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ABSTRACT 

Weed populations in agricultural production fields are often scattered and unevenly 

distributed; however, herbicides are broadcast across fields evenly. Although effective, in the 

case of post-emergent herbicides, exceedingly more pesticides are used than necessary. A novel 

weed detection and control workflow was evaluated targeting Palmer amaranth in soybean 

(Glycine max) fields. High spatial resolution (0.4 cm) unmanned aircraft system (UAS) image 

streams were collected, annotated, and used to train 16 object detection convolutional neural 

networks (CNNs; RetinaNet, Faster R-CNN, Single Shot Detector, and YOLO v3) each trained 

on imagery with 0.4, 0.6, 0.8, and 1.2 cm spatial resolutions. Models were evaluated on imagery 

from four production fields containing approximately 7,800 weeds. The highest performing 

model was Faster R-CNN trained on 0.4 cm imagery (precision = 0.86, recall = 0.98, and F1-

score = 0.91). A site-specific workflow leveraging the highest performing trained CNN models 

was evaluated in replicated field trials. Weed control (%) was compared between a broadcast 

treatment and the proposed site-specific workflow which was applied using a pulse-width 

modulated (PWM) sprayer. Results indicate no statistical (p < .05) difference in weed control 

measured one (M = 96.22%, SD = 3.90 and M = 90.10%, SD = 9.96), two (M = 95.15%, SD = 

5.34 and M = 89.64%, SD = 8.58), and three weeks (M = 88.55, SD = 11.07 and M = 81.78%, 

SD = 13.05) after application between broadcast and site-specific treatments, respectively. 

Furthermore, there was a significant (p < 0.05) 48% mean reduction in applied area (m2) between 

broadcast and site-specific treatments across both years. Equivalent post application efficacy can 

be achieved with significant reductions in herbicides if weeds are targeted through site-specific 

applications. Site-specific weed maps can be generated and executed using accessible 

technologies like UAS, open-source CNNs, and PWM sprayers.  
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1.0 INTRODUCTION  

Herbicides protect today’s crops from weed competition, that when left uncontrolled, 

reduce crop yield and profits. Weed populations in production fields can often be described as 

scattered and unevenly distributed; however, herbicides are broadcast across fields evenly. 

Although effective, in the case of post-emergent herbicides, this method often uses exceedingly 

more pesticides than necessary. Alternatively, applying pesticide only to locations that contain 

weeds would also be effective, more cost-efficient, and more environmentally responsible 

compared to broadcasting. 

Modern agriculture equipment can place precise amounts of pesticide in predetermined 

areas; however, these capabilities are primarily used to hold a targeted rate when equipment 

speed changes. These same capabilities may be able to strategically target areas of production 

fields with weeds if the exact location of individual weeds can be determined. A field map 

containing the location of individual weeds may enable the site-specific actuation of flow valves 

and spot-treat fields. To create a site-specific weed map, each weed must be located, and a 

treatment boundary drawn. Site-specific maps would be necessary for each field multiple times 

throughout the growing season for each weed generation. Only spraying targeted weeds in this 

way is known as site-specific weed management (SSWM) and is almost non-existent because 

site-specific maps are currently labor intensive to create, both in the field to locate weeds and in 

defining treatment areas.  

The convergence of three technologies may be able to automate site-specific weed map 

generation. First, on-demand access to high-resolution field imagery from advanced sensors on 

unmanned aerial systems (UAS) may provide the near-real time whole field information 

necessary to capture and quantify weed presence. Second, the continued maturity and 
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commercial availability of machine learning models are increasingly accessible in user-friendly 

interfaces and may be able to automate image stream analysis. Finally, the recent industry 

adoption of pulse-width modulated (PWM) spray equipment, equipped with individual nozzle 

control, may be able to provide the plant level resolution necessary to carry out site-specific 

applications. Together, these three technologies have the potential to make SSWM accessible 

and routine for today’s producers. An accurate site-specific workflow has the potential to reduce 

the input cost and the environmental impacts of many herbicide treatments. The cumulative 

reduction in inputs and environmental impact of multiple applications in each field across 

applicable production systems would be substantial. This work proposes and evaluates a novel 

workflow leveraging this technological convergence to automate site-specific weed map 

generation and application.  
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2.0 EVOLUTION OF SITE-SPECIFIC WORKFLOWS AND OPPORTUNITIES IN WEED 

MANAGMENT  

Abstract 

Precision agriculture research has made many production practices more strategic, cost 

effective, and efficient; however, pesticides are still broadcast across whole fields with no 

consideration for target variability. Advancements in remote sensing, object detection via deep 

learning, and sophisticated field equipment may meet the foundational requirements for 

widespread adoption of site-specific pesticide applications. A workflow that combines the 

capabilities of these technologies and facilitates access to accurate treatment maps could 

dramatically reduce the volumes of pesticides applied, reduce input cost for producers, and 

reduce environmental impact of production systems. Furthermore, in the case of selective 

herbicides or application made in genetically tolerant crops, the precision demands are much 

lower and may be feasible in current production systems. Evaluation of a workflow incorporating 

these converging technologies would be valuable to ensure the integrity of a resulting 

applications efficacy.  

 

2.1 Precision agriculture  

Precision agriculture is a broad term that includes sensor technology, information 

systems, and enhanced equipment to maximize input efficiency by accounting for variability in 

agriculture production systems (Gebbers & Adamchuk, 2010). Primary managed agricultural 

inputs include soil nutrients applied at variable rates based on site-specific need (Basso et al., 

2016), high-speed precision planting of seeds (Xue et al., 2019), irrigation water management 

(Monaghan et al., 2013), and rate-controlled pesticide applications (Luck et al., 2011). Although 
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rate-controlled pesticide application equipment is considered part of precision agriculture, 

onboard field computers work to hold application rates constant and vary the flow of pesticides 

only as equipment speed changes (Luck et al., 2011). This results in broadcast rates of pesticides 

uniformly applied throughout fields despite fluctuating equipment speeds. Currently the 

technology is only being used to account for in-field speed fluctuation and to shut off individual 

nozzles or groups of nozzles at field boundaries or in already applied areas (Fernández-

Quintanilla et al., 2018). Unlike other precision agriculture technologies, true site-specific 

pesticide treatments are almost non-existent in the United States (Nowak, 2021). Successful site-

specific pesticide applications would require three components: comprehensive field scouting 

(sensors), accurate pest identification (information systems), and site-specific capable sprayers 

(enhanced equipment) (Gebbers & Adamchuk, 2010). 

López-Granados (2011) suggested that two primary limitations of widespread adoption of 

site-specific workflows include a lack of skill sets amongst farmers necessary to take advantage 

of machine learning (ML) and remote sensing advances, and a lack of accessibility and 

compatibility of these systems with current field equipment. A review of the adoption of 

precision agriculture technologies in developed countries published in 2021 did not include 

SSWM technologies, only introducing the subject with a mention of variable rate crop protection 

products (Nowak, 2021). However, the same survey lists the adoption examples of georeferenced 

field scouting via UAS and automated section control for pest spraying, which are foundational 

technologies for SSWM workflows, if weeds can be reliably extracted from the imagery. 

Machine learning techniques to object detection may be able to provide the automated detection 

of weeds within UAS imagery necessary for practical site-specific workflows. While ML 

approaches to automated pest detection and decision making are often viewed as black box 
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technologies (Toda & Okura, 2019), user accessibility to theses advanced algorithms is 

improving. Sophisticated open-source deep learning algorithms have begun to be used in 

commercially available software with simplified graphical user interfaces (GUIs) reducing the 

skills necessary to access these advanced detection tools. The combination of user-friendly 

remote sensing (RS) via UAS, accessibility to powerful deep learning decision tools in GUI 

interfaces, and the current adoption of application equipment that can apply at sub-meter 

resolutions holds promise for the development of pragmatic site-specific workflows. Not only do 

these advancements meet the foundational criteria suggested by Gebbers & Adamchuk (2010), 

their accessibility and compatibility with today’s field equipment may reduce the hurdles of 

adoption described by López-Granados (2011). 

 

2.2  Field scouting for weeds with UAS 

Unmanned aerial systems are a relatively new data collection tool available to agricultural 

production (Tenhunen et al., 2019). Coupled with high-resolution sensors, these platforms can 

provide a new perspective to agriculture fields that was previously inaccessible due to cost or 

regulatory restrictions (Khanal et al., 2017). Compared with satellite platforms, UAS’s can 

produce crop imagery with superior spatial and temporal resolution flexibility (Murugan et al., 

2017). Additionally, commercially available UAS can provide imagery at these resolutions at a 

relatively low entry cost which has expedited adoption (Lambert et al., 2019). 

Site-specific management of crops, nutrients, and pests have long been goals of precision 

agriculture (PA)(Praveen & Sharma, 2020). The ability to strategically place inputs as intra-field 

needs change has the potential to significantly save on operating cost and reduce environmental 

impact. If RS is used for data collection, two requirements must be met regarding the target 
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objects or phenomenon. First, availability of high enough spatial resolution imagery for the 

object or phenomenon to be detected and second, its precise location (Gómez-Candón et al., 

2014). Access to and robust analysis of real-time or near real-time data required to inform these 

site-specific management decisions has been a major limiting factor in the development of 

practical PA workflows (Castillejo-González et al., 2014; Mintert et al., 2016). In particular, the 

spatial resolution required to detect intra-field objects such as weeds with enough detail to 

differentiate them from crops has been a major hurdle in SSWM workflows leveraging remotely 

sensed data (Gómez-Candón et al., 2014). 

Spatial resolution is the detail or sharpness that can be captured as a function of a sensor’s 

instantaneous field of view (IFOV) and its observation height or altitude above ground level 

(AGL). Spatial resolution is often reported as its ground sample distance (GSD) which describes 

the nominal area of the ground that one pixel represents (i.e., 3 m, 3 cm).  

Very high spatial resolution imagery (< 1 cm GSD) significantly aids in the high accuracy 

detection of relatively small objects such as emerging weeds in crop fields (Räsänen et al., 2019). 

Even with today’s high megapixel sensors, low-altitude flights are often necessary to achieve the 

spatial resolution for robust detections (Gómez-Candón et al., 2014). However, low altitude 

imagery collection coupled with today’s UAS batteries greatly limits the area that can be 

realistically imaged in a series of flights (Murugan et al., 2017). Therefore, determining a 

pragmatic balance between high accuracy detections at the lowest resolution requirements would 

be foundational to SSWM workflows using UAS derived imagery (Gómez-Candón et al., 2014). 
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2.3  Weed identification with deep learning models 

Traditionally, pests are identified through manual and regular field scouting. For site-

specific treatment at the plant-level resolution to be practical, targeted pests must be accurately 

identified and their location known (Lottes et al., 2020). In the case of whole field imagery 

captured by UAS, manual annotation of pests in imagery to produce site-specific spray maps is 

laborious and therefore not practical at today’s farm scale.  

Interactive supervised classification workflows have been demonstrated that were trained 

on individual fields imagery. Castaldi et al. (2017) used a support vector machine (SVM) 

assisted supervised classification approach to extract weed patches in corn fields using NDVI 

collected via UAS (35 m alt, 9 cm GSD). Actual field imagery was used for training, samples of 

soil, crop, and weed patches were hand annotated as training data and the ENVI 5.2 software 

package completed classification of the rest of the image with 61% accuracy.  

Taking advantage of spectral differences between targets is one primary mechanism for 

image segmentation and classification (Fernández-Quintanilla et al., 2018; Louargant et al., 

2017). Louargant et al. (2017) tested the classification accuracy of an unsupervised k-means 

algorithm (Mahalanobis distance) using UAS imagery (50 m alt, 6 cm GSD). Results suggest the 

detection of vegetation was relatively easy (95% accuracy) if pixels contained 60% or greater 

vegetation. However, spatial resolution was reported as being a limitation when discriminating 

between monocots and dicots (80% vegetation in pixel required for 80% accuracy). Methods that 

rely exclusively on spectral reflectance values have not provided the robust weed extraction 

necessary for real field applications to be generalized (Louargant et al., 2017). Many spectral 

classification workflows have additionally considered the location of vegetative pixels to 

increase accuracy in discriminating weeds from crops (Fernández-Quintanilla et al., 2018). Using 
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RGB imagery from UAS at ten meter altitude, Tenhunen et al. (2019) demonstrated a “row 

recognizer” workflow that used a k-means algorithm to extract vegetation pixels from soil using 

spectral values, followed by a Fourier transform that located the center of gravity of plant pixel 

clusters. Least squares regression was then applied to identify the number and orientation of 

planted rows in each frame, resulting in 94% accuracy at row detection. In a field application, 

any plant pixel groups outside of rows could be classified as weeds based on location alone.  

Weeds that are within rows provides additional challenges. Plant leaf shape and structure 

have been explored in extracting crop occluded weeds. Local invariant features identify key 

points on the structure of target like weed species and are resistant to misclassifications caused 

by deviations in image rotation and altitude (Pflanz et al., 2018). Using a Bag of Visual Word 

(BoVW) approach (example of local invariant feature), Pflanz et al. (2018) were able to generate 

species specific individual plant weed maps at 89-94% accuracies using a UAS at one and six 

meter flight altitude. While impressive, the spatial coverage of today’s UAS at these altitudes is 

excessively limiting, which lends the practical application of this model to proximal or ground-

based methods only. 

Workflows discussed thus far, except for Pflanz et al. (2018) primarily extract and 

classify on a pixel-by-pixel basis known as pixel-based image analysis (PBIA). De Castro et al. 

(2017) demonstrated an Object-based image analysis (OBIA) technique to map Cynodon 

dactylon in vineyards using UAS imagery. Red, green, and blue bands were segmented and 

resulting objects classified as soil, crop, and weeds with an overall 85% accuracy. A similar 

contribution by De Castro et al. (2018) applied an OBIA workflow to mapping weeds in 

sunflower and cotton fields using UAS imagery (30 m and 60 m alt, 0.6 and 1.2 cm GSD). 
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Again, RGB bands were segmented, and objects were classified with a random forest algorithm 

with 84% and 81% accuracy reported for weeds in cotton and sunflower crops, respectively.  

More recently developed artificial neural networks (ANNs) have quickly shown utility in 

OBIA (Lin et al., 2019). Artificial neural networks have allowed for the fusion of textural 

information from imagery to spectral reflectance values which have further improved 

classification accuracy (Tamouridou et al., 2017). Tamouridou et al. (2017) used a multilayer 

perceptron ANN that received an image texture layer in addition to spectral reflectance bands to 

map pixels representing milk thistle (Silybum marianum) in UAS imagery (10 cm GSD) with 

99.54% accuracy. Similarly, Pantazi et al. (2017) compared three counter-propagation ANN’s 

(CP-ANN) in mapping Silybum marianum from UAS imagery (10 cm GSD) taken at 115 m 

altitude. Each model considered individual green, red, near-infrared bands, and a computed 

texture layer as inputs, resulting in 99%-pixel classification accuracy for each model. 

Continued advances in computer vision in the form of convolutional neural networks 

(CNNs) has shown promising ability to quickly extract small features in imagery (Lin et al., 

2019). Convolutional neural networks have proven themselves as one of the most successful 

architectures in modern deep learning methods at higher-level feature detecting and are replacing 

more conventional methods (Li et al., 2020). Furthermore, many open-source CNNs such as 

Faster R-CNN (Ren et al., 2017), Single Shot Detector (SSD), (Liu et al., 2016), RetinaNet (Lin 

et al., 2017), and You Only Look Once (YOLO) (Redmon et al., 2016; Redmon & Farhadi, 

2018), have the ability to detect multiple classes of objects in the same image. The reported 

accuracies of these models, application in remotely sensed imagery, and ability to detect multiple 

classes at the same time make them appealing in geospatial workflows leveraging RS imagery 

(Pearse et al., 2020).  



10 

Modern object detection and classification CNN models are commonly categorized as 

single- and two-stage algorithms. Generally accepted as more accurate, two-stage models first 

create a Region Proposal Network (RPN) of potential targets and in a second step, classify the 

detections (Nguyen et al., 2020). These two-stage approaches provide for the best accuracy 

comparisons in benchmark competitions using published datasets like Pascal’s Visual Object 

Classes (PASCAL-VOC) and Microsoft’s Common Objects in Context (COCO); however, this 

accuracy often comes at the expense of training and detection speed (Ren et al., 2017).  

Region proposed convolutional neural network (R-CNN) (Girshick et al., 2014), Fast R-

CNN (Girshick, 2015), and Faster R-CNN (Ren et al., 2017) are a progressive series of high 

performing two stage, open-source object detection algorithms. Aptly named, each updated 

version has shown improvements in detection speeds with the goal of accurate real-time 

detections. The most recent version, Faster R-CNN first uses a series of feature extractors that 

segment images and aggregate segments at different scales to produce a proposed feature map 

(Figure 2.1). Next, it leverages a deep fully convolutional RPN that outputs areas of elevated 

interest within the proposed segmented feature map in the form of bounding boxes. Finally, the 

proposed boxes in the feature map are classified using the fully connected R-CNN detector (Ren 

et al., 2017).  
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Figure 2.1: Convolutional layers structure of Faster R-CNN (Vasconez et al., 2020). 

 

You Only Look Once (YOLO) was one of the first attempts at building a single stage 

object detection algorithm published by Redmon et al. in 2016 (Nguyen et al., 2020), followed 

by an updated version (YOLO v2) by the same authors in 2017. Redmon & Farhadi's published 

YOLO v3 in 2018 also an open source, single-stage object detection algorithm. YOLO v3 uses a 

feature extractor with 53 layers named by the authors “DarkNet-53” (Figure 2.2). Like its 

predecessors, predictions are made without using an RPN, or “only looking once” (Khan et al., 

2021). It treats detections like a regression problem by dividing input images into grids and 

performing detections within each grid cell and then combining adjacent similar detections 

(Nguyen et al., 2020). YOLO v3 performs detections at three scale layers which enhances its 

ability to detect both large and small objects in imagery (Xu & Wu, 2020).  
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Figure 2.2: Convolutional layer structure of YOLO v3 (Tan et al., 2021). 

 

Single Shot Detection (SSD) is another single stage detector which also integrates region 

proposal and classification into one step reducing the number of “looks” at imagery to one, 

therefore reducing detection speeds. Like Faster R-CNN, SSD first uses a feature extractor to 

segment and then aggregate segments at different scales (Lou et al., 2022). After feature 

extraction, SSD uses a pyramid structure of six convolutional layers to perform bounding box 

predictions and a regression analysis for feature classification in a single, continuous stage (Li et 

al., 2020) (Figure 2.3).  
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Figure 2.3: Convolutional layer structure of Single Shot Detector (Liu et al., 2016). 

 

 

RetinaNet is another single stage object detection CNN published in 2017 by Lin et al. 

RetinaNet was designed to address one of the primary shortcomings of other single stage 

detection systems, the class imbalance between detections in the extreme foreground and 

background of images (Nguyen et al., 2020). This issue was addressed by the addition of focal 

loss to the classification “subnet” which weighted foreground detections different than the more 

difficult background detections during training (Lin et al., 2017). These weights focused learning 

on the more difficult detections and gained detection speeds by spending less time on foreground 

objects when deployed. RetinaNet uses a similar FPN as previously mentioned single stage 

detectors; however, horizontal connections from the feature extractor are connected to a 

convolutional layer in the models FPN (Figure 2.4).  
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Figure 2.4: Convolutional layer structure of RetinaNet (Lin et al., 2017). 

 

Recent open-source access to advanced object-detection CNNs such as Faster R-CNN, 

YOLO v3, SSD, and RetinaNet provide opportunities for their evaluation in plant level 

detections. Robust detections from models such as these could serve as the individual plant 

scouting step necessary to inform site-specific weed map generation.  

 

2.4 Site-specific enabled equipment  

Currently, site-specific spray equipment is available as manned equipment with actuators 

and real-time non-imaging sensors (Fernández-Quintanilla et al., 2018). Sensors are mounted 

across the spray boom and wired in series with spray nozzle actuators. Sensors are non-imaging 

scanners that are designed to sense and trigger action from equipment in real-time; however, 

these sensors simply differentiate between the reflectance curves of soil and plants (Fernández-

Quintanilla et al., 2018). Although they can detect the presence of plants, they have no ability to 

distinguish between plant species, limiting their use to those pesticide applications that take place 
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prior to the emergence of the crop and excludes all applications post crop emergence (Souza et 

al., 2020). True site-specific treatment cannot be achieved currently with this form of equipment. 

This limitation has led to very poor adoption rates of this technology among production 

agriculture in the United States (Fernández-Quintanilla et al., 2018). 

Accurate discrimination of weeds from crops is critical to in-crop site-specific treatments, 

and it is equally important that the application equipment be able to act on this information. 

Much research has focused on combining these two steps in advanced autonomous robotics 

known as “See and Spray” equipment that contain on-board decision capabilities and actuators. 

Gai et al. (2020) demonstrated the in-field real-time classification of weeds among broccoli and 

lettuce crops using a CNN algorithm fed color imagery and depth data. The CNN could identify 

crops and treat adjacent areas with an overall 91% accuracy at 3.2 km/hr. Lottes et al. (2020), 

tested their proposed CNN also in real-time on several versions of Bonirob multi-use 

autonomous agriculture robots in sugar beet fields. Further work was done more recently by 

Lottes et al. (2020) with the same field equipment and an updated algorithm. They demonstrated 

the ability to extract and classify different plant features including leaves and stems. The robotic 

and tractor mounted “See and Spray” systems mentioned have made impressive progress using 

deep learning algorithms to accurately classify crops/weeds and have improved software for a 

faster and more agile operation (Fernández-Quintanilla et al., 2018) However, while using real-

time object detection via CNNs to inform advanced robotics on treatment areas is impressive, the 

scale and speed in which this equipment currently operates is limiting. Modern sprayers travel 

between 24 and 32 kph with 36-meter-wide spray booms resulting in a treatment rate of 14,400-

19,200 m2/min. The autonomous field robots as reported in Gai et al. (2020) travel closer to 3 

kph and cover only what they can image and process. This would result in an estimated treatment 
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rate of 25 m2/min assuming 0.5-meter-wide imaging window. This rate may be acceptable in 

some small specialty crop production systems but is not suitable for the thousands of hectares 

managed by most of today’s row-crop producers. For this technology to be used in today’s crop 

production systems, the processing speeds of onboard software must be increased, and the 

machinery must be scaled.  

