. The two approaches presented in this thesis differ froes¢ methods in that they
don’t depend on detecting the left package itself instead tty to infer if a package is
left by measuring the differences between different instarof the person. We assume
we have different instances of the same person within éiffecameras and at differ-
ent times, and that the time separation between differestamtes of the same person
is small, so that he does not change clothes between théaadas. Both approaches
poses the problem as a classification problem. The first appralirect classification
of silhouettes, classifies the subject’s silhouettes foheéastance directly to determine
whether he is carrying an object or not. The second appraggdearance change de-
tection, determines whether there is a significant changeman appearance between
two different instances or not that might be due to an objeatdcarried at one time
but not the other. If there is a significant change in the huagrearance, additional
analysis is conducted to decide whether the person has elicgap object or acquired
one from the scene.

For both approaches, we trained SVM classifiers [19] on arlboy database that
contains examples of people seen with and without two comoibggcts, namely back-
packs and suitcases. We used a boosting technique, AdaROjsto select the most
discriminative features used by the SVMs and to enhancedtermance of the classi-
fiers. We give recognition results for each approach and ¢berpare both approaches

and describe the advantages of each one.

15



Chapter 2

Petri Net Models for Event Recognition

In this chapter, we describe our system and its componedetails. The main objective
of the system is to detect events in surveillance videostasevent models provided
by the user. We assume that events can be composed by cogpiimitive events and
previously defined events by spatial, temporal and logalations. We provide a graph-
ical user interface (GUI) to formulate such event modelsr &@xproach automatically
maps each of these models into a set of Petri net filters tpagsent the components
of the event. Lower-level video processing modules (bamlgd subtraction, tracking,
etc.) are used to detect the occurrence of primitive everttese primitive events are
then filtered by Petri nets filters to recognize compositetvef interest. This approach
is general enough to be applied to any surveillance domainparks, airports, indoor
scenes, etc.). Inference about temporal, spatial anddbgtations between events is
performed by the engine independently of the charactesisti the primitive events.

In this chapter, we give details about our system. Firsteittion 2.1, we provide
some background information about Petri nets, their strecand dynamics. In sec-
tion 2.2, we define an ontology for events. This ontology dbss the main concepts

in a surveillance domain, like objects, states, events atadions. In section 2.3, an
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overview of the system and its basic modules is given. Modedivents as Petri nets
constructs is described in section 2.4. Petri net modelgatéfrom user-defined events
are used to detect and recognize events as explained iors&§ along with some

examples.

2.1 Background

In this section, we describe the basic concepts of Petri tie¢$ structure and their
dynamics. A Petri net is an abstract model of the flow of infatiom in a system [11].

A marked Petri net is a quintuplé; T'; I; O; M), where:

o P ={pi;po;...} is the set of, places (drawn as circles in the graphical represen-

tation);

T ={t1;ts;....} is the set ofy, transitions (drawn as bars);

| is the transition input relation and is represented by reedmrcs directed from

places to transitions;

O is the transition output relation and is represented bynwed arcs directed

from transitions to places;

M = {my;ma;.....} is the marking. The generic entry; is the number of tokens

(drawn as black dots) in plage in marking M.

The graphical structure of a Petri netis a bipartite diregi@aph: the nodes belong to
two different classes (places and transitions) and thes@ges) are allowed to connect
only nodes of different classes.

The dynamics of a Petri net is obtained by moving the toketisdrplaces by means

of the following execution rules:
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K e

Before Firing After Firing

Figure 2.1: Simple Petri Net Before and After Firing

e A transition is enabled in a marking M if all its input placesry at least one

token;

¢ an enabled transition fires by removing one tok@er arc from each input place

and adding one token per arc to each output place.

Figure 2.1 shows a Petri net with one transition. The trarshas two input places
and two output places. It is shown before and after the firirging the transition
removes one token from every input place and inserts a takewdry output place.

For more information about Petri nets basics, readers dantee[11]. One of the
main disadvantages of ordinary Petri nets is that for lamapiex systems the sizes
of the nets are unmanageable. High Level Petri Nets(HLP#&I)Patri nets whose to-
kens carry information represented by data structures.NHaIBo provides hierarchical
structures where compact and manageable descriptionsecabtéined while preserv-

ing many properties when nets are composed [41].

2.2 Event Ontology

An ontology is a data model that represents a set of concetitsnva domain and the

relationships between those concepts. It is used to redsmit the objects within that

IMOS Note that more than one token can be removed, if desired maie&d later in this chapter.
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domain. In this section, an ontology for event recognitienléscribed. The ontology
is described in terms of a Geometric Scene Description (GAIYSD is a quantitative

object-level scene interpretation in terms of recognizgi@éas and their (possibly vary-
ing) locations in the scene. It is assumed that the interatedision layer provides this

GSD.

2.2.1 Objects

Tracked objects are assumed to be provided by the interteedson layer. The fol-

lowing properties are examples of what a GSD can describe.
e Class: Mobile/Contextual.
e Attributes: Color, Position,Orientation.
e Type: Person/Car/Door/Region-of-interest.

o ldentifier.

2.2.2 States

A state is defined as a conceptual entity with one or more dfgeevhich a qualitative

predicate is true over a time interval. Examples are:
e One-object states: Moving/Still.

e Two-objects states: Two mobile objects: Far from/Near.

One mobile object and one contextual object: Inside/Oatsid
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2.2.3 Event

We define an event as a significant occurrence that happengivaraplace and time.
One or more objects may be involved in an event. An event magyribgtive or com-
posite.

Primitive Events

A primitive event is the simplest type of events inferrecedtty from the observables in

the video data (e.g. position, trajectory, speed, etc.anfjdes are:
e One-object events: Move/Stop, Accelerate/Deaccelerate.
e Two-objects events: Two mobile objects: Approach/Leavekup/Putdown. One
mobile object and one contextual object: Enter Area/ExéaAOpen/Close.
Composite Events

A composite event, or a scenario, is composed of states anulesi events connected

by spatial, temporal or logical relations. Examples of cosife events are:
e Sequences: A sequence is a succession of two or more events.

e Repetitions: Detecting more than one occurrence of the sv@et may have a
special meaning in its context. For example, the differestiorences of the event
may be performed by different mobile objects with respethésame contextual

object.

e Negative Events: A negative event is triggered by the alssefnsome critical
observation (e.g a security guard has left his duty pos#iod does not return

within 15 minutes).
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2.2.4 Relations
Logical Relations

Logical Relations (e.g. AND, OR, NOT) are used in their usm@aning to express

different compositions of events.

Temporal Relations

A binary temporal relation is a relation between two eveAsan event is represented
by an interval or by one point in time. Point-interval temgldogic [42], which is an
extension to Allen’s interval logic [24], is used to handifetent possibilities, which

are

e both events are intervals
e both events are points

e One eventis an interval and the other is a point.

It is suitable also for representing incomplete informatid-or example, if there are
two events represented by intervals X,Y and it is requiredeiect instances of X and
Y where X’s startpoint happens during interval Y. In thiseahe relation between the

endpoint of X and interval Y is not known (or not significant).

Spatial Relations

A binary spatial relation is a relation between two spatrdltees. These entities may
be points, lines or regions. A spatial relation can be togickl, directional or distance
relation [43]. Topological and directional relations areafitative relations while a dis-
tance relation is a quantitative measure of the distancedsst two objects. A primitive

spatial relation is a combination of a topology and a diatti
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2.3 System Overview

Figure 2.2 shows the system overview. With the goal of desga general system that
can be configured in different settings, we provide the usgraphical user interface
(GUI) that can be used to provide contextual informationutlibe scene by drawing
polygons around regions of interest and naming them. Thralig GUI, the user can
also specify events to be modeled and recognized by buitliagt templates hierarchi-
cally from primitive events and previously defined eventd gnning them by spatial,

temporal and logical relations. The Petri net for the everdryg is inferred from the

Petri nets of its components.

The input video is preprocessed by low level vision moduhes tletect objects by
background subtraction. The detected objects are claksifid tracked across frames
to provide object trajectories. Object trajectories arayared to detect primitive events
that are parts of the final event query. The detected primé@wents represent inputs to
Petri net-based recognition modules.

Once an event is recognized by the system, it is reportecetaghr through a panel
SO appropriate actions can be taken. The panel displaysfeak®ey for the event and
other information including event time with the ability terun video streams where the
event takes place.

We will discuss the GUI, the object detection and tracking Hre primitive event
detection modules in the following subsections. Sectighdiscusses the Petri net-
based event modeling and section 2.5 discusses composite recognition based on

Petri net models.
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Figure 2.2: System Overview

2.3.1 Graphical User Interface (GUI)

With the goal of designing a general system that can be caefiga different settings,
we are providing the user a graphical user interface (Glaf)¢hn be used to build event
models hierarchically and provide contextual informatidaout the scene. Figure 2.3.a
is a snapshot of the query design interface.

For each input video source, the view captured by the cansedgsplayed so that
ROIs can be marked on it. There are five lists where informagioout event models

can be edited (added, deleted or modified). These lists are:
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e Variables: Variables of the event model should be defined before mgldhe
event model. A variable is defined by its name and type. Theeniama string
unique for this variable. The type is one of the followingr$ta, Vehicle, ROI or

Other.

¢ ROIs: Regions of interest can be marked by drawing polygons attiuem. Each

region should also have a uniqgue name.

e Primitives: Primitive events that are part of the event model can betaldrom
a library of predefined primitive events and then assignedbles. The same
primitive event can be used more than once in building theesawent model
but each time with different variables. For example, if tireré model has two
vehicle variablesy’1 andV'2, the same primitive ever8topscan be used twice,
each time with different variable so we will ha8ops(V1andStops(V2gas parts

of the event model.
e Spatial Relations

Temporal and Logical Relations Event models are built incrementally by defin-
ing new relations on existing primitive events and existvgnt models. Defin-
ing a new temporal or logical relation requires selecting bgerands. These two
operands are either primitive events from ®rmitives list, two previously de-
fined relations fronTemporal and Logical Relationslist or one from each list.
A separate window is used to allow the user to enter a namdéoredation and
select the relationship between the starting and ending$of the two operands.

A snapshot of this window is shown in Figure 2.3.b.
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Figure 2.3: Snapshots from Graphical User Interface
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2.3.2 Object Detection and Tracking

Detecting and tracking moving objects are widely used asléwmsl tasks of computer
vision applications, such as video surveillance and raBotiSoftware development
of low-level tasks is especially important because it infleess the performance of all
higher levels of various applications.

Many surveillance systems use background modeling to teteing objects. One
of the problems with most algorithms is the need of an empgnedor initialization.
Often this is hard to obtain, and each time something chainghe scene, the initializa-
tion needs to be redone. Other problems include changimgitiation, waving trees,
water, scene changes and shadows. On the other hand, ealijplct tracking has been
also a challenging research topic in computer vision. Itthageal with the difficul-
ties existing in single object tracking, such as changireapances, non-rigid motion,
dynamic illumination and occlusion, as well as the probleeiated to multiple object
tracking including inter-object occlusion, multi-objeztinfusion. Good surveys about
object detection and tracking algorithms can be found in #&3.

With the goal of developing a high level event modeling antbgmition module
independent of these lower level vision modules, we haviegded our system so that
the detection and tracking results are either pre-comportggerformed online by the

system. Experiments in Chapter 3 shows examples of botls.case

2.3.3 Primitive Event Detection

As mentioned in Section 2.2, a primitive event is the simpigse of events inferred
directly from the observables in the video data (e.g. pasjtirajectory, speed, etc.).
Primitive events are detected by a separate module whosgdurns to interpret the

data provided by the object detection and tracking modutekaep information about
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objects state in the scene, their position, speed and aatiele Any change in these
features signals the detection of an event.

In the following, we will give some examples of the detectanmd recognition of
six commonly used primitive events, which aréippears Disappears Moves Stops
EntersROI, Exits ROI".

An instance of the primitive eveitppeards said to be detected of an object appears
for the first time and remains as a foreground object for atledrames. On the other
hand, an existing object that cannot be tracked for at le&stmes is said to disappear,
an instance of the primitive eveBlisappearss said to be detected.

