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A setup has been designed and realized for the fabrication of Bragg Gratings in edge 

emitting semiconductor laser.  In this setup a HeCd laser (λ=325nm) is used in a Lloyd’s 

mirror configuration, to interferometrically expose a sinusoidal grating on photoresist.  

The dilution of photo-resistant (PR) material allows for a spincoat thickness of 50nm 

which is needed to minimize standing waves in the photo-resist that lead to a nonuniform 

exposure.  Variations of exposure time show the progression of photo-resist gratings.  

Etching recipes using both dry and wet etching techniques were successfully used to 

transfer the grating pattern into semiconductor material.  Bragg Gratings with Λ=250nm 

in InP and InGaAs have been characterized with an Atomic Force Microscope to have a 

grating height of over 100nm. 
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Chapter 1: Introduction/Motivation 
 
As we head into the future, technology will keep getting better, faster, and more cost-

effective.  Instead of sending an electrical signal through a copper wire, messages will be 

relayed by laser signals through waveguide material, like optical fibers.  As this change 

begins to take place, electrical components will need to be replaced by optical ones.   

One of the components that have been designed and studied for some time now is 

called Bragg Gratings.  This component can serve as a building block to manufacture 

optical filters and laser structures, namely Distributed Feedback (DFB) and Distributed 

Bragg Reflectors (DBR).  In turn these laser structures can be implemented in 

semiconductors to further explore other devices. 

DBR lasers have been successfully implemented with two “sampled grating” 

mirrors with 57nm nonthermal tuning at a 1.475μm wavelength [1].  To this widely 

tunable laser it has been reported that an Electroabsorption Modulator can be successfully 

integrated [2].  Also a Semiconductor Optical Amplifier has been successfully integrated 

with the laser and its characteristics examined [3].   

A successful fabrication of a high performance laser has been reported with the 

successful implementation of this DFB technology [4].  In another experiment by 

utilizing GaInNAs active-layer material and lateral DFB, singlemode emission has been 

realized at 1.5μm [5].  Also Wavelength-Selectable Lasers have been implemented by the 

use of DBR technology for realizing fast tunable lasers that can cover a wide range of 

wavelengths [6].  Even a wavelength-tunable organic solid state laser based on 2nd order 

DFB has been reported [7].   
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These are just a few of many successful implementations that can be realized with 

a DBR or DFB laser.  The advantage of having Bragg reflectors behave as mirrors in the 

lasing cavity is the tuning range it offers.  There exist even more successful 

implementations of Bragg Gratings in semiconductor not mentioned here.  By having the 

ability to make such devices we will be able to study some of these laser structures 

mentioned. 

The main goal behind the research presented in this thesis is to design and realize 

a robust setup where Bragg Gratings could be made at the telecommunication frequency.  

If another scientist can use this thesis as guide to either use the setup built or design a 

different one altogether then it has been successful.  This thesis is broken down into three 

subsequent chapters and the conclusion where all the results are summarized. 

Chapter 2 covers the theory behind two important topics of this project.  The first 

part discusses how Bragg Gratings on a waveguide cause a signal traveling in the forward 

direction to be partly reflected and partly transmitted.  The latter part details how the 

pattern needed to make gratings is realized by the interferences of two plane waves.   

In chapter 3, the groundwork for building such a robust setup is detailed.  It 

begins by discussing the implementation of the Lloyd’s Mirror to create the interference 

pattern on positive resist.  Then the path traveled by the Gaussian beam is examined in 

detail to ensure proper UV exposure of the sample.  Finally an added feature of the setup 

is presented as a way to measure the period of the gratings fabricated.   

Chapter 4 covers the process used for the fabrication and presents results achieved 

by setup realized.  The different steps of the process are discussed and studied in order to 

determine the best recipe for consistent, reproducible results.   
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Chapter 2: Theory 
 
This chapter discusses two essential subjects for this experiment to be realized.  The first 

analyzes how Bragg Gratings cause a signal to be reflected as it is traveling down the 

waveguide.  The grating period needed as calculated in the following section is 244.5nm 

making the fabrication out of reach of conventional lithography.  In the preceding 

section, the interference of two plane waves is discussed that will create a standing wave 

at the period calculated.   

 

2.1. Bragg Gratings 

2.1.1. Introduction 

The system to be studied in this section is a waveguide with gratings on top depicted in 

Figure 2.1.  Gratings can be thought of as a waveguide material with a sinusoidal pattern 

corrugated on top.  With the proper dimensions, a signal within a certain frequency 

bandwidth traveling down the waveguide will get reflected.   

A signal will diffract in the reverse direction when the Bragg Condition is met.  

That is, reflections from subsequent periods of the grating have to interfere 

constructively.  This is analogous to when a signal is reflected off a dielectric stack 

mirror.  The Bragg condition for an pth-order Bragg grating as defined later is: 

 
2
p

n
λ

Λ =  (2.1) 

where λ  is the wavelength of the signal in free space, n  the effective index of refraction 

of the waveguide, and Λ the fundamental period of the grating.  Only the first diffracted 

order (p=1) is considered in this thesis, since it causes the strongest diffraction. 
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Figure 2.1: 3D and 2D view of Bragg Gratings on top of a waveguide material.  The 
Bragg Gratings studied here can be thought of as a corrugated square wave on top of the 
waveguide.  Dimensions specified are used in analysis of the gratings. 
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Assuming a working wavelength of 1550nm, the period needed can be calulcated 

if we know the refractive index of the material used.  The semiconductor used in this 

experiment, Indium Phosphide, has an average index of refraction of 3.17 measured by 

[8].  This translates to a grating period of ( ) ( )1*1550 2*3.17 244.5nm nmΛ = =  

 

2.1.2. Periodic Waveguide 

There are different approaches used to study the behavior of gratings as different modes 

propagate down a waveguide.  Here we consider the gratings as periodic index 

perturbations in the waveguide in a similar analysis to both [9, 10].   

We begin the analysis from the well-known wave equation written as 

 ( ) ( ) ( )2
2

2

,
, eff

E r t
E r t r

t
με

∂
∇ =

∂

JG G
JG G G

 (2.2) 

where ( ) ( ) ( )eff r r rε ε ε= + Δ
G G G

 is the effective dielectric constant.  The latter part of this 

dielectric constant can be thought of as a perturbation to the waveguide.  In the following 

section it will be shown that the physical corrugation can directly determine εΔ .  That is 

the physical corrugation on top of the waveguide will be defined as ( ) ( )2
0r n rε εΔ ≡ Δ

G G
.  

The effective dielectric doest not vary with time and so we can plug into Eq.2.2 to get 

 ( ) ( ) ( ) ( ) ( )2 2
2 2

02 2

, ,
,

E r t E r t
E r t r n r

t t
με με

∂ ∂
∇ − = Δ

∂ ∂

JG G JG G
JG G G G

 (2.3) 

The right side of Eq.2.3 is dependent on the corrugation as defined by the 

perturbation part of the effective dielectric constant.  For the sake of generality let’s 

define the electric field as a superposition of the eigenmodes in a waveguide.   
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 ( ) ( ) ( ) ( )
0, , mi t z

m m
m

E r t U x y E z e ω β−= ∑
JG G

 (2.4) 

Here the modes have been separated into the propagating direction, z and the 

transverse direction.  Um is the mth transverse eigenmode that completely satisfies 

 ( )2 2 2 0T m m m mU r U Uω με β∇ + − =
G

 (2.5) 

Substituting in the definition of the electric field as a superposition of eigenmodes 

into the left side of Eq.2.3 will give us 

 ( ) ( )
2 2

2 2
0 0 02 2

m mi t z i t z
m m m m

m m

E E

EU E e U E e n
t t

ω β ω βμε με− −∂ ∂
∇ − = Δ

∂ ∂∑ ∑
JG JG

JG

����	���
 ����	���

 (2.6) 

 

( ) ( ) ( )
2 2

2
0 0 02 2

2
2

0 2

m m mi t z i t z i t z
m T m m m m m

m m
E e U U E e U E e

z t

En
t

ω β ω β ω βμε

με

− − −⎧ ⎫ ⎧ ⎫∂ ∂⎡ ⎤∇ + −⎨ ⎬ ⎨ ⎬⎣ ⎦∂ ∂⎩ ⎭ ⎩ ⎭

∂
= Δ

∂

∑ ∑
JG  (2.7) 

 

( ) ( )
2

2 2 2 0 0
0 2

0 2.5

2
2

0 2

2m mi t z i t zm m
m T m m m m m m

m Eq

E EE e U U U U i e
z z

En
t

ω β ω ββ μεω β

με

− −

= →

⎡ ⎤ ⎡ ⎤∂ ∂⎢ ⎥∇ − + + −⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦⎣ ⎦

∂
= Δ

∂

∑ �����	����

JG

 (2.8) 

Notice the slow varying terms are neglected, i.e. the second derivative of Em0 with 

respect to z as compared to the first.  Now the equation is reduced to a simple form 

 ( ) ( ) ( )
( )2

0 2
0 2

,
2 ,mi t zm

m m
m

E r tE z
i e U x y n

z t
ω ββ με−

∂∂
− = Δ

∂ ∂∑
JG G

 (2.9) 

Now we multiply both sides of the equation by the Us and integrate over the area 

of the waveguide.   

 ( )
2

20
0 22 mi t zm

m m s s
m

E Ei e U U dA n U dA
z t

ω ββ με− ⎛ ⎞∂ ∂⎛ ⎞
− = Δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑∫ ∫
JG

 (2.10) 
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One of the properties of the transverse eigenmode is that it is defined so each 

mode is orthogonal to each other and normalized such that 

 ( ) 2
m n mn

m

U U dA ωμ δ
β

=∫  (2.11) 

By taking advantage of this property Eq.2.10 can be rewritten as  

 
( )

( )

( ) ( )

2
20

0 2

2
20 0 0

2

22

4

m n

m

s s

U U dA

i t zm
m ms s

m m

bwd fwd
i t z i t zs s

s

E Ei e n U dA
z t

E E i Ee e n U dA
z z t

ω β

ω β ω β

ωμβ δ με
β

ε
ω

−

+ −

∫

⎛ ⎞⎛ ⎞∂ ∂
− = Δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂ ∂
− = − Δ⎜ ⎟

∂ ∂ ∂⎝ ⎠

∑ ∫

∫


���� JG

JG
 (2.12) 

This will give us a forward and a backward traveling wave as each value of m 

contains two terms involving Um.  For the electric field on the right side of Eq.2.12 we 

can plug in Eq.2.4 to yield 

 

( ) ( ) ( )

( ) ( ) ( )

2
20 0 0

02

2
20 0 0

02

4

4

s s m

s s m

bwd fwd
i t z i t z i t zs s

m m s
m

E
bwd fwd

i t z i t z i t zs s
m s m

m

E E ie e n U E e U dA
z z t

E E ie e n U U E e dA
z z t

ω β ω β ω β

ω β ω β ω β

ε
ω

ε
ω

+ − −

+ − −

∂ ∂ ∂
− = − Δ

∂ ∂ ∂

∂ ∂ ∂
− = − Δ

∂ ∂ ∂

∑∫

∑∫

JG����	���

 (2.13) 

In order for the m-components from the right side of Eq.2.13 to match the 

components on the left we must make m=s.  This will translate to a term on the right to 

behave as a driving term for the term on the left.  Both sides as described by waves must 

have the same frequency and phase.  This will ensure that the two do not average out to 

zero over both time and propagation distance.   