Selective treatment of pesticides may be possible with current commercially available 

equipment. Campos et al. (2020) were able to develop field zone specific spray maps that were 

used on a commercial sprayer. They varied the pesticide rate appropriately across the field as 

needs varied based on predetermined field zones. Similar control of the target pest was reported 

with reduced rates of water volume and total pesticides applied. Castaldi et al. (2017) used a 

commercially available sprayer informed with imagery collected from a UAS to develop spray 

maps and spot treat patches of weeds in corn fields. Their results showed nearly a 40% decrease 

in herbicide used when selectively spraying with no significant difference in the crop or weed 

biomass compared to the broadcast treatment. Both Campos et al. (2020) and Castaldi et al. 

(2017) were able to create “treatment zones” and “weed patch” versions of site-specific spray 

maps that adjusted the rate of pesticide sprayed as site-specific needs within fields changed.  

Furthermore, both were applied with equipment common to today’s production systems. Castaldi 

et al. (2017) concluded that the efficiency of site-specific treatment was limited by the spatial 

resolution of the prescription map and the spatial resolution of the sprayer used. The equipment 

used in Castaldi et al. (2017) had an equipment resolution limited by two-meter boom sections 

leading them to classify treated areas as ‘patch’ treatments. Commercially available equipment 

now commonly has individually controlled nozzles on 50 cm spacing, which more closely 

approaches plant-by-plant site-specific capable applications.  
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The relatively recent adoption of pulse width modulated (PWM) spray technology in the 

agriculture industry has increased the accuracy and precision of pesticide rates and uniformity 

(Luck et al., 2011). PWM sprayers use highly responsive solenoids to turn on and shut off each 

nozzle at a duty cycle proportional to required flow rate (Butts, Luck, et al., 2019; Luck et al., 

2011). This gives PWM equipment the ability to adjust rate as low as individual 50 cm nozzle 

spacing. Individual nozzle control may be able to vary rates of products as needed across fields 

or to selectively treat areas as needed. Leveraging the high spatial resolution capabilities of 

recently adopted PWM sprayers may provide the equipment requirements needed for higher 

resolution site-specific applications.  

 

2.5 SSWM opportunities in today’s production systems 

Most of the post-emergent herbicides used commercially today are either selective or 

applied to herbicide tolerant (HT) crops (Meyer & Norsworthy, 2019). Selective herbicides 

include those that are only active on one type of plant with little or no adverse effects to other 

plants. Examples would be applying herbicide that controls only grasses to a broadleaf crop or 

applying a broadleaf herbicide to a monocot crop such as rice or corn. Genetically modified 

crops are also widely used in commercial production systems in the United States, including 

soybeans (Vialou et al., 2008). These crops are modified in a way that provides tolerance to 

certain herbicides, enabling the herbicide to be applied “over the top” of the crop canopy 

controlling only the target weeds (Bonny, 2016). First introduced in the 1990’s with glyphosate 

tolerant soybeans (Green, 2009), additional crops, herbicide tolerances, and even stacked (multi-

trait) tolerances are widely used in soybean fields in the United States and abroad (Bonny, 2016). 

While there is opportunity for savings on pesticide cost and reduced environmental impact with 
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SSWM workflows, the lack of consequences for applying these herbicides to the crop greatly 

reduces the accuracy demand and equipment resolution of selective and genetically tolerant 

herbicide applications. 

A SSWM workflow should be evaluated in the context of broadcast application efficacy 

expectations and anticipated improvements in application precision due to reductions in 

treatment areas and pesticide inputs. Since broadcast applications treat the entire field, all weeds 

are targeted. While all weeds are targeted, limitations of equipment, the application environment, 

and pesticide chemistries often inhibit 100% control. Therefore, for this research, a practical 

threshold was considered for positive weed detections approaching broadcast expectations while 

acknowledging some room for error or missed detections. Additionally, broadcast application 

precision is negatively influenced by the areas void of weeds that are unnecessarily treated. 

Reducing any unnecessary treatment areas therefore improve application precision. Optimized 

application precision would minimize the treatment of areas void of weeds while not 

inadvertently missing detections. Thresholds for evaluation metrics were therefore chosen in the 

context of practical workflow adoption of equal weed control and conservative improvements in 

application precision over currently practiced broadcast applications. 

   

2.6 Conclusion   

Using very high-resolution imagery collected from UAS platforms may provide the 

complete field scouting needed for SSWM. Weed identification within this imagery has been 

demonstrated with today’s publicly available deep learning models once properly trained. PWM 

application equipment can respond at a relatively fine resolution. The convergence of these three 

technologies may meet the foundational requirements for widespread adoption of site-specific 
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pesticide applications as described in Gebbers and Adamchuk (2010). SSWM may be possible 

with today’s equipment but one major limitation is a lack of robust, reliable, and user-friendly 

workflows (Sishodia et al., 2020). A workflow that combines the capabilities of these 

technologies and facilitates access to accurate treatment maps would dramatically reduce the 

volumes of post-emergent herbicides applied, reduce input cost for producers, and reduce 

environmental impact of weed management in production systems. Furthermore, in the case of 

selective herbicides or application made in genetically tolerant crops, the precision demands are 

much lower and may be feasible in current production systems. However, a workflow 

incorporating these converging technologies must be evaluated to ensure the integrity of a 

resulting applications efficacy. These evaluations should include weed detection accuracy of 

different CNN models, consideration for the spatial resolution requirements to meet acceptable 

accuracies, and the application efficacy resulting from treatments applied by the high-resolution 

capabilities of today’s application equipment.  

 

2.7 Significance of this dissertation  

This dissertation seeks to make two contributions to the field. A new high resolution 

dataset of Palmer amaranth in soybeans will be collected and annotated, one of the most 

common crops grown and challenging weeds to control in the Mississippi River Embayment. 

One of the primary limitations to applications of novel algorithms is adequate training data 

(Wang et al., 2019). This annotated dataset will be made available to be used for future 

advancements in object identification algorithms and potentially draw innovations from other 

industries into making application in this crop production system. Secondly, if successful, an 

automated workflow will be published that receives UAS field imagery as input, geolocates and 
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identifies Palmer amaranth, and exports a site-specific treatment layer that can be read by 

currently adopted field equipment. To the researcher’s knowledge, a workflow such as this is not 

available and can act as a foundation to improve or expand upon with other algorithms, target 

pests, and other crops in future research.  

Weed control remains one of the most costly and labor-intensive activities in modern 

crop production systems. The current practice of broadcast applications of pesticides to control 

weeds is expensive, often wasteful, and in some cases can negatively affect the environment. The 

successful creation of a site-specific treatment workflow could greatly reduce the input cost of 

producing food, feed, and fiber while reducing the environmental impacts of pesticide 

treatments. The cumulative effect of only applying pesticides to target organisms scaled across 

multiple applications, products, fields, and applicable production systems would be substantial.  

 

2.8 Research objectives 

The main goal of this dissertation research is to determine the prerequisites and 

limitations of a site-specific weed management workflow that leverages current UAS, deep 

learning models, and PWM spray technologies.  

The first objective is to evaluate the Palmer amaranth detection accuracy of open-source 

CNNs (RetinaNet, Faster R-CNN, SSD, and YOLO v3) trained on imagery of coarsening spatial 

resolution, measured in ground sample distance (GSD). Detection accuracy was to be assessed in 

the context of practical workflow adoption of equal weed control and conservative improvements 

in application precision over currently practiced broadcast applications. 
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The second objective is to compare the control of Palmer amaranth in soybean plots 

between broadcast herbicide treatment and a SSWM treatment informed by a UAS imagery, 

weeds detected by a CNN, and applied by a PWM sprayer. 
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The hypotheses in this study are:  

Ho1  None of 16 custom trained open-source models (4 CNNs x training imagery of 4 

spatial resolutions) will achieve > 0.80 precision results at Palmer amaranth detection in 

soybean field imagery. 

 

Ho2  None of 16 custom trained open-source models (4 CNNs x training imagery of 4 

spatial resolutions) will achieve > 0.95 recall results at Palmer amaranth detection in soybean 

field imagery. 

 

Ho3  None of 16 custom trained open-source models (4 CNNs x training imagery of 4 

spatial resolutions) will achieve > 0.90 F1-score results at Palmer amaranth detection in soybean 

field imagery. 

 

Ho4 None of 16 custom trained open-source models (4 CNNs x training imagery of 4 

spatial resolutions) will achieve a mean detection rate of 4 ha/h. 

 

Ho5  There are no significant (p < .05) differences in the mean treatment area (%) 

between plots sprayed with a broadcast rate and plots sprayed using prescription map generated 

by a SSWM workflow. 

 

Ho6  Plots selectively sprayed using prescription maps generated by a SSWM 

workflow will not achieve statically (p < .05) similar mean weed control compared with 

broadcast applications.  
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3.0  DETECTION OF PALMER AMARANTH IN SOYBEAN IMAGERY USING OPEN-

SOURCE CNNS.  

Abstract 

Deep learning has the potential to become a prominent analysis tool in agricultural image 

processing applications for their abilities at finding objects such as weeds in imagery that are not 

practical for a human observer to detect at field scales.  Automated and accurate detections could 

enable site-specific weed management (SSWM) workflows that selectively treat weeds amongst 

crops. High spatial resolution (0.4 cm) unmanned aircraft system (UAS) image streams were 

collected, annotated, and used to train 16 object detection convolutional neural networks (CNNs; 

RetinaNet, Faster R-CNN, Single Shot Detector, and YOLO v3 each trained on imagery with 

0.4, 0.6, 0.8, and 1.2 cm spatial resolutions). Model detection precision, recall, and F1-scores 

were compared on imagery from four production fields containing approximately 7,800 weeds. 

Model performance improved for all CNN as spatial resolution of imagery increased. The 

highest performing model was Faster R-CNN trained on 0.4 cm imagery (precision = 0.86, recall 

= 0.98, and F1-score = 0.91).  

 

3.1 Introduction 

Autonomous robot technology has great potential to revolutionize agriculture production 

equipment by enabling automated decisions on the go. Spot-treatment of pesticides or manual 

spot-removal of pests is one example in production systems where “smart” equipment has 

obvious application. By exclusively treating the areas that are impacted by a particular pest, the 

technology would significantly reduce the overall use and waste of these pesticides. One of the 
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most critical components of an autonomous field system is its ability for precise detection and 

localization of pests or targets (Gai et al., 2020).  

Today, weeds are identified through in situ field scouting, which has been established as 

laborious and often failing to capture the status of the entire field (Lambert et al., 2018; Varela et 

al., 2018). Once a weed ‘flush’ has been noted, a blanket treatment is prescribed to mitigate any 

competition between emerging weeds and the crop (Gianessi & Reigner, 2007; Sishodia et al., 

2020). Overuse, environmental damage (Wang et al., 2019), and emerging resistance issues have 

called into question the broadcasting all herbicides and the goal of site-specific weed 

management (SSWM) has emerged as a desirable alternative for some applications. Site-specific 

weed management involves the targeted treatment of weeds within crops resulting in reduced 

total volume of herbicides applied and reduced environmental impact (Mahlein, 2016).  

Research using proximal sensing of plant level weed targets with sensors mounted on 

ground-based equipment has found some commercial success at detecting green weeds amongst 

brown soil and crop residue (López-Granados, 2011). Known as green-on-brown detection, these 

examples exploit the spectral differences between living plants and non-plant material 

(Fernández-Quintanilla et al., 2018; Louargant et al., 2017). While real-time green-on-brown 

detection has been demonstrated to reduce chemical inputs, savings are limited to applications 

made prior to crop emergence, which has stifled their adoption (Fernández-Quintanilla et al., 

2018). Additional work has focused on real-time proximal sensing of weeds amongst crops or 

green-on-green (Lottes et al., 2017, 2020; Wang et al., 2019). Robust green-on-green detection 

requires the ability to differentiate between plant species and therefore is a much more 

challenging problem. Recent advancements in computer vision, deep learning algorithms, and 

specifically convolutional neural networks (CNNs) have demonstrated impressive object 
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detection abilities and if trained properly, may be up to the challenge of species-specific plant 

detection in agricultural production fields.  

Convolutional neural network’s gain their namesake from the multiple hidden layers 

where “filters” are convolved over input images to extract different information such as textures, 

edges, and patterns (Boulent et al., 2019). One primary advantage of CNNs, is that the 

architectures allow for the spatial information within imagery to be retained making them well 

suited for spatial imagery problems like object detection (Lambert et al., 2019). Furthermore, 

they have been shown to do well at generalizing, with the ability to robustly detect features in 

data slightly different than their training sets (Boulent et al., 2019). Successful detection 

demonstrations have been made in plant disease detection (Toda & Okura, 2019), weed detection 

(Lambert et al., 2019; Milioto et al., 2018) and classifying nutrient deficiencies (Dobbels & 

Lorenz, 2019). Convolutional neural network’s feature extraction precision is difficult to 

improve upon particularly when detecting small objects in remotely sensed imagery. Research 

has demonstrated the ability of CNNs to address the whole field identification need for site-

specific treatments with image classification accuracies from 95-99% when properly trained (He 

et al., 2017; Liang et al., 2019; Lin et al., 2019). Recently developed and open-source access to 

advanced object-detection CNNs such as Faster R-CNN, YOLO v3, SSD, and RetinaNet has 

provided opportunities for their evaluation in custom trained use cases.  

Nguyen et al. (2020) compared the performance of Faster R-CNN, SSD, YOLO v3, and 

RetinaNet at detecting vehicles in unmanned aircraft systems (UAS) and satellite imagery. 

Custom trained versions of each model were deployed on the VisDrone2019 dataset. Of these 

four CNNs, highest AP (IoU = 0.50) were achieved in car detections with RetinaNet (52.02), 

YOLO v3 (51.67), Faster R-CNN (46.85), and SSD (36.90).  
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Tan et al. (2021) evaluated the detection performance of RetinaNet, YOLO v3, and SSD 

at pill identification to assist pharmacist with unmarked medications. The custom trained 

RetinaNet model reported the highest mAP at 82.89%; however, detection rates were three times 

slower than the YOLO v3 model with a mAP of 80.69%. The real-time detection capabilities 

outweighed the slight accuracy differences and the authors reported that the YOLO v3 model 

would be a best fit for this use case.  

Evaluations of custom trained versions of these models have also been performed in 

agricultural applications. Li et al. (2020) custom trained and compared a Faster R-CNN, YOLO 

v3 and an SSD model to detect agriculture greenhouses in rural China. Greenhouses (18,385) 

were annotated in two-meter satellite imagery and used as training data in each of the model 

architectures. YOLO v3 provided the best results reported a mAP of 90.4%, followed by Faster 

R-CNN and SDD with mAP’s of 86.0% and 84.9%, respectively.  

Lou et al. (2022) used Faster R-CNN, YOLO v3 and SSD to detect loblolly pine tree 

crowns in UAS imagery. Two sites, differing in tree maturity were used to evaluate the models 

with SSD performing the best at both sites (R2 of 0.92 and 0.94 at the young and mature sites, 

respectively). YOLO v3 produced an R2 of 0.62 and 0.69 at the young and mature sites, 

respectively. Faster R-CNN produced an R2 value of 0.88 at the young site but failed to produce 

results at the mature site. 

 Vasconez et al. (2020) used a custom trained SSD and Faster R-CNN model to detect 

and count Avocado, apple, and lemon fruit on trees prior to harvest where 3,462 images of fruit   

Khan et al. (2021) used 2,800 images (0.3 cm GSD) of weeds to custom train and 

compare Faster R-CNN and YOLO v3 at weed detection in strawberry and pea fields. The 
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average weed identification accuracy was reported at 91.0% for YOLO v3 and 85.6% for Faster 

R-CNN.  

Many of the mentioned CNNs are designed as true real-time detections with frames per 

second metrics listed alongside reported accuracies. While these metrics are impressive and 

practical for many use cases, agriculture pesticide application equipment can cover 180 m2/sec 

(27 m sprayer boom traveling at 6.7 m/s velocity). The process of capturing a single frame, 

deciding on its contents, relaying that decision to mechanical solenoids to then turn on nozzles in 

real-time at field speeds is a processing challenge for today’s equipment. This is particularly true 

when scaled across common boom lengths (27 to 36 m). Improvements in onboard computer 

processing times are likely necessary before CNNs can be used for selective herbicide 

applications on-site and in real-time (Fernández-Quintanilla et al., 2018). 

 One potential solution is to use image streams from UAS equipped with high resolution 

RGB sensors to image a field prior to the application as part of in situ scouting. Automated weed 

detection could then be performed using a custom trained CNN on a separate, optimized 

computer platform alleviating the real-time processing bottleneck and the requirement of 

extensive onboard computing power.  

While CNN’s have demonstrated their ability in capturing weed conditions in UAS 

imagery to varying degrees better than observations made by traditional scouting techniques 

alone (Pantazi et al., 2017; Tamouridou et al., 2017); plant-level studies applying these modern 

CNNs to UAS imagery for site-specific decisions are lacking, and further research into weed 

mapping via UAS is warranted (Fernández-Quintanilla et al., 2018). For these workflows to be 

accurate and more practical for field applications, custom models are likely to be optimized at 
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detecting specific weeds in specific crops. Additionally, optimal spatial resolutions that balance 

detection accuracy and imagery collection efficiency must be determined. 

This research will compare four open-source object detection CNNs (RetinaNet, Faster 

R-CNN, SSD, and YOLO v3) trained on imagery of increasing spatial resolution (0.4, 0.6, 0.8, 

and 1.2 cm GSD) to detect Palmer amaranth in Glycine max (soybean) production systems. 

Palmer amaranth is listed as one of the most troublesome weeds in production agriculture in 

North America according to multiple surveys conducted by the Weed Science Society of 

America (Van Wychen, 2016, 2017, 2021).  

  

3.2 Training imagery collection, preprocessing, and annotation  

3.2.1  Training imagery collection site 

A series of three-meter by nine-meter plots were established at the Jackson County 

Extension Center (35.5715763°N, 91.2539575°W) located near Newport, Arkansas, USA 

(Figure 3.1). Each of the 104 soybean plots were either untreated or one of four replicated 

treatments that included 33 pre-emergent herbicide combinations. Plots were planted on June 

15th, and pretreatments applied June 16th of 2021. These treatments produce plots with staggered 

Palmer amaranth emergence and varying weed density (plants/m2). This induced variability was 

intended to mimic differences in Palmer amaranth size and populations found in production 

soybean fields. 
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Figure 3.1: Soybean plots with staggered Palmer amaranth emergence established to generate 

training samples. 

 

 

3.2.2  Training imagery collection 

Imagery was collected using a DJI Zenmuse X5s RGB sensor (iFlight Tech Company 

Ltd. Shenzhen, China) with the DJI micro 4/3 (MFT) lens (iFlight Tech Company Ltd. 

Shenzhen, China). This sensor and lens configuration has a 4/3” CMOS, 72o FOV, 15 mm focal 

length, f/1.7 focal ratio, and focus to infinite. Image resolution of the camera is 5280 × 3956 
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(20.8 MP). The X5s sensor was mounted onto a DJI Inspire II (iFlight Tech Company Ltd. 

Shenzhen, China) quadcopter (Figure 3.2).  

All UAS flights were conducted in class G airspace and by a licensed part 107 pilot in 

compliance with Federal Aviation Administration (FAA) regulations. Each unique collection 

event’s flight plan was built within the mobile application Pix4D Capture 4.13.1-1 (Pix4D Inc. 

Lausanne, Switzerland) to facilitate image capture for processing in Pix4Dmapper 4.6.4 (Pix4D 

Inc. Lausanne, Switzerland). Overlap settings were 80% front and 70% side for each flight. 

During collection events, the UAS was manually controlled at take-off, ascended to target 

altitude (18.30 m), and navigated into the target area using the mobile application DJI GO 4 

v4.3.46 (DJI Inc.). While hovering at altitude, the X5s’s focus, and exposure was optimized for 

each flight using the automated procedure within the DJI application where the operator selects 

objects displayed on the controller screen and the software adjusts sensor aperture and focus 

accordingly. The DJI application was then closed, and the automated flight plan was initiated in 

the Pix4D Capture application. Training imagery was collected two and four weeks after soybean 

emergence when soybeans were approximately at V3 (three trifoliate leaves) and V7 (seven 

trifoliate leaves) growth stages, respectively.  
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Figure 3.2: DJI Inspire II quadcopter with Zenmuse X5s sensor and DJI MFT 15mm lens.  

 

Table 3.1 shows the flight conditions while collecting the imagery used for training. Each 

flight was completed within two hours of local solar noon on their respective day to limit weed 

occlusion from shadowing. Altitude, flight velocity, image overlap, and GSD were held constant 

at 18.3 m, 1.83 m/s, and 0.4 cm. Average wind velocity was reported in 15-min increments from 

a Davis Vantage Pro2™ Premium Weather Station (Davis Instruments Corporation, Hayward, 

CA 94545 USA) that was located 270 m from collection sites. Wind velocity throughout each 

flight was stable at 1.56 and 2.24 m/s for flight one and two, respectively.  

 

Table 3.1: Flight information for training imagery collection events.  