Based on the trajectories computed by the object deteatidtracking module, the
motion of a tracked object is described in terms of its positspeed and acceleration.
When the object is moving, it starts decelerating and wherckiange in object position
during a specified number of frames is under a given threshalthstance of the prim-
itive eventStopsis detected. On the other hand, if the object is not movingthad it
starts accelerating, an instance of the primitive elowesis detected.

For each ROI, there is a boolean that indicates whether otheobbject is inside
the ROI. A change in the value of that boolean indicates titheeEntersROI or
LeavesROl is detected.

To Test if an object is inside or outside a given ROI, we testtivar there is overlap
between the bounding box around the object and the ROI polyBat this can result
in a large number of false positives as while the boundingdfcan object may over-
lap the ROI polygon, the object itself may be completely mi&she ROI. Figure 2.4a
shows a pedestrian whose bounding box intersects a crasB@d| which causes the
primitive eventEntersROI to be detected, while the pedestrian is completely outside

the crosswalk.
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(a) False Positive Example (b) Estimating Vehicle Motion Direction

Figure 2.4: Primitive Event Detection

To solve this problem, we use the bounding box informatidy.dfor example, for
a pedestrian to be inside a ROI polygon, the bottom line diatsnding box should be
inside the ROI polygon. In other words, the pedestrian’sdeeinside the ROI polygon,
since the bottom line of the bounding box usually touchegt#destrian’s feet. For a
vehicle to be inside a ROI polygon, we need to ensure that liesels are inside the
polygon. Since we only have the 2D information about the cisjet is not practical
to find the wheels. Instead, we estimate the bounding boxthatetouches the front
side of the vehicle. To do this, we first measure the direatowhich the vehicle is
moving and then identify the bounding box side in this diatt Assuming that this
side represents the front of the vehicle, to detect a vekiotersROI, we test whether
this line lies inside or at least intersects the ROI polydeigure 2.4b demonstrates this
approach. We also wait until the overlap area is above a finedepercentage of the

ROI area. This approach reduces the false positives rate.

28



2.4 Petri Net-Based Event Modeling

2.4.1 Notations

In this section, we will describe some notations about Redtielements that we are
going to use in our framework. These notations include exesngf ways into which

HLPNs extend the ordinary Petri nets [13, 41].

Transitions

e Immediate Transitions: The same as transitions in ordinary Petri nets. This
means that the transition fires immediately when every ipfate has the required

tokens for firing.

e Conditional Transitions: A conditional transition has additional firing conditions
that should be satisfied for the transition to fire. In otherdgothe transition fires
when every input place has the required tokens and the assdaonditions are

satisfied. A conditional transition is represented by a ban

e Composite Transitions In order to simplify the structure of large nets, composite
transitions can be used as normal transitions in a Petriutatepresent subnets
themselves. A composite transition is connected to theidritset by a set of
incoming and outgoing edges and places. A composite transg represented

by an unfilled rectangle.

Note that for all these types of transitions, the conditioas be set based on the
numberof tokens that satisfy a certain condition in the input ptade this case, when
the transition fires, more than one token can be removed faewh ef the input places.

This can be useful in a number of applications as explainéidemext section.
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Tokens

e Regular Tokens Regular tokens are used for marking only and don’t hold any

specific information. A regular token is drawn as a blackdilbércle.

e Colored Tokens Colored tokens hold information represented by data siras

suitable for the application.

2.4.2 Event Modeling

In our framework, an event in modeled as a Petri net whosetsteiis derived from the
event structure. Each token is represented by an arrayevdasah object variable has
a position in the array. Different instances of the same eaenrepresented by tokens,
one for each instance. Each token of them will have the saruetgte, i.e. array, but,
maybe, with different values for the variables.

The simplest case is for a primitive event. Figures 2.5.a aridb show examples
of the Petri net models for the primitive eveiid$: Stops(VandE2: Exits Vehicle(P,V)
From the figures we can see that, for a primitive event, the Ret model consists of a

source place, a conditional transition, and a sink place:

e Source Place A dummy token representing the primitive event is inifigllaced
in the source place. The associated variables of the pvigretrent are unassigned
in the array representing the token. These variables anghsat the conditional

transition fires.

e Conditional Transition: The firing condition for this transition represents the
occurrence of the primitive event, as detected by the lougonr modules. At
that time, the variables of the dummy token are instantiayetie values obtained

from the lower vision modules and the token is moved from the e place to
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the sink place. A new dummy token, with unassigned varialidgslaced in the
source place. Note that this represents a self loop in the et We do not

show these self loops in the models for sake of clarity of terés.

¢ Sink Place Tokens reaching this place represent detected instamd¢bs event

model.

As mentioned above, a token in this model is an array of leagtlals the number of
variables in the primitive event. Tokens in the first exampid-igure 2.5.a, are arrays
of one entry, for the variablé, whereas for the second example, in Figure 2.5.b, tokens
are arrays of two entries, for the variabandV.

As explained before, composite events are built increntigrivgt joining simpler
events, two at a time, by temporal and logical relations.hingame way, models for
these composite events are constructed from models ofit/suts joined by appropri-
ate connections, i.e. transitions and places, to reflesetteamporal and logical relations.
For example, Figure 2.5.c shows the Petri net model for theposite evenE3: E1(V)
Before E2(P,V) whereas Figure 2.5.d shows the Petri net model for the ceitgpavent
E4: E1(V1)And E2(P,V2) From the figures we can see that, for a composite event, the
Petri net model consists of a source place, one or more catap@nsitions, and a sink

place:

e Source Place Similar to primitive events, a dummy token representirgguhion
of all different variables of its subevents is initially pkd in the source place. The
associated variables of the primitive event are unassigrtbe array representing

the token.

e Composite Transition: Each composite transition represents a subevent.
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Figure 2.5: Petri Net Models for Example Events
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e Sink Place Similar to primitive events, tokens reaching this plageresent de-

tected instances of the composite event.

Tokens in a composite event is the union of the tokens of thevants such that every
variable has only one entry. For example, tokens in this thadearrays of two en-
tries, for the variable® andV. Tokens in this model are arrays of three entries, for the

variablesRk, V1andV2.

2.5 Petri Net-Based Composite Event Recognition

The detected primitive events are the input for the Petrreebdgnition module whose
function is to recognize composite events. The use of Pets for event recognition

has two important advantages:

e Petri nets reduce the number of checked events whenevemétiypei event is

detected.

e Petri nets facilitate the process of binding labels (geteerly the tracking mod-

ule) to token variables.

For each composite event to be recognized, we maintainaf kstabled transitions.
An enabled transition is a transition where all its inputcelshave tokens but the asso-
ciated event has not occurred yet. The Petri nets are regedlonly when a primitive
event is detected. When this occurs, we check only the lishabled transitions to test
if any of them is waiting for this primitive to fire. So, we needt check all transitions in
the net. When a transition is enabled and the associatedtipans detected, the transi-
tion fires. Firing a transition removes tokens from inputcels, inserts tokens in output

places and updates the list of enabled transitions. TheHhattwe check only the list
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of enabled transitions provides an efficient implementatsince usually the number of
enabled transitions is small.

When a primitive event is detected, its objects have to belmealtwith tokens from
input places. If there are more than one input place to theegeansition, then tokens
from these places have also to be matched to see whetherish@reombination of
actors that satisfy the event so far. For a given transitdirée, every possible combi-
nation of tokens is tested and a new token is placed in theubptpce only if a match
occurs. The fact that only a small number of these combinatigll match reduces the
expected number of times this matching process is requlirethis way, the Petri net
transitions act as filters to filter the large amount of detgrimitive events and only
keeps information about the relevant ones.

In the following, we give examples to illustrate basic iddascribed in this section

and the previous sections.

Example 1

Assume we have a parking area and we want to count the numbehiies that used
this area during a given period of time. Here, we have twoaldeis, a variable repre-
senting the vehiclel/0, and a variable representing the parking area regitn, The

Petri net model in this case is a sequence of the followingipivies: “Appears(V0)

EntersROI(RO, VO) Stops(VOandLeavesROI(RO,V0). In Figure 2.6, the Petri net
corresponding to this sequential order is shown. Variadfidds assigned many labels
during the recognition process. Whenever a car appearsy &oken is inserted in the
first place, P1. Whenever a car enters the parking area késntis moved from P1 to
P2, and so on. At the end of the detection, the number of tokete place P4 is the

number of cars that stopped in the parking area and theratedtthe number of tokens
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 Count cars that park in region A0, during the video E1L
clip Pl

* Objects: Car CO, Region AQ.
* Subevents: E2

— EI1—Car CO appears

— E2—Car CO enters region AO P2

— E3— Car CO stops

— E4— Car CO leaves region AO

« Temporal Relations: P3

— (((E1 Before E2) Before E3) Before E4)

Figure 2.6: Petri Net Representation for Counting Cars

in P3 are the number of cars that stopped in the parking ackhare not left yet.

Example 2

Another event, i8/ehicleExchangeevent. In this event, two vehicles enter the parking
area and park. Then a person leaves one vehicle and entesediwed vehicle. After
that, the second vehicle should leave. In this exampleetaey three variable¥,0 and

V1 representing the vehicles and variablé representing the person. The Petri net for
this event is shown in Figure 2.7. In this event, we are naredted which vehicle
arrives first, so there is no relation between E1 and E2. Wierevehicle arrives in
the parking area and parks, a token is placed in both placen@&P2. A token in
P1 will not be moved to P3 until a person exits the vehicleesented by this token.

Now, a token in P3 represents the combination of this persdrtas vehicle, and hence
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E1 = E2
+ Event: Person PO moves from Vehicle VO to
Vehicle V1.

+ Objects: Person: PO, Vehicle: VO, V1. E3

P1

P2

O

« Events:
- E1-Stops(V0)
- E2—Stops(V1) * 4
— E3— Fxits Vehicle(P,VO)
— Ed— Enters VehiclefP,V1) i
— E5— Moves(V'1)

+ Relations:

(({E1 Before £3) Ends_before (E2 Before £4)) Before E5)

3 (@

ES

PS@

Figure 2.7: Petri Net Representation for Car Exchange Event

contains two colors. In the same way, tokens from P2 and PBammatched until the
primitive eventEntersVehicleis detected with person matching the person in P3’s token
and a car matching the car in P2’s token. A new token is crgai@a representing the

two vehicles and the person) and inserted in P4.

Example 3 - Negative Events

As mentioned in Section 2.2.3, a negative event is triggésethe absence of some
critical observation, e.g. a security guard has left hiy ¢tsition and does not return
within 15 minutes. To detect the absence of event X, we neeagti@ limiting event
Y, so that if Y is detected we can safely infer that X has notuod. For the given

example:
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e Event(X) — Security guard appears in his duty position.
e Event(Y) — 15 minutes has passed since last guard appearance

In this case, events X and Y are represented by transitiatsstiare the same input
place p, as shown in Figure 2.8. If a token t in place p perfoenent X before Y,
token t moves to place pl and is ignored. If t does not perfaremteX until event Y
is detected, token t moves to place p2 and participates asitantoof negative event
N(X,Y).

Note also that this example shows a non-trivial loop, whieeesecurity guard peri-
odically returns to the duty position. If event X is detegtadoken is placed in place
pl, indicating that the guard is in his duty position. Wheadlards leaves the position,
represented by the firing of transition A, a new token is pilaicethe common place p
and the timer for event Y is reset, starting a new loop. FigRr@ shows a generaliza-
tion of the negative event example, where the guard has itoavimimber of positions
in sequence periodically within a certain amount of timee Tiure also show a longer

loop.

Example 4 - Counting Events

By a counting event we mean an event that requires the Petto m®unt the number
of certain events. Examples include counting the numbeeopfe or cars that enter a
certain area of interest (as in Example 1), detecting evbatsinvolve more than one
entity, etc.

Counting events can be detected by counting the tokens cepldat satisfy cer-
tain conditions. In additions, the conditions of the tréinsis can be set such that the

transition do not fire unless a number of tokens are available
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* Events:
—  Eveni(X)-Security guard appears in
his duty position.

