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Abstract 

 

 

Decoding surface-atmospheric interactions and volatile transport mechanisms on trans-

Neptunian objects (TNOs) and Kuiper Belt objects (KBOs) involves an in-depth understanding of 

physical and thermal properties and spatial distribution of surface constituents – nitrogen (N2), 

methane (CH4), carbon monoxide (CO), and water (H2O) ices. This thesis implements a 

combination of radiative scattering models, machine learning techniques, and laboratory 

experiments to investigate the uncertainties in grain size estimation of ices, the spatial distribution 

of surface compositions on Pluto, and the thermal properties of volatiles found on TNOs and 

KBOs. Radiative scattering models (Mie theory and Hapke approximations) were used to compare 

single scattering albedos of N2, CH4, and H2O ices from their optical constants at near-infrared 

wavelengths (1 – 5 µm). Based on the results of Chapters 2 and 3, this thesis recommends using 

the Mie model for unknown spectra of outer solar system bodies in estimating grain sizes of surface 

ices. When using an approximation for radiative transfer models (RTMs), we recommend using 

the Hapke slab approximation model over the internal scattering model. In Chapter 4, this thesis 

utilizes near-infrared (NIR) spectral observations of the LEISA/Ralph instrument onboard 

NASA’s New Horizons spacecraft. Hyperspectral LEISA data were used to map the geographic 

distribution of ices on Pluto’s surface by implementing the principal component reduced Gaussian 

mixture model (PC-GMM), an unsupervised machine learning technique. The distribution of ices 

reveals a latitudinal pattern with distinct surface compositions of volatiles. The PC-GMM method 

was able to recognize local-scale variations in surface compositions of geological features. The 

mapped distribution of surface units and their compositions are consistent with existing literature 

and help in an improved understanding of the volatile transport mechanism on the dwarf planet. 

In Chapter 5, we propose a method to estimate thermal conductivity, volumetric heat capacity, 



 

 

thermal diffusivity, and thermal inertia of N2, CH4, and CO ices, and mixtures thereof in a 

simulated laboratory setting at temperatures of 20 to 60 K – relevant to TNOs and KBOs. A new 

laboratory experimental facility – named the Outer Solar System Astrophysics Lab (OSSAL) – was 

built to implement the proposed method. This thesis provides detailed technical specifications of 

that laboratory with an emphasis on facilitating the design of similar cryogenic facilities in the 

future. Thus, this research was able to incorporate a set of methods, tools, and techniques for an 

improved understanding of ices found in the Kuiper Belt and to decipher surface-atmospheric 

interactions and volatile transport mechanisms on planetary bodies in the outer solar system. 
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Chapter 1 

Introduction 

1.1. Introduction  

The solar system consists of three broad zones – (from the Sun) the inner rocky planets, the gas 

giants, and the Kuiper Belt of icy planetary bodies and dwarf planets. The Kuiper Belt is a vast 

region beyond the orbit of Neptune whose existence was first proposed by Kuiper (1951). The belt 

retains chemical, dynamic, and thermal fingerprints of the solar system’s history (Schaller, 2010) 

because the celestial bodies in the belt are thought to be remnants of the early solar system (Barucci 

et al., 2005; Wu et al., 2013). While the inner boundary of the belt starts at the orbit of Neptune at 

around 30 astronomical units (AU), the inner main region might extend up to around 50 AU from 

the Sun (Stern and Colwell, 1997). The outer edge of the belt (in the main part), known as the 

scattered disk, is thought to extend nearly to a heliocentric distance of 1000 AU (Morbidelli and 

Brown, 2004 and references therein). 

Millions of icy (solid) planetary bodies located in the outer fringe of the solar system, beyond 

the orbit of Neptune, are collectively referred to as Kuiper Belt objects (KBOs) or trans-Neptunian 

objects (TNOs; e.g., Barucci et al., 2005). The populations of KBOs and TNOs exhibit a wide 

variety of colors, from neutral to exceptionally red, in optical wavelength (Doressoundiram, 2004) 

and remarkably diverse albedos (Grundy et al., 2005). Pluto, a dwarf planet and the largest known 

trans-Neptunian object, is one of the fascinating outer solar system bodies in the Kuiper Belt. 

Triton, the largest moon of Neptune, is also considered as a KBO, which was captured by the 

gravity of its host planet (McKinnon and Leith, 1995; Agnor and Hamilton, 2006). Other larger 

objects, named or unnamed, in the Kuiper Belt, include dwarf planets Eris, Sedna, Makemake, 

Quaoar, 2007 OR10, etc. Albeit the typical TNOs and KBOs reside beyond the orbit of Neptune, 
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there are some KBOs, referred to as Centaurs, that have escaped from the Kuiper Belt and orbit 

among the giant classical planets (Schaller, 2010). Some of the Centaurs show the presence of 

their orbital activity around a heliocentric distance between 6 to 25 AU (Stern and Trafton, 2008). 

1.2. Surfaces of TNOs and KBOs 

Nitrogen (N2), methane (CH4), and carbon monoxide (CO) ices have been detected or inferred 

to be present on the surfaces of TNOs and KBOs such as Triton (Cruikshank et al., 1984, 1993). 

Pluto also reveals the presence of N2, CH4, and CO ices on its surface (Cruikshank et al., 1976; 

Owen et al., 1993; Schmitt et al., 2017; see Fig. 1.1). Though Pluto’s surface hosts abundances of 

N2, CH4, and CO volatile ices, its largest moon Charon is a wholly different world (Grundy et al., 

2016). Charon shows the presence of the inert components of water (H2O) and ammonia (NH3) 

ices on its surface (Grundy et al., 2016). Eris, a dwarf planet in the Kuiper Belt, exhibits a 

prevalence of N2 and CH4 ices on its surface (Dumas et al., 2007). 

Fig. 1.1: Distribution of N2, CH4, and CO ices (left to right) on the surface of Pluto as derived 

from the Linear Etalon Imaging Spectral Array (LEISA) instrument a part of the Ralph instrument 

package (Reuter et al., 2008) onboard the New Horizons (Schmitt et al., 2017). The warmer colors 

indicate a higher concentration of volatiles. The N2 distribution map (left panel) was based on the 

integrated band depth of the 2.15 µm N2 band, the CH4 map (middle panel) was based on the state 

of CH4 as determined by the CH4 bands position index, and the CO map (right panel) was based 

on the integrated band depth of the weak CO band at 1.58 µm. The figure was adopted from 

Schmitt et al. (2017). 
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Besides the volatile materials of CH4, N2, and CO, Pluto’s surface shows a photochemically 

formed organic hydrocarbon called tholins and a trace amount of ethane (C2H6) and H2O ices 

(Cruikshank et al., 1976; Owen et al., 1993; Merlin, 2015). These various compositional mixtures 

are associated with some form of geological processes and seasonal interaction with the 

atmosphere of the dwarf planet (Bertrand and Forget, 2016). Though absent on Pluto, Triton's 

surface hosts carbon dioxide (CO2) ice (Cruikshank et al., 1993; Grundy et al., 2016).  

Eris shows a lot of similar characteristics to that of Pluto. Thus, besides the abundances of N2 

and CH4 ices, Eris shows the presence of an intimate mixture of H2O ice and tholins (Dumas et 

al., 2007). Visible (VIS) and near-infrared (NIR) spectra of Sedna, a dwarf planet in the Kuiper 

Belt, exhibit the presence of ices on its surfaces that are different from many other TNOs but have 

a resemblance to Triton – the presence of N2 and CH4 ices on Sedna’s surface (Barucci et al., 

2005). Heterogeneous ice mixtures of N2, CH4, and C2H6 have been reported on the surface of 

Makemake, a likely dwarf planet in the Kuiper Belt (Ortiz et al., 2012; Lim et al., 2010). Note that 

even though H2O ice is most prevalent in the outer solar system and interstellar medium (Baragiola, 

2003), it acts as non-volatile ice in the surface conditions of many outer solar system bodies. 

 

1.3. Atmospheres of TNOs and KBOs 

The atmosphere of a planetary body provides insight into the thermal evolution, origin, and 

surface-atmospheric interactions with the host planet (Stern and Trafton, 2008). The requirement 

of atmospheres on KBOs and TNOs includes gases or sublimation/evaporating materials present 

on the surface and having a source of energy to produce substantial vapor pressure from reservoir 

volatiles (Stern and Trafton, 2008). The presence of volatile ices on TNOs and KBOs suggests that 
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the vapor pressure supports a permanent or seasonal atmosphere in the larger bodies beyond or at 

the orbit of Neptune (Johnson et al., 2015). 

Pluto has a tenuous atmosphere (Fig. 1.2) - composed mainly of volatile N2 and trace amounts 

of CH4 and CO (Stern et al., 2015; Gladstone et al., 2016). The climate model of Pluto indicates 

that, unlike Earth, the atmospheric temperatures on Pluto increase with altitude (Lellouch et al., 

2009; Gladstone et al., 2016). Charon, the largest moon of Pluto, does not hold an atmosphere or 

holds an atmosphere that has far lower column abundance than Pluto’s upper atmosphere as 

evident from the solar occultation total count rate data (Stern et al., 2015). Triton also possesses a 

thin tenuous molecular N2-rich atmosphere with a surface pressure of 1.5 – 1.9 Pa (15 – 19 μbar), 

as evident from the Voyager 2 encounter data (Ingersoll, 1990), with a variety of other component 

species (Lellouch et al., 2010). CH4 and CO gas abundances have also been detected in the 

atmosphere of Triton (Lellouch et al., 2010). 

 

 

Fig. 1.2: Haze layer at the atmosphere of Pluto as seen by New Horizons spacecraft flyby in 2015. 

Image credit: National Aeronautics and Space Administration (NASA)/Johns Hopkins University 

Applied Physics Laboratory/Southwest Research Institute (SwRI). 
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Despite the discoveries of N2 and CH4 on Eris (Licandro et al., 2006; Dumas et al., 2007) and 

Sedna (Barucci et al., 2005), the presence of an atmosphere on these bodies is still not 

unambiguously clear. However, it is hypothesized that the surface volatile may support a seasonal 

thin atmosphere on Eris at perihelion – closer to the Sun or shorter heliocentric distances (Johnson 

et al., 2015). This seasonal atmosphere may freeze on the Eris’s surface at aphelion or larger 

heliocentric distances (Dumas et al., 2007). Centaurs, residing around the orbits of the giant 

planets, enjoy an increased amount of solar insolation which results in the sublimation of volatiles 

(Stern and Trafton, 2008). Atmospheric phenomena on Centaurs were first observed in Centaur 

2060, Chiron (Stern and Trafton, 2008). Chiron’s surface may contain surface or near-surface 

volatiles, probably CO, in an uneven distribution and surface sources of atmospheric gases or 

particulates (Stern and Trafton, 2008).  

In summary, the presence of an atmosphere on TNOs and KBOs depends on the sublimation 

pressure of ice, which is sensitive to the composition, mixing states, and temperatures of volatile 

ices (Young et al., 2020). Vapor pressure of N2, CH4, and CO volatile ices may rise to an 

atmosphere on KBOs and TNOs and, thus, the atmosphere is called a vapor pressure-supported 

atmosphere (Young et al., 2020). Among the TNOs and KBOs, Pluto and Triton have significant 

atmospheres and have been studied over the past decades extensively, so far, from ground-based 

observations e.g., occultations, spacecraft data (Voyager and New Horizons), spectroscopy, and 

modeling (Young et al., 2020). A summary of the surface and atmospheric properties of the eight 

largest TNOs and KBOs (Triton, Pluto, Charon, Eris, Sedna, Makemake, Quaoar, and 2007 OR10) 

in the Kuiper Belt is given in Johnson et al. (2015). 
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1.4. Surface-atmosphere interaction and volatile transport 

The interactions between the surface and atmosphere of icy bodies of TNOs and KBOs happen 

through the exchange of matter and energy. These exchange mechanisms are expected to be 

complex in nature. Among the N2, CH4, and CO ices, N2 is the most volatile component - it has 

the highest vapor pressure and sublimates first when heated by solar irradiation. Thus, the surface 

and atmospheric heating of TNOs and KBOs indicate that N2 on the surface gets diffused and 

sublimates into the atmosphere eventually. The isothermality of volatiles is maintained by the 

latent heat exchange resulting in the deposition in the winter hemisphere where the net radiation 

is balanced (Trafton et al., 1998). Larger KBOs have significant mass-loss rates and consequently 

affect the surface morphologic features. On the other hand, significant precipitation of bright N2 

frost correlates with the higher albedo of the KBOs (Johnson et al., 2015). The volatiles on TNOs 

and KBOs function in various ways due to the nature of compositional mixtures and play important 

roles in the surface-atmospheric processes or interactions on the icy bodies (Grundy et al., 2016; 

Moore et al., 2016). However, the surface-atmospheric interactions are known, to some extent, for 

Pluto and Triton, thanks to the observational data of these bodies from the National Aeronautics 

and Space Administration (NASA)’s Voyager and New Horizons spacecraft missions. 

The complex surface-atmospheric interactions influence volatile movements and morphologies 

on Pluto. The atmosphere of Pluto is composed of N2 gas and is in solid-gas equilibrium condition 

with surface N2 ice (e.g., Gladstone et al., 2016). Consequently, the movement of global ice 

distribution and N2 condensation-sublimation influence the atmospheric circulation on the dwarf 

planet (Bertrand et al., 2020). A deep impact basin, Sputnik Planitia (SP), represents a powerful 

cold trap for the natural accumulation of volatile N2 (and CO) ices due to its lower elevation 

corresponding to higher atmospheric pressure and condensation temperature (e.g., Bertrand and 
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Forget, 2016; Bertrand and Forget, 2017). The layers of global photochemical hazes are the result 

of interaction between the surface and atmosphere through the process of sublimation and 

condensation of N2 (Cheng et al., 2017). Independently of N2 ice distribution outside the Sputnik 

Planitia, the contemporary control of the general atmospheric circulation of the dwarf planet is 

dominated by its retrorotation (Bertrand et al., 2020). This unusual circulation regime explains the 

distribution of surface geological features and longitudinal asymmetry of ice distribution on Pluto 

as observed by New Horizon spacecraft data (Bertrand et al., 2020).  

Although the geological evidence of surface-atmospheric interactions on Pluto can conveniently 

be observed, thanks to the New Horizons mission that provides a plethora of data, in the case of 

Triton the available data are not that much. Triton, and its host planet Neptune, was only visited 

by Voyager 2 spacecraft in 1989. However, like Pluto, Triton has a thin atmosphere composed 

mostly of volatile N2 gas, vapor equilibrium with the surface ices, and other minor species (e.g., 

Lellouch et al., 2010). Like Mars, Triton has a well-structured global atmosphere equilibrium with 

surface frost (Ingersoll, 1990). The atmosphere of Triton is believed to have evolved from the 

outgassing of Triton's volcanic activity driven by seasonal solar heating. Ices are frozen on the 

surface of Triton which warms up, evaporates, and escapes into the lower atmosphere forming a 

thin atmospheric layer (Lellouch et al., 2010). The atmosphere also contains N2 ice grains and 

makes haze layers (Lellouch et al., 2010). 

The surface-atmospheric exchange of materials and energy are intricately associated with the 

constituent materials involved (N2, CH4, CO, and H2O ices), their physical properties such as solid 

phases and grain sizes, the spatial distribution of ices on the surfaces, and their thermal states. On 

top of that, the mechanical strengths and thermal properties of planetary surfaces are directly 

influenced by the grain size of planetary regolith (Gundlach and Blum, 2013). Thus, an accurate 
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grain size estimation of the outer solar system bodies is important for an improved understanding 

of surface volatile transport and thermophysical modeling of planetary bodies. On KBOs and 

TNOs, the surface-atmospheric interaction is influenced by the diurnal and seasonal temperature 

changes over the orbital period of the planetary bodies. The diurnal and seasonal temperatures of 

planetary surfaces are directly controlled by thermal properties such as thermal conductivity, 

thermal diffusivity, and specific heat capacity, and more specifically the thermal inertia, of the 

surface materials (e.g., Wang et al., 2010). 

The seasonal ice cycle on Pluto is influenced by the topography, albedo, emissivity of ice, and 

thermal conductivity of shallow and deep subsurface, which determines diurnal and seasonal 

thermal inertia (Bertrand and Forget, 2016). Surface thermal inertia together with topography and 

albedo controls the planetary energy exchange between surface and atmosphere and, thus, 

influences the atmosphere and the climate of a planetary body (MacKenzie et al., 2019). Seasonal 

thermal inertia is a key driver of the cycle of volatile N2, which is the major ice constituent of 

TNOs and KBOs (Bertrand and Forget, 2016). Thus, the surface volatile transport of the icy 

planetary bodies is influenced by the thermal characteristics of the surface volatile materials 

(Spencer and Moore, 1992). Understanding volatile transport mechanisms and ultimately the 

surface-atmospheric interactions, thus, warrant the accurate estimation of the thermal properties 

of the volatile surfaces of KBOs and TNOs. 

 

1.5. Rationale of this research  

As discussed above, the characteristics of ice are associated with surface geological processes 

and surface-atmospheric interactions, which are governed by physical characteristics such as grain 

size and thermal properties of surface constituents. Radiative transfer models (RTMs) have been 

used to characterize the composition and physical characteristics of outer solar system bodies 
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including KBOs and TNOs (e.g., Grundy and Fink, 1991; Dumas et al., 2007; Merlin et al., 2010; 

Tegler et al., 2010). For instance, the grain sizes of ices found in the outer solar system bodies are 

estimated by using the radiative scattering models (e.g., Mie theory) from the measurements of 

single scattering albedo (SSA).  

Using the radiative model of Mie theory, single scattering albedo of spherical grains (simple 

geometries) can exactly be calculated from Maxwell’s equations (Mie, 1908), if refractive indices 

and particle size are known. On the other hand, the approximation models of Hapke (1993), such 

as the equivalent slab model (Hapke slab) and internal scattering/scatterer model (ISM), are also 

widely used in calculating the single scattering albedo of different planetary bodies ranging from 

terrestrial to icy surfaces. However, wide discrepancies in the estimation of grain size have been 

reported for H2O ice on Saturnian moons, such as Enceladus, using different radiative scattering 

models (Hansen, 2009). These uncertainties are due to the use of different single-scattering albedo 

calculations rather than a choice of using bidirectional scattering models (Hansen, 2009). Thus, it 

is reasonable to anticipate that the estimation of grain sizes of CH4 and N2 ices (pure and mixture) 

on TNO and KBO surfaces will have inconsistencies owing to the different scattering models used.  

Hansen (2009) compared single scattering albedos using the optical constant data of crystalline 

H2O ice at 110 K – relevant to Saturnian moons and other icy bodies. The temperatures at the far 

reach of the solar system in the Kuiper Belt, Oort cloud, and interstellar medium are much lower, 

and amorphous ice should dominate in these environments. Furthermore, while employing RTMs 

in the outer solar system bodies, there has been extensive use of optical constants of crystalline 

and/or amorphous phases of H2O ice and a variety of scattering models. Thus, the uncertainty of 

the grain size estimation of amorphous and crystalline H2O ice at temperatures analogous to the 

outer solar system and the interstellar medium (15 K – 80 K) using different scattering models is 
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warranted. Accordingly, two of the research sections of this thesis (Chapters 2 and 3) focus on 

assessing the discrepancies in grain size estimation of N2, CH4, and H2O ices at the temperatures 

relevant to the icy bodies in the Kuiper Belt. 

Mapping spatial abundance and geographic distribution of ices and their relationship with the 

geological features are imperative for an in-depth understanding of the volatile transport 

mechanism on icy bodies such as Pluto (Bertrand and Forget, 2016). Thus, the surface 

compositional abundance and geographic distribution of volatiles (N2, CH4, and CO) and non-

volatiles (H2O, tholins, etc.) on Pluto have thoroughly been reported in existing studies from the 

observations by instruments onboard the New Horizons spacecraft. However, existing studies in 

mapping surface ices on Pluto were mostly accomplished using band depth measurements of 

known ice species, spectral indices or indicators, or the implementation of complex radiative 

transfer models. The execution of these methods requires prior knowledge of representative 

surface ices, or needs the reflectance, or optical constants data of the end members (label data). In 

this research (Chapter 4), we use an unsupervised machine learning technique to map the 

geographic distribution of ices on Pluto’s surface without any prior information or label data. 

An accurate estimation of the spectral and thermal properties of ices is incredibly important for 

an in-depth understanding of surface-atmospheric mechanisms. Nevertheless, an estimation of the 

spectral and thermal properties of ices needs an experimental facility to investigate the intrinsic 

characteristics of volatiles at cryogenic temperatures. While laboratory data on spectral properties 

are, to some extent, available, the data on thermal properties are not widely available or poorly 

constrained. In this research (Chapter 5), we propose a method to estimate the thermal properties 

of N2, CH4, and CO ices, and the mixture thereof in a simulated laboratory setting at temperatures 

of 20 to 60 K – relevant to TNOs and KBOs. While the method is relatively new and has not been 
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tested in cryogenic temperature conditions yet, this thesis describes the detailed methodology, 

including the theory of the proposed method, which can be used to estimate the thermal properties 

of ices at cryogenic temperatures. To implement the method, we built a new experimental facility 

– named the Outer Solar System Astrophysics Lab – located at the University of Arkansas. The 

laboratory has facilities to experiment with spectral and thermal properties of volatile ices found 

on the surfaces of outer solar system bodies. We provide detailed technical specifications of the 

new experimental facility so that it can help as a guideline for building a similar cryogenic chamber 

in the future for scientific experiments on ices.  

1.6. Organizations of chapters 

This research consists of a total of six chapters including a combination of the implementation 

of radiative scattering models (Chapters 2 and 3), a machine learning technique (Chapter 4), and 

laboratory experiments (Chapter 5). In the Introduction (Chapter 1), the thesis introduces a holistic 

overview of parameters required for an in-depth understanding of surface-atmospheric interaction 

and the volatile transport mechanism of the TNOs and KBOs. In the Conclusion (Chapter 6), the 

thesis wraps up the summaries of all research chapters and describes the contributions this present 

work put forward to the science community. The complete outline of the dissertation involves: 

▪ Introduction (Chapter 1) 

▪ Uncertainty in grain size estimation of CH4 and N2 ices (Chapter 2) 

▪ Discrepancy in grain size estimation of amorphous and crystalline H2O ices (Chapter 3) 

▪ Implementation of unsupervised learning on Pluto (Chapter 4) 

▪ The proposed method for estimation of the thermal properties of ices and the detailed 

technical specifications of the new laboratory facility (Chapter 5), and 

▪ Summary and conclusion (Chapter 6) 
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1.6.1. Primary Author Contribution  

I hereby certify that over 51% of the work presented in this thesis was prepared and completed 

by the primary author, Al Emran. The percentage of the contribution within the provided research 

sections (Chapters 2, 3, 4, and 5) by the primary author is listed below while the rest of the 

percentages are awarded for intellectual contributions by listed coauthors corresponding research 

chapters. 

▪ Chapter 2: 95%  

▪ Chapter 3: 95%  

▪ Chapter 4: 85%  

▪ Chapter 5: 95% 

1.7. Conclusion 

 

Deciphering volatile transport and surface-atmospheric interactions on trans-Neptunian objects 

and Kuiper Belt objects needs an in-depth understanding of the physical and thermal properties of 

the constituent surface ices of these planetary bodies. In this dissertation, we present a holistic 

study of these physical and thermal properties of ices (both volatile and non-volatile) through the 

implementation of radiative scattering models to understand the discrepancies in the estimation of 

grain size of the ices, mapping a surface composition of a KBO using unsupervised machine 

learning techniques, and integrating a laboratory experimental aspect. Thus, this research 

incorporates a set of models, tools, and techniques used in planetary sciences for an improved 

understanding of the properties of surface ices found in the Kuiper Belt and deciphering the 

surface-atmospheric interactions on the planetary bodies in the outer reach of the solar system. 
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Abstract 

We analyze the uncertainty in grain size estimation of pure methane (CH4) and nitrogen saturated 

with methane (N2:CH4) ices, the most abundant volatile materials on trans-Neptunian objects 

(TNOs) and Kuiper Belt objects (KBOs). We compare the single scattering albedo, which 

determines the grain size estimation of outer solar system regolith (Hansen, 2009), of these ices 

using the Mie scattering model and two other Hapke approximations (Hapke, 1993) in radiative 

transfer scattering models (RTM) at near-infrared (NIR) wavelengths (1 – 5 µm). The equivalent 

slab (Hapke slab) approximation model predicts results much closer to Mie scattering over the 

NIR wavelengths at a wide range of grain sizes. In contrast, even though the internal scattering 

model (ISM) predicts an approximate particle diameter close to the Mie model for particles with 

10 µm radii, it exhibits higher discrepancies in the predicted estimation for larger grain sizes 

(e.g., 100 and 1000 µm radii). Owing to the Rayleigh effect on single-scattering properties, 

neither Hapke approximate models could predict an accurate grain size estimation for the small 
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particles (radii ≤5µm). We recommend that future studies should favor the Hapke slab 

approximation when employing RTMs for estimating grain sizes of the vast number of TNOs 

and KBOs in the outer solar system. 