 

 

Date Time  
(CST) 

Solar 
noon 
(CST) 

Altitude 
 (m) 

Overlap 
(Front, Side) 

Flight VEL  
(m/s) 

GSD  
(cm) 

Wind VEL 
(m/s) 

Growth 
Stage 

2021, July 8 11:17 to 11:26 h 13:10 h 18.30 80%, 70% 1.83 0.4 1.56 V3 

2021, July 23 14:30 to 14:38 h 13:11 h 18.30 80%, 70% 1.83 0.4 2.24 V7 
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3.2.3  Training imagery preprocessing and annotation 

Pix4Dmapper was used to co-register and orthorectify raw UAS images using the Ag 

RGB template. The rectified field orthomosaic (0.4 cm spatial resolution) was imported into 

ArcGIS Pro 2.8.2 (Esri inc. Redlands, California) for spatial analysis. Areas in the orthomosaic 

that corresponded to 100% pigweed cover (Figure 3.3), were removed from the orthomosaic 

because they were not representative of a field where a site-specific application would be 

applicable. The geoprocessing tool “Resample (Data Management Tools)” was applied to the 0.4 

cm spatial resolution layer to produce three additional, identical, but reduced spatial resolution 

orthomosaics (0.6, 0.8, and 1.2 cm GSD).  

 
 

Figure 3.3: Example area with 100% Palmer amaranth cover removed from training samples.  
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Artifacts (Palmer amaranths and broadleaf weeds) were labeled within the original (0.4 

cm GSD) orthomosaic using the “Label Objects for Deep Learning Tool”. Bounding boxes were 

placed around target weeds and given a class label either “pigweed” or “broadleaf.” Object that 

could be definitively identified as Palmer amaranth were labeled as “pigweed” and definitive 

weeds that were too small, partially occluded, or blurred were given the generic label 

“broadleaf”. This distinction is not necessary for field application since any positively identified 

weed should be treated; however, by creating and training with a very clearly defined “pigweed” 

class, a model likely would achieve higher accuracy when detecting Palmer amaranth within 

rows and amongst soybean plants. The “Label Objects for Deep Learning Tool” in ArcGIS Pro 

creates a vector layer of labeled and georeferenced bounding boxes can be associated with a 

raster layer. This layer, labeled on the highest resolution images set, was used as the input layer 

for each lower resolution raster in subsequent steps. This ensured that the labeled samples 

provided to each model were identical (i.e., number of labeled samples, framing of objects in 

bounding boxes, equally balanced classes) and only differing in the spatial resolution of the input 

raster. The “Export Training Data for Deep Learning Tool” was used to prepare imagery for 

training by dividing the rectified orthomosaic layer into uniform chips of pixels representing 2.5 

x 2.5 meters of field imagery. Image chip size was selected to ensured that each labeled chip 

contained three rows of soybeans, providing the model with context for weed identification. 

Exported chip resolution by image set included 0.4, 0.6, 0.8, and 1.2 cm resolutions, representing 

18.3, 26.3, 36.6, and 52.6 m flight altitude producing chips of 640 x 640, 480 x 480, 320 x 320, 

and 256 x 256 pixels, respectively. Image samples from each set are shown in Figure 3.4.  
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Figure 3.4: Image sets include 0.4, 0.6, 0.8, and 1.2 cm GSD representing 18.3, 26.3, 36.6, and 

52.6 m flight altitude producing chips of 640 x 640, 480 x 480, 320 x 320, and 256 x 256 pixels 

respectively. 

 

 

Training image chips were exported as TIFF files and associated metadata was exported 

in the PASCAL Visual Object Class format. This process was repeated for each of the four 

labeled orthomosaics, producing four training sets each containing 5,138 labeled weed samples 

represented in 0.4, 0.6, 0.8, and 1.2 cm spatial resolution imagery.  

0.4 GSD 640 x 640-pixel chips 0.6 GSD 480 x 480-pixel chips 

0.8 GSD 320 x 320-pixel chips 1.2 GSD 256 x 256-pixel chips 
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Table 3.2 summarizes mean, and standard deviation of the bounding boxes framed over 

each weed for each date and class. Additionally, the overall and class counts are reported. Figure 

3.5 illustrates example training imagery at different spatial resolutions and bounding box labels, 

representing pigweed and broadleaf classes.  

 

Table 3.2: Bounding box size and count information by training imagery flight. Bounding boxes 

tightly framed labeled weeds in training imagery and therefore correlated with weed size as 

represented by surface area in the orthomosaic.   

 
 All Classes Pigweed Broadleaf 

 Count Bounding box size (cm2) Count Bounding box size (cm2)  Count Bounding box size (m2) 

  Mean (SD)  Mean (SD)  Mean (SD) 

Flight 1 2509 300 (+/- 300) 1737 400 (+/- 400) 772 100 (+/- 100) 

Flight 2 2629 734 (+/- 514) 2559 743 (+/- 515) 70 379 (+/- 300) 
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Figure 3.5: Example training sample data of decreasing spatial resolution. Note. Example 

training sample data from July 8th, 2021, of decreasing spatial resolution 0.4, 0.6, 0.8, and 1.2 cm 

GSD representing 18.3, 26.3, 36.6, and 52.6 m flight altitude. Pigweed and broadleaf are labeled 

with green and red bounding boxes, respectively. 

 

 

3.3 Experimental Methods 

This experiment compared the dependent variables’ precision, recall, F1-score, and 

detection rate (ha/h) produced by independent variable “custom trained CNN” (CNNs: Faster R-

CNN, SSD, RetinaNet, and YOLO v3 each trained on imagery of spatial resolutions 0.4, 0.6, 0.8, 

and 1.2 cm). 

0.8 cm GSD 1.2 cm GSD 

0.4 cm GSD 0.6 cm GSD 
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3.3.1 Manually annotated key assessment 

 The results of model accuracy testing, and subsequent field accuracy testing, were 

derived from comparisons made to manually annotated keys that were labeled using the highest 

spatial resolution (0.4 cm GSD) orthomosaic for each field/image set. An evaluation was 

conducted to assess the accuracy of detecting small weeds in these orthomosaic derived weed 

labels. A production field was imaged that contained a variation of weed sizes including a recent 

flush of very small weeds (< 2.5 cm height). RTK corrected GNSS ground reference location, 

weed size, and weed classification (pigweed and broadleaf) were collected for each weed 

through in situ field scouting on the date that imagery was collected. The weeds in the 

orthomosaic were labeled as described in section 3.3.2. This labeled layer was then compared to 

the in situ collected ground reference objects and true positive, false positive, and false negative 

results are reported. From these detection results, recall by weed size was assessed to evaluate 

the ability of UAS derived orthomosaics to model small weeds (< 2.5 cm height).  

3.3.2 Model training 

ArcGIS Pro was used to train each of the models through the “Train Deep Learning 

Model (Image Analysis tools)”. Parameters for model training can be found in Table 3.3. The 

experimental platform configuration used for testing was the following: OS, Windows 10; GPU 

NVIDIA Quadro RTX 3000 with Max-Q Design; CPU, Intel® Core™ i7-1065 G7 CPU @ 1.30 

GHz with 32 Gb of RAM. All 16 models were trained on this configuration. The orthomosaics 

used for training data were split into ninety percent by area for training and ten percent by area 

withheld for testing. Within the training imagery the data were split again 90 percent of the 
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training chips were used for training and ten percent were used for validation between epochs. 

Upon training completion, the results of the final validation set were reported for each model.  

Table 3.3 summarizes the training parameters for the 16-custom trained CNNs evaluated. 

The same backbone model (Resnet-50) was used for CNNs RetinaNet, Faster R-CNN, and SSD. 

A different backbone model was used for YOLO v3 because it is exclusively compatible with 

Darknet-53. Both backbone models were trained on the ImageNet data set containing over one 

million images and were of similar size measured by their convolutional layers (50 and 53 layers 

for Resnet-50 and DarkNet-53, respectively). Image size (pixels) was adjusted proportionally 

with training imagery GSD so that each training image represented identical data or area in the 

field. Learning rate was automatically determined for each model within the training tool and is 

reported in Table 3.3. Batch size was limited by dedicated GPU memory on the training 

hardware and was held constant at two. Max epochs were set to 20.  
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Table 3.3: Training parameters for 16 custom trained CNNs. 

 
Model Number CNN Backbone 

model 
Image 

resolution 
(cm GSD) 

Image 
size 

(pixels) 

Learning Rate Batch 
size 

Max 
Epochs  

1 RetinaNet Resnet-50 0.4 640 x 640 0.00001, 0.0001 2 20 

2 RetinaNet Resnet-50 0.6 480 x 480 0.00004, 0.0004 2 20 

3 RetinaNet Resnet-50 0.8 320 x 480 0.00002, 0.0002 2 20 

4 RetinaNet Resnet-50 1.2 256 x 256 0.00002, 0.0003 2 20 

5 Faster R-CNN Resnet-50 0.4 640 x 640 0.000004, 0.00004 2 20 

6 Faster R-CNN Resnet-50 0.6 480 x 480 0.000004, 0.00004 2 20 

7 Faster R-CNN Resnet-50 0.8 320 x 480 0.000005, 0.00005 2 20 

8 Faster R-CNN Resnet-50 1.2 256 x 256 0.000004, 0.00004 2 20 

9 SSD Resnet-50 0.4 640 x 640 0.0002, 0.002 2 20 

10 SSD Resnet-50 0.6 480 x 480 0.0002, 0.002 2 20 

11 SSD Resnet-50 0.8 320 x 480 0,0004, 0.004 2 20 

12 SSD Resnet-50 1.2 256 x 256 0.0006, 0.006 2 20 

13 YOLO v3 DarkNet-53 0.4 640 x 640 0.0002, 0.002 2 20 

14 YOLO v3 DarkNet-53 0.6 480 x 480 0.00008, 0.0008 2 20 

15 YOLO v3 DarkNet-53 0.8 320 x 480 0.0001, 0.001 2 20 

16 YOLO v3 DarkNet-53 1.2 256 x 256 0.0003, 0.003 2 20 

 

3.3.3 Model testing 

Once trained each model was used to detect weeds on the ten percent of imagery 

withheld for testing. Testing parameters are summarized in Table 3.4. ArcGIS Pro’s “Detect 

Objects Using Deep Learning (Image Analysis)” tool was used with detection thresholds set to 

0.05. Padding was applied at ten percent of image pixel dimensions. Batch size was held constant 

at two. To gain a better measure of model accuracy, a Non-Maximum Suppression (NMS) 

algorithm was used as a post processing step to remove excessively overlapping, duplicate 

detections with an intersection over union (IoU) at or above 0.1. The “Compute Accuracy for 

Object Detection (Image Analyst Tool) was used to compare predictions made by each model to 
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the manually annotated key using an IoU of 0.5. True positive, false positive, and false negative 

detection results were organized and used to calculate precision, recall, and F1-scores.  

 

Table 3.4: Model testing parameters. 

 
Model Number CNN Image 

resolution 
(cm GSD) 

Image 
size 

(pixels) 

Batch 
size 

Padding 
(pixels) 

Detection 
threshold  

NMS 
threshold 

(IoU) 

1 RetinaNet 0.4 640 x 640 2 64 0.05 0.1 

2 RetinaNet 0.6 480 x 480 2 48 0.05 0.1 

3 RetinaNet 0.8 320 x 480 2 32 0.05 0.1 

4 RetinaNet 1.2 256 x 256 2 26 0.05 0.1 

5 Faster R-CNN 0.4 640 x 640 2 64 0.05 0.1 

6 Faster R-CNN 0.6 480 x 480 2 48 0.05 0.1 

7 Faster R-CNN 0.8 320 x 480 2 32 0.05 0.1 

8 Faster R-CNN 1.2 256 x 256 2 26 0.05 0.1 

9 SSD 0.4 640 x 640 2 64 0.05 0.1 

10 SSD 0.6 480 x 480 2 48 0.05 0.1 

11 SSD 0.8 320 x 480 2 32 0.05 0.1 

12 SSD 1.2 256 x 256 2 26 0.05 0.1 

13 YOLO v3 0.4 640 x 640 2 64 0.05 0.1 

14 YOLO v3 0.6 480 x 480 2 48 0.05 0.1 

15 YOLO v3 0.8 320 x 480 2 32 0.05 0.1 

16 YOLO v3 1.2 256 x 256 2 26 0.05 0.1 

 

3.3.4 Model Metrics  

Trial size and model specific detection time (min) were recorded and used to calculate 

model-trial specific detection rates (ha/h). Precision and recall were calculated for each of the 

sixteen model results by comparing detections to the keyed layer detections using an IoU of 0.5 

(Equation 3.1 and Figure 3.6).  
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Equation 3.1: Formula used to calculate Intersection over Union between ground reference layer 

and predictions. 

 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 
= IoU 

 

 

 

 

 

 

 

Figure 3.6: Visualization of IoU.  

 

Precision was defined as the ratio of true positive detections of the positive detections 

made. While precision was important to reduce unnecessary treatments, it was considered 

indirectly as an input in calculating F1-scores for each model output. Precision was calculated 

using the Equation 3.2.  

 

Equation 3.2: Precision equation  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

  

Recall was defined by the ratio of true positive detections to true positives in the dataset 

including those not detected. Since the cost of not detecting weeds is much higher than 

Area of 

Intersection 

Area of 

Union 
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unnecessarily applying herbicides to crop, priority was given to models with high recall. Recall 

was calculated using Equation 3.3.  

 

Equation 3.3: Recall equation  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

The harmonized mean of precision and recall is known as F1-score. Secondary to model 

recall, F1-score was used to evaluate model results using Equation 3.4. 

 

Equation 3.4: F1-score calculation  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

3.3.5 Field trial collection sites  

Subsections of four soybean fields were used as replications for model deployment 

evaluation at the Jackson County Extension Center (35.5715763°N, 91.2539575°W) located near 

Newport, Arkansas, USA (Figure 3.7) in 2021 and 2022. Soybean rows in each field were 

planted at 76 cm spacing, soybean maturity differed slightly amongst replications, but all were 

middle to late vegetative growth stages (four to seven trifoliate leaves, V4-V7) entering 

reproductive stages (beginning flower, R1). Palmer Amaranth was the predominant weed species 

with size (height) spanning between emergent (in one field) and 60 cm. 
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Figure 3.7: Locations of four field trials conducted in 2021 and 2022.  

 

UAS imagery in each field was collected within two hours of local solar noon on their 

respective day to limit weed occlusion from shadowing. Altitude, flight velocity, image overlap, 

and GSD were held constant at 18.3 m, 1.83 m/s, and 0.4 cm. Imagery was collected using a DJI 

Zenmuse X5s RGB sensor (iFlight Tech Company Ltd. Shenzhen, China) with the DJI micro 4/3 

(MFT) lens (iFlight Tech Company Ltd. Shenzhen, China). This sensor and lens configuration 

has a 4/3” CMOS, 72o FOV, 15 mm focal length, f/1.7 focal ratio, and focus to infinite. Image 

resolution of the camera is 5280 × 3956 (20.8 MP). The X5s sensor was mounted onto a DJI 

Inspire II (iFlight Tech Company Ltd. Shenzhen, China) quadcopter.  

All UAS flights were conducted in class G airspace and by a licensed part 107 pilot in 

compliance with Federal Aviation Administration (FAA) regulations. Each unique collection 

 

 91°15'15"W 35°34'18"N 
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event’s flight plan was built within the mobile application Pix4D Capture 4.13.1-1 (Pix4D Inc. 

Lausanne, Switzerland) to facilitate image capture for processing in Pix4Dmapper 4.6.4 (Pix4D 

Inc. Lausanne, Switzerland) where80% front overlap and 70% side overlap were used for each 

flight.  

During collection events, the UAS was manually controlled at take-off, ascended to target 

altitude, and navigated into the target area using the mobile application DJI GO 4. While 

hovering at altitude, the X5s’s focus, and exposure was optimized for each flight using the 

automated procedure within the DJI application where the operator taps on objects displayed on 

the controller screen and the software adjusts sensor aperture and focus accordingly. The DJI 

application was then closed, and the automated flight plan was initiated in the Pix4D Capture 

application.  

3.3.6 Data analysis  

True positive, false negative, and false positive detection results were aggregated from 

each of the four field deployments and used to calculate individual model precision, recall, and 

F1-scores. Detection times (min) along with trial area (m2) were noted and used to calculate 

model detection rates (ha/h). Precision, recall, F1-scores, and model detection rate, for each of 

the four trials were also averaged to obtain the mean and standard deviation of each individual 

model across the four fields.  

 

3.4 Results 

This section will display, describe, and compare the dependent variables (precision, 

recall, F1-scores, and model detection rates) results for the independent variable “custom trained 

CNN” (CNNs; RetinaNet, Faster R-CNN, Single Shot Detector, and YOLO v3 each trained on 
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imagery with 0.4, 0.6, 0.8, and 1.2 cm spatial resolutions). First, the assessment of the 

orthomasic derived weed key is reported. Next, the training, model validation, and the initial 

model testing are discussed. Finally, the results of model field deployment in four production 

fields and resulting precision, recall, and calculated F1-scores are summarized.  

3.4.1 Evaluation of orthomosaic derived key 

The results of each weed detection experiment were compared to a manually annotated 

key that was labeled using the highest spatial resolution (0.4 cm) image sets. An evaluation was 

conducted to assess the accuracy of these orthomosaic derived weed labels. Table 3.5 

summarizes the true positive, false positive, false negative, and recall results of comparing the 

orthomosaic labeled objects to the in situ collected ground reference objects. Figure 3.8 

illustrates the recall results by weed size. Figure 3.9 illustrates the orthomosaic derived key recall 

by specific weed size classes (All sizes, > 2.5 cm, > 5.0 cm, and >7.5 cm).   

 

Table 3.5: Orthomosaic derived key compared with in situ ground observations. 

 

 

 

 

 

 

 

 

 

 

 

 

Weed height 

(cm) 

True 

Positive 

False 

Positive 

False 

Negative 
Recall 

All 364 12 66 0.83 

> 2.5 361 15 30 0.92 

> 5.0 339 37 16 0.96 

> 7.5 250 126 9 0.97 
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Figure 3.8: Comparison of orthomosaic derived key compared with in situ ground observations.  

 

The evaluated orthomosaic derived key produced a recall of 0.83 for all weeds observed 

through in situ scouting. Most weeds missed by orthomosaic labeling were those that were < 2.5 

cm in height. This category primarily consisted of weeds that were emerging and represented by 

a very small group of or no pixels in orthomosaics at 0.4 cm spatial resolution. Recall increased 

to 0.92, 0.96, and 0.97 as the weed size threshold was increased to > 2.5, > 5.0, and > 7.5 cm, 

respectively. Figure 3.9 illustrates the decreasing ability to label weeds < 2.5 cm in height (recall 

= 0.08) in orthomosaics. Weed categories 2.5 > 5.0 and >5.0 cm in height obtained a recall of 

0.86 and 0.93, respectively.  
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Figure 3.9: Recall of small weeds labeled within the orthomosaic key.  

 

   

3.4.2 Model validation results 

As part of the training process, a subset of imagery was automatically withheld for 

validation and used to estimate model accuracy while tuning hyperparameters. Once a model 

finishes training, the results of the validation test after its final epoch are supplied as part of 

results. Since training was completed with two classes, broadleaf and pigweed, accuracies of 

both classes are reported. Table 3.6 summarizes the epochs completed, training times, and final 

validation accuracy results for the 16 trained CNNs. Models RetinaNet at 0.4, 0.8, and 1.2 cm 

GSD automatically stopped training short of completing 20 epochs because of a lack of 

improvement. The remaining 13 models completed the maximum 20 epochs.  
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Training times are illustrated for individual models in Figures 3.10. Faster R-CNN with 

0.4 cm spatial resolution imagery had the longest single training time at 401 min, followed by 

Faster R-CNN trained on 0.6 cm spatial resolution (257 min), YOLO v3 trained on 0.4 cm 

spatial resolution (225 min), and RetinaNet trained on 0.4 cm spatial resolution (168 min). A 

consistent decrease in training time is noted with a decrease in imagery spatial resolution for 

each CNN except for SSD trained on 0.6 cm imagery and YOLO v3 trained on 0.6 cm imagery 

which deviated from this pattern.  

 

Table 3.6: Training parameters for 16 custom trained CNNs. 

 
Model 

Number 

CNN Spatial 

resolution 

(cm) 

Epochs 

completed 

(Max 20) 

Training 

Time 

(min) 

Reported 

Accuracy 

Pigweed 

Reported 

Accuracy 

Broadleaf 

1 RetinaNet 0.4 16 168 0.60 0.10 

2 RetinaNet 0.6 20 101 0.64 0.17 

3 RetinaNet 0.8 18 75 0.40 0.00 

4 RetinaNet 1.2 19 44 0.24 0.00 

5 Faster R-CNN 0.4 20 401 0.80 0.65 

6 Faster R-CNN 0.6 20 257 0.84 0.63 

7 Faster R-CNN 0.8 20 163 0.82 0.55 

8 Faster R-CNN 1.2 20 97 0.78 0.61 

9 SSD 0.4 20 108 0.55 0.33 

10 SSD 0.6 20 16 0.63 0.35 

11 SSD 0.8 20 39 0.47 0.05 

12 SSD 1.2 20 21 0.42 0.17 

13 YOLO v3 0.4 20 225 0.67 0.44 

14 YOLO v3 0.6 20 40 0.70 0.58 

15 YOLO v3 0.8 20 83 0.52 0.68 

16 YOLO v3 1.2 20 46 0.60 0.53 
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Figure 3.10: Training times of 16 custom trained models. Experimental platform configuration 

used for testing was the following: OS, Windows 10; GPU NVIDIA Quadro RTX 3000 with 

Max-Q Design; CPU, Intel® Core™ i7-1065 G7 CPU @ 1.30 GHz with 32 Gb of RAM. Batch 

size 2 and max epoch 20.  

 

 

Training losses are the sum of errors at the end of the training session within each epoch. 

Likewise, validation losses are the sum of errors at the end of validation session within each 

epoch. Models that fit data better with each subsequent epoch will show parallel reductions in 

training and validation losses. Each of the CNN architectures tested, calculate these losses 

differently as represented by their y-axis scale and should not be directly compared numerically. 

