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Near-field microwave techniques have been successfully implemented in the

past for the local investigation of magnetic materials and high-temperature super-

conductors. This dissertation reports on novel phase-sensitive linear- and nonlinear

response microwave measurements of magnetic thin films and cuprate superconduc-

tors and their interpretation.

The magnetization dynamics of magnetic thin films has been studied experi-

mentally in permalloy and media employed by the magnetic storage industry, and

important material characteristics have been extracted from the data: anisotropy

field, saturation magnetization, damping constant and exchange energy in good

agreement with independent measurements. In magnetic media employed in hard

disk drives these quantities cannot be measured effectively by other techniques due

to modest signal-to-noise ratio or lack of local capabilities.

The dissertation presents microwave nonlinear measurements in high-temperature

superconducting films and a theoretical model to account for the data. Previously,



such studies have been confined to scalar measurements by using spectrum analyz-

ers where only the magnitude of the nonlinear effects was accessible. Therefore, the

nonlinear response in the vicinity of the critical temperature has been attributed

entirely to the Nonlinear Meissner Effect active in the superconducting state. In

the thesis an additional nonlinear mechanism, active in the normal state close to

the critical temperature, is proposed and this allows the estimation of the non-

equilibrium Cooper pair lifetime in the pseudogap region. Its doping dependence

suggests that the Cooper pairs surviving above the critical temperature alter the

nonlinear electrodynamics of underdoped materials more significantly than that of

their optimally-doped counterparts.

The issue related to the lack of phase information in previous harmonic mea-

surements is resolved by proposing a novel phase-sensitive microwave nonlinear tech-

nique which employs a vector network analyzer with harmonic detection capabilities,

thus allowing the disentaglement of inductive and resistive nonlinear effects. The

experimental data acquired with the new instrument prompted the need for a new

model of the near-field nonlinear microwave microscope which treats the nonlinear

effects in a finite-frequency, field-based approach as oppossed to traditional models

which typically use lumped-element approximations in the regime of zero frequency.



MEASUREMENTS OF DOPING-DEPENDENT MICROWAVE

NONLINEAR RESPONSE IN CUPRATE SUPERCONDUCTORS

by

Dragos Iulian Mircea

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Commmittee:

Professor Steven M. Anlage, Chair/Advisor
Professor Thomas Antonsen, Co-Chair
Professor Romel D. Gomez
Professor John Melngailis
Professor Richard Greene



c© Copyright by

Dragos Iulian Mircea

2007



All truths are easy to understand once they are discovered; the point is to

discover them.

Galileo Galilei
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Chapter 1

The superconducting state

Know what is in front of your face and

what is hidden from you will be disclosed.

Gospel of Thomas 5

1.1 Introduction to superconductivity

Superconductivity is a very active field of research that has witnessed many

revolutions over its one-century of existence. Superconductivity is perhaps the only

scientific area where the words perfect, zero and infinite are justified by both the-

ory and experiment. An interesting feature of the evolution of superconductivity

as a field of science is that widely-accepted ”myths” associated with perfect, zero

and infinite have been constantly revised, adjusted and sometimes abandoned. For

example, the perfect diamagnetism leading to perfect exclusion of magnetic fields

inside the superconducting volume (zero magnetic field) proved to be inaccurate

in type II superconductors where the magnetic field penetrates inside the bulk in

the form of filaments whereas in type-I superconductors it penetrates within a thin

surface layer. Similarly, the idea of infinite DC conductivity has been abandoned

when it was realized that type-II superconductors in the vortex state exhibit ohmic

losses due to the motion of vortices. In addition, at non-zero frequencies the su-
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perconductors exhibit finite conductivity, which has been measured with microwave

techniques. The existence of the superconducting gap ∆p, viewed as a characteristic

feature of the superconducting state and a required ingredient for macroscopic super-

conducting properties (persistent currents, Meissner screening, etc.) was questioned

with the discovery of gapless superconductors.

Many preconceptions originating from the BCS theory have been constantly

revised since the discovery of the heavy-fermion, organic and cuprate superconduc-

tors. To name just a few, the symmetry of the order parameter, the Fermi liquid

approximation, the collapse of the superconducting gap at the critical temperature

Tc, etc. Given this constant turmoil, it became increasingly difficult even to de-

fine the essence of superconductivity as most of the ”myths” have been gradually

demolished.

Since the early days of superconductivity it has been realized that the phe-

nomenon of zero DC resistance involves a new thermodynamic phase characterized

by a higher order. The model of Gorter and Casimir proposes the existence of two

types of charge carriers (electrons) depending on their behavior: superfluid (later

called the condensate in the microscopic approaches) behaving in an orderly fashion

and the normal fluid exhibiting the properties of the electron gas from normal met-

als. In this simple two-fluid picture the temperature is the only ”knob” that allows

the experimentalist to modify the proportions of these two fluids one with respect to

the other. The two-fluid model coupled with the Maxwell equations have allowed the

London brothers to explain the perfect diamagnetism discovered experimentally by

Meissner and Ochsenfeld in 1933. The Meissner effect proves that superconductivity
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is not simply perfect conductivity but a new and distinct thermodynamic state, and

the observation that at Tc in the absence of magnetic fields a second-order phase

transition takes place has led Ginzburg and Landau to formulate a very successful

phenomenological theory of the superconducting state called the Ginzburg-Landau

(GL) theory. Within the GL theoretical framework, the superfluid can be suppressed

not only by temperature (as was the case in the two-fluid model), but also by an ex-

ternal magnetic field or by a current, as was established experimentally immediately

after the discovery of superconductivity. Although very successful in describing the

properties of the superconducting state, the phenomenological GL theory was not

formulated to address the origins of superconductivity. The answer came in 1957

with the advent of the Bardeen-Cooper-Schriefer (BCS) theory which approached

superconductivity at the microscopic level.

The BCS theory has enjoyed a tremendous success, its predictions have been

confirmed by experiment and in some limiting cases its equations could be reduced

to the London theory. The re-formulation of BCS in the language of Green functions

has expanded its area of applicability to situations where the superfluid density nS

varies in space, to the case of strong-coupling and gapless superconductivity. By us-

ing BCS in the language of Green functions, Gorkov proved that the phenomenologi-

cal GL theory is a limiting case of the microscopic BCS theory at temperatures close

to the critical one Tc and together with Eliashberg formulated the time-dependent

GL (TDGL) equations which will be re-visited in chapter 2. Despite its success, BCS

theory poses mathematical difficulties which become obvious when finite-frequency

external fields suppress superconductivity, leading to nonlinear effects, the subject

3



of this thesis. In such situations, phenomenological approaches, such as GL and

TDGL, provide a more manageable mathematical formalism.

1.2 High-Tc superconductivity in cuprates

As described previously, the microscopic BCS and the phenomenological GL

theories and their generalizations have provided a complete framework to understand

superconductivity until the advent of high-temperature superconductors (HTS) in

1986. The discovery of new materials with critical temperatures above that of

liquid nitrogen renewed the interest in superconductivity for two main reasons: the

scientific aspect of the problem and the possibility of synthesizing materials with Tc

close to room temperature, and the prospect of commercial applications involving

superconducting elements that are cooled down with low-cost liquid nitrogen.

The highest critical temperatures have been obtained in cuprate materials:

Tc = 134 K in HgBa2Ca2Cu3O8+δ, Tc = 95 K in Bi2Sr2CaCu2O8+δ, Tc = 93 K

in YBa2Cu3Cu3O7−δ. The structural pattern common to all cuprate materials is

the orthorhombic or tetragonal cell containing Cu2O planes oriented perpendicular

to the c crystalline direction and separated by layers of other atoms (Ba, La, O,

· · ·). This structural feature and the empirical observation that a larger number of

CuO2 planes per unit cell results in higher Tc have suggested that the seat of super-

conductivity are the Cu2O planes, while the other layers act as charge reservoirs.

This statement was proposed in the early days of high-temperature superconduc-

tivity and it is known as Anderson’s first dogma [1]. The layered structure and

4



the weak coupling between the CuO2 planes leads to strongly anisotropic properties

manifested in conductivity, coherence lengths, etc. (i.e. poor conduction in the

c direction compared to that along a or b directions, very different in-plane and

out-of-plane coherence length, ξc ≪ ξab, [2]).

The cuprate materials are obtained by doping the so-called parent compound,

which is an insulator with the Cu spins aligned in an antiferromagnetic state, below

the Néel temperature TN . Inelastic neutron- and Raman scattering experiments

have shown that above TN the correlations among the Cu spins are essentially

two-dimensional [3]. In the parent compound the CuO2 planes are made up of

Cu2+ and O2− so that the CuO2 planes are negatively charged (a net charge of

−2e0 per unit cell, where e0 is the elementary charge) which suggests that the

interleaved layers must be positive to enforce the electrical neutral state [2]). By

doping, the parent insulator becomes metallic and below a certain temperature

Tc, superconducting. The dependence of the critical temperature on the doping

concentration Tc(p) represents the phase diagram and has roughly the same main

features for all cuprates.

Depending on the doping element, cuprates can be hole- or electron-doped with

significantly different phase diagrams and different physical properties. The present

study is confined to hole-doped YBa2Cu3Cu3O7−δ (YBCO) thin films fabricated by

Pulsed-Laser Deposition with subsequent annealing in oxygen atmosphere whose

parent compound has δ = 1. The phase diagram of hole-doped cuprates shows

that superconductivity occurs always in the vicinity of the antiferromagnetic phase

and suggests that superconductivity and antiferromagnetism may have something
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in common; the electron-electron pairing could be mediated by spin fluctuations, as

opposed to low-temperature superconductors where the pairing is due to exchange

of lattice vibration quanta (phonons) between the two paired electrons. In hole-

doped YBCO the critical temperature Tc depends roughly quadratically on the hole

concentration p according to the law: Tc/T
optimal
c = 1−82.6(p−0.16)2 [4] (see Fig.5.4

for a representation of the cuprate phase diagram). Toptimal
c represents the maximum

critical temperature obtained in YBCO (≈ 93 K) for p = 0.16 and this is commonly-

labeled optimally-doped. For p < 0.16 and p > 0.16 YBCO is under- and over-doped

respectively. Annealing in oxygen atmosphere, as employed for the samples used

in the present study, results in oxygen-deficient YBCO samples (underdoped) with

critical temperatures below 93 K.

Since cuprates are obtained by doping the parent insulator, they have a lower

carrier concentration n than ordinary metals. As a result, the charge carriers are

less screened than in metals, the Coulomb electrostatic repulsion is stronger and

consequently the mechanism of electron pairing is different that in low-temperature

superconductors. In addition, the low carrier concentration modifies the physics of

the normal-to-superconducting phase transition with consequences that will be dis-

cussed later in this chapter. Since in underdoped cuprates n is even more reduced

than in their optimally-doped counterparts, the above deviations from BCS super-

conductors should be even more pronounced. For this reason the investigation of

hole-doped underdoped cuprates is a very active area of research both theoretically

and experimentally.

A striking feature observed especially in oxygen-deficient hole-doped cuprates
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is the existence of an energy gap in the quasiparticle density of states observed for

temperatures between Tc and a certain temperature T∗ > Tc. Due to the similar

symmetry of this gap with that in the superconducting state and the absence of a

phase transition at T∗, the normal state gap has been labeled a pseudogap. Another

reason for this nomenclature is the disagreement of T∗ estimates from different types

of experiments (infrared conductivity, neutron scattering, transport properties, Ra-

man spectroscopy, specific heat, thermoelectric power) as opposed to the general

consistency in estimations of the superconducting gap. However, within the same

experimental framework T∗ depends on the material and doping level as discussed

in the following paragraphs where tunneling data from the literature are briefly

reviewed.

Tunneling measurements have been successfully used to prove the exis-

tence of the superconducting gap in low-Tc materials due to its sensitivity to the

charge carrier density of states below (negative bias) and above (positive bias) the

Fermi level. Essentially, the tunneling spectroscopy on superconducting samples

allows one to measure directly the energy required to break a Cooper pair, irrespec-

tive of the presence or absence of macroscopic phase coherence among the Cooper

pairs. The energy gap in the quasiparticle excitation spectrum shows up as a char-

acteristic feature at zero bias V = 0 and by using an appropriate model for the

superconducting state one can estimate the Cooper pair binding energy ∆p. An

STM-assisted tunneling experiment (characterized by a very high spatial resolution

on the order of 0.1 nm and a sensitivity on the order of kBT ) carried out by Renner

and co-workers reveal the existence of an energy gap below and above the critical
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temperature Tc = 83 K in the hole-doped cuprate Bi2Sr2CaCu2O8+δ (Bi2212) single

crystals (see Fig. 1.1) [5].

Figure 1.1: Tunneling spectra in Bi2Sr2CaCu2O8+δ with Tc = 83 K. Spectra acquired

for T < 293 K are offset for clarity. Figure reproduced from Ref.[5]

One of the observations of Renner and co-workers is that the tunneling spec-

tra acquired on samples with different doping levels are consistent with a d-wave

symmetry of the order parameter in the superconducting state. A striking feature

of the data reproduced in Fig. 1.1 is that the energy gap observed below Tc (the

superconducting gap) is roughly temperature independent up to Tc and it does not

close at this temperature as one would expect for a BCS superconductor: it seems

that the superconducting gap evolves into the pseudogap at Tc. Since tunneling

experiments measure only the energy 2∆p required to break a Cooper pair, one

can think that the onset of the macroscopic superconducting properties (zero DC
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resistance, Meissner effect, etc.) at Tc is governed not only by the electron-electron

binding energy (roughly given by ∆p) as is the case in the BCS superconductors,

but by another energy scale ∆c. This energy scale has been associated with the

establishment of macroscopic phase coherence between the paired charge carriers

[6] since the superconducting state requires paired carriers as well as macroscopic

phase coherence among the pairs. The phenomenological analysis from Ref. [5] (the

only possible analysis since a model for the gap function and the density of states

in cuprates is not yet available) shows that the gap magnitude ∆p increases in the

underdoped samples despite the suppression of Tc.

The question of measuring the other energy scale governing Tc, ∆c associated

with the macroscopic phase coherence, has been addressed by Deutscher [7] by

analyzing normal-to-superconducting tunneling measurements. Andreev reflection

and the Josephson effect are both manifestations of macroscopic quantum coherence

[7], so tunneling measurements in a normal-to-superconductor configuration can

be used as a tool to investigate the energy scale ∆c. Such tunneling experiments

on hole-doped cuprates with various doping levels from underdoped to overdoped

have shown that the two energy scales converge in overdoped materials indicating

BCS-like behavior, and diverge in the underdoped region of the phase diagram [7].

In agreement with the results of Ref.[5], ∆p exceeds ∆c in underdoped materials

suggesting that underdoped cuprates deviate significantly from the BCS behavior.

Another experimental framework that has provided non-BCS signatures is the

Nernst effect in hole-doped cuprates. The Nernst effect consists of the appearance

of a transverse electric field in response to a temperature gradient in the presence
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of a perpendicular magnetic field under open circuit conditions [8]. In the super-

conducting state, the perpendicular magnetic field drives the sample into the mixed

state and the resulting vortices move against the temperature gradient leading to

a significant electric field transverse to the flow. In a conventional BCS picture,

by warming up the sample above its critical temperature the vortices are destroyed

and the Nernst voltage, carrying information about the quasiparticles, becomes very

small. This conventional picture is not valid in hole-doped cuprates as shown by the

data of Ong et al., who found an unusual high Nernst voltage above Tc [9]. The de-

viations from the BCS-expected behavior have been interpreted as evidence for the

existence of vortices (or ”vortex-like excitations” as other authors have labeled the

microscopic elements responsible for the observed effect [10]) above Tc [9]. Another

line of thought attributed the strong Nernst signal above Tc to the superconduct-

ing fluctuations and quantitative evaluations showed that data in optimally- and

overdoped La2−xSrxCuO4 (LSCO) can be explained within this theoretical frame-

work. In order to reproduce experimental data acquired with underdoped samples,

the theoretical model required suppressed Tc values as compared to the mean-field

ones. An alternative scenario has been proposed by Tan and Levin who showed

that pre-formed Cooper pairs could be responsible for the anomalous Nernst effect

observed by Ong and co-workers [11].
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1.3 Dissertation Outline

The thesis is organized based on a chronological progress that has been achieved

during this project of investigating microwave nonlinear effects in cuprate thin films.

Chapter 1 introduces the fundamental properties of the superconducting state with

emphasis on the properties of high-temperature superconductors that make them dif-

ferent from their low-temperature counterparts. Results from tunneling and Nernst

effect experiments are briefly reviewed where it is shown that the cuprates behave in

a non-BCS fashion. At the end of Chapter 1 an outline of the dissertation is given.

Chapter 2 discusses the linear- and nonlinear electrodynamics of the super-

conducting state in more detail. The main features of the microscopic BCS theory

are presented followed by a simple and mathematically accessible description in a

two-fluid model based on the phenomenological picture of the London brothers.

The theoretical treatments of the microwave nonlinear effects are reviewed in the

context of microscopic BCS-based theories and the phenomenological approaches

constructed from the GL theory and its finite-frequency extension TDGL. Chapter

2 ends with a literature review of experimental work concerning the nonlinear effects

in low- and high-temperature superconductors. It will be shown that temperature-

dependent phase-sensitive harmonic measurements at microwave frequencies have

not been performed until now, despite the availability of commercial Large-Signal

Network Analyzers.

Since the experimental set-ups employed for these investigations have some

common features, Chapter 3 is dedicated to their detailed description. The mi-
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crowave probes and their electromagnetic interaction with the sample under in-

vestigation is discussed both at qualitative and quantitative level. Various physical

quantities that are relevant for the evaluations from Chapter 5 are calculated. Next,

the experimental apparatus used for the scalar- and vector harmonic measurements

reported in Chapter 5 and 6 are presented.

Chapter 4 presents a successful implementation of the near-field microwave

microscopy in the area of magnetization dynamics in magnetic materials. Although

these are linear-response measurements, this work has revealed aspects that are

useful for the improvement of the nonlinear version of this experiment. In the first

stage of this work, the Ferromagnetic Resonance (FMR) and spin wave dynamics

have been investigated in permalloy thin films. After validating the technique on

permalloy, several disks employed in Perpendicular Magnetic Recording (PMR) have

been FMR-characterized and signatures of the Soft Underlayer (SUL) have been

detected. Currently, work is in progress at Seagate Research, Pittsburgh, PA, to

extend the applicability of the near-field microwave microscope to the investigation

of magnetically hard materials that make up the storage layer of PMR disks.

A more complete model of third harmonic power data P3f(T ) acquired pre-

viously on YBa2Cu3Cu3O7−δ (YBCO) thin films by means of near-field microwave

microscopy is the subject of Chapter 5. It is shown that not only inductive nonlin-

ear effects below Tc cause the peak of P3f (T ) at Tc, as was considered before, but

also resistive nonlinear effects, which are active above Tc. Previously, only the in-

ductive nonlinear effects were considered to model the harmonic data acquired with

the microwave microscope, with model-data disagreements in underdoped samples
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[45]. The model of Gaussian superconducting fluctuations proposed by Mishonov

and co-workers [29] is re-formulated in the language of superconducting nonlinear ef-

fects adopted in microscopic BCS-like [26, 27] and phenomenological models [41, 43],

where the strength of nonlinear effects is described in terms of a nonlinear current

density scale.

The model proposed in Chapter 5 assumes a sharp transition from an inductively-

dominated regime at temperatures below Tc to a resistively-dominated one above Tc.

The nonlinearities in the normal state are associated with non-equilibrium Cooper

pairs whose effect is more substantial in the oxygen-deficient samples. From the fit

of harmonic data acquired on YBCO thin films with various doping levels, estimates

of the lifetime of Cooper pairs in the normal state are extracted and their doping

dependence reveals that underdoped cuprates deviate more significantly from the

predictions of the microscopic BCS theory.

The model presented in Chapter 5 has some limitations. First it is a DC treat-

ment, although the measurements are performed at microwave frequencies. How-

ever the approximation is valid to a certain extent. Second, both the inductive

and resistive nonlinear effects are ”packed” in discrete circuit elements, i.e. in-

ductive/resistive nonlinear effects are treated in terms of current-dependent induc-

tor/resistor, similar to most of the models from the literature that describe nonlinear

effects in superconducting transmission lines or resonators.

In order to overcome these issues, in Chapter 6 a finite-frequency, field-based

description of the near-field microwave nonlinear microscope is proposed. Instead

of treating the nonlinear effects in a lumped-element picture, as in Chapter 5, the
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nonlinear effects are approached in a more natural way, as deviations of the complex

conductivity from its low-power, linear-response regime.

The main reason for developing the model in Chapter 6 was the acquisition

of a vector network analyzer with harmonic detection capabilities; it was the ex-

perimental data that prompted the need for a finite-frequency description since the

model presented in Chapter 5 covers the extreme cases of ”inductive only” and ”re-

sistive only” nonlinear regimes below and above Tc respectively. For this reason

the dissertation was constructed in a chronological fashion: as experimental data

accumulated, after using the new instrument, it became obvious that a more general

theoretical model is required for the understanding of the new harmonic data.

At this point it has to be emphasized that phase-sensitive microwave harmonic

data reported in this thesis are a novelty: the only similar data have been reported

in the literature by a group at NIST, Boulder, CO, but the data is restricted to the

temperature of 76 K only. Only the power dependence has been investigated but

this is not very revealing since at T=76 K a superconductor with Tc = 93 K behaves

in a predictable fashion. The drawback of this situation is that at this moment

there is no theoretical framework that can be implemented to interpret in detail the

phase-sensitive data presented here. For this reason, the data analysis is restricted

to a semi-quantitative level.

Summary, conclusions and directions for future work are outlined in Chapter

7.
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Chapter 2

The microwave response of the superconducting state

E finalmente altro non si inferisce [...] da vinum,

che VIS NUMerorum, dai quali numeri essa Magia dipende†.

Cessare della Riviera, Il Mondo Magico degli Eroi

Mantova, Osanna, 1603.

2.1 Linear electrodynamics of superconductors in BCS theory

The microscopic theory of superconductivity called BCS [12] after the names

of its founders (Bardeen, Cooper and Schrieffer) has been proposed in 1957 as a

generalization of the concept of Cooper pairing [13]. Within this theoretical frame-

work, it is shown that an arbitrarily weak attraction between two electrons above

the Fermi sea results in a bound state of the two electrons called a Cooper pair. The

Cooper pairs are responsible for the dissipationless current in the DC regime, which

in a two-fluid picture is attributed to the superfluid. Quasiparticles, which are the

rough equivalent of the normal fluid, are created by breaking Cooper pairs and their

effect in electrical conduction is to add a negative contribution, called quasiparticle

backflow, to the superfluid flow.

The electrodynamics of isotropic weak-coupling superconductors described by

†And finally nothing is [...] inferred from vinum save VIS NUMerorum, upon which numbers

this Magia depends.
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BCS has been discussed by Mattis and Bardeen [14] together with expressions for

the real and imaginary parts of the complex conductivity σ1,2(T ). For T > 0 K

numerical integration is required† but at T = 0 K σ1,2(T ) can be written in terms

of elliptic integrals E and K.

Although a microscopic theory, BCS does not describe accurately the mi-

crowave linear response of cuprates in the sense that the temperature dependence of

real part of conductivity σ1(T ) measured in cuprates does not exhibit the features

predicted by BCS‡. Concerning the nonlinear effects, the complicated mathematical

apparatus of the BCS theory does not allow for a finite-frequency description in

simple mathematical form. The two-fluid model, despite its limitations, provides a

semi-quantitative picture, and for this reason the electrodynamics of the two-fluid

model is briefly presented below.

2.2 Linear electrodynamics of superconductors in the two fluid model

At finite temperature, the charge carriers in a superconductor are described

in terms of two fluids: the normal fluid, which in a microscopic picture is associ-

ated with the quasiparticles, and the superfluid, associated with the Cooper pairs

†A FORTRAN computer code to evaluate the temperature-and frequency-dependence of the

complex conductivity is given in W. Zimmerman, E. H. Brandt, M. Bauer, E. Seidel, and L. Genzel,

Optical conductivity of BCS superconductors with arbitrary purity, Physica C 183, 99

(1991)
‡For a review on the microwave linear response of cuprate single crystals see Ref[15].

Temperature-dependent complex conductivity is typically fitted by the modified two-fluid model

where the quasiparticle scattering time is assumed temperature-dependent.
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(the condensate). The normal fluid has the properties of electrons from a normal

metal, exhibiting finite conductivity, while the superfluid is characterized by infinite

conductivity at zero-frequency (ω = 0) and otherwise finite conductivity. This de-

scription becomes more transparent if the electrodynamics of the superconducting

state is examine in the framework of the two-fluid model.

As shown in most superconductivity textbooks, if one considers a sinusoidal

time variation for the external field (here the electric field, E ∼ exp(iωt)) and solves

the equations of motion for carriers (superfluid and normal fluid), a Drude-like

complex conductivity is obtained:

σ̃ = σ1 − i · σ2 (2.1)

with σ1 given by the normal fluid only (in the case of non-zero frequencies):

σ1 =
nne2

0

meω
· ωτqp

1 + (ωτqp)2
=

nne
2
0

meω
· F(ωτqp) =

2

µ0ωδ2
sk

(2.2)

where the function F(ωτqp) ≡ ωτqp/(1 + (ωτqp)
2) has been introduced to simplify

the equations. nn represents the normal fluid density, ω is the angular frequency of

the external field, τqp is the quasiparticle scattering time (average time between two

consecutive collisions with the solid lattice) and me and e0 are the electron mass

and electric charge, respectively. At microwave frequencies (ω ∼ GHz), the product

ωτqp is much smaller than 1 [15]. Similar to the case of electrodynamics of normal

metals, one can introduce a length scale δsk representing the penetration depth of

external electromagnetic fields, called the skin depth.

The imaginary part of conductivity contains contribution from both the su-
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perfluid and the normal fluid:

σ2 =
e2
0

meω

(
nS + nn · (ωτqp)

2

1 + (ωτqp)2

)
=

e2
0

meω
(nS + nnG(ωτqp)) =

1

µ0ωλ2
(2.3)

with nS the superfluid density and G(ωτqp) ≡ (ωτqp)
2/(1 + (ωτqp)

2). One can define

a length scale λ describing the penetration of electromagnetic fields in a supercon-

ductor, similar to the skin depth introduced previously. One of the fundamental

properties of superconductors is the Meissner effect. It is the spontaneous expulsion

of external fields from the bulk interior of a superconductor (perfect diamagnetism)

and is characterized by λ which represents the length scale of exponential decay of

external fields in a bulk superconductor. Due to the large conductivity associated

with the superfluid nS(T < Tc), the superconducting state is characterized by very

small values of λ (∼ 102 nm for HTS), much smaller than the skin depth associ-

ated with the real part of the conductivity at microwave frequencies. Equation 2.3

shows that the diamagnetic screening is achieved by both the superfluid nS and the

normal fluid nn. In the limit of zero-frequency ω = 0 there is no contribution from

the normal fluid to the screening process and the London penetration depth λL is

recovered λL =
√

me/(e0µ0nS). At finite frequencies and at temperatures below

Tc the main contribution to the screening process comes from the superfluid com-

ponent of σ2 and λ can be approximated by λL. This is the limiting case usually

encountered in the literature when it can be safely assumed that nnG(ωτqp) ≪ nS

and the second component of the imaginary part, representing ballistic screening by

the normal fluid, can be neglected. In this case, or equivalently, at low frequency

of the external field (when G(ωτqp) → 0), the penetration depth λ approaches the
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London penetration depth λL.