Unified Astronomy Thesaurus concepts: Classical Kuiper Belt objects (250); Trans-Neptunian 

objects (1705); Plutoids (1268); Radiative transfer (1335); Surface ices (2117) 

 

 

2.1.  Introduction 

An abundance of methane (CH4) and nitrogen (N2) ices, among others, have been detected on 

trans-Neptunian objects (TNOs) and Kuiper Belt objects (KBOs) such as Triton (Cruikshank et 

al., 1984, 1993) and Pluto (Owen et al., 1993). Eris, a dwarf planet in the Kuiper Belt, also 

exhibits a prevalence of N2 and CH4 ices on its surface (Dumas et al., 2007). Of these ices, solid 

CH4 ice has several strong absorption bands in near-infrared (NIR) wavelengths (Cruikshank et 

al., 2019). The physical and chemical properties of these ices on TNOs and KBOs have been 

determined from spectral observations using the radiative transfer models (RTMs; e.g., Grundy 

and Fink, 1991; Dumas et al., 2007; Merlin et al., 2010; Tegler et al., 2010). The RTMs enable 

the estimation of abundances and grain size of the constituent mixtures based on albedo or 

reflectance of single scattered light by an average surface grain (e.g., Mustard and Glotch, 2019). 

For instance, Protopapa et al. (2017) estimated the global scale spatial abundance and grain size 

distribution of ices (both volatile and non-volatile) on Pluto from Ralph/LEISA infrared 

spectrometer (Reuter et al., 2008) onboard New Horizons using Hapke modeling (1993). 

Varied results have been reported in grain size estimation of water ice at outer solar system 

icy bodies using different scattering models (Hansen, 2009). Thus, it is reasonable to anticipate 

that the estimation of grain sizes of CH4 and N2 ices (pure and mixture) on TNOs and KBOs 
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surfaces will have inconsistencies owing to the different models used. Hansen (2009) argued that 

the differences in grain size estimation primarily arise from models used for single scattering 

albedo calculation rather than bidirectional reflectance models. Following the same approach, we 

use scattering models to NIR optical constants of CH4 and N2 ices (pure and mixture) at 

temperatures relevant to TNOs and KBOs surface conditions. Single scattering albedo can 

accurately be calculated using Mie theory (Mie, 1908) for simple geometric grains or can be 

estimated using Hapke approximation models (1981, 1993) from optical constants of materials. 

Accordingly, we analyze the single scattering albedo to estimate the inconsistencies in grain 

sizes using Mie theory and two approximation models from Hapke (1993) that have been widely 

used in the existing literature. 

The constituent ices of TNOs and KBOs surfaces exhibit different thermodynamic phase 

transitions at surface conditions of the planetary bodies. For instance, the crystalline α (cubic) - β 

(hexagonal) solid-phase transition of N2 occurs at 35.6K (Scott, 1976), while CH4 I - CH4 II 

solid-phase transition occurs at ~21K (Prokhvatilov and Yantsevich, 1983). On TNOs and KBOs 

surfaces, the CH4 and N2 ices form solid solutions and do not coexist as pure substances 

(Cruikshank et al., 2019). CH4 and N2 ices are completely miscible in one another and show two 

different solid solutions such as N2 diluted in CH4 (CH4:N2) and CH4 diluted in N2 (N2: CH4) 

(Trafton, 2015). In this study, we use the NIR optical constant of pure CH4-I ice measured at 

39K, as a proxy of methane saturated with nitrogen (CH4:N2), and nitrogen saturated with 

methane (N2:CH4) measured at two different temperatures of 35K and 38K.  

The rationale of using pure CH4 ice as the proxy CH4:N2 is that at a temperature of 40K, the 

marginal saturation limit of N2 in CH4 ice is ~0.035 (e.g., Cruikshank et al., 2019). In the 

CH4:N2 binary system, the wavelength shift of the CH4 band is very small on the order of ~2 x 
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10-4 µm (Protopapa et al., 2015; cited in Protopapa et al., 2017). Using optical constants of pure 

CH4 ice as the proxy of the CH4:N2 system is somewhat valid below 40K (Protopapa et al., 

2017) since the saturation limit of N2 in CH4 ice is proportional to temperature changes 

(Prokhvatilov and Yantsevich, 1983). At the 35K temperature, the crystalline α (cubic) phase of 

N2 is saturated with the CH4-I, while at the 38K, the crystalline β (hexagonal) phase of N2 is 

saturated with the CH4-I (Tegler et al., 2010). 

 

2.2.  Methods 

2.2.1. Single scattering albedo 

The single scattering albedo, w, refers to the ratio of the amount of scattered photons to the 

combined amount of light scattered from and absorbed by a particle: 

𝑤 =
𝑄𝑠𝑐𝑎

𝑄𝑠𝑐𝑎 + 𝑄𝑎𝑏𝑠
 ,  (1) 

where 𝑄𝑠𝑐𝑎 is the scattering efficiency and  𝑄𝑎𝑏𝑠 is the absorption efficiency. The sum of 𝑄𝑠𝑐𝑎 

and 𝑄𝑎𝑏𝑠 is termed extinction efficiency, 𝑄𝑒𝑥𝑡. A highly absorbing material likely exhibits a w = 

0 whereas a transparent material is more likely to show a w = 1 (Shepard, 2017). 

In most space science applications, the w is assumed to be the average properties, such as 

optical characteristics, grain size, and to some extent shape and internal structure, of particles 

that make up planetary regolith (Hapke 1981). The w is a function of optical constants/ indices of 

refraction (real, n and imaginary, k) of particles or regolith medium (e.g., Mishra et al., 2021 and 

references therein). A particle with a larger size and moderate to larger k tends to absorb more 

incident light, and therefore, exhibits a lower w (Shepard and Helfenstein, 2007). A variety of 

approximate models has been presented by Hapke (1993) to calculate the w from particle 
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refraction indices (Hansen, 2009). Of these models, the equivalent slab model (Hapke slab) and 

internal scattering/scatterer model (ISM) are widely used in different planetary bodies (e.g., Li 

and Li, 2011). Subsequent studies (Hapke, 2001, 2005, 2012) also presented versions of ISM for 

surface scattering function that was originally derived from Hapke (1981). We use a version of 

the approximate ISM and the Hapke slab models to calculate w from the optical constants of the 

ices found on TNOs and KBOs. 

 

2.2.2. Optical constants 

The optical constants (OC) of pure CH4 and N2:CH4 were chosen based on the thermodynamic 

equilibrium of solid methane and nitrogen ices at different temperatures relevant to TNOs and 

KBOs surface conditions. As the available data permits, we use the optical constants of α-

N2:CH4 at 35K (1- 3.97µm), β-N2:CH4 at 38K (1 - 5µm), and CH4 as the proxy of CH4:N2 at 

39K (1 - 5µm). The optical constants of pure CH4 were collected from Grundy et al. (2002) and 

the N2:CH4 system from Quirico and Schmitt (1992). For detail about the optical constants used 

in this study see Table 2.1. Note that the α-N2:CH4 and β-N2:CH4 systems are the solid solutions 

with a concentration of <2% CH4 and the absorption coefficient is normalized to a concentration 

of 1 for the diluted CH4 in solutions (for detail refer to Quirico and Schmitt 1997). 

Table 2.1. Optical constant used in this study. 

Materials Temperature 

(K) 

References a Wavelength 

range (µm) 

Notes 

CH4 39 Grundy et al. (2002) 1 - 5 As CH4:N2 
b 

N2:CH4 35 Quirico et al. (1999); Quirico 

and Schmitt (1997) 

1- 3.97 N2 in α phase c 

N2:CH4 38 Quirico et al. (1999); Quirico 

and Schmitt (1997) 

1 - 5 N2 in β phase d 
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a Optical constants are available at https://www.sshade.eu/ 

b Filename: optcte-Vis+NIR+MIR-CH4cr-I-39K 

c Filename: optcte-NIR-CH4-lowC-alpha-N2-35K 

d Filename: optcte-NIR-CH4-lowC-beta-N2-38K-cor 

 

 

2.2.3. Mie calculation 

The w for particles with simple geometrics (i.e., spherical shape) can exactly be calculated from 

Maxwell’s equations using Mie theory (Mie, 1908) if refractive indices and particle size 

parameters are known (Moosmüller and Sorensen, 2018). However, scattering models of highly 

asymmetric phase functions demand the treatment of diffraction effects from Mie w (Hansen, 

2009). Thus, we use the δ-Eddington corrected Mie single scattering albedo w’ as compared to 

the estimations of w from Hapke approximations. The δ-Eddington approximated Mie, w’ can be 

calculated as (Wiscombe and Warren, 1980): 

𝑤′ =
(1−ε2) 𝑤

1−ε2 𝑤
   (2) 

where ε is the asymmetry factor, which refers to the ratio of the forward-scattered light to the 

back-scattered light, calculated by Mie theory. We employ Mie w calculation following the 

method described in Wiscombe (1979) using miepython routine, a Python module licensed 

under the terms of the Massachusetts Institute of Technology (MIT) license. The calculated Mie 

w result was then adjusted to δ-Eddington corrected Mie w’ following Eq. 2. 

 

2.2.4. Hapke slab and ISM calculations 

The Hapke slab approximation model (Hapke 1981, 1993) is applied if the imaginary part of 

the optical constant k<<1 so that w can be approximated as (Hansen, 2009): 

https://www.sshade.eu/
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𝑤 =
1

𝛼𝐷𝑅(𝑛)+1
  (3) 

where D is the “particle diameter” and α is the absorption coefficient, given by: 

𝛼 =
4𝜋𝑘

𝜆
  (4) 

where λ is the wavelength. R(n) is the reflection function of the real part (n) of the OC. The 

R(n) can be derived as (Hansen, 2009):  

𝑅(𝑛) =
1−𝑆𝑒

1−𝑆𝑖
  (5) 

where Se and Si are the average Fresnel reflection coefficient for externally and internally 

incident light, respectively (Hapke 1993). For the case of the slab model (k<<1), Se can be 

approximated as (Hapke, 2001):  

𝑆𝑒 =
(𝑛−1)2

(𝑛+1)2 + 0.05  (6) 

and the approximation for Si can be written as (Lucey, 1998): 

𝑆𝑖 = 1.014 −
4

𝑛(𝑛+1)2   (7) 

We use the ISM (Hapke, 1981) as the second approximation method where the w can be 

reproduced as (Hapke, 2001): 

𝑤 = 𝑆𝑒 + (1 − 𝑆𝑒)
(1−𝑆𝑖)Ѳ

1−𝑆𝑖Ѳ
    (8) 

where Ѳ is the internal-transmission function of the particle, given by (Hapke, 1993): 

Ѳ =
𝑟+exp (−√(𝛼(𝛼+𝑠))〈𝐷〉

1−𝑟 exp (−√(𝛼(𝛼+𝑠))〈𝐷〉
  (9) 
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where the near-surface internal scattering coefficient, s = 0, and the internal hemispherical 

(diffused) reflectance, r can be given as (Hapke, 1981): 

𝑟 =
1− √𝛼(𝛼+𝑠)

1+ √𝛼(𝛼+𝑠)
   (10) 

The average distance travel by transmitted ray i.e., mean free path of photon 〈D〉 as a 

function of n and particle diameter, D for perfectly spherical particle can be written as (Hapke, 

2005): 

〈𝐷〉  =
2

3
(𝑛2 −

1

𝑛
(𝑛2 − 1)

3

2) 𝐷  (11) 

In the ISM model, Si is derived from Eq. (7) while Se is a function of both n and k, as given by: 

𝑆𝑒 =
(𝑛−1)2+𝑘2

(𝑛+1)2+𝑘2 + 0.05  (12) 

 

2.3. Results 

2.3.1. Calculated single scattering albedo 

To evaluate how the Mie and Hapke models produce different w at a specific particle 

diameter, we compare w of a 10µm radius particle for pure CH4 at 39K, α-N2:CH4 at 35K, and β-

N2:CH4 at 38K (Fig. 2.1). The calculated w exhibits small spikes over the wavelengths, and 

therefore we smoothen our calculated w curves by applying the Savitzky-Golay filters (Savitzky 

and Golay, 1964), an algorithm typically used for signal processing, with a 3rd order of the 

polynomial fit.  

The result of w from the Hapke slab and ISM calculated for pure CH4 ice shows a varying 

degree of closeness to the result of Mie calculation at different NIR wavelengths (Fig 2.1a). 
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More specifically, at shorter wavelengths up to 2 µm, both ISM and slab model exactly follow 

and mimic the results of Mie calculation. However, at wavelengths of 2.13 and 2.37 µm, the slab 

model results show slightly higher w than the Mie calculation. This indicates that the Hapke slab 

model predicts a slightly smaller pure CH4 grain size compared to the Mie model at these 

wavelengths (Hansen, 2009). The ISM w is closer to the Mie result at longer wavelengths at 3.3 

and 3.5 µm -- implying that the grain-size prediction by ISM at these wavelengths is similar to 

that of Mie’s prediction. In contrast, the Hapke slab predicts a smaller and larger pure CH4 ice 

grain compared to the Mie results at 3.3 and 3.5µm, respectively. At 3.82 µm, both 

approximation models predicate a slightly higher grain size than the Mie results. 

The N2:CH4 system results (Fig. 2.1b and 2.1c) show that the Hapke slab model, overall, 

produces w values much closer to the Mie model than ISM at both 35 and 38K temperatures, 

except at ~ 3.3µm wavelength for 38K where the ISM’s w gets closer to Mie. In the α-N2:CH4 

ice (Fig. 2.1b), the w calculated from the Hapke slab model is much closer to the Mie model 

while ISM predicted a much higher w than Mie calculations over the entire NIR wavelengths. 

This indicates a much smaller α-N2:CH4 ice grain-size prediction by ISM. Likewise, in the case 

of the β -N2:CH4 system (Fig. 2.1c), the slab model result follows much closer to the Mie result 

over the wavelengths, except for the 3.3 µm where ISM gets closer to Mie than the slab result. 

This implies that the Hapke slab model produces a slightly smaller grain size around 2.3, 3.3, and 

3.5µm at 35K and 2.3 and 3.5 µm at 38K than the Mie model. Around the wavelength of 3.3µm 

at 38K, the ISM predicts a slightly smaller grain size than the Mie compared to the Hapke slab to 

Mie. Overall, for the N2:CH4 systems, ISM predicts a much smaller grain size than the Mie 

compared to the slab model to Mie over the NIR wavelengths for the particles with 10 µm radii. 
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Fig. 2.1: Plots for single scattering albedo of pure CH4 at 39K (a), α-N2:CH4 at 35K (b), and β-

N2:CH4 at 38K (c) for a grain 10 µm radius. The dashed solid line presents δ-Eddington 

corrected Mie, the dashed yellow represents ISM, and the dotted green represents Hapke slab 

results. The plots were smoothened using the Savitzky-Golay filter (Savitzky and Golay, 1964). 

 

2.3.2. Discrepancies in grain size estimation 

We compare the relative grain size predicted by the approximated Hapke models to the Mie 

model over the NIR wavelengths. To end that, we first estimate the δ-Eddington corrected Mie 

w’ at grain radii of 1, 10, 100, and 1000 µm. Then we estimate the grain sizes corresponding to 

these Mie w’ values by applying the inverse ISM and Hapke slab models. The w is a non-linear 

function of diameter (D) in both Hapke approximation models (Eq. 3 and 8). We solve the non-

linear equations of the Hapke slab and ISM for D using Powell's hybrid (dogleg) method 
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(Powell, 1970; Chen and Stadtherr, 1981). Lastly, we estimate the relative discrepancies in grain 

size determination by normalizing the estimated grain sizes from the Hapke slab and ISM models 

to the Mie grain size for pure CH4, α-N2:CH4, and β-N2:CH4 (Fig. 2.2). In summary, we calculate 

the single scattering albedos at fixed grain sizes for NIR wavelengths using Mie theory and then 

determine the corresponding grain sizes from the approximation models to fit the Mie spectra. 

For pure CH4 ice, the Hapke slab model (Fig. 2.2a) better predicts the grain sizes than the 

ISM model (Fig. 2.2b). Overall, the predicted grain sizes by the Hapke slab model are within ~ 

20% of the grain size of Mie, whereas the discrepancies in the predicted grain sizes by the ISM 

model are much higher. However, around the 3.3µm region, neither model did predict grain sizes 

very well to Mie's results. Even though the slab model can predict twice as much as the Mie 

results at some wavelengths, for instance, at around 2.3~2.4 µm region for larger grain sizes 

(e.g., 1000 µm radii), the ISM predicated results still show much more discrepancies than slab 

model results at these wavelengths. The continuous rise of the 1 µm curve is due to largely the 

Rayleigh effect (Hansen, 2009) from the Mie model that the Hapke slab method does not model. 

Likewise, the Rayleigh effect on single-scattering properties is not modeled by the ISM. Both 

Hake slab and ISM provide a better prediction at 10 µm grain size, within ~30% of the grain size 

of Mie. However, larger grain-sized were not modeled very well by the ISM and predicted the 

grain sizes that are many times the grain size of Mie (Fig. 2.2b).  

The N2:CH4 system results (Fig. 2.2c, d for 35K and Fig. 2.2e, f for 38K) show that, overall, 

the Hapke slab model has better a prediction, and thus lower discrepancies in grain size 

estimation to the Mie model than the ISM model. Owing to the Rayleigh effect on single-

scattering properties modeled by Mie theory (Hansen, 2009) but not by either of the 

approximation models for smaller grain sizes (e.g., 1 µm), there is a trend of continuously 
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increasing discrepancies in grain sizes estimation by both Hapke slab and ISM. Similar to the 

case of CH4 ice, both Hapke slab and ISM models fit best at 10 µm, where it is within ~30% of 

the Mie result, for the α-N2:CH4 and β-N2:CH4 ices. For larger grain radii (e.g., 100 and 1000 

µm) the Hapke slab exhibits comparatively lower discrepancies than ISM results and predicted 

grain sizes within the twice of the Mie over most of the NIR wavelengths, except at 3.3µm for 

both temperatures. In contrast, though ISM models a good fit at 10 µm, the larger particles (e.g., 

100 and 1000 µm) exhibit higher degrees of discrepancies compared to the Hapke slab results to 

Mie. This characteristic result from the N2:CH4 system is also consistent with the result for water 

ice grain sizes of Enceladus (Hansen, 2009).   
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Fig. 2.2: Grain sizes determined from the Hapke slab (left column) and ISM (right column) 

using spectra calculated using the Mie model at different particle radii of 1, 10, 100, 1000 µm for 

pure CH4 ice at 39K (top row), α-N2:CH4 at 35K (middle row), and β-N2:CH4 at 38K (bottom 

row). The resulting grain sizes are normalized to the input grain sizes. The plots were 

smoothened using the Savitzky-Golay filter (Savitzky and Golay, 1964). 
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2.3.3. Effect of the absorption coefficient 

The distribution of absorption coefficients (α) of pure CH4 and CH4 saturated with N2 ices 

over the NIR wavelength region is given in Fig. 2.3. Absorption coefficients of pure CH4 show a 

peak around the 3.3 µm wavelength (Fig. 2.3a). Though absorption coefficients are quite similar 

for N2:CH4 systems both 35 and 38K, at the latter temperature (Fig. 2.3c), absorption coefficients 

at around 3.3 µm wavelength are much higher than the former temperature (Fig. 2.3b). Pure CH4 

and β-N2:CH4 ice show a similar higher absorption coefficient at 3.3µm wavelength. The 

anomalies in grain size prediction of larger particles by the Hapke slab method for pure CH4 and 

β-N2:CH4 at 3.3 µm are, perhaps, due to the larger k value at this NIR wavelength region. 

The absorption coefficient peaks at 3.3 µm at 38K and 39K are consistent with the fact of 

lower single scattering albedo or higher absorption. This is also evident in the relative grain-size 

curve for 10 µm, the best grain-size prediction by the Hapke approximated models. The grain-

size curves at 38K (Fig. 2.2a, b) and 39K (Fig. 2.2e, f) follow a continuum over the NIR 

wavelengths except for a “dome” in the 3.3µm region – indicating a predicted larger grain size 

corresponding to higher absorption. We compare α from our result to that of water (H2O) ices in 

outer solar system bodies as given in Fig. 4 of Hansen (2009). Water ice has a higher absorption 

coefficient in most NIR wavelength regions compared to both pure CH4 and N2:CH4 systems. 

This implies that pure CH4 and N2:CH4 ice grains have higher reflectance and lower absorption 

compared to water ice grains over the NIR wavelengths. One possible interpretation of this 

comparison is that grain size estimation of H2O ice using the Hapke approximation models may 

predict relatively larger grains (particularly at the wavelengths with higher α values) compared to 

pure CH4 and N2:CH4 ices grains at the outer solar systems bodies. However, this interpretation 
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is based on the distribution of absorption coefficient over NIR wavelengths, while other factors 

are involved, different interpretations are also plausible.  

 

 

Fig. 2.3: Absorption coefficient of pure CH4 ice at 39K (a), CH4 saturated with α-N2 ice at 35K 

(b), and CH4 saturated with β- N2 ice at 38K (c). Pure CH4 has an absorption coefficient peak at 

3.3 µm. The absorption coefficient is much higher over the wavelength around 3.3 µm at 38K 

compared to 35K for CH4 saturated with N2 ices. 
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2.3.4. The interplay between albedo, absorption coefficient, and grain size 

We analyze characteristic distribution w as a function of α for Mie, ISM, and Hapke slab 

models. The w verses α for pure CH4 (left column), α-N2:CH4 (middle column), and β-N2:CH4 

(right column), ices at different grain radii (in rows) are given in Fig. 2.4. In 1µm gain size 

graphs (upper row of Fig. 2.4), the Mie calculation follows two different paths, and their 

separation is largely due to the Rayleigh scattering effect at smaller grain-sized particles 

(Hansen, 2009). At all temperatures, each approximation model follows a relatively linear path 

while one of the Mie paths shows a slightly exponential fall of albedo for pure CH4 and β-

N2:CH4 ices plots. In the N2:CH4 systems, the Hapke slab and ISM models follow a relatively 

similar path. However, one of the routes of Mie plots follows closely to the Hapke slab and ISM 

plots for pure CH4. Most of the weakly absorbing points with higher single-scattering albedos are 

located below the absorption coefficient of ~0.07µm-1 in pure CH4 and β-N2:CH4 ices, whereas 

below 0.03µm-1 in α-N2:CH4 ice. 

There is an exponential drop in the single scattering plots for 10 µm graphs at all 

temperatures and thermodynamics ice phases of methane and nitrogen (2nd row of Fig. 2.4). The 

Rayleigh scattering effect (i.e., two separate routes of Mie plots) is also evident here, but in the 

weakly separated routes. The plots of the Hapke slab and ISM approximate models follow along 

(similar trend) one of the Mie paths for all thermodynamic pure and mixture ice phases –

indicating a close fit of these approximates models to Mie result at this grain size. There are few 

points beyond the absorption coefficient of 0.07µm-1, that we consider roughly the exponential 

breakpoint, for pure CH4 and β-N2:CH4, whereas this breakpoint is ~0.03µm-1 for α-N2:CH4.  

For the 100 µm plots (3rd row of Fig. 2.4), there is a steep decline of the plots for all phases. 