However, the stable decrease in losses over training epochs (measured in batch process) indicates 

that the data is being modeled with increasing accuracy (Figure 3.11). The loss functions of both 

Faster R-CNN and YOLO v3 across all GSD training sets showed a steady and stable reduction 

in both training and validation losses over epochs suggesting good fits to the training data and 

the parallel decrease in validation losses indicate the ability to generalize. The loss function of 
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RetinaNet and SSD show irregular spikes in the validation losses particularly at decreased spatial 

resolutions suggesting poorer fit with the data. This suggests that RetinaNet and SSD was not 

able to generalize well with this data set compared to the other models evaluated. 

The validation results by class are summarized in Table 3.4 and illustrated in Figure 3.12. 

Except for YOLO v3 at 0.8 GSD, all models had higher pigweed class detection accuracies 

compared with the broadleaf class. This is likely because the pigweed class was objects (weeds) 

that were of large enough size and maturity that they were easily and definitively identified as 

pigweeds. Whereas the more generic broadleaf class were those definitive weeds needing to be 

targeted but with lower confidence of their specific species, most often due to their size. Lower 

confidence and poor detection accuracy shown in the broadleaf class illustrates the ambiguous 

line provided in the imagery between definitive pigweed and definitive weed. Since both classes 

are targets of herbicide treatment, in subsequent testing, model outputs are combined into a 

single class and evaluated as such on their detection accuracy. 

Considering individual model accuracy results, Faster R-CNN across all resolutions 

outperformed all other models at pigweed detection. Apart from YOLO v3 trained on 0.8 spatial 

resolution imagery, Faster R-CNN reported a higher broadleaf detection accuracy than all other 

models when comparing models trained on equivalent spatial resolution image sets.  
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Figure 3.11: Loss functions of 16 models across batch process while training. The loss functions 

of both Faster R-CNN and YOLO v3 across all GSD training sets showed a steady and stable 

reduction in both training and validation losses over epochs suggesting good fits to the training 

data and the parallel decrease in validation losses indicate the ability to generalize. The loss 

function of RetinaNet and SSD show irregular spikes in the validation losses particularly at 

decreased spatial resolutions suggesting poorer fit with the data. This suggests that RetinaNet 

and SSD was not able to generalize well with this data set compared to the other models 

evaluated. 
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Figure 3.12: Validation results of 16 custom trained models evaluating two classes (pigweed and 

broadleaf). 

 

3.4.3 Model testing results 

Separate from that used for model validation in the training process, ten percent of the 

training imagery was held for model testing. This imagery was sampled from the same fields and 

flights as that used for training. Therefore, the results provide some indication of each model’s 

ability to detect weeds that it has not seen but in identical environmental conditions that were 

presented in training. This section summarizes the results of model testing using this ten percent 

of training imagery withheld for testing. Detection times, true positive, false positive, false 

negative, precision, recall, and accuracy (F1-score) from these tests are displayed in Table 3.7.  
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Table 3.7: Model testing results for 16 custom trained models (0.05 detection threshold) 

 
Model 

Number 

CNN Resoluti

on (cm 

GSD) 

Detection 

Time 

(min) 

True 

Positives 

False 

Positives  

False 

Negatives 

Precision Recall Accuracy 

(F1-Score) 

1 RetinaNet 0.4 11.50 582 17992 229 0.03 0.72 0.06 

2 RetinaNet 0.6 6.50 499 7397 313 0.06 0.62 0.11 

3 RetinaNet 0.8 2.75 295 4696 517 0.06 0.36 0.10 

4 RetinaNet 1.2 2.50 146 4057 666 0.03 0.18 0.06 

5 Faster R-CNN 0.4 18.00 762 188 34 0.80 0.96 0.87 

6 Faster R-CNN 0.6 9.00 678 224 118 0.75 0.85 0.80 

7 Faster R-CNN 0.8 6.00 666 309 130 0.68 0.84 0.75 

8 Faster R-CNN 1.2 3.50 587 314 210 0.65 0.74 0.69 

9 SSD 0.4 5.75 331 257 331 0.56 0.50 0.53 

10 SSD 0.6 2.00 225 354 439 0.37 0.34 0.35 

11 SSD 0.8 2.00 9 109 655 0.08 0.01 0.20 

12 SSD 1.2 1.50 101 594 563 0.15 0.15 0.15 

13 YOLO v3 0.4 9.45 484 450 163 0.92 0.86 0.89 

14 YOLO v3 0.6 4.45 584 59 63 0.86 0.82 0.84 

15 YOLO v3 0.8 3.00 459 149 188 0.75 0.68 0.71 

16 YOLO v3 1.2 1.75 285 349 363 0.45 0.42 0.43 

Precision 

True positive and false positive detections were used to calculate precision results. 

Precision metrics grouped relatively close by CNN (Figure 3.13). Comparing models trained on 

imagery of the same spatial resolution, YOLO v3 reported the highest precision results (0.92, 

0.86, and 0.75) for spatial resolutions 0.4, 0.6, and 0.8, respectively. Faster R-CNN reported the 

second highest and most tightly grouped precision results across spatial resolutions (0.80, 0.75, 

0.68, and 0.65) for spatial resolutions 0.4, 0.6, 0.8, and 1.2 cm. The top three individual model 

precision results were YOLO v3 trained on 0.4 cm spatial resolution imagery (0.92), YOLO v3 

trained on 0.6 cm spatial resolution imagery (0.86), and Faster R-CNN trained on 0.4 cm spatial 

resolution imagery (0.80). RetinaNet precision results were consistently the poorest with no 

model’s precision results exceeding 0.06. 
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Figure 3.13: Precision of model testing for 16 models (four CNNs trained on imagery of spatial 

resolutions 0.4, 0.6, 0.8, and 1.2 cm). 

 

Recall 

True positive and true negative detections were used to calculate recall results. Individual 

model recall results ranked consistently by CNN when comparing respective resolutions with 

Faster R-CNN performing the best, followed by YOLO v3, RetinaNet, and SSD (Figure 3.14). 

Models trained on the highest spatial resolution imagery (0.4 cm GSD) produced a recall of 0.96, 

0.86, 0.72, and 0.50 for Faster R-CNN, YOLO v3, RetinaNet, and SSD, respectively. Subsequent 

resolutions ranked CNNs identically. The top three recall results were produced by Faster R-

CNN at 0.4 cm GSD, YOLO v3 at 0.4 cm GSD, and Faster R-CNN at 0.6 cm GSD (0.96, 0.86, 

and 0.85 respectively). 
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Figure 3.14: Recall of model testing for 16 models (four CNNs trained on imagery of spatial 

resolutions 0.4, 0.6, 0.8, and 1.2 cm). 

F1-Scores 

F1-scores were calculated using individual model precision and recall results. Individual 

model F1-scores closely mirrored individual precision results (Figure 3.15). YOLO v3 trained on 

0.4 cm spatial resolution imagery produced the highest F1 measure (F1 = 0.89), followed by 

Faster R-CNN trained on 0.4 cm spatial resolution imagery (F1 = 0.87), YOLO v3 trained on 0.6 

cm spatial resolution imagery (F1 = 0.84), and then Faster R-CNN trained on 0.6 cm spatial 

resolution imagery (F1 = 0.80). The remaining models all produced F1 measures below 0.76. 

RetinaNet consistently produced the lowest F1 measure with no model exceeding 0.11.  
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Figure 3.15: F1-scores of model testing for 16 models (four CNNs trained on imagery of spatial 

resolutions 0.4, 0.6, 0.8, and 1.2 cm). 

 

Detection times 

As shown in Figure 3.16, model detection times (min) are reported instead of detection 

rates (ha/h) for each CNN. Since, training chips were an aggregation of multiple flights, it was 

not feasible to estimate imaged area (ha) to calculate detection rates. For detection times within 

each CNN, times consistently increased with increasing spatial resolution. The most notable 

jump in detection times of CNNs were between models trained on 0.4 and 0.6 cm spatial 

resolution. Comparing models of the same spatial resolution, Faster R-CNN’s detection times 

were longer than any other CNN followed by RetinaNet, YOLO v3, and SSD.  
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Figure 3.16: Detection times (min) of model testing for 16 models (four CNNs trained on 

imagery of spatial resolutions 0.4, 0.6, 0.8, and 1.2 cm). 

 

3.4.4 Model deployment results  

The 16 custom trained models were deployed in four different production fields. The 

individual detection results of each field deployment and aggregate detection are discussed in 

this section. Field variability of the four deployment fields including crop size, weed size, 

soybean row development, soil, plant and weed color contrast. Additionally, some fields 

contained miscellaneous weeds that were not included in training imagery. This variability 

between individual fields is described as part of detection results to provide indications of 

expected model performance in other similar fields and future deployments. Analysis of 

aggregate results is completed to evaluate models’ ability to generalize across the deployment 

field conditions.  
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3.4.5 Individual field results from for field deployments 

Soybean plants in field one where in late vegetative stages (six to seven trifoliate leaves) 

and large enough that they had consolidated into continuous rows (Figure 3.17). Pigweeds were 

numerous with a weed density of 0.96 weeds/m2. Soil color in imagery was bright due to low soil 

moisture and contrasted well with plants. Pigweed color on the day of collection appeared a 

brighter green than soybean plants. Because of imagery collection time occurring near local solar 

noon, shadows were minimal. Additionally, it was noted that there were evenly distributed 

examples of Sorghum halepense (Johnson grass) and sparce examples of Ipomoea (morning 

glory) present, neither were represented in training imagery. The Sorghum halepense were 

appropriately ignored by the model since no grass was targeted, while the Ipomoea (morning 

glory) were properly grouped into the broadleaf weed category. Once detections were made, 

classes were grouped and evaluated as single class.  

 
 

Figure 3.17: Ten-row example image from field one. Soybean plants have merged into 

continuous rows, weeds are relatively large, and grass weeds are present.  
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Field one precision, recall, F1-scores, and detection rates (ha/h) are displayed in Table 

3.8. The highest precision results for field one deployment were achieved by Faster R-CNN 

trained on 0.4 cm spatial resolution imagery (precision = 0.89), followed by Faster R-CNN 

trained on 0.6 (precision = 0.75) and 0.8 (precision = 0.69) cm spatial resolution. The top three 

recall results for the individual models were Faster R-CNN trained on 0.4 spatial resolution 

imagery (recall = 0.99), YOLO v3 trained on 0.4 spatial resolution imagery (recall = 0.90) and 

Faster R-CNN trained on 0.6 spatial resolution imagery (0.88). The top three individual model 

F1-score ranking were identical to precision rankings, Faster R-CNN trained on 0.4 cm spatial 

resolution (F1-score = 0.94), followed by Faster R-CNN trained on 0.6 (F1-score = 0.82) and 0.8 

(F1-score= 0.76) cm spatial resolution. Detection rates (ha/h) increased as spatial resolution 

coarsened across all CNNs. The fastest detection rates were achieved by YOLO v3 trained on 1.2 

cm spatial resolution at 8.82 ha/h, followed by SSD trained on 1.2 cm spatial resolution imagery 

at 8.01 ha/h, and SSD trained on 0.6 cm spatial resolution imagery at 6.78 ha/h. RetinaNet 

trained on 0.4 cm spatial resolution imagery produced the slowest detection rate of 0.79 ha/h, 

followed by Faster R-CNN trained on 0.4 spatial resolution imagery (detection rate = 1.66).  
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Table 3.8: Field deployment results for 16 custom trained models on field one (IoU 0.5). Highest 

performance metrics are bolded. 

 
Model Number Model Resolution 

(cm GSD)  

Detection rate 

(ha/h) 

Precision Recall F1-Score 

1 RetinaNet 0.4 0.79 0.02 0.70 0.03 

2 RetinaNet 0.6 2.32 0.04 0.61 0.08 

3 RetinaNet 0.8 3.67 0.04 0.36 0.07 

4 RetinaNet 1.2 5.51 0.02 0.14 0.04 

5 Faster R-CNN 0.4 1.66 0.89 0.99 0.94 

6 Faster R-CNN 0.6 2.84 0.75 0.88 0.82 

7 Faster R-CNN 0.8 3.53 0.69 0.86 0.76 

8 Faster R-CNN 1.2 6.30 0.57 0.73 0.64 

9 SSD 0.4 3.53 0.40 0.26 0.32 

10 SSD 0.6 6.78 0.33 0.28 0.30 

11 SSD 0.8 6.30 0.12 0.15 0.14 

12 SSD 1.2 8.01 0.09 0.14 0.12 

13 YOLO v3 0.4 2.32 0.62 0.90 0.73 

14 YOLO v3 0.6 4.41 0.63 0.67 0.55 

15 YOLO v3 0.8 5.88 0.48 0.57 0.52 

16 YOLO v3 1.2 8.82 0.25 0.39 0.31 

 

Soybean plants in field two imagery were more mature than field one and were at R1 

growth stage (beginning flowering) (Figure 3.18). More mature plants produced more uniform 

rows and narrower views of furrows. Pigweeds were of similar size to field one but were sparce 

by comparison (weed density = 0.42 weeds/m2). There were Solanum carolinense (horse nettle) 

broadleaf weeds present in field two imagery. Pigweed color and leaf size closely resembled 

soybean plants. Soil color in field two imagery was blotchy and darker due to higher moisture 

content. Crop residue left over from previous seasons harvest was present as well as some 

soybean leaves that had dropped triggering some false positives and reducing precision.  
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Figure 3.18: Ten-row example image from field two. Soybean plants are more mature, pigweeds 

sparce, and soil is of varying color and contains residue.  

 

 

Field two precision, recall, F1-scores, and detection rates (ha/h) are displayed in Table 

3.9. Precision results dropped steeply on field two imagery across all CNNs with the highest 

precision results peaking at 0.51 achieved by YOLO v3 trained on 0.4 cm spatial resolution, 

followed by SSD trained on 0.4 (precision = 0.47) and Faster R-CNN trained on 0.4 cm spatial 

resolution (precision = 0.40). The top three recall results for the individual models were Faster 

R-CNN trained on 0.4, 0.6 and 0.8 spatial resolution imagery (recall = 0.98, 0.88, 0.81, 

respectively). Like in field one, the top three individual model F1-score ranking were identical to 

precision rankings, YOLO v3 trained on 0.4 cm spatial resolution (F1-score = 0.59), followed by 

Faster R-CNN trained on 0.4 spatial resolution (F1-score = 0.56) and SSD trained on 0.8 cm 

spatial resolution (F1-score= 0.42). Detection rates (ha/h) increased as spatial resolution 

coarsened across all CNNs with only a couple exceptions (SSD and YOLO v3 trained on 0.6 and 
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0.8 cm spatial resolutions). Fastest detection rates were achieved by YOLO v3, and SSD trained 

on 1.2 cm spatial resolution (both 3.03 ha/h), Followed by Faster R-CNN trained on 1.2 cm 

spatial resolution imagery (detection rate = 2.48 ha/h). RetinaNet trained on 0.4, and 0.6 spatial 

resolutions and Faster R-CNN at 0.4 GSD produced the slowest three detection rates of 0.36, 

0.62, and 0.62 ha/h, respectively. 

 

Table 3.9: Field deployment results for 16 custom trained models on trial two (IoU 0.5). Highest 

performance metrics are bolded.  

 

Model 

Number 

Model Resolution 

(cm GSD)  

Detection 

rate (ha/h) 

Precision Recall F1-Score 

1 RetinaNet 0.4 0.36 0.00 0.64 0.01 

2 RetinaNet 0.6 0.62 0.01 0.50 0.01 

3 RetinaNet 0.8 0.68 0.00 0.36 0.01 

4 RetinaNet 1.2 1.30 0.00 0.19 0.01 

5 Faster R-CNN 0.4 0.62 0.40 0.98 0.56 

6 Faster R-CNN 0.6 0.64 0.12 0.88 0.21 

7 Faster R-CNN 0.8 1.30 0.13 0.81 0.22 

8 Faster R-CNN 1.2 2.48 0.07 0.60 0.13 

9 SSD 0.4 0.85 0.47 0.38 0.42 

10 SSD 0.6 1.95 0.08 0.23 0.07 

11 SSD 0.8 1.30 0.05 0.15 0.07 

12 SSD 1.2 3.03 0.02 0.08 0.03 

13 YOLO v3 0.4 0.80 0.51 0.70 0.59 

14 YOLO v3 0.6 1.24 0.21 0.52 0.30 

15 YOLO v3 0.8 1.09 0.17 0.42 0.25 

16 YOLO v3 1.2 3.03 0.09 0.25 0.13 

 

Soybean plants in field three where in late vegetative stages (five to six trifoliate leaves) 

and were large enough that they had consolidated into continuous rows (Figure 3.19). Weed 
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density in field three was 0.64 weeds/m2. Soil color in imagery was bright due to low soil 

moisture, smooth, and contrasted well with plants. Pigweed color on the day of collection 

appeared a brighter green than soybean plants. There was some minimal shading on one side of 

the soybean rows. No additional weed species were noted by in situ field observation, only 

pigweed.  

 

 
 

Figure 3.19: Ten-row example image from field three. Soybean plants are consolidated into 

continuous rows, pigweeds are small and evenly distributed. Soil is bright, smooth and contrasts 

well with plants.  

 

Field three precision, recall, F1-scores, and detection rates (ha/h) are displayed in Table 

3.10. The highest precision results for field two deployment were achieved by Faster R-CNN 

trained on 0.4 cm spatial resolution (precision = 0.97), followed by YOLO v3 trained on 0.4 

(precision = 0.92) and 0.6 (precision = 0.86) cm spatial resolution. The top three recall results for 

the individual models were Faster R-CNN trained on 0.4, 0.6, and 0.8 cm spatial resolution 
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imagery (recall = 0.98, 0.91, and 0.89, respectively). All remaining model recalls were below 

0.80. Top three individual model F1-score rankings were identical to recall rankings, Faster R-

CNN trained on 0.4, 0.6, and 0.8 cm spatial resolutions produced F1-scores of 0.98, 0.87, 0.84, 

respectively. Detection rates (ha/h) increased as spatial resolution coarsened across all CNNs 

with one exception (SSD trained on 0.6 and 0.8 cm spatial resolution imagery). The fastest 

detection rates were achieved by SSD trained on 1.2 cm spatial resolution at 11.72 ha/h, followed 

by YOLO v3 trained on 1.2 cm spatial resolution imagery at 10.75 ha/h, and then SSD trained on 

0.6 cm spatial resolution imagery at 8.06 ha/h. RetinaNet trained on 0.4 cm spatial resolution 

imagery produced the slowest detection rate of 1.43 ha/h, followed by Faster R-CNN trained on 

0.4 spatial resolution imagery (detection rate = 1.65).  
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Table 3.10: Field deployment results for 16 custom trained models on trial three (IoU 0.5). 

Highest performance metrics are bolded.  

 

Model 

Number 

Model Resolution 

(cm GSD)  

Detection 

rate (ha/h) 

Precision Recall F1-Score 

1 RetinaNet 0.4 1.43 0.02 0.61 0.03 

2 RetinaNet 0.6 3.39 0.04 0.64 0.08 

3 RetinaNet 0.8 4.16 0.02 0.27 0.03 

4 RetinaNet 1.2 6.14 0.01 0.09 0.02 

5 Faster R-CNN 0.4 1.65 0.97 0.98 0.98 

6 Faster R-CNN 0.6 3.07 0.84 0.91 0.87 

7 Faster R-CNN 0.8 4.30 0.80 0.89 0.84 

8 Faster R-CNN 1.2 7.16 0.80 0.77 0.78 

9 SSD 0.4 5.37 0.43 0.17 0.25 

10 SSD 0.6 8.06 0.36 0.25 0.29 

11 SSD 0.8 7.16 0.08 0.07 0.07 

12 SSD 1.2 11.72 0.14 0.09 0.11 

13 YOLO v3 0.4 2.93 0.92 0.63 0.75 

14 YOLO v3 0.6 5.16 0.86 0.66 0.75 

15 YOLO v3 0.8 6.79 0.84 0.60 0.70 

16 YOLO v3 1.2 10.75 0.54 0.43 0.48 

 

 

Soybean plants in field four were late vegetative (six to seven trifoliate leaves); however, 

they were slightly stunted due to drought conditions and located in a part of the field that was not 

irrigated. Smaller plant size caused rows to be broken and of irregular width (Figure 3.20). 

Soybean plants and weeds appeared darker and close in color. The vast majority of weeds in 

field four were young pigweeds with a field weed density of 0.24 weeds/m2. There were also 

examples of scattered Solanum carolinense (horsenettle) weeds. The soil color in the imagery 

was bright due to low soil moisture and contrasted well with plants. 
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Figure 3.20: Ten-row example image from field four. Soybean plants are intermittently 

consolidated into continuous rows with some breaks, pigweeds are small and evenly distributed. 

Soil is bright, smooth and contrasts well with plants.  

 

Field four precision, recall, F1-scores, and detection rates (ha/h) are displayed in Table 

3.11. The highest precision results for field four deployment were achieved by Faster R-CNN 

trained on 0.4, 0.6, and 1.2 cm spatial resolution (precision = 0.84, 0.76, and 0.66). The top three 

recall results for the individual models were Faster R-CNN trained on 0.4, 0.8, and 0.6 cm spatial 

resolution (recall = 0.90, 0.89, and 0.88, respectively). The top three individual model F1-score 

ranking were Faster R-CNN trained on 0.4, 0.6, and 0.8 cm spatial resolutions (F1-score = 0.87, 

0.82, 0.75). Detection rates (ha/h) increased as spatial resolution coarsened across all CNNs. The 

fastest detection rates were achieved by SSD trained on 1.2 cm spatial resolution at 4.18 ha/h, 

followed by RetinaNet and YOLO v3 trained on 1.2 cm spatial resolution imagery (detection rate 

= 3.42 and 3.42, respectively). RetinaNet, Faster R-CNN, and YOLO v3 trained on 0.4 cm 
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spatial resolution imagery produced the slowest detection rate of 0.52, 0.67, and 0.82 ha/h, 

respectively.   

 

Table 3.11: Field deployment results for 16 custom trained models on trial four (IoU 0.5). 

Highest performance metrics are bolded.  