The electric field-to-current density constitutive equation for a superconductor

( ~J = σ̃ ~E), used together with the Maxwell equations leads to the wave equation for

the electric/magnetic field inside a superconductor. For the case of sinusoidal time

variation, the Maxwell equations read:

∇× ~E = −iω ~B (2.4)

∇× ~H = ~J + iω ~D (2.5)

∇ · ~B = 0 (2.6)

∇ · ~E = 0 (2.7)

where ~B = µ ~H and ~D = ǫ ~E. By applying the ∇× operator to the Faraday law

Eq.(2.5) and using Ampere’s law Eq.(2.4) along with the constitutive equation one

obtains the wave equation for the electric field:

∆ ~E = iωµ(σ̃ + iωǫ) ~E (2.8)

where the coefficient of ~E is the complex propagation constant γ2 = iωµ(σ̃ + iωǫ)

and the solution has a spatial dependence ∼ e−γz if the plane wave propagates along

the z direction. A similar equation can be obtained for ~H and ~A if one applies the

∇× operator to the Ampere’s law Eq.(2.4), the constitutive equation ~J = σ̃ ~E and

uses Faraday law Eq.(2.5):

∆ ~H = iωµ(σ̃ + iωǫ) ~H (2.9)

Some limiting cases are useful to discuss since it will become obvious that the prop-

agation constant γ deduced above is a generalization of similar expressions used in
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the literature. For example, if the displacement current is neglected with respect

to the conduction current (reasonable assumption at microwave frequencies) one

obtains:

γ2 = iωµ(σ1 − iσ2 + iωǫ) ≈ iωµσ1 + ωµσ2 (2.10)

By taking into account the relationship between conductivity and the length

scales introduced previously, the penetration depth λ and the skin depth δsk, the

propagation constant can be recast in the form:

γ2 ≈ iωµσ1 + ωµσ2 =
2i

δ2
sk

+
1

λ2
(2.11)

This is the generalization of the London screening to finite frequencies as

used frequently in the literature (see, for example [16], [17]). In the limit of zero-

frequency, the wave equation Eq.2.9 reduces to the London equation ∆ ~H = γ2 ~H

with γ = 1/λL. If the propagation constant γ is written in terms of conductivity

for the case of negligible displacement currents:

γ ≈
√

iωµσ1 + ωµσ2 =

√
ωµσ1

(
i +

σ2

σ1

)
(2.12)

the limit T > Tc (in the normal state), σ2/σ1 → 0 and a power expansion of the

above equation, where only the first term is retained shows that γ reduces to the

propagation constant (1 + i)/δsk for the normal skin depth effect.

In the London theory, it was shown that the superfluid is set in motion by a

magnetic field (London’s first equation) while the normal fluid by a time-varying

electric field (Ohm’s law). In the case of an external DC magnetic field, only the

superfluid will respond and provide the Meissner screening characterized by the
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length scale introduced by London (the London penetration depth λL). In the

presence of a time-varying magnetic field, the normal component responds to the

time-varying electric field ~E = −∂ ~A/∂t and provides a certain degree of screening

quantified by the microwave skin depth δsk. At temperatures not too close to Tc

(when nn ≪ nS) and at frequencies in the range of microwaves, the superfluid

diamagnetic screening dominates (λ → λL), λ ≪ δsk and consequently the normal

fluid screening can be safely neglected. Intuitively, one would expect that for a fixed

temperature and an increasing frequency of the external field the normal fluid starts

to contribute more significantly to the screening (as the terms F(ωτ), G(ωτ) → 1

in the Drude-like expression for σ1,2). For a fixed frequency ω and the temperature

approaching Tc, T → Tc, the skin depth δsk decreases and becomes comparable to

the penetration depth λ. At a given temperature there is a frequency scale Ω1 when

δsk = λ that marks a transition point between the Meissner screening, described

by λ, and the skin depth screening, described by δsk. This cross-over frequency

Ω1 is a characteristic time scale of the electrodynamics of superconductor. The

other fundamental time scale is related to the ability of the superconducting order

parameter to adibatically follow the time variation of the external field and is linked

to the nonlinear response of superconductors to external fields.

2.3 Microwave nonlinear response of superconductors

The Drude-like equations from the previous section describing the complex-

valued conductivity σ̃ were derived with the tacit assumption that the external field
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does not perturb the two fluids, nS and nn. Investigating the properties of the

superconducting system (for example conductivity σ̃) with a probing field whose

magnitude is gradually increased should lead to the same results if the system is

not altered during the measurement. This is called linear approximation since the

response of the system, ”normalized” by the excitation is an invariant quantity,

characteristic of the system properties. In most, if not all, real-life systems, this is

not true; for case treated here, an external perturbation increases the free energy of

the superconductor, driving it toward the normal state.

In a two-fluid picture, this corresponds to a suppression of the superfluid den-

sity nS, or equivalently, of the superconducting order parameter (in the extreme

case, a ”probing” magnetic field of magnitude Hc or a current density Jc destroys

superconductivity all together). Strictly speaking, any perturbation, no matter how

small, alters the superconducting state; however, the induced changes can be in-

significant. When the external field approaches a well-defined threshold, which is

associated with the critical field Hc, the equilibrium between the superfluid and

the normal fluid is modified and the electromagnetic properties depart from the

low-field, linear response, non-perturbed values.

The first observation of nonlinear effects in superconductors dates back to 1950

when Pippard observed significant deviations from the behavior predicted by the

London linear-response theory: the penetration depth λ increases with the applied

magnetic field and the effect is more pronounced near the critical temperature Tc

[18]. The experimental findings could not be explained by using the London theory

and the two-fluid model of Görter and Casimir, the only theoretical frameworks
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available at that time.

The first theory to consider the suppression of superconductivity by an external

field or current was proposed by Ginzburg and Landau (GL) in 1950 [19]. In the GL

theory the superconducting state is described by introducing a complex function,

called the order parameter Ψ, which is zero in the normal state and finite in the

superconducting one.

By using the BCS formalism and its conceptual framework, Parmenter ap-

proached the nonlinear effects from a microscopic point of view [20]. In parallel

with the development of microscopic models, the phenomenological GL theory was

extended to non-stationary phenomena, leading to the Time-Dependent Ginzburg-

Landau theory (TDGL): whereas GL is a zero-frequency approach, TDGL takes into

account the effect of the finite frequency and introduces two time scales that govern

the electrodynamics of superconductors in external fields.

Experimental work has investigated the current-dependent reactance/resistance

of superconducting films [21], superconducting-to-normal state switching effects [22]

and the harmonic generation [23], and the data have been successfully interpreted

by using GL and its time-dependent versions, and Parmenter’s model.

After the discovery of high-Tc superconductors, the interest in the microwave

nonlinear response has been revitalized: the first experimental harmonic investiga-

tion concluded that the phenomenological TDGL equations that describe accurately

the low-Tc materials do not reproduce the nonlinear data acquired on YBCO single

crystals. Consequently modifications have been implemented in the original TDGL

equations to fit the data [24]. On the other hand, microscopic treatments taking into
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account the d-wave symmetry of the order parameter have been proposed starting

in 1992 [25, 26]. Since then, various refinements of the theory have been proposed

to account for the effect of gap suppression due to the superfluid flow [27] and that

of fluctuations above Tc [28, 29, 30].

Experimental work employing microwave resonant techniques have explored

the harmonic generation and intermodulation distortion processes and confirmed

predictions of the microscopic models in various temperature ranges [31, 32, 33].

In the following, a brief review of theoretical approaches to the problem of

nonlinear effects in superconductors is presented. As shown in this short chronolog-

ical overview, the theoretical models employ either a phenomenological description,

a GL-type or a microscopic BCS-type theory. Each approach has advantages and

disadvantages. Despite their differences the pictures should, in principle, describe

the same underlying physics.

2.3.1 Microscopic theories of the nonlinear effects in superconductors

Since a microscopic theory of high-Tc superconducting materials is not on

hand yet, the only available approach to the problem of microwave nonlinear ef-

fects is to use a BCS-like formalism (with the appropriate order parameter symme-

try, shape of the Fermi surface, dimensionality, anisotropy, etc) and evaluate the

current-dependent conductivity at finite-frequency. Unfortunately, this task has not

been achieved due to mathematical difficulties even in a ”pure” BCS framework

adequate for low-Tc superconductors [34] and approximations were used to obtain
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predictions that can be compared with experiment. For this reason, at present,

all microscopic treatments of the nonlinear response in conventional and unconven-

tional superconductors consider the DC case only, which in some cases is a good

approximation.

The first attempt to solve the problem of nonlinear effects in a microscopic

model belongs to Parmenter [20]. By extending BCS to regimes of current den-

sities comparable to the critical one Jc, it was shown that at finite temperatures,

T > 0, when the Cooper pairs are set in motion (superflow), quasiparticles are

created and tend to counteract the effect of the superflow. This effect was called

quasiparticle backflow and constitutes the starting point of most microscopic cal-

culations. Parmenter’s model has been confirmed in measurements of nonlinear

reactance/resistance of superconducting films [21].

With the discovery of high-Tc superconductors and the debate concerning the

symmetry of the order parameter, investigations of the field-dependent penetration

depth λ in cuprates were proposed as a powerful tool for detecting the structure

and symmetry of the order parameter, as suggested by Xu, Yip and Sauls [25] in

their treatment of the Nonlinear Meissner Effect (NLME). The theory predicted

measurable changes in the field- and angular dependence of the penetration depth

due to the presence of nodes in a d-wave order parameter. For this reason the

traditional NLME experiments have been done by measuring very small changes

in large linear-response background quantities (e.g. penetration depth). Due to

the nonlinear processes associated with generation and motion of magnetic vortices

many of these experiments were considered inconclusive and raised questions about
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the validity of the theory [35, 36, 37, 38, 39, 40]. Vortices often penetrate a sample

from a weak spot on an edge or corner, and single crystal samples are particularly

prone to this problem because of the large Meissner screening currents at those

locations. It was recognized by our group that edges and corners must be eliminated

from the NLME measurement to effectively exclude this extrinsic process.

Overall in the community it was realized that a new approach was required

to measure nonlinear effects in high-temperature superconductors. Given the in-

conclusiveness of the traditional NLME experiments, Dahm & Scalapino (DS) rec-

ommended a different experimental approach with a higher sensitivity: microwave

harmonic and intermodulation distortion measurements [26] where nonlinear signals

with zero background are measured.

The starting point of the DS model is the equation of current density, viewed

as a competition between the superfluid flow and the quasiparticle backflow, as

in the early treatment of Parmenter. At temperatures T ≈ 70 K, typical for the

operation of high-temperature superconducting filters, the quasiparticles are in ther-

modynamic equilibrium with the condensate† which is tacitly assumed to oscillate in

phase with the external field. By writing a BCS-type equation for the quasiparticle

backflow and expanding it in power series of J/Jc, the 3rd order nonlinear effects

on the superfluid density have been characterized quantitatively by introducing a

coefficient which depends on temperature and the orientation of the superfluid flow

†In this framework the quasiparticle scattering time is much smaller than the period of the

microwave current τqp ≪ ω−1.
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with respect to the crystalline axes a and b, bθ(T ):

nS(T, J)

nS(T, 0)
=

λ2(T, 0)

λ2(T, J)
≈ 1 − bθ(T )

(
J

Jc

)2

+ · · · (2.13)

where nS(T, J) (λ(T, J)) is the superfluid density (penetration depth) at tempera-

ture T in the presence of the current density J while nS(T, 0) and λ(T, 0) represent

the same quantities in the absence of current (low-power, linear-response), θ is the

angle between the superflow and the CuO bonds, as defined in the DS treatment,

and Jc is the zero-temperature critical current density (bθ(T ) is explained in detail

below).

The microscopic model has been formulated to predict nonlinear effects in

high-Tc superconducting microwave filters employed by the wireless industry, where

the intermodulation distortion IMD products must be minimized. For this reason,

the authors took into account only the first J-dependent term, (J/Jc)
2, in the power

series of the quasiparticle backflow current density. This is the term responsible for

the IMD products at angular frequencies 2ω1 − ω2 and 2ω2 − ω1 generated when

ω1 and ω2 are the input signals, and the 3rd order harmonic if the single-tone ω is

applied at the input.

bθ(T ) is the nonlinear coefficient that carries information about the intrinsic

physics of the system: the shape of the Fermi surface and the nature of the super-

conducting gap. Consequently, nonlinear measurements are aimed at determining

the temperature and angular dependence of the coefficient bθ(T ). Eq.2.13 shows ex-

plicitly that the current density J suppresses the superfluid density nS and enhances

the penetration depth λ, as observed in the early experiments of Pippard [18]; this
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constitutes the nonlinear Meissner effect.

Figure 2.1: Temperature- and angular dependence of the nonlinear coefficient bθ(T )

evaluated numerically for a d-wave superconductor (solid line bx(T ) and dotted line

bxy(T )) and an s-wave superconductor (dashed line) for 2∆p/kBTc = 6 [26].

The DS model provides the angular- and temperature dependence of the mag-

nitude of nonlinear effects as shown in Fig.2.1. The divergence of bθ(T ) at Tc is

a general characteristic of the superconducting state and is caused by the super-

fluid density being extremely sensitive to external fields, in agreement with the

phenomenological picture of the GL theory. At low temperatures, in d-wave super-

conductors, the divergence of bθ(T ) is caused by the existence of nodes of the order

parameter on the Fermi surface and constitutes a signature of the d-wave symmetry.

Through the nonlinear coefficient bθ(T ) the DS microscopic model assesses the

changes in the populations of the superfluid and that of the normal fluid, followed

by evaluations of the real and imaginary parts of the complex conductivity σ1,2.
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The next step for DS is to model the microwave resonator or transmission line in a

lumped-element approximation and study its response to an excitation consisting of

two tones with angular frequencies ω1 and ω2. This is the step where the results of

the zero-frequency microscopic analysis are introduced in the finite-frequency model

of the resonator or transmission line.

Due to the dependence of σ1,2 (through the coefficient bθ(T )) on the input

power, a microwave current at angular frequencies 2ω1 − ω2 and 2ω2 − ω1 is gen-

erated in the device and the microwave power at these mixed frequencies, PIMD,

is evaluated. Due to the dependence PIMD(T ) ∼ b2
θ(T ), measurements of the in-

termodulation power give access to the nonlinear coefficient b2
θ(T ), thus making

the IMD (and similarly the harmonic generation) measurements a powerful tool to

investigate the physics of the superconducting state at a microscopic level. Some

experimental results from the literature that use this formalism are briefly presented

in section §2.4.

A refinement of the DS model consists of taking into account the suppression of

the superconducting gap by the superfluid flow. Within this model it is shown that

the approximation of a superflow-independent gap, as assumed in the DS treatment,

is strictly accurate only at low temperatures up to t = 0.2 [27].

One limitation of the above DC microscopic treatment is the divergence of the

nonlinear response at Tc (P3f,IMD(T → Tc) → ∞), feature which is not observed

experimentally. Several reasons for the unphysical result at Tc are:

1. the approximate nature of the power expansion from Eq.2.13. Very close to
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and at Tc other terms in the power expansion of the quasiparticle backflow

might be essential and limit the divergent behavior;

2. the suppression of the superconducting gap by the superflow, as considered in

Ref.[27];

3. the finite-frequency effects that are not considered in the microscopic analysis.

In the DS formulation it is not explicitly stated that the order parameter is

assumed to oscillate in phase with the external field, i.e. the time scale associated

with the inertial properties of the order parameter (called the relaxation time of

the order parameter τ∆) is much smaller than the inverse of the microwave current

frequency. However, for T < Tc (for example at ∼ 70 K where the DS analysis is

applicable, compared to Tc =92 K for YBCO for example), the above assumption

is valid at microwave frequencies. According to the Time-Dependent Ginzburg-

Landau TDGL theory, reviewed in the next section, in close proximity to Tc the

order parameter cannot adibatically follow the external excitation (τ∆ → ∞) and

the divergent behavior of PIMD,3f at Tc is eliminated.

2.3.2 Phenomenological theories of the nonlinear effects in supercon-

ductors

Mean-field approaches

The first successful theory explaining nonlinear effects in superconductors was

the phenomenological zero-frequency Ginzburg-Landau theory proposed in 1950.

The GL equations for a sample infinite in the horizontal plane and with a thickness
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smaller than the penetration depth λ (”one-dimensional” problem) can be solved

analytically in some limiting cases and the suppression of the order parameter by

the external field becomes obvious. The problem of a superconducting slab with

thickness d0 ≪ λ is solved in detail in Appendix A.

Various versions of GL-like equations describing the nonlinear effects are used

in the literature. For example the suppression of the superfluid density nS and the

enhancement of the penetration depth due to a current density J is typically written

by introducing a phenomenological temperature-dependent characteristic nonlinear

current density scale, JNL(T ), that quantifies the strength of the nonlinear effects

[41, 42, 43, 44, 45]:

nS(T, J)

nS(T, 0)
=

λ2(T, 0)

λ2(T, J)
≈ 1 −

(
J

JNL(T )

)2

+ · · · , J ≪ JNL(T ) (2.14)

The nonlinear current density scale JNL(T ) is a material parameter, does not

depend on sample geometry or magnetic field configuration, and can be approxi-

mated in the GL picture by JNL(T ) = Jc(1− t2)(1− t4)1/2 for intrinsic effects. Here

t = T/Tc is the normalized temperature and this expression for JNL(T ) has been

obtained by solving the one-dimensional GL equations for a superconducting slab

[21]. For other types of nonlinearities (vortex motion, Andreev Bound States, weak

links, etc.), one has to use an appropriate functional dependence for JNL(T ). From

this point of view, the phenomenological picture gives a certain amount of freedom:

often experimentalists extract the nonlinear current density scale from data without

making any assumptions on the mechanism that generates the observed nonlinear

behavior [41, 42, 43].
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The suppression of the superfluid density by the current, and the correspond-

ing enhancement of the penetration depth as quantified by the phenomenological

Eq.2.14, is similar to its microscopic counterpart Eq.2.13 from the previous section.

Both the microscopic and the GL-based phenomenological approaches pre-

sented so far do not include any frequency-dependent effects, being essentially DC

treatments. For temperatures very close to Tc the situation is different because the

inertial properties of the order parameter become significant. This has been shown

at the end of 1960’s by Gor’kov and Eliashberg (GE) who modified the original GL

equations to adapt them to non-stationary processes.

In the GE picture, a time-varying external field of angular frequency ω ”mod-

ulates” the order parameter with a period equal to that of the field, as long as the

response time of the order parameter is shorter than 2π/ω. In this case, the order

parameter ”sees” the instantaneous value of the external field and oscillates in-phase

with the field. In a two-fluid picture the superfluid undergoes periodic suppressions

and recoveries and so does the normal fluid in conditions of thermodynamic equilib-

rium with the superfluid. As the angular frequency ω is increased (or equivalently

the temperature approaches Tc) there will be a threshold frequency ω = Ω0 above

which the order parameter cannot adiabatically follow the external field and in-

stead, it experiences the effect of the time-averaged external field. Ω0 represents a

fundamental time scale characterizing the dynamics of the superconducting order

parameter and diverges at Tc [16, 23, 24, 47, 48].

Due to the vanishing of the frequency scale Ω0 at Tc, in a harmonic generation

experiment with a fixed frequency ω and an increasing temperature T , harmonic
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generation should shut down at a normalized temperature t0 where Ω0(t
0) ∼ ω, as

shown in Ref.[16] and Ref.[48]. An estimation of the temperature t0 for YBCO sin-

gle crystals at ω = 2π · 6.5 GHz (employed in the harmonic generation experiments

reported here) is given later in this section and is based on experimental data and

modeling from Ref.[24]. An interesting feature of the GE theory is that the nonlin-

ear behavior of superconductors at very high frequencies (or very close to Tc) still

manifests itself in intermodulation distortion effects [16, 48].

This qualitative discussion suggests that the investigation of the microwave

nonlinear response has the potential of providing estimates for the time scale Ω0.

For this reason, the traditional harmonic generation experiments were aimed at

determining the timescale Ω0 [22, 23, 24].

Figure 2.2: Frequency scales describing the electrodynamics of superconductors.

Comparison between Gor’kov & Eliashberg theory and observations from experi-

ments on YBCO single crystals of Leviev et al..
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Investigations of the microwave linear-response of superconductors give access

to another fundamental time scale characterizing the superconducting state: Ω1

which represents the frequency cross-over between Meissner screening, at low fre-

quencies (ω < Ω1, characterized by the length scale λ) and the skin depth screening

where the superconductor behaves like a normal metal (ω > Ω1, characterized by

the length scale δsk).

The original GE theoretical treatment was formulated for gapless supercon-

ductors with a large concentration of paramagnetic impurities where Ω0 = Ω1 [47].

Later calculations for dilute alloys (low-Tc superconductors) by Wohlman revealed

that Ω0 < Ω1 [17].

The situation in high-Tc single crystals is different, as observed in the experi-

ments of Leviev and co-workers [24], where the two time scales are reversed Ω0 > Ω1.

A schematic of the GE theory predictions and the experimental findings of Leviev

et al. is shown in Fig.2.2 and suggests that the physics of high-Tc superconductors

is different than that of their low-Tc counterparts.

From the experiment and a fit of the data with a modified GE theory, it was

concluded that Ω0(t)[Hz] ∼ 1.8·1014(1−t) while Ω1(t)[Hz] ∼ 1.6·1013(1−t) showing

that close to Tc the order parameter responds slowly to the external field and the

skin depth screening dominates [24]. The estimations for Ω0,1 suggest that the DC

approximation inherent to the microscopic approaches is valid up to temperatures

extremely close to Tc if the probing excitation has frequencies in the GHz range.

For example, for frequencies used in the experiments reported in this dissertation

(f ≈ 6.5 GHz), the reduced temperature where the order parameter relaxation time
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becomes comparable to 1/f is about t0 ≈ 0.99996 and that where the Meissner

screening is replaced by skin depth screening is t1 ≈ 0.9996.

A feature unique to the finite-frequency GE model compared to the DC mi-

croscopic ones is that at Tc the harmonic response P3f is finite and experimentalists

have been able to numerically fit P3f (T ) data even at Tc without introducing cut-off

parameters [23, 24].

The models reviewed so far are all mean-field approaches, where the effect of

fluctuations is neglected. The TDGL theory and its variations have been imple-

mented to investigate the effects of order parameter fluctuations on the macroscopic

properties of superconductors starting with the end of 1960’s.

Fluctuation effects

Fluctuations are an additional source of electrodynamics nonlinearity in su-

perconductors. They lead to an enhancement of the real part of the conductivity

σ1. The enhancement is electric field-dependent because the field tends to destroy

the fluctuation (non-equilibrium) Cooper pairs. Initially the linear-response effect

effect has been examined theoretically by Schmidt by means of TDGL below and

above Tc [49]. The linear-response treatment of Schmidt for T > Tc has been ex-

tended to describe the nonlinear effects by Hurault [50] and Schmid [51]. Within

this theoretical model, spontaneous fluctuations of the order parameter that are de-

scribed by TDGL, can be qualitatively pictured as ’droplets of Cooper pairs’ above

Tc [50, 51, 52].

A temperature-dependent electric field scale has been introduced, Ẽ0(T ) which

defines the regime of low (E < Ẽ0(T )) or high electric field (E > Ẽ0(T )). The value
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for the characteristic electric field Ẽ0(T ) in the case of isotropic materials depends

on the zero-temperature coherence length ξ0 and the reduced temperature ǫ = (T −

Tc)/Tc as Ẽ0(ǫ) = E0ǫ
3/2 = [16

√
3kBTc/(πe0ξ0)]ǫ

3/2 where kB is the Boltzmann

constant and e0 is the electron charge [28].

For the case of an isotropic superconductor, in the limit of low electric field

(E < Ẽ0(T )), the critical and Gaussian fluctuation regimes involve an E2 correction

to the zero-field conductivity:

σ1(T, E)/σ1(T, 0) − 1 ∼ (E/Ẽ0(T ))2 (2.15)

while in the case of high-field (E > Ẽ0(T )) the Gaussian fluctuation regime (the

only regime experimentally accessible in low-Tc materials) leads to the dependence:

σ1(T, E)/σ1(T, 0) ∼ (E/Ẽ0(T ))−(4−d)/3 (2.16)

where d represents the dimensionality of the sample under study [28]. This electric

field dependence of the conductivity has been confirmed in experiments on low-Tc

materials: thin films with d = 2 [53] and wires with d = 1 [54].

In cuprates, characterized by high critical temperatures Tc and short coherence

lengths, the effects of fluctuations is more accessible from the experimental point

of view and for this reason the interest in this field was re-vitalized. The modern

mathematical treatment of superconductors above Tc consists in solving the TDGL

equations with an external noise term to model the effect of fluctuations [28]. This

way, the critical and Gaussian fluctuations and their effect on the electric field-

dependent DC conductivity have been studied theoretically [28, 30].
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An alternative approach was proposed by Mishonov and co-workers who eval-

uated the nonlinear effects on the DC conductivity in layered materials (cuprates).

Their approach is to solve a Boltzmann-type equation for the fluctuation Cooper

pairs and provides predictions for the electric-field dependent σ1 [29].

Concerning the frequency-dependent response, the TDGL equations with a

noise term allowed the analytical estimation of linear complex conductivity σ̃ for

arbitrary dimensionality [28] and for layered cuprates [55]. The nonlinear response

involves mathematical difficulties that do not allow for closed-form equations [28,

29]. For this reason, in Chapter 5 where resistive nonlinear effects are investigated

experimentally, the DC value of the cross-over electric field evaluated for layered

materials in Ref.[29] has been used.

2.4 Prior experimental work on microwave nonlinear effects in super-

conductors

Microwave experimental techniques have been used extensively to study the

physics of the superconducting state. The traditional approach dating back from

the studies of Pippard [18], is to insert the superconducting sample into a resonator

and monitor the resonant frequency and the quality factor as the temperature or

the input power is varied.

For harmonic microwave studies, bimodal resonators tuned at the fundamental

and at the 3rd order harmonic have been used (see, for example, Ref.[23] and [24]).

In order to generate measurable nonlinear effects, the sample must be subject to
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high microwave screening currents, a situation which is achieved if the sample is

placed inside the resonator at a location of maximum magnetic field. Experimental

data consist of the magnitude of the harmonic power |P3f(T )| and exhibit a peak

in the vicinity of the critical temperature, as observed also in the measurements

reported in this dissertation (see Chapters 5 and 6).

Traditionally, the main motivation for the studies of nonlinear effects in super-

conductors was to gain access to information which otherwise cannot be extracted

from linear-response measurements: the relaxation time of the order parameter in

the superconducting state Ω−1
0 . Harmonic measurements acquired on the low-Tc

superconductor La1−xGdxSn3 (x = 0.1, Tc ≈ 3K and x = 0.08, Tc ≈ 3.9K) have

been interpreted by using the GE formalism, described in the previous section. The

order parameter relaxation time varies as Ω−1
0 ∼ (1 − t2) close to Tc with the pro-

portionality constant on the order of 1012 Hz [23].

The interest in the microwave nonlinear behavior of superconductors has been

renewed after the discovery of the high-Tc materials and is driven by its twofold

aim: the investigation of the fundamental physics governing the superconducting

state (the spectroscopy of the superconducting gap, the nature and location of the

nodes of the dx2−y2 wave gap [25], and the detection of possible phase transitions

between superconducting phases with different symmetries of the order parameter

[56]) and the optimization of high-Tc superconducting microwave filters used in the

wireless industry.