A closer look tells us that if the perturbation Δn2 is a constant, then Eq.2.13 

becomes two independent uncoupled equations describing the two modes traveling in 

opposite directions.  This is not of any interest here.  We are after the case that a term on 
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the right hand side of the equation going in one direction drives the term traveling in the 

opposite direction.  We need a phase on the perturbation that will ensure this match.   

 ( ) ( )
2

2 20 0
024

s s

bwd
i t z i t zs

s s
E ie n U E e dA

z t
ω β ω βε

ω
+ −∂ ∂

= − Δ
∂ ∂ ∫  (2.14) 

Now let’s consider a grating whose corrugation is described by a square wave as 

shown in Figure 2.1.  Here the period of the perturbation is chosen so that spπ βΛ ≈ .  

From the dimensions of the corrugation we will be able to find a formula that completely 

describes the perturbation in the index of refraction, namely Δn2(x,y,z).   

This perturbation can be written as a product of the index of refraction in the z 

direction and its transverse direction.  Furthermore the z-direction of the perturbation can 

be written as a Fourier series.   

 
( ) ( ) ( )

( ) ( )

2 2

2
2 2

, , ,

, , ,
qi z

q
q

n x y z n x y f z

n x y z n x y a e
π⎛ ⎞

⎜ ⎟Λ⎝ ⎠

Δ = Δ

Δ = Δ ∑
 (2.15) 

The index of refraction in the transverse direction, Δn2(x,y) is defined as an 

unperturbed waveguide material to be 2
11 n−  within the material and 0 elsewhere.  In the 

following section we will see how a thickness variation translates to a variation in the 

index of refraction.  For now we can write the Fourier coefficients for the z dependent 

index of refraction from the amplitude of the perturbation in the index of refraction.   

 

( ) ( )

( ) ( )

2 20 2

0
2

1 0

1
2

0

q qi z i z

q amp

amp
amp iq

q q

a e dz n e dz

q oddi nn ia e a qq
q even

π π

π ππ

Λ
⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟Λ Λ⎝ ⎠ ⎝ ⎠

Λ
−

−

⎡ ⎤
⎢ ⎥= + Δ⎢ ⎥Λ
⎢ ⎥⎣ ⎦

⎧− ΔΔ ⎛ ⎞Λ ⎪⎡ ⎤= − ⇒ = ⎨⎜ ⎟ ⎣ ⎦Λ ⎝ ⎠ ⎪
⎩

∫ ∫
 (2.16) 
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Here we’ve defined ampnΔ  to be the amplitude of the perturbation in the index of 

refraction.  This ampnΔ  shall be calculated for various examples in the following section.   

Now that we have completely specified the index of refraction of this perturbation 

we can substitute it back into Eq.2.14.  Recall that earlier we had set m=s.  This was to 

ensure that the driven and source terms did not average out to zero over distance.  The 

other requirement that we are after is that of a phase matching condition as explained 

earlier.  The term on the left side of Eq.2.14 that describes the backward traveling wave, 

0
bwd
sE , has a phase associated equal to +βs.  A term exists on the right side with a phase of 

2 sqπ βΛ −  but the period of the corrugation was set such that this term is phase matched 

accordingly by making p=q.  So we have a differential equation that describes how the 

forward traveling wave couples into the backward wave at the perturbation. 

 

( ) ( ) ( )

( ) ( ) ( )

( )

2

22
2 20 0

02

2 2
2 20 0

0 2

2 2
20 0

0

,
4

,
4

,
4

s s

s s

s

qbwd i zi t z i t zfwds
q s s

q

n

pbwd i zi t z i t zfwds
p s s

pbwd i z
fwds

s p

E ie n x y a e U E e dA
z t

E ie n x y a e U E e dA
z t

E i E a e n x y
z

π
ω β ω β

π
ω β ω β

π β

ε
ω

ε
ω

ε ω

⎛ ⎞
⎜ ⎟+ −Λ⎝ ⎠

Δ

⎛ ⎞
⎜ ⎟+ −Λ⎝ ⎠

⎛ ⎞−⎜ ⎟Λ⎝ ⎠

∂ ∂
= − Δ

∂ ∂

∂ ∂
= − Δ

∂ ∂

∂
= Δ

∂

∑∫

∫

����	���


2
sU dA∫

 (2.17) 

The detuning frequency is defined as d spβ π β= Λ − .  The importance behind 

this tuning parameter is essential to making the two waves coupled.  The period of the 

corrugation shall be selected to as to make this detuning as close to zero.  Note that as it 

goes to zero we have that spπ βΛ = .  By defining yet another parameter the guide 

wavelength of the s-mode as 2 sλ π β= , then we see that the period of the grating must 

be tuned to the wavelength as the Bragg condition defined by 
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2 2s

p p p
n n

π π λ
β π λ

Λ = = =  (2.18) 

The value as defined by p will determine the order of the gratings.  Another 

parameter that groups the integral and the rest of the constants as 

 ( )0 2 2,
4

p
s

i a
n x y U dA

ε ω
κ = Δ∫  (2.19) 

As defined this parameter will be dependent on the geometry of the gratings.  The 

refractive index in the transverse direction will determine this value.  Note that this 

parameter is linearly dependent on t  he Fourier coefficient as defined before.  The order 

of the gratings will thus affect this parameter and thus the strength of the gratings.  With 

this definition the coupled equations can be written as 

 

( ) ( )

( ) ( )

20
0

20 *
0

d

d

bwd
i zs fwd

s

fwd
i zs bwd

s

E z
E z e

z
E z

E z e
z

β

β

κ

κ −

∂
=

∂
∂

=
∂

 (2.20) 

 

2.1.3. Effective Index Method for DBR laser 

Bragg Gratings can be implemented in a waveguide material to make DBR and 

DFB lasers.  Here we study the behavior of a DBR in a particular example 

The example to be studied here consists of a three layered waveguide material 

depicted in Figure 2.2.  The substrate on the bottom is InP whose index of refraction is 

3.14 and designed with a thickness of 3μm and a width of 9μm.  The material on top is 

also InP and here there is a 3μm wide ridge with a thickness of 1.5μm.   

The middle layer is the active region, made up of GaInAs whose index of 

refraction is 3.55.  It is in this middle region where a corrugation of the material will  
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Figure 2.2: Fictional DBR laser to help understand behavior of Bragg Gratings.  
Effective index method looks at the two cross sections A-A and B-B. 
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define the gratings.  The entire thickness of the material is 200nm and it is as wide as the 

bottom, 9μm.  The gratings have a depth of 100nm, half of the thickness of the active 

region.  The periodicity of the gratings shall be set as Λ.   

The design of the device to be studied here has been specified in order to simplify 

the analysis of the problem.  Although only this particular case is being studied we will 

still be able to get a feel for how the depth of the gratings affects the index of refraction. 

First we begin our analysis by using the effective index method to calculate how 

the index of refraction changes along the gratings.  That is we shall calculate the effective 

index of refraction for the scheme defined by both cross sections A-A and B-B.  The 

difference between the two is determined by the amplitude of the corrugation made.   

As mentioned the gratings is simply a corrugation of the active region.  It is simply a 

variation in height that oscillates in this case between two values.  Other gratings can be 

made up of sinusoidal waves or even triangular shapes.  Here we will study the square 

wave case shown.   

The two height changes the active region oscillates between, translates to a 

change in the effective index of refraction.  The two heights are described by cross 

section A-A and B-B.  We can calculate the effective index of refraction for each case in 

order to understand how this phenomenon. 

First we look at section AA depicted in Figure 2.3.  We can break this down into 

three different regions as shown.  A closer look at cross sections tells us the problem is 

symmetric about the y-axis and so we only need to look at two different regions, namely I 

and II.   

 



 13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Cross sections A-A and B-B respectively.  The difference between the two is 
the variation in thickness of the active region InGaAs.  d oscillates between 100nm and 
200nm that defines the gratings. 
 



 14

Section I is essentially an asymmetric slab composed of three layers.  We can 

further break this section down along the y-direction into another three subgroups and 

look at the electric field in the three different subsections.  These subsections will be 

defined by numbers 1, 2, and 3. 

Please note that we are breaking the entire cross section A-A into three regions, 

where two are identical so we have section I and II.  Here we are looking at the electric 

field in section I.  In order to realize this we are breaking this section along the y-

direction into another three subsections, 1, 2, and 3.   

We begin our analysis with the wave equation, as derived from Maxwell’s 

equation that describes the electric field as 

 02

2
2 =

∂
∂

−∇ E
t

E με  (2.21) 

Knowing that the electric field is a time-harmonic field with frequency ω 

traveling in the z-direction with phase β, this can be rewritten to look like 

 ( ) 0222
0

2 =−+∇ EnkE iT β  (2.22) 

where ( )2
00

22
0 2 λπεμω ==k  and ni is the index of refraction of the medium.  The phase 

defined as β can be rewritten in terms of the phase velocity as pvωβ =  which by 

rewriting it allows us to introduce this effective index defined as  

 effeffp nkcnv 0=== ωωβ  (2.23) 

Because of the way the layers are defined we have a TM mode.  That is the fields 

both electric and magnetic are all zero except for Ey, Ez, and Hx.  A solution to Eq.2.22 

for the electric field can be written for each layer as it depends on the geometry of that 
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region.  This is a well known problem that has been solved in many literatures [11].  So 

we simply write the solution for Ez as 
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( ) ( )
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≤ ≤

≤
 (2.24) 

In order to get values for each parameter that describes the electric field in the 

different regions we look at the boundary conditions in each case.  Because of the 

polarization mentioned we have to look at the continuity of the magnetic field across the 

border.  From Maxwell’s equation we know that 

 
t
E

t
DH

∂
∂

=
∂
∂

=×∇ ε  (2.25) 

Since only Hx is non-zero and the electric field is a time harmonic field as defined above 

this reduces to 

 ( )( )z
x Ezi

y
Hz ωε=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−  (2.26) 

Now we can use some calculus and integrate the electric field to get fields for the 

magnetic in the x-direction.   