 

Model 

Number 

Model Resolution 

(cm GSD)  

Detection 

rate (ha/h) 

Precision Recall F1-Score 

1 RetinaNet 0.4 0.52 0.00 0.75 0.01 

2 RetinaNet 0.6 1.11 0.01 0.70 0.01 

3 RetinaNet 0.8 1.25 0.00 0.25 0.01 

4 RetinaNet 1.2 3.42 0.00 0.00 0.00 

5 Faster R-CNN 0.4 0.67 0.84 0.90 0.87 

6 Faster R-CNN 0.6 1.18 0.76 0.88 0.82 

7 Faster R-CNN 0.8 1.57 0.64 0.89 0.75 

8 Faster R-CNN 1.2 2.51 0.66 0.74 0.74 

9 SSD 0.4 1.88 0.03 0.02 0.02 

10 SSD 0.6 2.51 0.03 0.12 0.04 

11 SSD 0.8 2.89 0.00 0.01 0.00 

12 SSD 1.2 4.18 0.01 0.02 0.02 

13 YOLO v3 0.4 0.82 0.16 0.47 0.23 

14 YOLO v3 0.6 1.79 0.59 0.59 0.59 

15 YOLO v3 0.8 2.51 0.29 0.45 0.35 

16 YOLO v3 1.2 3.42 0.17 0.39 0.24 

 

Aggregate results of four field deployments  

Table 3.12 summarizes the results of aggregating true positive, false positive, and false 

negative detection results over the four field deployments containing a sum of 7,800 weeds. 

Analysis of aggregate results was completed to evaluate models’ ability to generalize across the 
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variability represented by the four deployment field conditions described in the previous section. 

Hypothesis testing was conducting using these aggregated results.  

 

Table 3.12: Aggregate field test results for 16 custom trained models (IoU 0.5). Highest 

performance metrics are bolded.  

 

Model 

Number 

Model Resolution 

(cm GSD)  

Detection 

time (min) 

Precision Recall F1-Score 

1 RetinaNet 0.4 18.00 0.01 0.66 0.02 

2 RetinaNet 0.6 8.50 0.03 0.62 0.05 

3 RetinaNet 0.8 7.50 0.02 0.32 0.03 

4 RetinaNet 1.2 2.75 0.01 0.12 0.02 

5 Faster R-CNN 0.4 14.00 0.86 0.98 0.91 

6 Faster R-CNN 0.6 8.00 0.59 0.89 0.71 

7 Faster R-CNN 0.8 6.00 0.58 0.87 0.69 

8 Faster R-CNN 1.2 3.75 0.47 0.74 0.57 

9 SSD 0.4 5.00 0.38 0.21 0.27 

10 SSD 0.6 3.75 0.23 0.25 0.24 

11 SSD 0.8 3.25 0.08 0.11 0.09 

12 SSD 1.2 2.25 0.08 0.11 0.09 

13 YOLO v3 0.4 11.50 0.63 0.74 0.68 

14 YOLO v3 0.6 5.25 0.64 0.65 0.65 

15 YOLO v3 0.8 3.75 0.53 0.57 0.55 

16 YOLO v3 1.2 2.75 0.30 0.40 0.34 

 

Precision 

Null hypothesis one stated that none of 16 custom trained open-source models (four 

CNNs trained on imagery of four spatial resolutions) will achieve > 0.80 precision results at 

Palmer amaranth detection. Precision results for CNNs trained on imagery of four spatial 

resolutions are summarized in Table 3.13 and Figure 3.21. Model Faster R-CNN trained on 0.4 
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cm spatial resolution imagery produced a precision result of 0.86; therefore, null hypothesis one 

was rejected. Individual model precision values trended lower for each CNN as the imagery they 

were trained on decreased in spatial resolution. Faster R-CNN and YOLO v3 produced the only 

precision results that exceeded 0.50. RetinaNet consistently produced the lowest precision results 

with a maximum of 0.03 while SSD models maxed precision scores at 0.38. 

 

Table 3.13: Precision results of aggregated field deployments organized by CNNs and training 

imagery spatial resolution (cm).  

 

 

 

 

 

 

 

 
 

Figure 3.21: Precision results of 16 models evaluated on imagery from four production fields 

with 7,800 weeds.  
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Recall   

Null hypothesis two stated that none of 16 custom trained open-source models (four 

CNNs trained on imagery of four spatial resolutions) will achieve > 0.95 recall results at Palmer 

amaranth detection in soybean field imagery. Recall results from CNNs trained on imagery of 

increasing spatial resolution are summarized in Tables 3.14 and Figures 3.22. All Faster R-CNN 

models produced recall results higher than 0.70, along with YOLO v3 trained on 0.4 cm spatial 

resolution imagery. Faster R-CNN models trained on finer spatial resolution imagery 0.4, 0.6, 

and 0.8 each produced recall results higher than 0.80. Faster R-CNN trained on 0.4 cm spatial 

resolution produced the highest single model recall result of 0.98; therefore, null hypothesis two 

was rejected. Individual model recall values trended lower for each CNN as the imagery they 

were trained on decreases in spatial resolution. When comparing CNNs trained on equivalent 

spatial resolution SSD produced the poorest recall.   

 

Table 3.14: Recall results of aggregated field deployments organized by CNN and training 

imagery spatial resolutions (cm).  
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Figure 3.22: Recall results of 16 models evaluated on imagery from four production fields with 

7,800 weeds.  

 

 

F1-Score 

Null hypothesis three stated that none of 16 custom trained open-source models (four 

CNNs trained on imagery of four spatial resolutions) will achieve > 0.90 F1-score results at 

Palmer amaranth detection in soybean field imagery. F1-scores for four CNNs trained on 

imagery of 0.4, 0.6, 0.8, and 1.2 cm spatial resolution are summarized in Table 3.15 and Figure 

3.23. Faster R-CNN trained on imagery of 0.4 cm spatial resolution produced an F1-score of 

0.91; therefore, null hypothesis three was rejected. No other models exceeded a F1-score of 0.71. 

Except for RetinaNet models, F1-scores increased for CNNs with increasing spatial resolution 

training imagery.  
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Table 3.15: F1-score of aggregated field deployments organized by CNNs and training imagery 

spatial resolution (cm).  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.23: F1-scores results of 16 models evaluated on imagery from four production fields 

with 7,800 weeds.  
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Detection times (min) and trial size (m2) were used to calculate detection rates (ha/h) for 

each model in each of the four field deployments. Detection times were then averaged by model 

and the resulting means and standard deviations are summarized in Table 3.16 and Figure 3.23. 
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Null hypothesis four stated none of 16 custom trained open-source models (four CNNs trained 

on imagery of four spatial resolutions) will achieve mean detection rates (ha/h) of 4 ha/h. Seven 

of the 16 models produced a detection rate mean that exceeded 4 ha/h; therefore, null hypothesis 

four was rejected. 

Mean detection rate of individual models consistently increased as training imagery 

spatial resolution increased. Comparing CNNs trained on the same spatial resolution imagery, 

RetinaNet produced the slowest detection rates except for at 0.8 cm GSD. Again, looking at 

CNNs trained on the same spatial resolution imagery, SSD consistently produced the highest 

detection rates. Faster R-CNN which produced the highest and most robust detection metrics 

(precision, recall, and F1-score) made these detections slower relative to YOLO v3 and SSD.  

 

Table 3.16: Means and standard deviations of detection rates (ha/h) between CNNs and GSDs. 

  

 

  

 

 

 

 

 

 

 

 

 

 RetinaNet  Faster R-CNN  SSD   YOLO v3 

 M SD M SD M SD M SD 

 ------------------------------------------------ (ha/h) ----------------------------------------------------- 

0.4 cm 0.78 0.47 1.15 0.58 2.91 1.98 1.72 1.08 

0.6 cm 1.86 1.25 1.93 1.21 4.82 3.05 3.15 1.92 

0.8 cm 2.90 1.73 2.67 1.47 4.41 2.77 4.07 2.70 

1.2 cm 4.09 2.19 4.61 2.47 6.74 3.95 6.50 3.87 
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Figure 3.24: Means and standard deviations of model detection rates (ha/h) of four field trials.  

3.5 Discussion  

The following section describes the results stated in chapter 3.4 and how they relate to 

current production environments. Also discussed are the limitations of these results and practical 

deployment of these algorithms in production systems.  

3.5.1 Model precision  

Null hypothesis one stated that none of 16 custom trained open-source models (four 

CNNs trained on four spatial resolutions) will achieve > 0.80 precision results at Palmer 

amaranth detection in soybean field imagery. Initial evaluations using the subset of training 

imagery withheld for testing indicated that three of the custom trained models achieved > 0.80 

precision scores including YOLO v3 trained on 0.4 cm spatial resolution imagery (precision = 

0.92), YOLO v3 trained on 0.6 cm spatial resolution imagery (precision = 0.86), and Faster R-

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0.4 0.6 0.8 1.2 0.4 0.6 0.8 1.2 0.4 0.6 0.8 1.2 0.4 0.6 0.8 1.2

Rnet FR-CNN SSD YOLO v3

D
et

ec
ti

o
n

 r
at

e 
(h

a/
h

)

16 model means of four field trials

Detection rates (ha/h)



81 

CNN trained on 0.4 cm spatial resolution imagery (precision = 0.80). Additional deployments to 

four field trials evaluated model precisions on nearly 7,800 weeds. Only Faster R-CNN trained 

on 0.4 cm GSD maintained a precision value of > 0.80 with a reported precision of 0.86. 

Therefore, null hypotheses one was rejected.  

It was also noted that the CNN type heavily influenced precision results. RetinaNet 

produced an excessive number of false positives holding all its precision values across training 

imagery resolutions below 0.03. It is suspected that RetinaNet’s designed ability to separate 

foreground and background complicated detections in imagery where equal numbers of potential 

detections were at both scales. Faster R-CNN performed the best when comparing CNNs across 

equivalent training imagery spatial resolutions (0.86, 0.59, 0.58, and 0.47 at 0.4, 0.6, 0.8, and 1.2 

cm spatial resolutions, respectively). It was observed that in deployment field two that crop 

residues triggered false positives, reducing each model’s relative precision. Likewise, relative 

precision results were also reduced in deployment field four due to false detections made on 

individual soybean plants visible from non-continuous rows. Each of these field examples 

represent opportunities for improvement in the training imagery for future models and limitations 

for field deployments in the current version models. 

In the context of field performance when applied to selective herbicides, model precision 

is of secondary importance. Detection recall must be maintained as high as possible first and 

reductions through improvements of precision are considered. This consideration is different in 

the case of non-selective herbicides where damage can be caused by spraying desirable 

vegetation.  
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3.5.2 Model recall  

Null hypothesis two stated that none of 16 custom trained open-source models (four 

CNNs trained on imagery of four spatial resolutions) will achieve > 0.95 recall results at Palmer 

amaranth detection in soybean field imagery. Initial evaluations using the subset of training 

imagery withheld for testing indicated that Faster R-CNN trained on 0.4 cm GSD imagery alone 

exceeded this threshold and achieved a 0.96 recall score. Additional deployments four field trials 

evaluated each model’s recall on nearly 7,800 weeds. Again, only Faster R-CNN trained on 0.4 

cm spatial resolution broke the 0.95 threshold and produced a recall value of 0.98. Therefore, 

null hypotheses two was rejected.  

CNN type heavily influenced recall results. SSD produced the lowest recall values never 

exceeding a recall of 0.25 across all training imagery spatial resolutions. Faster R-CNN 

performed the best when comparing CNNs across equal training imagery resolutions (0.96, 0.89, 

0.87, and 0.74 at 0.4, 0.6, 0.8, and 1.2 cm spatial resolution imagery, respectively).  

In the context of field performance when applied to selective herbicides, model recall is 

of upmost importance and must be maintained as high as possible in a site-specific workflow. 

Field level recall of 0.95 and greater as demonstrated by Faster R-CNN trained on 0.4 spatial 

resolution is considered field ready and deployable in the context of these reported results.  

Special consideration was given to recall and how it was evaluated with orthomosaic 

derived keys. Deployment field four was used to evaluated orthomosaic derived key which 

produced a recall of 0.83 for all weeds observed via in situ scouting; however, recall increased to 

0.92, 0.96, and 0.97 as the weed size threshold was increased to > 2.5, > 5.0, and > 7.5 cm, 

respectively. A limiting threshold was observed in keying weeds in orthomosaic when they are 
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less than 2.5 cm in height. Larger weeds were easier to see, and subsequently received a higher 

recall score. This limitation would suggest that targeting weeds > 2.5 cm would obtain the 

highest detection efficacy when using 0.4 cm spatial resolution. It was observed by in situ 

scouting that field deployments one, two, and three contained larger weeds that escaped a 

previous herbicide application, while any smaller emerging weeds were suppressed by a 

preemergent herbicide applied at the same time.  

3.5.3 F1-score 

Null hypothesis three stated that none of 16 custom trained open-source models (four 

CNNs trained on imagery of four spatial resolutions) will achieve > 0.90 F1-score at Palmer 

amaranth detection in soybean field imagery. Initial evaluations using the subset of training 

imagery withheld for testing showed that the highest F1-score achieved was by Faster R-CNN 

trained on 0.4 cm spatial resolution imagery (F1 = 0.87). Additional deployments in four field 

trials evaluated each model’s precision and recall on nearly 7,800 weeds. Only Faster R-CNN 

trained on 0.4 cm spatial resolution imagery broke the 0.90 F1-score threshold producing a score 

of 0.91. Therefore, null hypotheses three was rejected.  

Like precision and recall, CNN type heavily influenced F1-score results. RetinaNet 

produced the lowest F1-score values never exceeding F1-score = 0.05 across all GSDs. Faster R-

CNN performed the best when comparing CNNs across equal GSDs (0.91, 0.71, 0.69, and 0.57 

at 0.4, 0.6, 0.8, and 1.2 cm GSD, respectively). Except for at 0.4 cm GSD, YOLO v3 F1- scores 

closely followed Faster R-CNN at 0.68, 0.65, 0.55, and 0.34 (0.4, 0.6, 0.8, and 1.2 cm GSD, 

respectively). 
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As a harmonized mean of precision and recall, F1-scores reward or punish extreme 

values. In a site-specific selective herbicide application, a high F1-score achieved by a high 

recall value supplemented by a reasonably high precision value would be most advantageous. 

Field level recall of > 0.95 in combination with an F1-score of > 0.90 is considered field ready 

and deployable.  

3.5.4 Detection rate 

Null hypothesis four stated that none of 16 custom trained open-source models (four 

CNNs trained on imagery of four spatial resolutions) will achieve detection rates of 4 ha/h. This 

detection rate threshold was established with two figures in mind. In the U.S, it is common for 

fields to be in 16 or 32 ha units. If imagery were collected during a field scouting event, allowing 

four hours for detections to be completed on 16 ha or eight hours on 32 ha would allow for the 

overnight processing of imagery, producing results that can be applied the next day. 32 ha in 

eight hours or 16 ha in four hours is a detection rate of four ha/h. While model accuracy, 

properly balanced between recall and precision is essential, the detection rate of a model will 

influence a workflows scalability. Excessive detection rates for field scale applications will 

inhibit site-specific map generation and limit timely action on the results produced.  

Results showed that the detection rates (ha/h) consistently decreased as spatial resolution 

of imagery increased. This was expected since higher spatial resolution imagery contains more 

pixels to convolve across each layer of the CNN. SSD trained on 1.2 cm spatial resolution 

imagery produced the highest mean detection rate when averaged across four field trials at 6.74 

ha/h (SD = 3.95), closely followed by YOLO v3 trained on 1.2 cm spatial resolution imagery 

with a mean detection rate of 6.5 ha/h (SD = 3.87). The highest performing models based on 

model precision, recall, and F1-scores produced some of the slowest detection rates (Faster R-: 
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M = 1.15, SD = 0.58 and YOLO v3: M = 1.72, SD = 1.08, both trained on 0.4 cm spatial 

resolution imagery).  

It should be noted that these detection rates were produced on a laptop that would be 

considered accessible to producers looking to deploy such a workflow; however, significantly 

faster detection rates would be expected from hardware leveraging more powerful GPU 

computing power optimized for object detection tasks.  

 

3.6 Conclusion 

Current in situ scouting of crop production fields for the presence of weeds is laborious 

and does not capture the in-field variability that is often present. Furthermore, the near future 

availability of site-specific technologies for weed control will require the ability to accurately 

differentiate between crops and weeds. Deep learning in the form of CNNs has the potential to 

become a prominent analysis tool in agricultural image processing applications for their abilities 

at finding objects such as weeds in imagery that would not be practical for a human observer to 

detect at field scales.   

Sixteen CNN models (RetinaNet, Faster R-CNN, YOLO v3, and SSD each trained on 

0.4, 0.6, 0.8, and 1.2 cm spatial resolution imagery) were trained to detect Palmer amaranth in 

soybean field imagery. Field deployments of models were conducted and model precision, recall, 

F1-scores, and detection rates were measured in imagery containing 7,800 weeds from four 

production fields of slightly different crop maturity, weed size and density, plant and soil color. 

Results showed that CNN architecture and training imagery resolution influenced model results. 

Detection accuracies increased proportionally, and detection rates decreased proportionally with 

increasing spatial resolution of training imagery. Of the 16 models trained, only the combination 
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of Faster R-CNN trained on 0.4 cm spatial resolution imagery proved to meet field ready 

expectations for precision, recall and F1-score. While Faster R-CNN maintained impressive 

detection metrics (80% precision, 98% recall, 94% F1-scores) across deployments in four trials 

over two years, further testing of its ability to generalize is recommended. Specifically, an 

increase in false positive detections were noted at the edges of fields where soybeans were 

stunted and smaller, when soybean rows were broken instead of continuous, and when excessive 

crop residue was present on the soil. This reduced the precision of some fields and suggested that 

accuracies in these field conditions may need to be assessed further or adjusted in future training 

efforts. Furthermore, detection recall of weed heights smaller than 2.5 cm fell significantly 

compared with weed heights > 2.5 cm. This limitation suggests that targeting weeds that escape 

control of a previous herbicide application may be an optimal use case for any site-specific 

workflow leveraging 0.4 cm spatial resolution imagery. Detection rates were determined to be 

marginally practical on coarser imagery; however, high resolution imagery detection times 

became excessive in the context of a single day turnaround timeline with the computing 

hardware used in this experiment.  
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4.0 SITE-SPECIFIC WEED APPLICATIONS USING PWM SPRAYERS 

Abstract  

Weed populations in agricultural production fields are often scattered in their distribution 

and few in numbers compared with the planted crop; however, herbicides are broadcast across 

fields evenly. Although effective, in the case of post-emergent herbicides, this method often uses 

exceedingly more pesticides than necessary. A novel weed detection and control workflow was 

evaluated targeting Palmer amaranth in soybean (Glycine max) fields. A site-specific workflow 

leveraging UAS imagery, custom trained CNN models for weed detection, and applied by a 

pulse width modulated (PWM) sprayer was evaluated in replicated field trials established in 

2021 and 2022. Weed control (%) was compared between a broadcast treatment and the 

proposed site-specific workflow. Results indicate no statistical (p < .05) difference in weed 

control measured one (M = 96.22%, SD = 3.90 and M = 90.10%, SD = 9.96), two (M = 95.15%, 

SD = 5.34 and M = 89.64%, SD = 8.58), and three weeks (M = 88.55, SD = 11.07 and M = 

81.78%, SD = 13.05) after application between broadcast and site-specific treatments, 

respectively. Furthermore, there was a significant (p < 0.05) 48% mean reduction in applied area 

(m2) between broadcast and site-specific treatments across both years. Equivalent application 

efficacy can be achieved with significant reductions in herbicides if weeds are targeted through 

site-specific applications. Site-specific weed maps can be generated and executed using 

accessible technologies like UAS, open-source CNNs, and PWM sprayers.  

 

4.1 Introduction 

Continuous advances in sensor, computing, and positioning technologies have 

encouraged exploration of automated systems in agriculture (Gonzalez-de-Soto et al., 2016). 
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Aravind et al. (2017) generally grouped these novel “smart” farming systems into five categories 

including tillage, soil/nutrient analysis, seeding/transplanting, scouting/control measures, and 

harvesting. Applications in most of these categories have been demonstrated in both small novel 

advanced autonomous robots and in modifications to current field equipment. Each of these 

novel robotic systems represent incremental improvements and advancements toward truly 

autonomous agricultural systems. However, more field ready applications within these categories 

generally leverage the power and robustness of manned equipment designed for field conditions 

with modifications to capabilities or actions informed by an automated system.  

Soil tillage is underrepresented in small automated robotic research due to the heavy 

lifting nature of the practice that is more appropriately handled by large equipment (Aravind et 

al., 2017); however, large equipment advancements are represented. Akhalaya & Shogenov 

(2018) demonstrated an automated multistage tillage implement where the depth obtained by a 

previous cultivation stage, informs, and adjusts the depth of subsequent stages accordingly in 

real-time. The field ready and robust design was mounted behind a tractor and consisted of a 

series of magnetic limit switches informing hydraulic systems adjustments. The authors claimed 

a 10% increase in tillage quality compared to a “one depth” fits all. While this implements 

“information system” may be relatively simple, it is this simplicity that allows real-time 

information to be tuned into real-time site-specific action independent of operator input.  

Soil nutrient sampling has been attempted with small robotics. Kitić et al. (2022) developed 

and evaluated an autonomous robotic soil sampler and analyzer – Agrobot Lala. The robot 

collects, georeferences, and analyzes in situ soil samples. It then generates variable rate fertilizer 

maps that are uploaded to a cloud-based platform for application via manned equipment. The 

authors noted a successful deployment of the robot at the plot level with further testing need for 
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scalability to field level applications. Much work has also been completed using remote sensing 

techniques to map in field nutrient needs, with nitrogen management of particular importance 

(Corti et al., 2019). Corti et al. (2019) mapped the infield nitrogen variability using a high 

resolution green adjusted normalized difference vegetative index (GNDVI) collected via UAS 

imagery. Nitrogen content was successfully estimated with a regression model reporting a R2 = 

.89. Basso et al. (2016) demonstrated that site-specific nitrogen application maps could be 

generated using vegetative indices calculated from high resolution satellite imagery. Field testing 

showed that remotely sensed imagery highly correlated with in situ soil measurements. 