The first harmonic measurements on cuprates reported in the literature belong

to Leviev and co-workers in 1989. Harmonic data |P3f(T )| acquired on YBCO single
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crystals have been numerically fitted by using a GE-like mathematical formalism and

both timescales Ω−1
0,1 have been estimated, as mentioned in the previous section†.

With the advent of high-Tc superconducting microwave filters, harmonic gener-

ation and intermodulation distortion measurements were performed in experimental

set-ups where the superconducting sample acts as a resonator. These studies have

provided experimental support for the microscopic models of nonlinear effects in

cuprates proposed by Xu, Yip and Sauls [25] and Dahm and Scalapino [26]. The

Nonlinear Meissner effect at low temperatures in d-wave superconductors, enhanced

by the presence of nodes of the order parameter on the Fermi surface has been

detected by measuring the magnitude of the IMD microwave power [31, 32].

The theoretical studies of Dahm & Scalapino addressing the operation of high-

Tc superconducting microwave resonators have shown that under certain specific

circumstances, the dominant nonlinear mechanism in these devices has an inductive

origin due to the enhancement of the penetration depth λ by the current (or applied

magnetic field) [26]. For this reason and due to the lack of harmonic phase informa-

tion, data acquired on YBCO thin films in the vicinity of Tc have been considered

mainly inductive in nature. However, an experimental investigation of harmonic ef-

fects in YBCO thin films with various doping levels suggested that such a picture is

accurate in optimally-doped samples, but significant deviations have been observed

in underdoped samples [44, 45]. A novel interpretation of these data is provided in

Chapter 5.

†At the time when these studies were performed, the microscopic theory of Xu, Yip and Sauls

[25] was not available.
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Phase-sensitive measurements of the harmonic response of cuprates at mi-

crowave frequencies have been performed by a group at NIST, Boulder, CO by us-

ing a YBCO coplanar waveguide and a nonlinear vector network analyzer (NVNA)

[42, 43]. Harmonic data have been acquired at the fixed temperature of 76 K for

various input power levels (2 to 16 dBm) and analyzed by using a lumped-element

model of the transmission line.

Figure 2.3: Harmonic phase data acquired on a YBCO coplanar waveguide at 76 K

from Ref.[42].

The analysis of the harmonic phase reveals that at 76 K the inductive nonlinear

behavior dominates the resistive one in magnitude, leading to a harmonic phase of

roughly π/2 at low power levels, as shown in Fig.2.3. The effect of increasing the

input power manifests itself in an apparent decrease of the harmonic phase below π/2

(see the experimental points acquired with 12 to 16 dBm input power in Fig.2.3) and
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is somewhat equivalent to raising the temperature†. This is in qualitative agreement

with the temperature-dependent harmonic phase data reported in this dissertation

in Chapter 6.

†From thermodynamic considerations, the external field increases the free energy of the super-

conductor driving it toward the normal state.
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Chapter 3

The nonlinear near-field microwave microscope

Wee haue divers curious Clocks; and other like Motions of Returne:

and some Perpetuall Motions [...] These are the Riches of Salomons House.

Francis Bacon, New Atlantis, London, 1627

3.1 Introduction and motivation

In this chapter two versions of the nonlinear near-field microwave microscope

are described. In the present study, these instruments have been used for the charac-

terization of harmonic effects in cuprate thin films, at temperatures close to Tc. The

experimental apparatus employed for the linear-response measurements on magnetic

materials reported in Chapter 4 as well as the experimental procedure are discussed

therein due to the particular nature of magnetic measurements.

The first instrument, the scalar nonlinear near-field microwave microscope,

has been used in the past to image nonlinear effects from an artificially-created bi-

crystal boundary, thus proving its local imaging capabilities [57]. Additionally, the

nonlinear Meissner effect at Tc has been investigated in homogeneous YBCO thin

films with various doping levels by means of this experimental apparatus [44].

The second instrument, the vector nonlinear near-field microwave microscope,
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has phase-sensitive harmonic detection and inherits the local capabilities of the

first one since it employs the same type of microwave probe. Therefore, the first

section of this chapter presents in detail the microwave probe and its interaction

with the sample under investigation with emphasis on the issue of probe sensitivity,

i.e. the probe ability to induce screening currents in the sample and to pick up the

reflected signal. The discussion of probe sensitivity is raised to a quantitative level

in section §3.2 by introducing the concepts of figure of merit and probe-to-sample

electromagnetic coupling. The experimental apparatus for the scalar and vector

microwave harmonic measurements is described in detail in sections §3.4 and §3.5.

3.2 The microwave probe, its near-field and the interaction with the

sample

The essential component that gives local capabilities to the microwave mea-

surements reported in this thesis is the microwave probe. In the original set-up,

the probe, called UT034, was fabricated by soldering the inner conductor to the

outer one of a commercial coaxial transmission line UT034 in order to create a short

circuit [44, 57, 58]. The loop created this way represents the field-concentrating

feature that provides the magnetic field serving as the excitation for the sample

placed in its proximity. This robust design allows one to reliably use the probe in a

cryogenic environment whose temperature can be varied from 300 K down to 4 K. A

12 µm thick Teflon sheet is placed between the probe and the sample to avoid direct

electrical contact and to maintain a fixed probe-to-sample geometric separation.
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Due to sample’s interaction with the near-field of the probe, microwave screen-

ing currents are generated whose spatial distribution in the sample surface is dic-

tated by the probe design and its geometric separation to the sample. An example

is shown in Fig.3.1 where the electromagnetic field of the simple magnetic probe

described above has been computed numerically with a commercially-available elec-

tromagnetic solver, CST-Microwave Studio [59]. The numerical simulation reveals

that the magnetic field generated by this microwave probe is similar to that created

by an ideal circular current loop†.

Figure 3.1: Schematic of the loop probe, sample and the induced microwave surface

current (computed numerically with CST-MWS [59]).

The numerical simulations reveal that the current distribution in the sam-

ple peaks at a point below the loop (see Fig.3.1); consequently, if the probe is

†For a comparison between the field of a real loop probe and that of an ideal circular current

loop, see Ref.[45]
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placed far from the edges/corners of the superconducting sample, vortex entry at

edges/corners where the microwave current vanishes is insignificant. Therefore, the

local capabilities of this probe allow the investigation of sample’s intrinsic physics.

At an operating microwave power level of +10 dBm evaluated at the probe, the

maximum microwave surface current induced in the sample is about 25 A/m as

computed by using an electromagnetic solver [59] (see Fig.3.3). The sample is as-

sumed to begin in the vortex-free Meissner state when zero-field cooled below Tc.

Inside the cryostat the microwave probe is mounted on an arm whose position can

be X-Y-Z controlled from outside, thus conferring scanning capabilities.

Since the UT034 probe has been utilized in microwave nonlinear response

measurements, it is useful to analyze the factors that limit the probe sensitivity and

to identify possible ways of resolving them. In a qualitative picture, one can imagine

that when the electromagnetic wave traveling through the dielectric of the coaxial

cable hits the surface of the inner conductor making up the loop it gets reflected and

induces microwave screening currents in a thickness on the order of the skin depth

in copper (the typical metal employed in coaxial transmission lines). According to

this picture one would expect that the active region of the UT034 probe, where the

microwave current peaks, is a thin layer located at the inner radius of the loop. This

qualitative picture has been confirmed by numerical simulations and is illustrated

schematically in Fig.3.2.

The above reasoning suggests that by mechanically removing material from

the loop at the outer radius, the active region of the probe could be brought closer

to the sample surface, thus enhancing the probe sensitivity. For the measurements
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Figure 3.2: Loop probe, the active region where high-density microwave screening

currents (shown with green) are induced by the incoming microwave signal and the

current wire approximation (shown with red).

reported in Chapter 6 a UT034 probe has been modified by polishing the inner

conductor making the loop at its outer radius. With the modified probe the overall

sensitivity of the experimental set-up increases, leading to a P3f higher by +13 dB

compared to the one acquired in similar conditions with the original UT034 probe.

Since measurements reported in Chapter 4 have been performed at room tem-

perature, issues related to thermal contraction of materials from the coaxial cable

making the probe are not relevant. Thus, a more radical solution could be adopted

to enhance the probe-sample electromagnetic interaction. In a first effort, the loop

was replaced by a thin wire bond directly between the inner and outer conductors

while keeping the probe in physical contact with the sample. Since the wire diameter

(∼ 25µm) is much smaller than that of the inner conductor of UT034 coaxial cable

(∼ 0.2 mm) the probe-to-sample electromagnetic interaction was enhanced and a
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vector network analyzer could be used in frequency-swept mode for the first FMR

measurements with such a technique [60].

For room-temperature measurements the sensitivity was further enhanced with

a novel probe design and fabrication process. A 500-nm thick Cu film (with resistiv-

ity ρ ≈ 2.1−2.3µΩcm) was deposited directly on a cross-sectional cut of the coaxial

cable UT085 in an e-beam evaporator. In a second fabrication step, the Cu film

was patterned into a narrow bridge connecting the inner and outer conductors to

create the short-circuit for the incoming microwave signal. This Cu bridge (”micro-

loop”) has a length of about 500 µm with widths in the range 100-300 µm and

generates a highly-localized and unidirectional magnetic field hMW . Since for the

operating frequencies (f ∼ 0.1 − 20 GHz) the microwave skin depth in Cu is larger

than the Cu film thickness (500 nm), the induced microwave current generating the

probe’s excitation field hMW , is uniform in the 500 nm thickness. This constitutes a

field-enhancing feature of the novel probe and, depending on the capabilities of the

probe-to-sample positioning system, can be brought very close to the sample sur-

face. For the measurements reported in Chapter 4 the probe-to-sample separation

was on the order of tens of microns.

The room-temperature microwave probe can be further improved by depositing

the Cu film on coaxial transmission line of smaller dimensions (for example UT020)

with the Cu ”micro-loop” patterned by using focused ion beam (FIB), which ulti-

mately would allow a reduction of the probe width to a nm scale and result in higher

sensitivity and improved spatial resolution.
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3.3 Numerical modeling of the probe-sample electromagnetic inter-

action

The previous section presented three designs for the microwave probe which

have been implemented for the experiments reported in this dissertation. The topic

of this section is the numerical modeling of the induced current distribution; this

step is of great importance for understanding the absolute harmonic power mea-

surements from Chapter 5. The main advantage of the numerical modeling consists

in its capability to reproduce accurately the field and current distribution from the

real-life experimental configuration. With the advent of commercially-available elec-

tromagnetic solvers optimized for microwave frequencies this task has been simplified

tremendously. However, in some cases it is instrumental to rely on an analytical ap-

proach in order to gain some insight into the problem. For this reason, at the end

of this section, starting from an intuitive picture of the current distribution induced

in the inner radius of the loop by the incident microwave signal (see Fig.3.2), a sim-

plification of the probe geometry is presented, which is later used in an analytical

model in Chapter 6.

In order to relate the absolute harmonic power measured with a spectrum an-

alyzer, quantitative information about the probe’s near-field and the corresponding

current distribution induced in the sample is required. In the past, the sensitivity

of the nonlinear near-field microwave microscope has been quantified by introducing

the figure of merit, Γ, defined for the superconducting state [45]. In the limit of

films thinner than the penetration depth λ, the figure of merit is determined by the
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surface current distribution in the sample [45]:

Γ =

∫ ∫
K4dxdy∫ x0

−x0
Kydx

(3.1)

where ~K = Kxx̂ + Ky ŷ and I0 =
∫ x0

x0
Kydx are the screening surface current density

and the total screening current induced by the near-field of the probe in the sample.

The surface current distribution ~K(x, y) has been computed numerically by using

two electromagnetic solvers (CST Microwave Studio, CST-MWS [59] and Ansoft

High Frequency Structure Simulator, HFSS [61]). The superconducting sample has

been defined as a perfect (lossless) conductor and the computed surface current

distribution has been exported in order to evaluate the integrals in Eq.(3.1). A top

view of the surface current distribution is shown in Fig. 3.3 and it exhibits the main

features of a current distribution induced by the magnetic field of an ideal circular

current loop on a perfectly conducting surface. The integral in the denominator of

Eq.3.1 is evaluated for x = −x0 · · · + x0 where x0 is the distance from origin up to

the X location where Ky changes sign (in this figure it corresponds to the location

of the current vertexes). The integral in the numerator is evaluated over the sample

surface.

For the evaluations from Chapter 5 a similar computation must be performed

to evaluate the figure of merit for a film in the normal state Γρ. To accomplish

this goal in the electromagnetic solver a finite-resistivity sample is defined, with

ρ ≈ 100 µΩ · cm (typical for YBCO in the normal state immediately above Tc) and

the induced surface current distribution is computed numerically.

The figure of merit Γ was evaluated for a coaxial magnetic probe located above
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Figure 3.3: Top view of surface current distribution ~K = Kxx̂+Kyŷ induced on the

sample surface by a coaxial loop probe UT034 placed at 12 µm above the sample.

The computations have been performed with CST-Microwave Studio for an input

power of 1 W.

a perfectly conducting sample and the result of integration is Γ = 7.7 A3m2 for an

input power of 10 dBm. Similarly, for the finite-conductivity sample the figure of

merit is Γρ = 7.6 A3m2 evaluated at the same power level. In principle both figures

of merit Γ and Γρ depend on the input frequency through the spatial distribution

of the near-field. However in the range of frequencies used for this experiment (6.5

to 19.5 GHz) and due to the near-field configuration where all spatial dimensions

involved in the problem are much smaller than the wavelength of the probing signal,

it can be assumed that the frequency dependences of Γ and Γρ are very weak. In

terms of power dependence, both figures of merit scale with the input power as
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P
3/2
input as suggested by Eq.3.1.

Another issue to be considered is that only a fraction of the microwave power

injected into the probe reaches the sample, and similarly only a fraction of the

harmonic power generated at the sample surface couples back into the probe. This

situation is modeled by using a transformer model with the primary coil represented

by the microwave probe, and the secondary coil by the probe’s image in the sample.

The coupling coefficient k representing the voltage at the secondary terminals when

the primary is biased with 1 V has been evaluated numerically for a perfectly con-

ducting sample by using the method of images and it was found k ≈ 3% as shown

in detail in [45]. Intuitively, one can imagine that the coupling coefficient k varies

between 0 and 1: for an ideal probe-to-sample coupling k = 1 while as the probe is

moved further away from the sample k decreases to 0.

For purposes of evaluating the absolute harmonic power, in Chapter 5, the

coupling coefficient k must be evaluated both in the superconducting and the normal

state. For a sample in the normal state the problem is more complicated since

the classical method of images may not be applicable. However, since numerical

simulations performed with a finite-resistivity sample showed that the screening

current distribution induced on the sample surface does not differ significantly from

that evaluated for a perfectly conducting sample one can safely assume that the

coupling coefficient k is similar. This assumption is confirmed also by the similar

values for the figures of merit Γ and Γρ, as shown previously.

In order to model analytically the probe-sample interaction, the coaxial loop

probe can be replaced by an idealized circular current loop and its magnetic field
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can be expressed in terms of the complete elliptic integrals E and K [46]. In such

a situation the mathematical details could obscure the fundamental physics of the

problem and for this reason a simpler approach is used in the thesis: since most of

the microwave current that generates the antenna’s field is ”crowded” at the surface

of the inner radius of the loop, as shown in Fig.3.2, it is reasonable to model the loop

as a wire parallel to the sample surface. By implementing this approximation the

electromagnetic problem of probe-sample interaction has been solved analytically in

Chapter 6.

3.4 Experimental apparatus for scalar harmonic measurements

In the harmonic generation experiments presented in this dissertation the ob-

jective is to locally stimulate a superconducting thin film with microwave currents

and measure the reflected harmonic power or voltage. The microwave signal at

the fundamental frequency f ≈ 6.5 GHz is generated by a microwave source (see

Fig.3.4) and low-pass filtered in order to suppress its higher-order harmonics. This

excitation signal is coupled locally to the sample by means of the magnetic loop

probe described previously and labeled UT034 which is located in close proximity

of the sample.

In the absence of nonlinear effects in the sample, the reflected microwave

power coupled back to the probe has only one Fourier component at the frequency

of the incident signal f . However, due to sample’s nonlinear properties, the spectral

content of the reflected microwave power includes higher-order harmonics 2f, 3f, · · ·

52



f

f, 2f, 3f,…

f

MW

source

Low pass 

filter

Directional

coupler

High pass 

filter

samplesamplesamplesample

Cryogenic

environment

2f, 3f,…

Spectrum

Analyzer

Amp

Figure 3.4: Schematic of the experimental apparatus for the scalar harmonic mea-

surements.

with the 3f component representing the signal of interest in the measurements

reported in the thesis†. The reflected signal is coupled back to the microwave probe

and propagates on the same path as the incident wave until the directional coupler

whose purpose is to provide separate paths for the incident and the reflected power

(see Fig.3.4).

Since the detection system is typically a nonlinear device (spectrum analyzer

†Note that 2nd order harmonic measurements P2f (T ) on superconductors have been extensively

studied by Sheng-Chiang Lee [45]. Here P2f (T ) was not considered because the focus of this work

is on the intrinsic NLME rather than Time-Reversal Symmetry Broken (TRSB) effects near Tc.

P2f (T ) signals are orders of magnitude lower than P3f (T ) signals and could not be detected reliably

with the novel experimental set-up.
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or vector network analyzer) it is necessary to suppress the microwave power at

the fundamental frequency, which represents the dominant component of the power

reflected from the sample. Suppression is accomplished by means of two high pass

filters that ensure a rejection of about 80 dB up to a frequency of about 11 GHz.

In the absence of the high-pass filtering, the microwave signal at the fundamental

frequency f would generate harmonics in the detection system which could mask

the harmonics originating from the sample.

In order to boost the power carried by the harmonic power after the high-pass

filtering, two broadband microwave amplifiers are inserted into the microwave cir-

cuit. A measurement with a vector network analyzer showed that the two amplifiers

provide a gain of about 52 dB at the 3rd harmonic 3f ≈ 19.5 GHz [45].

For the scalar harmonic measurements presented in Chapter 5 the source for

the probing signal was a microwave synthesizer model HP 83620B while a spec-

trum analyzer Agilent model E4407B was employed as the detection device. The

experiment consists in controlling the temperature in the cryostat and monitor-

ing the reflected power carried by the third-order harmonic signal P3f (T ) with the

spectrum analyzer. The sample is placed in a magnetically-shielded environment

(external fields are attenuated by roughly 90 dB) whose temperature is controlled

between 20 and 100 K with an accuracy of 0.1 K by using a Lakeshore model 340

temperature controller. Since the detection instrument is a spectrum analyzer, the

harmonic power is measured in absolute units, dBm, representing power relative to

1 mW on a logarithmic scale.
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3.5 Experimental apparatus for vector harmonic measurements

The experimental set-up presented in the previous section, employing a spec-

trum analyzer, is a powerful tool to measure absolute power levels reflected from a

nonlinear sample, however, it has no sensitivity to the phase of the harmonic power.

In order to overcome this limitation, the detection system has been replaced by a

vector network analyzer (VNA) Agilent model E8364B with harmonic capabilities.

In the new configuration, the VNA internal microwave source provides the

excitation signal on port 1 at a fixed frequency f ≈ 6.5 GHz in the continuous-wave

(CW) mode, while the reflected signal is measured on port 2 (see Fig. 3.5). The

VNA is equipped with the frequency offset mode (FOM) option which allows the

user to tune the receiver on port 2 to a different frequency range than that of the

microwave source on port 1†.

One limitation of this set-up is that the microwave power incident on the

sample cannot be varied in a large range as was the case for the previous set-up

(Pinput = −20 · · · + 20 dBm). The VNA can reliably generate microwave power

levels only up to +8 dBm. This limitation has been mitigated by using a more

sensitive probe, the modified UT034 probe, described in section §3.2. The microwave

amplifiers used for scalar harmonic measurements have been eliminated since the

modified probe UT034 has an enhanced sensitivity compared to its predecessor.

In order to perform phase-sensitive detection of the harmonic voltage incident

†In a typical VNA, as the one used for the measurements reported in Chapter 4, the source and

the receiver are locked on the same frequency.
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Figure 3.5: Schematic of the experimental apparatus for the phase-sensitive har-

monic measurements.

on port 2, the VNA needs a reference signal at the same frequency as the signal to be

analyzed namely 3f . For this reason, an additional microwave circuit is required, the

reference path, shown in Fig. 3.5. Some microwave power generated by the internal

VNA source‡, and available at the port Ref Out (see Fig. 3.5), is delivered to a

comb (harmonic) generator (Herotek, model number GCA 2026A-12) that produces

several higher-order harmonics (for this Herotek model, about 10 harmonics are

generated). Since the measurement of interest is performed at frequency 3f , two

band-pass filters providing an attenuation of 80 dB, are inserted in the reference path

‡Measurements of the microwave power at port 1 and at the Ref Out with a power meter show

that the reference path is excited with a signal carrying a power of about 20 dB below the power

available on port 1.
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immediately after the comb generator to suppress the fundamental and all harmonics

except for 3f . The band-pass filtered microwave signal is incident on the Ref In

port, and serves as reference, U ref
3f , for the phase-sensitive measurements. The data

acquired from the VNA in the frequency-offset mode (VNA-FOM) represents the

complex ratio of the voltage from the sample, Usample
3f , to that of the reference U ref

3f .

In an experiment, the reference path is operated at constant room temper-

ature† while controlling the temperature of the sample inside the cryostat. The

measured complex harmonic voltage Usample
3f (T )/U ref

3f contains information about

the sample and the microwave circuit (coaxial cables, filter, directional coupler, etc)

as well as about the reference path (comb generator, band-pass filters, coaxial cable,

etc). Because the reference path and most of the microwave circuit are at room tem-

perature (only about 10 cm of coaxial cable is inside the cryostat, however not in

physical contact with the cold plate), it is legitimate to assume that the temperature

dependence of the measured harmonic voltage Usample
3f (T )/U ref

3f originates entirely

from the temperature-dependent nonlinear effects in the sample.

In order to perform VNA-FOM measurements a power calibration is required.

The power calibration has been performed with a power meter according to the

instructions of the manufacturer [62]. After the power calibration, the VNA-FOM

instrument is able to measure the absolute power level incident on port 2 similar to

a spectrum analyzer.

The VNA-FOM is not designed for measurements of absolute phase, as is

†Before each experiment the comb generator was turned on at least four hours prior to starting

the data acquisition to make sure that stable operating conditions are reached.
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the case with the Large Signal Vector Network Analyzer (LSNA), but for relative

phase measurements in order to compare the nonlinear characteristics of different

microwave devices†. Consequently, the phase information provided by the VNA in

FOM operation is relative in the sense that it only indicates how the phase changes

from one device to another, or more appropriately formulated for the situation

reported here, how the device-under-test (the sample) changes from one temperature

to another. This implies that the temperature-dependent phase data Φsample
3f (T ) −

Φref
3f acquired from the VNA (see for example Fig.6.2), are offset by an unknown

amount. This phase shift originating from the phase winding in the components of

the microwave circuit (coaxial cables and filters) and the phase relationship between

the fundamental and the harmonics generated by the comb generator cannot be

eliminated through a linear-response calibration with standards (open, short, 50 Ω

load and through) since the excitation and the response have different frequencies

(f vs. 3f). A number of attempts were made to define an absolute nonlinear phase

reference (see Appendix B).

A phase-sensitive harmonic measurement consists in exciting the supercon-

ducting sample with a single-tone microwave signal at frequency f generated from

VNA’s port 1 and tuning the receiver on port 2 in a narrow frequency range (1 or 2

Hz) centered on 3f . This procedure is similar to the one performed with the spec-

trum analyzer, where one acquires traces representing the absolute power incident

on the input port (in dBm units) vs. frequency. The VNA-FOM outputs a string

†The author acknowledges useful conversations on nonlinear phase measurements with Mario

Mule & O. J. Danzy from Agilent.
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of complex numbers (trace) representing the Usample
3f /U ref

3f ratio evaluated at the

frequency points scanned by the receiver. At each temperature a trace is acquired

and stored on the acquisition PC for further processing.

The two experimental set-ups have been used to measure harmonic data on

cuprate thin films, as reported in Chapter 5 and 6.
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Chapter 4

Near field microwave microscopy and linear response of

magnetization dynamics

nature does not call for long recipes.

Paracelsus

4.1 Introduction and motivation

In the last 30 years there has been tremendous progress in the area of magnetic

recording. The areal recording densities have increased remarkably while the cost

per bit has dropped due to advances in magnetic recording technologies: the intro-

duction of thin-film read-write heads, giant-magnetoresistance read heads and more

recently the perpendicular magnetic recording (PMR). Similarly, the data rate has

increased significantly, exceeding the gigabit per second (Gbps) threshold and driv-

ing bandwidth requirements as high as several GHz for the magnetic elements that

make up hard drives and magnetic random access memory (MRAM). Due to the

dynamic response of magnetic materials, frequencies of this scale encroach on the fer-

romagnetic resonance (FMR) of the soft magnetic layers integral to the sensors and

storage layers of these technologies. In particular, the frequency characteristics of

the soft underlayer, SUL (an essential component of the PMR media), might become
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a limiting factor in further progress of magnetic recording technologies. With this

in mind, it is essential to elucidate the magnetization dynamics of these devices and

materials, both independently and in their system-dependent environment. Thus,

high-frequency characterization of the structured heads and disks that incorporate

these materials is instrumental to the continued advance of data-storage technology,

and perpendicular recording in particular. Fundamental to the dynamics are phys-

ical parameters like damping α and frequency linewidth ∆f , the understanding of

which is influenced by sample geometry and measurement technique [63].

Therefore, it is desirable to expand the spectrum of FMR characterization

tools in order to better explore this parameter space. Traditionally, FMR is mea-

sured using microwave cavities or striplines [63, 64, 65], where the sample size and

geometry is constrained by the measurement apparatus.

In this chapter a novel high-bandwidth local FMR probe is presented, where

there is no constraint on the sample size or geometry, thus enabling high-frequency

measurements on a multitude of materials in their actual operating conditions

[60, 66]. The work presented in this chapter has been done at Seagate Research,

Pittsburgh, PA during the summers of 2005 and 2006 under the supervision of Dr.

Thomas W. Clinton. The experimental set-up and the measurement procedure is

presented in section §4.2 followed by the theoretical model describing the operation

of the near-field microwave microscope and the relevant physics of magnetic mate-

rials in section §4.3. Section §4.4 presents measurements on several permalloy (Py)

samples with various thicknesses with quantitative results that are in good agree-

ment with those obtained from independent measurements (B-H hysteresis loops).
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Since the ultimate goal is to FMR characterize realistic materials and devices, the

next step was to study two disks employed in PMR; FMR results have been com-

pared with Magneto-Optic Kerr Effect (MOKE) and Vibrating-Sample Magnetom-

etry (VSM) results and the agreement is good. These results are reported in section

§4.5.

A similar instrument with electric sensitivity (NeoMetriK) has been designed

and fabricated by Neocera Inc., Beltsville, MD and the University of Maryland. It

is a near-field microwave microscope equipped with an electrical probe capable of

characterizing low-permittivity materials, which are of interest for the semiconductor

industry [67].

4.2 Experimental set-up, samples and theoretical background

The main idea of the experimental approach is simple: if a microwave signal

is incident on the magnetic system (sample) under investigation, the sample will

absorb electromagnetic energy when the frequency of the incoming signal f coincides

with the magnetic system’s resonance frequency (ferromagnetic resonance frequency

fFMR). Thus, if the reflected microwave power is monitored in a frequency-swept

experiment, the reflected-to-incident power ratio should exhibit a minimum at f =

fFMR. Such an experimental configuration is realized in a near-field microwave

microscope where the sample is placed in close proximity to the field-enhancing

feature of a magnetic microwave probe.