 

( )

( ) ( )

1

3

1
1

1

2
2 2 2

2

3
3

3

cos sin

y d
x

x

y
x

iH Ae

iH C k y B k y
k
iH De

γ

γ

ε ω
γ
ε ω

ε ω
γ

− −=

= −⎡ ⎤⎣ ⎦

= −

( )

( )

( )3

2

1

0

0

layer

layer

layer

y

dy

yd

≤

≤≤

≤

 (2.27) 

Now we are ready to look at the boundary conditions.  From Maxwell’s equations 

we know that both 0=⋅∇ B  and 0=⋅∇ D .  From these two equations we can write that 
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the tangential electric and magnetic fields are both continuous at the boundaries.  At y=0 

we have 

 3 3 3 2

3 2 2 3

i iD C B D C
k k

ε ω ε ω γ ε
γ ε

− = ⇒ = = −  (2.28) 

from continuity of both electric and magnetic.  At y=d we have that 

 { }
2 2

1 2
2 2

1 2

cos sin

cos sin

A B k d C k d
i iA C k d B k d

k
ε ω ε ω
γ

= +

= −
  (2.29) 

With some algebra we can get a transcendental equation 
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By substituting  in the electric field of the three different subsections into the 

wave equation with the appropriate indices of refraction we can get a relation for the 

different parameters used to describe the field. 
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Also the different dielectric coefficients are defined as 2
0 ii nεε =  .  By plugging these 

back into Eq.2.30 we get 
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Recall that earlier we had defined the phase as effnk0=β  .  Now we can proceed 

to calculating the effective index of refraction for this asymmetric section I.   

The first layer is just air with an index of refraction equal to n1=1.0.  The middle 

layer, the active region has d=200nm for cross section A-A and has an index of refraction 

of 3.55.  Finally layer 3 is made of InP with an index of refraction n3=3.14.   

By varying the effective index of refraction, neff, we can find when the right side 

of Eq.2.32 is equal to the left.  Here the value for section I is calculated using MATLAB 

to be nI=3.168.  Matlab code is available in Appendix D.   

This is the index of refraction for the left section of cross section A-A which is 

identical to the section on the right side.  So we have found two of the three indices of 

refraction needed to fully describe section A-A.  We continue by looking at the middle 

section defined along the x-axis, namely section II.   

This section is another three layer section with the difference that it is symmetric 

about the x-axis.  We have InP on the bottom layer, InGaAs in the middle layer and 

finally another layer of InP.  So here n1=n3.   

Because of the polarization and geometry of the three layered structure we again 

have TM modes.  Again the electric and magnetic fields will be continuous across the 

boundaries.   

A similar analysis to the one used for the asymmetric case allows to calculate the 

transcendental equation for the symmetric case.  This equation will in turn allow us to 

calculate the effective index of refraction, nII.  Because of the symmetry the coefficients 

that describe the fields for the two outermost layers are equal, γ1= γ3.   
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Again we can use MATLAB to solve this transcendental equation.  Here the index 

of refraction is equivalent to nII =3.369.   

We have found all indices of refraction for the three sections in A-A.  Now we are 

left with an equivalent three layer slab positioned along the x-axis.  Section II with its 

index of refraction nII sandwiched in between the two identical section I.   

Now the electric field is oriented in the same way and so we have a TE mode.  

That is the electric field pointing in either the y or z-direction as mentioned before.  Now 

we can look at the continuity of the tangential electric and magnetic fields across the 

boundaries.  The transcendental equation derived. 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1
2tan

k
dk γ  (2.34) 

Here the effective index is varied again and its value is found to be nAA=3.367.  

We have completely determined all effective index calculations for cross section A-A.  A 

similar analysis is performed for cross section B-B and a value of 3.235 is obtained for 

the effective index.  Results are summarized for both cross sections in Table 2.1.   

 

Table 2.1a 
Sections (x-axis) Index of refraction 

xsection AA I II I 

1 1 3.17 1

2 3.55 3.55 3.55

Su
bs

ec
tio

n 
 

(y
-a

xi
s)

 

3 3.17 3.17 3.17

effective index, neff 3.168 3.369 3.168
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Table 2.1b 
Sections (x-axis) Index of refraction 

xsection BB I II I 

1 1 3.17 1

2 3.55 3.55 3.55
Su

bs
ec

tio
n 

 
(y

-a
xi

s)
 

3 3.17 3.17 3.17

effective index, neff 3.157 3.254 3.157
 

Table 2.1c 
nAA 3.367 

nBB 3.252 
 

Table 2.1: Results for the effective index method summarized.  a)cross section A-A, 
b)cross section B-B and c)final values 
 

 

With the values of the effective index for each section we can find values for the 

parameters that describe the electric field in each subsection.  Here we look only at cross 

section AA to understand better how the field decays in each different region.  A similar 

analysis can be realized for BB not depicted here.   

Figure2.4a shows the field in section I.  As expected the field decays much faster in the 

air then it does in the substrate.  In Figure2.4b however the field is symmetric about y=0 

because of the geometry of the slab.  The solution to this symmetric case resembles that 

of a solution to the Schrödinger’s equation.   
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Figure 2.4: The Electric field in the two different sections I and II.  Section I (a) is an 
asymmetric slab while section II (b) is symmetric. 
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Now that we have the two different effective indices of refraction for cross 

section AA and BB we can see how this translates to the gratings.  As derived in the 

previous section the coefficient that determines the strength of the gratings is  

 ( )0 2 2,
4

p
s

i a
n x y U dA

ε ω
κ = Δ∫  (2.35) 

which can be rewritten from the Fourier coefficient defined in Eq.2.16 

 ( )0 2 2,
4

amp
s

n
n x y U dA

p
ε ω

κ
π

Δ
= + Δ∫  (2.36) 

Now we can look at first order gratings since they are the strongest.  Substituting 

in all the values and integrating across the waveguide we get -1263.5mκ =  for 

dAA=200nm and dBB=100nm.  With this value for κ we will be able to see what length of 

gratings is needed for desired maximum reflectivity.   

A more thorough analysis will give us a better understanding of how the index of 

refraction contrast ampnΔ  will depend on the difference in thickness between the two 

cross sections AA and BB.  Figure 2.5 shows various curves for different thickness of the 

active region.  Because of the method used to determine the different effective indices of 

refraction we cannot simply write an equation for ampnΔ  that will depend on the thickness 

difference, dAA - dBB.   

There is however a few things we can say about the curves presented.  The first 

observation which is quite general is that as the thickness difference increases, ampnΔ  

increases as well.  Also as the thickness of cross section AA increases, a higher thickness 

difference is needed to achieve the same ampnΔ , though a higher ampnΔ  can be obtained 

for a bigger thickness difference.   
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Figure 2.5: Qualitative look at how the thickness variation will change the index of 
refraction contrast.  A index contrast of 0.115ampnΔ =  will translate to -1263.5mκ =  as 
was calculated. 
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The slopes for the curves of thinner thickness are higher in the lower region.  One 

could infer that in the lower region of the thickness difference, a variation in the thickness 

will translate to a higher index contrast.  Take the example used to calculate κ in this 

section, dAA=200nm and dBB=100nm and another with thicknesses of dAA=1000nm and 

dBB=900nm.  The thickness difference is the same 100nm but the first will translate to a 

higher contrast in index of refraction ampnΔ  than the latter.   

 

2.1.4. Finite Length Gratings 

Let’s suppose we have a wave traveling in the forward direction in the beginning 

of the gratings, z=0.  As mentioned this will cause part of the wave to be reflected and 

another to be transmitted.  The reflectivity can be defined as magnitude squared of the 

ratio of the backward traveling wave to the forward traveling wave at z=0.  This has been 

calculated in [12] with detuning at zero to be  

 ( )
( )

2
20

0

0
tanh

0

bwd
s

Max gfwd
s

E
R L

E
κ⎡ ⎤= = ⎣ ⎦  (2.37) 

With the value as calculated in the previous section for κ, we can plot to see how 

the reflectivity varies for different lengths of the gratings.  Figure 2.6 shows gratings of 

length 10mm will produce a reflectivity of better than 0.95 
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Figure 2.6: Maximum Reflectivity for Bragg Gratings.  Reflectivity increases rapidly as 
the length increases.   
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2.2. Standing Wave 

In order to fabricate Bragg Gratings a series of steps are followed discussed with detail in 

Chapter 4.  One of the steps is to expose positive resist with an interference pattern 

created by two waves at an angle of incidence, θ.  In this section we discuss how this 

interference is created and how its period varies with the angle of incidence.   

 

2.2.1. Interference of Light 

When two plane waves interfere with each other as shown in Figure 2.4, a standing wave 

is produced.  The periodicity of the standing wave created on the substrate is calculated 

from the angle of the two waves and their wave vector, k
G

.  Here a different set of 

arbitrary coordinates is used to calculate the period of the interference pattern.   

The problem to be solved in this section is realized by looking at the wave vectors 

of the two interfering waves.  Before we proceed with this calculation however, the 

problem considered here takes into account a few assumptions.  The first is that the two 

waves have the same magnitude, E0.  It is shown later however that a difference in 

magnitudes will not affect the interference pattern considerably.  Second we assume that 

the two waves have the same angle of incidence, θ.  Finally their wave vectors, 1k
JG

 and 

2k
JJG

, have the same magnitudes but their directions differ in the x-component.   

