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ABSTRACT 

 

Reaction wheel (RW), the most common Attitude Control Systems (ACS) in satel-

lites, are highly prone to failure. A satellite needs to be oriented in a particular di-

rection to maneuver and accomplish its mission goals; losing the RW can lead to a 

complete or partial mission failure. Therefore, estimating the remaining useful life 

(RUL) in long and short spans can be extremely valuable. The short-period predic-

tion allows the satellite's operator to manage and prioritize mission tasks based on 

the RUL and increases the chances of a total mission failure becoming a partial one. 

Studies show that lack of proper bearing lubrication and uneven frictional torque 

distribution, which lead to variation in motor torque, are the leading causes of failure 

in RWs. Hence, this study aims to develop a three-step prognostic method for long-

term RUL estimation of RWs based on the remaining lubricant for the bearing unit 

and potential fault in the supplementary lubrication system. In the first step of this 

method, the temperature of the lubricants is estimated as the non-measurable state 

of the system, using a proposed Adaptive particle filter (APF) with an-gular velocity 

and motor current of RW as the available measurements. In the second step, the 

estimated lubricant's temperature and amount of injected lubrication in the bearing 

alongside the lubrication degradation model are fed to a two-step Particle Filter (PF) 

for online model parameter estimation. In the last step, the performance of the pro-

posed prognostics method is evaluated by predicting the RW's RUL under two fault 

scenarios, including excessive loss of lubrication and insufficient injection of lubri-

cation. The results show promising performance for the proposed scheme with ac-

curacy in estimation of degradation model's parameters around 2–3% of root mean 

squared percentage error (RMSPE) and prediction of RUL around 0.1- 4% percent-

age error. 
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1 CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

In the past few years, the lunch rate of modular and nano/micro-satellites has been rapidly growing 

due to their rapid development cycle and low cost in developing and launching. It is important to 

note that while small satellites utilize similar technologies as large satellites, the main difference 

is the speed with which they adapt to new technologies and low-cost production that is coupled 

with a more agile approach to management and business style. These types of satellites are mainly 

used for educational and monitoring purposes and most recently telecommunication industry [1], 

and they are expected to operate correctly for a while to fulfill their missions. Regardless of ad-

vanced and sophisticated designs, facing faults and failure is not rare during small satellites' life-

times. The limitation of using spare parts and hardware redundancy units in small satellites high-

lights the application of analytical redundancy algorithms and fault-tolerant controllers. 

The Attitude Control System (ACS), as one of the most crucial parts of a satellite, is prone to faults 

[2], and its failure has been the reason for many satellites' mission failures. In the case of incipient 

faults in ACS, estimation of Remaining Useful Life (RUL) both in the long and short time spans 

can be significantly helpful; The prediction of RUL in the short period allows the satellite's oper-

ator to manage and prioritize mission tasks based on the RUL and make a total mission failure to 

a partial one. Predicting RUL over extended periods can help the satellite's operator develop sub-

stitution attitude control methods in optimum time; An example of these substituted controlling 

approaches is seen in the Kepler space telescope [3].  

The failure prognosis methodologies can be categorized into four primary methods: Model-based, 

Data-driven, Knowledge-based, and Hybrid [4], [5]. Applying Data-driven and Hybrid methods 

requires a large amount of labeled run-to- failure data sets from the same type of system and in the 

same operation conditions [6], which in the case of aerospace systems, collecting this data is not 

time- and cost-efficient. 

The main idea of this study is to investigate the long-term RUL estimation of Reaction Wheels 

(RWs) for remaining lubrication of bearing since the amount of lubrication that a nano/micro-

satellite can carry is limited and due to the harsh operating environment, recharging the lubrication 

reservoirs is not possible. Typically, the lubricant stored in the bearing housing is sufficient for 3-

4 years of operation under normal conditions, and adding a supplementary lubrication system will 
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extend the life duration of the system [7]. Lubricant degradation, evaporation, and creeping are the 

three primary sources of lubrication consumption in an RW, which are all functions of temperature. 

1.2 Literature Review 

Condition monitoring, particularly Fault diagnosis and Prognosis (FDP) for condition-based 

maintenance and safety assurance, has been the field of interest for many research studies in the 

past four decades [4], [8]. Detection, isolation, and prediction of propagation of incipient faults in 

their early stage are the primary purpose of these researches. So far, many field research, from 

manufacturing to aerospace, have used the application of FDP. However, Li-ion batteries, one of 

the most common energy storage units in electrical systems, and rotating machinery systems for 

industrial applications have received the most attention. While both diagnosis and prognosis are 

challenging problems, designing an effective prognosis system is more difficult due to the complex 

nature of various faults and lack of understanding about their progression and uncertainty inherited 

in the prediction horizon of the failure degradation [4]. This section presents a brief literature re-

view of prognosis research, focusing on model-based methods. 

Kalman filter (KF) is a recognized method used in many stochastic filtering-based applications 

[9]. In [10], a prognosis method based on KF is presented for "aircraft hydraulic pump" failure due 

to faults in regulative valve spring, which leads to a drop in discharge pressure. A linear empirical 

degradation model with an uncertain slope is considered for the measured output pressure. Next, 

using the measured pressure and implementation of KF, the uncertain parameter of the model is 

estimated. Having estimated states of the system and their distribution, Monte Carlo (MC) simu-

lation is performed until the system's defined Health Index (HI) reaches the threshold and RUL's 

Probability Density Function (PDF) is obtained. The proposed method was tested on two sets of 

run-to-failure time series. Despite the simplicity of the technique, the results for tested datasets 

show acceptable RUL estimation. 

The main advantage of KF-based prognosis is low computational cost since it does not require 

storing and reprocessing all the past measurements to update the new state, and the very last meas-

urements are sufficient for updating the filter. On the other hand, the performance of these methods 

is bounded by some limitations, including the incapability of handling nonlinear models and non-

gaussian noise. In [11], the authors presented a Switching Kalman Filter (SKF) based prognosis 

approach; The SKF approach is adapted to estimate the most probable model before RUL predic-

tion. This mutation allows the SKF to overcome the standard KF's constraint on non-linearity by 
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considering different orders of the degradation model. The performance of the presented method 

is tested using vibration data for RUL estimation of a helicopter tail gearbox bearing. 

Later, Singleton et al. [12] applied an Extended Kalman Filter (EKF) based prognostic method for 

RUL estimation of bearings. Since the EKF method uses local linearization about the estimated 

state, the EKF-based prognostic method can be used for the parameter estimation of nonlinear 

degradation models. The presented results show the capability of the proposed method for short-

term RUL estimation. Even though the EKF showed the ability for parameter estimation of non-

linear degradation models, the error of the Jacobian matrix with higher-order terms can signifi-

cantly affect the accuracy of EKF [13]. In [14], a combination of the Unscented Kalman Filter 

(UKF) and empirical degradation models based on voltage data is presented for RUL estimation 

of proton exchange membrane fuel cells. In this research, the performance of the proposed model 

using three types of linear, exponential, and logarithmic degradation models is investigated con-

cerning the relative error; The combination of the logarithmic degradation model and UKF showed 

the best fit for experimental data. Moreover, the results show that the proposed prognostic method 

is capable of estimating the system's RUL even though the accuracy of the results is highly de-

pendent on the length of measured data. 

Although the KF-based prognostics methods show accurate RUL predictions, some assumptions, 

including Gaussian noise and having access to the initial state, are essential for precise prediction 

[4]. The use of the Particle filter (PF) in prognostic methods has been widespread due to its strong 

capability to process nonlinear models and non-Gaussian noise [15]. In [15], the authors introduced 

a prognostic method for RUL estimation of Lithium-ion batteries combining PF and nonlinear 

degradation autoregressive model. The experimental results using run-to-failure data indicate the 

high performance of the proposed method. Despite the advantage of PF, this filtering method suf-

fers from two issues: 1) sample degeneracy and 2) impoverishment [16]; Even though the 

resampling step of the PF method tries to overcome the sample degeneracy problem, the particle 

impoverishment, defined as the poor diversity of particles, remains unresolved. Many research 

works aim to address this issue by introducing mutations of the PF method. 