A scanning microwave probe with magnetic sensitivity has been demonstrated
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by Lee et al., [58].The probe excites a small sample area and picks up the electro-

magnetic response by using a coaxial transmission line resonator terminated with

a loop probe acting as an electrical short circuit [58]. The probe is fabricated by

soldering the inner conductor to the outer, therefore the probe dimensions depend

on those of the coaxial cable. The magnetic sample interacting with the probe near-

field changes the boundary conditions at the end of the resonator as shown by a

shift of the resonant frequency and a reduced quality factor [58].

A convenient and precise instrument for a reflection measurement at microwave

frequencies is a vector network analyzer (VNA): the VNA provides the excitation

signal (whose power and frequency can be accurately controlled) that propagates

through a coaxial transmission line down to the microwave probe. In the absence

of the sample, if the probe acts as a short circuit, a calibrated VNA measurement

outputs a reflection coefficient S11 = Ũrefl/Ũinc = eiπ = −1, where Ũrefl and Ũinc

represent the complex reflected and incident voltage, respectively. From transmis-

sion line theory it is known that the reflection coefficient characterizes the amount

of mismatch between the impedance of the transmission line Z0 and that of the load

ZT : S11 = (ZT −Z0)/(ZT + Z0). As the sample is brought in close proximity to the

probe and interacts with the incoming microwave signal, the reflection coefficient

S11 deviates from -1. By using standard transmission line theory, S11, is converted

into total (load) impedance by using the relation ZT (f) = Z0(1 − S11)/(1 + S11),

where Z0 = 50 Ω is the characteristic impedance of the coaxial transmission line.

It is the total impedance ZT (f) that captures the information about the sample

electromagnetic properties, as will be shown in the next section.
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Figure 4.1: Schematic of the FMR coax micro-loop probe and the equivalent lumped-

element model.

The goal of obtaining a high signal-to-noise ratio in local near-field microwave

measurements is accomplished by enhancing the probe-to-sample electromagnetic

interaction. This can be achieved by fabricating a probe whose field-enhancing fea-

ture (active volume), where microwave currents are induced under the influence of

the incoming microwave signal, can be brought as close as possible to the sample sur-

face. Two such designs that have been implemented for the measurements reported

here are discussed in Chapter 3.

The microwave probe functions both as an emitting and as a receiving antenna

to pick-up the sample response, captured in the reflected signal, γref . The probe

thin-film design minimizes the spacing between the microwave current and sample,

maximizing their electromagnetic coupling, and the sheet-film geometry generates a

highly unidirectional microwave field, as suggested by measurements on permalloy

samples (see Fig.4.3).
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In the experimental set-up, the coaxial cable terminated with the magnetic

probe is fixed and the sample is loaded on an x − y − z − θ stage with sub-micron

step resolution. By moving the sample with respect to the probe any point on the

sample can be accessed and the sample can be brought in such close proximity that

spacing loss is negligible. Additionally, the stage can be rotated in order to perform

measurements with various orientations of the sample’s easy-axis (EA) with respect

to the applied magnetic fields.

Figure 4.2: The measurement sequence and the orientation of the probing field hMW

with respect to the bias field HDC .

The first step of the measurements is to perform a one-port calibration at the

connector where the probe is inserted. This is accomplished by attaching standard

short-circuit, open-circuit and 50 Ω load [68]. Since the probe has a length of 2-5

cm from the connector to the active area that excites and picks up the electromag-

netic response of the sample (see Fig.4.1), numerical de-embedding is performed to

account for this length of the coaxial cable.
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A four-coil system generates DC magnetic fields oriented in the plane of the

sample. The measurement sequence consists of a saturating DC field, HDC, applied

perpendicular to the microwave magnetic field, hMW , (see Fig.4.2) and the re-

flection coefficient S11(f, H⊥
DC) is measured with the VNA. Next, a saturating DC

magnetic field of the same magnitude is applied parallel to the probe’s microwave

magnetic field hMW (see Fig.4.2), and the reflection coefficient S11(f, H
‖
DC) is mea-

sured with the VNA. Since the sample is saturated, the parallel orientation of the

microwave field (hMW ‖ HDC) does not excite the precessional motion of the mag-

netization, and consequently FMR will be absent. Thus, this data set captures the

background since it measures the nonmagnetic properties of the probe, its electrical

image and sample substrate. Subsequent sets of data are acquired by modifying the

magnitude of the applied DC magnetic field and repeating the above procedure.

To validate the experimental technique and the implementation of the theo-

retical model a 100 nm thick uniaxial permalloy (Py) film deposited on a 6” Si wafer

was FMR characterized. A B-H looper was used to measure the saturation magne-

tization (4πMS ≈ 10789 Oe), the coercive field (Hco ≈ 6 Oe) and the anisotropy

field (HK ≈ 4.5 Oe).

Several sets of reflection coefficient magnitudes |S11(f, HDC)| are shown in

Fig.4.3: the data from the main plot |S11(f, H⊥
DC)| have been acquired with the sam-

ple oriented with its easy axis perpendicular to the microwave field (HDC ⊥ hMW ,

hMW ⊥ EA): the magnitude of the reflection coefficient exhibits a small absorp-

tion dip which shifts to higher frequencies as the magnitude of the DC magnetic

field is increased. Since the magnitude of the reflection coefficient is related to the
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reflected-to-incident power ratio (Preflected/Pincident = |S11|2), the dip from Fig.4.3

and its behavior with the applied DC field constitutes the signature of the ferromag-

netic resonance. The slope of |S11(f)| represents the attenuation of the microwave

power in coaxial cable of the probe.
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Figure 4.3: The magnitude of the reflection coefficient acquired on a 100 nm thick

Py film: |S11(f, H⊥
DC)| measured in the FMR-active configuration (HDC ⊥ hMW ,

hMW ⊥ EA). Inset: FMR-free background data.

When the saturating DC field is applied parallel to the microwave field (HDC ‖

hMW ), there should be no magnetization response and consequently, the reflection

coefficient S11 should not depend on HDC . Such a behavior is observed in the

experimental data shown in the inset of Fig.4.3: there is overlap of the |S11(f, H
‖
DC)|

curves measured with the HDC magnitudes from the main plot. This qualitative

observation suggests that the microwave probe generates a unidirectional field. Some

deviations from this expected behavior occur for low HDC magnitudes (below 15 Oe)
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and could be caused by an incomplete saturation of the sample which is absent in

the presence of a larger saturating DC field.

4.3 Theoretical background

This section presents a theoretical modeling of the near-field microwave mi-

croscope that establishes the relationship between the reflection coefficient S11 mea-

sured with the VNA and sample properties captured in the surface impedance. Next,

the relevant theory of the magnetization dynamics, in particular ferromagnetic res-

onance and perpendicular spin wave modes, in magnetic thin films is given.

For the case of the near-field microwave configuration, where all geometrical

dimensions are smaller than the probing wavelength, a lumped element approach is

legitimate (see Fig.4.1). In this framework, the probe-sample system can be viewed

as an electrical transformer whose primary coil is represented by the loop probe

(modeled as an inductance L0) and secondary coil is the electrical image of the

loop probe in the sample (modeled as an inductance LX). The mutual inductance

between the two coils is M while the secondary circuit is loaded with ZS = RS +iXS,

which models the sample surface impedance, having a loss component (RS) and a

dispersion one (XS). For sinusoidal time dependences, in complex phasor notation,

the microwave probing signal is represented by the voltage Ũ1 applied to the primary

coil (loop probe) with the resulting current Ĩ1. The equations for this lumped-

element model are:

Ũ1 = iωL0Ĩ1 + iωMĨ2 (4.1)

68



0 = iωLX Ĩ2 + iωMĨ1 + ZS Ĩ2 (4.2)

Ĩ2 is extracted from from Eq.4.1 and inserted into Eq.4.2. The resulting equation

is:

0 = (iωLX + ZS)Ũ1 − iωL0Ĩ1(iωLX + ZS) − ω2MĨ1 (4.3)

The complex ratio Ũ1/Ĩ1 represents the total impedance at the terminals of the

primary coil and can be obtained from the reflection coefficient S11 in a calibrated

measurement with the VNA, ZT (f):

ZT (f) =
Ũ1

Ĩ1

= iωL0 +
ω2M2

iωLX + ZS
(4.4)

The same expression has been obtained by Anlage et al., [69]. This equation can be

re-written:

ZT (f) = iωL0 +
ω2 M2

LX

i + ZS

ωLX

(4.5)

In the approximation |ZS| ≪ ωLX , valid at microwave frequencies, the second term

in Eq.4.5 can be expanded in power series and if one retains only the first two terms

the load impedance seen by the VNA reads [66]:

ZT (f) ≈ iωL0(1 − k2) + ZSk2 L0

LX

(4.6)

Here k =
√

M2/LXL0 is a dimensionless coefficient (0 < k < 1) describing the

probe-to-sample coupling. The magnetic measurement of interest is captured in the

surface impedance, ZS, which, in the thin-film limit with sample thickness d0 much

smaller than the microwave skin depth δsk (d0 < skin depth, δsk), has the form

ZS = iωµ0d0µr. µ0 is the free-space permeability, and µr = µ1 − iµ2 is the complex
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magnetic permeability of the sample carrying information about the magnetization

dynamics [70].

The critical parameter for the measurements is the coupling coefficient k which

quantifies the amount of microwave power transferred from the probe to the sample.

In the limit of poor coupling, when the sample is far away from the probe, k = 0 and

the total impedance ZT (f) is reduced to that of the probe alone iωL0. As the probe-

to-sample coupling k is increased, the probe contribution to ZT (f) decreases while

the sample contribution becomes more significant. In the limit of ideal coupling

(k = 1), only the sample ”signature” ZS is present in the measured total impedance

ZT (f).

Since an ideal coupling k = 1 cannot be achieved in a realistic experimental

environment, one has to devise a subtraction procedure to eliminate the contribution

of the probe and that of its electrical image in the sample from the total impedance

detected in VNA reflection measurements; mathematically this corresponds to elim-

inating the first term in Eq.4.6. Several subtraction schemes have been proposed

in the literature. For example, some authors have used the ”high-field” subtraction

where one acquires the background data while applying a high DC magnetic field

in order to shift the FMR resonance peak to high frequencies [60, 71]. Another

possibility is to apply a DC magnetic field of the same magnitude but oriented par-

allel to the microwave field, so that magnetization precession is not excited and the

measured response captures everything but FMR [65, 71]. The latter subtraction

algorithm has been implemented for the data presented in this chapter. The second

term in Eq.4.6 is isolated by subtracting the total impedances measured with HDC

70



perpendicular and parallel to hMW :

∆Z(f, HDC) = ZT (f, H⊥
DC) − ZT (f, H

‖
DC) = k2 L0

LX
ZFMR

S = (4.7)

= k2 L0

LX

[
RFMR

S (f, HDC) + iXFMR
S (f, HDC)

]
= k2 L0

LX
iωd0µ0µr

The relative magnetic permeability µr is extracted from the measurement by using

the surface impedance expression in the thin film limit:

µr ≈
1

k2

LX

L0

1

ωd0µ0
(Im(∆Z) − iRe(∆Z)) (4.8)

According to Eq.4.8 the real and imaginary parts of the relative magnetic permeabil-

ity can be evaluated up to the proportionality constant LX/(L0k
2). The theoretical

FMR form for the complex magnetic susceptibility and its relationship to the com-

plex permeability (χ = µr − 1) [71] can be used to estimate the resonant frequency,

fFMR, and the frequency linewidth, ∆f , from experimental data:

χ ∝ 1

f 2
FMR − f 2 + i∆f

(4.9)

In order to evaluate the resonance frequencies associated with magnetic excita-

tions (spin waves), the magnetic system Hamiltonian is written as a sum of exchange,

Zeeman and dipole-dipole interaction terms. In the next step the Holstein-Primakoff

diagonalization method is utilized and the Hamiltonian is cast in a form mathemati-

cally similar to that of the quantum harmonic oscillator. The resulting energy-wave

vector relation reads [72]:

fSW =
|γ|
2π

√(
Dk2

SW

~|γ| + Heff

)
·
(

Dk2
SW

~|γ| + Heff + 4πMSsin2θk

)
(4.10)

where |γ/2π| is the gyromagnetic ratio (the theoretical free-electron value is |γ/2π| =

2.8 MHz/Oe), kSW is the wave vector associated with the spin wave mode, D
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is the exchange constant, ~ is Planck’s reduced constant, 4πMS represents the

saturation magnetization and θk is the angle between the ~k vector and the effec-

tive internal magnetic field ~Heff experienced by the microscopic spins: Heff =

HDC ±HK − 4πNzMS where HDC is parallel (+) or perpendicular (-) to the sample

easy axis EA, HK is the anisotropy field and Nz is the demagnetizing factor. For

the particular geometry of this experiment with all magnetic fields in the sample

plane, the demagnetizing effects are insignificant, Nz = 0.

The ferromagnetic resonance is the uniform mode with k = 0 and θk = π/2

(fFMR = fSW for kSW = 0). In the limit of small HDC and anisotropy field HK

compared to the saturation magnetization 4πMS (HK , HDC ≪ 4πMS), Eq.4.10 can

be simplified and the Kittel formula for the resonance frequency, fFMR, is recovered

[73]:

f 2
FMR ≈ |γ|/2π|24πMS(HDC ± HK) (4.11)

With estimates of fFMR extracted from numerical fits of the real and imaginary

parts of µr acquired at various HDC fields, the above linear relationship f 2
FMR(HDC)

allows the evaluation of HK from the intercepts and 4πMS from the slope of the

linear fits if |γ/2π| is known. Conversely, |γ/2π| can be evaluated if 4πMS has been

determined from independent measurements (for example B-H hysteresis loops, as

is the case here).

The experimental data acquired with the near-field microwave microscope and

discussed in the next section, exhibit a feature at higher frequencies, above 5 GHz,

besides the uniform mode k = 0 (FMR). A similar feature has been observed in
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coplanar-waveguide measurements [65] and has been attributed to a perpendicular

standing spin wave (PSSW) mode. The resonant frequency associated with the nth

order PSSW mode can be evaluated from Eq.4.10 for θk = π/2, Heff = HDC ±HK ,

depending on the orientation of HDC with respect to the easy axis; the spinwave

vector, kSW , and wavelength, λSW are related to film thickness d0 through kSW =

2π/λSW = nπ/d0. It will be shown in the next section that experimental data

acquired on Py films of various thickness deposited in similar conditions can be

analyzed by implementing Eq. 4.10 to yield an estimate for the exchange constant

D.

The frequency linewidth ∆f obtained from numerical fits based on Eq. 4.9

is typically interpreted as a combination of microwave losses and inhomogeneous

broadening. The microwave losses are described by the phenomenological Landau-

Lifshitz magnetic damping α while the inhomogeneous broadening, characterized

by ∆H0, is considered the effect of magnetic inhomogeneities (spatially non-uniform

anisotropy field and/or exchange interaction) [71, 74]:

∆f =

( |γ|
2π

∆H0 + 2αfFMR

) √

1 +

( |γ|
2π

· 4πMS

2fFMR

)2

(4.12)

A common approach used in the literature is to neglect the effect of inhomoge-

neous broadening (∆H0 = 0) and use the approximate form α ≈ ∆f/(|γ/2π|4πMS).

The mathematical model for the near-field microwave microscope has been

used to interpret VNA reflection data (S11) and the equations describing the mag-

netization dynamics were implemented to fit the experimental data and extract

relevant quantities.
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4.4 Data analysis and discussion

The experimental set-up and the theoretical model presented in the previous

sections have been used to measure and interpret data acquired with permalloy

(Py) samples of various thicknesses ranging from 15 to 300 nm. First, a 100 nm

thick uniaxial Py film deposited on a 6” Si wafer was FMR characterized. As men-

tioned previously, B-H hysteresis loops were measured with the applied field oriented

parallel and perpendicular to the easy axis in order to evaluate the saturation mag-

netization (4πMS ≈ 10789 Oe), the coercive field (Hco ≈ 6 Oe) and the anisotropy

field (HK ≈ 4.5 Oe).

The frequency-dependent complex reflection coefficient S11 has been measured

with the VNA in two field configurations for several values of HDC as described in

section §4.2. The reflection coefficient is converted into total impedance by using

the standard transmission line equation:

ZT (f, H
‖,⊥
DC ) = Z0

1 + S11(f, H
‖,⊥
DC ))

1 − S11(f, H
‖,⊥
DC ))

(4.13)

with Z0 the coaxial cable characteristic impedance (Z0 = 50Ω). In order to separate

the FMR contributions to the sample complex surface impedance, the background

subtraction procedure outlined in the previous section was implemented (see Eq.4.7)

and the real and imaginary components of the relative magnetic permeability µr have

been evaluated up to a proportionality constant as shown in Eq.4.8. The theoretical

form for the frequency-dependent magnetic susceptibility χ, exhibiting resonance at

frequency fFMR with a frequency linewidth ∆f (see Eq.4.9), allows one to adjust

the two fit parameters (fFMR and ∆f) and reproduce the experimental curves.
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Figure 4.4: Real (bottom) and Imaginary (top) parts of magnetic permeability for

the case HDC ‖ EA together with numerical fits (black traces). The imaginary parts

have been offset for clarity [66].

Frequency-dependent relative magnetic permeability µr(f, HDC) data acquired

on the 100 nm thick Py film at various magnitudes of DC field are shown in Fig.4.4.

For this set of data the applied DC field was parallel to the easy axis HDC ‖ EA.

Since the proportionality constant k2LX/L0 from Eq.4.8 could not be determined

from independent measurements or numeric simulations, the magnetic permeability

data from Fig.4.4 are given in arbitrary units. The imaginary parts have been

offset for clarity. Both the real and the imaginary parts resulting from experimental

data have been fit with the same adjustable parameters (fFMR and ∆f) and the

corresponding theoretical curves calculated with Eq.4.9 are shown as black traces.

The minor resonance observed at higher frequencies (above 5 GHz) is con-
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sistent with measurements on similar samples by Ding et al. using a coplanar-

waveguide technique and it has been associated with a perpendicular standing spin

wave PSSW mode [65]. A more detailed analysis involving several samples with

different thickness will be given later in this section. The results of Fig.4.4 are evi-

dence of the sensitivity and high utility of this experimental approach to investigate

a broad spectrum of magnetization dynamics.

Similar results µr(f, HDC) have been obtained when the DC magnetic field is

perpendicular to the easy axis HDC ⊥ EA. From the numerical fits the resonance

frequencies fFMR have been extracted for the two field configurations (HDC ‖ EA

and HDC ⊥ EA) and plotted in Fig.4.5 as f 2
FMR(HDC) in order to fit Kittel’s

approximate linear formula (see Eq.4.11).

From the slope of the linear fits and the value of 4πMS measured with the

B-H looper the gyromagnetic ratio was found, |γ/2π| ≈ 2.78 MHz/Oe, in good

agreement with the free electron value of 2.8 MHz/Oe and values for Py published

in the literature [75]. From these fits, the anisotropy field HK can be determined

from the intercepts. There is a field offset in each trace that is removed by taking

the difference of the data for the two field orientations. The resulting anisotropy

field (HK = 4.78 Oe) is within 6% of the value obtained from the B-H looper.

The other fit parameter of the µr(f, HDC) data, the frequency linewidth, ∆f , is

shown in the inset of Fig.4.5 as a function of 1/fFMR. The approximate relationship

α = ∆f/(|γ/2π|4πMS), leads to the dependence α(1/fFMR) also plotted in the inset

of Fig.4.5 with green squares. Since this set of data implies a significant dependence

of α on fFMR, contrary to α definition as an intrinsic material-dependent parameter,
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Figure 4.5: Field dependence of fFMR and linear fit for the two orientations of

the DC field. Inset: the f−1
FMR dependence of the linewidth ∆f , the numerical fit, α

extracted from the fit (solid green line) and α extracted from α = ∆f/(|γ/2π|4πMS)

[66].

it is concluded that the above approximation for α is not legitimate for this range of

fFMR. Consequently, Eq.4.12 describing the combined effect of the Landau-Lifshitz

magnetic damping and that of inhomogeneous broadening has been used to evaluate

α: from the fit it was found ∆H0 = 6.7 Oe and α = 0.005 (shown in the inset of

Fig.4.5 with solid green line), consistent with published results [71].

To further assess the sensitivity of the experimental setup and its applicability

to realistic materials and devices, several Py films with thickness ranging from 300

to 15 nm have been FMR characterized. The samples have been deposited in similar

conditions and for the microwave measurements the probe-to-sample geometric sep-
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aration was roughly the same. Intuitively, one would expect that in thinner samples,

the signal-to-noise ratio decreases since the microwave excitation probes a smaller

sample volume. This expectation is confirmed by experiments: the imaginary part

of µr at HDC = 50 Oe and HDC ⊥ EA is shown in the main plot in Fig.4.6 for films

as thin as 15 nm.
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Figure 4.6: The imaginary part of the magnetic permeability for HDC = 50 Oe,

HDC ⊥ EA for Py films of different thickness (curves offset for clarity). Inset:

PSSW frequency versus sample thickness and fit to theory [66].

The results of Fig.4.6 show that the signal is strong even for samples as thin as

15 nm. This suggests that the current experimental set-up can be used to investigate

the magnetization dynamics in the magnetic layers of media employed in hard disk

drives. Additionally, the data plotted in Fig.4.6 exhibit a minor resonance above 5

GHz also observed in the 100 nm Py disk discussed before (see the PSSW resonance
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from Fig.4.4). The PSSW mode shifts to higher frequencies as the film thickness

decreases so that in films with thickness d0 = 30 and 15 nm it is above 6 GHz,

outside the bandwidth of the vector network analyzer.

The frequency associated with the PSSW mode, fPSSW , is plotted vs. film

thickness in the inset of Fig.4.6. The PSSW frequency given by Eq.4.10 with n = 1

(λSW = 2d0), θk = π/2, and Heff = HDC − HK (for HDC ⊥ EA), is used to fit

the data of Fig.4.6 (shown in the inset) with the exchange constant D as the only

fit parameter. The exchange constant D ≈ 5 · 10−29 erg·cm2 (D/~|γ| ≈ 2.8 · 10−9

Oe·cm2) estimated from the numerical fit (shown as the solid red curve in the inset

of Fig.4.6) is in reasonably good agreement with other measured values on Py [76].

The FMR peak acquired on thick films d0 = 200 and 300 nm (see Fig.4.6)

exhibit a broadening due to the eddy currents and the availability of other spin-

wave modes. This effect becomes more obvious in situations where for the operating

frequencies, the microwave skin depth δsk approaches the sample thickness d0 [77].

In summary, the near-field microwave microscope and the new microwave

probe described here proved to be an appropriate tool to investigate a broad range

of magnetization dynamics in Py samples as thin as 15 nm.

4.5 Magnetization dynamics of perpendicular media

With the advent of perpendicular magnetic recording, there is increased in-

terest in developing a nondestructive instrument for media characterization both

independently and in realistic settings. The technique described in this chapter and
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validated on Py films has been utilized to investigate the magnetization dynamics

in media from commercial hard disk drives.

The media for perpendicular recording contain a magnetically soft layer lo-

cated underneath the storage layer called soft underlayer SUL (see Fig.4.7).

Figure 4.7: Schematic of the perpendicular magnetic recording. The magnetic layer

retains the magnetization due to its high anisotropy field HK while the soft un-

derlayer serves as a return path for the magnetic flux emanating from the writer.

[78].

Having a high magnetic permeability, the SUL provides a return path for

the magnetic flux emanating from the write head. Additionally, if the magnetic

permeability of the SUL is assumed infinite, the currents in the write head are

”mirrored” in the SUL and are modeled by a second write head (see Fig.4.7) [78, 79];

therefore the storage layer is subject to a write field almost double in magnitude
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as compared to the situation encountered in longitudinal magnetic recording. For

more details on magnetic recording the reader is referred to [79].

In the absence of external magnetic fields and shape anisotropy, a soft magnetic

material has an associated FMR frequency in the low GHz range (see Eq.4.11) which

suggests that with the current data rates in magnetic recording exceeding the Gbps

threshold, the frequency response of the SUL may become an issue for the future

advance of perpendicular recording. Since the SUL in a PMR medium is subject to

magnetic fields emanating from the media layer, it is important to characterize its

frequency behavior by measuring FMR in a real PMR medium.

Such a characterization cannot be performed optimally with a Magneto-Optic

Kerr Effect (MOKE) instrument, which is the only local nondestructive probing

technique, because the optical penetration depth (δoptical ≪ 50 nm) is relatively

small and consequently its probing range hardly extends beyond the storage layer

(typically with thickness in the range of 10-30 nm). However, since the microwave

penetration depth in the materials of interest (δsk > 100 nm) is large enough, the

near-field microwave microscope is a promising tool to measure physical parameters

that cannot typically be measured on disk.

The experimental set-up used to investigate the magnetization dynamics in

permalloy thin films has been utilized to measure FMR effects on disks employed

in perpendicular recording. While at Seagate Pittsburgh I started to perform mea-

surements on several disks in order to detect FMR signatures of the SUL. A set

of preliminary data is shown in Fig.4.8 and exhibits clear indications of resonance

shifting to higher frequencies as the applied DC field is increased, in qualitative
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agreement with Kittel’s formula.
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Figure 4.8: Preliminary measurements on a perpendicular medium for various values

of HDC ‖ EA. The imaginary parts have been offset for clarity.

Measurements on perpendicular media have been continued by Nadjib Benat-

mane† with an Anritsu 37369D vector network analyzer with 40 GHz bandwidth. In

this section, data acquired on two PMR disks are reported. The SUL of disk1 is an

88 nm thick FeCo alloy, with HK ≈ 10 Oe (measured by MOKE), and 4πMS ≈ 1.1

T (measured by Vibrating-Sample Magnetometer, VSM), while the SUL of disk2 is

a 240 nm thick FeCo alloy, with HK ≈ 30 Oe, and 4πMS ≈ 1.8 T.

The experimental procedure and data processing follow the steps outlined

previously: the reflection coefficient S11 is measured with the VNA for the two

orientations of the external DC magnetic field (HDC ‖ hMW and HDC ⊥ hMW ),

†PhD student in the Department of Physics, Georgetown University, Washington DC, also

working with Dr. Thomas W. Clinton at Seagate Research, Pittsburgh PA.
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where the background signal is acquired for HDC ‖ hMW . (referred in this section

as field-nulled background). An additional background subtraction algorithm has

been introduced, where the reflection coefficient S11 is measured in the FMR-active

field configuration (HDC ⊥ hMW ) but with a disk that has been prepared identically

except that the SUL is left out (referred in this section as disk-nulled background).

The measurements have been performed over a large range of DC fields applied

parallel and perpendicular to the easy-axis of the SUL which is oriented in the radial

direction in a PMR medium from a hard disk drive. The real and imaginary parts of

the magnetic permeability measured with HDC ‖ EA on disk1 are shown in Fig.4.9.

To obtain the data represented in the main plot the disk-nulled subtraction scheme

has been used.

The disks for the measurement were DC-erased (uniformly magnetized) in

order to ensure a uniform magnetization in the magnetic layer and to facilitate

data interpretation. FMR measurements have been performed also after AC-erasure

(demagnetized), where the magnetization in the magnetic layer is randomly oriented.

The effect of the erasure type on the FMR data will be investigated in a future work.