Neither of the approximation models consistently follows the Mie route; at some absorption 
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coefficient values, ISM gets closer to Mie while at other points Hapke slab model closely follows 

the Mie path. The breakpoint of the steeply declined plots is roughly around 0.01 µm-1 and most 

of the absorption points reside below this threshold where single scattering albedo value varies in 

a wide range (e.g., w = 0.1 – 1.0). In the 1000 µm plots (lower row of Fig. 2.4), the single 

scattering albedo plots more steeply decline at all thermodynamics ice phases of methane and 

nitrogen. However, the breakpoint of the albedo plots is < 0.01 µm-1, meaning the single 

scattering albedo steeply falls at a lower absorption coefficient for larger grain sizes. Similar to 

the 100 µm plots, in 1000 µm plots neither of the approximation models consistently follows the 

Mie route. 
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Fig. 2.4: Plot of the single scattering albedo against absorption coefficient for pure CH4 ice 

particle at 39K (left column), α -N2:CH4 particle at 35K (middle column), and β -N2:CH4 particle 

at 38K (right column). The subplots show the distribution of w at grain radii at 1 µm (upper 

row), 10 µm (2nd row), 100 µm (3rd row), and 1000 µm (bottom row). In all subplots, the 

scattering albedo from the Mie calculation (blue), ISM (yellow), and Hapke slab (green). The 

Mie calculation follows two different paths due to the Rayleigh scattering effect at lower grain-

size particles. 
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2.4.  Discussion and conclusion 

Amidst inconsistent results in the grain size estimation of water ice on outer solar system bodies 

(Hansen, 2009), we analyze the relative differences of grain size estimation for pure CH4 and 

N2:CH4 ices relevant to TNOs and KBOs. We calculate the single scattering albedo using Mie 

and two other Hapke approximations models for these ices at NIR wavelengths (1 - 5 µm). 

Accordingly, we assess the discrepancies in the relative grain sizes predictions by the Hapke 

approximation models to the Mie theory over a finely spaced range of grain sizes (1, 10, 100, 

1000 µm). This range (micron to millimeter) covers a wide variety of grain sizes on TNOs. For 

instance, on Triton, the model reported a lower limit of mean grain sizes of methane ices to be 20 

µm while the CH4 grain sizes were expected to be much larger to an order of 100 µm (Grundy 

and Fink, 1991; Quirico et al., 1999). Moreover, the use of a 1 µm grain size facilitates in 

evaluating Rayleigh's effects on single scattering albedo that happens at grains that have sizes 

close to wavelengths.  

Compared to ISM, the Hapke slab approximation model predicts much closer results to Mie 

scattering results. In pure CH4 ice, the overall estimated grain size differences between the 

Hapke slab and ISM are about 10% for the particles with different grain radii, except in the case 

of larger particles and longer wavelengths where the imaginary part of the refractive index is 

much larger. Similarly, in N2:CH4 systems, the average differences between the estimated grain 

sizes from Hapke slab and ISM are around ~20% for wide ranges of grain size. Both Hapke slab 

and ISM were found to be appropriate models for a grain size radius of 10 µm. For smaller grain-

sized particles (radii of ≤5µm), neither approximate model predicts an accurate grain size due to 

the Rayleigh effect. For larger grains at longer wavelengths, particularly at wavelengths with 

higher absorption coefficient values, the ISM predicted grain sizes exhibit larger anomalies 



 

37 

 

compared to the Mie result. Overall, the results estimated prediction at different grain sizes 

indicate that the Hapke slab model is the more well-predicted model to the Mie result over the 

NIR optical constants of pure CH4 and N2:CH4 systems while ISM’s predictions show higher 

discrepancies. Existing literature indicates that the discrepancy in grain-size determination for 

larger particles at longer wavelengths using the ISM can be mitigated by fine-tuning the value of 

free parameters. For instance, Roush et al. (2007) used an increased value of s in their Eq. (2) 

and (3) from 10-17 to 1.25 cm-1 to fit the modeled spectrum of gypsum power to the measured 

spectrum (Hansen, 2009).  

The particle diameter in the Hapke slab model is associated with a scaling factor that varies 

from 3/4 to 4/3 (Hansen, 2009). In ISM, similar uncertainty in selecting the mean free path of 

photon 〈D〉 by using different scale factors to effective grain size D. For instance, for spherical 

particles, 〈D〉 can be approximated to ≅ 0.9D (Hapke, 2012), 2D/3 (Melamed, 1963), etc., while 

for irregular particles 〈D〉 = 0.2D (Shkuratov and Grynko, 2005). This study uses a scale factor of 

1 in the Hapke slab model. We use the mean free path of photon 〈D〉 calculated from effective 

grain size (D) and the real part (n) of the refractive index using Eq. (12). The Hapke slab and 

IMS can, therefore, be improved by fine-tuning the scale factors to the approximate models. The 

slab model accounts for only n while the ISM considers both the n and k parts of the refractive 

indices in the calculation of the average Fresnel reflection coefficients. If the internal scattering 

coefficient, s is set to 0, the internal hemispherical (diffused) reflectance, r equals 0. However, 

the relationship between the internal scattering coefficient (s) and effective particle diameter (D) 

has also been expressed as s = 1/D (Sharkey et al., 2019). This relationship also defines that the 

number of scattering events within a single grain is set to 1. Consequently, this relationship 

indicates that the value of s cannot be 0. 
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The application of the scattering (and absorption) properties of Mie spheres has been shown 

to be satisfactory for varied non-spherical particle shapes (e.g., Grenfell and Warren, 1999; 

Neshyba et al., 2003; Grenfell et al., 2005). The Mie formulation accurately predicts the 

scattering properties of equivalent spheres of particles, even it can produce satisfactory scattering 

results for irregular particles (e.g., Neshyba et al., 2003). Thus, the size of spherical particles 

from the Mie model can somewhat be analogous to non-spherical particles (Hansen, 2009). 

Moreover, the Mie scattering formulation properly accounts for the Rayleigh effects of scattering 

properties for smaller particle sizes that are ignored by the Hapke approximation models. 

Therefore, based on our results, we recommend using the Mie calculation for radiative transfer 

modeling to unknown spectra of TNOs and KBOs. Our results show that the Hapke slab 

approximation model, overall, well predicts the grain size to the Mie model over the NIR 

wavelengths. Thus, if the Hapke approximation models are to choose, we suggest using the 

equivalent slab model over the internal scattering model in estimating the pure CH4 and N2:CH4 

ice grain sizes on trans-Neptunian objects and Kuiper Belt objects. Note that the information of 

single scattering albedo may not readily be available in orbital measurements. Radiance or 

reflectance is the typically available measurement in orbital spacecraft data. However, radiance 

and/or reflectance measured by orbital instruments can easily be converted to a single scattering 

albedo using the radiative transfer model of Hapke (1993). Our study provides a guideline for the 

future application of RTM in estimating ice grain sizes at TNOs and KBOs.  
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2.5.  APPENDIX 

A. Notation 

List of notations and symbols used in this paper 

〈D〉  mean free path of a photon  

D particle diameter 

ξ asymmetry parameters of Mie theory 

k imaginary part of the refractive index 

n real part of the refractive index 

r internal diffused reflectance 

R(n) reflection function 

s internal scattering coefficient 

Se Fresnel reflection coefficient for externally incident light, 

Si Fresnel reflection coefficient for internally incident light, 

w single scattering albedo 

w’ δ-Eddington Mie single scattering albedo  

α absorption coefficient 

λ wavelength 

Ѳ internal transmission coefficient 
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Abstract 

Detection of amorphous and crystalline water (H2O) ice in the outer solar system bodies has been 

confirmed over the past decades. Radiative transfer models (RTMs) have been used to estimate 

the grain sizes of H2O ice from near-infrared (NIR) wavelengths. However, wide discrepancies 

in the estimation of grain size have been reported for H2O ice on Saturnian moons. We assess the 

discrepancy in grain size estimation of H2O ice, both amorphous and crystalline phases, in the 

outer solar system bodies including the trans-Neptunian objects (TNOs) and Kuiper Belt objects 

(KBOs) using RTMs. Radiative scatting models were implemented to predict the H2O ice grain 

sizes at temperatures of 15, 40, 60, and 80 K (amorphous) and 20, 40, 60, and 80 K (crystalline). 

We compare the single scattering albedos of H2O ice phases using the Mie theory and two Hapke 

approximation models – Hapke slab and internal scattering model (ISM) – from the optical 

constants at NIR wavelengths (1 – 5 µm). This study reveals that the Hapke approximation 

models predict grain size of the crystalline phase, overall, much better than the amorphous phase 

at temperatures of 15 – 80 K. However, the Hapke slab model predicts, in general, grain sizes 
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much closer to that of the Mie model’s estimations while ISM predicted grain sizes exhibit a 

higher uncertainty. We recommend using the Mie model for unknown spectra of outer solar 

system bodies to estimate H2O ice grain sizes. When using approximation model for RTMs, we 

recommend using a Hapke slab approximation model over the internal scattering model. Thus, 

this study provides a guideline for future research in choosing the appropriate scattering models 

for estimating H2O ice grain sizes in the outer solar system using RTMs at NIR wavelengths. 

Keywords: Outer Solar System; Classical Kuiper Belt objects; Trans-Neptunian objects; 

Radiative transfer; Surface ices 

 

 

3.1. Introduction 

Detection of water (H2O) ice has previously been established on outer solar system bodies 

(giant planets’ rings and their icy moons and dwarf planets), cometary bodies (originates from 

the Kuiper Belt and Oort cloud), and interstellar medium (see Kofman et al., 2019 for an 

exhaustive list of references). Solid H2O ice in the solar system may appear as crystalline, 

amorphous, or both based on temperature, radiation history, and formation temperature and 

pressure conditions (Schmitt et al., 1998; Cruikshank et al., 1998; Mastrapa et al., 2008). Though 

amorphous water ice (microporous amorphous phase) is considered the most abundant form of 

H2O in the universe (Baragiola, 2003), the crystalline phase has also been spotted in many outer 

solar system bodies. 

Phases of amorphous and crystalline H2O ice were investigated on the Galilean moons of 

Jupiter using data from the NIMS instrument onboard the Galileo spacecraft (Hansen and 

McCord, 2004). Neptune’s moon Triton, a trans-Neptunian object (TNO), is also assumed to 

host amorphous and crystalline water ice (Cruikshank et al., 2000). Although the presence of 
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crystalline H2O ice has been reported on Pluto’s surface (Cook et al., 2019), its largest satellite 

Charon hosts both amorphous and crystalline H2O phases (Dalle Ore et al., 2018). Molecules of 

amorphous H2O ice have been detected on icy dust grains in dense interstellar clouds (e.g., 

Herbst, 2001). Due to the formation of cometary icy grains in very low temperatures, the water 

ice within cometesimals is thought to be in an amorphous phase (Raponi et al., 2016). 

Observations from different spectral wavelengths are used to study the outer reach of the 

solar system. Among the wavelengths, the near infrared (NIR, typically 0.8 to 5 µm wavelength) 

has the most diagnostic bands and therefore has been extensively used for characterizing ices and 

volatiles on outer solar system bodies (Barucci and Merlin, 2020). The interaction between 

infrared photons and H2O ices and their resultant absorption bands and positions are dependent 

on its crystalline vs amorphous phases and the temperature of the ice (Mastrapa et al., 2009). 

Thus, the shapes and position of the infrared absorption bands and their variations in response to 

temperature are considered diagnosing for astronomical ices (Schmitt et al., 1998). At NIR 

wavelengths, amorphous water ice exhibits different spectral characteristics (i.e., the shape of the 

absorption bands) above and below the temperature of 70 K (Mastrapa et al., 2008).  

Radiative transfer models (RTMs) have been used to characterize the composition of outer 

solar system bodies such as Kuiper Belt objects (KBOs) and TNOs (e.g., Grundy and Fink, 1991; 

Dumas et al., 2007; Merlin et al., 2010; Tegler et al., 2010). However, wide discrepancies in the 

estimation of grain size have been reported for H2O ice on Saturnian moons such as Enceladus 

(Hansen, 2009), as well as nitrogen (N2) and methane (CH4) ices on TNOs and KBOs using 

different scattering models (Emran and Chevrier, 2022). These uncertainties are believed to arise 

due to the use of different single scattering albedo (w) calculations rather than a choice of using 

bidirectional scattering models (Hansen, 2009). Accordingly, Hansen (2009) compared the single 
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scattering albedos using the optical constant data of crystalline H2O ice at 110 K – relevant to 

Saturnian moons and other icy bodies. However, temperatures at the far reach of the solar system 

at the trans-Neptunian objects and the Kuiper Belt are much lower, and amorphous ice should 

dominate these environments. For instance, Pluto has a maximum global temperature of 37.7 K 

in its current epoch (Earle et al., 2017). 

Furthermore, while employing RTMs in the outer solar system bodies, there has been 

extensive use of optical constants of crystalline and/or amorphous phases of H2O ice and a 

variety of scattering models. For instance, Protopapa et al. (2017) used the optical constant of 

crystalline H2O ice and employed the equivalent slab model of Hapke (1993) for mapping the 

spatial distribution and grain size of water ice (along with other ices) on Pluto. For the same 

planetary body, Cook et al. (2019) used the optical constant of both amorphous and crystalline 

ices while their scattering model was following the formulations of Roush (1994) and 

Cruikshank et al. (1998) with some modifications. Because w is the primary cause of 

discrepancies in the grain size estimation of ices (Hansen, 2009; Emran and Chevrier, 2022), the 

uncertainty of the grain size estimation of amorphous and crystalline H2O ice, at temperatures 

analogous to the outer solar system (i.e., 15 K – 80 K), using different scattering models is 

warranted.  

We assess the uncertainty in predicting the H2O ice grain sizes at a temperature of 15, 40, 60, 

and 80 K (amorphous) and 20, 40, 60, and 80 K (crystalline) analogous to the outer solar system 

bodies including the TNOs and KBOs. The theory of Mie (1908) and approximation models of 

Hapke (1993) are commonly used methods for calculating the w of a material from its optical 

constants. Accordingly, we calculate the w of water (amorphous and crystalline) ices by 

implementing Mie theory and the widely used Hapke approximation models from the optical 



 

48 

 

constants over the wavelengths between 1 – 5 µm. We follow that up by comparing the relative 

grain sizes of amorphous and crystalline H2O ice predicted by the approximation models to the 

Mie model. 

 

3.2. Methods 

3.2.1. Optical constants 

We use the NIR optical constants of H2O ice at a temperature of 15 – 80 K (amorphous 

phase) and 20 – 80 K (crystalline phase). The optical constants of amorphous and crystalline ice 

at NIR wavelengths between 1.1 – 2.6 µm were prepared by Mastrapa et al. (2008) and NIR to 

mid-infrared wavelengths between 2.5 – 22 µm by Mastrapa et al. (2009). A compiled optical 

constant data for both ice phases over the entire NIR wavelengths (1 – 5 µm) – used in this study 

– can be found in Mastrapa et al. (2009). Note that the crystalline phase used in this study is 

assumed to be the cubic ice form – a meta-stable H2O ice phase (Mastrapa et al., 2009). The 

cubic and hexagonal crystalline ices exhibit nearly identical spectra at infrared wavelengths 

(Bertie and Whalley, 1967). Thus, in this study, we do not distinguish cubic vs hexagonal ice, 

but rather we treat the crystalline phases as a unified entity. We use the cubic ice as the 

representative of the crystalline ice, and hereafter, we denote the crystalline ice as Ic and 

amorphous ice as Ia. 

We use the optical constant data from Mastrapa et al. (2008, 2009) to maintain consistency 

across the entire wavelength range since the samples used to determine the parameters were 

prepared using the same instrumental setup, although there are other sources of optical constants 

of water ice. For instance, Grundy and Schmitt (1998) prepared the optical constants for 

monocrystalline (hexagonal) H2O ice samples between the wavelengths of 0.97 – 2.73 µm at 



 

49 

 

temperatures of 20 to 270 K. On the other hand, Hudgins et al. (1993) prepared the optical 

constants of ice Ia between the wavelengths of 2.5 – 20 µm at temperatures of 10 - 120 K. 

 

3.2.2. Single scattering albedo 

Photon interaction with a material grain happens at the atomic-molecular level through the 

process of selective absorption, emission, and scattering (e.g., Shepard, 2017). The sum of 

scattering and absorption efficiencies of a particle, at a given wavelength, by its physical cross-

section is called extinction efficiency, Qext = Qsc + Qab. The w is the ratio of scattering efficiency 

and extinction efficiency, w = Qsc / Qext.  

For planetary regolith, w is a representative of characteristic surface properties including 

grain size, optical properties, internal structure, and partly shapes (Hapke, 1981). Consequently, 

the grain size estimation of the regolith primarily depends on the characteristic value of w by the 

surface particles (Hansen, 2009). A material’s w is a function of optical properties (indices of 

refraction) of its single grain (e.g., Hapke, 1993; Mustard and Glotch, 2019). Thus, w can be 

calculated if optical constants – both real (n) and imaginary (k) parts – of the regolith medium 

are known. Larger particles with moderate to larger k values result in higher absorption of 

incident light and therefore, are associated with a lower w value (Shepard and Helfenstein, 

2007).  

Mie scattering theory can accurately estimate the w for a particle with a spherical shape (Mie, 

1908). On the other hand, Hapke (1993) formulates a variety of approximation models for the 

estimation of w from material optical constants. We employ two of these approximation models 

– the “espat” slab (hereafter the Hapke slab or simply slab model; Hapke 1981, 1993) and a 
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version of the internal scattering model (ISM; Hapke, 1993) – which have widely been used in 

the RTMs of the outer solar system bodies. Note that the version of the scattering model by 

Roush (1994) uses, indeed, a formulation of the ISM in the original paper by Hapke (1981) and 

devised the versions of surface scattering functions (Hansen, 2009). 

 

3.2.3.  Mie calculation 

The scattering properties of a particle with the simplest three-dimensional geometrics 

(spheres) can accurately be calculated using the Mie theory by employing Maxwell’s equations 

(Mie, 1908; Wiscombe 1980). The formulation of the Mie theory accounts for optical constants 

(n + ik) of the particle and the fraction of the particle's size to wavelengths under investigation 

(Hapke, 1993). However, the treatment of diffraction effects in Mie’s w is required for a 

scattering model with highly asymmetric phase functions (Hansen, 2009). Thus, in this study we 

use δ-Eddington corrected (Joseph et al., 1976) Mie single scattering albedo, w’, calculated as 

(Wiscombe and Warren, 1980): 

𝑤′ =
(1−𝜉2) 𝑤

1−𝜉2 𝑤
  (1) 

 where ξ is the asymmetry factor calculated by Mie theory. Following the approach of Emran 

and Chevrier (2022), the Mie w was calculated by utilizing the method of Wiscombe (1979) 

using the miepython routine (an open-source Python module). The δ-Eddington corrected 

Mie w’ was then adjusted from Mie’s w following Eq. 1. 
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3.2.4. Hapke approximation models 

Using the “espat” function or the slab model of Hapke (1981, 1993), the approximate w of an 

equant particle can be simplified as: 

𝑤 =
1

𝛼𝐷𝑒+1
  (2) 

where α is the absorption coefficient and De is the “effective particle size”.  

The absorption coefficient is given by: 

𝛼 =
4𝜋𝑘

𝜆
  (3) 

where k is the imaginary part of the optical constant and λ is the wavelength under 

consideration. The Hapke slab model should be applied for materials with k <<1 and De can be 

approximated as (Hapke, 1993):  

𝐷𝑒 = ĝ
1−𝑆𝑒

1−𝑆𝑖
 D  (4) 

where D is the particle diameter, ĝ is a constant (scaling parameter of diameter) which is 

roughly ≃ 1, and Se and Si are the average Fresnel reflection coefficient for externally and 

internally incident light, respectively. The derivations of the approximate equations for the 

calculation of Se and Si are given in Hapke (1993) where k is set to be zero, therefore is not 

considered, for the slab model. These approximate equations (Se and Si) can also be found 

elsewhere in the literature that uses the Hapke models including the study of Emran and Chevrier 

(2022). The calculation of w using the ISM can be approximated as (Hapke, 1993): 

𝑤 = 𝑆𝑒 + (1 − 𝑆𝑒)
(1−𝑆𝑖)Θ

1−𝑆𝑖Θ
   (5) 

where particles’ internal-transmission function, Θ, given by (Hapke, 1993): 
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𝛩 =
𝑟+exp (−√(𝛼(𝛼+𝑠))〈𝐷〉

1−𝑟 exp (−√(𝛼(𝛼+𝑠))〈𝐷〉
 (6) 

where s is the near-surface internal scattering coefficient. The mean free path of the photon, 

〈D〉 for a perfectly spherical particle can be approximated as (Hapke, 1993): 

〈𝐷〉  =
2

3
(𝑛2 −

1

𝑛
(𝑛2 − 1)

3

2) 𝐷 (7) 

The internal diffused reflectance inside the particle, r, can be written as (Hapke, 1981):  

𝑟 =
1− √𝛼(𝛼+𝑠)

1+ √𝛼(𝛼+𝑠)
  (8) 

If s is set to zero (Lucey, 199), then r = 0 and Θ = e- α〈D〉 (e.g., Lawrence and Lucey, 2007; 

Hansen, 2009; Li and Li, 2011). The list of notations used in this study is given in Appendix (B). 

 

3.3. Results  

3.3.1. Calculated single scattering albedo 

We compare the w spectra of 10 µm radii Ia and Ic particles to assess the difference in 

calculated single scattering albedo at that specific diameter using the Mie and Hapke 

approximation models over the NIR range (Fig. 3.1). Following the approach of Emran and 

Chevrier (2022), we apply the Savitzky-Golay filter (Savitzky and Golay, 1964) to smoothen the 

small spikes in calculated w curves over the wavelength range. We implement the filter 

algorithm with a 3rd order polynomial fit. Note that all plots used in this study were smoothened 

using the Savitzky-Golay filter, if not mentioned otherwise. 
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The w plots from the Hapke approximation models follow the spectra generated by the Mie 

model with varying degrees of closeness at different NIR wavelengths. In the case of Ia at every 

investigated temperature (left column in Fig. 3.1), the Hapke slab model provides a much better 

approximation of the Mie model spectra compared to the ISM spectra, except around the broader 

3.0 µm region. At shorter wavelengths up to 2.5 µm, the slab model produces slightly higher w 

values than the Mie model, notably around the weak overtones at 1.5 and 2.0 µm at every 

investigated temperature. This represents a prediction of a slightly smaller H2O grain size by the 

slab model compared to the Mie model (Hansen, 2009) over the shorter wavelengths.  

The w spectra of Ia at the broader 4.5 µm absorption band show that the slab model either 

exactly reproduces the Mie spectra (at 15K) or renders slightly higher w values than the Mie 

spectra (at 40, 60, and 80K). This indicates that the slab model predicts identical or slightly 

smaller grain sizes than Mie’s prediction. In contrast, at every temperature, the ISM renders 

much lower w than the Mie spectra at the 4.5 µm band – indicating a larger grain size prediction 

by the ISM. At the wavelengths around 3.5 and 5 µm, both approximation models show smaller 

w values than the Mie model – meaning a larger grain size prediction by the approximation 

models at these bands. However, the grain size prediction by the approximation models is much 

larger at 5 µm than the 3.5 µm. 
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Fig. 3.1: Calculated single scattering albedo plots for 10 µm radii particles of amorphous (left 

column) and crystalline (right column) H2O ice at the NIR wavelengths. The subplots in the rows 

are the measurements at different temperatures where blue solid lines are δ-Eddington corrected 

Mie, green dotted lines are Hapke slab, and yellow dashed lines are ISM spectra. 



 

55 

 

In the instance of Ic at every investigated temperature (right column in Fig. 3.1), the slab 

model almost accurately reproduces the Mie model for the weak overtone at 1.5 µm while it 

shows slightly higher w values for the weak overtone at 2.0 µm. This represents an accurate 

grain size prediction at 1.5 µm and a slightly smaller grain size prediction at 2.0 µm by the slab 

model. The ISM, on the other hand, predicts much smaller grain sizes than the Mie model at both 

1.5 and 2.0 µm. At the broader 4.4 µm absorption band of Ic, the slab model predicts smaller 

grain sizes while the ISM model predicts larger grain sizes compared to Mie’s prediction – 

because the calculated w values by the slab model and ISM at the wavelength region are higher 

and lower, respectively than the Mie model. Both the approximation models follow the same 

path and show much smaller w values at the 3.5 and 5 µm bands – indicating a much larger grain 

size prediction by the approximation models at these bands. However, the differences between 

spectra of the Hapke approximations and Mie models at 3.5 µm are much higher for Ic compared 

to Ia at every investigated temperature (see the left and right columns of Fig. 3.1).  

Though the ISM spectra can reproduce the 3.1 µm reflection peak of Ia at lower temperatures 

(e.g., 15 and 40 K), it partially reproduces the reflection peak at higher temperatures (e.g., 80 K). 

Whereas the slab model fails to reproduce the 3.1 µm reflection peak of Ia at every temperature. 