Additionally, the team applied the site-specific maps using large field equipment and determined 

that nitrogen use efficiency was shown to increased when nitrogen was varied according to 

measured needs. 

Automated and site-specific planting efforts have been explored. Tatsuno et al. (2022) 

demonstrated a transplanting robot that reported 84% success at transplanting of chain pot 

seedlings in shaft tillage cultivation. While the transplantation step was completed automatically, 

the driving and navigation of the system was done manually by the researchers pushing a cart 

through the plots. Field ready equipment have been used to demonstrate site-specific seeding 

with consumption potatoes where seed spacing was varied based on fertility indicators from 

remote sensing and in site measurements. Site-specific seeding informed by high-resolution 

fertility maps was compared with traditional broadcast seeding and results indicate improved 

tuber yields, savings on seeds, and higher net profits for site-specific treatments compared to 

traditional broadcasting methods.  

Harvesting of high values crops has been demonstrated with varied success by small, 

automated robots. Lehnert et al. (2020) claimed “performance improvement” in automated 
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harvesting of sweet pepper using a novel robot with CNN detection capabilities, producing a 

76.5% success rate. Similarly, Oktarina et al. (2020) developed a robot vision systems and arm 

capable of detecting and harvesting green and red tomatoes and tested in laboratory conditions. 

The team did not report the detection accuracy of the vision system, instead emphasizing the that 

the full cycle of steps from detection, harvesting, placement of fruit, and ready to detect again 

averaged 9.68 and 10.59 seconds for green and red tomatoes respectively. Field scale testing of 

harvesting equipment has also been demonstrated. Optimized harvesting routes were generated 

to inform a commercially available autonomous field ready robot (Robotti) harvester, based on 

higher protein values in wheat fields (Villa-Henriksen et al., 2021). High protein value areas 

were harvested separately (site-specific) than lower protein areas allowing for higher value 

marketing for portions of the crop. Results suggest that route and harvest optimization was 

effective; however, the economic returns were often negated from extra time in the field 

harvesting. Roshanianfard & Noguchi (2020) designed and tested a unique pumpkin harvesting 

“end-effector” implement. The specialized arm and vision system were mounted on the front of a 

manned field tractor. Evaluation of the systems suggested it had a harvest possibility of 92% and 

success rate of 79%. The team emphasized the designs versatility at generalizing to various size 

and positioned pumpkins.  

Scouting and control efforts have been demonstrated in weed detection and applied 

mechanical or chemical controls applied. Gai et al. (2020) demonstrated the in-field real-time 

classification of weeds among broccoli and lettuce crops. The team reported an overall 91% 

accuracy at weed detection. Ruigrok et al. (2020) evaluated a site-specific pesticide application 

workflow in potato fields using an autonomous field robot reporting 96% effective control over 
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weeds. Utstumo et al. (2018) deployed an autonomous field sprayer to site-specifically treat 

weeds in a carrot crop reporting a ten-fold reduction in herbicide use with 100% weed control.  

While robotic mechanical weeders and sprayers are an impressive fully autonomous goal, 

like other agricultural practices, detection and treatment are not easily scalable with small 

robotics. In the case of pesticide applications, treatment rates are as high as 320 m2/sec. Great 

improvements in system efficiencies are necessary before this technology can be used for 

selective herbicide applications on-site and in real-time (Fernández-Quintanilla et al., 2018).  

Similar to the other four categories that Aravind et al. (2017) outlined, the semi-

automation of scouting and control of pests at the field level is likely closer to field readiness 

when currently adopted equipment is deployed and either modified or informed by site-specific 

maps. As pesticide application equipment has evolved to become more accurate at holding rates 

constant, some efforts have been made to leverage these capabilities to selectively treat areas. 

Castaldi (2017) used imagery collected from a UAS to develop prescription maps and spot treat 

patches of weeds in corn fields using field equipment with section control (two-meter sections). 

Their results showed nearly a 40% decrease in herbicide used when selectively spraying with no 

significant difference in the crop or weed biomass compared to the broadcast treatment. 

Similarly, Campos (2020) used MS imagery captured from a UAS to develop prescription spray 

maps for vineyards. Imagery in combination with sample in situ canopy measurements mapped 

canopy density allowing pesticide rate to be varied across the field as site-specific needs varied. 

Results showed similar control of the target pest with reduced rates of water volume and total 

pesticides applied. Both Castaldi et al. (2017) and Campos et al. (2020) leveraged field 

equipment with section control common to modern production sprayers which use electronically 

actuated shut-off valves to manage turning on and shutting off groups of nozzles often meters 
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upstream from the nozzle in plumbing. The actuation speed and section resolutions of these 

systems are not ideal for site-specific application and marginally acceptable for treatment of 

sections or zones within fields (Luck et al., 2011).  

PWM sprayers contain electronically actuated high-speed solenoids immediately 

upstream from the spray nozzle which control the flow rate and pressure of each nozzle 

independently. Research on PWM in field applications has shown that systems are highly 

responsive and can provide more flexible options for applying pesticides than traditional sprayers 

(Butts, et al., 2019). This research has primarily focused on the ability of PWM sprayers to 

maintain even pesticide coverage (rate and droplet size) among variable application speeds. 

While not designed for site-specific applications, the characteristic of PWM systems that enable 

stable applications amongst variable application conditions are the mechanical foundations for 

varying the treatment in a stable application environment. The potential use of PWM in site-

specific applications represents improvement in the spatial resolution of treatment maps that 

limited both Castaldi et al. (2017) and Campos et al. (2020). Additionally the standard actuation 

control of 10 hz at the nozzles is a notable improvement from the research conducted by Luck et 

al. (2011). The evaluation of PWM sprayers deployed in site-specific herbicide applications has 

been largely unstudied. This work will use treatment maps generated from a UAS imagery and 

CNN detection workflow to inform a site-specific treatment applied by a PWM sprayer. 

 

4.2 Study site 

This research was conducted at the Jackson County Extension Center (35.5715763°N, 

91.2539575°W) near Newport, Arkansas, USA in 2021 (year one) and 2022 (year two). Trials 

were located within subsections of two different production soybean fields, both planted in Enlist 
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E3™ soybeans (Corteva, 9330 Zionsville Road, Indianapolis, IN 46268) (Figure 4.1). Soybean 

rows were planted at 76 cm spacing, Year one soybeans on treatment date were at V6 growth 

stage (six trifoliate leaves) (planting date June 16th sprayed July 26th, 32 DAE, irrigated). Year 

two soybeans on treatment date were at R1 (beginning flower) growth stage (planting date June 

9th, sprayed July 27th, 38 DAE, dryland).  

 

Figure 4.1: Two study sites (2021 and 2022) at the Jackson County Extension Center, Newport, 

Arkansas, USA. 
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4.3 Methods 

4.3.1 Experimental design  

This study was an experimental design testing one independent variable- herbicide 

treatment method with three factors, untreated check (UTC), broadcast, and site-specific 

applications. Two randomized, replicated block experiments were conducted with plots three-

meters-wide, 30-meter-long in year one and 20-meter-long in year two. Year one trial included 

six replications and year two trial included eight replications. The treatment map generation used 

inform site-specific applications are described in section 4.3.2. Both broadcast and herbicide 

treatments contained glufosinate-ammonium at 656 g ha−1 (Liberty® 280 SL, Bayer 

CropScience LP, Research Triangle Park, NC 27709).  

One dependent variable was measured, individual weed control with ratings each taken 

seven-, 14-, and 21-day post treatment. Individual weed ratings within each plot were averaged 

to produce a per plot weed control mean for each collection date. RGB UAS imagery was 

captured at 0.4 cm GSD one day and five days prior to treatment, (year one and two respectively) 

and seven-, 14-, and 21-day post treatment in both years.  

4.3.2 Site-specific treatment map creation  

Real-time kinematic (RTK) global navigation satellite system (GNSS) ground control 

(GCPs) and control points (CPs) were established and maintained prior to each imagery data 

collection and in photogrammetric processing (Figure 4.2). GCPs were designated with marking 

paint and precise location (two cm) established using an RTK2B (Ardusimple Lleida, Spain) 

GNSS rover that leveraged a U-blox ZED-F9P microchip and a survey grade IP66 multiband 

antenna. Real-time kinematic (RTK) corrections were received through the Continuously 
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Operating Reference Station (CORS) network maintained by the Arkansas Department of 

Transportation (ARDOT) and broadcast through a Networked Transport of RTCM via Internet 

Protocol (NTRIP) caster. The CORS base station corrections used were from the ARDOT 

District Five headquarters outside of Batesville, Arkansas, USA approximately 39 km away from 

the study sites. 

 

 

Figure 4.2: GCP layout in field trials for year one and two with marked GCP example. 

 

 

Imagery for model training and field map generation was collected with a DJI Zenmuse 

X5s RGB sensor (iFlight Tech Company Ltd. Shenzhen, China) with the DJI micro 4/3 (MFT) 

lens (iFlight Tech Company Ltd. Shenzhen, China). This sensor and lens configuration has a 

4/3” CMOS, 72o FOV, 15 mm focal length, f/1.7 focal ratio, and focus to infinite. Image 
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resolution of the camera is 5280 × 3956 (20.8 MP). The X5s sensor was mounted onto a DJI 

Inspire II (iFlight Tech Company Ltd. Shenzhen, China) quadcopter (Figure 4.3).  

 

Figure 4.3: DJI Inspire II and Zenmuse X5s (iFlight Tech Company Ltd. Shenzhen, China) UAS 

used to collect plot imagery.  

 

All UAS flights were conducted in class G airspace and by a licensed part 107 pilot in 

compliance with Federal Aviation Administration (FAA) regulations. For each training imagery 

and field trial imagery collection, a unique flight plan was created, prior to take-of, within the 

mobile application Pix4D Capture to facilitate image capture for processing in Pix4Dmapper. 

Imagery was captured at 18.3 m altitude, 1.83 m/s flight velocity, 80% front overlap, and 70% 

side overlap for each flight. At this altitude, the resulting imagery was at the targeted 0.4 cm 

spatial resolution. As part of the Pix4D photogrammetric processing, the orthomosaic was 

georeferenced and post corrections were performed using RTK collected GCPs.  

During collection events, the UAS was manually controlled at take-off, ascended to target 

altitude, and navigated into the target area using the mobile application DJI GO 4. While 

hovering at altitude, the X5s’s focus, and exposure was optimized for each flight using the 

automated procedure within the DJI application where the operator taps on objects displayed on 

the controller screen and the software adjusts sensor aperture and focus accordingly. The DJI 
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application was then closed, and the automated flight plan was initiated in the Pix4D Capture 

application.  

Orthomosaic quality 

Pix4Dmapper was used to co-register, georeference, and orthorectify the raw UAS image 

stream. The “Ag RGB” template was used for processing and its key default parameters are 

shown in Table 4.1. GCPs established in the field were used after initial processing and before 

point cloud generation to correct any geolocation errors. Rectified and georeferenced field 

orthomosaic (0.4 cm spatial resolution) was imported into ArcGIS Pro 2.8.2 (Esri inc. Redlands, 

California) for spatial analysis. 

 

Table 4.1: Pix4Dmapper key parameters used to process image streams in “AG RGB” template. 

 

Parameter Value 

1. Initial Processing   

            Keypoint image scale  Full Scale Image  

2. Point Cloud and Mesh  

            Image Scale ¼, multiscale  

            Point Density  Low 

            Minimum number of matches  3 

3. DSM, Orthomosaic, Index  

            Resolution  1 x GSD 

            Orthomosaic  Merge GeoTIFF Tiles  

 

Orthomosaic geolocation accuracy was assessed as part of orthomosaic processing. The 

quality reports provided by Pix4DMapper was used to compare both the accuracy of GCPs used 

in the stitching process as well as the CPs set aside for assessment. The X, Y, and Z axes root 

mean square (RMS) errors of for individual GCPs and CPs were assessed for each trial.  
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CNN models 

Two custom trained CNNs were used to make weed detections on year one and year two 

trials. While this experiment was not intended to evaluate model performance specifically, the 

model performance does impact the overall workflow and ultimately the herbicide treatment 

efficacy. Therefore, the methods used to develop the custom models will be described and its 

detection accuracies reported in the following results section.  

The two models used for field trials were YOLO v3 in year one and Faster R-CNN in 

year two, each trained using a custom image set containing two classes of 5,192 weeds (Palmer 

amaranths and broadleaf weeds) labeled in 0.4 cm spatial resolution imagery. ArcGIS Pro was 

used to train each of the models through the “Train Deep Learning Model (Image Analysis 

tools)”. The experimental platform configuration used for training both models was the 

following: OS, Windows 10; GPU NVIDIA Quadro RTX 3000 with Max-Q Design; CPU, 

Intel® Core™ i7-1065 G7 CPU @ 1.30 GHz with 32 Gb of RAM. The backbone models 

Darknet-53 and Resnet-50 was used for YOLO v3 and Faster R-CNN, respectively. Both 

backbone models were trained on the ImageNet data set containing over one million images and 

were of similar size measured by their convolutional layers (50 and 53 layers for Resnet-50 and 

DarkNet-53, respectively). Learning rate was automatically determined for each model within 

the training tool and was 0.0002, 0.0020 and 0.00004, 0.00004 for YOLO v3 and Faster R-CNN, 

respectively. Batch size was limited by dedicated GPU memory on the training hardware and 

was held constant at two. Max epochs were set to 20. The detection precision, recall and F1-

scores of trial specific model results were determined by calculating the differences between 

model outputs and annotated field imagery using an IoU of 0.1. These detection accuracies for 

trial specific models are reported in the following results section.  
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Site-specific map generation 

ArcGIS Pro’s ModelBuilder automated a series of steps generating a weed map layer 

(Figure 4.4). Field imagery processed into an orthomosaic raster and one of the custom trained 

deep learning models were used as input parameters. Additionally, an adjustable buffer distance 

around weeds (m), field application equipment resolution (m), and output folder are used to 

facilitate treatment map generation. The “Detect Objects with Deep learning” tool was used to 

process the detection threshold was set to 0.05. 
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Figure 4.4: ModelBuilder used to generate weed map for field trials.  
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Figure 4.5: Example ModelBuilder steps to produce weed map. Detection box (A), applied 0.5 

m buffer (B), applied 1 m fishnet (C), and selected 1 m grid boxes (D), and aggregate 1 m grid 

boxes (E). 
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A 0.5 m radius buffer was generated around each predicted bounding box and a one-

meter fishnet grid squared and oriented north and south overlaid the extent of the input raster 

(plot area) (Figure 4.5). This combination ensured that weeds detected near or on the edge of a 

one-meter grid square would trigger the grid square adjacent as well. While this decreased the 

precision of the spray by unnecessarily treating more weed free areas, it also increased recall by 

ensuring that detected weeds were not missed because of their location relative to gridlines. The 

“Select by location” tool was used to select the grid squares that touched any weed buffers. 

Selected grid cells were then aggregated so that groups of selected cells were a single polygon. 

The selected and aggregated features were exported as a new layer and additionally their 

metadata was edited by adding a “value” column and populating all cells with “1”. This acted as 

an ON signal in subsequent steps. Finally, the projected coordinates system 

“WGS_1984_UTM_Zone_15N” was transformed into the geographic coordinates system 

“GCS_NAD_1983_2011” and converted to a shapefile.  

As a last step, the planned total spray area (ha) within an application was calculated to 

assist in the mixing of the herbicides. Selected squares from the one-meter aggregated grid were 

summed, units covered to hectares and exported as an excel file.  

CapMaps (Version 1.04.00) (Capstan Ag Systems, Inc., Topeka, KS) software was used 

to convert the ModelBuilder shapefile output into a prescription map designating treatment areas 

where the spray nozzle would receive an ON signal. Areas where no weeds were detected spray 

nozzles were by default turned OFF. The file was exported in a DAT format as required by the 

CapView display on the field equipment (Figure 4.6).  
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Figure 4.6: Example Modelbuilder output map exported as a shapefile to CapMaps software 

(A). CapMaps output exported as a DAT map to CapView display (B).  

  

 

4.3.3 Field application equipment  

A high-clearance sprayer (Bowman Mudmaster, Bowman Manufacturing Co., 

Inc., Newport, AR, USA) was used to apply treatments to all strip plots at 6.44 km/h (Figure 

4.7). Treatments were applied using a boom with seven 11002 AIXR flat-fan nozzles (Teejet 

Technologies, Springfield, IL 62703) on 51-cm spacing. The boom was equipped with a PinPoint 

II system (Capstan Ag Systems, Inc., Topeka, KS). The PinPoint II PWM system contains high-

speed individually controlled spray valves which allow for individual nozzle control. A 20.1 

LPM Remco ProFlow 5500 12 VDC (Remco Industries, 10425 Wildlife Loop SE, Osakis, MN 

56360) diaphragm pump with an internal 414 kPa pressure switch was used to provide flow and 

pressure to the site-specific boom. A Hamilton, nylon, 0-1034 kPa pressure regulating bypass 

valve (WLH CO. LLC, 325 Cherry St, Marshall, MN 49069) was used to provide bypass flow 

from the boom, enabling manual control of flow rate and therefore calibration. Both broadcast 

A. B. 
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and site-specific treatments were applied with PWM option on the PinPoint II system 

disengaged. The broadcast treatment was applied using the manually calibrated boom and all 

nozzles switched on as the sprayer traversed plots.  

The site-specific application enabled 0, or 2-7 nozzles to be on at any given time 

producing slight variations in system flow, pressure, and resulting rate. These variations were 

minimized with the mechanical spring bypass built into the Hamilton valve (Figure 4.8). 

Additionally, since site-specific plots were mapped in a one-meter grid and nozzles were spaced 

on 51 cm, anytime a weed detection triggered nozzles to spray, at least two and most often three 

nozzles were automatically engaged depending on how they aligned with the grid. Therefore, the 

site-specific treatment only varied between two and seven engaged nozzles. The pressure, flow, 

and rate variation in this range were recorded and are reported with their respective droplet size 

and ASABE. 
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Figure 4.7: Site-specific Boom mounted on high-clearance sprayer.  

 

 

 

 

Figure 4.8: Simplified plumbing diagram of site-specific boom on field equipment. 
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Figure 4.9: Fundamental electrical components of site-specific boom on field equipment. 

 

The PinPoint II PWM control system was provided real-time positioning via a dual-band 

RTK2B GNSS receiver (Figure 4.9). The RTK2B GNSS rover leveraged a U-blox ZED-F9P 

microchip and a survey grade IP66 multiband antenna. Real-time kinematic (RTK) corrections 

were received through the CORS network maintained by ARDOT and broadcast through an 

NTRIP caster. The CORS base station used for corrections were from the ARDOT District Five 

headquarters outside of Batesville, Arkansas, USA approximately 39 km away from the study 

sites. 

PinPoint II system parameters were adjusted to facilitate the site-specific application. 

This primarily involved adjusting system “look ahead time” to ensure that nozzles were actuated 

on at the proper time relative to equipment speed. The adjusted PinPoint II system parameters are 

shown in Table 4.2. These parameters were determined through a series of controlled passes over 

test detections. Water sensitive cards were placed in the center of test detection boxes, the site-

specific boom was enabled, and sprayer was driven at the calibrated 6.4 km/h. The water 
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sensitive cards acted as indicators of how well settings optimized hitting the target. Look ahead 

times were tested at 0.0, 0.1, 0.2, and 0.3 seconds. It was determined that at the selected 

treatment speed (6.4 km/h), and with the 0.5 m radius buffer, no look ahead time was needed (0.0 

seconds).  

 

Table 4.2: Applicable parameters selected for site-specific application using the PinPoint II 

controller.  

 
Line Parameter Setting Why 

1 Operation Mode SharpShooter Enables x, y, and z 

16  Overlap Distance  60 in.  Prevents adjacent nozzles from marking untreated 1 m squares as treated 

17 Look ahead time  0 s Prevents nozzles from turning on prior to entering a treatment zone 

18  Zero rate shutoff Shutoff  No electronic flow meter on system 

4.3.4 Field data collection 

Calculating treatment areas 

Areas where herbicides were applied or treatment areas (m2) per plot were used to 

evaluate null hypothesis five. Treatment area (m2) for broadcast plots were the total plot area. 

Likewise, treatment area for untreated plots was set to zero. Treatment area per plot for site-

specific plots was determined by clipping a copy of the output treatment map (Shapefile for 

CapMaps in GCS) by the site-specific plot layer. The clipped polygons were summarized by plot 

area in square meters and exported into an excel file for analysis.  

Weed count and size 

In year one and two, individual weed counts were determined by surveying the high 

resolution orthomosaics. Plot specific weed counts for year one and year two within each plot for 

each week were combined into a single excel file for statistical analysis. Weed size was 
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estimated using the length of side (cm) of the detection boxes. In year two, individual weeds 

were geolocated and heights (cm) estimated through in situ scouting. A linear regression was 

calculated on the relationship between the in situ measurements of weed height to the length of 

side of detected bounding boxes (Equation 4.1). Bounding box sizes were used to estimate any 

differences in weed size between treatments within each year, while the measured and calculated 

weed heights were only used for discussion in the context of herbicide treatment timing relative 

to weed size.  

 

Equation 4.1 Linear regression used to describe the relationship between year two’s measured 

values and bounding box size of detected weeds.  