— Event(Y)- 15 minutes has passed
since lastguard appearance.

— Event(A)-Security guard leaves his N(X,Y) Y [

aduty position.

Figure 2.8: Petri Net Representation for Negative Event,M}X

Figure 2.10 show the car exchange example, where the useteiested of ex-
changes that involves more than two persons from one castottier. Note that the
Petri net model for this case is exactly the same as the ongumd=2.7, with the excep-
tion of the condition on the composite transition E5. Thasraon E5 will be enabled
if the vehicle movesnd the number of tokens that have the structire, Pi), for any

7. IS more than two.

2.6 Conclusion

We have described our event modeling and recognition systesetails. Using our
event modeling approach based on Petri nets, we have shatmdilels for new events
can be built easily by combing simpler event models by temlpdogical and spatial
relations using our GUI. The mapping into Petri net modedgp@rformed automatically.
Petri nets also provide a formal and natural method thatig tseunderstand. One of the

main advantages of event recognition based on Petri netlsisdbat the large number
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+ Events:
— Event(X1)-Security guard appears
in his first duty position.

- Event(X2)-Security guard appears
in his second duty position.

N(X,Y)
—  Event(X3)-Security guard appears
in his third duty position.
— Event(Y)- 15 minutes has passed
since lastguard appearance.
— Event(A)-Security guard leaves his

third position.

Figure 2.9: Petri Net Representation for the generalinadfcexample 3

of irrelevant observations does not affect the performarii¢ke recognition process.
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E1 T E2
» Event: More than two persons move from ol
Vehicle VO to Vehicle V1. |
* Objects: Person: PO, Vehicle: VO, V1. E3 == (’) P2
* Events:
— EI-Stops(V0) " O
— E2-Stops(VI)

E4
— E3— Exits_Vehicle(P,VO0)

— E4— Enters_Vehicle(P,VI)

— E5—Moves(VI)
* Relations: —ES5 and #(V1, P)>2
(((E1 Before E3) Ends_before (E2 Before E4)) Before E5)

Figure 2.10: Petri Net Representation for Car Exchange Hwgalving multiple per-

sons
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Chapter 3

Experiments |

Our goal is to evaluate the performance of the system acifisgedit natural scenes and
in detecting events with increasing level of complexityging from primitive events
involving one object to more complex events involving nplki objects and multiple
logical and temporal relations. In the first set of experitagwe applied our system on
a dataset of video sequences provided as a part of ETISE@cprf6]. The length of
these sequences range from 800 frames to 3000 frames. ktbgaences, required
events to be detected range from single primitives to siraptpiences of two or three
primitives. In the second set of experiments, we appliedsgstem on a longer video se-
guence (14 minutes 14 x 60 x 30 = 25200 frames) to detect and recognize events and
violations performed by pedestrians and vehicles in a traffersection. Events in this
case are more complex and include multiple actors and neiliygical and temporal

relations.

3.1 ETISEO Dataset

We applied our system on a dataset of video sequences. Thieses\are provided as a

part of ETISEO project [46], a research project sponsorethbyFrench government,
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whose aim is to evaluate vision techniques for video suargik applications. It focuses
on the treatment and interpretation of videos involvinggstdans and (or)vehicles,
indoors or outdoors, obtained from fixed cameras. Inforomatibout these video se-
guences is provided in Table 3.1. The first sequence (ETI-&B2L.1) was taken at an
apron scene, from two camera views. The second sequence/@&FRD-6) and the
fifth sequences (ETI-VS2-RD-10) were taken at differendreeenes, from only one
camera. The third sequence (ETI-VS2-BE-19) was taken ailditgi entrance, from a
camera monitoring the outdoor scene and another camerdoringithe indoor scene
of the entrance. The fourth sequence (ETI-VS2-MO-1) wasriadt a metro station,
from one camera view. Information about events to be daleftteeach sequence is
provided along with other contextual information aboutsbenes. Table 3.1 shows the
set of events modeled and detected by our system. More iaf@mcan be obtained
from [46]. Figure 3.1 shows frames representing each oktkeguences, with regions

of interest marked up.

3.1.1 Event Definitions

In this section, we will discuss the representation of thenévto be detected in our Petri
nets framework. The primitive library used has nine priv@tevents. In the following,
we list these primitives along with the time span associatigl each primitive, based

on ETISEO definitions and other assumptions we made.

e Appears. the object appears and remains as a foreground object feasit 10

frames +/- 5.

e Moves the object starts moving and the change in object positionhe last k

frames is above a given threshold +/- 5.
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Table 3.1: ETISEO Video Sequences Summary

Sequence Name ETI-VS2-AP-11| ETI-VS2-RD-6 | ETI-VS2-BE-19 | ETI-VS2-MO-1 | ETI-VS2-RD-10
Number of 2 1 2 1 1
available
views
Scene Outdoor Outdoor Indoor-Outdoor | Indoor Outdoor
information Apron Road Building Entrance| Metro Road
Number of 804 1200 1025 1255 2936
frames
Objects types vehicle person person person person
vehicle vehicle bag vehicle
Events stopped; getsin; stopped; waiting; getsin;
insidezone; getsout; getsout; picksup; getsout;
enterszone; stopped insidezone; putsdown; stopped
emptyarea enterszone; exchangeobject
exits zone;
changesone;
door_control
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Eventid: 4 llame: entersZone Object IDs: 1 , Zone: 0
Event id: 6 llame: insideZone Object IDs: 1, Zone: 0
Event id: 6 llame: stopped Object 1Ds: 1

Event id: 4 Name: entersZone Object IDs: 1 , Zone: 0
Event id: 5 Name: insideZone Object [Ds: 1, Zone: 0
Event id: & Name: stopped Object IDs: 1

" -
@6-12-84 11:28:1
194 BROADWAYZCHIY

Eventid: 0 llame: stopped Object D336
Eventict 1 llame: getsOut Object IDs: 7,6

Event ic: 7 Name: entersZone Object IDs: 3, Zone:
Event id: 8 Hame: entersZone Object IDs: 3, Zone: 13
Event ic: 9 Name: exitsZone Object IDs: 3, Zone: 13

Event id: Z Name: exitsZone Object IDs: 1, Zone: 2
Event id: 3 Name: getsOut Object IDs: 3, Zone: 2
Event id: 4 Name: exitsZone Object IDs: 3, Zone: 0

Event id: 0 Hame: putsDown Object IDs: 3, 1
Event id 1 Name: waiting Object IDs:

Eventid: 0 lame: stopped Object IDs: 1

Figure 3.1: Annotated Frames from ETISEO Sequences
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e Stops the change in object position for the last k frames is belaivan thresh-

old +/- 5.

e Enters_ROI: first part of the vehicle in the zone until the whole vehidenside

zone OR first foot inside zone for a person +/- 5 frames.

e Exits_ROI: first part of the vehicle outside zone until the whole vehisloutside

zone OR last foot inside zone for a person +/- 5 frames.
e Enters_vehicle the person disappears in the vicinity of the vehicle +/- 5.
e Exits_vehicle the person appears in the vicinity of the vehicle +/- 5.
e puts_down: last frame carried object is connectesith the person +/- 10 frames.
e picks_up: 1st frame the carried object is connecieith the holder +/- 10 frames.

In our system, we model other events as simple scenariogj(eesee of two or three
primitives). In the following, we list these scenarios ajamith its components based

on ETISEO definitions and other assumptions we made.
e inside_zone

— Variables Vehicle: V, ROI: R
— Primitive Events P1: EntersROI(V,R), P2: Exits ROI(V,R)

— Scenario insidezone:P1BeforeP2
e empty_area:

— Variables Vehicle: V, ROI: R

— Primitive Events P1: EntersROI(V,R), P2: Exits ROI(V,R)
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— Scenario emptyarea:P2BeforeP1
e getsin:

— Variables Vehicle: V, Person: P
— Primitive Events P1: movestowardgV,P), P2:EntersvehiclgV,P)

— Scenario getsn :P1BeforeP2

e getsout:

— Variables Vehicle: V, Person: P
— Primitive Events P1: Exits vehicl€V,P), P2:movesaway from(V,P)

— Scenario getsout :P1BeforeP2

e changeszone

— Variables Object: O, ROI: R1, ROI: R2
— Primitive Events P1: Exits ROI(O,R1), P2:EntersROI(O,R2)

— Scenario changezone:P1BeforeP2

Object O may be a person or vehicle.

e exchangeobject: the second person holds the object + 30 frames

— Variables Object: O, Person: P1, Person P2: R2
— Primitive Events P1: putsdown(P1, O), P2;picksup(P2, O)

— Scenario changeszone:(P1BeforeP2)Or (P1MeetsP2)
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3.1.2 Results

Based on the detection and tracking restjltsur system is used to model and detect the
set of events described on Table 3.1. The output of the systsonverted into XML

format, where for each event instance, the following attels are computed:
¢ Id: Integer characterizing the event, unique for a video clip,

e Name Name of the event (identification of the event). The listwém names to

recognize in a sequence is delivered with the video,

e Start and end time: Integers corresponding to First and last frame of event de-

tection,

¢ Physical objects List of physical objects ID involved in this event (Id of @ajs

used in the tracking phase),

e Contextual objects List of contextual objects ID involved in this event (Id of

objects described in the context, provided with the videia dat),

The output was then evaluated by the ETISEO group and resel{srovided to each
participant. Two metrics based on the number of detectentewae provided, namely,

precision and sensitivity. For each sequence we define:

e The True Positive(TP) the system has detected a real event (exists in reference

data and results).

e The False Negative(FN)a real event has been missed by the system (exists only

in reference data).

IWe thank Son Dinh Tran for providing us with the detection fradking results.
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e The False Positive(FP)the system has detected a situation that is not real (exists

only in results).
e Precision TP /(TP + FP).
e Sensitivity: TP /(TP + FN).

Table 3.2 shows the detection results for sequence ETI-ASA-1, First Camera.
Table 3.3 summarizes the detection results for all seqeefceshown in these tables,
good recognition results are obtained. A precision valué.of is obtained for all
sequences - no false positives are detected. On the othdr tiensensitivity is not
as good as precision - a value @f76 is obtained, which means that a large number
of false negatives has been detected by the system. Thisecarptained by the high
dependency of the event detection module on results provigelower level vision
modules, the background subtraction and tracking. We heefaund that most of
these false negatives asdopsandMovesevents that have not taken place but detected
by the event detection module. The thresholds set by the de¢ection module for the
Stopsand Movesevents are domain-dependent. The current thresholds areetd by
training on other longer videos and hence resulting in lang@mber of false negatives

when applied to the Etiseo videos.