A comparison of the two subtraction algorithms is shown in the insets of

Fig.4.9: the field-nulled subtraction results in a 25 % smaller signal. This has been

attributed to a possible misalignment between the sample easy axis and the two DC

field orientations [80]. Similar measurements and analysis have been done for disk2.

The real and imaginary parts of the magnetic permeability shown in Fig.4.9

have been both fitted with the same set of adjustable parameters fFMR and ∆f ,

as explained in detail in the previous section, and the Kittel linear dependence
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Figure 4.9: FMR for the SUL of perpendicular disk1. (top) Imaginary part of

permeability vs frequency at various applied fields, HDC ‖ EA; (bottom) Real part

of permeability. Insets: comparison of background-subtraction methods. [80].

f 2
FMR(HDC) has been plotted in Fig.4.10 for disk1 and disk2 (inset) for the two field

orientations HDC ‖ EA, HDC ⊥ EA together with the theoretical linear dependence

(solid lines).

From the linear fits, the anisotropy field HK can be determined from the

intercepts by taking the difference of the data for the two field orientations in order

to compensate for the field offset in each trace. The resulting anisotropy field for

disk1, HK ≈ 7 Oe, and disk2, HK ≈ 31 Oe, are close to values obtained from MOKE

(for disk1: HK ≈ 10 Oe while for disk2: HK ≈ 30 Oe). The gyromagnetic ratio
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Figure 4.10: Field dependence of the resonance frequency fFMR and theoretical fit

for disk1. Inset: results for disk2 [80].

|γ/2π| has been calculated by using the slope and the VSM measurement of 4πMS.

The resulting values (|γ/2π| = 2.86 MHz/Oe for disk1, |γ/2π| = 2.96 MHz/Oe for

disk 2) are in reasonable agreement with values reported in the literature and the

free-electron value (|γ/2π| = 2.8 MHz/Oe).

4.6 Conclusions and future work

A versatile technique for the high-frequency characterization of perpendicu-

lar media directly on disk has been demonstrated. The novel non-contact local

microwave probe has high sensitivity and allows FMR measurements by using a

commercial vector network analyzer. Due to the local nature and the high sensitiv-

ity of the measurements, a wide variety of materials and sample geometries can be
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characterized. From measurements of the microwave reflection coefficient in permal-

loy films several quantities have been successfully extracted: the FMR frequency,

the gyromagnetic ratio, the anisotropy field, damping parameter, and the exchange

constant. Additionally, perpendicular media have been investigated where the FMR

frequency, anisotropy field, and saturation magnetization have been evaluated, all

in good agreement with independent measurements. The measurements on perpen-

dicular media have shown that the proposed technique gives access to quantities

that cannot be effectively measured on a disk due to sample-size constraints with

microwave resonating techniques, modest signal-to-noise ratio with MOKE and the

difficulty to generate the necessary radial (easy-axis) or circumferential (hard-axis)

fields with magnetometers.

It was shown that the proposed technique has sensitivity comparable to that of

well-established methods. The microwave probe can be further optimized for higher

sensitivity and spatial resolution as well as for larger bandwidth. By using smaller

coaxial transmission line and by defining the field-enhancing feature of the probe

(the Cu micro-loop) with Focused-Ion-Beam (FIB), higher signal-to-noise ratio and

improved spatial resolution can be achieved. Additionally, by reducing the length of

the coaxial transmission line from the connector to the probe, one can ”push” the

associated geometrical resonances to higher frequencies allowing the exploration of

magnetization dynamics beyond 6 GHz.

In order to investigate the media layer, high DC external fields are required

(> 1 T); at present, fields of this magnitude are outside the range of the experimental

set up. A more advanced mathematical treatment would be necessary to interpret
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data acquired on the media layer due to its high anisotropy field: Kittel equation

must be replaced with a more accurate one and the skin depth effects must be taken

into account at high frequencies.
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Chapter 5

Scalar measurements of the microwave nonlinear response of

high-Tc superconductors

quod est inferius est sicut quod est superius;

et quod est superius est sicunt quod est inferius, ad

perpetranda miracula rei unius†.

The Plate of the Emerald Table

Kunrath, H. Amphitheatrum SapientiæÆternæ,

Hanau, 1609

5.1 Introduction and motivation

The two ingredients required for the presence of macroscopic superconducting

properties (the absence of DC resistance, the Meissner effect, etc.) are electron pair-

ing and the existence of long-range phase coherence among the electron pairs. The

energy scales governing these processes are the electron-electron binding energy and

the phase stiffness of the order parameter which depends on the density of paired

electrons nS. The competition between the energies associated with Cooper pair

unbinding, phase unlocking and thermal fluctuations determines the temperature

where the onset of macroscopic superconducting properties occurs (the critical tem-

†that which is above is from that which is below, and that which is below is from that which is above, working

the miracles of one. Translated by Sir Isaac Newton
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perature Tc) [6, 81]. For the case of conventional superconductors the energy scales

characterizing the two superconductivity ingredients are similar and therefore the

loss of long-range phase coherence among Cooper pairs is accompanied by depairing,

the two effects being almost indistinguishable.

The situation in high-Tc superconductors is different because these materials

are doped insulators and consequently they have smaller carrier densities than the

conventional superconductors. In underdoped high-Tc superconductors, the energy

associated with the phase stiffness is lower compared to that in the optimally-doped

ones (due to the reduced density of paired charge carriers nS) and simultaneously

the binding energy ∆p is higher [81, 5]. For this reason, in underdoped cuprates

the macroscopic superconducting properties disappear at lower Tc as the doping

level is reduced but the electron pairing mechanism is thought to be active up to

higher temperatures (up to 100 K above the critical temperature [81]). In this con-

text, some authors have suggested that preformed Cooper pairs above Tc might be

responsible for the large Nernst effect observed in hole-doped cuprates [11, 9]. If

the existence of short-coherence-range evanescent Cooper pairs above Tc is associ-

ated with the pseudogap, the aforementioned behavior is consistent with the phase

diagram of cuprates. In the language of the phenomenological Time-Dependent

Ginzburgh-Landau (TDGL) theory the lifetime of Cooper pairs in the normal state

τ0 in underdoped materials is expected to be higher than that in the optimally-doped

ones [11]. Signatures of the enhanced τ0 detected in experiments on underdoped ma-

terials could be considered good support for the above picture.

This chapter providing experimental data, theoretical interpretations and nu-
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merical estimates of relevant quantities are an attempt to fill this gap. First, a more

complete model of nonlinear effects at Tc is provided. By implementing this model,

microwave harmonic data (P3f (T )) acquired on YBCO thin films with a wide range

of doping can be interpreted. Second, from the model a fundamental constant of

the TDGL theory is extracted: the order parameter relaxation time for the k = 0

mode, which is interpreted as the lifetime of fluctuation Cooper pairs τ0 above the

critical temperature Tc [29].

The chapter is organized as follows: In section §5.2 the samples used for this

study are described and experimental data are provided. In section §5.3 the tra-

ditional model of inductive nonlinearities in the superconducting state is briefly

reviewed. The model of electric field-dependent conductivity of a layered material

[29] is introduced and re-formulated in a fashion similar to that of inductive nonlin-

earities below Tc. Section §5.4 contains the analysis of the microwave harmonic data

and provides numerical estimates for the doping-dependent lifetime of Cooper pairs

in the normal state τ0. Section §5.5 presents an analysis of the doping dependence

of τ0 and section §5.6 summarizes the main conclusions of this analysis.

5.2 Experimental procedure and sample description

The experimental set-up employed for the scalar harmonic measurements has

been presented in detail in section §3.4. The samples are c-axis oriented YBa2Cu3O7−δ

(YBCO) thin films deposited on SrTiO3 and NdGaO3 substrates by pulsed laser de-

position PLD with thicknesses in the range from 90 to 200 nm (see Table 5.1). The

90



Table 5.1: Sample properties: film thickness d0, critical temperature TAC
c and spread

δTAC
c as determined from AC susceptibility measurements, the corresponding doping

level 7 − δ, in- and out-of-plane coherence length ξab(0), ξc(0) and the interpolated

doping-dependent resistivity parameters ā, b̄, T#. To reproduce ρ(T, 0) for samples

MCS4 and MCS1 a variable range hoping term ρ1 exp[(T0/T )1/4] has been included

with T0 = 105 K and ρ1 = 0.41µΩcm as described in [82].

Sample d0 TAC
c δTAC

c 7 − δ ξab(0) ξc(0) ā b̄ T#

nm [K] [K] [Å] [Å] a[µΩcmK−1] b[µΩcm] [K]

MCS4 95 54.15 1.7 6.52 29.0 0.47 5.47 -554.3 175.0

MCS1 132 63.1 1.3 6.68 28.0 0.42 4.14 -326.42 497.0

MCS50 96 74.2 1.3 6.76 26.5 0.55 2.135 -61.58 683.76

MCS2 185 83.96 1.3 6.81 23.0 0.72 1.36 -6.77 574.0

MCS3 130 90.5 0.7 6.84 18.0 0.86 0.97 1.24 441.06

oxygen content of the samples has been modified by annealing in various oxygen

pressures and at different temperatures [83, 84] resulting in critical temperatures

TAC
c in the range of 52 to 90 K as observed in AC susceptibility measurements (see

Table 5.1).

In Table 5.1 a description of the five samples used for this study is given. Film

thicknesses have been estimated from the PLD deposition conditions and the critical

temperature TAC
c and the spread δTAC

c from AC susceptibility measurements. Based

on the critical temperature TAC
c the doping level 7 − δ has been approximately

calculated by using the experimental data of Carrington et al., which have been
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acquired on thin films and single crystals [85] (see Fig.5.1a). As is shown later in

this chapter, the doping level 7 − δ and the other quantities given in Table 5.1 are

ingredients required for numerical estimations.

Figure 5.1: Experimental data used to evaluate the doping level 7 − δ and the

zero-temperature in-plane coherence length ξab(0) for the samples discussed in this

chapter. a) Doping dependence of the critical temperature Tc from the Hall effect

and resistivity measurements (reproduced from Ref.[85]). b) Doping dependence of

the in-plane coherence length ξab from magnetoresistance data of Ando et al., (re-

produced from Ref.[86]). The semi-transparent blue dots correspond to the samples

used in the experiments discussed in this chapter.

By using the doping level 7−δ deduced previously, one can use the experimen-

tal data of Ando and Segawa [86] to obtain the doping dependence of the in-plane

coherence length ξab(0) (see Fig.5.1b). In addition, the theoretical fit of Leridon and

co-workers allows one to reproduce numerically the temperature dependence of the
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in-plane zero-field DC conductivity σ(T, 0) in the vicinity of the critical temperature

Tc for various levels of oxygen doping [82]:

σ(T, 0) =
1

āT + b̄
+

e2
0

16~ξc(0)
√

2ǫ0 sinh(2ǫ/ǫ0)
(5.1)

where the coefficients ā and b̄ govern the temperature dependence of the mean-field

component (the first term in Eq.5.1) while ǫ0 = ln(T#/Tc), T# and ξc(0) determine

the strength of the superconducting fluctuations (the second term in Eq.5.1). T#

is a temperature scale introduced in [82] to describe the upper temperature limit of

the superconducting fluctuations, ξc(0) represents the zero-temperature out-of-plane

coherence length, ǫ = ln(T/Tc), e0 is the electron charge and ~ is Planck’s reduced

constant. The doping-dependent coherence length ξc(0) and the other parameters

(ā, b̄ and T#) required to reproduce the temperature dependence of the zero-electric-

field DC conductivity σ(T, 0) have been estimated by interpolating the parameters

published by Leridon and co-workers for YBCO [82].

The experiment consists in controlling the temperature in the cryostat and

monitoring the reflected power carried by the third-order harmonic signal P3f(T )

with the spectrum analyzer. A set of experimental P3f(T ) data is shown in Fig. 5.2

for an underdoped YBCO thin film with TAC
c ≈ 63 K. Similar sets of data acquired

on samples with various doping levels are shown in Fig. 5.3. The first observation is

the presence of the peak of P3f (T ) which spans over a significant power range (∼ 45

dB dynamic range for the data in Fig. 5.2) when the temperature is swept through

TAC
c .

The second observation is that the shape of the P3f(T ) peak is doping-dependent:
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Figure 5.2: Experimental data and numerical fit for an underdoped YBa2Cu3O6.84

thin film with fit central Tc = 60.5 K (see Table 5.1). The experimental data

(••) and the calculated inductive (–), resistive (–) and total (–) nonlinear response

are shown. The harmonic resistive contribution is required in order to reproduce

the temperature dependence of P3f (T ) in the pseudo-gap region. TAC
c and δTAC

c

together with their counterparts estimated from the numerical fit are shown for

comparison.

in optimally-doped samples (TAC
c ≈ 90 K) the P3f(T ) peak drops abruptly into the

noise level as soon as TAC
c is slightly exceeded (see Fig. 5.3b), while in underdoped

samples there is a persistence of the harmonic response at temperatures above TAC
c ,

suggesting that some of the features of the superconducting state are preserved in

the pseudogap phase. The most obvious continuation of the harmonic power P3f(T )

into the pseudogap phase is exhibited by the data shown in Fig. 5.2.

Experiments have been carried out for several microwave input power levels

ranging from +6 to +12 dBm and at various locations of the sample with consistent
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Figure 5.3: Experimental data (••) and numerical fit for the YBa2Cu3O7−δ thin

films from Table 5.1 with various doping. The calculated inductive (–), resistive

(–) and total (–) nonlinear response are shown. The near-optimally doped sample,

TAC
c ≈ 90 K, requires no resistive nonlinear contribution to obtain a good fit for

the measured harmonic power. TAC
c and δTAC

c together with their counterparts

estimated from the numerical fit are shown for comparison.

results. The power dependence P3f ∼ P 3
input observed at all temperatures† agrees

with the predictions of the model (given in the next section) and suggests that the

superconducting sample is in the weakly-nonlinear regime. The probe does not cause

a significant local heating of the sample, as confirmed by sets of data acquired with

the same input frequency but various power levels (from +6 to +12 dBm) which

†For the experimental set-up used in this study and the microwave power levels employed here,

the relation P3f ∼ P 3

input has been extensively investigated and confirmed by S. C. Lee in Ref.[45].
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exhibit no shift of the P3f(T ) peak at lower temperatures for higher input power

levels, as would be expected if the probe were heating locally the sample.

In Fig. 5.2 and Fig. 5.3 the experimental data is accompanied by theoretical

curves calculated using a model of the nonlinear behavior in superconductors. This

model is presented in detail in the next section and the evaluations of the theoretical

curves require the sample parameters given in Table. 5.1.

5.3 Theoretical model of the microwave nonlinear response at Tc

The interest in the microwave nonlinear behavior of superconductors has been

renewed after the discovery of the high-Tc materials and is driven by its twofold

aim: the investigation of the fundamental physics governing the superconducting

state and the optimization of high-Tc superconducting microwave filters used in the

wireless industry.

The theoretical work on superconducting filters (Dahm & Scalapino, [26])

shows that under certain specific conditions, an inductive nonlinear source domi-

nates the overall nonlinear behavior: the suppression of the superfluid density by

the external field. Following this line of thought, microwave harmonic data acquired

on YBCO thin films in the vicinity of Tc have been interpreted by implementing a

Ginzburg-Landau-like GL model (see section §2.3.2) and the corresponding nonlin-

ear effects have been considered mainly inductive in nature [45]. The experimen-

tal evidence suggested that such a picture is accurate in optimally-doped cuprate

thin films [45]. However, in underdoped samples the measured harmonic response
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P3f (T ) does not turn off at the independently determined Tc as expected from the

GL model, but exhibits a tail extending significantly above Tc in the pseudogap

regime (see Fig. 5.2). An additional nonlinear source has to be considered in the

normal state in order to model the continuation of microwave harmonic response

above Tc.

The first step in understanding the temperature- and doping dependence of the

microwave nonlinear effects at Tc is to treat separately the two temperature regimes,

below and above Tc. The theoretical model presented in this chapter considers that

in the superconducting state the inductive nonlinearities described by the nonlinear

Meissner effect dominate the overall response. At Tc this inductive mechanism shuts

off and it replaced by a current-dependent normal-state resistivity that generates

the harmonic effects observed above Tc.

5.3.1 Inductive nonlinear response below Tc

The modeling of the harmonic data has been done by using the phenomeno-

logical formalism outlined in section §2.3.2, where a temperature-dependent charac-

teristic nonlinear current density scale, JNL(T ), is introduced in order to quantify

the suppression of the superfluid density nS and the enhancement of the penetration

depth λ2(T, J) by the current density J :

nS(T, J)

nS(T, 0)
=

λ2(T, 0)

λ2(T, J)
≈ 1 −

(
J

JNL(T )

)2

, J ≪ JNL(T ) (5.2)

where JNL(T ) has been evaluated by using a Ginzburg-Landau approach: JNL(T ) =

Jc(1− t2)(1− t4)1/2 and Jc is the zero-temperature critical current density. The em-
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pirical two-fluid model has been employed to model the zero-current magnetic pen-

etration depth: λ(T, 0) = λ0(1− t4)−1/2. As shown in previous works on microwave

nonlinear effects [26, 41, 42, 43, 44], the field(current)-dependent penetration depth

given in Eq.(5.2) leads to third-order harmonic generation; the corresponding P3f is

inductive in nature since it originates from a current-dependent kinetic inductance.

The limitations of this picture have been discussed in §2.3.2 (DC treatment, not

valid very close to Tc due to the vanishing JNL(Tc), no fluctuation effects included,

etc.) become more obvious as one notices that the linear-response penetration depth

λ(T, 0) diverges at Tc while the phenomenological characteristic nonlinear current

density scale JNL(T ) vanishes. One way to circumvent these mathematical difficul-

ties is to introduce finite phenomenological cut-off values λ(Tc) and JNL(Tc) as was

done by Lee and co-workers [44]. The cut-off parameters are motivated by the inad-

equacy of the model arbitrarily close to Tc where the phenomenological description

of the Nonlinear Meissner Effect breaks down due to the violation of the condition

J ≪ JNL(T ) in Eq.5.2. Additionally, very close to Tc the critical superconduct-

ing fluctuations are active and the order parameter fails to follow adiabatically the

external microwave excitation.

The mathematical model starting with Eq.5.2 and leading to the corresponding

reactive (inductive) power P3f(T ) measured by the spectrum analyzer has been

presented in detail in [45]: the total inductance of the sample is evaluated as the ratio

of the electromagnetic energy stored in magnetic fields and currents and the square

of the total current induced in the sample. From the current-dependent penetration

depth one can isolate the current-dependent kinetic inductance and evaluate the
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associated voltage and microwave power. In the limit of samples thinner than the

zero-temperature penetration depth (d0 ≪ λ(T = 0K)), as is the case for the data

presented in this chapter, the harmonic power due to the current-dependent kinetic

inductance is [45]:

P3f(T ) =

(
ωµ0λ

2(T )

4d3
0J

2
NL(T )

)2

· Γ2

2Z0
(5.3)

where Γ is the figure of merit describing the sensitivity of the experimental set-up

to nonlinearities and it was defined and evaluated numerically in section §3.3.

5.3.2 Resistive nonlinear response above Tc

A nonlinear source acting at and above Tc that may explain the observed

high-temperature tail of the harmonic data P3f (T ) is the electric field-dependent

conductivity σ(T, E). There is clear evidence that the microwave conductivity (σ̃ =

σ1 − iσ2) of under-doped and optimally-doped YBCO above Tc is primarily real

(σ1 ≫ σ2) [15]. Hence a contribution from the nonlinear component of σ2 above Tc

was not considered in this model.

The effect of fluctuations on the nonlinear response of superconductors has

been discussed in section §2.3.2. For a layered superconductor (e.g. cuprates), a

theoretical model for the electric field-dependent conductivity has been proposed by

Mishonov and co-workers [29]. Within this model, the effect of Gaussian fluctuations

leads to an E2 correction to the zero-field Lawrence-Doniach conductivity [87], and

describes the destruction of fluctuation Cooper pairs by the applied electric field
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[29]:

σ(T, E) = σ(T, 0) −A(T )E2 + · · · , T > Tc (5.4)

where the coefficient A(T ) determining the strength of the nonlinear resistive effects

was evaluated for a layered superconductor by using the TDGL formalism [29] and

is discussed later in this subsection.

According to Eq.(5.4), for strong enough electric fields and within the ap-

propriate temperature range, nonlinear effects in the real part of the conductivity

become significant. The magnitude of the electric field required to generate non-

linear effects can be estimated by re-writing Eq.(5.4) in terms of a characteristic

nonlinear electric field scale ENL (in the isotropic case other authors call it Ẽ0(ǫ),

the characteristic depairing electric field [28, 88, 89]) which vanishes at Tc due to

the divergence of the correction coefficient A(T ):

σ(T, E)

σ(T, 0)
≈ 1 −

(
E

ENL(T )

)2

+ · · · , E ≪ ENL (5.5)

with ENL(T ) = (σ(T, 0)/A(T ))1/2. For the described experimental configuration

the magnitude of the electric field E generated by the loop probe in the plane

of the sample was evaluated numerically [59] and compared with the theoretical

temperature-dependent ENL(T ): the ratio E/ENL(T ) is smaller than unity for T >

0.5K + Tc, so Eq.(5.5) can be re-formulated in terms of the electric field-dependent

resistivity:

ρ(T, E)

ρ(T, 0)
≈ 1

1 −A(T )ρ(T, 0)E2
≈ 1 + A(T )ρ(T, 0)E2 + . . . (5.6)

For the above range of temperatures the higher-order terms can be neglected

in the expansion (5.6). Additionally, if the electric field is approximated by its
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linear regime value (J = σ(T, 0)E − A(T )E3 + · · · ≈ σ(T, 0)E) the resistivity can

be written in terms of the current density J in a fashion similar to Eq.(5.2) which

described the nonlinear effects due to the suppression of the superfluid density:

ρ(T, J)

ρ(T, 0)
≈ 1 +

(
J

JNLρ(T )

)2

, J ≪ JNLρ(T ) (5.7)

Similar to the nonlinear current density scale JNL(T ) from Eq.5.2 to char-

acterize the inductive nonlinear effects below Tc, a nonlinear current density scale

JNLρ(T ) has been introduced in Eq.5.7 in order to quantify the strength of the re-

sistive nonlinear effects in the normal state. For small electric fields (E ≪ ENL),

JNLρ(T ) can be estimated as:

JNLρ(T ) =
[
A(T )ρ3(T, 0)

]−1/2
(5.8)

The current-dependent resistivity defined by Eq.(5.7) generates the tail of

P3f (T ) above Tc as observed in harmonic measurements of underdoped YBCO thin

films and is resistive in nature. The effect of the current density J is to break the

fluctuation Cooper pairs persisting above Tc (equivalent to the effect of the electric

field on conductivity in Eq.(5.4)) and to increase the resistivity in the normal state.

The coefficient A(T ) has been evaluated for a layered superconductor by Mis-

honov and co-workers [29]:

A(T ) =
4kBTe4

0 [ξab(0)τ0]
3

π~4sξab(0)
· ǫ3 + 3

2
rǫ2 + 9

8
r2ǫ + 5

16
r3

(ǫ(ǫ + r))7/2
(5.9)

where ξab(0) and ξc(0) represent the zero-temperature in- and out-of-plane coherence

lengths, and r represents the anisotropy coefficient (r = (2ξc(0)/s)2, where s is the

interlayer spacing).
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The essential ingredient of the field-dependent conductivity model is τ0, rep-

resenting the time scale for the lifetime of fluctuation Cooper pairs in the normal

state τG(ǫ) = τ0/ǫ in the formalism of Gaussian fluctuations [29]. If the Cooper pairs

persist above Tc, τ0 must be very small as suggested by the absence of macroscopic

superconducting properties above Tc. The Cooper pair lifetime τ0 can be estimated

within the framework of BCS theory [29]:

τBCS
0 =

π

16
· ~

kBTc
(5.10)

For a superconductor with Tc = 90 K as is the case for near optimally-doped

YBCO thin films, τBCS
0 ≈ 1.05 · 10−13 s. Equation (5.10) shows that the product

τBCS
0 ·Tc is a material-independent universal constant that can be used to check the

estimates of τ0 from our experimental data.

Similar to the calculation of the inductive harmonic power P3f (T < Tc) in

a lumped-element approach [45], for the resistive component of P3f (T > Tc) the

sample total electrical resistance is written as the ratio between the dissipated power

and the square of the total current induced in the sample I0 =
∫ ∫

JdS:

R =

∫

SL

∫ ∫
J2ρdS

(
∫ ∫

JdS)2
dy (5.11)

where the y integration is evaluated for the sample length (SL) and dS = dxdz

represents the infinitesimal surface element in the cross-section direction with respect

to the microwave screening current (in the XOZ plane, see Fig.3.1 in section §3.2).

By plugging the current-dependent resistivity, Eq.(5.7) one can split the above

equation into a linear and a nonlinear component characterized by the nonlinear
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current density scale JNLρ(T ):

R =

∫

SL

∫ ∫
(J2 · ρ(T, 0) + J4

J2

NLρ
(T )

ρ(T, 0))dS

(
∫ ∫

JdS)2
dy (5.12)

The first term represents the current-independent ohmic resistance R0, while

the second one represents the current-dependent component of resistance ∆RI2
0 :

R =

∫

SL

∫
J2 · ρ(T, 0)dS

(
∫

JdS)2
dy +

∫

SL

∫
J4

J2

NLρ
(T )

ρ(T, 0)dS

(
∫

JdS)2
dy (5.13)

Thus, the total electrical resistance reads:

R(I0) = R0 + ∆R · I2
0 (5.14)

with

∆R =
1

I2
0

· ρ(T, 0)

J2
NLρ(T )

·
∫

SL

∫ ∫
J4dS

(
∫ ∫

JdS)2
dy (5.15)

If an AC current I(t) = I0 cos ωt is applied to the current-dependent resistance

R(I) the resulting voltage is†:

V (t) = R0I0 cos ωt +
1

3

(
∆R

3

4
I3
0 cos ωt + ∆R

1

4
I3
0 cos 3ωt

)
(5.16)

since

cos3ωt =
3

4
cos ωt +

1

4
cos 3ωt (5.17)

The first two terms in Eq.5.16 represent the voltage at the fundamental fre-

quency while the third term represents the third-order harmonic of the voltage. It

is the third term in Eq.(5.16) that is responsible for the generation of P3f(T > Tc),

a quantity that is measured with the nonlinear near-field microwave microscope.

†For a current-dependent resistor R(I) = R0 + ∆RI2

0
the associated voltage is V =

∫
R(I)dI
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Eq.(5.16) shows that the presence of the 3rd order harmonic has an impact on the

voltage at the fundamental frequency. Similarly, if a 5th order harmonic voltage is

considered (originating from a I40 term in Eq.5.14), there will be corrections both in

the voltage at the fundamental frequency as well as in that at the 3rd order harmonic.