 

  

𝑦 = 0.254𝑥 + 0.72𝑥 

 

Treatment Efficacy 

Pretreatment in-plot weed count were determined by manually counting weeds in the 

pretreatment imagery. After herbicide treatments were applied, aerial imagery was taken at one-, 

two-, and three-weeks after treatment (WAT). Weed counts were performed by manually 

annotating weeds in each orthomosaic (one-, two-, and three-WAT). In year one, individual 

weed ratings were determined by surveying the high resolution orthomosaics overlayed with the 

keyed weed map used in comparing model accuracy. Individual weed control ratings were on a 

scale from 0-10 with 0 being no herbicide symptomology (no control) and 10 representing dead 

or necrotic weeds (full control). Year two, in addition to the 0.4 cm spatial resolution RGB 

imagery collected one-, two-, and three-WAT; weed locations, size, and vigor ratings for each 

weed were manually collected through in situ scouting on imaging dates. Figures 4.10, 4.11, and 

4.12 show example GNSS points collected manually in the field for each treatment (UTC, 
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Broadcast, and Site-specific, respectively). A, B, C, and Ds within each figure represent Pre, and 

one, two-, and three-weeks post treatment, respectively.  

Weed specific ratings for year one and year two within each plot for each week were 

combined into a single excel file for statistical analysis.  

 

    

   

Figure 4.10: Georeferenced weed ratings in year two -UTC. Pre-treatment scout (A), one WAT 

(B), two WAT (C), three WAT (D). 
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Figure 4.11: Georeferenced weed ratings in year two -Broadcast. Pre-treatment scout (A), one 

WAT (B), two WAT (C), and three WAT (D).  

 

  

   

Figure 4.12: Georeferenced weed ratings in year two - Site-specific. Pre-treatment scout (A), 

one WAT (B), two WAT (C), three WAT (D).  
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Water Sensitive Cards 

SpotOn ® water sensitive papers (Innoquest inc., Woodstock, IL) were placed within 

plots immediately prior to applying treatments and recovered immediately after treatment was 

applied. Two cards were randomly placed in each broadcast plot, two cards were placed in 

known treatment areas within site-specific plots, and two additional cards were placed in known 

non-treatment areas of site-specific plots. Water sensitive cards were analyzed for spray 

coverage (%) data using the Java plugin Water Paper Analysis on the desktop software 

DepositionScan distributed by the United States Department of Agriculture (USDA). 

4.3.5 Data analysis  

Weed counts, weed size data, treatment ratings (% control), and mean plot spray 

coverage (%) were averaged to obtain the mean and standard deviation for each plot. Treated 

area per plot (m2) was summarized from the application maps, added to the dataset, and used to 

calculate weed density per plot (weed/m2).  

All data means were entered into RStudios (Version 4.2.1, Bostin, MA) for analysis. A t-

test using the “rstatix” package (Version 0.7.0) in RStudio to determine any significant 

difference (p < .05) in weed sizes between year one and year two trials. One-way Analysis of 

Variance (ANOVA) using the “rstatix” package (Version 0.7.0) was used in RStudio to 

determine any significant difference (p < .05) in weed size and weed density between treatments 

within each year, and across both years. ANOVA was used to identify any significant difference 

(p < .05) in one, two, and three WAT ratings between treatments within each year and across 

years. ANOVA was also used to identify any significant differences (p < .05) in percent 

coverage (%) between broadcast, site-specific treated, and site-specific untreated spray cards. 
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Significant ANOVA values from all sets of means were then subjected to Tukey’s post hoc 

analysis to determine the amount of significance. 

 

4.4 Results 

The following section summarizes the quality of orthomosaics, CNN model accuracy, 

and equipment configuration used to evaluate the proposed site-specific workflow. Treatment 

areas are described including weed sizes and weed densities. Finally, the efficacy results of field 

trials comparing broadcast, site-specific, and un-treated check plot work are summarized.  

4.4.1 Orthomosaic quality 

Table 4.3 summarizes year one and year two trial orthomosaics used for site-specific map 

creation. While the target spatial resolution during collection events was 0.4 cm, the resulting 

maps are reported as 0.38 and 0.39 cm spatial resolution for year one and year two maps 

respectively. Measured from the provided GCPs, orthomosaic RMS error was reported as 1.20 

cm and 2.00 cm for year one and two respectively. X and Y errors were less than 2.25 cm and z 

errors were less than 3.75 cm for both years. The accuracy of individual GCPs for year one is 

reported in Table 4.4 and illustrated in Figure 4.13. The accuracy of imported GSPs used for 

correction were all 0.020 m for X, Y, and Z axes. RMS error of all GCPs was reported as 0.013, 

0.021, and 0.004 m for the X, Y, and Z axes respectively. 
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Table 4.3: Accuracy metrics of orthomosaic output from Pix4DMapper on year one and two 

from quality reports. 

 

 

 

Table 4.4: Localization accuracy of year one orthomosaic per GPC’s and mean errors in three 

coordinate directions. Accuracies are derived from quality report generated from Pix4D 

processing. 

  

GCP Name Accuracy 

XY/Z (m) 

Error X 

(m) 

Error Y 

(m) 

Error Z (m) Projection 

Error 

(pixel) 

Verified/

Marked 

Images 

SW Corner  0.020/0.020 -0.017  0.035 -0.005 2.203 12/12 

NW Corner 0.020/0.020 -0.011 -0.034  0.003 1.721 12/12 

NE Corner  0.020/0.020  0.002  0.010 -0.004 1.495 20/20 

SE Corner  0.020/0.020 -0.007 -0.003  0.003 1.421 13/13 

S Middle  0.020/0.020  0.017 -0.011  0.003 1.595 14/14 

N Middle 0.020/0.020  0.017  0.003  0.001 0.931 15/15 

Mean (m)   0.000  0.000  0.000   

Sigma (m)   0.013  0.021  0.004   

RMS Error (m)   0.013  0.021  0.004   

 

Yr. Flight Date Number 

of 

images 

Calibrated 

images 

Ortho 

GSD 

(cm) 

Ortho 

RMS 

error (cm) 

GCP 

Error X 

(cm) 

GCP 

Error Y 

(cm) 

GCP 

Error Z 

(cm) 

1 Pre 21-07-25 278  278 0.38  1.20  1.31 2.07 0.35 

2 Pre 22-07-22 264 264  0.39  2.00  1.14 1.89 3.56 
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Figure 4.13: Locations of GCPs and CPs used in processing and assessing orthomosaic 

geolocation accuracy for year one.  

 

 

Independent verification of orthomosaic geolocation accuracy was done through two CPs 

that were used for assessment only and not introduced into processing. The reported geolocation 

accuracy to the CPs is reported in Table 4.5. The RMS error of year one orthomosaic measured 

by CPs was 0.0968, 0.0043, and 0.0531 m for the X, Y, and Z axes respectively. Reported X and 

Y accuracies provided confidence that objects detected in the year one orthomosaic map were 

within 9.68 cm of their actual location in the field. 
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Table 4.5: Localization accuracy of year one orthomosaic per CPs and mean errors in three 

coordinate directions. Accuracies are derived from quality report generated from Pix4D 

processing.  

 

CP Name Error X 

(m) 

Error Y 

(m) 

Error Z (m) Projection 

Error (pixel) 

Verified/Marked 

Images 

CP East 0.0277 0.0050 -0.0676 2.3497 17/17 

CP West  0.1341 0.0034 -0.0328 2.3104 14/14 

Mean (m) 0.0809 0.0042 -0.0502   

Sigma (m) 0.0532 0.0008  0.0174   

RMS Error (m) 0.0968 0.0043  0.0531   

 

The accuracy of individual GCPs for year two are reported in Table 4.6 and illustrated in 

Figure 4.14. The accuracy of imported GSPs used for correction were all 0.020 m for X, Y, and 

Z axes. RMS error of all GCPs was reported as 0.011, 0.019, and 0.032 m for the X, Y, and Z 

axes respectively. 
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Table 4.6: Localization accuracy of year one orthomosaic per GPC’s and mean errors in three 

coordinate directions. Accuracies are derived from quality report generated from Pix4D 

processing.  

 

GCP Name Accuracy 

XY/Z (m) 

Error X 

(m) 

Error Y 

(m) 

Error Z (m) Projection 

Error 

(pixel) 

Verified/

Marked 

Images 

NW Corner 0.020/0.020 -0.008 -0.026  0.015 1.223 20/20 

N 3  0.020/0.020  0.008 -0.009  0.036 0.816 20/20 

NE Corner  0.020/0.020 -0.002  0.022 -0.016 0.610 19/19 

M1 3  0.020/0.020  0.016 -0.009  0.036 0.794 15/15 

M1 2 0.020/0.020  0.001 -0.004 -0.046 1.334 17/17 

M1 1 0.020/0.020  0.004  0.029 -0.052 0.751 15/15 

M2 1 0.020/0.020 -0.018  0.011  0.025 0.402 15/15 

M2 3 0.020/0.020  0.006 -0.020  0.029 1.153 15/15 

M2 4 0.020/0.020 -0.023  0.006 -0.034 1.118 15/15 

S 2 0.020/0.020  0.000  0.018  0.025 0.618 15/15 

S 3 0.020/0.020  0.015 -0.032 -0.024 1.076 19/19 

SE Corner 0.020/0.020 -0.001  0.017  0.010 1.131 20/20 

Mean (m)  -0.000  0.000  0.000   

Sigma (m)   0.011  0.019  0.032   

RMS Error (m)   0.011  0.019  0.032   

 

Independent verification of geolocation was done through four CPs that were only used 

in assessment and not introduced into processing. The reported geolocation accuracy to the CPs 

is reported in Table 4.7. The RMS error of year two orthomosaic measured by CPs was 0.013, 

0.010, and 0.070 m for the X, Y, and Z axes respectively. Reported X and Y accuracies provided 

confidence that objects detected in the year two orthomosaic map were within 1.2 cm of their 

actual location in the field. 
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Figure 4.14: Locations of GCPs and CPs used in processing and assessing orthomosaic 

geolocation accuracy for year two.  

  

 

 

Table 4.7: Localization accuracy of year one orthomosaic per CPs and mean errors in three 

coordinate directions. Accuracies are derived from quality report generated from Pix4D 

processing.  

 

CP Name Error X 

(m) 

Error Y 

(m) 

Error Z (m) Projection 

Error (pixel) 

Verified/Marked 

Images 

N 2 -0.0024 -0.0173 -0.0412 0.8351 18/18 

M1 4 -00193  0.0093 -0.0323 0.6483 15/15 

M2 2  0.0019  0.0026  0.0433 0.9631 15/15 

SW Corner  -0.0170  0.0052 -0.126 2.9648 16/16 

Mean (m) -0.009187 -0.000045 -0.038193   

Sigma (m)  0.009116  0.010222  0.058731   

RMS Error (m)  0.012942  0.010222  0.070057   
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4.4.2 Model Accuracies  

In year one, a custom trained YOLO v3 CNN model trained on 0.4 cm spatial resolution 

imagery was used for field testing. Its accuracy was assessed on the field imagery and reported in 

Table 4.8. It was chosen for field testing due to its recall results of 0.90 which were the highest 

of models tested at the time of year one trials. The year one YOLO v3 model also reported a 

precision of 0.58 and F1 Score of 0.70.  

 

Table 4.8: Field specific CNN, GSD, and model accuracy for year one and two.  

 

Year CNN Imagery 

GSD (cm) 

Precision Recall F1 

Score 

True 

Positive 

False 

Positive 

False 

Negative 

1 YOLO v3 0.4 0.58 0.90 0.70 1341 985 145 

2 FR-CNN 0.4 0.84 0.90 0.87 332 64 37 

 

In year two, a Faster R-CNN model trained on 0.4 cm GSD imagery was used for field 

testing. Its accuracy was assessed on year two field imagery and reported in Table 4.8. It was 

chosen for field testing due to its recall results of 0.90 which were the highest of models tested at 

the time of year two trials. The year two Faster R-CNN model reported a precision of 0.84 and 

F1 Score of 0.87.  

4.4.3 Sprayer configuration 

 Measured flow rates (LPM), pressure (kPa), calculated spray volume (L ha-1), resulting 

rate bump (%) and ASABE droplet classification from the experimental sprayer are reported in 

Table 4.9. When seven of seven nozzles were engaged, the flow rate and pressure of each 

measured 0.76 LPM and 276 kPa, resulting in the targeted 139.4 L ha-1. At this pressure, the 

ASABE droplet classification is listed as “Coarse” in the manufactures catalog (Teejet, 2014). 
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Nozzle measurements were unchanged when only six and five nozzles were engaged indicating 

that the mechanical bypass valve accounted for increasing bypass need and rate was held 

constant. When only three and four nozzles were engaged flow rates from nozzles increased to 

0.79 LPA, pressure increased to 310 kPa which resulted in a 4% rate bump to 145.0 L ha-1. When 

two nozzles were engaged, flow rates from nozzles increased to 0.83 LPA, pressure increased to 

345 kPa which resulted in a 9% rate bump to 152.5 L ha-1. Since site-specific maps were on a 

one-meter grid, it was rare for only two nozzles to be engaged and there were no areas where 

only a single nozzle was engaged. ASABE droplet classification remained “coarse” through all 

nozzle configurations.  

 

Table 4.9. Nozzle spray characteristics by number of nozzles spraying site-specific boom.  

 
Nozzles 

spraying 

Nozzle Flow 

rate 

(LPM) 

Pressure 

(kPa) 

Spray 

volume 

(L ha−1) 

Rate 

increase 

ASABE classification - AIXR 11002 

@ reported pressure (Teejet, 2014) 

7 0.76 276  139.4 + 0%  Coarse 

6 0.76 276 139.4 + 0%  Coarse 

5 0.76 276 139.4 + 0% Coarse 

4 0.79 310 145.0 + 4% Coarse 

3 0.79 310 145.0 + 4% Coarse 

2 0.83 345 152.5 + 9% Coarse 

 

4.4.4 Weed sizes  

 As with production fields, variations in weed size and maturity existed. An independent t-

test was conducted to explore differences between weed size in year one and year two plots. An 

alpha level of .05 was used (Table 4.10). A statistically significant (p < .05) difference was found 

in the mean bounding box sizes between years, t (420.49) = 17.00, p < .001.  
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Table 4.10: Descriptive statistics for bonding box size by trial year.  

 

 

 

 

 

 

Figure 4.15 summarizes the sizes of bounding boxes representing detections and their 

distribution in year one trial and year two. Year one trial had a significantly larger bounding box 

detections compared to year two, indicating larger weed size. This correlated with in situ plot 

observations. This suggests that any differences in treatment efficacies between years, may be 

influenced by the size of the weeds treated.  

 

 

 

Bounding box size  N Mean SD 

Year 1 1323 19.62 7.19 

Year 2 223 13.31 4.72 
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Figure 4.15: Bounding box size distribution by year. Year one trial had a significantly larger 

bounding box detections compared to year two, correlating to larger weed size. 

 

Mean bounding box size for year one was 19.62 cm (SD = 7.19) while mean bounding 

box size for year two was significantly smaller at 13.31 cm (SD = 4.72). Year two weed heights 

were measured in the field (M = 8.99 cm, SD = 4.19). Trial two measured heights and bounding 

box size were corelated using a least squares approach resulting in an R2 value of 0.6. The linear 

relationship describing this correlation is shown in Equation 4.1. Equation 4.1 was used to 

estimate the weed sizes of year one. Calculated weed height for year one was 14.83 cm (SD = 

5.13). Mean measured heights, bounding box lengths, and calculated weed heights are 

summarized in Figure 4.16. 
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Figure 4.16: Bounding box sizes, measured weed height, and calculated weed height by year. 

Means of different letters are statistically (p < .05) significant.  

 

 

Mean plot bounding box sizes by treatment were analyzed using an ANOVA. Table 4.11. 

shows that ANOVA results for box size where no significant differences were found in mean 

bounding box sizes between treatments (p < .05) within year one, two and across years one and 

two. Means, and standard deviations for bounding box size between treatments are summarized 

Table 4.12. The lack of statistical differences in weed sizes between treatment specific plots 

suggests that any differences in weed control can be attributed to herbicide treatment method. 
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Table 4.11: ANOVA results for bounding box size between treatments for year one, year two, 

and year one and two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.12: Means and standard deviations of bounding box size (cm) between treatments within 

years and across years one and two.  

 

   Broad   SS  UTC  

 M SD M SD M SD 

 ---------------------------------------%------------------------------------------------- 

Year 1 19.91 6.90 18.98 6.79 20.00 8.28 

Year 2 13.11 4.75 13.44  5.21 13.23  4.12 

Year 1 and 2 18.91 7.05 18.26 6.86 18.92 8.15 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05) 

4.4.5 Weed density    

Weed counts along with plot size from years one and two were used to calculate weed 

density (plants/m2). Mean weed densities by plot were analyzed using an ANOVA. Table 4.13 

Bounding box size  df F p 

Year 1    

      Treatments 2 2.636 .072 

      Residuals  1320   

Year 2    

      Treatments 2 0.122 .885 

      Residuals  220   

Year 1 and 2    

      Treatments 2 1.387 .25 

      Residuals  1543   
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shows that ANOVA results for weed densities where no significant (p < .05) differences between 

treatment means were found within year one, two and across years one and two. Means, and 

standard deviations for weed density (weed/m2) between treatments are summarized in Table 

4.14 and Figure 4.17. The lack of statistical (p > .05) differences between treatment plots within 

years and across years increases the confidence that differences found in weed control can be 

attributed to herbicide treatment method. 

 

 

Table 4.13: ANOVA results for weed density between treatments for year one, year two, and 

year one and two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weed density  df F p 

Year 1    

      Treatments 2 1.93 0.188 

      Residuals  12   

Year 2    

      Treatments 2 1.61 0.225 

      Residuals  20   

Years 1 and 2    

      Treatments 2 0.87 0.429 

      Residuals  35   
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Table 4.14: Means and standard deviations of plot weed density (weeds/m2) between treatments 

within years and across years one and two.  

 

   Broad    SS   UTC  

 M SD M SD M SD 

 --------------------------------------%------------------------------------------------ 

Year 1 1.07 0.21 0.77 0.26 0.99 0.39 

Year 2 0.20 0.12 0.12  0.11 0.10  0.10 

Years 1 and 2 0.57 0.47 0.43 0.38 0.34 0.46 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05) 

 

 
 

Figure 4.17: Year one and two weed density (weeds/m2) by treatment.  
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ANOVA results for applied area were all significant between treatments (p < .05) within year 

one, two and between year one and two. Null hypothesis five stated that there will be no 

significant (p < .05) differences in the mean treatment area (%) between plots sprayed with a 

broadcast rate and plots sprayed using prescription map generated by a SSWM workflow. 

Therefore, null hypothesis five was rejected. Means, standard deviations, and significant 

differences for applied area (m2) between treatments for each year and across both years are 

summarized by Table 4.16 and Figure 4.18.  

 

Table 4.15: ANOVA results for applied area between treatments for year one, year two, and year 

one and two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Area treated df F p 

Year 1    

      Treatments 2 140.9 <0.0001 

      Residuals  12   

Year 2    

      Treatments 2 375.7 <0.0001 

      Residuals  20   

Years 1 and 2    

      Treatments 2 99.4 <0.0001 

      Residuals  35   



 

131 

Table 4.16: Percent of Broadcast, site-specific, and untreated check plot areas treated.  

 
  Broad  SS  UTC 

 M SD M SD M SD 

 -----------------------------------------%------------------------------------------ 

Year 1 1.00A 0.00 0.80B 0.13 0.00C 0.00 

Year 2 1.00 A 0.00 0.27 B 0.14 0.00 C 0.00 

Year 1 and 2 1.00A 0.00 0.52B 0.30 0.00C 0.00 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05). 

 

 
 

Figure 4.18: Year one, Year two, and combined percent area sprayed averaged by treatment. 

 

 

There were significant (p < .05) differences in mean applied area (%) between broadcast, 
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two plots increased the difference in applied area to 73%, also significant (p < .05). Across years 

one and two, a 48% reduction in mean applied area was found between broadcast and site-

specific plots.  

Figure 4.19 displays weed density means with percent plot treated of individual broadcast 

plots. Year one contained replications one through six and were numerically highest in weed 

density ranging from 0.83 to 1.34 weeds per m2. Year two replications seven through 14 had a 

consistently lower numerical weed density ranging from 0.37 to 0.06 weeds per m2. As shown, 

independent of mean weed density, 100% of the broadcast plots were treated.  

 

 
 

Figure 4.19: Weed density and percent area sprayed of broadcast treatment by plot.  

 

Figure 4.20 summarizes weed density and percent area treated of site-specific plots. Year 

one contained replications one through six and were ranked highest in weed density ranging from 
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1.19 to 0.38 weeds per m2. Year two replications seven through 13 had a consistently lower weed 

density ranging from 0.27 to 0.00 weeds per m2. Unlike the broadcast plots, weed density 

directly influenced applied area and percent treated area ranged between 94% and 7%.  

 

 
 

Figure 4.20: Weed density and percent area sprayed of site-specific treatment by plot. 
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significant differences for spray coverage (%) between treatments are summarized Table 4.18 

and Figure 4.21.  

 

Table 4.17: ANOVA results for year two water sensitive paper coverage samples. 

 

 

 

 

 

 

Table 4.18: Percent coverage of Broadcast, site-specific treated, and site-specific non-treated 

plot areas. 

  
   Broad   SS-Treated    SS-Untreated  

 M SD M SD M SD 

Coverage (%)  26.74 a 8.55 28.95 a 11.30 3.51 b 6.93 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05). 

  

There were no significant (p < .05) differences found in the mean spray coverage (%) of 

broadcast areas (M = 26.75%, SD = 8.55) and site-specific areas (M = 28.95%, SD = 11.30) that 

were designated as treatment zones. There was a significant (p < .05) decrease in spray coverage 

(%) in the areas sampled within site-specific plots that were designated as untreated (M = 3.51%, 

SD = 6.93) when compared to broadcast and treated areas within site-specific plots (Figure 4.21). 

Figures 4.22 - 4.25 display the water sensitive cards collected from the treatment areas. Fourteen 

replications of each test were collected, two spray cards in each treatment designation (broadcast, 

site-specific treated, site-specific untreated) in each plot. The spray cards clearly demonstrate 

that similar coverage was achieved in sampled treatment areas between treated areas (broadcast 

Coverage (%) df F p 

Year two    

      Treatments 2 34.3 <0.0001 

      Residuals  41   
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and site-specific treated). Additionally, areas designated as untreated within site-specific plots by 

comparison contain little or no coverage.  