3.2 Traffic Intersection Monitoring

We applied our system to monitor a traffic intersection. Quppse is to analyze pedes-
trians and vehicles behaviors and detect and record tradliations as they occur; traffic
citations could then be issued to vehicle owners. This asobe used as a tool to ana-

lyze video archives to study pedestrians and vehicle belsin the intersection; based
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Table 3.2: ETISEO Results for Sequence ETI-VS2-AP-11, C4

Results for scenario emptyarea

True Positives 2
False Positives 0
False Negatives 0
Precision 1.00
Sensitivity 1.00

Results for scenario enterszone

True Positives 2
False Positives 0
False Negatives 0
Precision 1.00
Sensitivity 1.00

Results for scenario insidezone

True Positives 2
False Positives 0
False Negatives 0
Precision 1.00
Sensitivity 1.00

Results for scenario stopped

True Positives 1
False Positives 0
False Negatives 1
Precision 1.00
Sensitivity 0.50

Overall Performance for ETI-VS2-AP-11-C4

Number of True Positives 7
Number of False Positives 0
Number of False Negatives 1
Precision 1.00
Sensitivity 0.88
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Table 3.3: ETISEO Performance Results for All Sequences

Performance results for ETI-VS2-AP-11-C4.xml is:

Number of True Positives 7
Number of False Positives 0
Number of False Negatives 1
Precision 1.00
Sensitivity 0.88
Performance results for ETI-VS2-AP-11-C7.xml is:

Number of True Positives 7
Number of False Positives 0
Number of False Negatives 1
Precision 1.00
Sensitivity 0.88
Performance results for ETI-VS2-RD-6-C7.xml is:

Number of True Positives 2
Number of False Positives 0
Number of False Negatives 0
Precision 1.00
Sensitivity 1.00
Performance results for ETI-VS2-BE-19-C1.xml is:

Number of True Positives 5
Number of False Positives 0
Number of False Negatives 3
Precision 1.00
Sensitivity 0.62
Performance results for ETI-VS2-BE-19-C4.xml is:

Number of True Positives 9
Number of False Positives 0
Number of False Negatives 3
Precision 1.00
Sensitivity 0.75
Performance results for ETI-VS2-MO-1-C1.xml is:

Number of True Positives 4
Number of False Positives 0
Number of False Negatives 0
Precision 1.00
Sensitivity 1.00
Performance results for ETI-VS2-RD-10-C4.xml is:

Number of True Positives 4
Number of False Positives 0
Number of False Negatives 4
Precision 1.00
Sensitivity 0.50
Overall Performance results:

Number of True Positives 38
Number of False Positives 0
Number of False Negatives 12
Precision 1.00
Sensitivity 0.76
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on this analysis, redesign steps can be taken to reducesthefraccidents, for exam-
ple. Here, we define and detect three types of safety violamd compare them to the

expected normal behaviors. Specifically, we are interdstddtecting:
e Stop Sign Events Vehicles that stop at the stop sign and vehicles that dooyt s

e Road Crossing Events Pedestrians who cross the road using marked crosswalks

and those who don'’t use the crosswalks

¢ Right of Way Events. Vehicles that yield to pedestrians in crosswalks and those

that don'’t yield to pedestrians

In the following, we will define these events and show somesarmental results.

3.2.1 Event Definitions

In this section, we will discuss the representation of tladfitr intersection events in
our Petri nets framework. The primitive library used has minnitive events, which
are: "Appears Disappears Moves Stops EntersROI, Exits ROI". Figure 3.2 shows
the Petri net representations of the traffic intersectiames: A place marked with * is
the output place for the event.i.e. tokens in this placeasgmt recognized instances of

the event.

Stop Sign Events Figure 3.2a shows the Petri net representation of the eyenthi-
cle stops before the stop sign”. It has two variables, R wheghesents the ROI where
vehicles should stop before the stop sign and V which reptesbke vehicle. It also has
3 primitive eventsEntersROI(R,V), StopgV) and Exits ROI(R,V). A vehicle entering

the region R and stopping before leaving the region shouisfgahis event model.

51



To detect vehicles that do not stop at the stop sign, we mbiehs a negative event
whose limiting event i€xits ROI(R,V). Normal behavior and violation can be modeled

as follows:
e Variables Vehicle:V, ROI:R

Primitive Events P1: EntersROI(V,R), P2:StopgV), P3: Exits ROI(V,R)

Temporal Relations T1:P2BeforeP3, T2NOT(P2) BeforeP3, T3:P1BeforeT1,

T4:P1BeforeT2

Normal Behavior N1(V,R):T3

ViolationV1(V,R): T4

Road Crossing Events To cross the road legally, a pedestrian goes from one road sid
to another side using the crosswalk. If he does not use tisswadk, it is considered a
safety violation. This violation is modeled as a negativergwhose limiting event is
that the pedestrian changes the roadside without usingtisswalk. These events are

modeled as follows:
e Variables Pedestrian: P, ROI: crosswalk, ROI: roadsidel, ROI: rahassi

Primitive Events P1: Exits ROI(P,roadsidel), PZEntersROI(P,crosswalk), P3:

EntersROI(P,roadside?2)

Temporal Relations T1: P2BeforeP3, T2: NOT(P2) BeforeP3, T3: P1Before

T1, T4: P1BeforeT?2

Normal Behavior N1(P,crosswalk,roadsidel,roadside2): T3

Violation V1(P,crosswalk,roadsidel,roadside2): T4
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Figure 3.2b shows the Petri net representations.

Right of Way Events Pedestrians have the right of way over vehicles in crosswv#lk
vehicle arrives at the stop sign area after a pedestriats staissing the road using cross-
walk should not move until he leaves the crosswalk (normbabk®r). If the vehicle
starts moving while the pedestrian is still in the crosswils vehicle has committed a

violation. These events are modeled as follows:
e Variables Pedestrian: P, Vehicle: V, ROI: crosswalk, ROI: stopsigaar

Primitive Events P1: EntersROI(P,crosswalk), P2Exits ROI(P,crosswalk), P3:

EntersROI(V,crosswalk), P4Exits ROI(V,crosswalk)

Composite EventsC1: N1(V,stopsignarea)

Temporal RelationsT1: P1BeforeP2, T2: P3BeforeP4, T3: T2During T1

Normal Behavior N3(P,V,crosswalk,stopsignarea):OlerlapsC1

Violation V3(P,V,crosswalk,stopsignarea): T3

Figure 3.2c shows the Petri nets representations.

3.2.2 Preprocessing

The low level processing includes the background subtmacind the tracking. In our
system, we used an adaptive background subtraction tashtigsegment foreground
regions from the background. Adaptive background subtmadechniques, in gen-
eral can adapt to slow changes of illumination by recurgiwugldating the background
model. We use the kernel density estimation method destitbpl7] to model back-

ground pixels. The model keeps a sample of intensity valueséch pixel in the image
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Exits_ROI

Enters_ROI (P,roadsidel)

(V,stopsignarea)

Enters_ROI
(V,stopsignarea)

Exits_ROI
(P,roadsidel)

Stops(V) Enters_ROI

Stops(V) (P.crosswalk Enters_ROI.

Exits_ROI
(P,roadside2)

(V. stopsignare
a)

Enters_ROI
(P.crosswalk

)

* *

Enters_ROI

Exits_ROI (P.roadside2)

(V,stopsignarea)

a. Normal b.Violation a. Normal b.Violation

(a) Stop Sign Events (b) Road Crossing Events

Enters_R!
(P,crosswalk)

Enters_ROI
(V,crosswalk)

Enters_ROI
(V,stopsignarea)

Exits_ROI

(P,crassw k)
(V,crosswalk)
Exits_ROI

Stops(V))

Exits_ROI (P,crosswalk)
(V,stopsignar

ea)

b. Violation

a. Normal
(c) Right of Way Events

Figure 3.2: Traffic Monitoring Events

and uses this sample to estimate the probability densitgtifum of the pixel intensity
using kernel density estimation. The model can handletsittswhere the background
of the scene is cluttered and not completely static but @esitsmall motion due to
moving branches and bushes. The model is updated contiiyuemcs therefore adapts
to changes in the scene background. Blobs are constructactbynected component
module that groups foreground pixels into correspondingsl

Tracking objects through the scene is done by finding coomdgnce between ob-
jects in two consecutive frames. These correspondencegtmenined by finding over-
lapping blobs in these two frames, assuming that the chagtgeelken consecutive frames
is limited. Occlusions and object interactions lead to biwrging and splitting making
the tracking complex. In our system, we keep a list of theentrentities. An entity is
either a single object or a group of objects whose blobs argede

For the current frame, and for each blob, we find all entitieg bverlap with this
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blob in the previous frame. If the blob overlaps a singletgntinen this entity’s current
position is updated to reflect this new data. If the blob @a@sIimore than one entity,
this signals either an occlusion or objects becoming neamt another. Once this
merge is detected, a new entity is created and added to th# bsrrent entities. The
overlapping entities are also removed from the list and dddechildren for the new
entity. An appearance-based model is built for each enétgre removing it and stored
in the new entity to be used in matching entities when thel. dpimore than one blob
overlap a single entity, there are two possibilities. If éméity represents a single object,
this means that object fragmentation has occurred andsrcése, we consider the new
object bounding box as the union of these blobs’ boundingbo¥hereas if the entity
represents more than one object, i.e. group split, we neegstore the identity of each
object after the split. Since we are storing the appeararasketa before merging, we
can match these models with the current blobs’ appearancelmeo that each blob
describes a single entity before merge.

Figure 3.3 shows an example of merging and splitting witleots being correctly
matched before a merge and after a split. We ignore all bldiisse size is below a
threshold. Two blobs are said to overlap if the overlap ased least 50% of the smaller
blob.

Generally, using only blob information to track objects hastations. This can be
enhanced by augmenting the tracker with object locationsiraghe estimator such as
Kalman filter to predict position and shape of the object.

Object classification is based on the geometry of the ohje@mly the aspect ratio
of height and width of the object bounding box. Training data provided to the clas-
sifier off-line and objects are classified into the followiclgsses: pedestrian, vehicle,

large vehicle (e.g. buses and trucks) and bicycle.

55



Figure 3.3: Tracking Results
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3.2.3 Results

The system has been tested on a 14-minute video stream editom a fixed camera
monitoring a traffic intersection. The system is used to rhaded detect all types of
normal behaviors and violations described in Section 3Qrice a violation is detected,
an alert is made by the system displaying the vehicle or thegiean committing the
violation and the time when it happens.

Figure 3.4 shows 2 recognized instances of Righ¥Way event. In figure 3.4a,
pedestrian 20 enters the crosswalk region in frame 344. Véleicle 21 enters the stop
sign marked region in frame 367, stops in frame 404 but doekawe until pedestrian
20 leaves the crosswalk region in frame 479 - normal behalidigure 3.4b, pedestrian
315 enters the crosswalk region in frame 20558. Then veBifeenters the crosswalk
in frame 20576. The vehicle does not give the right of way ®pbkdestrian and con-
tinues moving until it leaves the crosswalk in frame 2060 %io¢ation. Pedestrian 315
leaves the crosswalk in frame 20733.

We compared the system results with ground truth for the inies video. The
comparisons are shown in Table 3.4. From this table, we wbsbat more than 50%
of the total number of vehicles do not obey the stop sign rike .system was able
to detect about 80% of these violations. Errors in objectsifecations and threshold
selections explain the missed instances. Also, about 25¥eqgbedestrians do not use
the crosswalks to cross the road. The system is able to ddtesstances with a few
false positives. Bicycles classified as pedestrians anihdesith a group of pedestrians

as a single pedestrian explain these false positives.
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(b) Violation

Figure 3.4: Right of Way Events



Table 3.4: Traffic Intersection Event Detection Results

Event Name True False False

Positives Positives Negatives

Vehicles stop before stop sign 21 3 0
Vehicles don’t stop before stop sign 22 5 0
Pedestrians use crosswalks 26 5 0
Pedestrians not using crosswalks 10 0 3
Vehicles not yielding to Pedestrians in crosswalks 2 0 1

3.3 Conclusion

We have applied the system to different natural videos tedletvents with increasing
level of complexity ranging from primitive events involgrone object to more complex
events involving multiple objects and multiple logical aethporal relations. In the first
set of experiments, we applied our system on a dataset ab gelguences whose length
ranges from 800 frames to 3000 frames. In these sequeneaxdhired events to be
detected range from single primitives to simple sequenté&am or three primitives.
In the second set of experiments, we applied our system ongetovideo sequence
(25200 frames) to detect events and violations performed by pedestrinds/ehicles
in a traffic intersection. Events in this case are more corguhel include multiple actors
and multiple logical and temporal relations.

We have tested the system into 2 modes - offline mode, andeomiode. For the

first set of experiments, we have:
e The detection and tracking results are pre-computed.

e Event definitions and other contextual information are et in XML format
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to the system.

e The output of the event detection and recognition moduletsmsbeen written to

XML format. The video sequences are then annotated by tlessits.
For the second set of experiments (monitoring traffic irgetion), we have:
e The detection and tracking are performed online by the syste

e Event definitions and other contextual information are mtegt through the GUI

of the system.

e Whenever a violation is detected, an alert is displayed erstihheen showing the

vehicles and pedestrians involved in the violation.