However, experimentally it is observed that P3f ∼ P 3
input at all temperatures, sug-

gesting that the sample is in the weakly-nonlinear regime. In a strongly-nonlinear

regime the scaling relation P3f ∼ P 3
input is violated and additionally, the harmonics

generate intermodulation distortion products (IMD) as discussed in section §2.3.1

(for example, f and 3f would generate 3f ± f). The measurements presented here

are all in the weakly-nonlinear regime, as confirmed by the scaling P3f ∼ P 3
input

valid at all temperatures (see footnote on page 102). The third-order harmonic

power generated at the sample surface is:

P3f(T > Tc) =
|U3f (T )|2

2Z0

=
1

2Z0

(
1

9 · 16
∆R2I6

0

)
(5.18)

where Z0 is the characteristic impedance of the transmission line. By using the

expression for ∆R given by eq.(5.15), P3f(T ) can be obtained:

P3f(T > Tc) =
1

2Z0
· 1

16
· 1

I4
0

· ρ2(T, 0)

J4
NLρ(T )

·
[∫

SL

∫ ∫
J4dS

(
∫ ∫

JdS)2
dy

]2

· I6
0 (5.19)

Since the sample thickness d0 is much smaller than the normal metal microwave

skin depth depth of the sample in the normal state, the current density J is uniform

within the sample thickness. As a consequence, the integrals involving the current

density J can be simplified:

∫ ∫
J4dS =

∫
K4

d4
0

d0dx (5.20)
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I0 =

∫ ∫
JdS =

∫
Ky

d0
d0dx =

∫
Kydx (5.21)

The new expression for P3f(T > Tc) is:

P3f(T > Tc) =
1

2Z0
· 1

9 · 16
· ρ2(T, 0)

J4
NLρ(T )

· 1

d6
0

·
[∫

SL

∫
K4dx∫
Kydx

dy

]2

(5.22)

Similar to the formalism developed for the superconducting state, a figure of

merit Γρ is defined in order to characterize the sensitivity of the probe and sample

to nonlinearities above Tc (see also section §3.3):

Γρ =

∫

SL

∫
K4dx∫ x0

−x0

Kydx
dy =

∫ ∫
K4dxdy∫ x0

−x0

Kydx
(5.23)

To obtain this equation, one has to notice that the total current induced in the

sample by the probe is I0 =
∫ ∫

JdS =
∫

Kydx. The integral
∫

Kydx is the same

if evaluated in every y = constant plane since there is no source of electric charge

and the current density is divergence-free; thus it behaves like a constant in the

integrand and can be taken outside the integral. The third-order harmonic power

P3f (T > Tc) becomes:

P3f (T > Tc) =
1

288Z0

· ρ2(T, 0)

J4
NLρ(T )

· 1

d6
0

· Γ2
ρ (5.24)

This expression can be compared to that of the third-order harmonic power

P3f (T < Tc) originating from the current dependence of the penetration depth below

Tc:

P3f(T < Tc) =
1

32Z0
· ω2µ2

0λ
4(T, 0)

j4
NL(T )

· 1

d6
0

· Γ2 (5.25)

Both figures of merit Γ and Γρ computed numerically with CST Microwave

Studio [59] vary as P
3/2
input and consequently, the above equation for the harmonic
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power predicts a dependence P3f ∼ P 3
input which was observed experimentally for all

the samples and over the entire temperature range.

It has to be noted that the resistive and inductive harmonic power, given

by Eq.5.24 and Eq.5.25 exhibit significantly different frequency dependences: in

a first approximation, neglecting the frequency dependence of the figures of merit

Γρ and Γ, the inductive harmonic power P3f (T < Tc) increases quadratically in ω

while the resistive harmonic power P3f(T > Tc) is constant with frequency which

suggests a possible avenue for separating the two contributions to the total measured

P3f (T ). The frequency dependence has been investigated with a vector network

analyzer with harmonic detection capabilities (operating in the frequency offset

mode, VNA-FOM) as described in the next chapter. Due to the small frequency

range (f = 6.45 − 6.55 GHz) imposed by the instrumentation† the results of the

measurements were inconclusive.

The above treatment of the current-dependent resistivity above Tc has several

limitations. First, the model, as originally formulated by Mishonov and co-workers

[29], is essentially a DC treatment that describes the time-averaged effect of the

fluctuating nonzero GL order parameter < |Ψ|2 > associated with the Cooper pairs

on the electrical conductivity. Thus, the model is valid only for those temperatures

†The experimental set-up is described in detail in section §3.5. The circuit element that mostly

limits the bandwidth is a band-pass filter with optimal transmission at 19.5 GHz and 3 GHz

FHWM inserted in the reference path and designed to suppress all microwave power except for

that at frequency 3f , where f ∼ 6.5 GHz. In addition, there is the frequency dependence of the

harmonic output of the comb generator from the reference path as well as the effect of the other

filters from the circuit that made the data interpretation cumbersome.
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where the dynamics of the Cooper pairs is faster than that associated with the time

scale of the probing electromagnetic field (τ(ǫ) < 1/f ,f = 6.5 GHz). As is shown

in the next section, this condition is valid in the temperature range used in the

numerical fit, but violated for very small ǫ (in very close proximity to Tc). Second,

very close to Tc (ǫ < 2 · 10−2 in optimally-doped YBCO thin films [90]) critical

fluctuations are thought to dominate the electromagnetic response of superconduc-

tors. The above treatment includes only the effect of Gaussian fluctuations on the

field-dependent conductivity in the normal state and therefore very close to Tc the

dependence τG(ǫ) = τ0/ǫ could be replaced with a temperature dependence more

appropriate for a regime characterized by critical fluctuations. Due to these approx-

imations, the nonlinear current density scale defined previously, JNLρ(T ), vanishes

at Tc as is the case of JNL(T ). Thus, the mathematical divergence of P3f (T ) has

been eliminated by introducing a phenomenological cut-off parameter JNLρ(Tc).

The expressions for the third-order harmonic power in the case of inductive

and resistive nonlinearities are valid for ideal, uniform samples which have the same

Tc at every location (mathematically this would correspond to a delta-Dirac δ(Tc)

distribution of Tcs). In order to employ the P3f (T ) equations and to estimate the

realistic harmonic response of a sample, it is necessary to convolve these expres-

sions with a probability density function that mimics the inhomogeneous nature

of the sample. Within an effective medium approximation [91], the local critical

temperature is a random variable with a Gaussian distribution centered on Tc and

a spread δTc, G(Tc, δTc). Both inductive and resistive components of the measured

P3f (T < Tc, T > Tc) have been smeared out with the same Gaussian kernel defined
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by the adjustable parameters Tc and δTc.

The disadvantage arising from the non-ideal probe-to-sample coupling is com-

pensated somewhat by using microwave amplifiers with a gain G ≈ 52 dB (as

measured with a vector network analyzer at frequency 3f [45]). Since the inductive

and resistive harmonic powers are in quadrature, the total power, measured with

the spectrum analyzer reads:

|P3f(T )| = G·k2·

√(∫
P3f(T < Tc)G(Tc, δTc)dTc

)2

+

(∫
P3f(T > Tc)G(Tc, δTc)dTc

)2

(5.26)

where k is the probe-to-sample electromagnetic coupling coefficient† and the inte-

grals are evaluated over a temperature range centered on Tc with width 20δTc. This

fitting expression represents a generalization of that employed by Lee [45] and it has

been implemented in Mathematica.

Despite the apparent complexity, the numerical fit is reliable due to some

features of the expression (5.26): on the increasing side of the P3f (T ) peak (in

the superconducting state), the inductive harmonic power dominates since P3f (T >

Tc) = 0. This allows one to neglect the second term in Eq.(5.26) and perform the

fit by using a pure inductive harmonic power, as was done previously by Lee [45].

On the decreasing side of the P3f (T ) peak (in the pseudogap state), the resistive

harmonic power dominates since P3f (T < Tc) = 0 and consequently, one fits the

other side of the P3f (T ) peak with a pure resistive harmonic component. This is

the rationale behind the plots from Figs.5.2 and 5.3 where theoretical curves for the

†quantity defined and evaluated in section §3.3
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individual inductive, resistive and total power are shown.

5.4 Data analysis

Several YBCO thin films with characteristics given in Table.5.1 have been in-

vestigated by using the nonlinear microwave near-field microscope. Harmonic data

P3f (T ) have been numerically fit by using the model presented in the previous sec-

tion. Despite a relatively significant range of doping levels the fit is very accurate

over a large dynamical range of harmonic power P3f (T ) (about 45 dB). From the

numerical fit several parameters of the samples have been extracted: the critical de-

pairing current density Jc from the inductive harmonic power in the superconducting

state P3f (T > Tc) and the Cooper pair lifetime τ0 in the pseudogap state.

In a first step of data processing the harmonic data P3f (T ) have been fit

by using a pure inductive nonlinear mechanism as was done by Lee [45]. In near

optimally-doped samples only the inductive component is required to successfully re-

produce the trend of P3f over the entire temperature range as illustrated in Fig. 5.3b

where data acquired with an optimally-doped YBCO sample (Tc ≈ 90 K) is shown.

In underdoped YBCO samples it was observed that by simply adjusting the parame-

ters of the Gaussian distribution (Tc and δTc) the inductive component alone cannot

reproduce the measured temperature dependence of P3f below and above Tc due

to the asymmetry of the P3f (T ) peak (see Fig.5.2 for the most obvious case). For

this reason, in a second data processing step, both the inductive and the resistive

nonlinear mechanisms and their associated harmonic power have been considered in
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order to reproduce the entire temperature dependence of P3f for all doping levels.

Therefore, the theoretical resistive, inductive and total P3f (T ) are plotted separately

in Fig.5.2 and 5.3.

The theoretical inductive component P3f (T < Tc) has several adjustable pa-

rameters: Jc(0) and the cut-off phenomenological parameters λ(Tc) and JNL(Tc) (see

Table.5.2). Additionally, to model the inhomogeneous nature of the samples, the

parameters of the Gaussian distribution (Tc and δTc) have been determined from

the inductive component P3f (T < Tc) and used also for the resistive component

P3f (T > Tc). The Cooper pair lifetime above Tc, τ0, is the only fit parameter for

the resistive contribution, P3f (T > Tc), since the cut-off parameter JNLρ(Tc) = 3·109

A/m2 was fixed for all samples (see Table.5.2).

Despite the fact that the inductive component alone gives a good numerical

fit of the harmonic data on optimally-doped samples (see Fig.5.3b, for Tc ≈ 90

K), a small resistive contribution has been added to the inductive component in

order to obtain an estimate of the upper limit for the magnitude of the resistive

effects. Thus, harmonic data P3f (T ) acquired on optimally-doped YBCO samples

suggest that the Gaussian fluctuations in the normal state play a minor role in the

microwave nonlinear response.

As mentioned previously, in underdoped YBCO samples the inductive com-

ponent alone cannot reproduce the measured temperature dependence of P3f below

and above Tc. The tail of P3f extending into the normal state can be explained only

by introducing the nonlinear mechanism associated with the current-dependent re-

sistivity. In Fig.5.2 data are shown together with the calculated curves representing
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the inductive and the resistive contributions as well as the total harmonic power.

For the underdoped samples the resistive component has a contribution comparable

to the inductive one and the extracted values for the lifetime of fluctuation Cooper

pairs τ0 depart significantly from the theoretical values predicted by Eq.(5.10) as

will be discussed in the next section.

5.5 Discussion

Since this study is focused on the electrodynamics of the Cooper pairs above

the critical temperature, a detailed discussion of the evaluated lifetime τ0 and its

doping dependence is given in this section. For the investigated samples the esti-

mates for τ0 follow a consistent trend with doping (see Fig.5.4): departures from

the optimal doping level lead to higher τ0 suggesting that in underdoped cuprates

the fluctuating GL order parameter < |Ψ|2 > is nonzero in a significant range of

temperatures above Tc.

The comparison between the universal value τBCS
0 · Tc (see Eq.(5.10)) and the

ones calculated with the experimental τ exp
0 and Tc is shown in Fig. 5.4. Based on

this comparison it can be concluded that underdoped cuprates do not behave in a

BCS-like fashion, being characterized by unusually high lifetimes of the fluctuation

Cooper pairs τ0. For the case of the optimally-doped YBCO thin films the product

τ exp
0 · Tc seems to deviate very little from the universal value. However, it must be

noted that the fit of the resistive part covers about 1 K above the mean-field Tc and

it is possible that critical fluctuations are dominant in this temperature range and
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Sample Tc[K] δTc[K] λ0[nm] λ(Tc)[µm] Jc(0)[A/m2] JNL(Tc)
Jc(0)

τ0[ps]

MCS4 52.6 0.9 286 0.95 1.4 · 1010 0.075 0.226

MCS1 60.5 1.0 254 3.6 8.8 · 1010 0.019 0.16

MCS50 75.0 2.2 222 1.6 1.3 · 1010 0.07 0.124

MCS2 84.7 0.9 189 5.3 6.9 · 1010 0.02 0.095

MCS3 89.9 0.3 120 1.5 15 · 1010 0.007 0.0214

Table 5.2: Fit parameters for the nonlinear resistive component P3f (T ) in a series

of YBa2Cu3O7−δ thin film samples. For all samples the interlayer separation was

considered s = 4.3 Å . The cutoff value JNLρ(Tc) = 3 · 109 A/m2 is the same for all

samples.

consequently the proposed model, and in particular the τG(ǫ) ∼ 1/ǫ dependence,

might not be valid. This is suggested by microwave measurements performed by

Booth et al., [90] where it was shown that the above Gaussian approximation for

τG(ǫ) is not accurate for ǫ < 2 · 10−2 in optimally-doped YBCO thin films. For

the case of the underdoped samples the fit of the resistive part involves a 5-15 K

temperature interval above Tc and therefore, the model of Gaussian fluctuation-

driven conductivity should be applicable.

The doping dependence of the τ0 estimates resembles that of the pseudogap

temperature T∗ as given by the phase diagram of cuprates [92]. The hole con-

centration in the Cu2O planes p has been evaluated by using the empirical law

Tc/T
optimal
c = 1− 82.6(p− 0.16)2 as in Ref. [4] and the doping-dependent pseudogap

temperature T∗ was calculated with T ∗ = 805(1 − p/0.19)K according to Tallon et
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Figure 5.4: The product τ0 ·Tc obtained from experimental evaluations of the Cooper

pair lifetime τ exp
0 ·Tc (-•-) and the theoretical value τBCS

0 ·Tc (–) provided by Eq.5.10.

Inset: the temperature-doping phase diagram of cuprates and the doping depen-

dence of Tc (–), T∗ (–) and τ exp
0 (-•-).

al. [92]. In the inset of Fig. 5.4 the doping dependence of the critical temperature

Tc, pseudogap temperature T∗ and τ0 is represented. At optimal doping T∗ almost

coincides with the critical temperature Tc; similarly, τ exp
0 is very close to the BCS

value. As the doping level is decreased the values of T∗ increase and so do our

evaluations of τ exp
0 with respect to their BCS counterparts.

Based on estimates for E0 extracted from experimental measurements on

Bi2Sr2Can−1CunO2n+4+x (n=1,2) thin films some authors [88] have proposed a re-

duction of the characteristic depairing electric field E0 from its theoretical value

(E0 = 16
√

3kBTc/(πe0ξ0)). Smaller effective values of E0 result also due to the

smearing of the transition as shown by numerical simulations of Seto et al.,[89]. In

our model, ENL depends on τ0 and consequently is an adjustable parameter in the
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numerical fit. This approach follows Ref. [29] and is in agreement with Ref. [28]

where E0 was defined in terms of τ0 (E0 = ~/(2eξ0τ0)) and the relaxation rate of the

order parameter Γ0 (E0 =
√

12Γ0/(emξ3) with ξ the mean-field correlation length),

respectively. Our estimates for τ exp
0 in underdoped YBCO thin films are about one

order of magnitude higher than their theoretical BCS counterparts τBCS
0 and lead

to values of E0 lower than the expected ones.

The parameters extracted from the fit and the maximum current density in-

duced in the sample (∼ 104 A/cm2) computed with the electromagnetic solver have

been used to estimate the sensitivity of the experimental set-up for changes in con-

ductivity due to the current density J: ∆σ(T, J)/σ(T, 0) = 1− σ(T, J)/σ(T, 0). For

the temperatures where the measured harmonic response P3f (T ) reaches the noise-

floor, an estimate for the ultimate sensitivity of the experiment is ∆σ(T, J)/σ(T, 0) ≈

10−4.

The theoretical model of the electric field-dependent conductivity in layered

superconductors [29] used here to explain the harmonic effects above Tc was formu-

lated for the DC case and consequently it captures the time-averaged effect of the

fluctuation Cooper pairs on conductivity. Evaluating the τG(ǫ) = τ0/ǫ dependence

to Tc shows that in the measurements reported here the decay of the fluctuation

Cooper pairs is fast with respect to the probing electromagnetic field (f=6.5 GHz)

for T > Tc + 0.3 K. This suggests that the model is applicable for the tempera-

ture range considered in the numerical fit of the normal state harmonic microwave

response.
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5.6 Conclusions

In summary, this chapter presents a unified model for the microwave nonlinear

response of cuprate superconductors which describes accurately the temperature

dependence of the third-order harmonic power P3f (T ) in a large dynamic range

(∼ 45 dB), below and above the critical temperature. Within the new model, the

nonlinear Meissner effect is active in the superconducting state and leads to inductive

harmonic effects P3f (T < Tc), while in the normal state the E2 correction to the zero-

field fluctuation conductivity is responsible for resistive harmonic effects P3f (T >

Tc). Both nonlinear effects are described by nonlinear current scale densities which

quantify their strength within the appropriate temperature domains. The third-

order harmonic signals P3f originating from the field(current)-dependent superfluid

density (T < Tc) and resistivity (T > Tc) are in quadrature and can, in principle,

be measured with a large-signal vector network analyzer. In the next chapter,

similar YBCO thin films have been investigated with a vector network analyzer

with harmonic capabilities which provides an additional piece of information: the

phase of the third-order harmonic voltage with respect to the excitation signal.

This requires a more sophisticated estimate of the 3rd harmonic voltage U3f (T )

going beyond the simple approximation of Eq.5.26.

The proposed model and the harmonic data allows one to obtain estimates

for the lifetime of Cooper pairs in the normal state τ0 which show significant de-

partures from the BCS predictions especially for the case of underdoped samples.

The observed consistent trend of τ0 with the doping level suggests that τ0 might be
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(cor)related with the pseudogap temperature T∗.
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Chapter 6

Vector measurements of the nonlinear response of high-Tc

superconductors

Door meten tot weten. †

Heike Kammerlingh Onnes’ motto

6.1 Introduction and motivation

Scalar harmonic data acquired on YBCO thin films with various oxygen doping

levels have been presented and interpreted in the previous chapter. The harmonic

behavior of the cuprate samples has been modeled in a somewhat artificial fashion in

the sense that the critical temperature Tc was used as a sharp border between a pure

inductive regime, below Tc, and a pure resistive one, above Tc. Additionally, the

formalism developed in the previous chapter is a DC treatment since the following

frequency-dependent effects have not been considered:

1. in the superconducting state the penetration depth λ has been approximated

with the London value λL. Essentially, the electrodynamics of the normal fluid

together with possible nonlinear effects have been neglected and the frequency

that marks the crossover from Meissner screening to skin depth screening, Ω1,

†By measurements to knowledge
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was assumed infinite;

2. in the superconducting state the relaxation time scale governing the dynamics

of the order parameter, Ω−1
0 , was considered zero. In this picture the order

parameter adibatically follows the external field up to arbitrarily high frequen-

cies;

3. in the normal state, the dependence of the real part of conductivity on the

electric field was described within a DC theoretical treatment.

The approach from the previous chapter serves as a first approximation: un-

der the influence of a high-frequency field that suppresses the superfluid (as the

nonlinear Meissner effect describes), the normal fluid is enhanced, participates in

the diamagnetic screening process and could, in principle, generate nonlinear effects

detectable in a phase-sensitive experiment.

The crucial experimental improvement that made possible a deeper level of

analysis was the replacement of the spectrum analyzer with a vector network ana-

lyzer with harmonic detection capabilities. This way, a new piece of information,

in addition to the harmonic power P3f , was accessible: the phase of the harmonic

voltage U3f generated by the superconducting sample.

First, in section §6.2 the experimental procedure is described in detail due to

the novelty of the microwave phase-sensitive harmonic technique and analogies with

harmonic measurements with the spectrum analyzer are made. The samples investi-

gated by means of phase-sensitive harmonic detection are described in section §6.2,

and examples of raw and processed experimental data are shown. A novel theoreti-
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cal model of the near-field microwave microscope is presented in section §6.3 which

links the measured quantity, the complex-valued harmonic voltage, to the physical

quantities describing the linear and nonlinear electrodynamics of the superconduct-

ing sample. It is shown that the mathematical expression for the harmonic power

from the previous chapter, describing nonlinear effects in the superconducting state

can be recovered from the new model in the limit of low temperatures. A discussion

of the data and model and their agreement follows in section §6.4.

6.2 Experimental procedure, samples and data

Experimental procedure A measurement consists in exciting the supercon-

ducting sample with a single-tone microwave signal at frequency f generated from

the VNA’s port 1, and tuning the receiver on port 2 in a narrow frequency range (1

or 2 Hz) centered on the harmonic frequency of interest, 3f , in this case (see Fig.3.5).

This procedure is similar to the one performed with the spectrum analyzer, where

one acquires traces representing the absolute power incident on the input port (in

dBm units) vs. frequency. The VNA in the frequency offset mode (VNA-FOM)

outputs a string of complex numbers (trace) representing the Usample
3f /U ref

3f ratio

evaluated at the frequency points scanned by the receiver. At each temperature a

trace is acquired and is stored on the acquisition PC for further processing.

Examples of such traces are shown in Fig.6.1 where a YBCO thin film, called

XUH157, has been probed with an incident microwave signal with frequency f =

6.49 GHz and power of 5 dBm. The VNA receiver settings were selected for the
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Figure 6.1: Examples of VNA-FOM traces acquired on a YBCO thin film (XUH157)

in a frequency range centered on 3f = 19.47 [GHz]. Top and middle plot: the phase

and magnitude of Usample
3f /U ref

3f acquired in a phase-sensitive measurement; bottom

plot: absolute harmonic power data P3f(T ) of the sample.

maximum signal-to-noise ratio in a reasonable acquisition time: the frequency range

scanned by the receiver on port 2 was 1 Hz with 11 frequency sampling points and

an IF bandwidth of 1 Hz. A small IF bandwidth ensures a low background noise but

requires a large acquisition time, and for this reason the frequency range scanned

by the VNA receiver has been chosen to be 1 Hz.

Similar to the measurements on a spectrum analyzer, on the VNA-FOM a

number of frequency sweeps, or averages (8 for the data plotted in Fig.6.1) were

performed on the VNA to increase the signal-to-noise ratio before transferring the

trace to the acquisition PC. As opposed to frequency-dependent traces on a scalar

120



82 84 86 88 90 92
−50

−40

−30

−20

T [K]

|U
3fsa

m
pl

e /U
3fre

f |[d
B

]

T
c
AC

δT
c
AC

82 84 86 88 90 92
0

1

2
S

T
D

Φ
3f

 [r
ad

]

T [K]

T
c
AC

δT
c
AC

82 84 86 88 90 92
−3

−1

1

3

Φ
3fsa

m
pl

e −
Φ

3fre
f  [r

ad
]

Figure 6.2: Phase-sensitive harmonic data acquired on a YBCO thin film (XUH157).

Top graph: temperature-dependent magnitude. Bottom graph: temperature-

dependent phase (green line) and the standard deviation of the 11-point traces

acquired at each temperature (blue line). Black arrows: the temperatures where

the traces from Fig.6.1 have been acquired.

spectrum analyzer, those on the VNA contain complex numbers, and the averaging

procedure does not lead to a meaningful output if the data points to be averaged

are scattered about the origin in the polar plot of the harmonic voltage. For this

reason, the data points from the traces acquired at T=83.5 K and T=91.6 K, outside

the range of the good signal-to-noise ratio, exhibit a large scatter in phase and

magnitude, as shown in Fig.6.1. To quantify the data spread, the standard deviation

of the phase data STDΦ3f
from traces acquired at each temperature are plotted in

Fig.6.2 (blue curve, bottom graph). These data show that STDΦ3f
is very small only

in the temperature range where the magnitude is above the noise floor (evaluated
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to be ∼ −135 to −145 dBm) and thus the phase data are meaningful.

After power calibration the VNA can be used as a spectrum analyzer to mea-

sure the absolute harmonic power (in units of dBm). Such traces acquired at three

different temperatures are shown in Fig.6.1, bottom graph. Due to the narrow fre-

quency range selected for the measurement (1 Hz), only the top of the |P3f(ω)| peak

is captured. At T=83.5 K and T=91.6 K, below and above Tc respectively, the

harmonic signal produced by the sample |P3f | is not measurable, being obscured by

the internal noise of the VNA†.

In the phase-sensitive VNA-FOM traces acquired at temperatures of 83.5 K

and 91.6 K, below and above Tc respectively, the harmonic signal produced by the

sample |Usample
3f (T )| is very small (see Fig6.1, bottom plot) and when ratioed to the

reference signal |U ref
3f | results in noisy data, as seen in the magnitude and phase

traces in Fig.6.1 top and bottom plots. At temperatures where the magnitude of

the nonlinear effects is significant (for this particular sample, at T = 89.6 K) the

|Usample
3f (T )/U ref

3f | traces are smooth and higher in magnitude, while STDΦ3f
is very

small.

In order to examine the temperature dependence of the ratioed phase Φsample
3f (T )−

Φref
3f and magnitude |U3f (T )sample/U ref

3f |, several points from the center of the traces

(Fig.6.1) acquired at each temperature are selected (typically three or five points),

averaged, and the resulting complex number is assigned to the sample tempera-

ture during the VNA-FOM acquisition. The temperature-dependent magnitude and

†The VNA internal noise can be estimated by running a measurement without any device

connected to port 2 which results in a noise floor on the order of -135 to -145 dBm
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phase of the ratioed harmonic voltage U3f(T )sample/U ref
3f are plotted in Fig.6.2 top

and bottom graph respectively. To check the robustness of the above-mentioned av-

eraging procedure, temperature-dependent phase and magnitude obtained by using

1, 3 and 5 central trace points in the average have been compared and their agree-

ment is good at temperatures where the signal-to-noise ratio is high (see Fig.6.2),

or equivalently, where the traces are smooth (see Fig.6.1).

In chapter 3 it was shown that the ratioed harmonic voltage measured by the

VNA-FOM U3f (T )sample/U ref
3f can be used reliably to investigate the temperature-

dependent behavior of nonlinear effects in the sample since the reference path oper-

ates at constant room temperature. For this reason, in the following, the harmonic

voltage measured by VNA-FOM is simply labeled U3f(T ) and is given in relative

units dB.

Samples The VNA-FOM has been used to measure the power- and temperature-

dependence of the harmonic behavior of several YBCO thin films with various levels

of doping. The samples’ characteristics are given in Table.6.1. After PLD deposition

and thermal annealing† to precisely adjust the oxygen content [83, 84], the critical

temperature TAC
c , and the width of the transition, δTAC

c , have been estimated from

AC magnetic susceptibility measurements. Despite their small thickness (∼ 50 nm)

the sample superconducting quality is very good as revealed by the narrow peaks

of the temperature-dependent imaginary part of the magnetic susceptibility whose

full-half width maximum δTAC
c are given in Table. 6.1.

†The samples have been prepared by Hua Xu, PhD student in the Department of Physics,

University of Maryland, College Park, MD, also working with Prof. Steven M. Anlage.
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Table 6.1: Sample properties: critical temperature TAC
c and transition width δTAC

c

determined from AC susceptibility measurements, the doping level 7 − δ estimated

from TAC
c , the difference between the temperatures where the extreme values of the

harmonic phase and magnitude occur, ∆TM,m, and the sample substrate.