Now we can begin by describing each of the two waves with their electric field 

pointing in the y-direction as shown.   
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Figure 2.4: When two plane waves interfere at angle 2θ, a standing wave is created 
whose periodicity depends on half of that angle 
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From these two waves an expression for the total electric field can be calculated 

 1 2
0

ik x ik xi t
TotalE yE e e eω− ⎡ ⎤= +⎣ ⎦

JJG G JJG G
i i

JJJJJG JG
 (2.24) 

then an expression for the intensity of the total electric field as the square of the 

magnitude of the amplitude 
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Now we are almost ready to calculate the period of the standing wave created by these 

two plane waves.  Before proceeding let’s look at what the wave vectors represent.  That 

is by decomposing the two dot products inside the sinusoid, we can figure out what the 

period is.   
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 (2.26) 

By plugging in, the intensity becomes, 

 

( ) ( )

2 2 2 21 2
0 0

2 2 2 2
0 0

24 cos 4 cos
2 2

4 cos 4 cos

x
Total

Total x x

k xk x k xI E E

I E k x E k x

⎛ ⎞ −− ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= − =

JG G JJG G
i i

 (2.27) 

The period of the sinusoid that describes the intensity seems to be negative.  This 

however is arbitrary, since the function is even.  Also we are after the period, the spacing 
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between the maxima, a negative period just refers to which direction in the x-direction it 

is pointing and this definition of the x-axis is completely arbitrary.   

It is well known that the period of the square of a cosine can be determined by 

 xkπ
=

Λ
 (2.28) 

The x-component of the wave vector is calculated from trigonometry as 

 2sin sinxk k πθ θ
λ

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (2.29) 

Plugging this into Eq.2.28 gives the period of the interference pattern intensity 

 
2 2sinsinxk

π π λ
π θθ
λ

Λ = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.30) 

2.2.2. Unwanted Standing Wave 

The interfering plane waves analyzed in the previous section create a standing 

wave not only in the x-direction but also one in the z-direction.  Having a standing wave 

in the z-direction changes the exposing pattern.  One way to avoid this issue is to deposit 

an antireflective coating that eliminates this unwanted standing wave.  Although this 

method works quite well, it adds another complex step to the already challenging task at 

hand. 

Let’s begin this calculation by assuming that the standing wave in the z-direction 

is sinusoid.  We can define the variation of the amplitude in this direction to be dependent 

on ( )sin kz .  An unwanted wave will have half of the period span the thickness of the 

resist, d.  Thus we have that  
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By making the thickness of the resist ¼ of the period or half of this thickness, 

50nm, the unwanted standing wave will not be able to have any effect when exposing the 

sample. 
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Chapter 3: Experimental Setup / Design 
 
This chapter of the thesis deals mainly with the setup used to expose the resist on top of 

the semiconductor.  There are different methods that can be used to expose a sample 

under the interference of two sources such as the Mach-Zehnder Interferometer among 

others.  Despite the repeatable exposure of the highest quality grating images, the Mach-

Zehnder Interferometer requires precise alignment, a dedicated set of expensive optics 

and other complications.  A simpler configuration however exists called the Lloyd’s-

Mirror Interferometer.  Although much simpler than other setups, different decisions 

need to be made for it to work appropriately. 

 

3.1. Lloyd’s Mirror Setup 

An overview of the implementation of the Lloyd’s Mirror Interferometer is presented in 

Figure 3.1.  The beam of the laser passes trough various elements before getting to the 

sample.  First a shutter is used to control the time of exposure.  After the shutter, a 

turning mirror, two iris diaphragms, and another turning mirror are used to redirect the 

beam.  The beam then passes through a spatial filter that both expands it and cleans it of 

any unwanted higher frequencies.  The spatial filter used consists of a UV objective lens 

(EFL=13mm, effective focal length) and a 15μm diameter pinhole.  Reasons for the EFL 

of the objective and pinhole size are explained later.  Finally the beam reaches the 

Lloyd’s Mirror where the interference is created.   

The Lloyd’s Mirror Interferometer consists of both a sample holder and an UV 

coated aluminum mirror placed orthogonal to each other.  The expanded beam is directed 

at the center of where these two intersect.  On half of the beam is directly incident on the  



 32

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: An overview of the setup used to create the interference pattern on the 
sample.  A spatial filter is used to expand the beam (HeCd, λ=325nm) before it reaches 
the Lloyd’s Mirror.  The rotation stage used to hold the Lloyd’s Mirror and sample allow 
for a change in the period of the grating made. 
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sample while the other half reflects off the mirror then onto the sample.  The two half 

beams create an interference pattern on the sample, which creates the grating pattern.  

The Interferometer is placed on a rotation stage that allows for tuning of the Bragg 

Grating period, Λ.  As shown the grating period is directly dependent on the angle of the 

incident beam 

 
2sin( )

λ
θ

Λ =  (3.1) 

where λ=325nm is the wavelength of the HeCd laser, and θ is the angle of the incident 

beam. 

 

3.2. Propagating a Gaussian 

As mentioned in the setup the laser passes through various elements before getting to the 

Lloyd’s Mirror.  In a nutshell the laser slowly expands up to the lens, gets focused to its 

beam waist, and finally gets expanded again at a faster rate up to the Lloyd’s Mirror.  To 

better follow the calculations of the setup parameters described in this section, Figure 3.2 

illustrates the experimental setup in this nutshell  

All parameters calculated here are essential to ensuring the sample gets exposed 

properly.  However there is an order of importance in which these values were 

determined.  First, to ensure small variation of the electric field amplitude incident the 

sample, the focal length and location of the lens were determined relative to the Lloyd’s 

Mirror.  Second, a pinhole is placed at the beam waist after the lens to create a spatial 

filter that cleans the beam of any higher unwanted frequencies.  All other parameters are 

still essential to the setup working properly but are of secondary importance. 
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Figure 3.2:  Here the setup has been simplified and dimensions exaggerated.  This will 
aid the reader to follow the calculations under Propagating a Gaussian 
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Despite this order of importance, the calculations realized in this section follow 

the order in which the beam travels.  First we begin by looking at the laser cavity to start 

with some initial values for the diameter of the beam.  Then we proceed with an analysis 

for the propagation of the laser as it comes out of the aperture and up to the lens.  Then 

using the result found in the first two parts the lens’s parameters can be calculated.  In the 

subsequent section an analysis of the laser as it travels from the lens up to the Lloyd’s 

Mirror is performed to determine how the amplitude of the electric field behaves incident 

the sample.  Finally the pinhole size needed is determined from these results to ensure a 

clean beam of any higher frequencies or scattering from particles. 

 

3.2.1. Laser Cavity 

In this first section we go through an extensive analysis of the cavity that allows us to 

determine specific values needed.  The setup of the cavity will let us determine both the 

diameter at the beam waist and a value for the complex radius of curvature at the curved 

mirror.   

The laser used in this experiment is a UV Helium Cadmium laser at λ=325nm 

from Kimmon Electronics (Model IK3151R-E).  As specified by the manufacturer the 

laser cavity is composed of two mirrors, a spherical with radius R1=5m and a flat (R2=∞), 

with a spacing between them of L=91cm.   

From the dimensions of the laser cavity it is obvious that the beam waist will be 

located at the flat mirror.  At the other mirror the radius of the beam will be the radius of 

mirror 1 at a distance of L=91cm away.  By using the properties of half-symmetric 
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resonators, all the necessary parameters can be calculated.  We begin with the g 

parameter as defined in [13] 

 
1

0.911 1 0.818
5

L mg
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= − = − =  (3.2) 

From this g parameter the waist at the different locations can be calculated as 
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This means that at the spherical mirror, the beam has a diameter of 0.988mm and 

radius of curvature equal to that of the mirror’s radius (R1=5m).  Meanwhile at the flat 

mirror, the beam waist has a diameter of 0.894mm and a radius of ∞.   

We have found all the values we need in order to proceed with calculating the 

desired parameters from the propagation law.  However there is a subtle yet important 

point to make about the cavity.  The two mirrors are inside this “black box” which means 

that either the flat or the spherical can be located near the aperture where the laser is 

emitted.  That is, the two mirrors that make up the resonator can be oriented in one of two 

ways.  Intuitively the flat mirror should be placed nearest the aperture in order to 

minimize the beam diameter.  In order to be sure, a measurement of the beam diameter 

10cm from the aperture is found to be 0.89mm in the data sheet of the laser.  Since this 

measured value is much closer to that of the beam waist 0 0.894w mm= , one can 

conclude the flat mirror is located closer to the aperture and the spherical mirror is 

located on the other side of the cavity.   
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Another important point to make is that the longest side of the black box 

(102.0cm) completely spans the distance between the two mirrors (91cm).  Most likely 

this was designed to ensure some space between the walls of the black box and the two 

mirrors.  This entails that we can only determine the location of the two mirrors within a 

range of 102.0 91.0 11.0cm cm cm− = .  As shown in the following section, this range will 

translate to a minimal change in the diameter of the beam at the lens.   

 

3.2.2. Aperture to Lens 

Now we analyze how the beam propagates out of the aperture and up to the lens.  As the 

laser passes through the flat mirror, it begins to expand again.  From Gaussian beam 

properties found in [13, 14] we can determine how the beam diameter changes as it 

propagates in free space.   

Let’s begin this calculation by defining the flat mirror to be at z=0.  We have 

determined in the previous section that at the other mirror, z=-91cm, the radius of 

curvature is R(z=-91cm)=5m and the diameter of the beam is 0.988mm.  A Gaussian 

beam is symmetric about its beam waist.  This means that at z=91cm, the radius and 

diameter will be the same as it is on the spherical mirror.  Now we proceed by calculating 

the complex radius of curvature at z=z0=91cm.   

 ( ) ( ) ( )
( )
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0 0 0

0

1 1

3.904 2.069

i
q z z R z z w z z

q z z i

λ
π

= −
= = =

= = +
 (3.4) 

As a Gaussian beam is free to propagate in space, the complex radius of curvature 

will change as determined by the fundamental propagation law.  This law states that as 

the beam travels a certain distance the complex radius of curvature will increase by that 
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amount.  So we need to determine the distance between the flat mirror and the lens.  The 

distance between the aperture and the lens is L1=152.4cm (60inches).  For now we 

assume that the flat mirror is exactly at the aperture.  Then we will assume a distance of 

11.0cm, as calculated in the previous section, between the mirror and the aperture to see 

how this will change the beam diameter at the lens.   

Now by using the fundamental propagation law the complex radius of curvature 

changes as 
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 (3.5) 

By applying the formula for the complex radius of curvature at z=L1, a value for 

half the beam diameter, w(z=L1), and radius of curvature, R(z=L1), can be determined 
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 (3.6) 

Finally by equating the real and imaginary parts on both sides we get 
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Knowing these two values of the laser at the lens, z=L1, allows us to proceed and 

calculate how the beam gets expanded by the lens up to the Lloyd’s Mirror.   