 

 
 

Figure 4.21: Mean spray coverage (%) measured by water sensitive paper within broadcast, site-

specific treated, and site-specific untreated areas of plots. 
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 Broadcast Site-specific treated Site-specific untreated 

Rep 1 

   

Rep 2 

   

Rep 3 

   

Rep 4 

   

 

Figure 4.22: Spray coverage illustrated by water sensitive paper within broadcast, site-specific 

treated, and site-specific untreated areas of plots (Replications 1-4). 
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 Broadcast Site-specific treated Site-specific untreated 

Rep 5 

   

Rep 6 

   

Rep 7 

   

Rep 8 

   
 

Figure 4.23: Spray coverage illustrated by water sensitive paper within broadcast, site-specific 

treated, and site-specific untreated areas of plots (Replications 5-8). 
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 Broadcast Site-specific treated Site-specific untreated 

Rep 9 

   

Rep 10 

   

Rep 11 

   

Rep 12 

   
 

Figure 4.24: Spray coverage illustrated by water sensitive paper within broadcast, site-specific 

treated, and site-specific untreated areas of plots (Replications 9-12). 
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 Broadcast Site-specific treated Site-specific untreated 

Rep 13 

 

Rep voided, plot 
missapplication 

Rep voided, plot 
missapplication 

Rep 14 

 

Rep voided, plot 
missapplication 

Rep voided, plot 
missapplication 

Rep 15 

   

Rep 16 

   
 

Figure 4.25: Spray coverage illustrated by water sensitive paper within broadcast, site-specific 

treated, and site-specific untreated areas of plots (Replications 13-16). 
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4.4.8 Treatment Efficacy 

Treatment Efficacy Year One 

 

Individual weed control ratings at one, two and three weeks after treatment for year one 

was averaged by plot. Mean weed control (%) was analyzed using a One-way ANOVA for 

individual weeks (one, two, and three weeks after treatment) in year one. Table 4.19 shows that 

ANOVA results for weed control were all significant between treatments (p < .05) within weeks 

in year one. Once ANOVA results were determined to be significant, the means were then 

subjected to Tukey’s post hoc analysis to determine the amount of significance between each 

treatment. Means, standard deviations, and significant differences are for year one weed control 

(%) between treatments are summarized in Table 4.20 and Figure 4.26. 
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Table 4.19: ANOVA results for year one treatment efficacy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.20: Percent weed control of three application treatments, year one.  

 
   Broad   SS    UTC  

 M SD M SD M SD 

 --------------------------------------------%-------------------------------------------------- 

1 WAT 98.84A 1.69 89.49A 9.41 1.49B 1.69 

2 WAT 96.48 A 2.60 88.14 A 10.22 1.49 B 1.69 

3 WAT 90.66A 5.95 77.04 A 15.49 1.49B 1.69 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05). 

Year one df F p 

1 WAT    

      Treatments 2 278.6 <0.0001 

      Residuals  12   

2 WAT    

      Treatments 2 216.8 <0.0001 

      Residuals  12   

3 WAT    

      Treatments 2 73.0 <0.0001 

      Residuals  12   
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Figure 4.26: Year one treatment efficacy by weeks. Shared letters within weekly ratings indicate 

a lack of significant (p < .05) difference.  

 

In year one, there was a significant (p < .05) increase in weed control (%) between 

untreated check plots and broadcast plots within each week (97.35%, 94.98%, and 89.17% 

increase over untreated check one, two, three WAT, respectively). There was also a significant (p 

< .05) increase in weed control (%) between untreated check plots and site-specific plots within 

each week (88.00%, 86.65%, and 75.54%, increase over untreated check one, two, three WAT, 

respectively. Broadcast plot means consistently ranked higher than site-specific means (9.35%, 

8.34%, and 13.62% for one, two, and three WAT); however, none of these differences proved to 

be significant (p < .05).  
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Table 4.20 and Figure 4.26 shows that the standard deviations for site-specific plots were 

much higher compared to those of Broadcast and Untreated check plots. Large variations in data 

values due to wider variations in weed control, as represented by their standard deviation, require 

larger differences between means for values to be considered significant (p < .05). Therefore, 

some of the means across within weeks were not different enough to be significant (p < .05) with 

standard deviation values this large.  

Treatment Efficacy Year Two 

Individual weed control ratings at one, two and three weeks after treatment for year two 

was averaged by plot. Year two mean weed control (%) was analyzed using an ANOVA. Table 

4.21. shows that ANOVA results for weed control were all significant between treatments (p < 

.05) within year two. Once ANOVA results were determined to be significant, the means were 

then subjected to Tukey’s post hoc analysis to determine the amount of significance between 

each treatment. Means, standard deviations, and significant differences are for year two weed 

control (%) between treatments are summarized in Table 4.22 and Figure 4.27.  
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Table 4.21: ANOVA results for year two treatment efficacy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.22: Percent weed control of three application treatments for year two. 

 
   Broad   SS    UTC  

 M SD M SD M SD 

 --------------------------------------------%------------------------------------------------- 

1 WAT 94.53A 3.94 90.71A 9.95 3.92B 6.99 

2 WAT 94.16 A 6.47 91.07 A 6.35 1.16 B 2.66 

3 WAT 86.97A 13.35 86.53 A 9.16 4.25B 9.32 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05). 

Year two df F p 

1 WAT    

      Treatments 2 291.2 <0.0001 

      Residuals  18   

2 WAT    

      Treatments 2 599.0 <0.0001 

      Residuals  18   

3 WAT    

      Treatments 2 130.5 <0.0001 

      Residuals  18   
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Figure 4.27: Year two treatment efficacy by weeks. Means sharing the same letters within 

weekly ratings are not significantly (p < .05) different.  

 

 

In year two, there was a significant (p < .05) increase in weed control (%) between 

untreated check plots and broadcast plots within each week (88.16%, 93.00%, and 82.72% 

increase over untreated check one, two, and three WAT, respectively). There was also a 

significant (p < .05) increase in weed control (%) in site-specific plots compared to that of 

untreated check plots both within weeks (84.35%, 89.91%, and 82.28% increase over untreated 

check one, two, and three WAT, respectively.  

Table 4.22 and Figure 4.27 shows that there is a consistent numerical drop in site-specific 

mean weed control values compared to those of Broadcast (3.82%, 3.09%, and 0.44% for weeks 

one, two, and three); however, these differences were not statistically significant (p < .05).  
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Treatment Efficacy Year One and Two 

 

Individual weed control ratings at one, two and three weeks after treatment for year two 

one and two was averaged by treatment. Year one and two mean weed control (%) was analyzed 

using an ANOVA. Table 4.23 shows that ANOVA results for weed control were all significant 

between treatments (p < .05) within one-, two-, and three-week ratings. Once ANOVA results 

were determined to be significant, the means were then subjected to Tukey’s post hoc analysis to 

determine the amount of significance between each treatment. Means, standard deviations, and 

significant differences are for year one and two weed control (%) between treatments are 

summarized in Table 4.24 and Figure 4.28. 

 

Table 4.23: ANOVA results for treatment efficacies from years one and two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weeks after treatment df F p 

1 WAT    

      Treatments 2 566.8 <0.001 

      Residuals  33   

2 WAT    

      Treatments 2 845.2 <0.001 

      Residuals  33   

3 WAT    

      Treatments 2 205.3 <0.001 

      Residuals  33   
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Table 4.24: Percent weed control of three application treatments, year one and two.  

 
   Broad   SS    UTC  

Ratings M SD M SD M SD 

 ------------------------------------------%----------------------------------------------------- 

1 WAT 96.22A 3.90 90.10A 9.96 4.90 B 6.44 

2 WAT 95.15 A 5.34 89.64 A 8.58 1.26 B 2.32 

3 WAT 88.55 A 11.07 81.79 A 13.05 3.42 B 7.77 

Note. Numbers within rows that share subscript letters are not significantly different (p > .05). 

 

 
 

Figure 4.28: Two-year mean treatment efficacy by weeks. Means sharing the same letter within 

weekly ratings are not significantly (p < .05) different.  

 

 

Like individual years, when years were combined, there was a significant (p < .05) 
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respectively). There was also a significant (p < .05) increase in weed control (%) between 

untreated check plots and site-specific plots within each week (85.20%, 88.35%, and 78.36% 

increase over untreated check one, two, and three WAT, respectively. Despite a consistent 

numerical drop in control between broadcast and site-specific plots (6.12%, 5.55%, and 6.77% 

for week one, two, and three means), there were no significant (p < .05) differences found in 

weed control for weekly ratings.  

4.5 Discussion  

The following section describes the results stated in chapter 4.4, how they relate to 

current pesticide application techniques, and their implications for input savings, reductions in 

environmental impact. Also discussed are the limitations of these results and the proposed 

workflow.  

4.5.1 Applied Area       

Null hypothesis five stated that there will be no significant (p < .05) differences in the 

mean treatment area (%) between plots sprayed with a broadcast rate and plots sprayed using 

prescription map generated by a SSWM workflow. Significant (p < .05) reduction in applied area 

were found between broadcast and site-specific treatments (20% and 73% mean reduction in 

year 1 and 2, respectively); therefore, null hypothesis five was rejected. Reductions highly 

correlated with weed densities within plots. This strongly suggests that if applied at the field 

scale it would be possible to significantly reduce the number of hectares treated and the total 

volume applied to fields particularly when weed density is low. Water sensitive paper placed 

within plots show that areas indicated as untreated areas had no coverage or minimal coverage 

from immediately adjacent treaded zones (M = 3.51%, SD = 6.93). Water sensitive paper data 
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also support that those areas designated as treatment areas within site-specific plots (M = 

28.95%, SD = 11.30) received statistically similar coverage as the broadcast plots (M = 26.75%, 

SD = 8.55). This correlation of weed density to sprayed area and spray coverage strongly 

suggests that the site-specific applications can reduce the environmental impact of pesticides and 

reduce input cost of producers while maintaining expected coverage of intended targets. 

Pesticide savings would correlate with weed density and be influenced by weed distribution; 

however, even with high weed density plots, applied areas were reduced compared to broadcast 

applications.  

4.5.2 Treatment Efficacy       

Null hypothesis six stated that plots selectively sprayed using prescription maps 

generated by a SSWM workflow will not achieve statically (p < .05) similar mean weed control 

compared with broadcast applications. Results showed that there were no significant (p < .05) 

differences in the weekly weed control (%) ratings between broadcast and site-specific herbicide 

applications within years one and two and across both years of replicated plots. This indicates 

that the plots selectively sprayed using prescription maps generated by the proposed SSWM 

workflow achieved statistically similar results as the broadcast treatment leading to the rejection 

of null hypothesis six. It is worth mentioning a consistent numerical drop in weed control 

particularly in year one. It is suspected that this difference may be attributed to the statistical (p < 

.05) difference in mean weed size between year one (M = 19.62 cm, SD = 7.19) and year two (M 

= 13.31 cm, and SD = 4.72) as measured by their detection box size and supported by in situ 

scouting prior to application. This significantly larger set of weeds can be attributed to treatment 

delays caused by weather in year one and as a group were nearly too large to recommend 

treating. Herbicide efficacy degrades with an increase in weed size (Meyer & Norsworthy, 
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2019). These degradations may be compounded by slight deviations in coverage or spray volume 

from turning nozzles on immediately prior to meeting a weed. The greater the distance a weed is 

from the nozzle, the more time allotted for the spray pattern to fully develop and provide 

broadcast level coverage. Boom height for each trial was adjusted to the recommended height 

(0.5 m above target) relative to an approximated mean target height. This was estimated by 

walking the plots and estimating the weed heights to determining the relative boom height.   

However, the tallest of weeds (compared with the estimated mean weed height) in year one may 

have been too close to the nozzles for the broadcast coverage to be achieved. The water sensitive 

spray cards placed at weed height in year two may have not picked up this difference because of 

their relative distance from the nozzles since they were placed at weed height. When site-specific 

treatment maps contain high accuracy detections and are properly geolocated, PWM sprayers can 

precisely execute the commands and place pesticides accordingly. However, weed size may be a 

greater concern with site-specific applications than when broadcasting herbicides due to a greater 

need for nozzles to achieve a full pattern within treatment zones.  

 

4.6 Conclusion 

Post-emergent applications of herbicides often apply exceedingly more pesticides than 

necessary since weeds are spatially sparce. While novel robotic technology has begun to 

demonstrate capabilities at weed detection and site-specific treatments, today’s field application 

equipment, when equipped with induvial nozzle control via PWM actuators may be able to carry 

out site-specific application. A site-specific workflow that applied herbicides with a PWM 

sprayer using prescription weed maps was demonstrated; applied areas and resulting weed 

control were evaluated.  
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Significant reductions in applied area were found between site-specific and broadcast 

treatments. Applied area highly correlated with weed densities within each site-specific plot. The 

correlation of weed density to applied area and coverage results collected by water sensitive 

cards, suggests that the site-specific applications can be carried out by current PWM sprayers. 

Furthermore, site-specific application made by PWM sprayers can reduce the applied area in 

fields while maintaining expected coverage of intended targets. Herbicide efficacy between site-

specific and broadcast treatments were determined to be statistically similar. Assuming site-

specific treatment maps contain high accuracy detections that are properly geolocated, PWM 

sprayers can precisely actuate valves and place pesticides accordingly at the tested speed of 6.4 

km/h.  

Results of applied area and herbicide efficacy suggest that if PWM sprayers apply 

prescription weed maps at field scale, similar treatment efficacies may be achieved with 

significant reductions in the number of hectares treated when compared with broadcast 

applications. Some variation in nozzle flow rates were noted when engaging different numbers of 

nozzles, suggesting possible limitations in field equipment’s ability to hold target rate across 

larger sections of plumbing with a single pump. Additionally, PWM sprayers need to be 

evaluated at their ability to hold uniform applied volumes and resulting coverages at a variety of 

field speeds.  
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5.0 SUMMARY AND CONCLUSION 

5.1 Summary of the problem         

Using high-resolution imagery collected from a low altitude UAS platform may provide 

the complete field scouting needed for SSWM. Crop/weed identification within this imagery has 

been proven possible with today’s open-source deep learning models, once properly trained; 

however, Palmer amaranth detection in soybean production fields has not been explored to the 

author’s knowledge. PWM application equipment can respond at a relatively fine resolution (1 

m); however, are PWM sprayers able to act on detected objects and achieve acceptable weed 

control if used in a site-specific herbicide? The convergence of these three technologies may 

meet the foundational requirements for widespread adoption of site-specific pesticide 

applications as described in Gebbers and Adamchuk (2010). SSWM may be possible with 

today’s equipment but one major limitation is a lack of robust, reliable, and user-friendly 

workflows (Sishodia et al., 2020). These experiments studied a proposed workflow that 

combines the capabilities of these technologies and facilitates access to accurate treatment maps. 

The successful creation of such a workflow would dramatically reduce the volumes of pesticides 

applied resulting in reduced input cost for producers and reduce environmental impact of 

production systems. Furthermore, in the case of selective herbicides or application made in 

genetically tolerant crops, the precision demands of such a workflow would be much lower and 

may be feasible in current production systems. However, each of the three converging 

technologies contributions to such a workflow must be evaluated to ensure the integrity of a 

resulting applications efficacy. These evaluations should include weeds (Palmer amaranth) 

detection accuracy of different CNN models, the spatial resolution requirements to meet 

acceptable accuracies, and the application accuracy of equipment action on prescription maps. 
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5.2 Conclusions       

Weed control via herbicide applications in modern production systems have been 

relatively robust and successful. However, post-emergent applications of herbicides often apply 

exceedingly more product than necessary because weed are spatially sparce compared. A site-

specific application to weeds would strategically target the placement of herbicides with the goal 

of achieving the same efficacy while treating less area. Such a workflow would need to 

accurately detect and be able to apply herbicides to weed locations. Experiments to evaluate the 

detection accuracy, herbicide efficacy, and the difference in applied area between broadcast 

applications and a novel site-specific herbicide application workflow were conducted. 

Sixteen CNN models (RetinaNet, Faster R-CNN, YOLO v3, and SSD each trained on 

imagery 0.4, 0.6, 0.8, and 1.2 cm spatial resolution) were trained to detect Palmer amaranth in 

soybean field imagery. Precision, recall, F1-score, and detection rate results from each model 

were calculated for detections made on 7,800 weeds from four production fields. Both CNN 

architecture and training imagery resolution influenced model results. Detection accuracies 

increased proportionally, and detection rates decreased proportionally with increasing spatial 

resolution training imagery. Faster R-CNN across the four spatial resolutions performed the most 

accurate detections followed by YOLO v3, SSD, and RetinaNet. Of the sixteen models trained, 

only the combination of Faster R-CNN trained on 0.4 cm GSD proved to meet field ready 

expectations for precision, recall and their harmonized mean, F1-score. While Faster R-CNN 

maintained impressive detection metrics (precision = 0.80, recall = 0.98, F1-scores = 0.94) 

across deployments in four trials over two years, further testing of its ability to generalize is 

recommended. Specifically, an increase in false positive detections were noted at the edges of 

fields where soybeans were stunted and smaller. This reduced the precision of some fields and 
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suggested that accuracies in younger soybean fields may need to be assessed. Additionally, it 

was found that weed heights smaller than 2.5 cm decreased in detection recall. This limitation 

suggests that workflows using 0.4 cm spatial resolution would be most accurate if targeting 

weeds > 2.5 cm heights. This threshold describes weeds that escape control in an earlier post 

emergent application. By targeting only these larger escapes, a site-specific workflow would 

achieve higher detection accuracies. Detection rates were determined to be marginally practical 

on coarser imagery; however, high resolution imagery detection times became excessive in the 

context of a single day turnaround timeline.  

Significant reductions in applied area were found between site-specific and broadcast 

treatments. Applied area highly correlated with weed densities within each site-specific plot. The 

correlation of weed density to applied area and supplemental spray coverage results collected by 

water sensitive cards, suggests that the site-specific applications can be carried out by current 

PWM sprayers. Furthermore, site-specific application made by PWM sprayers can reduce the 

applied area in fields while maintaining expected coverage of intended targets. Herbicide 

efficacy between site-specific and broadcast treatments were determined to be statistically 

similar. Assuming site-specific treatment maps contain high accuracy detections that are properly 

geolocated, PWM sprayers can precisely actuate valves and place pesticides accordingly.  

Results of applied area and herbicide efficacy suggest that if PWM sprayers apply 

prescription weed maps at field scale, similar treatment efficacies may be achieved with 

significant reductions in the number of hectares treated when compared with broadcast 

applications. Some variation in nozzle flow rates were noted when engaging different numbers of 

nozzles suggesting possible limitations in field equipment’s ability to hold target rate across 

larger sections of plumbing with a single pump. Additionally, PWM sprayers need to be 
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evaluated at their ability to hold uniform applied volumes and resulting coverages at a variety of 

field speeds.  

 

5.3 Future work  

 This research demonstrated a successful workflow consisting of three converging 

technologies; however, each of these technologies have their own limitations that likely inhibit 

current widespread adoption, offering opportunities for future development and evaluation. 

While it was the goal of this research to produce a highly practical and accessible site-specific 

workflow, it is equally important to highlight the current limitations in need of further 

development.  

It was determined and widely supported in the literature that higher spatial resolution 

imagery produces higher accuracy detection results. Obtaining these spatial resolution demands 

limit flight altitudes and speeds. In the case of this research, 0.4 cm spatial resolution imagery 

was successfully demonstrated; however, this limited flight altitude to 18.3 m and flight velocity 

to 1.83 m/s with the UAS used. At the necessary 70% side by 80 frontal overlaps required for 

orthorectifying imagery, a 16-ha field would take approximately four and a half hours to collect 

imagery. The same field at coarser spatial resolutions become much more practical with 0.6, 0.8 

and 1.2 cm spatial resolutions taking 2.0, 1.2, and 0.5 hours, respectively. While this may be 

possible it is not practical nor easily scalable across large production systems with the equipment 

used in this experiment. Furthermore, weeds are ideally treated when they are small; however, 

even at 0.4 cm GSD emerging plants are difficult or impossible to detect. Increasing flight 

altitude to increase data collection efficiency would coarsen spatial resolution and further reduce 

the accuracy of small weed detection. Development and evaluation of UAS with higher spatial 
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resolution sensors, advanced collection techniques, and extended flight capabilities may address 

these issues.  

Faster R-CNN maintained impressive detection metrics (80% precision, 98% recall, 94% 

F1-scores) across deployments in four trials over two years. While these are acceptable levels of 

detection for field use, further testing of its ability to generalize may need to be explored. Effort 

has been made to describe the variability contained in each of these field tests so that detection 

expectations can be set appropriately in any consideration of future testing or deployments. Prior 

to deployment, models accuracy should be evaluated in fields with soybeans at younger growth 

stages than that captured by training imagery. Additionally, model accuracy should be assessed 

on varying soil colors, textures, and moistures. False positive detections were noted at the edges 

of fields where soybeans were stunted and smaller. This reduced the precision of some fields and 

suggested that accuracies in younger soybean fields may need to be assessed. This was a 

limitation of this studies training data and can possibly be broadened with more generalized 

training samples in future training efforts.  

The PWM experimental set up performed as expected at executing site specific maps. It 

should be noted however, that the trials used to test site-specific maps were relatively small when 

compared to production systems. These results should be generalized with caution to larger field 

equipment and fields. It is possible that field computers designed to handle individual polygons 

as whole field boundaries may struggle when each field instead contains hundreds or thousands 

of polygon detections. Furthermore, system pressure, herbicide volume and rate may vary more 

in site-specific application on larger equipment since a single pump is servicing 54 (0.5 m nozzle 

spacing on 27 m boom) to 72 (0.5 m nozzle spacing on 37 m boom) nozzles.  
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The acknowledged workflow limitations are very real and likely inhibit current adoption 

of the workflow in large scale production agriculture. However, each of these technologies are 

continuing to advance and with this progress a slow diminishment of these limitations is 

expected.  
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