The 3.1 µm reflection peak of Ic is much sharper and slightly red-shifted than ice Ia. Neither of 

the approximation models reproduces the 3.1 µm reflection peak of Ic at any investigated 

temperatures. The inability of the slab model in predicting the 3.1 µm reflection peak of H2O is 

likely due to having higher k values at these wavelengths (Hansen, 2009). 
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3.3.2. Relative grain size estimation 

We assess the uncertainty in the predictions of grain sizes by the Hapke approximation 

models for the ice phases at the investigated temperatures. A finely spaced range of grain sizes at 

radii of 1, 10, 100, and 1000 µm (hereafter we denote as reference grain radii) was used to show 

the relative discrepancies of grain size prediction at NIR wavelengths. We chose this range 

because it covers the grain sizes, expected to be found in the outer solar system bodies. For 

instance, fine-grain H2O ice with a diameter of < 1 µm has been predicted on Pluto (Cook et al., 

2019). Much larger grain sizes are also believed to be present in outer solar system bodies such 

as icy moons and rings of Saturn (e.g., Filacchione et al., 2012) and Pluto (Cook et al., 2019). 

 

Accordingly, we first compute the δ-Eddington corrected Mie w’ at these reference grain 

radii over the NIR wavelengths. Once the Mie w’ is calculated, we determine the grain sizes 

from each of the Hapke approximation models that provide the best fit to the Mie spectra over 

the selected wavelengths. To this end, we solve the inverse of the ISM and Hapke slab model for 

D to fit the corresponding Mie w’ values. We use the modified Powell's hybrid method (Powell, 

1970; Chen and Stadtherr, 1981) to solve the non-linear function of the Hapke slab and ISM (Eq. 

2 and 5) in finding the solution for D. The relative grain size prediction is then determined by 

normalizing the predicted grain sizes by the approximation models to the reference grain radii 

input in the Mie model. 

 

We estimate the medians and their 16% quantile as a lower 1σ error bar and 84% quantile as 

an upper 1σ error bar of predicted grain sizes using the approximation models for Ia (Table 3.1a) 

and Ic (Table 3.1b) at the investigated temperatures. As additional supporting information, we 
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also list the mean ± 1σ standard deviation in predicted grain sizes in the Appendix (Table 3A.1). 

The statistics were derived from the normalized values of the estimated grain sizes predicted by 

the slab model and ISM to the Mie model. A value of 1 represents exact prediction while the 

higher or lower values imply an over or underestimation, respectively, of the grain sizes by the 

respective approximation models to the Mie model. Thus, the values in Table 3.1 (and Table 

3A.1) indicate the magnitude of the discrepancies in grain size prediction by the approximation 

models.  

 

To facilitate visual comparisons of our result over the NIR wavelengths, we plot the 

normalized predicted gain size for Ia (Fig. 3.2) and Ic (Fig. 3.3) by approximation models at 

different reference grain radii and temperatures. Similar to Table 3.1, the y-axis value of 1 in 

each subplot of Fig. 3.2 and 3.3 represents an exact prediction while the higher or lower values 

imply an over or underestimation, respectively, of the grain sizes by the approximation models to 

the Mie model. Thus, the y-axis values in the subplots of Fig. 3.2 and 3.3 indicate the magnitude 

of discrepancies in predicted grain sizes at NIR wavelengths. 
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Table 3.1: Medians and their 16% quantile as a lower 1σ error bar and 84% quantile as an upper 

1σ error bar of relative discrepancies in predicted grain sizes using the Hapke slab and ISM 

calculated at particle radii of 1, 10, 100, and 1000 µm for amorphous (a) and crystalline (b) H2O 

ice at different temperatures. 

 

a). 

G
ra

in
 r

ad
ii

 

(µ
m

) 

Amorphous H2O ice* 

15 K 40 K 60 K 80 K 

Slab ISM Slab ISM Slab ISM Slab ISM 

1 1.07−0.25
+1.04 1.28−0.29

+1.08  1.07−0.25
+0.97  1.28−0.29

+1.02  1.07−0.25
+0.96  1.29−0.30

+1.04  1.08−0.26
+0.92  1.29−0.30

+1.03 

10 1.19−0.34
+0.06 1.44−0.56

+0.05  1.20−0.29
+0.07  1.45−0.57

+0.05  1.21−0.31
+0.06  1.46−0.58

+0.05  1.21−0.26
+0.06  1.46−0.58

+0.05  

100 1.46−0.12
+0.58  1.66−0.10

+0.35  1.46−0.26
+0.58  1.66−0.09

+0.48  1.47−0.26
+0.62  1.67−0.09

+0.45  1.47−0.35
+0.60  1.67−0.09

+0.51  

1000 1.54−1.37
+1.08  1.67−1.08

+4.34  1.54−1.38
+1.09  1.67−1.19

+4.34  1.55−1.37
+1.11 1.68−1.23

+4.35 1.55−1.40
+1.10  1.68−1.26

+3.87 

 

b). 

G
ra

in
 r

ad
ii

 

µ
m

 

Crystalline H2O ice* 

20 K 40 K 60 K 80 K 

Slab ISM Slab ISM Slab ISM Slab ISM 

1 0.88−0.19
+0.67  1.03−0.22

+0.76 0.87−0.19
+0.67  1.03−0.22

+0.76  0.88−0.19
+0.67  1.03−0.22

+0.75  0.87−0.19
+0.67  1.03−0.22

+0.75 

10 1.10−0.07
+0.08  1.30−0.44

+0.07 1.09−0.06
+0.07 1.30−0.44

+0.07  1.09−0.07
+0.07  1.30−0.44

+0.07  1.09−0.07
+0.07 1.30−0.44

+0.07 

100 1.24−0.54
+0.65  1.46−0.03

+0.40  1.24−0.54
+0.65  1.46−0.03

+0.40  1.25−0.51
+0.64  1.46−0.03

+0.41  1.24−0.51
+0.64 1.46−0.03

+0.41  

1000 1.34−1.27
+0.80 1.47−1.25

+3.57  1.34−1.27
+0.81  1.47−1.25

+3.64 1.34−1.26
+0.81  1.47−1.24

+3.78  1.34−1.26
+0.81 1.47−1.24

+3.78 

*Note: The statistics were computed by normalizing the estimated grain sizes from the Hapke 

slab and ISM to the Mie grain size. The number values are the medians and their 16% quantile as 

a lower 1σ error bar and 84% quantile as an upper 1σ error bar.  
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Fig. 3.2: Predicted relative gain sizes (normalized to the Mie prediction) using the Hapke slab 

(left column) and ISM (right column) calculated at particle radii of 1, 10, 100, and 1000 µm for 

amorphous H2O ice, for temperatures ranging between 15 and 80 K. 
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Fig. 3.3: Predicted relative gain sizes (normalized to the Mie prediction) using the Hapke slab 

(left column) and ISM (right column) calculated at particle radii of 1, 10, 100, and 1000 µm for 

crystalline H2O ice, for temperatures ranging between 20 and 80 K. 
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The discrepancies in the estimated grain sizes combining all parameters (i.e., ice phases, 

grain radii, temperatures, and scattering models) simultaneously are complicated, and, 

consequently, interpreting the result accommodating all parameters together is difficult. Thus, we 

analyze our result by comparing the discrepancies in predicted grain sizes within a particular 

parameter while keeping the rest of the other parameters constant/fixed. For instance, we first 

start by comparing the discrepancies in estimated grain sizes between ice phases (Ia vs Ic) 

predicted by the approximation models at corresponding temperature and reference grain radii.  

 

Overall, the predicted grain sizes are much better for Ic than Ia by both approximation 

models. Because the median values are much closer to 1 for Ic compared to Ia at the 

corresponding temperature and grain radii (see Table 3.1). In other words, between the ice 

phases at most of the corresponding temperatures and grain radii, both approximation models 

produce median values that are much better for Ic compared to Ia. As an example, for 10 µm 

radii at 40 K, the Ic and Ia show a median value of 1.09 vs 1.20 by the slab model, respectively, 

and 1.30 vs 1.45 by the ISM, respectively (Table 3.1). One exception in this instance is that the 

slab model’s prediction of 1 µm radii is slightly better for Ia than Ic, such as a median value of 

1.07 vs 0.88 at 60 K, respectively (Table 3.1). However, the corresponding 16 and 84% quantiles 

error bars for the 1 µm grain are higher for Ia than Ic. The mean values (Table 3A.1) between the 

ice phases are also mostly consistent with the median values, except for smaller grains (≤ 10 µm 

radii) at lower temperatures (≤ 40 K). Therefore, we conclude that the Hapke approximation 

models predict much better, in general, grain sizes for Ic than for the Ia phase. Quantitatively, the 

predicted grain sizes by the approximation models are roughly 10 – 20% higher (on average) for 

Ia than Ic. 
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While comparing discrepancies between the approximation models for a particular ice phase, 

temperature, and reference grain radii, the slab model shows a better approximation (i.e., median 

values much closer to 1) than the ISM. This is evident from the median (except for Ic at 1µm 

radii) and means ± 1σ values (except Ia for 10 µm radii at 40K) at every temperature, grain radii, 

and ice phase. As an example, for 10 µm radii Ia particle at 40 K, the medians are 1.20 and 1.45 

for the slab model and ISM, respectively (Table 3.1a). Likewise, for 10 µm radii Ic particle at 40 

K, the median value is 1.09 vs 1.30 for the slab model and ISM, respectively (Table 3.1b). Even 

though the median of ISM is slightly better than the slab model for 1 µm radii Ic grain (for 

instance, a median value of 1.03 vs 0.88 at 20 K, respectively), the 16 and 84% quantiles error 

bars are lower for the slab model than the ISM. The mean values (Table 3A.1) between the 

approximation models for both ice phases are also consistent (with only one exception) with the 

median values. Quantitatively, the ISM predicted grain sizes are around 10 – 25 % higher than 

the slab model’s prediction for both ice phases (ignoring the exceptions). The subplots in the left 

and right columns of Fig. 3.2 and 3.3 also support that the slab model’s predictions are much 

better (qualitatively) than ISM at a particular ice phase, temperature, and grain radii. For 

instance, the 1000 µm radii curve of ISM shows much more fluctuations on the y-axis than the 

slab model’s curve for similar grain radii at every temperature of ice phases. The higher 

discrepancies in grain size estimation by ISM are consistent with the result of Hansen (2009). 

 

The discrepancies in response to temperature changes (from ~15 to 80 K) indicate that the 

median values of both ice phases for particular grain radii by the approximate models do not 

substantially change in response to temperature variations (Table 3.1). This implies that the 



 

63 

 

temperature changes within an ice phase may not have a major impact on predicting H2O grain 

size using the Hapke approximation models. Unlike median values, the mean values of Ia 

particles by the approximation models slightly change in response to temperature. However, the 

change does not follow a particular pattern for most of the grain radii (Table 3A.1). In contrast, 

the mean values for Ic by the slab model slightly decrease in response to temperature increase 

while for ISM the change does not show a particular pattern for grain radii (Table 3A.1). Overall, 

the discrepancies in predicted H2O ice grain sizes by the approximation models due to the 

temperature variations roughly vary ~ 1 – 5 %. This is further supported by the row-wise 

subplots in Fig. 3.2 and 3.3 which clearly show that the shapes of the different radii curves do 

not substantially change due to temperature changes.  

 

The grain size prediction of the Ia phase at every temperature indicates that both 

approximation models produce higher median values (higher uncertainty) for larger grain radii 

(Table 3.1a). As an example, for an Ia particle at 60 K, the slab model predicts a median value of 

1.07 and 1.55 for the 1 and 1000 µm radii, respectively, while for ISM it is 1.29 and 1.68, 

respectively. A similar trend is also evident for Ic particles at every temperature such that the 

prediction of the larger grain sizes has higher uncertainty by both approximation models (Table 

3.1b). Note that the slab model’s prediction of 1 µm radii Ic particle is slightly smaller than the 

Mie models – the median values are all less than 1. Quantitatively, the discrepancies in 

predicting larger grain radii by the approximation models can be up to 40 – 50 % of the Mie 

model’s prediction. This effectively means that both approximation models' performances 

substantially deteriorate in predicting larger H2O ice grains irrespective of ice phase. 
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We visually compare and, subsequently, qualitatively interpret the discrepancies in predicting 

different grain sizes over the NIR wavelengths (Fig. 3.2 and 3.3). The 1 µm radii curves (for both 

the ice phase and each temperature) rise continuously at shorter wavelengths up to ~2.8 µm (Fig. 

3.2 and 3.3). This continuous rise at shorter wavelengths is largely due to the Rayleigh effect on 

w from the Mie model that happens at wavelengths close to or smaller than the grain size 

(Hansen, 2009). The Hapke approximation models do not account for the Rayleigh effect. Thus, 

even though the median values of the 1 µm radii show a good prediction (Table 3.1), the mean ± 

1σ standard deviation shows one of the highest discrepancies (Table 3A.1). The 10 µm radii 

curves (for each ice phase and temperature) show a better prediction than other radii curves over 

the NIR wavelengths. The median values are also in agreement with the above conclusion since 

the medians are close to 1 (except for 1 µm radii). This is further supported by mean values for 

10 µm radii which are closest to 1 (lowest discrepancy) compared to other grain radii. 

 

Though the 100 µm radii curves by the ISM show relatively less fluctuation around the value 

1 on the y-axis at shorter wavelengths than the slab model, at longer wavelengths (>3 µm) this 

behavior is the opposite. Consequently, the 100 µm radii curves by the slab model overall exhibit 

much better than the ISM’s prediction for both ice phases at each temperature. The 1000 µm 

radii curves by the slab model for both ice phases show much larger fluctuations on the y-axis 

amongst the other radii curves in Fig. 3.2 and 3.3 – which explains why they have the highest 

median values among the grain radii. However, the corresponding 1000 µm curve by ISM 

produces much higher discrepancies.  
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For larger particles (≥ 100 µm radii) at each ice phase and temperatures, the approximation 

models predict much smaller grain sizes at longer wavelengths (above 3.5 µm) than Mie’s 

prediction (Fig. 3.2 and 3.3). A possible reason for smaller grain size prediction is that the 

approximation models do not reproduce the characteristic higher saturation level of the Mie 

model (Hansen, 2009). For both ice phases, the fluctuation of the 1000 µm radii curves by ISM 

at shorter wavelengths is even much higher than the 1 µm radii curve, where there is a 

continuous rise of the curves due to the Rayleigh effect (see the right columns in Fig. 3.2 and 

3.3). In both ice phases, the mean and median values by the ISM for the 1000 µm radii are the 

largest among all corresponding values (Tables 3.1 and Table 3A.1). 

 

 

3.3.3. Characteristic absorption coefficient 

To explain the effect of absorption coefficient in grain size prediction, we plot the 

dependency of the α on wavelength (following Eq. 3) for both ice phases and temperatures (Fig. 

3.4). At each temperature, both phases exhibit a maximum value of α at the wavelengths close to 

3.0 µm, although with a slight shift toward shorter wavelengths for ice Ia compared to ice Ic. The 

higher absorption peak at 3.0 µm (orders of magnitude higher α values than at other 

wavelengths) is due to the higher k values (the imaginary part of the optical constant) at these 

bands. This renders gain size prediction impossible by the approximation models – also evident 

at 3 µm wavelengths in Fig. 3.2 and 3.3. This result supports the assumption that the slab model 

should be used if k << 1 (Hapke, 1981). A blue shift in α spectra of Ia compared to the Ic phase 

is also evident at the weak 2 µm band, which coincides with the fact that Ic has much stronger, 

sharper, and red-shifted at infrared bands than Ia (Schmitt et al., 1998).  
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Higher values of α are also seen at the longer wavelengths for both ice phases. However, a 

peak of α happens at around 4.5 µm for Ia while this peak shifts toward shorter wavelengths at 

4.4 for Ic – in agreement with Mastrapa et al. (2009). The effects of these α peaks are evident in 

the characteristic shapes (i.e., a dip) in grain radii curves at these wavelengths for larger particles 

(i.e., 100 and 1000 µm; Fig. 3.2 and 3.3). The relatively higher α value at 4.5 μm for Ic compared 

to Ia is apparent in the curve of the 1000 µm particle (Fig. 3.2 and 3.3) where the Ic reveals a 

higher discrepancy in grain size prediction than the Ia for both approximation models at the 

wavelength. 

 

The α of pure CH4 and N2:CH4 (N2 saturated with CH4) systems, the other abundant volatile 

ices found on KBOs and TNOs surfaces, at NIR wavelengths (see Fig. 3 of Emran and Chevrier, 

2022) have a much lower α than water ice phases. A simple interpretation of this fact is that may 

be the H2O ice may have higher absorption and lower reflectance compared to the pure CH4 and 

N2:CH4 ices on the TNOs (e.g., Triton) and KBOs (e.g., Pluto, Eris, and Sedna). However, this 

interpretation may not be true amid different other parameters/ factors involved with spectral 

signatures of the ices. The results above show that the higher discrepancies in predicated grain 

sizes for larger particles are largely aligned to the wavelengths with higher α values. 

Accordingly, the estimation of H2O ice grain size using the Hapke approximation models for 

larger particles may be susceptible to higher uncertainty than that of CH4 and N2:CH4 ices at the 

Kuiper Belt (Emran and Chevrier, 2022).  

 

The α of Ia at the 4.5 µm absorption band (and slightly at 1.5 and 2 µm bands) increases with 

changes in temperature from 15 to 80 K (Fig. 3.4). This α vs temperature characteristic of Ia may 
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likely be the cause of the slightly higher discrepancy in grain size perdition than the Mie model’s 

prediction with the higher temperatures at these bands (Fig. 3.2). In contrast, Ic does not show 

any substantial variation in α values with the temperature at the 4.4 µm absorption band, 

although α slightly decreases with temperature increase. Therefore, in the case of Ic, there are no 

substantial differences in grain size estimations at this wavelength between each temperature 

(Fig. 3.3).  

 

 

Fig. 3.4: Absorption coefficient of amorphous and crystalline H2O ice at different temperatures 

over NIR wavelengths. Both phases of H2O have a broad absorption coefficient peak of around 

3.0 µm with a little shift toward shorter wavelengths by the Ia. Another absorption peak is seen 

at 4.5 µm for Ia while this peak shifts toward shorter wavelengths at 4.4 for Ic with much higher 

α values. The higher absorption peak for Ic compared to Ia at longer wavelengths is associated 

with the higher k values at these wavelengths.  

 

3.4.  Discussion 

We use the Hapke models for predicting grain sizes of 1 µm radii even though the 

approximation model assumes that the particle size should be much larger than the wavelengths 

(Hapke, 1981). This study uses wavelengths close to or even larger than grain radii of 1 µm. 

Alternatively, we also test a more conventional scenario with a wide range of grain sizes much 

larger than the considered wavelengths. The rationale for using 1 µm radii is based on reports of 
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the presence of H2O ice with similar sizes on the surface of outer solar system bodies like KBOs 

(e.g., Cook et al., 2019). Moreover, the use of a 1 µm grain size emphasizes the Rayleigh effect 

that happens at grains that have sizes close to NIR wavelengths often used to study the 

composition of outer solar system planetary surfaces (e.g., Hansen, 2009; Emran and Chevrier, 

2022). And by taking smaller particle sizes, we evaluate the grain size prediction discrepancies at 

wavelengths close to or even larger than the grain size of 1 µm radii. On top of that our result 

shows how deviant, as is expected, grain size prediction the approximation models can produce 

(Fig. 3.2 and 3.3) when the wavelengths are close to or even larger than the grain size.  

 

The predicted grain sizes by the Hapke approximation models vary over the investigated 

wavelengths due to the optical constants (and, therefore, different absorption coefficient values) 

at different NIR bands and the formulation of the approximation models used (see Eq. 2 and 5). 

In simple words, the approximation models predict different grain sizes based on optical constant 

values (n + ik) at different wavelengths. Accordingly, assessing the predictions of these varying 

grain sizes at different wavelengths by the approximation models was the motivation of the study 

and thus, we evaluate the discrepancies in predicting varying grain sizes by the scattering 

models. As mentioned above, we only consider the optical constant of cubic crystalline ice as a 

generalization of crystalline ice. However, there are only subtle differences in spectra between 

the cubic and hexagonal phases (Bertie and Whalley, 1967), and thus, we emphasize that the 

crystalline phases are substitutable (Mastrapa et al., 2009) and the use of Ic for generalization of 

the crystalline ice is reasonable. 
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Between the ice phases, the grain size estimation for Ic using the Hapke approximation 

models results in a much closer, in general, estimate to Mie’s prediction. Conversely, the Hapke 

approximation models show higher discrepancies in grain size estimation for Ia. The variation in 

temperature within a phase does not influence much on average grain size estimation at NIR 

wavelengths. However, grain size estimation for larger Ia particles at longer wavelengths reveals 

a pattern such that the discrepancy in grain sizes increases with temperatures from 15 to 80 K. In 

contrast, the discrepancies in grain size estimation of larger Ic particles at longer wavelengths are 

negligible between the temperature range. Interestingly, grain size estimation for larger particles 

at the broad 4.4 - 4.5 µm absorption band leads to a higher discrepancy for Ic compared to the Ia. 

Overall, the relative discrepancies of the grain size estimation are better for the Hapke slab 

model than ISM at the investigated cryogenic temperatures. This indicates Hapke slab is a better 

approximation model for deriving the water ice grain sizes in the icy bodies in the far reach of 

the Solar System. Our result is consistent with the results previously analyzed by Hansen (2009) 

using the optical constant of Ic at a temperature of 110 K. 

  

Owing to the Rayleigh effects on single scattering albedo, neither of the approximation 

models predicts accurate grain size estimation results for the particles with diameters less than or 

close to the wavelengths (≤ 5 µm). For both Ia and Ic, grain size estimations for 10 µm radii H2O 

ice are best predicted by both Hapke approximation models. Though grain size prediction by the 

approximation models for larger radii shows higher discrepancies largely at the wavelengths with 

higher absorption coefficient values, the uncertainty in the instance of ISM is much higher than 

in the Hapke slab model. The higher discrepancies of grain size estimation for larger particles by 

ISM can be compromised by adjusting the free parameters used in calculating single scattering 
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albedo, for instance, the study of Roush et al. (2007) used a higher value of s to fit modeled 

spectra.  

 

While formulating the “espat” function for the slab model, Hapke (1981) used a scaling 

factor of ĝ = 2/3 for particle diameter. However, the scaling factor of diameter in the Hapke slab 

model varies between ¾ - 4/3 which can, in principle, result in a difference in grain size 

estimation by the slab model (Hansen, 2009). Likewise, the difference in grain size estimation by 

ISM can also be produced by scaling factor to the particle diameter by calculating the mean free 

path of the photon 〈D〉 as seen in Eq. 7. There have been different approximate expressions for 

the relationship between D and 〈D〉. This relationship is approximated as 〈D〉 ≅ 0.9D or 2D/3 

(e.g., Hapke, 2012; Melamed, 1963) for spherical particles while it’s 〈D〉 = 0.2D for irregular 

particles (Shkuratov and Grynko, 2005). Hence, the grain sizes estimation by the approximations 

models can be improved by carefully adjusting the scale factor for particle diameters. We use a 

scale factor of 1 for the slab model while the mean free path of a photon in ISM was calculated 

as a function of the diameter and real part of the refraction index. 

 

An obvious difference between the ISM and the slab models is the calculation of average 

Fresnel reflection coefficients – the former model employs data from both n and k parts while the 

latter uses only n part of the refractive indices (e.g., Emran and Chevrier, 2022). Since the slab 

model can be applied when k is very small (Hapke, 1981, 1993) and therefore, wavelengths with 

a substantially higher k value can lead to a higher difference in calculated results between the 

models. Note that if the approximation model assumes the internal scattering coefficient, s = 0 

(as used by many existing studies, for example, Lucey, 1998; Lawrence and Lucey, 2007) then 
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the internal diffused reflectance, r equals to be zero as well. However, Sharkey et al. (2019) 

expressed the relationships between the s and D (“effective diameter”) as s = 1/D and the number 

of scattering events (sD) = 1 within a single grain. Thus, this relationship indicates that s cannot 

be zero (Emran and Chevrier, 2022).  

 

As has previously been mentioned that Mie’s theory (Mie, 1908) can accurately calculate the 

scattering properties of uniform (shapes) particles. Further, besides application to scattering 

properties for the equant particles of Mie spheres, the Mie scattering model has been devised to 

be satisfactorily employed for particles with varied “equivalent” non-spherical shapes if each 

non-spherical particle can be represented by assembles of spheres with the same volume-to-

surface-area ratio as the non-spherical particle (Grenfell and Warren, 1999; Grenfell et al., 2005). 