We have also shown that the system performance depend$fmalower level vi-
sion modules (e.g. detection and tracking). Any enhanceprethese modules should
also enhance the system performance. Independence ofavigihelvent detection and
recognition modules from lower level vision modules makeplgng these enhance-

ments -once available- an easy task and does not require changes in the code.
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Chapter 4

Carried Object Detection

4.1 Introduction

One important problem in understanding human activities getect whether a person
is carrying an object or not at different times. For examgle, person is carrying an
object at time t1 and not carrying it at time t2, we can infetttine person has dropped
the object or give it to another person between times t1 andAt®ther problem is
detecting left packages in public places. Detection ofpeftkages is among the goals
of many visual surveillance systems of these places forrgg@nd safety concerns. In
some cases, the left package can be detected by the backgrmdeling component
of the surveillance system [14, 15, 16, 17, 18]. On the othedhif the package is left
in an unseen place (e.g. behind a pillar or in a trash binj these methods will fail to
detect it. In this case, we can infer that a package is befhd ige detect that a person
is carrying a package at one time and not carrying it at a tates.

Examples where the second approach can be useful inclufi@ithveing. A person
enters a room carrying an object, deposits the object amdatter a short time he exits

wearing the same clothes but without the object. Anothemgtais a person in a public
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place is observed by one or more cameras, then he disappearsHort period of time
(e.g., behind a pillar) where he drops or picks up an objedtlanreappears. Even
in cases where this person is continuously observed, he mogyat pickup objects
in places not easily observed by surveillance cameras (@.@ trash bin). In these
examples, direct detection of the left object itself is nosgible, but could be inferred
by deciding whether the owner is carrying an object at a gtirae but not carrying it
at a later time.

In this part of the thesis, we present two approaches to thedekage detection
problem. We assume we have different instances of the samerpwithin different
cameras and at different times, and that the time sepata¢itveen different instances
of the same person is small, so that he does not change clmhgsen these instances.
Both approaches poses the problem as a classification probléhe first approach,
direct classification of silhouettes, classifies the sulgjeilhouettes for each instance
directly to determine whether he is carrying an object or. nbihe second approach,
appearance change detection, determines whether thesgyisfecant change in human
appearance between two different instances or not thattrbegtue to an object being
carried at one time but not the other. If there is a significdrange in the human
appearance, additional analysis is conducted to decidéheththe person has dropped
an object or acquired one from the scene.

For both approaches, we trained SVM classifiers [19] on arlboy database that
contains examples of people seen with and without two comoibggcts, namely back-
packs and suitcases. We used a boosting technique, AdaROjsto select the most
discriminative features used by the SVMs and to enhancedtermance of the classi-
fiers. We give recognition results for each approach and ¢berpare both approaches

and describe the advantages of each one.
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The rest of the chapter is organized as follows. Section ¥giges background
information about some theoretical methods used in thisgdhe thesis, namely Sup-
port Vector Machines, AdaBoost and integral images. Wertdasthe database used in
training the classifiers in section 4.3. The preprocessieg ssed by both approaches
is discussed in section 4.4. We describe the first approaddtt atlassification of sil-
houettes, in section 4.5. The second approach, human agperehange detection, is

discussed in section 4.6. Section 4.7 compares the res$ldtgtloapproaches.

4.2 Background

4.2.1 Support Vector Machines

SVMs were originally introduced by Vapnik and co-workers9]land successfully
extended by a number of other researchers. SVMs belong tolalss of maximum
margin classifiers. They perform pattern recognition betwavo classes by finding
a decision surface that has maximum distance to the closastispn the training set
which are termed support vectors [48]. We start with a tregrget of points; € I R",
1=1,2,....; N where each point; belongs to one of two classes identified by the label
y; € {—1,1}. Assuming linearly separable data, the goal of maximum manigs-
sification is to separate the two classes by a hyperplane thattihe distance to the
support vectors is maximized. This hyperplane is calledotiiemal separating hyper-

plane (OSH). The OSH has the form:

¢
f(x) = Z Q;YiX; X + b, (4.1)
i=1

The coefficientsy; and theb in Eqg. (4.1) are the solutions of a quadratic programming

problem. Classification of a new data poiis performed by computing the sign of the
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right side of Eq. (4.1). In the following we consider the etip@

Zle oYX X + b
4
122y cayixil|

where the sign of d is the classification result for x, &fids the distance from x to

d(x) = 4.2)

the hyperplane. Intuitively, the farther away a point isfirthe decision surface, i.e. the
larger|d|, the more reliable the classification result.

The entire construction can be extended to the case of reamlgeparating surfaces.
Each point x in the input space is mapped to a peiat ®(x) of a higher dimensional
space, called the feature space, where the data are selpayaehyperplane. The key
property in this construction is that the mappib@) is subject to the condition that the
dot product of two points in the feature spakér).®(y) can be rewritten as a kernel

function K (x, y). The decision surface has the equation:

¢
f(z) = Z v K (X, X;) + b, (4.3)
i—1

again, the coefficients; andb are the solutions of a quadratic programming problem.
Note thatf(x) does not depend on the dimensionality of the feature space.

An important family of kernel functions is the polynomialrkel:
K(z,y) = (1+z.y)", (4.4)

where d is the degree of the polynomial. In this case, the corpts of the mapping

®(x) are all the possible monomials of input components up toesedr

4.2.2 Feature selection by AdaBoost

The AdaBoost classifier can be used to boost the classificpdormance of a simple
learning algorithm (e.g. a simple perceptron) [20]. It dtes by combining a collec-

tion of weak classifiers to form a stronger classifier. Ada®3aalls a weak classifier
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Given: (F1,Y1)sex s (T ym) Wherez; € X gp € Y = {—1, +1}
Initialize Dq (i) = 1/m.
Fort=14aaa 1"

e Train base learner using distribution Dk,
e et base classifier g = X —+ R
e Choose o €

e Update:
. Dyld) expl—cepyiha(0:))
Diyafi) =
Zi
where Zg 1s a normalization factor (chosen so that Dy will be a distribu-
Lon).

Output the final classifier:

H(z) =sign ((imhiaﬂl) .

Figure 1: The boosting algorithm AdaBoost.

Figure 4.1: The AdaBoost algorithm for the binary classtiaatask

repeatedly in a series of rounds= 1,2, ...,7. For each call, a distribution of weights
D, is updated that indicates the importance of examples indteskt for the classifica-
tion. On each round, the weights of each incorrectly classiéixamples are increased,
so that the new classifier focuses more on those examplesldtthm for the binary
classification task is shown in figure 4.1 [20].

On the other hand, AdaBoost can also be used as a featureé@etechnique [49].
In this process, each feature is treated as a weak clasgifierresult each stage of the
boosting process, which selects a new weak classifier, caielved as a feature selec-
tion process. On each round, AdaBoost chooses the featthvgéhei best classification
performance for the current boosting distribution. Theghéing distribution for the
training examples is updated to reflect how well every examals classified. The final

strong classifier is a weighted combination of weak classifiehe AdaBoost algorithm
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* Given example imageg(yi) , ... , &n,¥n) Wherey; = 0, 1 for negative and positive
examples respectively.
= Initialize weightswy ; = 1/(2m), 1/(2) for training examplé, wherem andl are the
number of negatives and positives respectively.
Fort=1...T
1) Normalize weights so thakis a distribution
2) For each featuretrain a classifieh; and evaluate its err@grwith respect tav,
3) Chose the classifief with lowest error.
4) Update weights according to:

W =W, B 6

wheree = 0 isx; is classified correctly, 1 otherwise, and

ﬂt 1_£t

» The final strong classifier is:

0 otherwise ,Bt

T 1o
h(x) = {1 Zt:lat ht (x) 2 EZt:lat , where a.= Iog(i)

Figure 4.2: A variant of AdaBoost for aggressive features@n

adapted for feature selection process is shown in figure 492 [

4.2.3 Integral Images

Rectangle features can be computed very rapidly using amnidiate representation
for the image; the integral image [49]. The integral imageation x; y contains the
sum of the pixels above and to the left of x; y, inclusive:
ii(ry) = Y iehy); (4.5)
' <z,y'<y
whereii(x; y) is the integral image andz; y) is the original image (see Figure 4.3.a).

Using the following pair of recurrences:

s(xyy) = s(zyy — 1) +i(z;y) (4.6)
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ii(z;y) = ii(z — Liy) + s(z;y) (4.7)

(wheres(z; y) is the cumulative row suns(z; —1) = 0, andii(—1; y) = 0) the integral
image can be computed in one pass over the original imagegUise integral image
any rectangular sum can be computed in four array refereaapsthe sum of the pixels
within rectangle D in Figure 4.3.b can be computed @84) + 4i(1) — 4i(2) — i(3)

. Clearly the difference between two rectangular sums cazobeguted in eight refer-
ences. Since the two rectangle features defined above emadjacent rectangular sums
they can be computed in six array references, eight in the chthe three-rectangle

features, and nine for four-rectangle features.

4.3 Database

Our database contains 180 training examples recorded ikettielab [50] using 25
subjects, 2 bag types (backpack and suitcase). These eemamgl generated from se-
guences recorded using two cameras. We divided the datésenio two subsets, the
backpack dataset that contairt¥) training examples and the suitcase dataset that con-
tains80 training examples. The combined dataset is the union oktthes sets. We
assume the default walking direction is fronto-parallenfrright to left with possible
small variations in the view angles. We have no restrictiooud how the subjects are
carrying the bags. Figure 4.4 shows examples from the baklgstaset where subjects
are carrying the backpack either on both shoulders or onamdyshoulder. Figure 4.5
shows examples from the suitcase dataset where subjedtsldneg their bags with the
hand facing the camera or the other hand. Both figures alse slightly different view
angles.

We performed background subtraction for all data using tuebook BGS method
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(@)

(b)

Figure 4.3: (a) The integral image at location (x; y) congaime sum of the pixels above
and to the left of (x; y), inclusive. (b) The sum of the pixelghin rectangle D is

computed asii(4) + i(1) — i(2) — i(3)
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Figure 4.4: Examples from Backpack Dataset Showing DiffeWays of Holding the
Backpack

69



-

{a) Left Hand

{b) Right Hand

Figure 4.5: Examples from Suitcase Dataset Showing DifiteYéays of Holding the

Suitcase

described in [51]. The frames in each sequence representegral number of walking
cycles (one or two walking cycle depending on the availal@itad We applied the

preprocessing described in section 4.4 to generate temspdasizes4 x 48 pixels.

4.4 Preprocessing

The purpose of the preprocessing step is to construct a &efpk each frame sequence
that captures its features in both space and time. In this Kieeach sequence, we use

the codebook background subtraction method [51] to exthecsilhouettes of the per-
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son in all frames. To construct a template of a predefined Bize I/, we resize all
the silhouettes to that size, align them to the silhouettegbr axis and then superim-
pose these resized and aligned silhouettes to obtain th@dtan To resize a silhouette
whose bounding box size s x w pixels to the predefined template sizedfx W
pixels, we rescale the height to H pixels and maintainingaiy@ect ratid: : w we cal-
culate the scaling factor for the width. For each resizdubsiétte of height/ and width
(H/h) x w, we calculate a major axis. We take the vertical line thasesghrough
the median of the silhouette pixels as this major axis. FEgu6.a and 4.6.b show the
background subtraction results for two sequences;thestigiience is for a person car-
rying a backpack and the second sequence is for the samenpathout the backpack.

Figures 4.6.c and 4.6.d show the constructed templatebdsetsequences.