In [17], an Unscented Particle Filter (UPF) technique is employed for the RUL estimation of Li-

ion batteries. This method combines UKF and PF, which aim to overcome the impoverishment of 

the particles. UPF algorithm utilizes UKF to create a proposal distribution to obtain the posterior 
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probability by taking into account the latest observations. The author also compared the perfor-

mance of UPF and PF for the adaption of exponential degradation trend on experimental data, 

which shows the superiority of the proposed method in prediction interval. Later, an improved 

UPF method was presented in [18] for the RUL prediction of Li-ion batteries. This method aims 

to improve the resampling step of the UPF method by applying a linear optimizing combination 

resampling. This advanced resampling approach is adjusted using a Fuzzy inference system. This 

approach improves the accuracy by discarding the small-weight particles when the fluctuation in 

the expected value is high while including more particles and enriching the new information when 

the change is moderate. 

In [19], an inheritance-based PF method is presented for the RLU prediction of Li-ion batteries. In 

this advanced PF, the conventional resampling step is substituted with the genetic algorithm (GA) 

framework to improve the resampling step and overcome the degeneracy and impoverishment of 

the particles. The RUL estimation results' comparison shows the superiority of the presented La-

marckian Particle Filter (LPF) over PF in terms of accuracy and CI. A fusion of beetle antennae 

search (BAS) algorithm and PF method is also presented in [20] for RUL estimation of Li-ion. 

The BAS-PF algorithm enhances the standard PF by replacing the resampling method with opti-

mizing the movement of particles using a BAS optimizer. This alteration of the resampling step is 

applied to prevent particle diversity loss in the standard PF algorithm. 

A combination of F-distribution and PF is suggested in [21]. This method offers a new particle 

weighting method based on utilizing historical data and the F-kernel goodness of feet test to elim-

inate the effect of sudden measurement abrupt and changes on particles' distribution. The author 

in [22] improved this advanced PF by proposing an F-distribution PF and kernel smoothing algo-

rithm. By applying kernel smoothing sampling based on beta distribution sampling, the authors 

tried to address the expansion of  

particles' weight variance that leads to the degradation of particles.  

Another Enhanced Particle Filter (EPF) method for RUL prediction is presented in [20], [23] to 

tackle the shortcomings of the PF technique, including sample degeneracy and impoverishment. 

The EPF method benefits from an extra step, compared to standard PF, in which regeneration of 

particles happens whenever the sample degeneracy is detected in the posterior PDF. The particle 

regeneration occurs in a normally distributed manner within the high probability on the posterior 

PDF. The authors of this study showed the excellence of EPF over a few other muted PFs by 
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comparing the accuracy of their results on a benchmark model. Moreover, a combination of EPF 

and evolving fuzzy predictor is suggested to address the lack of measurements in the prediction 

step. 

In aerospace, satellites' ACS and RWs faults have caused many missions failure; Table 1.1 shows 

some examples of RWs and ACS failures. So far, some researchers have worked on this issue to 

determine and potentially extend the lifespan of these critical parts of satellites. Despite consider-

able research in fault detection, diagnostics, and isolation (FDDI) of satellites ACS and RWs, few 

are on these systems' failure prognosis and RUL estimation. The rest of this section briefly reviews 

recent research conducted in fault diagnostic and failure prognostics of satellites' ACS. 

In [25], a combination of backpropagation neural network as a data-driven method with a simili-

tude method is provided for RUL estimation of momentum wheel; Temperature and angular speed 

are considered as the indicators for bearing friction torque and also critical parameters of this 

method. As the authors mentioned in this paper, the accuracy of the similitude method is highly 

dependent on the number of run-to-failure samples, which is the shortcoming of this method. 

In [26], a Long-Short Term Memory (LSTM) neural network-based estimation for RWs' motor 

torque is proposed. In the first step of this study, the forecasts of RWs' angular speed and motor 

current are calculated using an LSTM neural network. In the second step, these predicted states of 

Table 1.1 – Samples of ACS and RWs failure 

Year Name Reason Reference 

2001 BIRD 
Experienced failures of 3 out 4 RWs, plus the gyro-
scope failure. 

[1] 

2001 Odin 
lost control of one reaction wheel mid-mission, but 
a redundant wheel allowed the mission to continue 
without performance loss. 

[1] 

2008 
Orbcomm 1-5 (5 satel-

lites) 
All satellites had problems with their reaction 
wheels. 

[1] 

2009 SumbandilaSat 
Permanent loss of the Z-axis RW. The control algo-
rithms were adapted to allow for controlled imaging 
with the remaining two wheels. 

[1] 

2015 
OCSD-A (AeroCube 

7) 
Attitude control failure. [1] 

2013 Kepler space telescope 
Experienced failures of two RWAs in 2012 and 
2013 

[3], [24] 

2013 Dawn space probe Experienced several failures of its reaction wheels [24] 

2006 FUSE 
Four RWs failed in the course of 6 years (2001-
2007) 

[24] 
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the system are fed to another LSTM neural network to estimate the motor torque value as the HI 

of the RW. The authors expand their work in [27] by including the third step and proposing a 

"Three-stage Data-Driven Approach" for determining RWs' RUL. The third step estimates the 

RUL of the system based on a defined failure point as a threshold for the estimated HI. Later, a 

data-driven model of single gimballed Control Moment Gyroscopes (CMGs) is used in [28]. Re-

siduals of attitude rate measurement and expected value from the data-driven model are considered 

the system's HI. The polynomial General path model (GPM) is applied as the prognostics method. 

Moreover, the authors suggest using the Bayesian updating method for combining real-time and 

historical run-to-failure data as the prior parameter estimation for GPM accurate estimation. Since 

attitude rate measurements feed this method, no other subcomponent measurement and sensor 

placement is required, which is considered an advantage of the proposed method concerning 

budget and space limitations in small satellites. Both these methods depend on historical data for 

training the data-based models, which is not commonly available, and they have to rely on data 

from simulations. The authors in [29] used a multi-scale EKF for RUL estimation of RWs' motors. 

In the first stage of this method, the damping coefficient is estimated using micro EKF and input 

current and measured output angular velocity. Later, the estimated damping coefficient is consid-

ered as the HI of the motor, and the RUL of the system is estimated by employing macro EKF to 

adjust the degradation trend. Moreover, the degradation behavior of the characteristic curve is 

exploited for setting the HI threshold. This method shows promising results for short-term state-

of-health prognosis, but it does not work accurately in the case of long-term diagnosis and RUL 

prediction. 

A model-based FDDI utilizing covariance-based Adaptive Unscented Kalman Filter (AUKF) is 

presented in [30]. This research aims to estimate and track sudden changes in motor torque and 

bus voltage of a specific type of RWs as hidden states of the system having angular speed and 

motor current as measurements. Later, In [31], the estimated motor torque is used for failure prog-

nosis and RUL estimation of the system; To achieve this objective, the authors applied a PF to 

adapt the exponential deterioration trend to the estimated HIs. Employing PF makes the method 

sophisticated to handle both gaussian and non-gaussian noise. The simulated results show the abil-

ity of this method to estimate the RUL of the RW, while the wet friction follows a monotonic 

trend. In [24], [32], the authors conduct a root cause analysis of ITHACO RWs failure and found 

a strong correlation between these failures and geomagnetic storms. Based on the results that are 
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provided in [24], [32], the common fault in RWs' friction factors, which even lead to short-term 

failure or will be resolved in high rotation speed, are abrupt changes in dry friction. Considering 

these findings, the changes in wet friction factor are fewer than in dry friction [24], which would 

not be a perfect choice as an incipient fault that causes long-term failure. 

In [33], an HI based on the remaining amount of lubrication was proposed for Momentum Wheels; 

In the first step, the authors drive a degradation model for lubricant based on the physics of failure. 

Based on the main reasons for lubrication loss, a nonlinear temperature function is considered the 

degradation model; To estimate the parameters of the proposed degradation model, the authors 

used the maximum likelihood method and experimental data. For the RUL estimation of RWs, the 

authors suggested using Empirical Mode Decomposition to find a trend in measured temperature. 

The obtained temperature trend is also used to estimate future lubrication consumption; Bootstrap 

simulation is also used in this research to cope with the various sources of uncertainties. Even 

though this method suggests a long-term RUL estimation for CMG, it only considers the mono-

tonic temperature trend and misses the temperature fluctuations led by the satellite’s orientation 

concerning the sun as the source of heat radiation. Figure 1.1 shows the seasonal thermal trend of 

the Kepler space telescope's RW [34]; This thermal trend shows that the RW's temperature does 

not always follow a monotonic trend.  