Sample TAC
c [K] δTAC

c [K] 7 − δ ∆TM,m [K] Substrate

XUH157 88.9 0.3 6.84 -0.2 NdGaO3

XUH163 86.6 1.0 6.82 -0.5 NdGaO3

STO055 62.0 0.55 6.69 -0.6 SrTiO3

STO039 52.0 1.1 6.53 -1.0 SrTiO3

The samples have been measured by using various input frequencies (6.45 to

6.55 GHz) and power levels (0 to 9 dBm). In addition, sets of data have been

acquired on the same sample with the microwave probe placed at several locations

above the sample, all with consistent results.

Power dependence Sets of data measured with the probe at the same lo-

cation above the sample (called STO039) and with several microwave input power

levels (8, 6 and 4 dBm) are shown in Fig.6.3. The quantities plotted in Fig.6.3 are

ratioed with respect to the reference voltage incident on the VNA’s Ref In and

consequently their power dependence contains intrinsically the power dependence

of the sample and that of the comb generator. For this reason the heights of the

ratioed magnitudes acquired with 6 and 4 dBm input power have been offset to

overlap the ratioed magnitude acquired with 8 dBm, considered here as the refer-

ence. The vertical offsets, -2 and -2.7 dB, for the magnitude curves at 6 dBm and
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Figure 6.3: Ratioed magnitude and phase of harmonic voltage U3f (T ) acquired on

a YBCO thin film (STO039) for several values of input power (8, 6 and 4 dBm).

The red curve measured with 8 dBm has been considered as reference for both the

magnitude and the phase and the other curves, measured for 6 and 4 dBm have

been offset by a factor of -2 and -2.7 dB, respectively for magnitude and +0.07π

and +0.23π, respectively for phase to obtain a good overlap and examine power-

dependent effects.

4 dBm, respectively seem to suggest that lower microwave input power results in

higher peaks of ratioed |Usample
3f (T )/U ref

3f |. This fact can be explained as the com-

bined effect of the decrease of the harmonic voltage from the sample |Usample
3f (T )|†

†Harmonic power measurements performed with the spectrum analyzer on similar YBCO sam-

ples and reported in the previous chapter show that the reflected harmonic power from the super-

conducting sample scales as |P sample
3f | ∼ |Pinput|3. Consequently, the scaling in terms of harmonic

voltage is |Usample
3f | ∼ |Uinput|3.
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and that from the reference path |U ref
3f |‡. In reality, experimental data from Fig.6.3

show that the temperature range with good signal-to-noise ratio shrinks gradually

as the input power is lowered. This suggests that in order to acquire useful data in

a larger temperature range, one has to use high input power levels.

The phase data acquired with the various input power levels has also been

offset, with the Φsample
3f (T )−Φref

3f acquired at 8 dBm input power serving as reference

for the plot. The curves acquired with 6 and 4 dBm have been shifted vertically by

an amount of +0.07π and +0.23π, respectively. Since the phase relationship between

the input and the harmonic output of the comb generator is unknown, it is impossible

to disentangle the contributions of the sample and that of the comb generator in

the VNA-FOM measured relative phase. However, as mentioned in Chapter 3, the

temperature dependence of the ratioed phase can be entirely attributed to that of

the sample Φsample
3f (T ).

The very good overlap of the magnitude and phase data after offsetting the

curves at 6 and 4 dBm suggests that the microwave probe does not induce a signif-

icant amount of heat in the sample surface since for higher power levels (6 and 8

dBm) there is no obvious shift of the temperature dependences |U3f (T )| and Φ3f (T )

to lower temperatures as would be expected if the sample were heated by the probe.

Common features in the experimental data The first observation regard-

ing all the measured data is that the magnitude of the harmonic voltage exhibits

‡The comb generator is being employed outside of its normal operation regime, which is 2 GHz

and 0 dBm input. For the measurements reported here, it was used at roughly 6.5 GHz and -14

to -20 dBm, and its input-to-harmonic output relationship is unknown.
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a peak, as seen previously in scalar measurements, which occurs at a temperature

slightly higher than TAC
c . A novel feature comes from the phase data where a min-

imum can be noticed at an even higher temperature. The difference of the two

temperatures where the extreme values of magnitude and phase occur, ∆TM,m, is

doping-dependent: in samples with doping close to the optimal one, ∆TM,m, is small

(a few tenths of a Kelvin) but increases as the oxygen content of the thin films is re-

duced (see ∆TM,m in Table 6.1). Temperature-dependent data acquired with various

input power levels (see for example Fig 6.3) show that ∆TM,m is power-independent.

The temperature- and doping-dependent harmonic magnitude and phase of

U3f (T ), as well as the their extreme values occurring at different temperatures,

could be used as a reliable test for a theory of nonlinear effects in cuprates.

6.3 Analytical treatment of the microwave nonlinear microscope

The objective is to understand quantitatively the features of the measured

harmonic voltage (see Fig.6.3), and its general features. For this reason, a finite-

frequency modeling of the nonlinear near-field microwave microscope is presented in

this section. Traditional models of nonlinear microwave response of superconductors

rely on a lumped-element transmission-line approximation. This section presents

a new strictly field-based approach that assigns the nonlinearity to fundamental

quantities, namely the complex conductivity.

The analytical calculation involves three major steps: first the vector poten-

tial created by the loop probe is evaluated at the sample surface followed by the
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introduction of nonlinear effects in the real and imaginary parts of the complex

conductivity. In the second step, by using a nonlinear generalization of the consti-

tutive London equation for superconductors, the current induced in the sample is

evaluated and its harmonic component is identified. In the third step, the vector

potential generated by the harmonic current from the sample and its corresponding

induced harmonic voltage is calculated at the location of the probe.

The modeling of the nonlinear near-field microwave microscope relies on gen-

eral electromagnetic theory, and is not restricted to a particular nonlinear mech-

anism or to the superconducting state. It can be extended, in principle, to any

nonlinear physics characteristic of the sample. In the limit of weakly-nonlinear ef-

fects, as is revealed by the measured data, and in order to preserve a high level of

generality, the nonlinear effects are introduced as phenomenological corrections to

the real and imaginary parts of the low-power, linear-response complex conductivity

of the sample σ̃ = σ1 − iσ2. It is shown that the measured harmonic voltage U3f is

a complex-valued function that depends on conductivity and the correction coeffi-

cients A1 and A2, which quantify the strength of the nonlinear effects in σ1 and σ2,

respectively and have units of vector potential.

In order to evaluate the temperature-dependent harmonic voltage U3f (T ), one

needs a theoretical framework that provides expressions for A1 and A2. In the

literature, these quantities have been evaluated analytically only in the particular

case of low temperatures T < Tc, where A1 → ∞ (indicating very small nonlinear

effects in σ1) and A2 is related to the critical field [93]. In order to model the

microwave harmonic response of superconductors, it is necessary to obtain general

128



expressions for the temperature-dependent nonlinear vector potential scales A1 and

A2. Because these scales have never been calculated in the literature, and the

difficulty of the problem, the present analysis is restricted to a semi-quantitative

level (see also Appendix A for a GL treatment of the A1,2 temperature dependence).

In principle any electromagnetics problem can be approached by using the

Maxwell equations (or equivalently the wave equations for fields E and H or field

potentials A and Φ) and the constitutive relations for the medium under investiga-

tion (here, the superconducting thin film). The generalization of the linear-response

constitutive relations to the nonlinear case can be obtained from GL, TDGL or BCS.

The Ginzburg-Landau theory provides the appropriate equations for modeling

the nonlinear effects especially at temperatures close to Tc where the measurements

take place. Since in the Ginzburg-Landau equations the unknowns are the order

parameter Ψ and the vector potential A, it is natural to approach the electromag-

netic problem in terms of solving the GL equations self-consistently for the vector

potential A and the order parameter Ψ. Such an approach can be implemented

analytically to model the nonlinear microwave microscope only for some simplified

geometries when the dimensionality of the problem can be reduced and the mathe-

matical difficulties associated with solving the partial differential equations for the

fields/potentials circumvented.

This section presents analytical results for the simplified geometry shown in

Fig. 6.4 in the London gauge (∇ · Af = 0 with the boundary condition that the

probing vector potential at frequency f , Af , has no component normal to the surface

Af⊥ = 0) [93]. In this treatment the sample has thickness d0 (smaller than the zero-
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temperature penetration depth, d0 ≪ λ0) and it extends infinitely in the zOy plane

of the Cartesian frame. The assumption of infinite extent in the horizontal plane

is accurate since the excitation provided by the microwave probe is very localized

and located far from the edges of the thin film. The source of microwave excitation

at frequency f is a current wire parallel to the z axis located at y = 0 and x = a

whose current density is modeled by using the δ Dirac distribution: jext
f (x, y) =

Ifδ(x − a)δ(y), as discussed in section §3.3.

Figure 6.4: Schematic of the model of the near-field microwave microscope: an

infinitely thin wire placed at height a above a superconducting slab of thickness

d0. L is a closed integration contour with the horizontal lines in the top/bottom

surfaces of the sample.

Strictly speaking one should solve the wave equation for the vector potential

A, which includes a time derivative term c−2∂A2/∂2t (c is the phase velocity in free

space), above the superconducting plane. However, since all geometrical dimensions

characterizing the system are smaller than the wavelength at microwave frequencies,
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the time derivative term can be ignored since the associated time retardation effects

are not relevant for the small length scales involved in the problem.

In the subspace x > 0, above the superconducting slab, the time-independent

version of the wave equation for the vector potential Af reads:

∇2Af = −µ0j
ext
f , x > 0 (6.1)

where the source of Af is the external current distribution jext
f . Inside the super-

conducting slab there is a distribution of screening currents jfilm, while below the

superconducting slab there is assumed to be no current distribution:

∇2Af = −µ0jfilm , − d0 < x < 0 (6.2)

∇2Af = 0 , x < −d0 (6.3)

These three elliptic equations must be solved and their solutions and their

derivatives with respect to x must be matched at the two boundaries x = 0 and

x = −d0. An alternative procedure is to ”concatenate” the three equations for the

three distinct space regions into a single equation as proposed in [93].

Inside the superconducting slab the spatial variation of the vector potential

Af in the x direction is governed by the length scale determined by the inverse

of the wave vector introduced in Chapter 2 |γ−1| (γ2 = λ−2 + 2iδ−2
sk which at low

temperature T < Tc is governed by the penetration depth λ while in the normal

state by the skin depth δsk). Since the slab is thinner than the penetration depth

at T=0 K, λ0, it can be assumed that Af and jfilm do not vary with x. Thus, the

Maxwell equation ∇ × B = µ0jfilm can be integrated along the closed contour L

131



having one side above and the opposite one below the superconducting film (see

Fig. 6.4):

Babove − Bbelow = µ0K (6.4)

where Babove,below represents the magnetic field immediately above and below the

superconducting slab, respectively, and K = d0jfilm is the sheet screening current

(surface current in units of A/m) flowing through the superconducting slab. Since

jfilm and Af are related through Eq.(6.2) and ∇2Af = γ2Af (finite-frequency gen-

eralization of the London equation, see Chapter 2), Eq.(6.4) can be written:

Babove − Bbelow = −d0γ
2Af (6.5)

Since the fields and currents are uniform within the thickness of the superconducting

slab, one can replace the slab with a two-dimensional current sheet and the above

three equations for the vector potential (6.1,6.3,6.5) can be written in a closed-form

for the entire space† [93]:

−∇2Af(x, y) + λ−1
effAf(x, y)δ(x) = µ0Ifδ(x − a)δ(y) (6.6)

where λeff = 1/(d0γ
2) represents a generalized effective penetration depth.

A similar mathematical approach has been employed to study the electrody-

namics of the mixed state in thin superconducting films in the presence of a magnetic

field perpendicular to the sample [94].

The propagation constant γ depends on the real and imaginary parts of con-

ductivity (see Eq.(2.11)) which in the general case depend on the external field. In
†The author acknowledges useful conversations with Dr. Anatoly Utkin from the Institute of

Physics of Microstructures of the Russian Academy of Sciences, Nizhny Novgorod, Russia.
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a phenomenological framework, one can assume that nonlinearities can be parame-

terized as:

σ1(T, A) = σ1

(
1 +

A2
f

A2
1

)
(6.7)

and

σ2(T, A) = σ2

(
1 −

A2
f

A2
2

)
(6.8)

where the nonlinear vector potential scales A1,2 have been introduced to quantify

the nonlinear effects in the two components (real and imaginary) of the conductivity.

These corrections are valid when the excitation Af is much smaller in magnitude

than the nonlinear vector potential scales A1,2 (Af ≪ A1,2), similar to the phe-

nomenological description of the nonlinear effects from Chapter 5. The approximate

equations 6.7,6.8 are not valid at temperatures very close to Tc, where A1,2 → 0.

The two equations have been written with the goal of describing intrinsic nonlin-

ear effects only: the superfluid density nS is suppressed by the microwave excitation

(i.e. converted into normal fluid), leading to a reduced σ2 and an enhanced σ1.

Other nonlinear mechanisms associated with vortex motion, weak links, etc. have

been neglected here but can be considered by choosing suitable A1,2. If the field

dependence of the complex conductivity (as quantified by Eq.6.7,6.8) is taken into

account, the propagation constant γ also becomes field-dependent and the equation

for the vector potential Af (6.6) turns into a nonlinear elliptic equation which can

not be solved analytically.

Outline of the calculation:

To circumvent the issue of obtaining analytical solutions for a nonlinear elliptic
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equation, the problem is solved in three steps, as schematically shown in Fig.6.5:

first the nonlinear effects introduced phenomenologically through equations (6.7)

and (6.8) are neglected (which corresponds to A1,2 → ∞) and the vector potential

Af and current distribution jfilm are found by integrating Eq.6.6. It is shown that

the current density jfilm evaluated in the first step of the calculations (in the linear

approximation) is mathematically identical to the current distribution induced in a

perfectly conducting plane by a current distribution Ifδ(x − a)δ(y).

Figure 6.5: Steps in the calculation of the third-order harmonic magnetic vector

potential at the location of the emitting/receiving antenna (current wire).

In the second step, a nonlinear generalization of the London equation relating

the vector potential and the current density is introduced in order to calculate the

current density in the sample at frequency 3f originating from the quadratic terms

in the equations (6.7) and (6.8). The third step consists in using the reciprocity

principle from electromagnetism [95]: the vector potential A3f (whose source is the
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current density in the film at frequency 3f) is evaluated at the location of the wire

and from A3f the voltage induced in the wire at frequency 3f is obtained.

The full 3D numerical modeling of the microwave nonlinear microscope out-

lined in Chapter 4 was done in a similar fashion: first, in the linear approximation,

the superconducting slab is replaced by a perfectly conducting two-dimensional sheet

and the current distribution jfilm produced by the excitation of the loop is evaluated

accordingly. In the second step the nonlinear effects are introduced phenomenolog-

ically and the voltage induced in the pick-up antenna is evaluated at frequency

3f .

Step 1: Calculation of the vector potential Af generated by the

excitation current

The partial differential equation for the vector potential (Eq.6.6) can be solved

by transforming it into a algebraic equation through the Fourier transform, following

the procedure from Ref.[93]:

(k2
x + k2

y)Af (kx, ky) + λ−1
effAf (ky) = µ0If exp(ikxa) (6.9)

This equation can be solved for Af (kx, ky) and integrated with respect to kx

to obtain Af(ky):

Af(ky) =

∫ +∞

−∞

dkx

µ0If exp(ikxa) − λ−1
effAf(ky)

k2
x + k2

y

(6.10)

The integrals can be evaluated by using the method of complex functions or by using

an appropriate software package (Mathematica, for example):

Af (ky) =
µ0If

2

exp(−|ky|a)

|ky|
− Af (ky)

2λeff |ky|
(6.11)
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which can be solved for Af(ky):

Af(ky) = µ0If
λeff exp(−|ky|a)

1 + 2λeff |ky|
(6.12)

This expression must be transformed back into direct space by means of an inverse

Fourier transform. However, since there are complications arising from the denom-

inator in Eq.(6.12), it is more convenient to restrict the range of temperatures so

that λ ≪ a (the formalism will not be valid very close to Tc where the penetration

depth λ diverges and the perfect screening property of the superconducting film is

compromised). In this approximation, the vector potential generated by the current

wire reads:

Af (ky) ≈ µ0Ifλeff exp(−|ky|a) (6.13)

This equation can be inverse Fourier transformed easily and leads to:

Af(y) = − µ0Ifa

πd0(a2 + y2)
· 1

λ−2 + 2iδ−2
sk

(6.14)

where it was taken into account that λeff = (d0γ
2)−1. The corresponding screening

current density can be evaluated from the vector potential, but it is not used later

since in this formalism the nonlinearity is driven by the vector potential Af , not

the current density jfilm as in other treatments. It is interesting to note that the

screening current distribution jfilm(y) is mathematically identical to that calculated

for a current wire placed above a perfectly conducting plane.

Step 2: Calculation of the current density induced in the supercon-

ducting film jfilm and its nonlinear component
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The starting point for the analysis of the nonlinear response is phenomeno-

logical: the conductivity σ1,2 depends on the magnetic vector potential Af and

consequently, the relationship between current density jfilm and the probing field

is nonlinear. Usually, in the literature on the nonlinear Meissner effect, it is con-

sidered that σ2 depends on the magnetic field (or induced current density) due

to the suppression of the order parameter by the external field. However, taking

the vector potential Af as the perturbing factor simplifies significantly the present

mathematical treatment.

In the local London theory the screening superfluid current density jS depends

linearly on the vector potential Af . At finite frequencies it is not only the superfluid

that screens out the external field but also the normal fluid, so the total screening

current reads:

jfilm = jS + jn = (σ1 − iσ2)E = −ω(iσ1 + σ2)Af (6.15)

where it was assumed that E = −∂Af/∂t and Af ∼ exp(+iωt) with ω = 2πf . Since

the real part of conductivity leads to skin depth effects (δsk) while the imaginary

part leads to Meissner screening (λ), one can replace the conductivities σ1,2 to obtain

a finite-frequency generalization of the London constitutive relationship:

jfilm = jS + jn = − 1

µ0

(
1

λ2
+

2i

δ2
sk

)
Af (6.16)

In this equation, if the skin depth effects are neglected (δsk → ∞), the London

equation is recovered. In order to describe the nonlinear effects in both the real

and imaginary parts of conductivity, the low-field conductivities σ1,2 are replaced
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by their nonlinear phenomenological approximations as quantified by equations 6.7

and 6.8. The nonlinear current-to-vector potential relationship can be written as:

jfilm = −ωσ2

(
1 −

A2
f

A2
2

)
Af − iωσ1

(
1 +

A2
f

A2
1

)
Af (6.17)

or can be expressed in the more familiar form in terms of the low-power (linear

response) length scales λ and δsk:

jfilm = − 1

µ0λ2

(
1 −

A2
f

A2
2

)
Af −

2i

µ0δ
2
sk

(
1 +

A2
f

A2
1

)
Af (6.18)

In the limiting case of neglecting the real part of conductivity and its associated

nonlinear effects, one recovers the expression for nonlinear current density used in

[93] (with the notation A2 = Ac). The above expression shows that the current den-

sity contains a component at frequency f and another component at frequency 3f

which represents the source of the measured harmonic power at frequency 3f . The

nonlinear component at frequency 3f in the total current density j, j3f , can be sep-

arated from the A3
f terms (real and imaginary) by considering the time dependence

Af ∼ cos(ωt) and using the trigonometric relation cos3 ωt = (cos 3ωt + 3 cosωt)/4:

j3f =
1

4µ0

(
1

λ2A2
2

− 2i

δ2
skA

2
1

)
A3

f =
ω

4

(
σ2

A2
2

− i
σ1

A2
1

)
A3

f (6.19)

The total current density at frequency 3f in the film can be evaluated by

plugging the expression for the vector potential Af (y) from equation 6.14.

Step 3: Calculation of the induced voltage U3f

This current distribution located on the plane at x = 0 and having a 3f time

variation generates a vector potential A3f in the entire space and induces a voltage

in the wire that provided the microwave excitation at the fundamental frequency.
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In order to evaluate the induced voltage at the tripled frequency U3f one has to

calculate the vector potential at the location of the pick-up antenna (wire). This is

accomplished by using the reciprocity theorem from electromagnetism [95] where a

current with frequency 3f flowing through the wire jext
3f = I3fδ(x− a)δ(y) generates

the magnetic vector potential on the sample surface given by Eq.(6.14) with the

appropriate substitution f → 3f . Equivalently, a current distribution j3f in the

sample given by Eq.(6.19) generates a vector potential A3f (x, y, z) in the entire

space. The equivalence principle is written as:

∫
dV jext

3f (x, y, z)A3f (x, y, z) =

∫
dV j3f(x, y, z)A3f (x, y, z) (6.20)

with the integrals evaluated over the entire space. Since all the z = constant planes

contain the same field and current configuration due to the symmetry of the problem,

it will be sufficient to integrate over x and y:

∫ +∞

−∞

∫ +∞

−∞

dxdyI3fδ(x − a)δ(y) · A3f (x, y) = (6.21)

=

∫ +∞

−∞

∫ +∞

−∞

dxdy
d0δ(x)

4µ0

(
1

λ2A2
2

− 2i

δ2
sk(f)A2

1

) (
− µ0Ifa

πd0(a2 + y2)
· 1

λ−2 + 2iδ−2
sk (f)

)3

·

·
(
− µ0I3fa

πd0(a2 + y2)
· 1

λ−2 + 2iδ−2
sk (3f)

)

where δsk(f) and δsk(3f) represent the skin depth evaluated at frequency f and 3f

respectively. These two length scales do not differ significantly, however, to maintain

mathematical consistency they will be treated separately in the following. By using

the filtering properties of the Dirac delta function one obtains:

A3f (a, 0) =
d0

4µ0

(
1

λ2A2
2

− 2i

δ2
sk(f)A2

1

) (
µ0aIf

πd0(λ−2 + 2iδ−2
sk (f))

)3

· (6.22)

· µ0a

πd0(λ−2 + 2iδ−2
sk (3f))

∫ +∞

−∞

1

(a2 + y2)4
dy

139



The final result after integration is the expression for the vector potential at

the wire, generated by the 3f current distribution located in the plane at x = 0:

A3f(a, 0) =
5

64

(
µ0If

πd0a

)3 (
1

λ2A2
2

− 2i

δ2
sk(f)A2

1

) (
1

λ−2 + 2iδ−2
sk (f)

)3
1

λ−2 + 2iδ−2
sk (3f)

(6.23)

The electric field induced in the wire at frequency 3f , E3f = −∂A3f (a, 0)/∂t,

is used to evaluate the voltage induced in a probe of length l0:

U3f (a, 0) =
15ωl0

64

(
µ0If

πd0a

)3 (
i

λ2A2
2

+
2

δ2
sk(f)A2

1

) (
1

λ−2 + 2iδ−2
sk (f)

)3
1

λ−2 + 2iδ−2
sk (3f)

(6.24)

and the final expression for the induced voltage in terms of length scales can be

written:

U3f (a, 0) =
15ωl0

64
·
(

µ0If

πd0a

)3

· λ
6

A2
1

·
[

2λ2

δ2
sk(f)

+ i
A2

1

A2
2

]
·
[
1 + i

2λ2

δ2
sk(f)

]−3

·
[
1 + i

2λ2

δ2
sk(3f)

]−1

(6.25)

In terms of conductivities, the induced voltage reads:

U3f(a, 0) =
15ωl0

64
·
(

If

πd0aω

)3

· 1

σ3
2A

2
1

·
[
σ1

σ2
+ i

A2
1

A2
2

]
·
[
1 + i

σ1

σ2

]−4

(6.26)

The equations 6.25 and 6.26 have been deduced in an analytical, field-based

approach as opposed to the model from Chapter 5 and most of the models from the

literature where lumped-element approximations are used.

6.4 Discussion and Conclusions

The final equations deduced from the model of the nonlinear near-field mi-

crowave microscope for the harmonic voltage, Eq.6.25 and 6.26, show that U3f (T )
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measured by the sensing wire has a real and an imaginary component. Several

dependences must be noted:

1. |U3f | scales with the excitation current as I3
f , leading to |U3f | ∼ |Uf |3 and

similar for power levels |P3f | ∼ |Pf |3, in agreement with measurements of

power dependence performed with the spectrum analyzer;

2. |U3f | depends on the sample thickness d0 as |U3f | ∼ d−3
0 and consequently,

the harmonic power |P3f | ∼ d−6
0 , in agreement with the model presented in

Chapter 5, suggesting that in order to boost the magnitude of the measured

|U3f | or |P3f | thin samples must be used. For this reason, the thinnest samples

that can be grown by PLD while maintaining good superconducting qualities,

have been used. The dependence on sample thickness could not be checked

quantitatively in an experiment since samples of different thickness often have

different properties (for example the zero-temperature penetration depth λ0).

In addition, the quality of the samples is not perfectly reproducible from one

PLD fabrication process to another. However, qualitatively, it was observed

experimentally that thicker samples give a rather small |P3f |†.

3. |U3f | depends on the geometrical separation of probe-to-sample a as |U3f | ∼

a−3. The probe height with respect to the sample, a, plays a role in the

figures of merit Γ and Γρ and the probe-to-sample electromagnetic coupling k

†For comparison, a 500 nm thick YBCO film (from Theva, Germany) gives a |P3f | peak about

20 dB above the noise floor, whereas a YBCO 50 nm thick film (XUH163) gives about 40-45 dB

measured with the same probe and input power.
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introduced and evaluated in Chapter 3. The dependence |U3f | ∼ a−3 could not

be checked experimentally with the current set-up since the vertical resolution

of the micrometer controlling the probe-to-sample height is too large and once

the probe is not in physical contact with the Teflon sheet, the |U3f | signal is

quickly reduced to the noise floor.

Harmonic phase at low temperature: The limiting case of low temper-

atures T < Tc, when the contribution from the normal fluid to the linear response

is small (λ/δsk(f, 3f) ≪ 1), is worth examining. The expression for the induced

voltage Eq.(6.25) can be expanded in a power series in λ/δsk(f, 3f) → 0 and the

resulting nonlinear response is†:

UT≪Tc

3f (a, 0) ≈ 15ωl0
64

·
(

µ0If

πd0a

)3

· λ6

A2
1

· (6.27)

·
[
i
A2

1

A2
2

+ 2

(
4
A2

1

A2
2

+ 1

)
λ2

δ2
sk

− 8i

(
5
A2

1

A2
2

+ 2

)
λ4

δ4
sk

+ · · ·
]

If only the first term in the above expansion is considered (in the limit of low

temperature where the Meissner screening dominates), one obtains a pure inductive

response that depends only on the σ2 nonlinearity, characterized by the nonlinear

vector potential scale A2:

UT≪Tc

3f (a, 0) ≈ 15ωl0
64

·
(

µ0If

πd0a

)3

· iλ6

A2
2

(6.28)

This description of nonlinear response below Tc (see Eq.6.28) is consistent

with almost all outstanding treatments of the superconductor nonlinear response

[26, 42, 43, 45, 93].

†This evaluation was done for the simplifying approximation δsk = δsk(f) ≈ δsk(3f)
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As temperature is increased the ratio λ/δsk increases and the power expansion

of the induced voltage (Eq.6.27) shows that an in-phase component starts to become

significant (the second term in square brackets in the expansion) while the out-of-

phase component (represented by the first and the third terms in the expansion) is

gradually reduced. This prediction (see Eq.6.27) is consistent with the data shown

in Fig.6.2 and 6.3, which show that the phase angle rotates clockwise from π/2 as

Tc is approached from below.