4.5 First Approach: Direct Classification of Silhouettes

In this approach, we classify the silhouettes of a givengréssnstance into two classes:
person is carrying an object and person is not carrying agctbjn instance of a person
is represented by a set of frames captured at a given time byea gamera. We apply
this approach in the framework of the event modeling andgeition system. The GUI
of the system is used to mark regions in the scene, and thensysttasked to detect
whether people accessing those regions are carrying antoljegperson entering this
area is tracked until he exits the area. We approximateydlie detected silhouettes of
the person and then generate features describing the dlgijiheuette, as described in
Section 4.6. The features in this case are an occupancy s@ptones’ maximum run
length map and zeros’ maximum run length map. From the geeteraaps, we create

the feature pool to be used by the classifiers.
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Figure 4.6: (a) Some frames of a sequence of person carrybaglgpack with BGS
results (b) Some frames of a sequence of person not carrybagkpack with BGS

results (c) Template for sequence a (d) Template for seguenc
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Backpack

Suitcase

Occupancy Count Ones’ Maximum Zeros' Maximum
Map Run Length Map Run Length Map

Figure 4.7: Feature Maps for First Approach

4.5.1 Features for Classifiers

Figure 4.7 shows the three feature maps used in this approach

Occupancy Count Map

The first feature map is the occupancy count map, where the wdlaligned pixel (x,y)
represents the ratio between the number of frames wherpikgkis foreground to the
total number of frames.

wheres denotes the template namy, is the total number of frames in templatand

1; if (x,y)is foreground in frame i
0; otherwise

73



Ones’ Maximum Run Length Map

For each pixel in the aligned silhouette, we compute the mari run length of ones.

Zeros’ Maximum Run Length Map

For each pixel in the aligned silhouette, we compute the mari run length of zeros.

4.5.2 The Feature Pool

We create three feature maps for every instance of the pdrsstead of using the values
of these maps directly by the classifier, we divide each mapawmerlapping blocks of
different sizes and different aspect ratios. The featuseg#ch block are the averages
over these blocks. To speed up the computation of thesengetéeatures, we use the
integral image representation proposed by [49] and desttiibsection 4.2.3.

For each of the three feature maps, we compute the corresgpimtiegral image.
We use these integral images to compute features for ditfétecks.

To generate the feature vector for each training exampkynaimg template size
48x64, we used blocks of sizes ranging fr8nx 8 to 32 x 32, aspect ratios of : 1,

1:2and2: 1 and step sizes of 4 and 8. This results in 915 blocks for eagh ma

4.5.3 Experiments

In this section, we have three test configurations: the kedkfest, the suitcase test, and
the combined backpack-suitcase test. We start by evatuidenperformance of the sup-
port vector machine classifier on the carried object dedrain each test configuration

using two different sets of features:
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e Features from the occupancy count map only; we call the ifilrse this case

OC-classifier.

e Features from the three feature maps; we call the classiftbis casdextended-

OC-classifier.

Following that, we evaluate the performance of each clasifi performing feature
selection through AdaBoost followed by the support vectachine classifier. We also
discuss the best features selected by the AdaBoost featiew .

We used 5-fold cross-validation to estimate the genetadiaaerror of the classi-
fier [52]. In ak-fold cross-validation, the data set is divided irtcsubsets of (ap-
proximately) equal size. The classifier is trainedimes, each time leaving out one
of the subsets from training, but using only the omitted stilbs compute the error

criterion [52].

Support Vector Machine Classifiers

The results for the OC-Classifier and the Extended-OC-@iasssing support vector
machines only are summarized in Table 4.5.3.

As shown from this table, the performance of both classifessgnificantly better
for the suitcase case compared to the backpack case. Thieaatplained as follows.
For the backpack case, the subject can hold the backpacKenedit ways, i.e. on one
shoulder: near or away from the camera, or on both shoultersize of the backpack
blob varies. This also occurs due to the slightly differeietwangle. For example, in
Figure 4.8, the number of the pixels occupied by the backpaékkample 1 is much
less than the case of Example 2. We can note that, for Exampteisldifficult to

distinguish between the person with or without the backpack

75



Backpack Suitcase Conbined

OC-Classifier 82% 93% 88%
Extended-OC-Classifier 85% 90% 89%

Table 4.1: SVM Recognition Rates on Training Datasets for-@&ssifier and
Extended-OC-Classifier.

The suitcase classification problem is the opposite of tlekpmeck classification
problem: Again, in the suitcase case, the subject can heldutcase in different ways,
i.e. near or away from the camera. The shape of the suitcase#isachange due to the
variations of the view angle. Figure 4.9 shows two exampias fthe suitcase dataset
with the occupancy count maps representing the person withwéthout the suitcase.
The suitcase position is clear, regardless of the positidhesuitcase relative to the
camera or person.

On the other hand, there is a slight change in the performahitee OC-Classifier
compared to the Extended-OC-Classifier. Using features fhe ones’ and zeros’ max-
imum run length maps enhances the performance of the OGHaady 3% in the case
of the backpack and worsens the performance of the OC-fitadsy 3% in the case of

the suitcase.

Feature Selection Classifiers

Table 4.5.3 summarize the results for selecting the bestirfes using an AdaBoost
classifier and applying a support vector machine classifighe selected features. The
table shows that the feature selection classifier signific@mhances the performance
over the plain SVM classifier. The enhancement can be up to9%ptae backpack test

configuration.
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Example 1 Example 2

Bag No Bag No Bag

Figure 4.8: Examples from the backpack dataset with thepaocy maps

Example 1 Example 2

Figure 4.9: Examples from the suitcase dataset with thepzsay maps
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Backpack Suitcase Conbined

OC-Classifier 90% 97% 93%
Extended-OC-Classifier 96% 93% 96%

Table 4.2: AdaBoost&SVM Recognition Rates on Training Bata for OC-Classifier

and Extended-OC-Classifier.

Backpack Suitcase Conbined

Number of features 58 1 128

Table 4.3: Number of Features Selected by AdaBoost for Caa<fier.

Moreover, tables 4.5.3 and 4.5.3 show that the number ofteeléeatures is much
less than the original number of features (915 for OC-Cl@ssand 2745 for Extended-
OC-Classifier). The feature selection classifier reducesitimber of features by more
than an order of magnitude for the backpack and combineaéedigurations and se-
lects only one feature for the suitcase test configuratioresponding to the location of
the suitcase.

Figure 4.10 shows the location of the best selected feafareke backpack and
the suitcase test configurations for the OC-classifier. kF®@stitcase, the feature corre-

sponding to the location of the suitcase is the best featlest®d by AdaBoost.

4.6 Second Approach: Human Appearance Change De-
tection

We apply this approach in the framework of the event modeaimdjrecognition system.

The GUI of the system is used to mark critical regions in thensqe.g. regions around
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Backpack Suitcase Conbined

oC 27 1 44
1srun’ 6 0 27
Os run’ 10 0 43
Total Number 43 1 114

Figure 4.10: The OC-Classifier's best selected featurethéofa) backpack test config-

uration (b) suitcase test configuration
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trash bins, pillars or building entrances), and the systetasked to detect significant
appearance changes of people accessing those regionste€ba®nges in a person’s
appearance, we track the person from the moment he entersttbal region and back

in time to obtain a video sequence, which we will refer to a&s'Before’ sequence. We

also track the person from his exit from the critical regiond orward to obtain a video

sequence, which we will refer to as the ‘After’ sequence.

For each instance of the person, we approximately alignrdreds and then gen-
erate features that captures the shape and color informatithe person’s silhouette,
as described in Section . The features in this case are apaocy map and a color
codebook (based on a vector quantization of the set of calwlsfrequencies) at each
aligned pixel. To capture differences in shape and colavéen the ‘Before’ and ‘After’
sequences, we generate three maps, namely the occupafecgradie map, the code-
word frequency difference map and the histogram interseatiap. Finally, from the

generated maps, we create the feature pool to be used byatsifier.

4.6.1 Features for Classifiers
Occupancy Difference Map

To capture changes in the shape between the ‘Before’ andAftey’* sequence, we
compute the occupancy difference map as the differencedegtshe occupancy map
representing the ‘Before’ sequence and the occupancy npaesenting the ‘After’ se-

quence.

OCD’iff(xy y) = OCBefore(xy y) - OCAfter(xa y) (410)

The top row of figure 4.11 shows the ‘Before’, the ‘After’ arftetdifference oc-

cupancy maps of a person carrying a backpack in the ‘Bef@guence and not in the
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Backpack *

Before Difference

Suitcase

10 20 30 40

Figure 4.11: ‘Before’, ‘After’ and difference occupancy psafor (a) a backpack exam-

ple ,(b) a suitcase example

‘After’ sequence. The bottom row of figure 4.11 shows the stonthe suitcase luggage
type. As can be seen in these two examples, dropping the bdg te large change in

the person’s appearance that appears as a white (or blatkjthe difference map.

Codeword Frequency Difference Map

For each aligned pixglz, y), we compute a codeword frequency - the average number

of codewords per occurrence.

#Hcodewordsg(x,y)

(4.11)

wheres denotes the template namgcodewords, is the number of codewords in the
codebook of pixelz, y) andOC;(x, y) is the occupancy map value at pixel y).

One way to capture changes in the color between the ‘Befor@’the ‘After’ se-
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Backpack

. 30
Suitcase
40

50

60

Figure 4.12: (‘Before’, ‘After’ and difference codewordefiuency maps for (a) a back-

pack example ,(b) a suitcase example

guence is to compute the codeword frequency difference mé#peadifference between
the codeword frequency map representing the ‘Before’ secpiand the codeword fre-

guency map representing the ‘After’ sequence.

CCDiff(xv Z/) = CCBefore(xv Z/) - CCAfter ('TJ y) (412)

The top row of figure 4.13 shows the ‘Before’, the ‘After’ aritetdifference code-
word frequency map of a person carrying a backpack in thedesequence and not
in the ‘After’ sequence. The bottom row of figure 4.13 showes same for the suitcase
luggage type. As can be seen in these two examples, drogpenogl leads to a large

change in the person’s appearance that appears in theediéeemap.
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Figure 4.13: Histogram Intersection for backpack and asgexamples

Histogram Intersection Map

Another way to represent the color changes between two tgawpis to measure the
similarity between the codebooks representing correspgngixels in the two tem-
plates. We use the color histogram intersection as a meatsimilarity between these
two codebooks. The color histogram intersection was pregés color image retrieval

in [53]. The intersection of histograms h and g is given by:

d(h, g) — EA EB Zcrzii?((‘z‘(a‘v;v)c)v g(av bv C)) (413)

where| h | and| ¢ | gives the magnitude of each histogram, which is equal to the

occurrences of this pixel.

4.6.2 The Feature Pool

We have created three maps that describe the differencesdretwo different image

sequences of the same person. Instead of using the valuessefrinaps directly by the

83



classifier, we divide the image into overlapping blocks dfedent sizes and different
aspect ratios. The features for each block are the averagesh@se blocks. To speed
up the computation of these rectangle features, we usetidgraimage representation
proposed by [49] and described in section 4.2.3.

For each of the three feature maps, we compute the corresgpimtiegral image.
We use these integral images to compute features for ditfétecks.

To generate the feature vector for each training exampkynaimg template size
48x64, we used blocks of sizes ranging frém 8 to 32 x 32, aspect ratiosof : 1,1 : 2
and2 : 1 and step sizes of 4 and 8. This results in 915 blocks. Theresafor each
block are the averages taken over this block in the threefeahaps computed using
the integral images. The feature vector of each trainingngt@ is the concatenation of

the features of all blocks. This results in a feature vectdermgth 2745.

4.6.3 Experiments

In this section, we have three test configurations: the baakpest, the suitcase test,
and the combined backpack-suitcase test. We start by evejube performance of the
support vector machine classifier on the human appeararaegyehdetection on each
test configuration. Following that, we evaluate the perfamoe of the classifier that
performs feature selection through AdaBoost followed l® shpport vector machine
classifier. We also discuss the best features selected #\ddid@oost feature selector.
We used 5-fold cross-validation to estimate the genetadiaaerror of the classi-
fier [52]. In ak-fold cross-validation, the data set is divided irtcsubsets of (ap-
proximately) equal size. The classifier is trainedimes, each time leaving out one
of the subsets from training, but using only the omitted stilbs compute the error

criterion [52].
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Support Vector Machine Classifier

The results for the support vector machine classifier arensanized in Table 4.6.3. As
shown from the table, the performance of the SVM classifisigaificantly better for

the backpack case compared to the suitcase case. This is dueumber of factors:
(1) the backpack is always visible in all frames from at lears¢ side-view camera.
This is not true for the suitcase where the suitcase may hedext behind the person
in all frames in the side-view. (2) The location of the baakphehind the person’s
back makes its blob easily detectable from the person’s béaly For the suitcase, its

location overlaps with the person’s body and thus is ha@ldigtinguish.