Figure 1.1 - Seasonal thermal trend of Kepler spacecraft's RW [34] 
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In conclusion, different failure prognosis methods have been developed and evaluated for the RUL 

estimation of RWs, including data-driven and model-based methods. However, they only consid-

ered short-term scenarios and did not include consumable resources and fault scenarios in the lu-

brication system that can limit the RW's life span. Furthermore, to the authors' best knowledge, 

there are limited studies on the effect of temperature on ACS degradation and failure. Hence, this 

project develops a model-based prognostics method for RUL estimation of RW based on the lub-

ricant degradation model, which is a function of temperature, to address the shortcomings in the 

published literature. Moreover, the method's performance will be examined by conducting sensi-

tivity analysis under various disturbances and in ideal conditions. 

1.3 Problem Definition 

Proper prognostics and estimation of the RUL of a system can ensure a limited redundancy re-

quirement, save production costs, reduce the downtime of the system, and prevent safety hazards. 

Model-based, Data-driven, and Hybrid methods are the main approaches to tackling the prognosis 

problem. Even though, in recent years, the Data-driven and Hybrid methods have gotten more 

attention, led by the internet of things, the performance of these methods is highly dependent on 

the quantity and quality of labeled run-to-failure data sets. In the case of aerospace devices, col-

lecting run-to-failure sets data is not time and cost-efficient, so relying on model-based methods 

is more practical.  

The malfunctioning of RWs, as the primary actuators in ACSs of satellites, could lead to cata-

strophic failures [30]. Inadequate bearing lubrication and uneven frictional torque distribution are 

the leading mechanical causes of RWs' failure [26]. Prognostics and RUL estimation of RWs have 

been studied considering incipient faults with the monotonic trend in bus voltage 𝑉 , and motor 

torque gain 𝑘  [26], [30]. Apart from progress in this field, the RUL of RWs has never been eval-

uated concerning the long-term effect of temperature. Moreover, since the failure prognosis in 

aerospace applications primarily serves mission planning rather than predictive maintenance, esti-

mating RUL in the long-term will be more valuable. 

In summary, the challenges that our study is going to address can be listed as: 

1. No work is done on the effect of temperature on the RUL of RWs. 
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2. A proper investigation of how the supplementary lubrication system's fault impacts the 

RUL of RWs is necessary due to inadequate bearing lubrication being a leading cause of 

RW failure. 

3. It is necessary to investigate new HIs to estimate RUL in long-term spans in aerospace 

applications because failure prognosis is primarily used for mission planning rather than 

predictive maintenance. 

1.4 Objectives 

The main objective of this research is to investigate the effect of temperature on the RUL of RWs; 

however, the space and cost limitations of small satellites for adding a new measurement unit 

should be considered. Moreover, as mentioned in the former sections, a model-based approach has 

been considered in this study to address the shortcomings of the data-driven and hybrid methods. 

In summary, the main objectives of this study can be listed as: 

 

1. To investigate the effect of temperature on the RW’s RUL. 

2. To develop a model-based approach for estimation of the state of the system using available 

measurements. 

3. To develop a model-based prognostic approach for the prediction of RW’s RUL under 

different fault scenarios. 

1.5 Outline 

The subsequent chapters of this thesis are structured as follows: 

A theoretical background along with explanations of the techniques and methods used in this thesis 

are presented in Chapter 2. An introduction and description of the proposed failure prognostic 

scheme are provided in Chapter 3. Chapter 4 presents the results and discusses them, and Chapter 

5 concludes the thesis with final remarks and recommendations.  
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2 CHAPTER 2 

THEORETICAL BACKGROUND 

Throughout this section, the background and theories used in this study, including Satellite RW 

modeling, degradation modeling, and state estimation theory, are explained in order to facilitate 

reading and make the thesis self-contained. 

2.1 Satellite's RW model 

As two main reasons of lubrication loss in RW's bearing unit, lubrication evaporation and creeping 

are both functions of the lubricant's temperature. This dependency makes the monitoring the tem-

perature a must for developing an HI based on cumulative lubrication loss. Due to the impractical-

ity of directly measuring the lubricant's temperature, this study employs an estimation approach 

based on angular velocity (𝜔 )  and motor current (𝐼 ) measurements, a high-fidelity model of 

RW and 𝑉  as input of the system. A model of Ithaco 'type A' RW by Goodrich [35] is adapted 

and used for this purpose, as shown in Figure 2.2. 

Each RW model consists of several essential loops to ensure precision. Figure 2.2 shows these 

loops as dashed lines. These loops can be formulated as follows: 

1. The electro motive force (EMF) torque limiting loop: 

𝐼 = 𝐼 𝑅 + 0.04|𝐼 |𝑉 + 𝑃 + 𝜔 𝐼 𝐾   (1) 

where 𝑉  and 𝐼  are presenting bus voltage and current, 𝐾  is the back electro motive 

force voltage gain, and 𝜔  stands for wheel's angular speed. 

2. The Coulomb friction which is caused by the dry friction within bearings. This loss torque 

is independent of the angular velocity or the temperature. 

3. The negative feedback viscous friction:  

𝜏 = 0.0049 − 0.0002(𝑇 + 30) 𝜔   (2) 
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Where 𝜏  and 𝑇  are the viscous torque and the lubricant's temperature, respectively, and 

𝜔  is motor angular velocity. This friction is in addition to coulomb friction caused by the 

resistive force between the bearing surface in relative motion through the lubricant. 

4. The negative feedback speed limiter loop prevents the wheel from reaching unsafe speeds. 

This loop consists of a negative feedback gain, 𝐾 , which feeds the torque command once 

it is triggered by exceeding the speed threshold, 𝜔 .  

5. The motor torque control; This unit is a voltage-controlled current source the gain equal to 

𝐺 . With a torque constant gain 𝐾 , the motor delivers a torque proportional to the current 

driver, 𝐼 . Moreover, a non-ideal RW has a limitation for following the frequency of the 

input, which can be presented as a low-pass filter that has a bandwidth equal to 9 rad/sec, 

𝜔 . 

6. 𝜏  is an extremely low-frequency torque variation caused by lubricant dynamics and can 

be formulated as follows:  

𝜏 = 𝐽 − 𝑤 𝜃 𝜔 𝑠𝑖𝑛 (𝜔 𝑡)  (3) 

The nonlinear mathematical model of the RW can be expressed as follows: 

𝐼̇ = 𝐺 𝜔 [𝑓 (𝜔 , 𝐼 ) − 𝑓 (𝜔 )] − 𝜔 𝐼 + 𝐺 𝜔 𝑉  

�̇� = {𝑓 (𝜔 ) + 𝑘 𝐼 [𝑓 (𝜔 ) + 1] − 𝜏 𝜔 − 𝜏 𝑓 (𝜔 ) + 𝜏 }  
(4) 

In which 
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𝑓 (𝜔 ) = 𝐶𝑠𝑖𝑛 𝜔   

𝑓 (𝜔 ) = 𝐵𝑠𝑖𝑛(3𝑁𝑡𝜔 ) 

𝑓 (𝜔, 𝐼 , 𝑉 ) = 𝐻 (𝑉(𝜔 , 𝐼 , 𝑉 ))𝑉(𝜔 , 𝐼 , 𝑉 ) 

𝑓 (𝜔 ) = 𝑠𝑖𝑔𝑛(𝜔 ) 

𝑓 (𝜔 ) = 𝐾 [|𝜔 | − 𝜔 ]𝐻 (|𝜔 | − 𝜔 ) 

𝑉(𝜔 , 𝐼 , 𝑉 ) = 𝐾 [𝑉 − 6 − [1 + 𝑅 𝐼 ]𝐻 (𝐼 ) − |𝐾 𝜔 |] 

(5) 

The 𝑓  to 𝑓  terms represent different building blocks of the RWs and 𝐼  and 𝑉  are the motor 

current and the torque command voltage. 