In other words, roughly similar scattering properties have been reported by irregular particles to 

that of the scattering properties calculated by the similar-sized spherical particles using Mie’s 

theory (Hapke, 1981). This implies that the scattering properties of Mie theory for spherical 

particles can be mimicked to irregular particles (Neshyba et al., 2003), and thus application to 

Mie theory in the grain size estimation of a Mie’s equant particle is somewhat analogous to non-

spherical/ irregular grains (e.g., Hapke, 1981; Hansen, 2009).  

 

While both Hapke approximation models do not account for the Rayleigh effect on the single 

scattering albedo that happens to grain size close to the wavelengths (≤5 µm), the Mie theory 

appropriately accounts for this shortcoming. Though the rough average difference between the 

predicted grain sizes by the ISM and slab model is about ~ 10 – 25% (based on the median 

values in Table 3.1) for a wide range of particles, we emphasize that it’s still an 
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over/underestimation by one approximation model to another. And our study shows which 

approximation model predicts much better results than others in estimating the grains sizes of Ia 

and Ic found in the vast region of the outer solar system.  

 

A better estimation of H2O ice grain sizes by the slab model than ISM is also in agreement 

with the grain size estimation of the abundant surface volatile of N2 and CH4 ices on TNOs and 

KBOs surfaces (Emran and Chevrier, 2022). Thus, the Hapke slab model is better equipped for 

the implementation of RTMs in the approximate grain size estimation for a range of surface ices 

(H2O, N2, and CH4) in the outer solar system bodies. We recommend using the Mie formulation 

of the single scattering albedo for estimation of H2O ice (Ia and Ic) grain sizes for unknown 

spectra of outer solar system bodies. When choosing the approximation models, we recommend 

using the Hapke slab model over ISM since our result presumes that the slab model better 

approximates the H2O grain size prediction, overall, than the internal scattering model at 1 – 5 

µm wavelengths.  

 

The single scattering albedo may not be readily available from the measurements of 

spacecraft observations. However, the reflectance (or radiance coefficient) measurements by 

spacecraft observation are converted to single scattering albedo using the radiative transfer 

model such as Hapke (1993). Conversion of reflectance (rc) measurement from remote sensing 

observation to single scattering albedo (w) using the Hapke model (1993) requires other 

parameters of the RTM to be known or calculated. Of these the important parameters are 

observation geometry (i.e., incident (i), emission (e), and phase (g) angles), single scattering 

phase function (P(g)), and backscattering function (B(g)), and multiple scattering functions (H, 
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for both up-welling and down-welling radiance; e.g., Lawrence and Lucey, 2007; Mustard and 

Glotch, 2019). The parameters related to observation geometry (i, e, and g) come directly with 

remote sensing reflectance (or radiance) measurements while other parameters can be 

approximated using the appropriate equations given in Hapke (1981, 1993, 2012). 

 

Conversion of remote sensing reflectance to single scattering albedo is crucial for deriving 

the material abundance and grain size of planetary regolith using RTMs. Because it is predicated 

that a linear mixing of regolith components for an intimate mixing systematic is only reasonable 

if a single scattering albedo is converted from reflectance (e.g., Mustard and Glotch, 2019). 

Thus, the implementation of RTMs to estimate grain size involves first the conversion of remote 

sensing reflectance (rc) measurements to single scattering albedo (w), followed by the 

implementation of a linear fitting (least squares or other minimizations routine) algorithm to 

estimate the abundance and grain size of surface components. The linear fitting algorithm 

assumes that the average w of a planetary regolith is a linear combination of the w of a plausible 

set of endmembers present in the mixture systematic weighted by each endmember’s relative 

geometric cross-section (e.g., Mustard and Glotch, 2019). The w spectra of the endmembers are 

calculated from their optical constants data such as, in this instance, amorphous and crystalline 

H2O ice for the outer solar system.  

 

Ultimately, therefore, an estimation of the grain size of the surface components in the outer 

solar system bodies through the implementation of the RTMs feeds on single scattering albedos 

spectra – both from remote sensing observations and plausible endmembers. Hence, the 

predicted grain sizes of planetary surface components (e.g., H2O ice) using RTMs ought to be 
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affected by the differences in the estimated single scattering albedo spectra (i.e., remote sensing 

observation and endmembers) and, inherently, the methods used to derive endmembers’ single 

scattering albedo from their optical constants. This is further supported by Hansen (2009) who 

argued and showed that the variations in the estimation of H2O grain sizes at Saturnian moons 

are attributed due to the differences in single scattering albedo calculation rather that the 

bidirectional scattering model. Accordingly, we assess the discrepancies in grain size estimation 

of H2O ice in the outer solar system owing to the implementation of a variety of widely used 

scattering models (Mie and Hapke approximations) in the existing literature. 

 

Despite having concerns related to the validity of the models and uncertainty in the 

parameters involved (e.g., Mustard and Glotch, 2019), the RTMs have been widely utilized and 

have successfully been implemented in estimating the grain size of a wide range of planetary 

regolith in the solar system including terrestrial and icy surfaces (e.g., planets, asteroids, moons, 

etc.). Note that in remote sensing observations, the single scattering albedos are the calculated 

properties of a planetary surface using the radiative transfer model rather than directly measured. 

In Hapke’s formulation of RTM, the single scattering phase function (P(g)) and single scattering 

albedo (w) are closely associated such that if P(g) is smaller in the direction of the observer 

remote sensing instrument, a larger w can compensate, and vice versa (Hapke, 1993). Thus, a 

variation in P(g) estimation can influence the calculation of w and, consequently, can influence 

the prediction of grain size. However, the discrepancies in the estimation of grain size of H2O ice 

due to variation in different single scattering phase function (P(g)) is beyond the scope of the 

present study. In this study, our focus was rather to assess how the implementation of a variety of 

the widely used scattering models can render in the variation of w calculations and resultant 
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discrepancies in H2O grain sizes, how much are the variations, and based on the results of these 

variations what is the most appropriate method at what situation. 

 

 

3.5.  Conclusion 

The mechanical strengths and thermal properties of planetary surfaces are directly influenced 

by the grain size of planetary regolith (e.g., Gundlach and Blum, 2013). Thus, an accurate grain 

size estimation of the outer solar system bodies is very important for an improved understanding 

of the surface volatile transport and thermophysical modeling of the planetary bodies. The icy 

bodies in the outer solar system host a widespread presence of water ice on their surfaces. 

Understanding the grain sizes of planetary regolith supports both landing or sample return 

missions (Gundlach and Blum, 2013), and thus accurate information about the water ice grains 

sizes is crucial for future missions to the outer reach of the solar system.  

 

We assess the discrepancies in the grain size estimation of amorphous and crystalline H2O 

ice at cryogenic temperatures from 15 – 80 K at a ~20 K interval. The relative grain size 

prediction by the Hapke approximation models was assessed, both quantitatively and 

qualitatively, concerning ice phases, grain sizes, and temperatures analogous to the icy zones of 

the solar system. Having a satisfactory application of Mie theory to an equant as well as 

“equivalent” non-spherical particles, we recommend using Mie formulation for unknown spectra 

of the outer solar system bodies. However, if approximation models are preferred, our study 

suggests using the slab model rather than the internal scattering model.  
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We demonstrate which model works better for the approximate grain size estimation of 

phases of water ice found in the outer solar system. Incorporating the results from Emran and 

Chevrier (2022), we conclude which approximate model is better in predicting the grain sizes of 

a variety of surface ices found in the outer solar system bodies, specifically on trans-Neptunian 

objects and Kuiper Belt objects. Thus, this study put forward a guideline for future studies in 

choosing scattering models in estimating the water ice grain sizes in the outer solar system using 

the radiative transfer models at near-infrared bands. 
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3.8. APPENDIX  

A. The mean and ± 1σ standard deviation of relative discrepancies in grain sizes are predicated 

by the approximation models. 

Table 3A.1: The mean and ± 1σ standard deviation of relative discrepancies in predicted grain 

sizes using the Hapke slab and ISM calculated at different particle radii of 1, 10, 100, and 1000 

µm for amorphous (a) and crystalline (b) H2O ice at different temperatures. 

a). 

G
ra

in
 r

ad
ii

 

(µ
m

) 

Amorphous H2O ice* 

15 K 40 K 60 K 80 K 

Slab ISM Slab ISM Slab ISM Slab ISM 

1 1.89±3.06 2.07±2.96 1.96±3.42 2.25±4.13 2.08±3.97 2.43±5.14  2.11±4.10 2.44±5.22 

10 1.21±0.74 1.40±0.92 1.23±0.82 1.14±0.98 1.26±0.95 1.42±1.06 1.27±0.98 1.43±1.10 

100 1.58±0.72 2.05±1.62 1.57±0.75 2.06±1.59 1.59±0.80 2.04±1.57 1.59±0.81 2.06±1.59 

1000 1.51±1.00 2.62±2.44 1.51±1.02 2.57±2.47 1.52±1.03 2.58±2.48 1.50±0.99 2.41±2.29 

 

b). 

G
ra

in
 r

ad
ii

 

µ
m

 

Crystalline H2O ice* 

20 K 40 K 60 K 80 K 

Slab ISM Slab ISM Slab ISM Slab ISM 

1 2.07±5.76 2.19±5.99 2.05±5.64 2.17±5.89 1.97±5.15 2.13±5.62 1.97±5.15 2.13±5.62 

10 1.24±1.35 1.32±1.08 1.24±1.3 1.31±1.05 1.22±1.20 1.30±0.99 1.22±1.20 1.30±0.99 

100 1.44±1.05 1.74±1.25 1.44±1.04 1.74±1.24 1.43±0.99 1.75±1.26 1.43±0.99 1.75±1.26 

1000 1.28±0.86 2.30±2.21 1.27±0.85 2.31±2.21 1.27±0.84 2.31±2.22 1.22±0.84 2.31±2.22 

*Note: The statistics were estimated by normalizing the predicted grain sizes from the Hapke 

slab and ISM to the Mie grain size. The number values are the mean ± 1σ standard deviation of 

predicted grain sizes by slab and ISM models to the Mie grain size H2O ice phases at different 

temperatures. A value of 1 represents exact prediction by the approximation models while the 

higher or lower values indicate over or underestimation, respectively, of the grain sizes by the 

respective approximation models. 
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B. Notations 

 

List of notations used in this paper 

B(g)  backscattering function 

〈D〉  mean free path of a photon  

D particle diameter 

De effective particle sizes 

e emission angle 

ξ asymmetry parameters of Mie theory 

g phase angle 

ĝ a constant, roughly ≃ 1 

H multiple scattering function 

i incident angle 

k imaginary part of the refractive index 

n real part of the refractive index 

P(g) phase function 

r internal diffused reflectance 

rc reflectance or radiance coefficient 

s internal scattering coefficient 

Se Fresnel reflection coefficient for externally incident light, 

Si Fresnel reflection coefficient for internally incident light, 

w single scattering albedo 

w’ δ-Eddington Mie single scattering albedo  

α absorption coefficient 

λ wavelength 

Ѳ internal transmission coefficient 
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Abstract 

We map the surface of Pluto using an unsupervised machine learning technique from the near-

infrared observations of the LEISA/Ralph instrument onboard NASA’s New Horizons spacecraft. 

The principal component reduced Gaussian mixture model was implemented to investigate the 

geographic distribution of the surface units across the dwarf planet. We also present the likelihood 

of each surface unit at the image pixel level. Average I/F spectra of each unit were analyzed – in 

terms of the position and strengths of absorption bands of abundant volatiles such as N2, CH4, and 

CO and nonvolatile H2O – to connect the unit to surface composition, geology, and geographic 

location. The distribution of surface units shows a latitudinal pattern with distinct surface 

compositions of volatiles – consistent with the existing literature. However, previous mapping 
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efforts were based primarily on compositional analysis using spectral indices (indicators) or 

implementation of complex radiative transfer models, which need (prior) expert knowledge, label 

data, or optical constants of representative endmembers. We prove that an application of 

unsupervised learning in this instance renders a satisfactory result in mapping the spatial 

distribution of ice compositions without any prior information or label data. Thus, such an 

application is specifically advantageous for a planetary surface mapping when label data are poorly 

constrained or completely unknown, because an understanding of surface material distribution is 

vital for volatile transport modeling at the planetary scale. We emphasize that the unsupervised 

learning used in this study has wide applicability and can be expanded to other planetary bodies 

of the solar system for mapping surface material distribution. 

Unified Astronomy Thesaurus concepts: Pluto (7777); Surface ices (2117); Astronomy data 

analysis (1858); Astrostatistics techniques (1886); Astroinformatics (78) 

 

 

 

4.1.  Introduction 

Pluto, a dwarf planet and largest trans-Neptunian object (TNO), is one of the fascinating outer 

solar system bodies in the Kuiper Belt. The dwarf planet exhibits abundances of volatile and 

nonvolatile ices on its surface with different spatial abundance and geographic distributions (Stern 

et al., 2015; Moore et al., 2016; Grundy et al., 2016). The presence and distribution of these various 

ice compositions are associated with some form of surface geological processes and seasonal 

interaction with the tenuous atmosphere, driven by the climate cycle of the dwarf planet (Moore 

et al., 2016; Schmitt et al., 2017; Binzel et al., 2017). Thus, mapping the spatial distribution of the 

ices and their relationship with surface geology and atmospheres is vital for a better understanding 

of the volatile transport models on the dwarf planet (Bertrand and Forget 2016). Accordingly, over 
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the past decades, the spatial distribution of surface materials has been observed from the spectra 

at visible (VIS) and near-infrared (NIR) wavelengths from both ground-based telescopes and New 

Horizons fly-by to analyze the geographic distribution of ices on Pluto (see Cruikshank et al., 

2015, 2019, and 2021 for a comprehensive review).  

 

In the conditions on Pluto’s surface, nitrogen (N2), methane (CH4), and carbon monoxide (CO) 

ices are the most abundant volatile materials (Stern et al., 2018). Among these volatiles, CH4 ice 

has several strong absorptions bands at NIR wavelengths, such as 1.30 – 1.43 µm (region 1), 1.59 

– 1.83 µm (region 2), 1.90 – 2.0 µm (region 3), and 2.09 – 2.48 µm (region 4) which have been 

utilized to characterize CH4 ice on Pluto by previous studies (see Schmitt et al., 2017 and Scipioni 

et al., 2021). These characteristic absorption bands of CH4 are also covered by the near-infrared 

spectrometer instruments onboard NASA’s New Horizons spacecraft. N2 ice can be detected by 

the presence of a 2.15 µm absorption band and CO by the 2.35 and 1.58 µm absorption bands, 

which have also been observed by ground-based facilities (Owen et al., 1993). Besides the volatile 

materials of CH4, N2, and CO, Pluto’s surface hosts photochemically formed organic hydrocarbon 

called tholins and a trace amount of ethane (C2H6) and water (H2O) ice (Merlin, 2015; Cook et al., 

2019). H2O ice acts as nonvolatile ice on Pluto's surface and the geology of rugged terrain and 

undulating morphology of the dwarf planet indicate that H2O ice forms the supporting bedrock for 

the surface volatiles (Stern et al., 2015; Spencer et al., 2020). The equatorial-colored area of Pluto 

represents the residue of deposited tholins which are assumed to form due to the ultra-violet (UV) 

or charged-particle irradiation and energetic processing of (both likely atmospheric or surface 

processes) methane and nitrogen (Cruikshank et al., 2005).  
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Before NASA’s New Horizons spacecraft’s flyby in 2015, Pluto was studied from ground-based 

observation or space telescope such as Hubble Space Telescope (HST). For instance, methane was 

first identified on the surface of Pluto from ground-based observations (Cruikshank et al., 1976), 

followed by the identification of nitrogen and carbon monoxide ice (Owen et al., 1993). However, 

owing to the lack of the resolution needed, a detailed disk resolved surface mapping was not 

possible with these ground and space-based observations. Thus, constraining the latitudinal 

distribution of surface ices was not possible due to the dearth of resolution needed to resolve the 

surface. NASA’s New Horizons spacecraft returned an unprecedented amount of data to Earth for 

analysis that paved the way to study the surface of Pluto (and its satellites) in finer detail. The 

initial results of the flyby mission can be found in Stern et al. (2015) and Grundy et al. (2016), and 

a comprehensive review can also be found in Stern et al. (2018) and Stern et al. (2021). 

 

Efforts have been put forward to map the surface composition and materials on Pluto from the 

NIR hyperspectral spectra from the Lisa Hardaway Infrared Mapping Spectrometer (LEISA) 

instrument, a part of the Ralph instrument package (Reuter et al. 2008) onboard New Horizons. 

For instance, Grundy et al. (2016) used band depths measurement to map the surface distribution 

of CH4, N2, and CO on Pluto’s encounter hemisphere. Schmitt et al (2017) used principal 

component analysis (PCA), spectral indicators, and correlation plots to study the distribution and 

physical state of ices, both volatile and nonvolatile, on Pluto’s illuminated disk. Protopapa et al. 

(2017) used radiative transfer modeling (Hapke, 1993) on LEISA spectra to derive the spatial 

distribution and grain sizes of volatile and nonvolatile ices on Pluto’s surface. Recently, Gabasova 

et al. (2021) used the intensity-based registration technique to the lower resolution data to make a 

global qualitative compositional map for surface ices. However, existing mapping efforts on the 
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spatial distribution of ices are mostly accomplished from the compositional analysis using spectral 

indices (e.g., band depth) or an application of complex radiative transfer modeling (RTMs). An 

implication of these techniques requires reliable label data, spectral endmembers, or prior 

knowledge about the spectral characteristics of the representative surface composition. 

 

The convenience of a machine learning technique lies in the potential to analyze large 

dimensional datasets more efficiently and effectively. Unsupervised learning, such as a clustering 

analysis (Marzo et al., 2006, 2008, 2009), is one of the widely used methods adopted to map the 

surface of planetary bodies. The unique advantage of unsupervised learning is that it does not need 

any label data or prior information. The unsupervised method utilizes the inherent characteristics 

of the data itself to recognize unseen but meaningful information in the data. Unsupervised spectral 

K-means clustering has successfully been used to characterize the surface of Mars (Marzo et al., 

2006), asteroids Bennu (Rizos et al., 2019) and Ceres (Rizos et al., 2021), Saturn’s moon Iapetus 

(Pinilla-Alonso et al., 2011), Pluto (Dalle Ore et al., 2019) and its largest satellite Charon (Dalle 

Ore et al., 2018). However, even though having the merit of fast computation and satisfactory 

results in many instances, the K-means clustering has its inherent limitations. The K-means 

clustering uses a rigid segmentation algorithm which may not effectively be used with many real-

world datasets. Moreover, the K-means algorithm may not capture the inherent heterogeneity of 

the datasets and does not work well if the data has a complex non-linear pattern (see Patel and 

Kushwaha (2020) for an assessment of the performance of K-means clustering). 

 

As an alternative unsupervised clustering and classification scheme, the Gaussian mixture model 

(GMM; Berge and Schistad Solberg, 2006; Li et al., 2014) has been used for hyperspectral images 
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like the LEISA data. GMM uses a probabilistic approach which assumes each data point comes 

from a mixture of a finite normal distribution with unknown parameters (Patel and Kushwaha, 

2020). GMM can uncover complex patterns, trace inherent heterogeneity, and group the data into 

cohesive components such that the clusters are a very close representation of the real world (Patel 

and Kushwaha, 2020). Moreover, for overlapping clusters, GMM performs considerably better 

than the K-means algorithm because K-means split the data into k non-overlapping groups while 

the GMM can infer probabilities for the overlapping clusters. 

 

However, the implementation of GMM to higher dimensionality (i.e., hyperspectral) data 

constrains its wide applicability due to the impractically large size of the parameter space (Li et 

al., 2014) and to the component distribution, formalized as a probability density function in a 

mixture model (Alqahtani and Kalantan, 2020). Moreover, working with big and higher-

dimensional data is challenging, computationally expensive, and time-consuming. Thus, efficient 

dimensional reduction methods such as Principal component analysis (PCA; Pearson, 1901) are 

widely used to reduce data dimension, keeping much of the possible variance in the original data, 

which can further be used for classification or clustering schemes. Of late, similar implementation 

of principal component reduced Gaussian mixture models (hereafter we refer to as PC-GMM), an 

unsupervised machine learning approach, has demonstrated to be satisfactory in many scientific 

fields (Alqahtani and Kalantan, 2020; Hertrich et al., 2022).  

 

This study implements the PC reduced GMM to map the surface distribution of ices. The basic 

framework of PC-GMM used in this study is that we first apply PCA to reduce the higher 

dimension LEISA data to a lower dimension and then implement the GMM to that principal 
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component reduced data. We provide the likelihood of the surface units at pixel scales, which gives 

an insight into a deeper understanding of the distribution of ices on Pluto’s surface. We then extract 

I/F spectra of the surface units and analyze them in terms of the position and strengths of absorption 

bands of abundant volatiles such as N2, CH4, and CO and nonvolatile H2O. An interpretation of 

the connection of the clusters to surface composition, geology, and location (latitudes and 

longitudes) is provided subsequently. We also compare the result of surface mapping from the PC-

GMM to the existing surface compositional mapping results. 

 

4.2. Observations 

We use spatially resolved hyperspectral scenes from the LEISA instrument (Reuter et al., 2008) 

that cover the entire disk of Pluto. LEISA is a wedged etalon infrared spectral imager with a 256 

x 256-pixel detector array, scans at 0.9º × 0.9º FOV, and operates in a push-broom mode. The 

instrument filter has two segments: one with wavelengths range of 1.25 - 2.5 µm and another is 

2.1 - 2.25 µm at the spectral resolving power (wavelength / Δ wavelength) λ/Δ λ = 240 and 560, 

respectively. We use the lower resolution wavelength segment (1.25 - 2.5 µm with the λ/Δ λ = 

240) which has been used to map the distribution of ices of CH4, N2, CO, and H2O over the surface 

of the dwarf planet and H2O frost on Pluto’s largest satellite Charon. The two LEISA scenes, 

originally at a spatial resolution of 6 and 7 km/pixels, used in this study were taken at ~100,000 

km from the surface during the New Horizon’s Pluto encounter period in July 2015. The details of 

the datasets used are given in Table 4.1. 
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Table 4.1. Details of the two LEISA scenes used in this study. 

MET Scan name UT date  

and time   
Range (km) Sub S/C 

Lon (°) 
Sub S/C 

Lat (°) 

0299172014 P_LEISA_Alice_2a 2015-07-14 

09:33:05 
112742 158.62 38.52 

0299172889 P_LEISA_Alice_2b 2015-07-14 

09:48:16 
100297 158.81 37.91 

 

The two image scenes were processed and calibrated with the mission data pipeline processing 

routine including bad pixel masking, background noise cleaning, flat fielding, and conversion of 

DN to radiance factor (RADF; commonly known as I/F). The images were then projected to a 

common orthographic viewing geometry appropriate to the mid-time between them using the 

United States Geological Survey's (USGS) Integrated Software for Imagers and Spectrometers 

(ISISv3) software package. For details on the LEISA data processing and reduction, please see 

Schmitt et al. (2017), Protopapa et al. (2017), and Cook et al. (2019).  

 

We use the derived LEISA data (I/F) products generated by the New Horizons Pluto encounter 

surface compositional science theme team (Stern, 2018) available at NASA PDS: Small Bodies 

Node1. The dataset consists of the spatial-spectral I/F cubes at the spatial dimension of 800 x 800 

pixels and the spectral dimension of 256 wavelength bands. Note that the derived data products 

were reprojected at a higher spatial resolution (using the nearest neighbor resampling algorithm) 

than the native LEISA data to minimize the loss of spatial information during projecting the scenes 

in orthographic viewing geometry (Schmitt et al., 2017). Thus, the derived product we used in this 

study has about 2 – 3 times greater spatial resolution than the original. The lower spectral 

resolution of the 1.25 - 2.5 µm wavelength segment used in the study consists of 0 - 196 channels 

 
1https://pds-smallbodies.astro.umd.edu/ 
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(# 200 – 255 channels cover wavelengths between 2.10 and 2.25 µm at higher spectral resolution). 

Note that some of the spectral channels (e.g., # 1, 2, 198) were excluded from the original I/F cube 

because of a strong photometric calibration caveat at these spectral bands (Schmitt et al., 2017). 

The two LEISA scenes used in this study overlap and cross through Sputnik Planitia (SP) and we 

cut the image cubes and joined them together (Fig. 4.1) in a similar fashion to that by Schmitt et 

al. (2017).  