Feature Selection Classifier

Table 4.6.3 summarizes the results for selecting the bastirkes using an AdaBoost
classifier and applying a support vector machine classifighe selected features. The
table shows that the feature selection classifier signific@mhances the performance
over the plain SVM classifier. The enhancement can be up to d9% the suitcase
test configuration. Moreover, the table shows that the nurabselected features is
much less than the original number of features (2745). Thwife selection classifier
reduces the number of features by more than an order of nuaignfor the suitcase
and combined test configurations and by more than two ordemagfhitudes for the
backpack test configuration. The next subsection discikseselected features for the

different test configurations.

Best Features for Human Appearance Change Detection

Table 4.6.3 summarizes the distribution of the best sedefg@atures among the three

main features: OMiff, CC_Diff, and Histogram Intersection. For the backpack test
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Backpack Suitcase Conbined

SVM 92% 78% 88%
AdaBoost and SVM 96% 88% 90%

Table 4.5: Recognition Rates on Training Datasets.

Backpack Suitcase Conbined

OC Diff 0 9 28
CC Diff 0 8 22
Hi st ogram 9 26 50

| nt ersecti on

Total Number 9 43 100

Table 4.6: Number of Features Selected by AdaBoost.

configuration, all of the nine best features belong to thaddimam Intersection. We
believe that this is because the backpack case is easilgif@dsdue to the reasons
described in the previous section. As the classificatioblpra becomes harder, as in the
suitcase and combined test configurations, the features¢ipand on the OMiff and
CC_Diff features becomes more important. Moreover, the nunolbeelected features
increases.

Figure 4.14 shows the location of the best selected featordise backpack and the
suitcase test configurations. It is interesting to see thiratie backpack case, one of the
best features is related to the person’s head location. goperarrying a backpack will
change his head position to accommodate the weight of tHegbak. As expected, the
features corresponding to the location of the backpack hedtitcase are among the

best features.
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Figure 4.14: (a) Best selected features for the backpatkoediguration (b) Best se-

lected features for the suitcase test configuration

4.6.4 Effect of Changes in Camera Viewpoints on Performance

In order to evaluate the performance of the change deteatiethod across large
changes in camera viewpoint, we used the Keck multi-petsgeab [50] to capture
sequences of walking people from multiple cameras at theedane. Assuming the
horizontal direction going from right to left is the zeroelition, Figure 4.15.a shows a
subject carrying a backpack captured from anglés$, 30, 45, —15, —30. Figure 4.15.b
shows a subject carrying a suitcase captured from atigles 30, 45, —15, —30, —60.
Using ‘Before’ and ‘After’ sequences captured from the same®/, we tested our clas-
sifier trained on the dataset described in section 4.5.1etiectia package drop/pickup
in each of the above directions.

The package drop/pickup was detected in the following times: 0, 15,30, —15

for the backpack(, 15,30, —15 for the suitcase, but not for the remaining directions.
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An intuitive explanation for this is the following. Most of¢ cases used in training
the classifiers are for near-fronto-parallel views. So,d@mall change in the view
angle (between -15 and 30), the location of some features mgsé¢he classifiers does
not change and hence the results are good. On the other hgrahamges in the view
angles results in changes in the location of the backpackitmrase with respect to the
subject’s silhouette and hence not detected by the classifie

Adding the view angle as a new feature to the classifiers, idirig on a larger
dataset containing different views of the subjects woulderthe approach scalable to

handle larger changes in the view angle of the subject.

4.7 Discussion

In this chapter, we have presented two approaches to théepnadf carried object de-
tection.

Comparing the results for both approaches, we can see #hatthe performance
is obtained for Extended-OC-classifier and the change tietedassifier- both of them
outperform the OC-classifier for the backpack case by 6%.h@mther hand, the OC-
classifier is outperforming the Extended-OC-classifier %y ahd the change detection

classifier by 9% for the suitcase bag type.

4.7.1 Backpack classification

Since the subject can hold the backpack in different wagson one shoulder: near or
away from the camera, or on both shoulders, the size of thgbak& blob varies. This
also occurs due to the slightly different view angle. Forregée, in Figure 4.16, the

number of the pixels occupied by the backpack in Example lushmtess than the case
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(b) Suitcase

Figure 4.15: Different viewpoints of a subject carrying &kjaack and a suitcase
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of Example 2.

We can note that, for Example 1, it is difficult to distinguisttween the person with
or without the backpack, corresponding to the Before andrAfequences respectively.
The backpack presence is more visible using the differeeatufes. In other words,
using the difference helps reduce the noise introducedépéhson’s body. This makes
the job of the change detection classifier easier than thel@ssifier. In addition, the
change detection classifier uses more features in thefatasisin process, i.e. histogram
intersection and the codeword count map. This further eéxplidne better performance
of the change detection classifier compared to the OC-&lxssThe change detection
classifier uses 9 features, all from the histogram intei@echap. Although the feature
pool contains all the features used by the OC-classifiere mbthem were selected by
the AdaBoost as important features for the change deteclassifier.

On the other hand, the Extended-OC-classifier can reachathe performance of
the change detection classifier by using about 40% of itsifeatfrom the ones’ and
zeros’ maximum run length maps. We believe that the Exter@i€etlassifier reaches
this high recognition rate since for the laboratory datalihekground subtraction re-
sults are usually good and hence features depending ongtétettics can be computed
efficiently. If the background subtraction results are paisese pixel statistics will not

be meaningful.

4.7.2 Suitcase classification

The case here is the opposite of the backpack classificatoditgm: Again, in the suit-
case case, the subject can hold the suitcase in differerg,vi@y near or away from
the camera. The shape of the suitcase can also change deeviarititions of the view

angle. Figure 4.17 shows two examples from the suitcassetatath the occupancy
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Example 1 Example 2

Before After Difference Before After Difference

The OC-Classifier and Extended-OC-Classifier fail to All classifiers can detect the change.
detect the change.

The change detection classifier has detected the
change.

Figure 4.16: Examples from the backpack dataset
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count maps representing the '‘Before’ and the "After’ seq@snand the difference oc-
cupancy map.

The person’s legs usually interfere with a large numberxélgiof the suitcase. This
makes large parts of the suitcase treated as body parts¢askeef the change detection
classifier, as shown in Figure 4.17 in the Difference subégur

Since both the OC-classifier and the Extended-OC-classifierthe same selected
feature from the occupancy count map and the OC-classifteedorms the Extended-
OC-classifier, we will compare only the OC-classifier to tharmge detection classifier.
In the case of the OC-classifier, the suitcase position &rctegardless of the position
of the suitcase relative to the camera or person. The saifm@&sence is more visible
using the OC-classifier features. This makes the job of thecla€sifier easier than
the change detection classifier. Actually, it use only orauee, which captures the
position of the suitcase, to achieve its higher accuracyth@rother hand, the change
detection classifier uses 43 features from the three featapes, 9 of them is from the
OC difference map. Even with the use of these 9 features,dlse imtroduced by the

interference of the person’s legs cannot be handled by thiegehdetection classifier.
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Example 1 Example 2

Before After Difference Before After Difference

OC-Classifier and Extended-OC-Classifier have All classifiers can detect the change.

detected the change.

The change detection classifier fails to detect the
change.

Figure 4.17: Examples from the suitcase dataset
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Chapter 5

Experiments Il

In this chapter, we test the carried object detection metteglained in Chapter 4 on
videos captured at the Munich airpdtt These videos were captured during the day
where many people are moving around the scene and some iscead staged for
event detection purposes. Figure 5.1 shows one scene tgk2rcémeras where we
applied our analysis. The trash bin marked in the scene i@ bigesubjects to drop
their bags inside or behind, and then these bags are pickby their owners or other
persons.

We applied our analysis in the framework of the event modedind detection sys-
tem. Section 5.1 explains the Petri net event model for the@éxkage detection prob-
lem. The alignment procedure used to solve some of the segtimamerrors is discussed
in section 5.3. We report results for the first approach iniged.4 and the results for

the second approach in section 5.5. We discuss these rasdlt®nclude in section 5.6.

We thank Jan Neumann from Siemens for providing us with thiskeos
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(b)

Figure 5.1: (a)First camera view. (b)Second camera viewpdkt Scene Monitored by

2 Cameras
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Enters_ROI(p,r)

Build_Model(p, Before’)

-0

Compare_Models

Exits_ROI(p,r)

Build_Model(p, After’)
Figure 5.2: Petri Net for the Event 'Acce&OI’

5.1 Event Modeling

In our example application, we mark the region around thehtkan as a region of inter-
est. Then we define the event templdteess_ROI(p, r) from the two primitive events
P, = Enters_ROI(p,r) andP, = Leaves_ROI(p, ) joined by the temporal relation
P, BeforeP;, wherep andr are the person and the region variables that are bound at run
time. Figure 5.2 shows the Petri net representation of teatelccess_ROI(p, ). As
can be seen in that figure, detecting the primitiveters_RO1 initiates the process of
building a 'Before’ template of the subject entering the Rile detecting the primitive
Leaves_ROI initiates the process of building an ‘After’ template of shject leaving
the ROI. Once both templates are built, we apply our metheitlsgr classify each tem-
plate independently by the direct classification methodsoanbine both templates and
classify the resulting template by the change detectiorhomytto detect whether the
subject has abandoned an object in the ROI, acquired anngxiste or left with no

change.
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5.2 An Example

We applied our carried object detection methods on mangdigxamples. We used the
event modeling and detection system to detect people egtarid leaving the marked
ROI around the trash bin. Figure 5.3.a shows a frame from teedamera, where a
person is detected entering the ROI and 5.3.b shows the same from the second
camera. The person then drops the his backpack in the trashnchleaves the ROI.
The tracking results are overlaid on these frames to showelson trajectories before
and after accessing the ROI.

One problem is as figures 5.3.c and 5.3.d show, the segnmantasiults of the person
before entering the ROI and after leaving contains many&rrAs shown from these
figures, in some frames the complete silhouette of the pessetected while in other
frames some parts are not detected due to the complexitg aicbtne and the similarity
between the clothes colors and the floor tiles colors. Weyagplalignment procedure
to align the detected parts in a fixed size template to reftesit aictual position with

respect to the whole body, as discussed in section 5.3.

5.3 Alignment Procedure

In the training data captured at the laboratory, the scenkgoaund was simply empty
and only one subject is moving through the scene. This leagedd background sub-
traction results and simple tracking and hence good silttesi€an be obtained. In
contrast to this simple setting, for the airport data, thekigeound is more complex,
there are no frames of the empty scene to initialize a backgronodel, there are many
people walking around the scene, and other conditionsrgadibad segmentation and

inaccurate tracking. Hence, the assumption that goodsglites are available for ap-
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Figure 5.3: Airport Example
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pearance change detection is not typically valid. Figudeabshows examples of bad
segmentation where only parts of the silhouette are detecte

Figure 5.5 shows the procedure we use to align the detectesigiahe silhouettes
to reflect their actual position with respect to the comphaidy. Here we summarize
the procedure. The BGS is applied to select foreground piseleach frame. Blobs
are extracted by a connected component analysis and traglaamputing overlapping
bounding boxes.

From this tracking data, we compute the maximum heightraxz and maximum
width W _max of all tracked silhouette. We generate a template with heifar and
width W _maxz. We also estimate the walking direction of the subject agdilection
of the subject trajectory detected by the tracking modukingthis computed walking
direction, each tracked silhouette is positioned in theplate image to reflect the actual
position of the detected parts of the human body with reqpette whole body. Figure

5.4.b shows the silhouettes in 5.4.a after this alignment.