For the numerical solution of the nonlinear model, the discontinuous functions are needed to be 

approximated. In the [35], an approximation based on the sigmoidal function is proposed for the 

𝑠𝑖𝑔𝑛 and Heaviside functions. Since the accuracy of this approximation is highly dependent on 

the size of the sigmoidal parameter and the use of MATLAB for simulation, which can handle  

𝑠𝑖𝑔𝑛 function, we proposed an approximation for the Heaviside functions as below: 

𝐻 (𝐼 ) =
1,   𝐼 > 0
0,   𝐼 ≤ 0

= 𝑓𝑙𝑜𝑜𝑟
𝑠𝑖𝑔𝑛(𝐼 ) + 1

2
 

𝐻 (𝑉) =
0,   𝑉 > 0
1,   𝑉 ≤ 0

= −𝑠𝑖𝑔𝑛(𝑠𝑖𝑔𝑛(𝑉) − 1) 

𝐻 (|𝜔 | − 𝜔 ) =
1,   𝑎𝑏𝑠(𝜔 ) − 𝜔 ≥ 0

0,   𝑎𝑏𝑠(𝜔 ) − 𝜔 < 0
= 𝑟𝑜𝑢𝑛𝑑((𝑠𝑖𝑔𝑛(𝑎𝑏𝑠(𝜔 ) − 𝜔 ) + 1)/2) 

(6) 

Therefore, the proposed 𝐻 , 𝐻  and 𝐻  are no longer depended on the size of the sigmoid param-

eter. Figure 2.1 compares the results of the simulation using sigmoid approximation and the pro-

posed improvement. As it can be seen, by the increasing the size of sigmoid parameter (lager value 

for 𝑎), the accuracy improves and the results converge to the new proposed approximation. This 

comparison shows the superiority of the proposed approximation concerning the accuracy of the 

simulation. 
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(a) (b) 

Figure 2.1 – Comparison of the RW's model simulation results using sigmoid approximation and 

the new proposed approximation for Heaviside functions (𝒂 represent the size of sigmoid parame-

ter). 

 RW's model parameters also shown in Table 2.1 . 

Table 2.1 – RW's model parameters based on the data in [35]. 

Parameter Unit Value 
Input voltage (𝑉 ) V 0-5 
Drive Gain (𝐺 ) A/V 0.19 
Driver Bandwidth (-3dB) (𝜔 ) rad/sec 9 
Motor Torque Constant (𝐾 ) N-m/A 0.029 
Motor Back-EMF (𝐾 ) V/rad/sec 0.029 
Speed limiter negative feedback gain (𝐾 ) V/rad/sec 95 
Overspeed Threshold (𝜔 ) rad/sec 690 
Coulomb friction (𝜏 ) N-m 0.002 
Flywheel Inertia (𝐽) 𝑁-𝑚-𝑠𝑒𝑐  0.0077 
Number of Motor Poles (𝑁) – 36 
Cogging Torque Amplitude (𝐵) N-m 0.22 
Motor Torque Ripple Coefficient (𝐶) – 0 
Input Resistance (𝑅 ) Ω 2 
Voltage Feedback Gain (𝐾 ) V/V 0.5 
Torque Noise Angle Deviation (𝜃 ) rad 0.05 
Torque Noise High Pass Filter Frequency 
(𝜔 ) 

rad/sec 
0.2 
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Figure 2.2 - High-fidelity RW dynamic adapted from [35] where 𝒌𝒕 feeds to multiplication term 

in 𝑩𝒔𝒊𝒏(𝟑𝑵𝒕) and uses a low-pass filter in the motor torque control block. 

2.2 Degradation model 

Considering lubrication creeping and evaporation as the main reason for lubrication loss of bearing 

unit of RW, ref [36] proposed an exponential relationship between the lubricant's temperature and 

loss rate of lubricant as: 

𝛽(𝑡) = 𝛽 𝑒 ( )⁄ + 𝑤  (7) 

In which, 𝑇 (𝑡) is the temperature of the lubricant at time 𝑡, 𝛽  and 𝑏 indicate model parameters 

to be estimated and 𝑤  is the process noise with the variance of 𝜎 . By the assumption that the 

effect of temperature is immediate, and the damage incurred accumulates over time, the degrada-

tion 𝑋(𝑡) at time 𝑡 can be written as: 
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𝑋(𝑡|𝑇(𝜏), 0 ≤ 𝜏 ≤ 𝑡) = 𝛽 𝑒 ( )⁄ 𝑑𝜏 + 𝐷(𝑡) (8) 

where 𝐷(𝑡) represents the Wiener process with the variance of 𝜎 .  A discrete degradation model 

can be presented since the 𝑇  estimation and measurement of injected lubricant amounts are pe-

riodic: 

𝑋(𝑡 ) ≈ 𝛽 𝑒 Δ(𝑡 ) + 𝐵(𝑡 ) (9) 

2.3 Particle Filter 

The PF is a recursive Bayesian estimation technique based on MC simulation [37]. Using sequen-

tial importance sampling, PF can approximate the posterior PDF of the state by selecting random 

samples (particles) and continuously adjusting their weights and positions according to measure-

ments. 

A general nonlinear system can be written as below to illustrate PF: 

𝑥 = 𝑓(𝑥 , 𝜗 )

𝑦 = ℎ(𝑥 , 𝜀 )
 (10) 

In which 𝑥 ∈ ℝ  and 𝑦 ∈ ℝ  represent the unobservable state and measurement, respectively.  

𝜗  and 𝜀  are process and measurement noises, and 𝑓(∙) and ℎ(∙) represent state transition and 

measurement equations, respectively. 

PF method consists of two steps: the prediction step and the update step. In the prediction step, the 

prior PDF at cycle 𝑘 can be calculated based on the posterior PDF 𝑝(𝑥 |𝑦 : ) at cycle 𝑘, as: 

𝑝(𝑥 |𝑦 : ) = 𝑝(𝑥 |𝑥 )𝑝(𝑥 |𝑦 : )𝑑𝑥  (11) 

In which 𝑦 :  stands for 𝑦 : = [𝑦 , 𝑦 , ⋯ , 𝑦 ] and 𝑝(𝑥 |𝑥 ) represent one step transition prob-

ability. The posterior PDF can be updated via Bayes' rule and measurement at cycle 𝑘: 

𝑝(𝑥 |𝑦 : ) =
𝑝(𝑦 |𝑥 )𝑝(𝑥 |𝑦 : )

∫ 𝑝(𝑦 |𝑥 )𝑝(𝑥 |𝑦 : )𝑑𝑥
 (12) 

where 𝑝(𝑥 |𝑦 : ) is the likelihood function. Alternate calculations of (11) and (12) will form a 

recursive Bayesian estimation. Due to the complex high-dimensional integrals, it is not easy to 
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calculate the PDFs analytically. Thus, the PF uses a MC simulation method with weighted particles 

picked at random to estimate the particle size: 

𝑝(𝑥 |𝑦 : ) = 𝑤 𝛿 𝑥 − 𝑥  (13) 

In which 𝛿(∙) represent the Dirac function, 𝑥  (𝑖 = 1, ⋯ , 𝑁) is particle sampled from importance 

function, 𝑁 is the number of particles, and 𝜔  is the corresponding weight calculated as: 

 𝑤 = 𝑤
𝑦 𝑥 𝑥 𝑥

𝑥 𝑥 : , 𝑦 :

;            𝑤 = 𝑤 ∑  𝑤         (14) 

where 𝑞 𝑥 𝑥 : , 𝑦 :  represent the importance function. In the standard form of PF, the transition 

probability stands for the importance function 𝑞 𝑥 𝑥 : , 𝑦 : =  𝑝 𝑥 𝑥 , so the transition 

equation of weights can be simplified as: 

 𝑤 = 𝑤 𝑝 𝑦 𝑥 ;             𝑤 =
 

∑  
        (15) 

A flow diagram of the PF method can be found in Figure 2.3..  

 

Figure 2.3 - Steps associated with a PF approach. (1) particle initialization (2) prediction; (3) 

computing Weights; (4) computing PDF. Steps 3-4 are collectively known as the update phase and 

step 2 is known as prediction phase in PF application. 
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In the presented flow, the first step considers a uniform distribution of particles, i.e., all particles 

have the equal size (𝑤 = ).  After the transition step (𝑓(∙)), the updated measurement is used for 

computation of particles' weight using Eq. (14). The graphical presentation of updated weights of 

particle forms a PDF, which defines the most probable estimation of the state. As it is shown in 

the graph, some particles have a large weight, others are smaller, and some have "disappeared", 

meaning their weight is negligible. 