 

Fig. 4.1: Images of two LEISA cubes at a band at 2 µm and mosaics covering the entire Pluto disk, 

adopted from Schmitt et al. (2017). The image cubes are projected to a common orthographic 

viewing geometry appropriate to mid-time between scenes. The red line represents the overlapping 

line where the image cubes were cut and joined together side by side. 

 

4.3. Methodology 

The radiance I/F data were converted to reflectance factor (REFF) by dividing the I/F cube by 

the cosine of the incident angle as defined by Hapke (2012) following the equation for Lambertian 

photometry (isotropic scattering from the surface). This correction minimizes the effect of solar 

irradiation on the reflected radiance and represents the intrinsic photometric properties of surface 

materials and has been successfully implemented on Pluto for the same LEISA image datasets 

(Schmitt et al., 2017). The I/F data cubes were further calibrated by the scaling factor of LEISA 

radiometric calibration of 0.74±0.05 (Protopapa et al., 2020). We also excluded the pixels that 
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correspond to an incident angle of greater than 85º (and belong to a strongly shadowed area; see 

the Pluto disk in Fig. 4.1) since such weakly illuminated areas result in a noisier reflected signal 

and strongly affect the photometric properties of REFF (Schmitt et al., 2017). Very few scattered 

pixels at some spectral bands (~ 0.03 % of the entire observations) show no data values inside 

Pluto’s illuminated disk and they were filled in using the linear interpolation technique for each 

pixel location. Note that no data values were found in some spectral bands not all the bands at a 

particular pixel. Thus, we did not need to interpolate values for all spectral bands at a pixel based 

on the values of the nearest pixels rather we fill the missing spectral band values based on the 

values of other spectral bands at that pixel. We emphasize that this gap-filling of a few scattered 

pixels does not change the original data characteristics.  

 

4.3.1. Principal component reduced Gaussian mixture model (PC-GMM) 

With the implementation of PC-GMM, we reduce the higher dimension LESIA data to a lower 

dimensionality dataset (of an order of tens) using a principal component analysis. For convenience, 

we present the conceptual frameworks of the mathematical formulation of the PCA. The original 

input dataset is considered to be a matrix of Y. In what follows, 𝑌 ∈ ℝ𝑛×𝑚  where 𝑌𝑖 =

(𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑑)
𝑇

 for 𝑖 = 1,2, … , 𝑛, and m is the data dimension. If the rank of the matrix is 

𝑟 where 𝑟 ≤ 𝑚𝑖𝑛(𝑛,𝑚), then the principal components (Abdi and Williams, 2010) of Y can be 

computed using the singular value decomposition given by: 

 𝑌 = 𝑈𝛴𝑊𝑇  (1) 
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where 𝛴 is the 𝑟 × 𝑟 diagonal matrix whose diagonal entries are the nonzero singular values 

{𝜎𝑙: 𝑙 = 1,2, . . . , 𝑟} with 𝜎1 ≥ 𝜎2 ≥. . .≥ 𝜎𝑟, 𝑈 is the 𝑛 × 𝑟 matrix of left singular vectors, 

and 𝑊  is the 𝑚× 𝑟  matrix of right singular vectors. Thus, the full principal components 

decomposition of 𝑌 can be written as: 

𝑃 = 𝑌𝑊 = 𝑈𝛴𝑊𝑇𝑊 = 𝑈𝛴  (2) 

We use the scikit-learn (Pedregosa et al., 2011) python module to implement the PCA on the 

LEISA cube data. To this end, we first standardize the REFF data since standardization is 

recommended before the implementation of PCA (e.g., Jolliffe and Cadima, 2016; Gewers et al., 

2021). The standardization approach used here involves removing the mean and scaling the data 

to unit variance. We find that the axes of principal components (PC) up to the first four pc-axes 

encompass substantial surface information of the Pluto disk (Fig. 4.2). The pc-axes look largely 

similar to that of Schmitt et al. (2017). From pc#5 onward the pc-axes contain noisy data and, 

therefore, were not considered in the further analysis because their inclusion may mislead the 

further statistical analysis. The assignment of “noisy” data was accomplished subjectively by 

visually analyzing (qualitative) if the resultant pc-axes can represent the appearance of the 

underlying geomorphology of Pluto (visible structure/feature) seen in the basemap. We plot the 

variance for the pc-axes showing that with the first four pc-axes it covers 92.93% of the total 

variance of the data and incorporate a scree plot in determining the optimum number of pc-axes 

(see Fig. 4A1 in Appendix). Moreover, from pc#4 onward the cumulative explained variance 

shows a fairly gentle increase – no substantial information will be gained if a higher number of 

components is included in the analysis. We consider the report of cumulative explained variance 
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as a function of pc-axes, scree plot, and visual inspection of the pc-axis in choosing the number of 

pc-axes to use in this study. 

Once the principal components are calculated, we implement the multivariate Gaussian 

mixture model to the first four pc-axes. For convenience, we present the conceptual framework for 

the mathematical formulation of multivariate GMM. The pc-axes are considered as a matrix of X. 

For what follows, 𝑋 ∈ ℝ𝑛×𝑑  and 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, … ,𝑋𝑖𝑑)
𝑇

 for 𝑖 = 1,2, … , 𝑛 . The 

multivariate Gaussian mixture distribution of n independent observations can be written as: 

𝑋𝑖|𝑧𝑖 = 𝑗~𝑁𝑑(𝑋𝑖|𝜇𝑗, 𝛴𝑗)  (3) 

where 𝑧𝑖 ∈ {1,2, . . . , 𝑘} is the latent variable representing the mixture component for 𝑋𝑖, k is 

the total number of mixture components, 𝑝(𝑧𝑖 = 𝑗) = 𝜋𝑗 with ∑ 𝜋𝑗
𝑘
𝑗=1 = 1, 𝜇𝑗 and 𝛴𝑗 are the 

mean vector of length 𝑑 and the 𝑑𝑥𝑑 covariance matrix of the 𝑗-th component, respectively, and 

𝑁𝑑 is the 𝑑-dimensional Gaussian distribution. The marginal distribution of 𝑋𝑖 integrating out of 

𝑧𝑖 can be written as: 

𝑝(𝑋𝑖) = ∑ 𝑝(𝑋𝑖 , 𝑧𝑖 = 𝑗)𝑘
𝑗=1 = ∑ 𝑝(𝑧𝑖 = 𝑗)𝑘

𝑗=1 𝑝(𝑋𝑖|𝑧𝑖 = 𝑗) = ∑ 𝜋𝑗𝑁𝑑(𝑋𝑖|𝜇𝑗 , 𝛴𝑗)
𝑘
𝑗=1      

(4) 

which is the k-component multivariate Gaussian mixture model (e.g., Bishop and Nasrabadi 

2006) with the mixture weights {𝜋𝑗}𝑗=1
𝑘

.  

If the parameter to estimate is 𝜃 = {𝜇1, 𝜇2, … , 𝜇𝑘 , 𝛴1, 𝛴2, … , 𝛴𝑘 , 𝜋1, 𝜋2, … , 𝜋𝑘}, then 

the log-likelihood function can be written as:  
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𝑙(𝜃) = ∑ 𝑙𝑜𝑔𝑛
𝑖=1 (∑ 𝜋𝑗𝑁𝑑(𝑋𝑖|𝜇𝑗 , 𝛴𝑗)

𝑘
𝑗=1 )   (5) 

We use the expectation-maximization (EM; Dempster et al., 1977) algorithm to calculate the 

maximum likelihood estimator of the parameter 𝜃. For convenience, we present the detailed EM 

algorithm in Appendix (Section 4A.2.). 

We implement the Gaussian Mixture Model python module available in the scikit-learn 

(Pedregosa et al., 2011). The selection of the optimal number of gaussian components (GC) or 

clusters is one of the critical considerations for the implementation of GMM. Choosing the optimal 

number of clusters can be accomplished by evaluating the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) values for the applied models. In machine learning, BIC and 

AIC diagnoses are also treated as internal cluster validation measures/ indicators in evaluating the 

quality of the modeled clustering structure. Internal cluster validation measures (e.g., BIC) have 

been instigated in astrophysical data problems for the implementation of a probabilistic gaussian 

mixture model (e.g., de Souza et al., 2017). In this study, we utilize both BIC and AIC measures 

in determining the optimal number of clusters to use for GMM on the pc-axes (and as an indicator 

of internal cluster validation). 

 

The AIC provides an estimation of the prediction error by an implemented model and thus 

indicates the relative goodness of the model in fitting the data upon which the model was built. 

The calculation of AIC is based on maximum likelihood criteria (Akaike, 1974) given as: 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿
^

) + 2𝑑 (10) 
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where 𝐿
^

 is the maximized value of the likelihood function and 𝑑  is the total number of 

(independently adjusted) parameters. The concept of BIC is closely aligned to AIC since the BIC 

is also based on the maximum likelihood function and calculated as (Schwarz, 1978): 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(𝐿
^

) + 𝑙𝑜𝑔(𝑁)𝑑 (11) 

where 𝑁 is the total number of observations.  

Both AIC and BIC penalize the model if it incorporates overfitting. However, the penalty is 

more extreme for BIC as it heavily penalizes the model complexity (Bishop and Nasrabadi, 2006). 

Typically, the best model minimizes AIC values; a lower AIC value corresponds to a better fit 

(Liddle, 2007). Conversely, the first local minima of BIC value is considered the optimal number 

of clusters (Dasgupta and Raftery, 1998; Fraley and Raftery, 1998). Note that BIC values are also 

presented with an opposite sign by different studies (Fraley and Raftery, 1998), in which case the 

optimal number of clusters will be at the first local maxima. We choose the optimal number of 

clusters considering the AIC and BIC values – a lower AIC value and first local minima, 

respectively. Accordingly, the optimal number of the cluster in this instance was set at 8 (which 

agrees with both the AIC and BIC criteria). A plot of AIC and BIC values at different numbers of 

clusters is given in Appendix (Fig. 4A2). 

In unsupervised learning, a goodness-of-fit diagnostic is required to validate the model further 

in simulating the original data. We provide an assessment of the model fit for the observed data in 

hand and its capabilities in predicting future datasets. To that end, we first simulate the input data 

(synthetically reproduces the original data structure) based on our implemented GMM model 

parameters for different gaussian component solutions i.e., numbers of clusters. In this instance, 
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we have observed data from the first 4 pc-axes used as the input data for GMM, and the predicted 

data were simulated from the resulting GMM model parameters. Then, we calculate the density 

for both observed and predicted data from multivariate kernel density estimates using the kde 

module of R in a python environment. Finally, we compare the estimated kernel densities for 

observed data against the predicted data by utilizing a linear fit for different GC solutions (see Fig. 

4A3 in Appendix). A similar goodness-of-fit diagnostics for the probabilistic GMM has 

successfully been implemented in an astronomical problem (de Souza et al., 2017). We calculate 

the coefficient of determination (R2) between the observed and predicted kernel density for 5 – 12 

GC solutions (Fig. 4A3). The R2 values for different GC solutions suggest that 8 GC solution 

renders the highest value of 0.96 – which suggests a good fit for the model. 
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Fig. 4.2: The first nine principal components from LEISA REFF data cubes. Up to four pc-axes, 

the disks show substantial surface information (covers 92.93% total variance of the data). The pc#5 

and onward components show noisy data therefore the pc-axes #5 and higher were not considered 

in the analysis. Note: the assignment of “noisy” data was accomplished subjectively by visually 

analyzing if pc-axes can represent the underlying geomorphology of Pluto. 
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4.4.  Results  

As suggested by the AIC and BIC values, we classify the entire Pluto ’s surface into eight 

representative surface units (Fig. 4.3). For the convenience of interpretation of the surface unit 

distribution, we hereafter call the surface unit by # followed by the assigned surface unit number. 

The surface units are distributed in different geographic regions (with different latitudinal and 

longitudinal extent) across the dwarf planet. Moreover, the distribution of the surface units 

coincides with the major geologic features e.g., basin, crater, montes, terra, etc. Note that some of 

the names of features and regions on Pluto used in this study are informal, while other names have 

been formally adopted by the Nomenclature Committee of the International Astronomical Union. 

We label the major geological features on the reference map in Fig. 4.3, however, to reference 

local scale geologic features, a basemap showing the names of all geologic provinces and features 

on Pluto was added in Appendix (Fig. 4A4). 

The north polar region around Lowell Regio is a distinct surface unit (#2) that extends up to 

Voyager Terra to the south. Roughly, the north polar unit runs from the pole to ~60º N. Likewise, 

the equatorial Cthulhu Macula (or simply Cthulhu) – located in the western part of SP and spans 

between ~ 15º S to 12º N – exhibits a separate surface unit (#7). The surface unit #6 covers a large 

part of Sputnik Planitia and a portion of the northern mid-latitudes at Venera Terra (between ~ 45 

to 60º N). However, the surface unit in the northern mid-latitudes at Pioneer Terra (below the 

Lowell Regio) belongs to #8 – extending at the latitudes of ~ 30 to 70º N with varying widths at 

different longitudes. Tombaugh Regio – located in the south and eastern part of SP (between ~ 15º 

S to 30º N latitudes) – indicates a distinct surface unit (#5). The eastern and southern limbs of the 

Pluto disk, including the Tartarus Dorsa region, belong to surface unit #1. This unit follows a 

narrow strip along the limb of Pluto’s illuminated disk during the New Horizon flyby in 2015. 
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The broader region between the Cthulhu Macula (stretching from the latitude of Elliot crater and 

Virgil Fossae) and the latitude of the Burney crater shows a distinct surface unit (#4). This unit 

follows a latitudinal pattern and stretches between ~ 10 to 35º N. The mountains at the western 

fringe of the SP such as Baret Montes, Al-Idrisi Montes, Hillary Montes, etc belong to #4. Note 

that a narrow strip of #8 is placed (also seen in the base of the Burney crater) in between the surface 

units of #4 and #6. Kiladze crater, Krun Macula, inner rims of Oort crater, and the parallel stripe 

region following the south of the Cthulhu Macula belong to surface unit #3. The mountains (e.g., 

Pigafetta Montes) and small depressions (probably small craters) in the Cthulhu Macula and some 

patchy spots in Tombaugh Regio (smaller fraction) are also part of #3. 

  

Fig. 4.3: Long Range Reconnaissance Imager (LORRI) higher resolution (panchromatic) basemap 

projected to LEISA scenes (a). The LORRI base map is labeled with latitude (blue) & longitude 

(black) grid and formal & informal names of major geomorphic features. The red rectangles 

represent the reference locations in Fig. 4.9. Eight surface units were found on Pluto using PC-

GMM (b). The surface units follow the latitudinal pattern and are consistent with broad geographic 

regions and geologic features. The north pole at Lowell Regio, Cthulhu Macula, Tombaugh Regio, 

Sputnik Planitia and Venera Terra, and Pioneer Terra region show distinct surface units. The 

values in the legend indicate the assigned surface unit number. Note: the lower right region belongs 

to strongly shadowed areas and, thus, the pixels at these locations were excluded from the map 

(see the text for a detailed explanation). 



 

103 

Because the GMM employs probability distribution, we provide the likelihood of each surface 

unit at the LEISA pixel level (Fig. 4.4). While predicting the probability, the GMM algorithm 

treats each surface unit as a Gaussian component and infers the likelihood based on the estimated 

component density for every pixel. The probability subplots indicate that most of the surface units 

are distributed in a spatially distinct location – not much disjointed or scattered around different 

locations, with some exceptions.  

The probability scale ranges from 0 to 1, where higher values indicate a higher probability for 

the corresponding surface unit. For pixels that are close to multiple cluster centroids, the GMM 

algorithm infers the probabilities of the pixels for these multiple clusters. Thus, the probability 

subplots in Fig. 4.4 indicate whether a pixel does purely belong to a particular surface unit or 

shares characteristics of multiple units. Most of the surface units are dominated by pixels with 

higher probability values (close to 1) – indicating the dominance of mostly pure pixels at each unit. 

This is further supported by the boxplot of the probability distributions extracted from the pixels 

corresponding to each class (Fig. 4A5 in Appendix). As seen in the probability boxplot, the median 

probability of every class is more than 0.95 – confirming that each class host pixels with higher 

probability values. 
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Fig. 4.4: The probability plot of each surface unit at LESIA image pixel level using PC-GMM. 

The subplots are superposed on the LORRI base map. The probability scale ranges from 0 to 1, 

where higher values indicate a higher probability of the corresponding unit. We also refer the 

readers to Fig. 4A5 in Appendix which shows that most of the surface units are dominated by 

pixels with higher probability values (close to 1). 
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Note that the resultant surface units using unsupervised learning are agnostic of the physical 

and geological meaning of the different terrains. Thus, a connection of the surface units to the 

chemical composition of the corresponding unit is necessary for the geologic explanation of the 

classification. Accordingly, we retrieve the mean and 1σ standard deviation of the I/F spectra from 

all the pixels that fall into each surface unit (Fig. 4.5). For the convenience of interpretation, the 

spectral subplot for the corresponding surface unit is labeled as C followed by the assigned unit 

number. For instance, the I/F spectra of surface unit #6 is labeled as C6. Note that these signs (C 

and #) are used interchangeably to denote the surface unit and corresponding spectra later in the 

paper for simplicity. 

The standard deviation (gray shade) of the I/F spectra shows varying degrees of closeness to 

the mean spectra (red) at different wavelengths (see Fig. 4.5). The mean I/F spectra indicate the 

presence or absence of absorption bands of the abundant volatiles of CH4, N2, and CO. However, 

compared to N2 and CO ices, CH4 has very strong absorption bands at the wavelengths (1.2 to 2.5 

µm) covered by the LEISA instrument. Thus, CH4 absorption bands are much more readily 

identifiable than the other volatile ices from the mean I/F spectra of the surface unit (see Table 4.3 

which lists important bands for different ice). All the classes, except the Cthulhu Macula (C7), 

exhibit a clear presence of CH4 ice absorption bands with varying degrees of strength in the 

absorption bands. This is evidence of the widespread CH4 ice distribution on Pluto's surface. The 

north polar unit (around Lowell Regio) – stretching from ~60° N to the north pole – shows a zone 

with a higher concentration of CH4 ice (Grundy et al., 2016; Earle et al., 2018) as evidenced by 

the strong absorption features in the I/F spectra. More details of the spectral interpretations of all 

surface units are given in the later section of the paper.  
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The I/F spectra for the broad surface unit of Sputnik Planitia and Venera Terra (#6) exhibit the 

presence of N2 and CO absorption bands at 2.15 µm and 1.58 µm, respectively (see C6 in Fig. 4.5). 

These bands are subtle at the scale shown, but are statistically reliable (because the absorption 

bands plotted in the figure accompany with 1-σ error bar). We did not see the sharp 2.35-µm 

absorption band for CO at the LEISA spectral resolution since the absorption band is blended 

between two broad CH4 absorption bands (Schmitt et al., 2017). Since both N2 and CO absorption 

bands are much weaker compared to the CH4 bands, a finer difference in the spatial distribution of 

N2 and CO abundance may not be sharply evident when applying an unsupervised classification 

scheme to the entire Pluto disk data. Thus, we re-classify the N2 and CO-rich surface unit (#6) into 

multiple subunits to probe the finer difference in the distribution of N2 and CO ices using a post-

classification scheme. During re-classification, we treat the surface unit (#6) independently i.e., 

did not increase the original gaussian components. 
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Fig. 4.5: The mean (red line) ± 1σ standard deviation (gray shade) I/F spectra of each surface unit 

on Pluto using PC-GMM. The spectra of the surface units in the subplots are labeled as C followed 

by the corresponding assigned surface unit number. The standard deviation of the I/F spectra shows 

varying degrees of closeness to the mean spectra at different wavelengths. All the classes (except 

the C7) exhibit a clear presence of CH4 ice absorption bands with varying degrees of strength. 
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H2O ice on the dwarf planet can be detected using the absorption bands at 1.65 and 2.0 µm 

which are an indicator of the crystalline ice phase (Cook et al., 2019). On Pluto’s surface, the 

volatile ices of N2, CO, and CH4 mostly hide the H2O ice bedrock from being identified in the 

LEISA wavelengths (Cruikshank et al., 2021). Moreover, the spectral signature of H2O on Pluto 

is indiscernible because the broad spectral bands of H2O are much shallower and overlain by strong 

CH4 bands (Cruikshank et al., 2021). However, a relatively higher abundance of H2O ice has been 

identified in different isolated areas (in smaller areal fractions) including the Kiladze crater and 

Krun Macula (Cook et al., 2019). These water-ice-abundant areas correspond to our surface unit 

#3 –which shows the presence of an absorption band at 1.65 µm in the I/F spectra (Fig. 4.5).  

 

Though the spectra for C3 (see Fig. 4.5) do not show a very strong 2.0-µm absorption band, 

the broad absorption feature of CH4 around the 2.3 µm region is less intense (also the shoulder of 

2.0 -µm is much lower compared to the 1.9-µm shoulder). Moreover, the CH4 absorption band is 

absent at 2.2 µm. Thus, we consider these characteristics to be an indicator of H2O ice abundance. 

The spatial distribution of #3 indicates that the H2O ice-dominated areas are distributed at different 

geographic locations and associated with a variety of geologic features. Here, we are interested to 

probe if there are any differences in H2O ice distribution due to geographic locations or if 

differences are more aligned to geology. To this end, we apply a post-classification scheme to 

distinctly separate possible H2O ice-abundant subunits. 

  

We employ the same GMM algorithm for the post-classification of the surface units (# 3 and 

6) into two subunits. The probabilities of subunits for #6 are shown in the upper row and the 

subunits for #3 are shown in the bottom row of Fig. 4.6. For reference, the mean ± 1σ standard 
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deviation of the I/F spectra from all the pixels that fall into each subunit of #3 and #6 is also 

included in the Appendix (Fig. 4A6). The post-classification result of #6 indicates that the central 

part of Sputnik Planitia consists of a distinct subunit while the northern part of the SP and Venera 

Terra share common characteristics. The Venera Terra is in the northern mid-latitudes above 50º 

N while Sputnik Planitia barely exceeds 45º N. The geology of the central part of SP is different 

from its northern part and they show different albedos (White et al. 2017). Thus, the probability 

plots of subunits for #6 implies that differences between N2 and CO-rich areas may be controlled 

by latitude, geology, and/or volatile transport mechanism within the SP basin (further 

interpretation are given in the later section). The histogram of the probabilities extracted from the 

pixels of each corresponding post-class of C6 is provided in the Appendix (see Fig. 4A7). The 

histogram plot indicates that each sub-unit is dominated by pixels with higher probability values 

(mostly pure pixels). 

 

Likewise, the post-classification of #3 shows that the composition (H2O mixed with other ices) 

at Kiladze crater is different from that of Krun Macula. The mean spectral plot (see Fig. 4A6 in 

Appendix) also indicates that there are differences in the spectral signature in those two regions 

most likely because the fractions of water on these units are different. The mountains and 

depressions (in small areal extend) in the Cthulhu Macula, Oort crater, and patchy spots in 

Tombaugh Regio belong to the same subunit of the Kiladze crater. However, the geographic 

locations of this subunit are distributed at different latitudes on Pluto’s surface. Thus, the 

probability plot of subunits for #6 indicates that the compositional difference in H2O-rich areas 

does not closely correlate with latitude, but rather is perhaps aligned to surface geology or other 

factors. We provide a histogram of the probabilities extracted from the pixels of each 
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corresponding post class of C3 in the Appendix (see Fig. 4A7). The histogram plots show that the 

post-classified surface units are dominated by pixels with higher probability values (close to 1). 

This indicates dominance of mostly pure pixels at each post-class for the C3 unit. 

 

 

Fig. 4.6: Post-classification probabilities of subunits for the region enriched with N2 and CO region 

(#6; upper row) and the subunits for the H2O-rich areas (#3; bottom row). The central part of 

Sputnik Planitia shows a distinct subunit while the southern SP and Venera Terra share common 

characteristics. H2O ice at the Kiladze crater shows a difference from that of at Krun Macula. Refer 

to the histogram plot in Fig. 4A7 in Appendix which shows that the post-class surface units of C3 

and C6 are dominated by pixels with higher probability values. 
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Finally, we integrate all post-classification subunits into the original surface units shown in 

Fig. 4.4 to make a composite surface unit map encompassing a total of ten surface units (Fig. 4.7). 