5.4 First Approach: Direct Classification of Silhouettes

We tested the direct classification of silhouettes on stbjieom the airport video. Us-
ing the event detection GUI, we marked two regions. The fastround the trash bin,
as discussed in section 5.2. The second is a randomly sglectggon on the empty
space of the airport floor. Detectiri§ people entering and leaving the specified ROIs,
we applied our analysis to detect whether each subject igiogra bag or nor before
he enters the ROI and after leaving it to identify people @iog or picking objects.
Here, we show the results for both the OC-classifier and thertebed-OC-classifier and

discuss these results. For each classifier, we show thegeésuivo ways. First, we
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alignment.omp

(a)
(h)

Figure 5.4: (a) Sample Blobs Tracked by Blob Tracking ModbleAligned Blobs to
o]l

. Connected
Original BGS Component Alignment |—>| P(good | silhouette) |——->| Ranking Selected
Frames Analysis Silhouettes

Figure 5.5: Alignment Procedure
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show the classifier performance in classifying each sulijetance as carrying a bag
or not. Second, we will show the results in terms of detedimegchange in the subject
resulting from dropping or picking up a bag while accesshegROI.

Tables 5.4 and 5.4 show the recognition rates for the ‘Bad?dg’ case for both
classifiers. The performance of both classifiers is comparaBoth classifiers detect
only 5 out of 18 cases where the subject has a bag (backpaaktocase)- (i.e. the
number of true positives is 5 and false positives is 13). Budissifiers also classify
almost all ‘No Bag’ cases correctly. For the OC-Classifiee tecognition rate is 57%.
For the Extended-OC-Classifier, the recognition rate is 58@mparing these results
to the laboratory data results in Chapter 4, we can see tla drep in the recognition
rates. This can be explained by the bad segmentation resittised from the airport

data compared to the good ones obtained from the laboratday d

Bag No Bag

Bag 5 13
Nobag O 12

Table 5.1: Recognition Results for Airport Dataset for OlagSifier - Format 1.

Bag No Bag

Bag 5 13
Nobag 1 11

Table 5.2: Recognition Results for Airport Dataset for Exted-OC-Classifier - Format
1.
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No. of Correctly Incorrectly

cases Classified dassified

Nobag-Nobag 4

4 0
Bag-Bag 7 6 1
Bag-Nobag 3 1 2

0 1

Nobag-Bag 1

Table 5.3: Recognition Results for Airport Dataset for OlagSifier - Format 2.

Tables 5.4 and 5.4 show the recognition rates for the ‘Chilm€hange’ case for
both classifiers. For the OC-Classifier, the overall rectigmrate is 73%. When there
is no change, 10 out of 11 cases are correctly classifiedgnéoon rate is 91%. When
there is a change, only 1 out of 4 cases is correctly classife@bgnition rate is 25%.
For the Extended-OC-Classifier, the overall recognitide r8 66%. When there is no
change, 9 out of 11 cases are correctly classified, recogmniite is 82%. When there is
a change, only 1 out of 4 cases is correctly classified, raiogmate is 25%. Although
the recognition rates is not good enough, we have found tmae<ases are classified
correctly but for the wrong reason. Many cases where theestilg carrying a bag in
the before and the after sequences, the bag is not detecbedhirsequences - so the

classifier decision is that there is no change.

5.5 Second Approach: Human Appearance Change De-
tection

For the example in section 5.2, we can see that the walkiregiitin of the person is not

the same in the before and the after sequences. In the firsraathe person is walking
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No. of Correctly Incorrectly

cases Classified dassified

Nobag-Nobag 4 3 1
Bag-Bag 7 6 1
Bag-Nobag 3 1 2

0 1

Nobag-Bag 1

Table 5.4: Recognition Results for Airport Dataset for Exted-OC-Classifier - Format
2.

in a near-diagonal direction in the ‘Before’ sequence andhealking fronto-parallel
in the after sequence. In the second camera, the person king/ditonto-parallel in
both the ‘Before’ and the ‘After’ sequences. To apply theegpnce change detection
procedure, we need both sequences to represent a similgrprieferably, the fronto-
parallel view. We discuss the view selection problem inise&t5.1.

Assuming the tracker is able to track the person for largebarraf frames, we need
to select around0 good silhouettes to apply the appearance change detectioedure.

We discuss the frame selection problem in section 5.5.2.

5.5.1 View Selection Problem

The performance of any image based appearance analydieieitly view-dependent.
Since we are detecting appearance changes resulting frgppidg or picking objects
like a backpack or a suitcase, these objects are most visti@a the person is walking
fronto-parallel to the camera plane. Detecting these appea changes also compares
the ‘Before’ sequence and the ‘After’ sequence and testshehéhe difference between

them is significant or not. For this comparisons to be meduinthe ‘Before’ sequence
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and the ‘After’ sequence should represent the same or althessame view of the
person, preferably fronto-parallel views.

We achieve this view-selection in the multi-camera systgmymamically selecting
the camera (or cameras) that capture the subject from thesmmoitar views. For each
camera, and for both the ‘Before’ and the ‘After’ sequenees estimate the walking
direction of the subject as the direction of the subjecettgry detected by the tracking
module. To perform the comparisons required to detect asing the appearance,
we compare only the ‘Before’ and the ‘After’ sequences with most similar walking
direction.

For the example in section 4.2, the person is walking in a-deayonal direction
in the ‘Before’ sequence and fronto-parallel in the aftequsnce, for the first camera.
In the second camera, the person is walking fronto-paradléloth the ‘Before’ and
the ‘After’ sequences. Thus, we compared the ‘Before’ segeeaptured by the sec-
ond camera and the ‘After’ sequence captured by both cam&traschange detection

module has detected the backpack drop in both cases.

5.5.2 Frame Selection Problem

Assuming we have applied the alignment procedure discuassettion 5.3 to all sil-

houettes produced by the tracker, then we need to selectleremmder of these frames
where the person’s silhouette is as complete as possiblegdhese frames for the
change detection procedure. For each aligned silhougtt®ability measure that es-
timates how good the silhouette represents a good one iglatdd. This measure is
calculated as follows. We build a database of about 600 wdties extracted from the
airport data. Each silhouette is labeled manually as godshdr For each silhouette,

we divide the silhouette into k horizontal strips of equaldtéh and compute a feature
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vector of length k, where the value of th& feature is the percentage of foreground
pixels in the;j™ horizontal strip. We train a classifier on these two clas3ésen for
each test silhouette, the classifier outputs the most plelzddss for that silhouette.
For each class, the classifier also estimates the posteobalpilities that this class was
the source of that silhouette, i.@(good|silhouette) and p(bad|silhouette). We use
p(good|silhouette) as the probability measure on which we rank the silhouefthen

we select the top k silhouette to be used for change deteamtialysis.

5.5.3 Results

In section 5.2, we provided an example from the airport dathdiscussed the view
selection problem and the frame selection problem. Fordraefection, we applied the
alignment process described in section 5.3 to both the f8end ‘After’ sequences,
ranked the frames and selected the top 20 frames in eachrsmgieeperform the anal-
ysis for appearance change detection. Figures 5.3.e arfasbd@vs the silhouettes in
figures 5.3.c (from the second camera) and 5.3.d (from thecirsera) after applying
this alignment process. We compared the ‘Before’ sequeaptured by the second
camera and the ‘After’ sequence captured by both cameraser@ing the features
and providing them to the SVM classifier, the change deteati@dule has detected
the backpack drop in both cases. We tested the appearanogectiatection on other
subjects from the airport video. Using the event detectibh, @e marked two regions.
The first is around the trash bin, as in the previous examgie.SEcond is a randomly
selected polygon on the empty space of the airport floor. dietpl5 people entering
and leaving the specified ROIs, we applied the same anatys@pare the appearance
of each person before and after accessing the ROI to idgredple dropping or picking

objects. Figure 5.6 shows a drop example and a pickup exarhalde 5.5.3 summa-
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No. of Correctly Incorrectly

cases Classified dassified

Nobag-Nobag 4

4 0
Bag-Bag 7 7 0
Bag-Nobag 3 2 1

1 0

Nobag-Bag 1

Table 5.5: Recognition Results for Airport Dataset for GimDetection Classifier.

rizes the classification results. The SVM classifier classidill cases where there is no
change (Nobag-Nobag or Bag-Bag) correctly. The classiferdetects 3 out of 4 cases
where a change takes place (Bag-Nobag or Nobag-Bag). Thecbahge that was not

detected by the classifier was due to very bad segmentasatise

5.6 Discussion

Moving to real world video required addressing problemshsag bad segmented sil-
houettes. Our frame alignment process tries to reduce Hagbeesults.

Using these real world data, we have compared the perforraihe first approach,
where we classify features computed using silhouettes mesgnstance directly to de-
termine if the person is carrying a bag or not to the perforreant the second approach,
where we classify features computed using silhouettesmgtainces of the same person
to determine if there is a significant change in the persqm®arance due to bag drop
or pickup or not. It has been shown that the change deteclassitier outperforms
both the OC-Classifier and the Extended-OC-Classifier. ¢aisbe explained by the

robustness of the change detection classifier to segmameatiors. Using the difference
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Figure 5.6: Examples from Airport Dataset
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Figure 5.7: Feature Maps from Airport Dataset
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removes the noise introduced by the segmentation errors.

109



Chapter 6

Conclusions and Future Work

6.1 Summary

The first part of the thesis describes a framework for modedimd recognition of events
from surveillance video. Our framework is based on deteistiminference using Petri
nets. Events are composed by combining primitive eventpesdously defined events
by spatial, temporal and logical relations. We described fyistem’s graphical user
interface (GUI) where such event models can be formulated.adomatic mapping
mechanism is devised to map each event structure into a Betiwihet models that rep-
resent the components of the event. Lower-level video msing modules (background
subtraction, tracking, etc.) are used to detect the oceceref primitive events. These
primitive events are then filtered by the Petri nets modetet¢ognize composite events
of interest.

We have evaluated the performance of the system acrossediffieatural scenes to
detect events with increasing level of complexity rangiranf primitive events involv-
ing one object to more complex events involving multipleeat$ and multiple logical

and temporal relations. In the first set of experiments, we lagplied our system on a
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dataset of video sequences provided as a part of ETISEOcprdjbe length of these
sequences range from 800 frames to 3000 frames. In thesersag) required events to
be detected range from single primitives to simple sequeatavo or three primitives.
In the second set of experiments, we applied our system ongetovideo sequence
(25200 frames) to detect and recognize events and viokperformed by pedestrians
and vehicles in a traffic intersection. Events in this casenaore complex and include
multiple actors and multiple logical and temporal relasion

In the second part of the thesis, we have addressed the pralfleetecting car-
ried objects. We have presented two machine learning aplprimadetect whether the
subject has an object at one time and not at another time. Wedpoth approaches
to the problem of left package detection. We trained SVMsifaess on a laboratory
database that contains 180 examples of people seen withigmabttwo common ob-
jects, namely backpacks and suitcases. A recognition fa26% was obtained in the
case of backpack§3% for suitcases antl0% for the combined case. Using a boosting
technique, AdaBoost, to select the most discriminativeufes, we reduced the number
of features used by the SVM classifier to less thahof the total original number of
features. We have also tested both approaches on videasedjpt the Munich airport.

We plan to refine and extend our work in the following ways:

6.2 Directions for Future Work

6.2.1 Event Modeling and Recognition

e Since uncertainty is inherit in video data, we plan to extend framework to
deal with these uncertainties. For Petri nets, there is atgteal of research

handling uncertainty in inference using them. Examplehliohe fuzzy Petri nets,
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possibilistic Petri nets and stochastic Petri nets. As giodlies are the most
intuitive and accepted measures of uncertainty, the safeeeirce capabilities of

Bayesian networks can be applied to Petri nets.

e Extend our event detection framework to deal with multipdeneras simultane-
ously as multiple camera-based visual surveillance systambe extremely help-
ful because the surveillance area is expanded and multighe imformation can

overcome occlusion and reduce uncertainties .

6.2.2 Left Object Detection

e Since any human appearance analysis method is inhereetiydeépendent, we
need to extend our approach by extracting other featurésatbandependent of

the camera view.

e Apply a similar classification approach to interpret a satgebody movement,
e.g. to determine whether his movement in a critical regemmlze interpreted as

a drop or pickup action.
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