2.3.1 Resampling 

One of the issues with PF is the degeneracy of weight within a sample of particles after a few 

iterations of particle propagation, indicated by a few particles with significant weight and most 

particles with negligible weight. While resampling can be used to avoid particle degeneracy, it 

may also cause sample impoverishment, in which very few particles have significant weights, 

while most of the particles with low weights are discarded during the resampling process. To solve 

this problem, it is possible to balance the trade-off by applying resampling only at deterministic 

steps; that is, execute the resampling only when the variance of the non-normalized weights ex-

ceeds a predefined threshold (which is taken as a signal of sample degeneracy). A simple way of 

estimating the Effective Sample Size (𝑁 ) is as [16], [37]:   

 𝑁 ≈ 1
∑ (𝑤 )

 (16) 

A resampling only happens when a certain threshold (𝑁 ) is reached. To renormalize the distri-

bution, the resampling step duplicates the particles with large weights and eliminates those with 

small weights. The weight of each renormalized particle will then be set to 1 𝑁⁄  [37]. Figure 2.4 

and Figure 2.5 show the steps and flow chart of PF when it benefits from resampling step. As 

shown in Figure 2.4, at the resampling stage, particles with higher weights are broken into multi-

ples, whereas particles with negligible weights are removed. Once resampling is performed, all the 

resampled particles get the same size because all weights are reset to 1/𝑁 as described in the ini-

tialization step. Noticed that after the resampling step, the number of particles remains the same 

(𝑁) but their dispersal is different. 
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Figure 2.4 - Steps associated with a PF approach which benefits from resampling step. (1) parti-

cle initialization (2) prediction; (3) computing Weights; (4) computing PDF; (5) Resampling; (6) Re-

ordering. 
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Figure 2.5 – Flow chart of the PF approach which benefits from resampling step. 

Although resampling can help renormalize the samples, performing it on each step, due to poor 

choice of 𝑁 , highlights the effect of abrupt noises and leads to confusion of PF. 
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3 CHAPTER 3 

METHODOLOGY 

In this chapter the proposed methodology is detailed using the material provided in the earlier 

sections along with the enhancements put forward in this study. The following sub-sections de-

scribe the outline and every step of the proposed method. 

3.1 The Proposed Scheme Outline 

To address the problems mentioned in section 1.3 regarding the RUL estimation of RWs, we pro-

pose a three-step prognosis approach for RUL estimation of RWs based on the lubrication con-

sumption of the bearing unit as follows: 

Step 1. Since direct measurement of lubricant's temperature under the operation condition 

is not practical, in the first step of this research, we investigate the estimation of lubricant 

temperature having angular velocity (𝜔 ) and motor current (𝐼 ) as measurements and a 

high-fidelity model of Ithaco RW proposed in [35], [38].  

Step 2. In the second step, an online parameter tracking of the lubricant consumption 

model, as the degradation model, is conducted using the estimated lubricant's temperature 

and the measured amount of injected lubricant.  

Step 3. The last step is to predict the RUL of RW based on two scenarios of failure: 1) the 

cumulative consumption of lubricant reaches the amount stored in the system. 2) Deficien-

cies in lubrication injection and supplemental lubrication system lead to bearing unit dry-

out. In the first scenario, the fault occurs during normal operating conditions and will be 

accelerated by lubrication bleeding or RW heating. However, a fault in the supplementary 

lubrication system causes an unbalanced injection of lubrication in the second scenario (see 

Figure 3.1). 

Figure 3.1 shows the flow of the proposed method. 
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Figure 3.1 - The steps to forecast the RUL of an RW. 

In the following sections, the steps of the proposed method will be described in detail. 

3.2 Step1 – Lubricant's temperature estimation 

Direct measurement of lubricant's temperature under the operating condition is not practical. 

Hence, in the first step of this approach, we estimate the lubricant’s temperature in the RW using 

its angular velocity (𝜔 ) and motor current (𝐼 ) as measurements and a high-fidelity mathematical 

model of Ithaco RW as presented in Figure 2.2 and Eq. (1)-(6) with model parameters in Table 2.1 

. For the estimation par this step the PF method (section 2.3) 

As mentioned in section 2.3.1, although resampling in the formulation of PF can help renormalize 

the samples, its performance highly depends on the choise of 𝑁 . The larger 𝑁 , the greater 

chance of following abrupt noises, and the smaller 𝑁  leads to a slow rate of convergence. One 

of the approaches to remedy this challenge is to use adaptive sampling and hence, we propose a 

new adaptive sampling approach to speed up the PF estimations. 
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3.2.1 Proposed Adaptive Resampling 

In this adaption, when the 𝑝 𝑦 𝑥  in Eq. (14) does not satisfy a certain threshold, the resampling 

step, despite its common purpose, spreads the particles in a broader range. For triggering this ad-

aptation, the average of the maximum value of 𝑝 𝑦 𝑥  in the interval of two triggered 

resampling steps is compared with a threshold (𝑝 ). This way of triggering the resampling stage 

prevents the sudden effect of abrupt noises and impacts when it senses the confusion of particles 

in an interval. In the case of abrupt changes, the combination of PF and adaptive resampling ena-

bles faster tracking of estimated states. Figure 3.2 illustrates the steps of PF method benefiting 

from Adaptive Resampling. 

 

 

Figure 3.2 - Flow chart of the PF approach which benefits from Adaptive resampling step. 



 

23 
 

3.2.2 Proposed Adaptive sample improvement 

Since the 𝑓(. ) and ℎ(. ) can both be nonlinear, the distribution of 𝑝 𝑦 𝑥  can also be a function 

of other variable inputs (𝑢 ) of the model. If 𝑝 𝑦 𝑥  has an acceptable distribution, the differ-

ence between 𝑤  will increase gradually, and particles with higher probability will get highlighted. 

In the case that the 𝑥  has a low contribution to changing 𝑦 , the 𝑤  would be distributed uni-

formly; This uniform distribution of 𝑤  leads to an inefficient resampling step. One solution for 

this problem is changing threshold criteria and using a smaller 𝑁 . As a result of this solution, 

estimation is more sensitive to measurement noise. Secondly, this uniform PDF might only occur 

in a specific interval of the system's inputs, or its severity might be dependent on them. 

To overcome these issues, an amplifying method is proposed in this section which can amplify the 

difference between the particle's weights; This amplification is function of system's inputs, so it 

can be adjusted in a way that performs the most efficient in any scenario of system's inputs. 

In this method, despite the PF, the importance function 𝑞 𝑥 𝑥 : , 𝑦 :  in Eq. (14) can be replaced 

by: 

𝑞 𝑥 𝑥 : , 𝑦 : =  𝑝 𝑥 𝑥 𝛾 𝜔 , 𝑝 𝑥 𝑥 , 𝑢 , 𝑁  (17) 

Assuming 𝛾(. ) is equal to: 

𝛾 𝑤 , 𝑝 𝑥 𝑥 , 𝑢 , 𝑁 = 𝑤 𝑝 𝑦 𝑥 1 − 1 𝑒𝑥𝑝 𝑐 (𝑢 )[𝛽 − 𝑠𝑖𝑔𝑛(𝛽)𝑐 ]⁄    

𝛽 =
1

𝑁
− 𝑤 𝑝 𝑦 𝑥  

(18) 

where 𝑐 (𝑢 ) is a function of known input variables of the system and 𝑐  is a constant, Eq. (14) 

can be rewritten as: 

 𝑤 = 1 − 1 𝑒𝑥𝑝 𝑐 (𝑢 )[𝛽 − 𝑠𝑖𝑔𝑛(𝛽)𝑐 ]⁄ ;       𝛽 =
1

𝑁
− 𝑤 𝑝 𝑦 𝑥  (19) 

The right-hand side of Eq. (19) shows an adapted logistic function with a maximum value of 1, 

and its growth rate is a function of 𝑢 . The proposed mutation of 𝜔  can magnify the contribution 

of 𝑥  on 𝑦 , which enhance the efficiency of the resampling step and prevents confusion in the 

filter. 

Figure 3.3 compares the steps of adaptive PF (APF) which benefits form adaptive sample improve-

ment step and classic PF. As it can be seen, since the probability diagram has a uniform shape, the 

change in the weight of particles is not considerable enough to be recognized by classic resampling 
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step. The adaptive sample improvement step on the other hand can distinguish this difference via 

magnifying action of Eq. (18). 

 
(a) 

 
(b) 

Figure 3.3 - Comparison the steps associated with (a) PF approach (b) APF approach. (1) parti-

cle initialization (2) prediction; (3) computing Weights; (4) computing PDF; (5) Resampling; (6) Re-

ordering. 
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Figure 3.4 also illustrates the flow chart of APF estimation method. 

 

Figure 3.4 - Flow chart of the APF method. 

3.3 Step2 - Degradation model's parameter tracking 

In the second step, an online parameter tracking of the lubricant consumption model, as the deg-

radation model, is conducted using the estimated lubricant's temperature and the measured amount 

of injected lubricant. As it is presented in section 2.2, two parameters (𝛽  and 𝑏), are associated 

with the degradation model. Since the measurement value is dependent on both parameters, per-

forming parameter tracking for both parameters using one measurement would result in an estima-

tion error. One of the approaches to remedy this challenge is to manipulate the degradation model 

to generate more measurements, so in the following section, we propose a new adaptive sampling 

approach to speed up the PF estimations. 
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3.3.1 Proposed Multi-step online parameter estimation 

This proposed parameter estimation method has been developed to address the estimation confu-

sion error resulting in cases where the number of measurements is less than the number of to-be-

estimated parameters.  