In the composite surface unit map, the subunits forming the central part of Sputnik Planitia were 

reassigned the surface unit #9 while the subunit of Krun Macula was reassigned the surface unit 

#10. The compositional information of each surface unit is also labeled on the final surface unit 

map. Thus, we hereafter alternatively call the composite surface unit map as the generalized global 

compositional map. A summary of the characteristics and bulk compositions (qualitative) of the 

surface units is given in Table 4.2.  

 

To facilitate the compositional comparison between the surface units, the average I/F spectra 

for ten composite surface units from the generalized global compositional map are given in Fig. 

4.8. The colors in the average I/F spectra plot are the same as the corresponding surface unit colors 

in the generalized global compositional map. The characteristic absorption bands for N2 at 2.15 

µm and CO at 1.58 µm are labeled as the vertical lines in the plot. We also label the 1.65- and 2.0-

µm absorption bands of H2O. As noted above, the broad absorption bands of H2O ice are 

indiscernible due to overlaid strong CH4 absorption bands at NIR wavelengths. Thus, the relative 

comparison between the shoulders at 1.9 and 2.0 µm is also considered for interpreting H2O 

abundance. Moreover, we utilize the shape of the characteristic absorption band of CH4 at 2.2 µm 

for the interpretation of the presence of water ice. 

 

On the outer solar system bodies, the surface volatiles are often found in different combinations 

or mixtures rather than in a pure state. The abundant volatile methane and nitrogen ices, at Pluto’s 

average surface temperature of 40 K, are partly soluble and can form two binary mixing phases – 
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CH4-rich ices diluted with N2 (CH4:N2) and N2-rich ice diluted with CH4 (N2:CH4) (e.g., 

Prokhvatilov and Yantsevich, 1983; Trafton, 2015). CH4 absorption bands shifts towards shorter 

wavelengths when a small amount of CH4 is dissolved within N2 such that with the increase of 

CH4 concentration the absorption band shifts decrease (e.g., Protopapa et al. 2015). That means 

that higher concentrations of CH4 correspond to smaller observed band shift (e.g., Scipioni et al., 

2021). Thus, we use the shift of the peak at 1.69 µm as an indicator of N2:CH4 such that a shift 

toward shorter wavelengths represents the presence of CH4 in the N2 ice matrix while a shift toward 

longer wavelengths may be an indicator of CH4-rich (with larger grains) materials. 

 

Some of the surface units also show the dilution of N2 in CH4 as evident in the average spectra 

of the surface classes. We assess the dilution of N2 in CH4 ice (CH4:N2) by examining the 

absorption band at 1.69 µm. On Pluto, the absorption band at 1.69 µm has been historically 

attributed to the presence of pure CH4 because the band only occurs in pure methane spectra and 

has not been observed in an ice mixture of CH4 diluted with a smaller concentration of either α or 

β phases of N2 ice at any temperature (Cruikshank et al., 2021). However, the recent laboratory 

study by Protopapa et al. (2015) demonstrated that the 1.69 µm absorption feature can no longer 

exclusively be attributed to the presence of pure CH4 ice on Pluto’s surface since the absorption 

feature has also been observed in CH4:N2 samples.  
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Fig. 4.7: The generalized global compositional map of Pluto superposed on a higher resolution 

LORRI basemap. The compositions of the surface units are labeled to the corresponding unit. The 

asterisk (*) superscript appended to a component refers only to that component where * = larger 

grain/-rich material and ** = pure ice. The latitude and longitude are labeled as the blue and black 

grid, respectively. The values in the legend indicate the assigned surface unit number. 
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Table 4.2: Summary of the characteristics and composition of the surface units. 

 

# Unit Major geographic province Composition 

1 Tartarus Dorsa CH4 is diluted in a smaller amount of N2; CH4(: 

N2); CH4 ice is mostly pure 

2 Lowell Regio up to Voyager 

Terra to the south 
Pure or larger grain of CH4; perhaps no or very 

little N2 

3 Kiladze crater, Oort crater, and 

Pigafetta Montes 
An abundance of H2O + CH4 ice; CH4 snow-

capped mountains supported by H2O 

4 Al-Idrisi Montes, Baret 

Montes, Hillary Montes, 

Viking Terra 

CH4 and H2O; CH4 ice is mostly pure; perhaps 

a very little amount of N2 

5 South of Sputnik Planitia and 

Tombaugh Regio 
CH4 ice might be slightly diluted with N2 and 

CO; CH4(: N2:CO) 

6 Northern lobe of Sputnik 

Planitia and Venera Terra 
N2 ice diluted with CH4 (N2:CH4); perhaps a 

very little amount of CO 

7 Cthulhu Macula Red materials, tholins, refractory organics 

[inferred from colors and not spectral bands] 

8 Pioneer Terra and the base of 

Burney crater 
N2 ice diluted with CH4 (N2:CH4); coarser N2 

ice grains 

9 Central Sputnik Planitia; 

the heart of SP 
N2:CO:CH4; the highest abundance of N2 and 

CO; the cold trap 

10 Krun Macula and a belt follow 

south of Cthulhu Macula 
A mixture of H2O + tholins + CH4; absorption 

bands are not stronger 

 

Using the global compositional maps, we focus on the broad generalized regions on Pluto’s 

surface that show particularly interesting comparisons between their spectral composition with 

respect to geologic structures and topographic maps. Previous studies using MVIC (Multispectral 

Visible Imaging Camera) also noticed a latitudinal pattern to some of Pluto’s ices (see Earle et al., 

2018). We highlight these interesting features on Pluto where different volatile interactions are 

occurring and demonstrate the level of detail between spectral and geological study at Pluto. Note 
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the surface unit we refer to hereafter in our discussion corresponds to the surface units in 

generalized global compositional maps in Fig. 4.7 and corresponding average I/F spectra in Fig. 

4.8. A list of the spectral components used to characterize surface compositions and surface units 

that exhibit the spectral components is also provided in Table 4.3. We also incorporate an 

interpretation of the geology of the surface units based on existing literature.  

Area 1: Sputnik Planitia (SP) 

SP is an N2-dominated, volatile-filled basin that is currently undergoing solid-state convection, 

creating large (10 – 40 km across) polygonal cells across the basin (Stern et al., 2015; Protopapa 

et al., 2017). SP has also been observed from MVIC (Equivalent Width) data to have minor 

concentrations of methane, with weaker absorptions between the MVIC equivalent width of 2 – 4 

nm (Earle et al., 2018). The composite surface unit map shows that Sputnik Planitia exhibits 

multiple classes with different surface compositions. Notably, the central part has spectral 

signatures of a higher concentration of N2 and the presence of CO ices while the northern portion 

has a lower concentration of the N2. Overall, the SP basin appears to have three main spectral 

regions – corresponding to I/F spectra indicated as C5, C6, and C9 (see Fig. 4.8). 

The northwestern-most lobe of SP is darker in albedo (White et al. 2017). This portion of SP is 

indicated as spectra C6, which has a small N2 signature and no discernible (or very weak) CO 

feature. The peak of the 1.69 µm slightly shifts towards shorter wavelengths – representing a 

surface composition of N2 ice diluted with CH4 (N2:CH4). As previously discussed, when CH4 is 

diluted in N2, there is a shift of the CH4 bands to slightly shorter wavelengths (Quirico and Schmitt, 

1997). The unit may host a very low concentration of CO since there is no discernible (or very 

weak) absorption at 1.58 µm. From the geologic mapping of SP (White et al., 2017), this part of 



 

116 

SP has dark-cellular plains (dcp) and dark-trough-bounding plains (tbp). The dcp unit is deficient 

in N2 relative to the innermost (central) portion of SP, also displaying a higher content of entrained 

tholins, along with the tbp unit (Scipioni et al., 2021). The tbp unit also represents entrained tholins 

at the edges of the convective cells and bounding troughs.  

The central lobe of SP has the spectral indicator C9, which is observed to have a more prominent 

signature of CO and N2 compared to the other spectra. Having the presence of N2 and CO in this 

central portion of SP gives more evidence into SP being a cold trap of such volatiles (Bertrand & 

Forget 2016; Keane et al. 2016). Moreover, the peak at 1.69 µm shows its highest shift towards 

shorter wavelengths compared to other spectra – representing the presence of the highest 

concentration of N2 ice at the central part of SP compared to all other units. The CO absorption at 

1.58 µm also shows a sharp feature. This represents a surface unit of the highest amount of N2 and 

CO deposition. The geologic unit corresponding to this part of SP is bright-cellular-plains (bcp). 

The bcp unit is inferred to be resurfaced (relatively fresh, bright) N2 ice (also inferred from the 

lack of impact craters in this region; see Singer et al. 2021). The cellular patterns indicate active 

solid-state convection (McKinnon et al. 2016). The higher albedo could be the condensation of N2 

from the atmosphere (White et al., 2017).  
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Fig. 4.8: The average I/F spectra of the ten composite surface units. The colors of the spectra 

correspond to the colors of the surface unit in Fig. 4.7. The dashed vertical lines indicate N2 

absorption at 2.15 µm (red), CO absorption at 1.58 µm (green), CH4:N2 absorption at 1.69 µm 

(black), and H2O absorption at 1.65 and 2.0 µm (blue). Note that the I/F values in the y-axis have 

offsets for clarity. For a higher resolution colored version of the figure, the readers are referred to 

the online version of the paper2. 

 
2 The wavelengths and average I/F data behind the figure are available in the publicly available 

repository at https://github.com/alemran042/Pluto-PC-GMM-Data 

https://github.com/alemran042/Pluto-PC-GMM-Data
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The southern-most unit within the SP basin (along with Tombaugh Regio) is spectral unit C5, 

which is observed to have a smaller spectral signature of N2 and CO. The N2 observed in this 

surface unit could be from the lightly pitted plains (lpp), in which N2 is sublimating from the pits 

(White et al., 2017). This region also has patchy, pitted, marginal plains (pmp), which have shallow 

N2 ice, and sparsely pitted plains (spp), which also N2 ice-dominate, either from resurfacing or 

atmospheric condensation (White et al., 2017).  

 

Table 4.3: List of the spectral components used to characterize compositions and their surface 

units. 

Composition Spectral component (µm) Surface units (#) 

 N2 2.15 µm C8, C9 (strong) 

C1, C5, C6 (weak) 

 CH4 1.30 – 1.43 µm, 1.59 – 1.83 µm,  

1.90 – 2.0 µm, and 2.09 – 2.48 µm 

All units with different 

strengths, except C7 

 CO 1.58 µm 

2.35 µm (indiscernible) 

C9 (strong) 

C5, C6 (weak) 

 H2O* 1.65 µm,  

2.0 µm (shoulder) 

C3, C4, C10 

 N2:CH4 peak shift at 1.69 µm 

(blue or red shift) 

C6, C9 (blue shift) 

C2 (redshift) 

 CH4:N2 absorption at 1.69 µm C1, C4 (strong) 

C3 (weak/ indiscernible) 
*Note: We also consider the shape of the characteristic absorption band of CH4 at 2.2 µm for the 

interpretation of the presence of H2O ice. Please see the text for detail description of the approach. 

 

 

 

 

 



 

119 

Area 2: Al-Idrisi Montes and western SP glaciers 

The Al-Idrisi Montes and the western shores of SP show an amalgamation of chaotic blocky 

terrain and mountainous glaciers, such as the Baret Montes and Hillary Montes glacier chain to 

the southwestern shores, rising several kilometers over SP (Moore et al., 2016). These mountains 

and glaciers are reddish in nature, while the chaos blocks to the northwestern portion of SP are 

more neutral in coloring. The glaciers and chaotic terrain floating on the western shores of SP are 

mainly water ice blocks (Howard et al. 2017; Cook et al. 2019; White et al. 2021). This spectral 

region (indicated as C4) from our global maps also extends in a latitudinal band into Viking Terra 

[~13° - ~40°N], tracing the northern boundary of Cthulhu Macula.  

From the spectra, the CH4 signature is not as deep comparatively, probably indicating some 

dilution in N2 ice (Schmitt et al., 2017). However, interestingly, a slight 1.69 µm absorption band 

is seen in the spectra (C4). However, we do not see any discernible N2 absorption band at 2.15 µm. 

As has been noted above, the 1.69 µm absorption band is attributed to the presence of both pure 

CH4 and CH4:N2 ice (Protopapa et al., 2015; Cruikshank et al., 2021). Thus, based on spectral 

characteristics we presume the composition of the surface unit #4 to be the presence of pure CH4 

ice. The H2O correlation map by Cook et al. (2019) also reported the presence of water ice 

throughout this surface unit. Though the average spectra (C4) do not clearly show a strong 

absorption band at 1.65 µm, the shoulder peak at 1.9 µm is much higher compared to 2.0 µm. 

Thus, the possible composition for this surface unit is CH4 + H2O. We note that this latitudinal 

band does not extend to the eastern close-encounter hemisphere (except for a very small area on 

the northeastern shores of Sputnik Planitia).  
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Area 3: Northern Terrae and Polar Cap 

The northern plains of Pluto are sectioned into different major regions plus the polar cap. The 

polar unit (officially known as Lowell Regio) is predominantly our spectral unit C2, which is a 

sampling of CH4-rich components with little or no detection of CO and N2. Notably, the peak of 

1.69 µm shows a shift toward longer wavelengths among other spectra, indicating the presence of 

a CH4-rich component. This pure CH4 ice was also confirmed by observations from Schmitt et al. 

(2017). Venera Terra [Lat 38° – 74.9°N; Lon 99.8° – 135°E] is dominantly the spectral unit C6, 

which consists of CH4 absorption bands and with a weak spectral signature of N2. Like the northern 

portion of SP, this region has a surface composition of N2:CH4 (N2 ice diluted with CH4). Venera 

Terra geology involves the large (585-km long) Djanggawul Fossae and Piri Rupes structure (549-

km long).  

 

Pioneer Terra [Lat 43.5° - 69°N; 170° – 214°E] is dominated by unit C8, which is mostly CH4 

and N2 mixtures (N2:CH4). However, compared to the Venera Terra unit (C6), this unit has a much 

broader 2.15-µm absorption band which is probably indicative of the presence of coarse grain N2 

ice. The Hayabusa Terra [Lat 28° – 62°N; 196° – 264°E], the easternmost region in the close-

encounter hemisphere, is also dominated by the C8 spectral unit. Within these icy compounds, N2-

rich ices are very coarse-grained (few to 10s of centimeters), whereas CH4-rich ices are typically 

< 1 mm in size (Protopapa et al. 2017). Most of the region is speckled with large, flat-floored pits 

and uplands (Howard et al. 2017). Water ice forms the base layer bedrock but is extensively 

mantled by other icy constituents. These erosional regions may reflect bulk composition, though 

the mantles may be of deeper, varied depths that may reflect seasonal volatile interactions and 

migrations (Earle et al. 2017; Protopapa et al. 2017). While CH4 tends to accumulate at higher 
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elevations, N2 collects in depressions (Bertrand and Forget 2016). N2 ice detected in the spectral 

unit C8 is compatible with the origin of N2 by atmospheric condensation condensing in these low-

lying depressions.  

 

The northwestern-most close-encounter hemisphere region is Vega Terra [Lat 10.5°– 57°N; Lon 

42.9° – 128°E]. There are two main spectral units from our global maps observed in this region: 

C6 and C8. C6 is in the northern portion of Vega Terra, which is observed to have a small amount 

of N2, like the northern portion of SP. The southern part of Vega Terra is a mixture of CH4 and N2 

(C8) in a much narrower latitudinal band. The geology in this portion of Pluto is mostly CH4-

haloed impact craters (Villaça et al. 2021).  

 

Voyager Terra [Lat 36° – 77°N; Lon 129° – 176.5°E] consists of blotches of the spectral units 

C6, C2, and C8. We note that the C8 unit also corresponds to the relatively higher elevations of 

Hunahpu Valles, which has also been verified with observations of CH4 concentrations at higher 

elevations in the MVIC data (Earle et al. 2017). These concentrations of CH4 and N2 could 

correspond to the condensation of atmospheric volatiles, like the CH4-capped mountains observed 

in Cthulhu Macula (Bertrand et al. 2020).  

 

Area 4: Cthulhu Macula and Southern Tombaugh Regio 

Cthulhu Macula is a large, dark, reddish region in Pluto’s western close-encounter hemisphere. 

The reddish coloring is possibly mostly the result of atmospheric tholins deposition (see Grundy 

et al. 2018). However, the reddish-colored component at Virgil Fossae has been hypothesized to 

originate from the recent cryovolcanic activities at the fossae (Cruikshank et al., 2019). This region 
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shows little to no methane absorption, as also confirmed by previous MVIC studies (Earle et al. 

2018). To the southeast of Cthulhu Macula (southern portion of Tombaugh Regio) lies the putative 

cryovolcanic structures, Wright Mons and Piccard Mons (Singer et al., 2022). While most of the 

region consists of spectral units C3 and C5, it is curious to note that the spectral unit C1 intersects 

the summit pit depression of Wright Mons, which may imply some atmospheric deposition, and 

continues at an angle through Krun Macula and Tartarus Dorsa in the close-encounter eastern 

hemisphere. 

 

The C1 unit is very similar to the C5 spectra, though the C1 may have a small detectable amount 

of N2 that the C5 unit doesn’t exhibit. Interestingly, C1 shows the presence of a 1.69 -µm 

absorption band coupled with the N2 absorption at 2.15 µm. The 1.69 -µm absorption has indeed 

been attributed to pure CH4 or CH4:N2 (Protopapa et al., 2015) which the C1 spectrum 

corroborates. Thus, the likely composition at C1 is that CH4 ice might be slightly diluted with N2  

[CH4(: N2)]. The detection of CH4 at Wright Mons most likely represents a thin surficial layer 

deposited out of the atmosphere (Singer et al., 2022). N2 and CH4 have been previously observed 

at Tartarus Dorsa as the main drivers of the sublimation processes of the penitents (Moores et al., 

2017). 

Area 5: Water ice areas 

The spectra for the Kiladze crater unit (C3) show evidence of abundant water ice. There is a clear 

presence of the H2O absorption band at 1.65 µm. Though the 2.0-µm absorption band is not 

strongly evident in the spectra, the shoulder at 2.0 µm is much lower than 1.9 µm. We label this 

surface unit as the crystalline water ice abundant area, consistent with the previous study by Cook 

et al. (2019). We do not see the presence of a characteristic CH4 absorption band at 2.2 µm, though 
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other absorption bands of CH4 are weakly present. Thus, the H2O ice in the Kiladze crater area 

likely coexists with CH4 ice (H2O + CH4 ice). The unit is also evident in the mountains and small 

depression in Cthulhu Macula. In the case of Krun Macula, neither CH4 nor H2O has strong 

absorption bands. The spectra show a similar shape to the spectra of Cthuhulu Macula – an 

indication of the presence of red materials or tholins. We note that the presence of tholins and other 

red materials is inferred on the basis of spectral slope (color), both in the spectral region covered 

by LEISA and analyzed here, and by MVIC at shorter wavelengths, and not on discrete, assignable 

spectral bands. Thus, on the basis of spectral shape, we infer that the surface unit at Krun Macula 

is likely to host a mixture of H2O, CH4, and tholins.  

 

4.5.  Discussion 

The PC-GMM method implemented in this study not only mapped the geographic distribution 

of surface units on Pluto but also distinguish the differences in composition (both mixing and 

physical states of volatiles) from the average I/F spectra of the corresponding surface units. The 

generalized compositional map shows the presence of different surface units at different geologic 

features. The mountains such as Pigafetta and Elcano Montes in the Cthulhu Macula region (Fig. 

4.9a) belong to a surface unit comparable to the Kiladze crater area and their spectra show the 

presence of an H2O absorption band mixed with CH4 ice. The top of these mountains hosts a high 

concentration of methane while the lower altitudes are mostly CH4 depleted (Earle et al., 2018; 

Bertrand et al., 2020). The undulating mountainous terrains on Pluto suggest that H2O ice forms 

the supporting bedrock for the surface volatiles and holds the base of the mountains (Stern et al., 

2015; Spencer et al., 2020). Thus, our result bolsters the hypothesis that they are CH4-capped H2O-
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supported mountains. The presence of an H2O-rich surface unit on one side of the Kiladze crater 

(Fig. 4.9b) may be indicative of the spatial span of the crater ejecta.  

 

Fig. 4.9: The subset of the generalized surface map at mountains in the Cthulhu Macula (a), 

Kiladze crater (b), and Elliot crater (c). For the reference location, please see Fig. 4.1a. 

 

 

The PC-GMM method also performed well in distinguishing the local scale difference in surface 

composition. The base of the Elliot crater (Fig. 4.9c) shows the presence of multiple surface units. 

The bottom floor indicates that surface unit #5 follows the central peak of the crater (except the 

north-eastern part of the crater floor). This unit corresponds to a surface composition rich in CH4 

ice which might be slightly diluted with N2 and CO. It is notable that this surface unit (#5) shows 

no H2O ice. The local scale compositional study at Elliot crater also confirmed the presence of 

non-H2O materials at these locations (Dalle Ore et al. 2019). A few pixels on the floor of the crater 

show # 3 – presence of crystalline H2O ice mixed with CH4. The presence of the H2O ice at these 

isolated spots on the floor of the crater is also consistent with Dalle Ore et al. (2019). 
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The areas with H2O ice (i.e., #3, #4, and #10) show an interesting distribution across Pluto 

since these surface units are limited below ~45ºN. We did not find any water ice-containing surface 

unit from ~45ºN to the north pole. The absence of exposed H2O in the higher northern latitude can 

be explained by the thick coverage of the volatile deposits at these latitudes (Cruikshank et al., 

2019). This hypothesis is consistent with the results of our study such that of the distribution of 

the CH4-rich unit (#2) on the north pole surrounded by the N2:CH4 units (#6 and #8) on the Venera 

Terra, Voyager Terra, and Pioneer Terra. We found H2O-rich areas in some small craters 

(depressions) at Cthulu Macula or associated with specific geologic features. For instance, the 

presence of the H2O ice-rich surface unit (#3) was seen along the Virgil Fossae, Beatrice Fossae, 

Edgeworth crater, and Oort crater areas. This suggests that the exposed H2O distribution on Pluto’s 

surface is likely controlled by geologic features. 

 

On a global scale (Pluto encounter hemisphere during New Horizons fly-by), the output of the 

study helps in achieving a better understanding of the volatile transport modeling on the dwarf 

planet. The map of the global compositional distribution of surface ices is largely consistent with 

the compositional mapping by previous studies by Schmitt et al. (2017) and Protopapa et al. (2017).  

On top of that, the current study provides a quantitative aspect of the surface units thanks to the 

ability to estimate the areas of the different segments in the Sputnik Planitia basin. The central part 

of SP – considered as the cold trap for N2 and CO ices – has an estimated area of ~284,000 sq. km 

which is more than one-third (1/3) of the total area of the basin. Based on our global-scale 

compositional distribution result we can infer volatile transport directions across the dwarf planet 

(Fig. 4.10) confirming and refining the results from the study of Protopapa et al. (2017) as 

mentioned in Cruikshank et al. (2021). 
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Fig. 4.10: Global-scale surface compositional distribution and inferred volatile transport directions 

(indicated by arrows) proposed in this study (a) and schematic view of the major ice distribution 

and direction of nitrogen sublimation transport (b) explained by Protopapa et al. (2017). Figure (b) 

was adopted from Cruikshank et al. (2021) and Protopapa et al. (2017). 

 

 

 

Non-volatile H2O ice should be exposed on the surface unless it’s covered by the seasonal 

deposits and substantial reservoirs of the CH4 and N2 ices (Schaller and Brown, 2007). Exposed 

H2O ice has not been detected across all the latitudes except in small patchy areas. The latitudinal 

patterns in the volatile N2, CH4, and CO distribution across Pluto's surface might suggest that 

insolation is the major controlling parameter for volatile distribution (Protopapa et al., 2017). 