Now let’s go back to Eq. 3.5 and increase L1 to incorporate a possible distance 

between the flat mirror and the aperture.  Now the complex radius of curvature is 
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 (3.8) 

Then by repeating a similar analysis we get slightly different values for the radius 

and the beam diameter 
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This change in parameters translates to a percent error of 2.02% in the beam 

diameter and 1.60% in the radius of curvature.  This means that the absolute position of 

the mirrors inside the cavity is not needed for this calculation.  Now that we have the 

diameter of the beam and the radius of curvature we can proceed and calculate how the 

beam gets expanded as it travels up to the Lloyd’s Mirror.   

 

3.2.3 Lens to Lloyd’s Mirror 

The Gaussian beam should be expanded so that the amplitude of the electric field incident 

on both edges of the sample is not significantly different.  On one edge the center of the 

Gaussian will be incident with the amplitude of electric field being E0.  The beam shall be 

expanded such that the other edge of the sample will be incident with amplitude of 0.90E0 

or better. 

The lens used in the setup is an UV Achromatic Objective (LMU-15X) with an 

EFL (effective focal length) of 13mm given by the data sheet of the company.  With the 

beam size at the lens, as determined in the previous section, we can calculate how much 

the beam will expand, from simple geometry as shown in Figure 3.3.   
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Figure 3.3: Simple geometry helps to determine how much beam expands over distances 
specified. 
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where L2=1524mm is the distance between the lens and the Lloyd’s Mirror, f the focal 

length, w(z=L1) the beam diameter at the lens, and ( )1 2Lloydw w L L= +  the beam diameter 

at the Lloyd’s Mirror.  Now the profile of the electric field can be plotted at the Lloyd’s 

Mirror for the setup used, Figure 3.4.   

The simple geometry used in Eq. (3.10) assumes the lens and the Lloyd’s Mirror 

are in the far field from the focused spot size.  As seen in the following section a strong 

focus will ensure that the lens is in the far field.  Furthermore, if the lens is in the far field 

then so is the Lloyd’s Mirror.   

The importance behind expanding the beam is to ensure that the amplitude of the 

electric field incident on the sample is uniform.  Expanding the beam translates to a loss 

in intensity.  This loss will simply lead to longer exposure times.  One could think that 

the stability of the system would be a factor by exposing for a longer period of time.  This 

is not a problem with the Lloyd’s Mirror setup since only a single beam is used for most 

of the path traveled.  The beam only splits off into two arms at the end when half of the 

beam reflects off the mirror.  Ensuring that the mirror and the sample are connected in a 

rigid mechanical method will stabilize the system.  Only if the mirror moves with respect 

to the sample will there be any variations.   

 

3.2.4 Pinhole size 

Now that we know that the focal length of the lens will expand the beam appropriately, 

we can calculate the pinhole size needed to filter higher unwanted frequencies.  For this t 
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Figure 3.4:  The Electric Field at the Lloyd’s Mirror plotted from beam width calculated.  
Setup has been designed to have amplitude at edge of sample (r=14.14mm) be 0.90E0 or 
higher. 
 
 
 
 

 
r(radial position) 5.77μm 6.58μm 8.16μm 8.75μm 9.99μm
E(r), amplitude 0.10E0 0.05E0 0.01E0 5.0*10-3E0 1.0*10-3E0

E2(r), intensity 0.01I0 2.5*10-3I0 1.0*10-4I0 2.5*10-5I0 1.0*10-6I0

pinhole diameter = 2*r 11.54μm 13.16μm 16.32μm 17.51μm 19.99μm
 
Table 3.1: Amplitude and Intensity of the HeCd laser (λ=325nm) at the beam waist after 
passing through the UV lens for different radial positions, r. 
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o be realized we must first calculate the effective diameter of the focused Gaussian spot.  

From Gaussian beam focusing properties the effective diameter can be found from 

 ( )0 1
2 fd w L f

D
λ

= + ≈  (3.11) 

where f=13mm is the focal length, λ=325nm the laser wavelength, and 

( )1 1.111D w z L mm= = =  the diameter of the beam before the lens.  Plugging all these 

values into Eq.3.11 gives 0 5.970d mμ= . 

Recall that ( )1 0 2r w L f d= + = is where the amplitude of the electric field at the 

beam waist decays by 1/e.  Similar to the analysis used in Figure 3.4, the amplitude and 

intensity of the electric field can be determined as a function of radial position.  Table 3.1 

lists how the amplitude and intensity vary at the waist for different values of r, the radial 

position.   

Placing a pinhole with a diameter of 20μm will ensure that nearly all of the beam 

will pass through.  That is, field with amplitude higher than 1.0*10-3E0 will pass through 

the pinhole while higher unwanted frequencies or scattering from dust particles will not. 

The expression for focused spot size Eq.3.11 assumes a couple of things.  First, 

the Gaussian beam entering the lens is more or less collimated.  Recall that the value for 

the beam diameter and radius of curvature for the Gaussian beam at the lens was 

calculated in Eq.3.9, ( ) ( )1 1w L R L� .  Second, the beam is “strongly focused”, i.e. 

( ) ( )1 0 12w L f d w L+ = � .  The second point is equivalent to saying that the lens is in 

the far field, as seen looking backward from the waist of the focal point.  The beam 

diameter at the lens w(L1) is so much smaller than the beam diameter at the focus w(L1+f) 

that the lens is in the far field.  If the lens is in the far field, then so is the Lloyd’s Mirror.  
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Since both are in the far field, a simple geometric approximation as used in Eq.3.10 is 

valid to determine how big the beam will be at the Lloyd’s Mirror. 

 

3.3. Mirror 

When choosing the mirror for the setup realized in this experiment, there are many 

factors to consider.  First, a large mirror would minimize the effects of edge scattering 

and diffraction and at the same time increase the exposure area.  The cost and commercial 

availability of such a large mirror is a factor that prevents it from being chosen.  A BK7 

glass, UV protected aluminum mirror with a 2.000” diameter and 0.375” thickness was 

chosen as the Lloyd’s Mirror.  It has a λ/10 surface flatness and a reflectivity of better 

than 90% at λ=325nm.  The reflectivity of aluminum at this wavelength remains the same 

for a broad range of angles.  This is not the case for different types of metals or a 

dielectric stack.  Dielectric mirrors are another candidate that offers better reflectivity but 

only at a particular angle.  The setup however has been designed with the ability to 

change the angle of the mirror. 

 

3.3.1. Aligning Lloyd’s Mirror 

The period of the grating fabricated is directly dependent on the angle of the incident 

electric field described by Eq.3.1.  In order to ensure such simple geometry is valid for 

this setup, there are two very important alignments to be made at Lloyd’s Mirror.   

The first is that the mirror and the sample have to make an angle 90˚ to each 

other.  Misalignment of the mirror will translate to a change in the angle of incidence of 

electric field, Δβ.  This change in angle will in turn cause a change in the period of the 
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gratings.  A thorough calculation in [15] shows that this angle offset, Δβ, should be 

somewhat less than the angular accuracy of the rotation stage, Δθ.  The rotation stage 

used has an accuracy of about Δθ≈6arcmin or 1.75mrad.  This means Δβ should be less 

than 3arcmin or 0.873mrad. 

The second alignment is to ensure that the axis I, created by the intersection of the 

mirror and the sample, and the axis of the rotation stage, R, are aligned.  Again an offset 

in this alignment will translate to a change in the grating period.  As mentioned the laser 

gets focused to a spot, meaning the sample is illuminated from a point source.  This 

point-source illumination is what gives rise to this error.  This second alignment would be 

unnecessary if a perfectly plane-wave was used.   

Let’s define the distance between the two axes I and R as lr and the distance 

between the “point-source” and the axis I, the expansion length, as lp.  As determined in 

[15] a different analysis shows that lr should be about 

 
2

p
r

l
l

θΔ
<  (3.12) 

The expansion length is also L2=0.914meters and the rotation stage accuracy 

Δθ≈1.75mrad.  The calculated alignment tolerance for the distance between axes should 

then be about 0.8mm.  By designing adaptive plates to be machined, this desired accuracy 

is met by machinist in the shop.   

 

3.3.2. Angle Calibration 

As discussed in the previous section the placement of the Lloyd’s Mirror should be 

realized with accuracy when considering the two alignments mentioned.  This will  
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Figure 3.5:  Angle Calibration of the Lloyd’s Mirror.  The grating period was measured 
used the alternate setup described in Section 3.5.  There is an offset of 2.63 ˚ between the 
fitted and experimental.  The fitted curve can be used to determine which angle to use in 
the setup for a particular grating period desired.   
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minimize the systematic error related to the angle of incidence for the setup.  The most 

important parameter however is the accuracy of the rotation stage, Δθ.  If the angular 

errors from misalignment are less than Δθ then they will not be noticeable.  When dealing 

with the beam, a point source has been used to approximate its behavior meaning its 

location with respect to the Lloyd’s Mirror is irrelevant.  Since the beam is actually a 

Gaussian beam, a simple alignment needs to be made to ensure the center of the Gaussian 

is incident the center of where the sample and the mirror meet.  This can be done by 

aligning the beam to that spot without the spatial filter.   

Any angular errors that arise from misalignment of the mirror can be resolved by 

a simple angle calibration.  This calibration actually ends up being more important than 

the two mentioned alignments.  When setting up the Lloyd’s Mirror, there is no easy way 

to know that the angle on the rotation stage will be the same as the incident angle of the 

electric field.  An angle calibration should tell us what angle to use to achieve a particular 

grating period.  Figure 3.5 shows the ability of this setup to make gratings.  An offset of 

2.63˚ exists between the fitted curve and the theoretical equivalent.   

In section 2.1.1, the grating period needed to achieve a working wavelength of 

1550nm was calculated to be 244.5nm.  Now with the calibration realized here, the angle 

of incidence can be calculated to be 39.0˚. 

 

3.3.3. Range of angles 

The Lloyd’s Mirror setup has been designed so the grating period can be altered by 

changing the angle of the rotation stage.  There is a limit to this range however and can 

be determined by simple geometry of the setup.  As mentioned previously, this  
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Figure 3.6:  Closer look at Lloyd’s Mirror.  Setup has been designed to ensure that the 
sample and the mirror have minimal spacing in between the two.  This hides part of the 
mirror making it only d=40mm from sample to edge of mirror. 
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experiment has been designed to expose samples as big as 20mm by 20mm.  The 

outermost edge of the two half beams interfere at the edge of the sample, shown in Figure 

3.5.  From these two vectors is how the range of angles for which this setup works can be 

calculated.   