The general parameter estimation problem can be presented in a nonlinear system as: 

𝜃 = 𝜃 + 𝛼
𝑦 = ℎ(𝜃 , 𝑢 )

 (20) 

In which 𝜃 , 𝛼 , ℎ(. ), and 𝑢  are the parameter vector of the model, fault parameter vector, tran-

sition function, and the input vector of the model, respectively.  

Assuming the parameter vector of the model consists of 𝑛 parameter (Eq. (21)), the multi-step 

parameter estimation is applicable if 𝜃  can be singled as presented in Eq. (22): 

𝜃 = 𝜃  ;                    𝑖 = 1, … , 𝑛 (21) 

𝑦 = ℎ 𝜃 , 𝑢  𝑦 ;                         
 𝑖 ∈ {1, ⋯ , 𝑛}

𝑗 ∈  {1: 𝑘 − 1}
 (22) 

Having Eq. (22), the sub-nonlinear system equation for 𝜃  can be presented as: 

𝜃 = 𝜃 + 𝛼
𝑦

𝑦
= ℎ 𝜃 , 𝑢

 (23) 

As can be seen, the estimation of 𝜃  using the obtained sub-nonlinear system, PF is independent 

of other model parameters and resolves the confusion in the estimation. Figure 3.5 shows the flow 

of the proposed multi-step parameter estimation method. 

 

Figure 3.5 - Flow of multi-step online parameter estimation. 
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3.4 Step3 - Remaining useful life estimation 

The last step is to predict the RUL of RW based on two scenarios of failure: 1) the cumulative 

consumption of lubricant reaches the amount stored in the system. 2) Deficiencies in lubrication 

injection and supplemental lubrication system lead to bearing unit dry-out. In the first scenario, 

the fault occurs during normal operating conditions and will be accelerated by lubrication bleeding 

or RW heating. However, a fault in the supplementary lubrication system causes an unbalanced 

injection of lubrication in the second scenario (see Figure 3.1). 

3.4.1 Prediction of RUL 

In general, the RUL of a system at time 𝑘 can be defined as: 

 𝑅𝑈𝐿 = 𝑡 − 𝑡  (24) 

where 𝑡  is the time 𝑘 and 𝑡  is failure time which is defined as: 

 𝑡 = 𝑡 𝑋 = 𝑋 𝜃  (25) 

In which 𝜃  , 𝑋 , 𝑋  stand for estimated parameters of the degradation model, predicted state of 

the system in future time 𝑡 based on the estimated parameter at time 𝑘 (𝜃 ), and the threshold 

which defines the system's failure, respectively. 

 

Now that all the materials are introduced for this study, in the next chapter, the case-study and the 

results obtained from this study are presented. 

 

 

 

 

 

 

 

 

 

 

 



 

28 
 

4 CHAPTER 4 

RESULTS AND DISCUSSION 

In this study, the RUL of RWs, based on the residual lubricant level for the bearing unit, is studied 

under two incipient fault scenarios to evaluate the proposed method's effectiveness:  

Normal or excessive lubricant loss. Under this scenario, the RW will operate until it runs out of 

lubricant. In this case, the cumulative loss of lubricant acts as the HI of the system, and the maxi-

mum amount of lubricant it can carry is the threshold.  

Insufficient lubrication caused by a fault in the supplementary lubrication system. This scenario 

results in bearings dry-out while there is still lubricant in the supplementary lubrication system. 

For this scenario, HI is computed as the difference between the normal lubricant loss and the in-

jection amount, and the failure threshold is the amount of lubrication loss the bearing unit can 

tolerate without additional lubrication. 

The simulations were set up, as shown in Figure 4.1. The Runge-Kutta method (RK4), with a 

sampling interval of 0.05 s, was used in MATLAB for the Numerical integration of the states. The 

simulation parameters are as listed in Table 2.1 , while white noise with a standard deviation 𝜎  is 

added to the nominal states to produce measured states. 

 

Figure 4.1 - The flow of temperature estimation leads to online parameter estimation for degra-

dation model and prognostics. 

4.1 Step 1 – Lubricant's temperature estimation 

In this section, the performance of the first step of the proposed method is examined by following 

a temperature path introduced in Table 4.1 . As shown in Figure 4.1, the proposed temperature 

path (𝑇 ) is fed to the RW's model, and angular velocity and motor current ([𝜔 , 𝐼 ]) are con-

sidered as the measurement. In which ℎ(. ) stands for RW's model. After adding the white noise to 
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the measured values, they are fed to the state estimation block alongside 𝑉  as the system's 

input. 

The role of the state estimation block is to estimate the temperature of the lubricant (𝑇 ) as the 

unmeasured state of the system using the available measurements, input variables, and the model 

of the RW. The nonlinear model of the system (Eq. (10)) can be presented as: 

𝑥 = (𝑇 ) = (𝑇 ) + 𝑤

𝑦 = [(𝜔 ) , (𝐼 ) ] = ℎ((𝑇 ) , (𝑉 ) , 𝜀 )
 (26) 

In which ℎ(. ) represent the RW's model. 

Table 4.1 – Validation scenario for first state estimation block. 
Time Range (sec) 𝑻𝒍𝒖𝒃 (°𝑪) 𝑽𝒄𝒐𝒎𝒎 (Volt)

𝑡 ≤ 50 23 1 
𝑡 = 50 31 1 

50 < 𝑡 < 250 𝑇 (𝑡 − 𝑑𝑡) × [1/exp (−3 × 10 × 𝑡)] 1 
250 ≤ 𝑡 < 300 𝑇 (𝑡 − 𝑑𝑡) × [1/exp (−3 × 10 × 𝑡)] 3 

𝑡 ≥ 300 𝑇 (𝑡 − 𝑑𝑡) × [1/exp (3 × 10 × 𝑡)] 3 

Figure 4.2 shows the performance of PF in the estimation of 𝑇  under low ( 𝜎 = 3 ×

10 ,   𝜎 = 3 × 10 ) and high (𝜎 = 3 × 10 ,   𝜎 = 3 × 10 ) noise conditions. As it can be 

seen, the PF is able to accurately track the changes in 𝑇 , if these changes are not significant. In 

the case of abrupt changes, the conversion rate of PF is no longer acceptable. 

To overcome this issue, an adaptation of resampling (explained in 3.2.1) is used in this research. 

Figure 4.2 shows the performance of the combination of PF and the adapted resampling step in the 

estimation of 𝑇 . 

Results in Figure 4.2 show that adaption in the resampling step significantly improved the ability 

of the PF to trace sudden changes in 𝑇 ; however, Figure 4.2.(b) illustrates that this accuracy 

improvement comes with inaccuracy in the confidence interval. The source of this inaccuracy is 

the low contribution of temperature on changing the measured variables compared with the effect 

of measurement noise; this low contribution leads to an almost uniform distribution of 𝑝 𝑦 𝑥  

and inefficiency of resampling step on narrowing down the Confidence Interval (CI) and conse-

quently not satisfying the 𝑁  (Eq. (16)), which results in repeating the resampling step after any 

update step. 
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(a) 

 
(b) 

Figure 4.2 - Result of the estimated 𝑻𝒍𝒖𝒃 , using PF: (a) Low noise scenario, (b) High noise sce-

nario. 
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(a) 

 
(b) 

Figure 4.3 - Result of the estimated 𝑻𝒍𝒖𝒃, using a combination of PF and adaptive resampling: (a) 

Low noise scenario, (b) High noise scenario. 
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To provide a solution to the inefficiency of the resampling step, the proposed adaptive sample 

improvement (explained in 3.2.2) is adjusted in a way that Eq. (19) can be rewritten as: 

 𝑤 = 1 − 1 𝑒𝑥𝑝 −10 × [𝛽 − 0.6 × 𝑠𝑖𝑔𝑛(𝛽)]⁄       𝛽 =
1

𝑁
− 𝑤 𝑝 𝑦 𝑥  (27) 

This adjustment magnifies the differences in 𝜔  and enables the resampling step to narrow down 

the CI. Figure 4.4 shows the performance of the APF on the same experimental condition. 

 
 (a) 

 
 (b) 

Figure 4.4 - Result of the estimated 𝑻𝒍𝒖𝒃, using APF: (a) Low noise scenario, (b) High noise sce-

nario. 