Relationship with the previous model: One of the questions that must be

addressed at this stage is whether the present formalism that takes into account the

effect of the normal fluid on the nonlinear electrodynamics of the superconducting

thin films and the nonlinear effects in both the real and imaginary parts of conduc-

tivity, can be reduced to the formalism presented in the previous chapter. There,

at temperatures below Tc, only the electrodynamics of the superfluid was taken into

account: in the language of the model presented here, this is equivalent to enforcing

the conditions σ1 = 0, A1 = ∞ and A2(T ) = Ac(T ), which models the absence of

normal fluid and its corresponding nonlinear effects. The harmonic voltage U3f (T )

is imaginary, as shown previously when only the first term in the power expansion

of U3f (T ) was considered in Eq.6.28.

The next step is to cast Eq.6.28 in terms of the nonlinear current density

scale JNL(T ), used in Chapter 5 to describe the strength of the nonlinear effects.

By using the London linear vector potential-current density constitutive equation

J = −Af/(µ0λ
2), the vector potential is Af = −µ0λ

2J . Similarly the nonlinear

vector potential scale A2 can be written in terms of the nonlinear current density
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scale introduced in the previous chapter JNL, A2 = −µ0λ
2JNL. Thus, the harmonic

voltage in terms of JNL reads:

|U3f(T )| =
15µ0ωl0

32

(
If

πad0

)3

· λ2

J2
NL

(6.29)

In the previous chapter the power of the third harmonic P3f (see Eq.5.25) was

evaluated as P3f = |U3f |2/(2Z0) where Z0 is the characteristic impedance of the

coaxial transmission line. In the model from the previous chapter U3f reads:

|U3f(T )| =
µ0ω

4d3
0

· λ2

J2
NL

· Γ (6.30)

where Γ is the figure of merit characterizing the ability of the microwave probe to

induce and to pick up the harmonic response at frequency 3f . It has to be noted

that both expressions for U3f have identical dependencies on the penetration depth

λ, nonlinear current scale density JNL, sample thickness d0 and angular frequency ω.

This allows one to identify, from the equivalence of the two formulations, the figure

of merit Γ evaluated numerically in the previous chapter in terms of the quantities

used in the analytical model of this chapter:

Γ =
15

(2π)3
·
I3
f l0

a3
(6.31)

The units of Γ are A3·m−2, in agreement with those from Chapter 5.

This limiting case shows that in the limit of low temperatures, where Meissner

screening dominates, the model from Chapter 5 is recovered and an equivalence could

be established between the figure of merit Γ evaluated numerically for a realistic

probe and the geometric distances characterizing the probe-and-sample setup, the

probe’s height a and length l0.
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Experimental data and the model: The equation for the harmonic volt-

age written in terms of conductivity (Eq.6.26) includes the ratios σ1/σ2, A2
1/A

2
2, and

A1, σ2 whose temperature dependence must be known in order to model the exper-

imental magnitude and phase. Before making any assumptions about a theoretical

model for these dependences, it is simpler to restrict the discussion to the phase of

the harmonic voltage, which depends only on the ratios σ1/σ2 and A2
1/A

2
2:

U3f (a, 0) ∼
[
σ1

σ2

+ i
A2

1

A2
2

]
·
[
1 + i

σ1

σ2

]−4

(6.32)
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Figure 6.6: The argument of the complex function (1 + iσ1/σ2)
−4 for the generic

model-free temperature dependence of σ1/σ2 as the normalized temperature t is

varied between 0.8 and 1.

The behavior of the harmonic voltage in the complex plane is governed by

the second term in Eq.6.32 due to its 4th power, which is advantageous for a simple

analysis since, for superconductors, the ratio of conductivities σ1/σ2 has a simple
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generic behavior that, in a mean-field approximation, is zero in the superconducting

state and diverges at Tc. Consequently, the temperature dependence of the complex

argument of the last term (1 + iσ1/σ2)
−4 can be ”guessed”: at low temperatures

where σ1 ≪ σ2 the argument of this term is 0. As temperature is increased toward

Tc, the argument will execute a full 360 degrees clockwise rotation in the complex

plane, as shown in Fig.6.6.

−6 −4 −2 0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re(U
3f

) [a.u.]

Im
(U

3f
) 

[a
.u

.]

End

T=90.4 K

Start

T=86.4 K

T=89.6 K

Figure 6.7: Temperature-dependent phase-sensitive harmonic data acquired on a

YBCO (XUH157) thin film represented in the complex plane. The arrows indicate

the evolution of the complex data as temperature increases from Start(T=86.4 K)

to End(T=90.4 K). Only the noise-free data are represented here in arbitrary units.

The experimental data shown in Fig.6.2 (see section §6.2) as temperature-

dependent magnitude and phase, have been represented in the complex plane as

Re(U3f ) vs. Im(U3f ) in Fig.6.7, after offsetting the phase data to enforce the con-
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dition Φ3f ≈ π/2 at the lowest temperature where the signal-to-noise ratio is good.

The experimental data exhibit a non-monotonous behavior of the phase, decreasing

from π/2 at low temperatures (T=68.4 K) until it reaches the minimum (T=89.6

K), then increasing back. This is a general feature of the data acquired with all

sample from Table 6.1.

The behavior of data in the complex plane at low temperature, where the

phase starts at π/2 and evolves toward 0, can be accounted for by Eq.6.32 if one

assumes that σ1/σ2 ≪ A2
1/A

2
2. This is a reasonable assumption and in Appendix A

it is shown that within a Drude conductivity formalism:

A2
1

A2
2

=
σ1

σ2

· 1

ωτqp

(6.33)

where ωτqp ∼ 10−3 for cuprates at microwave frequencies (τqp is the quasiparticle

scattering time) [15]. Thus, at low temperatures and in conditions of equilibrium

between the superfluid and normal fluid, the first term of Eq.6.32 dominates the

overall behavior of the harmonic voltage, giving a total phase of π/2. This is in

agreement with the observation that in the conditions of Meissner screening λ/δsk ≪

1, the harmonic voltage is purely imaginary, being dictated by the σ2 nonlinearity

only (see Eq.6.28).

Within the model presented here, the non-monotonous behavior of U3f (T ) in

the complex plane and the presence of a minimum of phase, suggests that the first

complex term in Eq.6.32 should ”slow down” the clockwise evolution imposed by

the second one and at the temperature where Φ3f (T ) reaches a minimum, (see for

example Fig.6.2) it should ”reverse” the motion counterclockwise. The first term in
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Eq.6.32 cannot compensate and reverse the clockwise rotation of the data, mainly

because of the exponent 4 of the second term and its monotonous behavior with

temperature in the complex plane.

Consequently, it can be concluded that the model, as formulated, cannot de-

scribe the evolution of the phase over the entire temperature range. This is not

surprising since the nonlinear effects in σ1,2, quantified by the nonlinear vector po-

tential scales A1,2, have been introduced in a phenomenological fashion (see Eq.6.7

and 6.8)† which is invalid at temperatures too close to Tc. Thus, the model could

give an estimate of the temperature where the higher-order terms in the power

expansion of σ1,2(T, Af), become important.

Additionally, at Tc, other effects may come into play: fluctuations which are

detectable in linear-response microwave measurements as a peak of σ1(T ), vortex

motion, the finite relaxation time of the superconducting order parameter, the pos-

sible impact of the cross over from Meissner to skin depth screening on the nonlinear

behavior, etc.

To summarize, the model presented in this Chapter has a series of limitations:

1. The microwave loop probe was replaced by a straight current wire and the

magnetic vector potential Af was evaluated in the approximation of a perfectly

conducting sample. The problem associated with the field generated by the

coaxial loop probe was reduced to the 1D problem of a straight current wire;

†Equations 6.7 and 6.8 take into account only the first two terms in an infinite power expansion

of σ1,2(T, Af ) in Af/A1,2, where the terms A2

f/A2

1,2 are responsible for the third-order harmonic

generation effects.
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2. The nonlinear elliptic differential equation governing the magnetic vector po-

tential should have been solved self-consistently; but to circumvent the math-

ematical difficulties, the problem was broken into three steps, where in the

first one the nonlinear effects have been neglected;

3. Anisotropy effects in the in-plane conductivity were not considered. Addition-

ally, since the description is phenomenological, the microscopic details (sym-

metry of the order parameter, shape of the Fermi surface, effects due to the

quasiparticles at the nodes of the order parameter, etc.) have been neglected;

4. The nonlinear effects in σ1,2 have been introduced in a phenomenological fash-

ion by means of nonlinear vector potential scales A1,2 and their description is

not valid very close to Tc;

5. The relaxation time of the order parameter was assumed infinitely small, i.e.

the order parameter oscillates in phase with the external field. This assump-

tion is valid up to temperatures very close to Tc
† where the present model

is invalid anyway due to the phenomenological description of the nonlinear

effects in σ1,2;

6. No extrinsic nonlinear effects were considered (vortex motion, weak links, de-

fects, etc.);

Despite its limitations, the model presented in this chapter offers a qualitative

picture of the temperature-dependent harmonic phase Φ3f (T ) at temperatures not
†See, for example section §2.3.2 for an estimate of the temperature where these effects become

significant.
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too close to Tc. The interplay of inductive and resistive nonlinear effects comes

naturally in the model, being an improvement with respect to previous models from

the literature, which treat the two types of effects separately and incoherently. The

mathematical approach is field-based as opposed to lumped-element-based and this

allows the introduction of the nonlinear effects as deviations of conductivity from its

linear-response values. Unfortunately, due to the lack of theoretical predictions for

A1,2(T ), the model can only provide a semi-quantitative picture in a limited range

of temperatures. However in this range it is in agreement with experimental data.
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Chapter 7

Conclusions and future work

The spider weaves the curtains in the palace of the Caesars. †

7.1 Summary

Our nowadays ”obsession” with smaller, faster, more reliable and less expen-

sive cannot be sustained without the availability of investigation tools that have

local capabilities. To satisfy this need, various instruments with high spatial resolu-

tion have been designed and some of them are already in the inventory of companies

and research organizations.

The near-field microwave microscope with magnetic sensitivity has been pro-

posed in 1960’s; since then, its range of implementation has widened significantly:

only in this dissertation two main projects are presented where magnetic materials of

interest for the magnetic storage industry and superconducting thin films employed

in high-Tc superconducting microwave filters are investigated.

The linear near-field microwave microscope proved to be an invaluable tool for

the investigation of thin films employed in media for perpendicular magnetic record-

†Attributed to Sultan Mehmed II as he entered the famous St. Sophia cathedral after the fall of Constantinople

in 1453.
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ing. This is a complicated task for the existing instruments: MOKE microscopy due

to its low penetration depth resulting in low signal-to-noise ratio and magnetometers

due to the difficulty to generate the necessary radial and circumferential fields.

The nonlinear near-field microwave microscope demonstrated its ability to in-

vestigate the fundamental physics of the superconducting state. Its new version with

phase-sensitive harmonic detection provides additional information which was not

previously accessible and thus, can be used to further test the available theoretical

models of cuprates. In the dissertation it is shown that the phase-sensitive abilities

allow one to disentangle various types of nonlinear behavior.

7.2 Future work

The linear near-field microwave microscope, presented in Chapter 4

proved to be a powerful tool for the investigation of magnetization dynamics in the

soft underlayer of the media employed in perpendicular recording. Three directions

of improvement have been identified:

First, the signal-to-noise ratio and the spatial resolution can be enhanced

by fabricating more advanced microwave probes with focused-ion beam lithography.

Additionally, an accurate positioning tool is necessary to control the probe-to-sample

geometrical separation.

Second, in order to investigate the storage layer of the perpendicular media,

high DC magnetic fields are required in order to saturate the sample. For this

reason, effort must be focused in the direction of designing electromagnets that can
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generate high fields (> 1 T) uniform over length scales comparable to those of the

microwave probe and integrate them in the current experimental set-up.

Third, the frequency range should be expanded above 25 GHz in order to

gain access to the region where the signatures of magnetization dynamics from the

storage layer occur.

These efforts have been initiated during the summer of 2006 when I was a

summer intern at Seagate Research in Pittsburgh, PA and this project is continued

by Nadjib Benatmane under the supervision of Dr. Thomas W. Clinton.

The nonlinear near-field microwave microscopes employed for the in-

vestigation of nonlinear effects in cuprate thin films has gone through a series of

improvements which culminated with the implementation of a vector network ana-

lyzer with harmonic detection capabilities. This major improvement prompted the

need for a more advanced model to account for the temperature-dependent har-

monic voltage, and especially for the harmonic phase. Most notably, the phase has

not been considered in previous models due to the lack of experimental data. In

addition, several new types of microwave probes have been designed, fabricated and

tested: a thin film probe, various versions of coaxial probes and a novel probe built

with an inductive writer from a hard disk drive.

The most important improvement to the current version of the nonlinear mi-

croscope is to enhance its overall sensitivity by using a more advanced probe and

a more precise positioning system. This would give access to a larger temperature

range where nonlinear effects are measurable, especially in underdoped cuprates in

the pseudogap regime.
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A more advanced microwave circuit could allow the experimenter to vary the

input power in a larger range, thus, examining in more detail power-dependent ef-

fects. Such effects would be interesting in an artificial grain boundary where theoret-

ical work provides predictions for the power-dependent resistive- and inductive-like

nonlinearities.

Obviously, the experimental work with the phase-sensitive nonlinear micro-

scope must go in parallel with a more advanced theoretical model. In the absence

of a microscopic approach, the Time-Dependent Ginzburg-Landau theory could be

used to deduce the temperature dependence of the two nonlinear vector potential

scales A1,2 introduced in Chapter 6 to characterize nonlinear effects below and above

Tc.

In Chapter 6 it was shown that the nonlinear response, U3f , depends signif-

icantly on the low-power, linear response conductivity. Thus, an avenue toward

a deeper understanding of the harmonic data is to perform linear-response mea-

surements and extract the quantity of interest, microwave conductivity, which can

later be used to ”decode” the nonlinear data. Ideally, such a measurement would

be performed with the same instrument, only by modifying the room temperature

microwave circuit.

7.3 Conclusions

The near-field microwave microscope has been implemented successfully in its

linear- and nonlinear response versions to investigate magnetic and superconducting
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thin films. The experimental work has been complemented by models, both analytic

and numeric that link the measured quantities (complex-valued reflection coefficient

and harmonic voltage) with parameters of the samples (anisotropy field, exchange

constant, critical current density, lifetime of Cooper pairs in the normal state, pen-

etration depth, etc.). From the experimental data the material characteristics have

been extracted and in some cases, compared with independent measurements with

good agreement. The range of implementation for the two types of microscopes can

be expanded further to investigate new materials and to elucidate the physics of

cuprate superconductors.
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Appendix A

Temperature dependence of the nonlinear vector potential scales

The model presented in Chapter 6 allows the evaluation of the nonlinear re-

sponse U3f(T ) if the temperature dependence of the nonlinear potential scales A1,2

describing the nonlinear effects in the complex conductivity σ̃ are known. The model

allows one to describe various types of nonlinear mechanisms in superconductors:

the nonlinear Meissner effect at low temperature and at Tc, Andreev Bound States,

nonlinear effects due to vortex motion, etc. In order to accomplish this goal, one

has to evaluate the temperature dependence of the nonlinear vector potential scales

A1,2 appropriate for the nonlinear mechanism under investigation and that of the

low-power, linear-response complex conductivity σ̃. To reproduce the microwave

harmonic data acquired on cuprate thin films as temperature is swept through Tc

one has to derive analytically the temperature dependences for the nonlinear vector

potential scales A1,2 both in the superconducting and in the normal state.

Ideally, the nonlinear vector potential scales A1,2 should be evaluated by us-

ing a microscopic theory for cuprates, describing both the superconducting and the

normal state. Due to the unavailability of such a theoretical framework, phenomeno-

logical approaches remain the only possibility to tackle this problem.

For the superconducting state, the Time-Dependent Ginzburg-Landau (TDGL)

would be the most appropriate phenomenological approach, but it poses certain

mathematical difficulties. For this reason, the static Ginzburg-Landau theory, valid

close to Tc, will be used here since it gives a glimpse into the physics of the nonlinear

electrodynamics of superconductors. The major drawback of this approach is that
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GL is essentially a zero-frequency theory and some effects related to the finite re-

laxation time of the order parameter, τ∆, are lost. However, in the superconducting

state and at microwave frequencies, the order parameter adiabatically follows the

external field up to temperatures very close to Tc (see [24, 17]), where its relax-

ation time becomes comparable to the timescale of the probing signal (ωτ∆ ∼ 1).

Consequently, the static GL approach is valid in the investigated temperature range

except for a very narrow interval at Tc
†.

In the Ginzburg-Landau theory the case of a superconducting film with uni-

form current density within the thickness can be treated as a one-dimensional prob-

lem where the film extends infinitely in the horizontal plane (XOY) with a uniform

magnetic field applied on one side. The GL equations for this case, as written in

the original GL paper [19], in dimensionless quantities read:

1

κ2
· d2ϕ

dξ2
= −(1 − a2)ϕ + ϕ3 (A.1)

d2a

dξ2
= ϕ2a (A.2)

where a = A/(
√

2µ0Hcλ), ϕ = (λ/λ0)Ψ, ξ = z/λ and κ is the GL parameter. Hc

is the critical field, λ and λ0 are the temperature-dependent penetration depth and

its zero-temperature value, respectively. Ψ is the GL order parameter quantifying

the ”strength” of superconductivity and is related to ratio of the superfluid density

ns to the total carrier density n.

For cuprates κ ≈ 100; in the limiting case of κ → ∞, the above equations can

†See for example,section §2.3.2 of this thesis for an estimate of the temperature where GL

breaks down in YBCO at microwave frequencies according to the data of Ref.[24]
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be solved analytically. The first equation becomes:

ϕ2 = 1 − a2 (A.3)

and shows that the magnetic field a suppresses the order parameter. This equation

can be translated back into physical quantities:

|Ψ(T, A)|2 = |Ψ(T, 0)|2
[
1 −

(
A√

2µ0Hcλ

)2
]

(A.4)

where it was considered that the temperature-dependent superfluid density in the

presence/absence of a vector potential A is related to the GL order parameter as

nS(T, A/0) ∼ |Ψ(T, A/0)|2. Eq.A.4 can be recast in a form to identify the nonlinear

vector potential scale AC that quantifies the suppression of the superfluid density:

nS(T, A) = nS(T, 0)

[
1 −

(
A

Ac

)2
]

(A.5)

with Ac(t) =
√

2µ0Hc(t)λ(t) and Hc(t) the temperature-dependent critical field

which in the GL formalism is Hc(t) = Hc(0)(1 − t2). The dependence (A.5) is

similar to the one used in the literature to describe the nonlinear Meissner effect

where the perturbation is the magnetic field or the current density.

Once Ac(t) has been determined by using the GL equations and extended to

the finite-frequency case, the nonlinear vector potential scales A1 and A2 quantifying

the strength of the nonlinear effects on conductivity can be evaluated by taking into

account that suppression of the superfluid density nS leads to enhancement of the

normal fluid nn since nominally one would expect nS + nn = n. One possible

avenue to evaluate the temperature dependence of A1 and A2 is to use the Drude
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conductivity:

σ1(T, A) =
nn(T, A)

mω
e2F(ωτqp) (A.6)

with F(ωτqp) = ωτqp/(1 + (ωτqp)
2). Next, it is assumed that the nonlinearity

in σ1 comes entirely as a result of the nonlinear superfluid density, and charge

conservation, as in the microscoppic treatment of Dahm & Scalapino [26]. With

nn(T, A) = n−nS(T, A) and nS(T, A) given by Eq. A.4 the real part of conductivity

reads:

σ1(T, A) =
nn(T, 0)

mω
e2F(ωτqp) +

nS(T, 0)

mω
e2F(ωτqp)

A2

A2
c

= (A.7)

= σ1(T, 0)

[
1 +

1

σ1(T, 0)

nS(T, 0)

mω
e2F(ωτqp)

A2

A2
c

]

The goal of this calculation is to cast σ1(T, A) in the form:

σ1(T, A) = σ1(T, 0)

[
1 +

(
A

A1

)2
]

(A.8)

where A1 can be written in terms of Ac deduced previously by using σ1(T, A) =

nn(T, A)e2F(ωτqp)/(mω):

A1(T ) = Ac(T )

√
σ1(T, 0)

mω

nS(T, 0)e2

1

F(ωτqp)
= Ac(T )

√
nn(T, 0)

nS(T, 0)
(A.9)

Similar calculations can be carried out for σ2(T, A) by using the Drude con-

ductivity where both the superfluid and the normal fluid are taken into account:

σ2(T, A) =
nS(T, A)

mω
e2 +

nn(T, A)

mω
e2G(ωτqp) (A.10)

with G(ωτqp) = (ωτqp)
2/(1+(ωτqp)

2). Again, it is assumed that the main nonlinear-

ity is in the superfluid density as was the case when A1 was evaluated. The resulting
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imaginary part of conductivity reads:

σ2(T, A) =
nS(T, 0)

mω
e2 − nS(T, 0)

mω
e2A2

A2
c

+ (A.11)

nn(T, 0)

mω
e2G(ωτqp) +

nS(T, 0)

mω
e2G(ωτqp)

A2

A2
c

In this equation the first and the third terms make σ2(T, 0):

σ2(T, A) = σ2(T, 0) − nS(T, 0)

mω
e2 A2

A2
c

+
nS(T, 0)

mω
e2G(ωτqp)

A2

A2
c

= (A.12)

= σ2(T, 0)

[
1 − 1

σ2(T, 0)

(
nS(T, 0)

mω
e2 − nS(T, 0)

mω
e2G(ωτqp)

)
A2

A2
c

]

Finally, σ2(T, A) can be cast in the form:

σ2(T, A) = σ2(T, 0)

[
1 −

(
A

A2

)2
]

(A.13)

With the nonlinear vector potential scale A2 quantifying the nonlinear effects in σ2

given by:

A2(T ) = Ac(T )

√
σ2(T, 0)

mω

nS(T, 0)e2

1

1 − G(ωτqp)
= Ac(T )

√√√√1 + G(ωτqp)
nn(T,0)
nS(T,0)

1 − G(ωτqp)

(A.14)

The imaginary component of conductivity has been written by taking into

account both the superfluid and the normal fluid contributions. If the normal fluid

is neglected, as is typically done below Tc, the nonlinear vector potential scale A2

can be obtained by formally replacing G(ωτqp) → 0 and A2(t) is reduced to Ac(t).

As shown previously, the A2
1/A

2
2 ratio enters the evaluation of the U3f induced

voltage. By using Eq.A.9 and Eq.A.14 deduced in a Drude conductivity framework,

the A2
1/A

2
2 ratio can be expressed in terms of conductivity:

A2
1

A2
2

=
σ1

σ2
· 1

ωτqp
(A.15)
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Appendix B

Attempts to create an absolute nonlinear phase reference

In a phase-sensitive harmonic measurement with the vector network analyzer

in frequency-offset mode (VNA-FOM) only the relative harmonic phase can be mea-

sured, as discussed in Chapter 3. Ideally, one would like to have a sample whose

harmonic response is known accurately for some well-defined temperatures, frequen-

cies and/or microwave power levels (harmonic phase reference). The first step in

the experimental procedure would be to measure the harmonic phase reference, then

move the microwave probe above the superconducting sample and correct the mea-

sured harmonic phase by using information from the measurement of the harmonic

phase reference.

Such a procedure could be successful if the harmonic phase reference provided

a strong harmonic signal and if its harmonic microwave response could be modeled

theoretically. In an attempt to define an absolute harmonic phase reference several

samples have been investigated by using the experimental setup for scalar harmonic

measurements (with the spectrum analyzer as detector, see section §3.4) to check

whether nonlinear effects are measurable: SrTiO3, GaAs, and a Si wafer. Since the

microwave probe couples to the magnetic properties of the samples, the harmonic

response of these dielectrics was too small to be detected by the experimental set-

up. These measurements were inconclusive and for this reason the adjustment of

the measured harmonic phase has been done by using the prediction of the model

from Chapter 6 at low temperatures where λ/δsk → 0 and Φ3f → π/2.
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Appendix C

The coaxial probe and the inductive writer used as a microwave

probe

Several attempts have been made to boost the power of 3rd order harmonic

effects by designing and building a novel type of microwave probe. One possibility

is to deposit a gold thin-film on the cross sectional cut of a coaxial cable then

pattern it into a narrow current path. This type of probe has been successfully

employed for the measurements reported in Chapter4, however its design is not

robust enough for measurements at low temperatures (77 K and below). For the

measurements reported in Chapter 6 the loop created by soldering the inner to the

outer conductor has been polished to remove some material, bringing the microwave

screening current located at the inner loop radius closer to the sample. This design

provides a about 13 dB gain with respect to the coaxial probe used previously in

our group [45], as discussed in this dissertation.

An alternative to the coaxial probe used for the near-field harmonic measure-

ments described in this dissertation could be an inductive writer from a hard disk

drive where the micro-coil used to read and write magnetic bits on the storage

medium in a hard disk drive is used to generate highly-localized high-magnitude

magnetic field and pick up the resulting harmonic response. Obviously, the induc-

tive writer of a hard disk drive is not designed to operate at GHz frequencies and at

cryogenic temperatures, however its high spatial resolution and high magnetic field

could be utilized for near-field microwave harmonic measurements on superconduc-

tors.
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Experiments with an inductive read/write head have been performed with the

experimental set-up for scalar harmonic measurements described in section §3.4 on

several samples. Below, in Fig.C.1, an example of such measurements is shown:

the sample is a thick (≈ 500 nm) YBCO film fabricated by Theva, Germany, the

probing frequency is 6.44 GHz and the microwave input power is -12 dBm. With a

regular coaxial probe, a similar dynamic range (about 35 dB between the noisefloor

and the top of the P3f (T ) peak) can be obtained by using Pinput = +12 dBm

microwave input power. If it is assumed that the scaling relation P3f ∼ P 3
input is

valid at all temperatures, it can be estimated that the inductive writer provides a

3 × (12 − −12) = 72 dB larger P3f(T ) peak than the coaxial probe if the input

power were + 12 dBm. This estimation suggests that the inductive writer provides

an overall sensitivity of about 70 dB more than the coaxial probe.

A number of technical issues must be resolved in order to implement suc-

cessfully the inductive writer as a near-field microwave antenna for the nonlinear

microwave microscope. First the electrical wiring from the coaxial cable to the pins

of the writer must be optimized for high frequencies. Second, due to the small di-

mensions of the writer gap, the distance between the magnetic head and the sample

must be controlled very precisely (for the measurements reported here the writer

was in contact with the sample). When the temperature dependence of harmonic

effects is investigated, one has to make sure that the inductive writer does not alter

significantly the local temperature of the sample due to its large thermal inertia;

thus temperature ramps must be slow in order to ensure that the temperature read

by the thermometer is not very different from that of the sample area where the
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Figure C.1: Example of scalar harmonic data P3f (T ) acquired with a superconduct-

ing sample with TAC
c ≈ 91 K and an inductive writer used as microwave probe with

an input power Pinput = −12 dBm at frequency f ≈ 6.4 GHz.

nonlinear response is generated. This is not a serious issue for the coaxial probe

since the sample is separated from the probe by a 12 µm thick teflon sheet acting

as an electrical and thermal insulator. Additionally, the P3f (T ) peak in Fig.C.1 ex-

hibits a saturation-like or cut-off behavior which could be explained by considering

the suppression of superconductivity close to Tc by the microwave probing field gen-

erated by the inductive writer. Also there is concern about the probe magnetic field

that might induce vortices in the sample, thus masking intrinsic nonlinear effects.

Due to the complexity of the inductive writer, its implementation as a near-

field microwave antenna for the study of nonlinear effects in superconductors requires

further experimental investigation.
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