Figure 3.5 actually shows the lower limit of the setup.  That is, for any angle of 

incidence bigger than the one shown, and the setup will still work.  The two rays that 

describe the edge of the beam (ray1 and ray2) can still reflect off the mirror and interfere 

appropriately at the sample.  On the contrary a smaller angle of incidence will result in 

part of the beam of ray 2 to be reflected off the mirror and part of ray 2 to reflect off the 

mirror holder.  This will result in the two rays to not interfere appropriately.  Thus we can 

calculate the lowest angle of incidence, θ from geometry as described by 

 ( ) 20tan mm
d

θ =  (3.13) 

where d is the size of the mirror for a particular angle of incidence.  Though we have a 

value for the diameter of the mirror (2inches ≈ 50mm) the design hides part of it, and the 

size gets reduced to 40mm.  By plugging in these values the lower bound for the range of 

angles is approximately 30˚.  As for the upper bound, no limit can be set unless 90˚ for 

which the beam would be incident on the side of the sample and no gratings are made.   

 

3.4. Variation across Sample 

3.4.1. Intensity of Electric Field 

At first one may think that the intensity of the electric field of the two beams interfering 

on the sample have to be the same.  To better understand the importance of the intensity 

of the two interfering beams, let’s look at contrast, defined in [15] as 
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Figure 3.7:  Contrast as described 3.4.1 is exactly 1 when the two beams are of equal 
intensity.  As the relative intensity decreases however contrast is lost at a forgiving rate.   
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Consider the intensity of two different sinusoidal waves.  The first has the minima 

at zero intensity and a maximum to twice the average intensity.  The second has higher 

minima and lower maxima while its average intensity is the same as the first.  The first 

wave will therefore have a higher contrast than the first. 

Figure 3.7 shows that two waves with electric fields parallel to each other as 

considered in this experiment will have a favorable contrast as plotted against their 

relative intensity.  When the two beams have same intensity the contrast will be at its 

maximum as expected.  In the other extreme, contrast reaches zero as the relative 

intensity goes to zero.  However high contrast is still preserved as the relative intensity 

reaches a mediocre level.   

As mentioned in the beginning of Section 3.3, the mirror used has a reflectivity 

better than 90% at the wavelength used.  From the analysis made in this section, such a 

loss from the mirror can be afforded without any major loss in contrast.  Also the distance  

between the mirror and the sample is minimal compared to the distance the beam travels 

from the spatial filter to the Lloyd’s Mirror.  So as the beam reflects off the mirror it 

travels a minimal distance to the sample and the intensity changes.  This small change 

however is not significant to make a noticeable difference in contrast.   

 

3.4.2. Grating Period 

As discussed previously the Gaussian beam is expanded over a length of L2=1524mm.  

Essentially a point source is being used located at the pinhole of the spatial filter.  This 

means the beam incident on one side of the sample is incident at a different angle than the  
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Figure 3.8:  A difference in angle Δθ exists between the two beams incident the opposite 
edges of the sample.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9:  The angles of the two interfering beams change across the sample.  This 
translates to a small change in grating period for different angles of incidence. 
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other.  There exists a Δθ between the two beams incident the different edges of the 

sample (Figure 3.8).  This Δθ translates to a variation in angle of incidence across the 

sample.  Using geometry a value for this change in angle can be calculated for different 

angles of incidence.   
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 (3.15) 

This Δθ then in turn translates to a change in angle of incidence.  This change in 

angle of incidence consequently changes the period of the gratings across the sample.  

The difference in period between the two sides of the sample can be calculated by 

incorporating this angle difference in the angle of calibration equation.  As shown in 

Figure 3.9, this difference is less than 1nm within the range of angles this setup has been 

designed for.   

 

3.5. Grating Period Measurement 

3.5.1. Alternate Setup 

The setup realized in this experiment also allows the user to check the periodicity of the 

gratings fabricated as demonstrated in [16].  In order to calibrate the setup as was 

performed in section 3.2.2. Angle Calibration this alternate setup was used to measure 

how the period changes for samples that had been exposed at different angles of 

incidence.  With the addition of some new elements, the beam of the laser passes through 

the shutter, a turning mirror, and only one iris diaphragm.  Before getting to the second 

iris, the sample with gratings on top is placed in front of the laser as if it were a turning  
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Figure 3.10: The alternate setup also allows the user to check the periodicity of the 
gratings.  This is done by measuring the angle of the diffracted beam, θD, and using the 
relation for the diffraction angle to calculate the period. 
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mirror.  The laser is then redirected through another two apertures to ensure that the angle 

of the reflected beam is 90˚ to the incident beam as shown in Figure 3.10.  The diffracted 

angle θD can be determined using simple geometry. 
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 (3.16) 

Now that the diffracted angle is known, the grating period can be determined from 

the grating formula 

 (sin sin )in out mθ θ λΛ + =  (3.17) 

where L is the grating period and θin and θout are the angle of the beams incident to the 

gratings and reflected to the gratings, respectively.  Note that the angles are defined from 

the axis perpendicular to the gratings.  That is if we look at the m=0 beam 
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 (3.18) 

This means that the m=1 beam, the diffracted angle θD will be defined as a 

positive angle.  Now plugging in all the values for m=1 to find θD 
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by combining Eqs.3.16 and 3.19 an equation can be derived for the grating period in 

terms of all parameters determined experimentally 
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 (3.20) 

 

3.5.2. Limit to Grating Measurement 

There is a limit to measuring the grating period with this setup.  If we rewrite Eq.3.20 a 

different equation can be derived for L as a function of Λ, the grating period, and D, the 

geometric distance of the diffracted beam 

 1tan sin sin
4 4

L D π λ π−⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟Λ⎝ ⎠⎝ ⎠
 (3.21) 

Since we know λ=325nm, the laser wavelength, we can plot L as a function of Λ for 

different values of D as shown in Figure 3.11.  The region for which this alternate setup 

will work exists around the point where all there lines intersect, Λ≈230nm.  That is, the 

setup will measure the grating period roughly from 200nm to about 260nm.  For any 

grating periods that lay outside this range, the accuracy of the measurements breaks 

down.   

 

3.5.3. Making a measurement 

This alternate setup can be used for two reasons.  The first is to simply check to see if 

there are any gratings on the sample fabricated.  That is you place the sample in front of 

the laser and if a diffracted beam is observed, then there are gratings present on the 

sample.  By moving the sample around you can check to see which region the gratings 

are covering on your sample. 
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Figure 3.11: The alternate setup used to check the period of the gratings is valid only for 
a limited range.  Gratings with periods outside limited range (200nm-260nm) cannot be 
measured as accurately 
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The second reason is to check what the period is on the gratings as mentioned 

previously.  Choosing to check the period requires careful alignment of this alternate 

setup.  First the reflected beam must go through the two apertures.  Again, this will 

ensure that the reflected beam is 90˚ to the incident beam.  If it is not aligned properly, 

the reflected beam will have an offset, meaning the diffracted beam will have an offset.  

This offset will translate to an error in the measurement of the diffracted beam angle, 

which in turn will make an error in the period of the gratings.  The second alignment 

comes from the orientation of the gratings.  That is, the gratings must be going 

perpendicular to the plane of the incident and reflected beam, i.e. the optical table.  After 

aligning the reflected beam through the two apertures, rotating the sample will cause a 

shift in the diffracted beam.  Rotate the sample until the diffracted beam is on the same 

plane as the incident beam.  After both of these careful alignments a measurement can be 

made to check the period of the gratings. 
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Chapter 4: Fabrication 
 
In order to get gratings onto semiconductor a procedure is followed involving several 

steps shown in Figure 4.1.  First resist gets spin coated on the sample at the thickness 

needed.  Second it’s exposed at the Lloyd’s Mirror for a certain amount of time.  Third 

the exposed resist is developed by dipping the sample into a solution developer.  Finally 

the gratings pattern is transferred onto semiconductor by using either a dry etch or a wet 

etch technique.   

 

4.1. Preparing the Sample 

Spin coating resist on top of semiconductor is a standard procedure involving several 

steps described in Appendix A and B for two different resists.  The spin curve for a 

particular resist will vary depending on its viscosity.  All spin curves however behave in 

the same way in that the faster the spin speed, the thinner the resist becomes.   

As mentioned in Section 3.3.2.2 a thickness of 50nm is necessary to avoid 

unwanted standing wave pattern while exposing.  The commercial availability of a 

positive resist that spins to such a thickness is non-existent.  An alternate choice is to 

dilute the resist with the appropriate solvents.  The resist used for this experiment is AZ 

MiR 701-2DS from AZ Electronic Materials.  The solvents are a mixture 15% to 85% of 

n-Butyl Acetate to EL Thinner by volume.  Using these solvents, the resist can be diluted 

to get the thickness desired plotted in Figure 4.2.  By measuring different parts of the 

sample, the uniformity across the resist can be checked as well shown in Figure 4.3.  

Methods used to measure the thickness of the resist can be found in Appendix A and B. 
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Figure 4.1: Process followed for fabrication of gratings.  (1-2)First a thin layer, of 
Positive Resist is spin coated on top of Indium Phosphide.  (3-5)Then sample gets 
exposed using interference pattern created by UV laser at Lloyd’s Mirror.  (6-7)Once flat 
bottoms are achieved, dry etching transfers pattern onto semiconductor.  (8)Finally resist 
is stripped off, leaving behind gratings. 
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Figure 4.2: By diluting the resist, the desired thickness, 50nm, can be obtained.  The 
concentration of resist to solvent is specified for each set of data.  e.g. 3:5::resist:solvent 
by volume.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3: By measuring at different spots of the sample, the uniformity of the thickness 
is observed to be consistent for different spin speeds.   
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4.2. Exposing Positive Resist using Lloyd’s Mirror 

After successfully spin coating the resist on top of the semiconductor at the correct 

thickness, the sample is ready to be exposed.  First the laser gets turned on by following 

proper procedures described in Appendix C.  Then the sample is loaded on the holder 

after making sure both yellow lights only are turned on and that the beam is expanded 

properly.  The beam gets expanded properly by making sure the pinhole in the spatial 

filter is properly aligned.  Finally by using the shutter, the sample gets exposed the 

appropriate amount of time.   

 

4.2.1. Turning the Laser On 

Even before loading the sample for exposure, the laser needs to be turned on.  As 

described in the “Procedures for Operating the HeCd Laser”, found in Appendix C, the 

laser must remain in any state either on or off for at least 30 minutes.  During this wait, 

part of the processing described above can be realized.   