0 100 200 300 400 500
Times horizon (Sec) 

10

15

20

25

30

35

40

Te
m

pe
ra

tu
re

 (
C

)

0 100 200 300 400 500
Times horizon (Sec) 

15

20

25

30

35

Te
m

pe
ra

tu
re

 (
C

)



 

33 
 

4.2 Step 2 - Degradation model's parameter tracking 

As shown in Equation (9), the degradation model comes with two parameters (𝛽  and 𝑏), need to 

be estimated to predict the evolution of lubrication consumption. For this purpose, a long-term 

estimation of the lubricant's temperature through PF and APF was simulated. The parameters of 

the degradation model then were estimated using a PF block which was fed by the estimated tem-

perature of lubricant and simulated measurement of lubrication consumption. Figure 4.5 indicates 

the flow of online parameter estimation for degradation model. 

 

 

Figure 4.5 - Flow of one-step online parameter estimation for degradation model. 

As it is impractical to measure lubrication consumption over 0.05 seconds, which is the time step 

necessary for estimating temperature, X is calculated as the cumulative sum of lubrication con-

sumption over four minute using Eq. (28). 

  𝑋𝑘 = 𝛽𝑘 𝑒𝑥𝑝
𝑏𝑘

𝑇𝑗
 ∆𝑡

4800𝑘

𝑗=1

 (28) 

In which ∆𝑡 is equal to 0.05 seconds. The nonlinear model of the degradation problem (Eq. (20)) 

can be rewritten as: 

𝜃 = [𝑏 , 𝛽 ] = [𝑏 , 𝛽 ] + 𝛼

𝑦 =  𝑋 −  𝑋 = 𝛽 𝑒𝑥𝑝
𝑏

𝑇
 ∆𝑡

( )

 (29) 

Figure 4.6 compares the estimated parameters (𝑏, 𝛽) with their actual values. As it can be seen, 

estimated 𝑏 and 𝛽 cannot accurately follow their actual values even though the estimated lubrica-

tion consumption path shown in Figure 4.7 is fitted on the actual one precisely. 
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In order to address this issue, a two-step PF (Figure 4.10) is driven form proposed multi-step online 

parameter estimation (explained in 3.3.1); the first PF block uses the ratio of three consecutive 

measurements of lubrication consumption to estimate 𝑏 using: 

 
𝑋 − 𝑋

𝑋 − 𝑋  
= 𝑒𝑥𝑝 𝑏

1

𝑇
−

1

𝑇
 (30) 

where 𝑋  and 𝑇  are the cumulative consumption of lubricant and the temperature of lubricant at 

time 𝑘. Applying the alternation presented in Eq. (29) converts Eq. (30) to: 

 
𝑋 − 𝑋

𝑋 − 𝑋  
= exp (−𝑏 𝑇𝑗⁄ )

( )
exp (−𝑏 𝑇𝑗⁄ )

( )

( )
 (31) 

Using above equation, the sub-nonlinear system equation suggested in Eq. (23) can be written as: 

 

𝜃 = 𝑏 = 𝑏 + 𝛼

𝑦

𝑦
=

𝑋 − 𝑋

𝑋 − 𝑋  
= exp (−𝑏 𝑇𝑗⁄ )

( )
exp (−𝑏 𝑇𝑗⁄ )

( )

( )

 (32) 

 

𝜃 = 𝛽 = 𝛽 + 𝛼

𝑦 = 𝑋 − 𝑋 = 𝛽  𝑒𝑥𝑝
𝑏

𝑇
 ∆𝑡

( )

 (33) 

Figure 4.8 compares the estimated 𝑏 using the estimated lubricant's temperature from the section 

4.1. 
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(b) 

Figure 4.6 - Result of the estimated 𝒃 and 𝜷 using one-step online parameter estimation method. 

 

Figure 4.7 - Result of the estimated lubrication consumption (𝑿𝒌 − 𝑿𝒌 𝟏) using one-step online 

parameter estimation method. 
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 (a) 

 
 (b) 

Figure 4.8 - Result of the estimated 𝒃 using two-step method and estimated lubricant's tempera-

ture via: (a) PF, (b) APF. 

Having the estimated 𝑏, the second PF estimates the second parameter of the degradation model 

using Eq. (33) as the model and cumulative consumption of lubricant as the measurements. Figure 

4.9 shows the estimated 𝛽  for both estimated temperatures using PF and APF. 
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 (a) 

 
 (b) 

Figure 4.9 - Result of the estimated 𝜷 using two-step method and estimated lubricant's tempera-

ture via: (a) PF, (b) APF. 
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Figure 4.10 - Flow of two-step online parameter estimation for degradation model. 

4.3 Step 3 - Remaining useful life estimation 

This section evaluates the performance of the proposed three-step prognosis method using esti-

mated degradation model parameters for both fault scenarios. As a result of the first fault scenario, 

the rate at which lubricant is injected is greater than normal, resulting in faster consumption of 

resources than expected. In contrast, the second fault scenario causes less lubrication injection, 

which cannot compensate for normal lubrication loss. Drying out of the bearing unit occurs due to 

this scenario over time. 

The failure time (𝑡 ) from Eq. (25) can be adjusted for the first explained fault scenarios as: 

  𝑡 = 𝑡 𝑋 − 𝑋 = 𝑋 − 𝑋 𝑏 , 𝛽  (34) 

Where 𝑋  and 𝑋  are estimated cumulative consumption of lubrication up to time 𝑡 and 𝑘 (current 

time), and 𝑋  represents the total amount of lubrication that the system is carrying. However, 

the adjusted failure time for the second fault scenario should be considered as: 

 𝑡 = 𝑡 𝑋 − 𝑋 = 𝑋 𝑏 , 𝛽  (35) 

In which 𝑋  and 𝑋  are cumulative consumption of lubrication up to time 𝑡 in the healthy 

system and the maximum amount of lubrication that the bearing unit can lose without any effects 

on its capability. Table 4.2  shows the considered fault scenarios for evaluating the proposed method 

in RUL estimation. 

Under the assumptions that the system is suffering from the first fault scenario, and the lubricant 

temperature (𝑇 ) changes periodically over three months, as displayed in Figure 4.11, Figure 

4.12 shows the cumulative sum of lubrication consumption. Moreover, Figure 4.13 represent the 

PDF of RUL based on the distribution of particles; It can be seen that, despite the one-step estima-
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tion method resulting in a narrower CI, the true RUL does not even fall within the predicted inter-

val. Assuming the system is experiencing the second fault scenario, and the temperature of the 

system is gradually rising due to improper lubrication (Figure 4.14), Figure 4.15 shows the cumu-

lative sum of normal lubrication consumption and injected lubricant difference. 

Table 4.2 – Fault scenarios for prognostics evaluation. 
First scenario: Excessive lubrication loss 

Time Range (min) 𝒃 (°𝑪) 𝜷 (mL/sec) 
𝑡 ≤ 159 37 7.494 × 10  
𝑡 > 159 25 8.054 × 10  

Second scenario: Insufficient lubrication injection 
Time Range (min) 𝒃 (°𝑪) 𝜷 (mL/sec) 

𝑡 ≤ 159 37 7.494 × 10  
𝑡 > 159 49 7.000 × 10  

 

 

Figure 4.11 - Assumed lubricant temperature (First fault scenario). 
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 (c) 

Figure 4.12 - Failure prognosis results (First fault scenario): (a) using PF for temperature esti-

mation and two-step method for parameter estimation, (b) using APF for temperature estimation 

and two-step method for parameter estimation, (c) using APF for temperature estimation and one-

step method for parameter estimation. 
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(b) 

 
(c) 

Figure 4.13 – Estimated PDF of RUL (First fault scenario): (a) using PF for temperature estima-

tion and two-step method for parameter estimation, (b) using APF for temperature estimation and 

two-step method for parameter estimation, (c) using APF for temperature estimation and one-step 

method for parameter estimation. 
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Figure 4.14 - Assumed lubricant temperature (Second fault scenario). 
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 (b) 

 
 (c) 

Figure 4.15 - Failure prognosis results (Second fault scenario): (a) using PF for temperature esti-

mation and two-step method for parameter estimation, (b) using APF for temperature estimation 

and two-step method for parameter estimation, (c) using APF for temperature estimation and one-

step method for parameter estimation. 
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4.4 Discussion 

An enhanced estimation method APF based on the combination of PF and Adaptive sample im-

provement (Section 3.2.2) has been proposed in this research to overcome the inefficiency of the 

resampling step due to the uniform distribution of particles. Based on the result shown in Figure 

7, the proposed APF method performs better for the lubricant temperature estimation than the 

combination of PF and Adaptive Resampling methods in higher noise cases. In low noise cases, 

the APF results in more accuracy with narrower CI; however, the low speed of recovery from 

confusion, coming from voltage change, causes less desirable results compared with the combina-

tion of PF and Adaptive Resampling.  