After the laser has reached its steady state, i.e. 30 minutes after turning it on, 

check the alignment of the beam.  Recall all the various elements the laser will pass 

through before reaching the Lloyd’s Mirror.  All these elements are essential to ensuring 

the beam illuminates the sample properly.  However the most important is the spatial 

filter.  First allow the beam to pass through without the spatial filter.  Then place the UV 

lens in the appropriate position and ensure the beam expands up to the Lloyd’s Mirror.  

Finally place the correct size pinhole, 20μm in diameter, at the beam waist and align to 

get a clean, smooth beam at the Lloyd’s Mirror.   
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4.2.2. Loading the Sample 

After resist has been coated on top of semiconductor, the sample needs to be covered 

with aluminum foil.  This will ensure the resist is unexposed before putting it on the 

Lloyd’s Mirror.  Adjust the rotation stage to appropriate angle needed to get the correct 

grating period.  When ready to expose, be sure to turn all room lights off except for the 

yellow light.  The yellow light will aid the user in loading the sample and will not change 

the properties of the resist.   

A timed shutter will ensure the samples get exposed for the correct amount of 

time.  After exposing all samples, rewrap all samples will aluminum foil and take to 

developing lab.   

 

4.2.3. Getting Flat Bottoms 

The required exposure time can be calculated from parameters of the experiment.  These 

are the power density of the laser, the energy density and thickness of the resist.  The 

power density of the laser at the Lloyd’s Mirror is measured using a UV detector to be 

20.10mWatts cm .  The energy density of the resist is a parameter of the material found 

in its data sheet.  For the resist used a value of 
2190mJoules cm mμ  is given for the 

energy density.  With a thickness of 50nm the calculated exposure time is 
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Amplitude versus Exposure Time 
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Figure 4.4: Grating amplitude is measured using an AFM and plotted versus the 
exposure time.  The amplitude increases until it peaks around the calculated exposure 
time where it begins to drop back down for overexposed samples. 
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This means that if this resist at this thickness is exposed under or over 95 seconds 

will be underexposed or overexposed, respectively.  For a different resist, the sensitivity 

will change.  Also by varying the thickness this calculated exposure time will also vary.  

Thus by using the timed shutter, the desired time is input and the sample using this 

particular resist gets exposed. 

Steps 3, 4, and 5 of Figure 4.1, show how the resist evolves as it is exposed for 

three different times.  An underexposed sample, step 3, will have the sinusoidal pattern 

on top of the resist with part of the resist still being unexposed.  In the other extreme, step 

5, only the peaks of the sinusoid will remain on the sample when it gets exposed for an 

extended period of time.  Furthermore, the amplitude of the sinusoidal pattern can be 

measured using an Atomic Force Microscope (AFM) and plotted versus exposure time as 

shown in Figure 4.4.   

Three of the samples used to make amplitude measurements in the AFM were 

also imaged using a Scanning Electronic Microscope (SEM).  The images captured using 

the AFM give more accurate measurements while the SEM can show the cross section of 

the sample, qualitatively.  The three images captured in Figures 4.5, 4.6, and 4.7, 

resemble the evolution discussed.   

As the sample gets exposed for a longer period of time, the positive resist begins 

to disappear and only that remains are the top half of the sinusoid and flat bottoms.  The 

top half of the sinusoid is the positive resist while the flat bottoms are the semiconductor 

being uncovered.  Now that the semiconductor is in the open, the next step is to etch the 

pattern into it.   
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a) 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5: Resist exposed at Lloyd’s Mirror for 30seconds. a) AFM scan is used to 
measure the amplitude peak to peak of 35nm while b) SEM scan can be used to 
qualitatively see the unexposed resist on top of semiconductor material.   
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a) 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6: Resist exposed at Lloyd’s Mirror for 80seconds. a) AFM scan measures an 
amplitude of 48.4nm while b) SEM scan shows cross section of resist. 
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a) 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: Resist exposed at Lloyd’s Mirror for 160seconds. a) AFM scan measures the 
peak-to-bottom of 41.3nm while b) SEM scan shows the semiconductor. 
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4.3. Etching Gratings into Semiconductor 

After developing the sample, gratings are present on positive resist sitting on top of the 

semiconductor.  In order to transfer this pattern into semiconductor either a wet etch 

recipe or a dry etch recipe can be used.  For completeness, both were used here in order 

to compare their efficiency.   

Etching patterns onto semiconductor is a challenging task.  There exist a number 

of recipes that will vary for different semiconductor materials and photo-resistant 

material.  Here a simple overview of the recipes used is presented.  An entire different 

paper can be written on the science and techniques used for etching such materials. 

 

4.3.1. Dry Etch Recipe 

A dry etching recipe for Indium Phosphide (InP) is used in the Reactive Ion Etching 

(RIE).  The recipe consists of Methane (CH4), Hydrogen (H2), and Argon (Ar) gases and 

has an etch rate of 500Å/min=50nm/min fully described in [17].   

Two samples etched for 60seconds and 120seconds are presented in Figure 4.8 

and 4.9, respectively.  Using the AFM again, the amplitude of the gratings can be 

measured.  The first sample is measured to have amplitude of 46.1nm and the second 

sample almost twice the first at 91.3nm.  Similar structures are presented using the SEM. 

As can be seen on all the scans of the two samples, a “grass-like” structure is 

present in between the troughs.  This is a problem that had been encountered in the past 

and it comes from a problem in the RIE.  Rather than a problem it was a step that had not 

been taken with this particular sample.  That is, the chamber had not been passivated.  

When this happens small clusters of Aluminum get deposited on the sample and begin to  
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a) 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.8: Sample exposed at 140seconds is etched for 60seconds.  Amplitude of the 
gratings as measured by the AFM is 46.1nm.  SEM scan shows cross section 
qualitatively. 
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a) 

b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Here the sample exposed at 140seconds is etched for 120seconds.  Amplitude 
of the gratings as measured by the AFM is 91.3nm.  Again SEM scan shows cross section 
qualitatively. 
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act as a mask.  Thus when we try to dry etch they would stand on pillars creating this 

grass like structure [17].   

 

4.3.2. Wet Etch Recipe 

After successfully dry etching gratings into Indium Phosphide the experiment took a 

slight turn.  That is, the goal we were after was still the same but at one point the photo-

resist we used (AZ MiR 701-2DS) from AZ Electronics had expired.  A new type of 

photo-resist (PR1-2000A) from Futurrex was used and so a completely different recipe 

was needed as shown in Appendix B.  That is, the methodology was still the same for 

diluting the resist and acquiring the appropriate thickness, but with a different resist 

comes a different sensitivity and thus a different calculated exposure time.   

Figure 4.10 shows an AFM scan of gratings on resist prior to using the wet etch 

recipe.  As shown the gratings that were used for the dry etch recipe has been reproduced 

with a new photo-resist.  Different exposure times are used to compensate for the 

difference in sensitivity of the resists.  Also a different solution from Futurrex is used to 

develop the exposed material, as described in Appendix B, to leave the unexposed part on 

top of semiconductor.  This new sample very closely assimilates the overexposed sample 

that was used to get flat bottoms in Figure 4.7.   

In order to try a wet etching recipe a different semiconductor material was used, 

namely Indium Gallium Arsenide (InGaAs).  The wet etch recipe for InGaAs consists of 

dipping the sample into an acid solution.  The acid solution mixed here is made up of 

Phosphoric Acid (H3PO4), Hydrogen Peroxide (H2O2), and De-Ionized Water (H2O) with  
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Figure 4.10: With the new photo-resist PR1-2000A we are able to reproduce similar 
gratings on resist that can be used for etching.  This sample resembles that of Figure 4.7 
where the sample had been overexposed to get flat bottoms. 
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proportions specified in Appendix B.  The etch rate for this particular recipe is about 

12.5nm/sec.  This results in a fast dip of 4seconds to etch 50nm into the semiconductor.   

Using this recipe, some samples have been dipped for different amounts of time 

and presented with AFM scans in Figure 4.11.  The sample that was dipped for 2 

seconds, amplitude measurements of 72.2nm was observed.  The 4 second sample has 

amplitude of 92.9nm.  Finally the sample that was dipped for 6 seconds gave amplitude 

measurements of 116.2nm.  Though this last one looks the smoothest, it gave a saw-tooth 

grating rather than a square wave.  This could be from the chemistry of the acid and how 

it etches into the semiconductor material.  Again here only a superficial presentation of 

etching into this material is presented here.  A study of the etch chemistry and ideal 

recipe is subject of another paper.   
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a) 

b) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11: Here gratings are wet etched in an acid solution.  Samples a and b were 
etched for 2 and 4 seconds respectively.  
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c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11 (cont’d): Another sample that was wet etched using an acid solution.  Here 
the sample is dipped for 6 seconds and a saw-tooth pattern is observed.  This pattern most 
likely has to do with the chemistry of the acid solution.   
 
 
 
 
 
 
 



 77

Chapter 5: Conclusion 
 
The goal of this thesis being presented was to describe with detail all the work that went 

into this project.  This project set out with the intention of designing a robust setup to 

fabricate gratings.  The work realized here was not to advance the field of Bragg Gratings 

but to build a setup that would routinely make them.  With this setup we will be able to 

incorporate gratings into waveguides and fabricate DFB lasers at the telecommunication 

wavelength.   

In Chapter 2, I first laid out the theory behind how Gratings work when 

implemented in a waveguide.  When the signal traveling down the waveguide reaches the 

gratings, it begins to feel a change in the index of refraction.  This change caused by the 

gratings mathematically translates to a sum of small perturbations that create small 

reflections.  Finally these small reflections constructively add to create a signal to be 

reflected.  Secondly I presented a close look at how two plane waves create a standing 

wave when they interfere.  This standing wave will have the period needed for the 

gratings. 

In the following chapter, the setup realized was discussed thoroughly.  Since this 

was the goal of the project most of my time was spent here.  Every dimension in the setup 

was chosen with the idea of making gratings consistently.  The Lloyd’s Mirror setup 

provided the most stable way of creating the interference pattern needed.  The location 

and dimensions of the spatial filter was chosen to create an expanded beam that was clean 

and with minimal variation across the sample.  The mirror used for the Lloyd’s Mirror 

was chosen because of its reflectivity at the wavelength and a range of angles.  Finally an 

addition to the setup is presented to measure the period of the gratings fabricated.   
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Finally in Chapter 4, the process used for fabrication was discussed.  First spin 

coating the resist at the right thickness on top of the sample was the first task.  Then by 

varying exposure times, AFM and SEM scans showed how the gratings evolved.  An 

underexposed sample would have most of the resist still present and a small sinusoid on 

top.  Whereas in an overexposed case the semiconductor is showing as flat bottoms and 

there is little resistleft but the top half of the sinusoid.  Finally an etching recipe allows us 

to transfer this grating pattern on to semiconductor.   

Although the setup was designed with the purpose mentioned, alterations can still 

be made to further investigate Bragg Gratings.  A curved mirror would cause chirped 

gratings which can be studied in the future.  The implementation of Bragg Gratings into 

DFB lasers and DBR lasers will open up the field of study for anyone that gets involved 

with this project in the future.  These Bragg Gratings can serve as a building tool to more 

advanced topics of research. 
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Appendix A – Processing Recipes I 
 
==using AZ-MiR 701-2DS== 
 
     

St
ep
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Process Equipment Specifics/Comments 

 
 

Gratings Fabrication 
1. Die Preparation 
1 1 Dice Diamond Scribe Scribe & Break 
2 1 Opticlear rinse Squirt bottle 15s 
3 1 Acetone rinse Squirt bottle 15s 
4 1 Methanol rinse Squirt bottle 15s 
5 1 Isopropanol rinse Squirt bottle 15s 
6 1 Dry N2 gun Until dry 
7 1 Dry Bake Hot Plate 90˚C-120˚C 60s 
 
2. Spin coat Resist 
8 2 Spin HMDS Spin stand 6000rpm – 1000rpm/s – 60s uncovered 
9 2 Spin AZ MiR 701-

2DS (1:5 diluted) 
Spin stand 6000rpm – 1000rpm/s – 60s covered 

10 2 Prebake Hot Plate 110˚C – 60s 
11 2 Cover AL foil Protect resist from being exposed 
 
3. Expose Positive Resist w/ Lloyd’s Mirror 
12 3 Laser on HeCd Laser Use proper procedures Appendix B 
13 3 Clean Beam Spatial Filter Open shutter align pinhole 
14 3 Angle of incidence Rotation stage Adjust desired angle 
15 3 Set shutter time Timed shutter Set desired time on shutter 
16 3 Expose Shutter Yellow light on, load sample, expose 

desired time 
17 3 Cover AL foil Re-cover sample to avoid exposure 
 
4. Develop Exposed Resist 
18 4 Develop Beaker AZ 300 MiF, 30s 
19 4 H20 rinse Beaker 30s 
20 4 Spin dry Spin stand 2000rpm – 500rpm/s – 60s 
 
5. Dry Etching 
21 5 Prep chamber RIE 790 Use CR_prep2 
22 5 Etch RIE 790 CR_mha1. stage1(5m): 8sccmCH4 + 

32sccmH2 + 10sccm Ar at 30mTorr 
440V DC self-bias; stage2(3m): 
16sccm O2 at 200mTorr 200V DC self-
bias etch rate=50nm/min [17] 
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Other Useful Procedures 
Test Gratings 
1 TG Measure diffraction Alternate Setup Measure m=1 order as specified 

section 3.5 
2 TG See diffraction Beaker w. water Shine fiber light to see white light get 

diffracted 
3 TG Grating profile AFM, SEM Quantitative and qualitative images to 

analyze 
 
Diluting Resist 
1 DR Clean Dark bottle Follow process #1 but bake in oven @ 

120˚C as step 7 
2 DR Mix diluent beaker Diluent: 3 : 17 :: n-Butyl Acetate : EL 

Thinner  
3 DR Dilute resist Cleaned dark bottle AZ MiR 701-2DS : diluent :: 1:5 
4 DR Mix diluted resist stirrer Using magnetic stirrer mix solution for 

300s 
 
Measure Thickness 
1 MT Spin resist Spin stand Follow Process Number 1-2 of Grating 

Fabrication 
2 MT Expose  Contact aligner 10s exposure using mask that gives 

features 
3 MT Develop beaker Follow Process Number 4 of Grating 

Fabrication 
4 MT Measure profilometer Measure thickness across known 

feature 
5 MT Strip resist beaker Stripper 1165, H20 rinse 
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Appendix B – Processing Recipes II 
 
==using PR1-2000A== 
 
     

St
ep
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Process Equipment Specifics/Comments 

 
 

Gratings Fabrication 
1. Die Preparation 
1 1 Dice Diamond Scribe Scribe & Break 
2 1 Opticlear rinse Squirt bottle 15s 
3 1 Acetone rinse Squirt bottle 15s 
4 1 Methanol rinse Squirt bottle 15s 
5 1 Isopropanol rinse Squirt bottle 15s 
6 1 Dry N2 gun Until dry 
7 1 Dry Bake Hot Plate 90˚C-120˚C 60s 
 
2. Spin coat Resist 
8 2 Spin HMDS Spin stand 6000rpm – 1000rpm/s – 60s uncovered 
9 2 Spin PR1-2000A 

(1:10 diluted) 
Spin stand 6000rpm – 1000rpm/s – 60s covered 

10 2 Prebake Hot Plate 110˚C – 60s 
11 2 Cover AL foil Protect resist from being exposed 
 
3. Expose Positive Resist w/ Lloyd’s Mirror 
12 3 Laser on HeCd Laser Use proper procedures Appendix B 
13 3 Clean Beam Spatial Filter Open shutter align pinhole 
14 3 Angle of incidence Rotation stage Adjust desired angle 
15 3 Set shutter time Timed shutter Set desired time on shutter 
16 3 Expose Shutter Yellow light on, load sample, expose 

desired time 
17 3 Cover AL foil Re-cover sample to avoid exposure 
 
4. Develop Exposed Resist 
18 4 Develop Beaker RD6 (diluted 2:1), 30s 
19 4 H2O rinse Beaker 30s 
20 4 Spin dry Spin stand 2000rpm – 500rpm/s – 60s 
 
5. Wet Etching 
21 5 Wet Etch Beaker H3PO4:H2O2:H2O(1:4:4) mixed by 

volume, 4-6s 
22 5 H2O rinse Beaker 30s 
23 5 Remove resist wet deck Steps 3-6 under process 1 (GPC) 
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Other Useful Procedures 
Test Gratings 
1 TG Measure diffraction Alternate Setup Measure m=1 order as specified 

section 3.5 
2 TG See diffraction Beaker w. water Shine fiber light to see white light get 

diffracted 
3 TG Grating profile AFM, SEM Quantitative and qualitative images to 

analyze 
 
Diluting Resist 
1 DR Clean Dark bottle Follow process #1 but bake in oven @ 

120˚C as step 7 
2 DR Mix diluent beaker Diluent: 3 : 17 :: n-Butyl Acetate : EL 

Thinner  
3 DR Dilute resist Cleaned dark bottle AZ MiR 701-2DS : diluent :: 1:5 
4 DR Mix diluted resist stirrer Using magnetic stirrer mix solution for 

300s 
 
Measure Thickness 
1 MT Spin resist Spin stand Follow Process Number 1-2 of Grating 

Fabrication 
2 MT Expose  Contact aligner 10s exposure using mask that gives 

features 
3 MT Develop beaker Follow Process Number 4 of Grating 

Fabrication 
4 MT Measure profilometer Measure thickness across known 

feature 
5 MT Strip resist beaker Stripper 1165, H20 rinse 
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Appendix C –Operating the HeCd Laser 
 
Procedures for Operating the Helium Cadmium Laser 
 
NOTE:  Each user must read & sign the LPS Standard Operating Procedure (SOP) and be 
authorized by the Primary Owner (Christopher Richardson) 

 
1.  Turn on Laser Warning Light 

This is the light that comes on outside the room.  Switch located on the wall near door 
 
2.  Wear protective goggles 

Make sure everyone in the room has appropriate goggles that work for λ=325nm and Optical 
Density (OD) > 4.  Two adequate goggles that work in the range of 190-520nm with OD>9 can be 
found in a compartment box near the door. Do NOT let people in the room unless they have 
protective goggles as well. 

 
3.  Double check plug connections 

Check to make sure the power cables are connected properly and that nothing is loose.  Thorough 
procedures can be found in section 5-4 of Instruction Manual and beginning of Laser Log 

 
4.  Turn the laser on 

Please follow instructions (5-5 Operation) located near laser/power supply also found in 
Instruction Manual and Laser Log 

 
5.  Write down data in Laser Log 

Record: time/date, tube current & voltage.  Write appropriate information in the Log along with 
any necessary notes.  Be sure to record any unusual behavior and/or maintenance concerns.   

 
6.  30 minute rule 

The laser must be in any state for AT LEAST 30 minutes.  That means that you must wait at least 
30 minutes before turning the laser off after turning it on.  Same goes for when you turn laser back 
on after having it turned off 

 
7.  Turn the laser off after use 

You must turn the laser off after usage.  Do not leave running overnight. 
 
8. Write down data in Laser Log Part II 

Record the time you turned the laser on and off.  This will keep track of the # of hours the laser 
was in operation 

 
9.  Cadmium Spill 

If for any reason there is a Cadmium leak, you must bring to the Safety Officer’s attention for 
repair and maintenance.   

 
10. Test Data and Instruction Manual 

Both the Test Data and the Instruction Manual are located in a white binder in the grey cabinet 
near the door. 
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Appendix D -  Matlab Code 
 

Here the MATLAB code to solve the effective index of the asymmetric slab.  Plot both 
the RHS and LHS of the transcendental equation and see where they intersect. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%effective index method for asymmetric case w TM modes 
%Section I consists of 3 layers to be solved here for air, InGaAs, and 
%InP, by varying neff we will be able to solved the transendental 
%equations that specify this problem 
% 
 
lambda = 1.55e-6; %telecomm. wavelength of signal  
d=100e-9; %thickness in meters of layer in between 
 
n1 = 1; %air 
n2 = 3.55; %index for InGaAs 
n3 = 3.17; 
neff = 2:1e-6:n2; %vary neff to span entire range of indices  
 
k0 = 2*pi/lambda; %wavenumber 
beta = k0*neff; 
gamma1 = sqrt(beta.^2 - k0^2*n1^2); 
k2 = sqrt(k0^2*n2^2 - beta.^2); 
gamma3 = sqrt(beta.^2 - k0^2*n3^2); 
 
lhs = tan(k2*d); 
top = (gamma1./k2)*(n2^2/n1^2)+(gamma3./k2)*(n2^2/n3^2); 
bottom = 1-(gamma1.*gamma3./k2.^2)*(n2^4/n1^2/n3^2); 
rhs = top./bottom; 
 
close all; 
hold on; 
plot(neff,lhs); 
plot(neff,rhs,'r'); 
axis([2 n2 -15 15]); 
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