Table 4.3 compares the performance of combined PF and adaptive resampling with APF, as esti-

mation methods, using Root Mean Squared Percentage Error (RMSPE) of the estimated lubricant 

temperature (𝑇 ). The outcome of the simulations can vary in each run due to the random nature 

of data and particle generation. Therefore, a set of 20 simulations was conducted, and average 

values of the whole set were reported under each measure. The lower RMSPE specifies better 

performance and more accurate estimates meaning that in the higher measurement noise, APF 

performs better. Moreover, in both APF and PF methods, the more particles, the better the accu-

racy, which comes at the price of computation. 

Table 4.3 – Performance comparison for different types of estimation methods on 𝑻𝒍𝒖𝒃 estimation. 

 Low noise 
𝝈𝑰 = 𝟑 × 𝟏𝟎 𝟐,   𝝈𝝎 = 𝟑 × 𝟏𝟎 𝟑 

High noise 
𝝈𝑰 = 𝟏. 𝟑 × 𝟏𝟎 𝟏,   𝝈𝝎 = 𝟑 × 𝟏𝟎 𝟑 

Number of 
Particles 

RMSPE 
PF & Adaptive 

Resampling APF 
PF & Adaptive 

Resampling APF 

50 2.359% 2.554% 3.596% 3.048% 
100 2.216% 2.471% 3.118% 2.691% 
150 2.012% 2.292% 2.745% 2.697% 
200 1.983% 2.340% 2.742% 2.605% 
250 2.015% 2.378% 2.735% 2.589% 
300 1.935% 2.436% 2.707% 2.496% 
350 1.919% 2.305% 2.748% 2.480% 

In the next stage, one-step and two-step parameter estimation methods have been applied for online 

parameter estimation of the degradation model based on the estimated temperature of the lubricant 

(Section 4.1). Based on the comparison of Figure 4.6, Figure 4.8, and Figure 4.9 the proposed two-
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step parameter estimation method is superior in terms of accuracy. Additionally, by analyzing 

Figure 4.9.(a) and Figure 4.9.(b), it can be seen that using the APF method to estimate the temper-

ature of the lubricant will result in a more precise and less fluctuating 𝛽 estimation. 

Table 4.4 also shows the performance of combined methods of lubricant temperature and degrada-

tion model's parameter estimations, in term of RMSPE. Based on the presented values, the combi-

nation of APF and Two-step PF results in the lowest RMSPE among all tested methodologies, 

indicating greater accuracy. 

Table 4.4 – Performance comparison for degradation model estimation evaluation. 
 First Fault Scenario Second Fault Scenario 

Methodology Average of RMSPE under 20 runs 
𝑏 𝛽 𝑏 𝛽 

APF + Two-step PF 3.947% 2.051% 1.920% 2.709% 
PF + Two-step PF 5.081% 3.586% 3.726% 4.707% 
APF + one-step PF 136.999% 23.896% 66.172% 24.303% 

As the final step, the RUL of RW has been predicted under two fault scenarios and using the 

assumed temperature trend (Section 4.3). Comparing Figure 4.12 and Figure 4.15 shows that the 

accuracy of using two-step method in online parameter estimation of the degradation model leads 

to more precise RUL prediction. Table 4.5 compares the performance of three tested methodologies 

with respect to their accuracy in the prediction of RUL in both fault scenarios. This table shows 

that combined APF and one-step methods not only is not accurate enough to predict RUL but also 

the predicted result using that can vary in a wide range, which makes it unreliable. As can be 

expected from the results shown in Table 4.4 and Table 4.5  approves the accuracy of using APF 

compared to PF in the estimation of lubricant temperature leads to more accurate RUL prediction. 

Table 4.5 – RUL estimation performance. 
 First Fault Scenario Second Fault Scenario 

Methodology 
RUL Estimation percentage Error under 20 runs 

LB* UB* Average LB UB Average 
APF + Two-step 

PF 
0.137% 0.552% 0.346% 0.308% 4.322% 2.343% 

PF + Two-step PF 0.868% 2.088% 1.578% 0.428% 4.780% 2.453% 
APF + one-step 

PF 
2.308% 8.561% 6.137% 6.675% 16.442% 11.602% 

*LB = lower bound, UB = upper bound 
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5 CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

This study proposed a novel approach for estimating the RUL of satellites’ RW. The proposed 

methodology was evaluated on the RW remaining useful life estimation case study resulting from 

the amount of lubricant left in the RW’s bearing unit and potential faults in the supplementary 

lubrication system. The novelty was twofold: (1) the new adaptive resampling method for the par-

ticle filter detailed in Section 3.2.1 and 3.2.2; and (2) a new multi-step online parameter estimation 

method detailed in Section 3.3.1. The proposed approach consists of three steps: in the first step, 

using the RW’s angular velocity and motor current as available measurements, the APF was uti-

lized to estimate the lubricant temperature in the bearing unit. In the second step, the amount of 

injected lubrication in the bearing, the estimated lubricant temperature, and the lubrication degra-

dation model were fed to a two-step PF for online model parameter estimation. Finally, in the third 

step, RW’s RUL was predicted under two fault scenarios, including excessive lubrication loss and 

insufficient lubrication injection, to evaluate the performance of the proposed prognostic method. 

The results showed that the RUL was successfully predicted, with error rates ranging from ~0.1 to 

4%. In conclusion, the proposed scheme can be considered a practical technique for long-term 

RUL estimation for deteriorating systems, including small satellites. 

5.2 Contributions of This Work 

Although different methods have been developed for short-term RUL estimation of CMGs and 

RWs, the novelty of this approach lies in its three-step process and its independency of it in having 

extra sensors, measurement, and physical redundancy units to be added. Moreover, to the authors' 

best knowledge, this method can address any faults in the supplementary lubrication injection sys-

tem, leading to the bearing unit dry-out for the first time. These contributions can be listed below: 

[CONTRIBUTION 1] Investigating the effect of temperature on the degradation of ACS. 
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[CONTRIBUTION 2] Estimating the system’s unmeasurable state (temperature of lubricant) 

based on measurable states of the system (𝜔 , 𝐼 ), using a mathematical model of the system and 

proposed advanced filtering method. 

[CONTRIBUTION 3] Determining long-term RUL estimation for RWs, based on the remaining 

amount of bearing lubrication as the HI.  

5.3 Assumptions and Limitations 

As it has been mentioned in section 1.2, both data-driven and model-based prognostics methods 

have some limitations and drawbacks. While the performance of the data-driven and hybrid meth-

ods are highly dependent on the quantity and the quality of run-to-failure data sets, the performance 

of the model-based methods are a function of the system's model accuracy; Therefore, any changes 

in assumed parameters of the system's model (Table 2.1 ), can potentially lead to a divergence in 

the estimated lubricant's temperature and the actual one. 

Furthermore, there is always a trade-off between estimation accuracy and computational cost. In 

this study, RK4 and PF have been used to estimate lubricant temperature (section 4.1). The smaller 

the step size of the RK4 method, the higher the accuracy of RW's model simulation, which requires 

more computing power due to the additional transition steps needed for the particles. In this study, 

due to the complexity and high-level nonlinearity of the RW's model, the largest step size that 

results in simulation convergence should be 50 milliseconds, which makes this method computa-

tionally expensive. 

Lastly, the forecast of the lubricant's temperature until failure also affects the RUL prediction ac-

curacy. The temperature paths in section 4.3 are based on either the theory or the sample patterns 

of other satellites, so any variations in the temperature path can affect the predicted RUL reliability. 

In the following section, some suggestions for future research work are discussed in order to re-

solve some limitations of this research or improve its accuracy. 

5.4 Future Works 

A combination of fault diagnostic and failure prognostic methods can ensure the validity of the 

system's model parameter and the reliability of the prognostic process. A potential path for future 

works is to benefit from the proposed multi-step online parameter estimation method to monitor 

other parameters of the RW's model, particularly the motor torque constant (𝑘 ), which could im-

prove the dependability and accuracy of lubricant estimated temperature. Further research can also 
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focus on hybrid prognostic methods. Combining model-based approaches to estimate the current 

state of the system and data-driven methods to forecast the future path can enhance and narrow 

down the CI of the predicted RUL. 
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