However, the distribution of surface compositional units also corresponds to larger geological 

provinces (e.g., Venera Terra and Pioneer Terra) and local scale topography (e.g., Pigafetta 

Montes, Baret Montes, Elliot crater). Thus, we presume that besides being influenced by 

insolation, the distribution of volatile ices on Pluto’s surface is controlled by geological structure 

and topography – consistent with Protopapa et al. (2017) and Bertrand et al. 2016. 
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Among the N2, CH4, and CO ices, N2 is the most volatile component; it has the highest vapor 

pressure and sublimates first when heated by solar irradiation. Thus, the spatial abundance and 

distribution of nitrogen on Pluto’s surface highlight the direction of nitrogen sublimation transport 

or volatile transport. A volatile transport (nitrogen sublimation and deposition) mechanism is 

interpreted for the northern hemisphere since the compositional surface units follow latitudinal 

patterns. The vigorous spring sublimation after a long polar winter over the past 20 years may lead 

to the illuminated north pole being devoid of N2 ice by sublimation and redeposition at latitudes 

southward (Protopapa et al., 2017). However, between the years 1975 to 1995, the region covering 

surface unit #4 (i.e., northern lower latitudes) received more solar heating than the north 

(Protopapa et al., 2017). The intense solar heating at this latitude resulted in the sublimation of N2 

from these areas, which was then atmospherically transported and eventually deposited in the north 

(Protopapa et al., 2017). Consequently, sublimated N2 ice from the north pole and northern lower 

latitudes found its resort in the regions between these surface units. Notably, the strength of the N2 

absorption band at 2.15 µm increases from the north pole (#2) southward (#8). This indicates the 

decreasing relative abundance of CH4-to-N2-rich ices with decreasing latitudes from the north pole 

southward (Cruikshank et al., 2021). 

 

The Sputnik Planitia basin exhibits a distinct pattern of volatile transport by itself which, in 

fact interrupts the latitudinal patterns of volatile distribution and N2 sublimation transport 

described above. The central part of the Sputnik Planitia hosts a higher abundance of the N2 (and 

CO) ice compared to the northern and southern lobes of the basin. Thousands of elongated dark-

floored pits structures are seen in higher resolution LORRI images at the southern lobe of the SP. 
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Evidence of mass loss and sublimation erosion of the dark-floored pits structures in the southern 

lobe of SP has been observed (Stern et al., 2021). This mass loss by these pits has been 

hypothesized to be deposited elsewhere on Pluto's surface through a volatile transport mechanism 

(atmospheric transport). Since this missing mass cannot reside in the atmosphere it has to be 

transported and re-condensed elsewhere (Stern et al., 2021). Our results support that the 

sublimation mass losses of these pits are deposited on the central part of SP (indicated by the black 

arrow shown in Fig. 4.10). However, this postulation of volatile migration at SP is inferred from 

the simple interpretation based on geological evidence (Stern et al., 2021) and correlation between 

the adjacent compositional units and does not account for the effects of insolation and winds. 

 

The northern lobe of SP has a shallower 2.15-µm absorption band of N2 compared to the central 

part. This suggests that the northern lobe has a lower abundance of N2:CH4 while the central part 

of SP has a much smaller concentration of CH4 in N2 (Cruikshank et al., 2021). Protopapa et al. 

(2017) interpreted these characteristic differences to be the transport of N2 from the northwestern 

lobe southward. Loss of ices in northwestern SP (on both annual and seasonal timescale) and 

redeposition of the ices below 25º N have also been described by Bertrand et al. (2018). The 

sublimation of N2 at northwestern SP leaves behind CH4 as a lag deposit (Cruikshank et al., 2021). 

Thus, we conclude that the northern and southern lobes of SP may host active N2 sublimation, 

whose sublimated mass is then atmospherically transported and ultimately deposited in the central 

part of SP. In recapitulation, we illustrate the source and sink of the N2 ice sublimation transport 

(volatile transport mechanism) across the Sputnik Planitia basin.  
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We applied the PC-GMM technique to the LEISA data on Pluto’s encounter disk of the 2015 

New Horizons' fly-by. The results showed a latitudinal pattern in the volatile ices’ distribution and 

showcase the nitrogen transport sublimation patterns at Pluto’s global and local scale in the case 

of Sputnik Planitia. We emphasize that a similar method can be applied to other planetary bodies 

to characterize their surface compositions on a global scale. However, the results from our 

unsupervised clustering (GMM) are also consistent with the results of local scale applications of 

different other clustering techniques (i.e., K-means, Dalle Ore et al., 2018). Thus, we don’t rule 

out the fact that an application of other unsupervised learning such as K-means or spectral 

clustering may render a satisfactory result in mapping the surface composition of planetary bodies.  

 

4.6.  Conclusions 

Mapping spatial abundance and geographic distribution of ices and their relationship with the 

geological features are crucial for an in-depth understanding of volatile transport on Pluto 

(Bertrand and Forget, 2016). Thus, the surface compositional abundance and geographic 

distribution of volatile (N2, CH4, and CO) and non-volatiles (H2O, tholins, etc.) have been 

thoroughly reported in the existing studies from near-infrared spectral observations from the 

instruments onboard New Horizons. However, existing studies in mapping surface ices on Pluto 

were mostly accomplished using band depth measurements of known ices, spectral indices or 

indicators, or implementation of radiative transfer models. The execution of these methods 

requires prior knowledge of representative surface ices or needs the reflectance or optical constants 

data of the end members (label data). Thanks to the development of sophisticated machine learning 

algorithms, unsupervised learning methods have gained popularity due to their agnostic wide 

applicability and rendering of satisfactory results.  
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We use the Gaussian mixture model, an unsupervised machine learning technique, to map the 

geographic distribution of ices on Pluto’s surface. The input hyper-dimensional data were reduced 

to the lower dimension without compromising a substantial variation of the original data, followed 

by an implementation of GMM. The average I/F spectra from each surface unit have been extracted 

and analyzed – in terms of position and depth of the major absorption bands of CH4, N2, CO, and 

H2O – to connect the surface units with latitudes and geologic features. The geographic distribution 

of the surface units demonstrates a correlation with latitudinal patterns and geologic features. The 

method was able to recognize local-scale variations (interpreted as indicative of surface 

composition and the physical states of ice) of the geological features. The mapped distribution of 

surface units and their compositions are consistent with the existing literature and help in an 

improved understanding of the volatile transport mechanism on Pluto, both on global (encounter 

hemisphere of Pluto during New Horizons flyby in 2015) and local scales. 

 

We implement the unsupervised method without any label data or optical constants and showed 

a satisfactory result. Thus, an application of this unsupervised learning technique can specifically 

be beneficial for mapping the distribution of surface constituents of a planetary body when label 

data are poorly constrained or completely unknown. An improved understanding of the surface 

volatile transport mechanism at planetary scale can be attained through mapping of the geographic 

distribution of surface material. Thus, we emphasize that the unsupervised learning (PC-GMM) 

used in this study has wide applicability and can be expanded to other planetary bodies of the solar 

system for mapping surface material distribution and achieving a complete understating of volatile 

transport modeling in particular and physical processes in general on the icy bodies at the outer 

solar system. 
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4.8. Appendix 

 

Section 4A.1. Cumulative explained variance and scree plot of PC axes. 

 

 

 
Fig. 4A1: The cumulative explained variance (left panel) and scree plot (right panel) of the PC 

axes. At four pc-axes, the plot shows 92.93% total variance of the data. The pc#5 and onward the 

plot shows a very gentle increase in the cumulative explained variance. 
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Section 4A.2. EM Algorithm for Multivariate Gaussian Mixture Model. 

 

Algorithm: EM Algorithm for Multivariate Gaussian Mixture Model  

Initialize: 𝜋𝑗
(0)

, 𝜇
𝑗
(0)

 and 𝛴𝑗
(0)

 for 𝑗 = 1,2,… , 𝑘. 

for 𝒎 = 1,2, … do  

E-step: Let 𝜃
(𝑚)

= {𝜇
1
(𝑚)¸𝜇

2
(𝑚),… , 𝜇

𝑘
(𝑚), 𝛴1

(𝑚)
, 𝛴2

(𝑚)
,… ,𝛴𝑘

(𝑚)
, 𝜋1

(𝑚), 𝜋2
(𝑚),… ,𝜋𝑘

(𝑚)}  is the 

set of 𝜃 at 𝑚-th iteration. For 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2,… , 𝑘 compute 

𝛾
𝑖𝑗
(𝑚) = 𝑝(𝑧𝑖 = 𝑗|𝑋𝑖, 𝜃

(𝑚−1)
) = 

𝜋𝑗
(𝑚−1)

𝑁𝑑(𝑋𝑖|𝜇𝑗
(𝑚−1)

,𝛴𝑗
(𝑚−1)

)

∑ 𝜋𝑗
(𝑚−1)

𝑁𝑑(𝑋𝑖|𝜇𝑗
(𝑚−1)

,𝛴𝑗
(𝑚−1)

)𝑘
𝑗=1

  (6) 

𝛾
𝑖𝑗
(𝑚)

 is the posterior probability that 𝑧𝑖 = 𝑗 given 𝑋𝑖 and 𝜃
(𝑚−1)

 at 𝑚-th iteration. 

M-step: For 𝑗 = 1,2, . . . , 𝑘 compute 

𝜇
𝑗
(𝑚) =

1

𝑛𝑗
(𝑚)∑ 𝛾

𝑖𝑗
(𝑚)𝑋𝑖

𝑛
𝑖=1   (7) 

𝛴𝑗
(𝑚)

= 1

𝑛𝑗
(𝑚)∑ 𝛾

𝑖𝑗
(𝑚)(𝑋𝑖−𝜇

𝑗
(𝑚))

𝑇
(𝑋𝑖−𝜇

𝑗
(𝑚))𝑛

𝑖=1   (8) 

𝜋𝑗
(𝑚) =

𝑛𝑗
(𝑚)

𝑛
   (9) 

where 𝑛𝑗
(𝑚) = ∑ 𝛾

𝑖𝑗
(𝑚)𝑛

𝑖=1  

end for.   
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Section 4A.3. Scaled AIC and BIC values at the different # of clusters. 

 

 
Fig. 4A2: Scaled AIC and BIC values at the different number of clusters. Both AIC and BIC show 

a similar trend as a function of the number of clusters. The plot shows the first local minima BIC 

(and AIC) value to be 8 and therefore was considered the optimal # of clusters in this study. 
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Section 4A.4. Linear fits between the observed and predicted density estimates. 

 

 
Fig. 4A3: Observed and predicted density plot for different numbers of clusters using the PC-

GMM algorithm. The observed data were the first 4 pc-axes used as the input data for GMM while 

the predicted data were simulated from the resulting GMM model parameter. The density for both 

observed and predicted data was calculated from multivariate kernel density estimates. The 

coefficient of the determination (R2) for linear fit between the observed and predicted density for 

8 GC solution is 0.96 – suggesting a good fit of the model.  
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Section 4A.5. Pluto Nomenclature. 

 

 
Fig. 4A4: Pluto Nomenclature - the map showing the names of major provinces, geologic units, 

and features on Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory (JHU-

APL)/ Southwest Research Institute (SwRI).  
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Section 4A.6. The boxplot of the probability of each corresponding 8 gaussian components. 

 

 

Fig. 4A5: The boxplot of the probabilities extracted from the pixels of corresponding classes 

(gaussian components). The median is shown by the line that divides the box into two parts while 

the left and right lines of the box represent the lower quartile (25%) and upper quartile (75%), 

respectively. The plot shows that most of the surface units are dominated by pixels with higher 

probability values (close to 1) – indicating the dominance of mostly pure pixels at each unit.  
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Section 4A.7. The mean ± 1σ standard deviation I/F spectra of subunits for #6 and #3 

 

 

 

Fig. 4A6: The mean (red line) ± 1σ standard deviation (gray shade) I/F spectra of each subunit for 

#6 (upper row) and #3 (lower row). The standard deviation of the I/F spectra shows varying 

degrees of closeness to the mean spectra at different wavelengths. 
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Section 4A.8. The histogram of the probabilities of corresponding post-classes of C3 and C6. 

 

Fig. 4A7: The histogram of the probabilities extracted from the pixels corresponding to each post 

class of C3 and C6 unit. The plot shows that the surface units are dominated by pixels with higher 

probability values (close to 1) – indicating the dominance of mostly pure pixels at each unit. 
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Abstract 

 
Ices of nitrogen (N2), methane (CH4), and carbon monoxide (CO), both in pure form and different 

combinations of mixtures, have been spotted on trans-Neptunian objects (TNOs) and Kuiper Belt 

objects (KBOs). The characteristics of these ices and their spatial distributions on the planetary 

bodies are directly associated with geological activities, volatile transport, and their seasonal 

surface-atmospheric activities. Thus, an accurate estimation of the spectral and thermal properties 

of the ices is incredibly important for an in-depth understanding of surface-atmospheric 

mechanisms on TNOs and KBOs. Nevertheless, the estimation of spectral and thermal properties 

of ice needs an experimental facility to investigate the intrinsic characteristics of volatiles at 

cryogenic temperatures. While laboratory experimental data on spectral properties are, to some 

extent, available and known, the data on thermal properties are not widely available, or poorly 

constrained. In this paper, we propose a method to estimate thermal conductivity, volumetric heat 

capacity, thermal diffusivity, and thermal inertia of N2, CH4, and CO ices, and mixtures thereof in 
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a simulated laboratory setting at temperatures of 20 to 60 K – relevant to TNOs and KBOs. To 

implement the method, we built a new experimental facility – named the Outer Solar System 

Astrophysics Lab – housed at the University of Arkansas. The laboratory has the capability to 

experiment with the thermal and spectral (reflectance spectroscopy) properties of ices found in the 

outer solar system. We provide detailed technical specifications of the laboratory in this paper with 

the objective that it can be used as a guideline for building similar cryogenic facilities in the future. 

We expect that the laboratory will provide a wealth of thermal (as well as spectral) data on ices 

that will pave the way to an improved understanding of the surface-subsurface heat flow, volatile 

transport mechanisms, and surface-atmospheric interactions at the outer solar system bodies. 

Unified Astronomy Thesaurus concepts: Surface ices (2117); Laboratory Astrophysics (2004); 

Experimental techniques (2078); Thermal Properties (Ice) (2278); Classical Kuiper Belt objects 

(250); Trans-Neptunian objects (1705) 

 

 

 

5.1.  Introduction 

Ices of nitrogen (N2), methane (CH4), and carbon monoxide (CO), both in pure form and different 

combinations of mixtures, have been discovered to be present abundantly on trans-Neptunian 

objects (TNOs) and Kuiper Belt objects (KBOs). For instance, N2 and CH4 ices have been spotted 

on Triton, the largest moon of Neptune and a captured KBO (Agnor and Hamilton, 2006), from 

ground-based observations (Cruikshank et al., 1984, 1993). Spectral signatures of N2, CO, and 

CH4 ices have been detected on Pluto from both ground-based observations (Cruikshank et al., 

1976; Owen et al., 1993) and instruments onboard the New Horizons spacecraft (Stern et al., 2015; 

Grundy et al., 2016). The observations of Eris, a dwarf planet in the Kuiper Belt, suggest that it 

hosts ices of N2 and CH4 (Dumas et al., 2007). Visible (VIS) and near-infrared (NIR) spectra of 
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Sedna exhibit the presence of ices that resemble Triton – believed to host N2 and CH4 ices (Barucci 

et al., 2005). Heterogeneous ice mixtures of N2 and CH4, along with ethane (C2H6), have been 

reported on the surface of Makemake (Ortiz et al., 2012; Lim et al., 2010).  

Owing to the temperature and pressure conditions, N2, CH4, and CO ices act as volatile 

components on the surfaces of TNOs and KBOs. Even though water (H2O) ice is most prevalent 

in the outer solar system and interstellar medium (Baragiola, 2003), it acts as non-volatile ice in 

the surface conditions of many outer solar system bodies. A widespread presence of volatiles on 

these planetary bodies implies that vapor pressure supports a permanent or seasonal atmosphere 

around the larger bodies beyond or at the orbit of Neptune (Johnson et al., 2015). For instance, 

Pluto has a tenuous atmosphere composed mainly of N2 and trace amounts of CH4 and CO (Stern 

et al., 2015; Gladstone et al., 2016). Triton also possesses a thin tenuous molecular N2-rich 

atmosphere with a surface pressure of 1.5 – 1.9 Pa (15 – 19 μbar) as evident from the Voyager 2 

encounter data (Ingersoll, 1990), with a trace amount of CH4 (Lellouch et al., 2010). 

Over the past decades, the identifications and characterizations of ices on KBOs and TNOs have 

been accomplished by the observations at VIS and NIR wavelengths from the ground and space-

based facilities. Previous studies confirm that ices on these planetary bodies are distributed in 

different spatial abundances and geographic locations on their surfaces. For example, the 

distribution of ices on Pluto’s surface shows a latitudinal pattern with distinct surface compositions 

of volatiles as characterized by observations from instruments onboard NASA’s New Horizons 

spacecraft (Schmitt et al., 2017; Protopapa et al., 2017; Emran et at., 2022). The distributions of 

ices on Pluto are associated with surface geological processes, global volatile transport, and 

seasonal interactions with the atmosphere driven by its climate dynamics (Bertrand and Forget, 

2016). Importantly, surface-atmospheric interactions and volatile transport on a planetary body are 
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regulated by the thermal properties of surface components. For instance, the characteristic thermal 

inertia of surface constituents on an icy body of the solar system governs global volatile transport 

and its seasonal interactions with the atmosphere, such as Triton (Spencer and Moore, 1992).  

Thermal inertia (TI) is a measure of how efficiently surface materials can store and release 

thermal energy or respond to a thermal perturbation. The diurnal and seasonal temperatures of 

planetary surfaces are directly controlled by the thermal inertia of surface materials (Wang et al., 

2010). Thus, surface volatile transport, both short and long-term, on icy planetary bodies in the 

outer solar system, such as TNOs and KBOs, are influenced by the characteristic thermal inertia 

of surface regolith. Accordingly, an in-depth understanding of volatile transport on icy bodies 

necessitates an accurate estimation of the thermal inertia of surface constituents. Furthermore, 

seasonal variations in the surface temperature of a planetary body are influenced by the subsurface 

heat conduction and release during the summer and winter seasons, respectively (Spencer and 

Moore, 1992).  

Heat conduction through a material (or conductivity) is directly associated with its thermal 

inertia and, therefore, determining thermal inertia would provide a clue for the seasonal 

temperature variation of planetary surfaces. Likewise, characteristic thermal inertia correlates with 

the ability of seasonal surface-subsurface heat transfer and heat storage of a planetary body. This 

seasonal heat storage is crucial for icy bodies with very low surface temperatures because they 

lose less thermal energy by radiation transfer during the winter and store more heat energy that 

was retained from the previous summer in their subsurface (Spencer and Moore, 1992). Moreover, 

the stored heat energy and surface thermal inertia influence the temperature and frost (volatiles) 

stability on icy bodies such as Triton (Spencer and Moore, 1992).  
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Surface thermal inertia, together with topography and albedo, regulates the surface-atmospheric 

energy exchange and, thus, influences the climate of a planetary body (MacKenzie et al., 2019). 

Thus, knowing large-scale variations in surface thermal inertia is important for better simulation 

of the global circulation models (GCM) at a planetary body. Thermal inertia of the planetary body 

has also been successfully used for estimating the thickness of dark materials on icy satellites, for 

instance, Iapetus (Rivera-Valentin et al., 2011). With thermal inertia being a function of heat 

conduction, a material with lower thermal inertia conducts heat energy (both heating up and 

cooling down) at a much faster rate compared to a material with higher thermal inertia (MacKenzie 

et al., 2019). The surface thermal inertia of a planetary body is influenced by the characteristics of 

the surface constituents and is calculated as:  

TI = √ (k ρ c)   (1) 

where TI represents the thermal inertia (J m-2 K-1s-1/2), k is the thermal conductivity (W m-1 K -1), 

ρ is the density (kg m-3), and c is the specific heat (J kg-1 K-1).  

On planetary bodies, thermal inertia is influenced by the physical nature of surface regolith such 

as grain size, material abundance, porosity, compaction, and so on (see Kieffer et al., 1977; 

Jakosky, 1986; Putzig et al., 2005; Fergason et al., 2006). Direct global measurements of these 

surface physical characteristics are unrealistic and impossible for celestial objects (Wang et al., 

2010). Hence, thermal inertia for planetary bodies has been estimated from orbital observations or 

estimated using laboratory simulants. For instance, the thermal inertia of the martian surface was 

computed by fitting a model of multiple parameters to the brightness temperature measurement 

from thermal infrared (TIR) observations onboard orbital spacecraft (Jakosky et al., 2000; 

Fergason et al., 2006).  
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Using the thermal infrared measurements from Cassini’s Composite Infrared Spectrometer 

(CIRS) instrument, the thermal inertia of the Saturnian moons was estimated (Howett et al., 2010; 

Rivera-Valentin et al., 2011). Recently, MacKenzie et al. (2019) prepared a global thermal inertia 

map of Titan’s surface based on terrain types using the Cassini RADAR and the Visible and 

Infrared Mapping Spectrometer (VIMS) data. Likewise, thermal inertia was estimated for other 

planetary bodies in the solar system such as the lunar regolith (Feng et al., 2020), near-Earth 

asteroids (Delbo’ et al., 2007), and the main-belt asteroid Ceres (Rognini et al., 2020). 

Though the constituent volatiles and their spatial abundances on TNO and KBO surfaces are 

known, to some extent, their thermal properties have not been hitherto measured for all possible 

compounds and mixtures thereof. This is unfortunate, since they are important to understanding 

seasonal volatile transport modeling and atmosphere-climate dynamics. Albeit estimated for 

terrestrial planets, moons, and asteroids, no attempt has been put forward in determining the 

thermal properties of TNOs and KBOs surface ice, at large, yet. Having a paucity of orbital 

spacecraft’s thermal observations permits a potential avenue for utilizing laboratory experiments 

for estimating the thermal properties of N2, CH4, and CO ices (pure and mixture) relevant to KBOs 

and TNOs. Thus, the laboratory estimation of thermal properties (conductivity, diffusivity, 

volumetric heat capacity, and thermal inertia) certainly uncovers a new avenue for an improved 

understanding of a vast number of planetary objects in the outer solar system.  

The volatiles on TNO and KBO surfaces show a wide variety of thermodynamic solid phase 

transitions. For instance, CH4 ice shows an I-II solid phase transition at around ~21 K 

(Prokhvatilov and Yantsevich, 1983) whereas the α (cubic) - β (hexagonal) phase transition of N2 

appears at ~ 35.6 K (Scott, 1976), and the α-β phase transition of CO occurs at 61 K (e.g., Vetter 

et al., 2007). These solid phases are important because the phase transitions of crystalline ices are 
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associated with the slow seasonal surface volatile movements and evolution of the thin atmosphere 

present on TNOs and KBOs, specifically the thin N2-rich atmospheres of the Pluto and Triton 

(Cruikshank and Silvaggio, 1980; Hubbard et al., 1988; Lellouch et al., 2009). Existing data shows 

that the thermal properties of cryogenic N2 ice are dependent on its thermodynamic solid phases – 

see Sagmiller and Hartwig (2020) for a comprehensive review. The volumetric heat capacity and, 

thus, the thermal inertia of N2 ice changes at the α-β phase boundary at 35.6 K (Fig. 5.1). Thus, it 

is reasonable to hypothesize that the thermal properties of other surface volatiles on TNOs and 

KBOs are also dependent on the thermodynamic phases of their constituent ices. 

N2, CH4, and CO ices in KBOs and TNOS surface conditions are often observed to appear in 

different mixtures (binary and ternary) rather than in pure forms. For instance, at 40 K temperature 

(Pluto’s average surface), N2 and CH4 ices are partly soluble and form two different binary 

mixtures; N2-rich ice diluted with CH4 (N2:CH4) and CH4-rich ice diluted with N2 (CH4:N2;  

Prokhvatilov and Yantsevich, 1983; Trafton, 2015). Likewise, ice mixtures of CO and N2 are fully 

miscible and the binary undergoes an α-β transition at a range of temperatures, depending on the 

N2 molar ratio (Angwin and Wasserman, 1966). The ices can also form the ternary mixtures as N2 

+ CH4 + CO, though the phase diagram for the mixture of the ternary mixture is not available to 

date (currently under development). Unfortunately, the thermal properties of these different ices 

(pure and mixtures) on TNOs and KBOs are not available or poorly constrained. Thus, an 

estimation of the thermal properties of N2, CH4, and CO ices, and mixtures thereof at temperatures 

range of 20 - 60 K using laboratory simulation is warranted.  
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Fig. 5.1: The volumetric heat capacity and thermal inertia of solid N2 ice at temperatures of 10 to 

60 K (compiled data from Sagmiller and Hartwig, 2020) – relevant to TNO and KBO surfaces. 

The subplots exhibit an abrupt change in the volumetric heat capacity and thermal inertia trends at 

the α (cubic) - β (hexagonal) phase transition of N2 ice at ~ 35.6 K. 

 

 

In this paper, we propose a method to estimate thermal conductivity, volumetric heat capacity, 

thermal diffusivity, and thermal inertia of N2, CH4, and CO ices, and mixtures thereof in a 

simulated laboratory setting. We describe a detailed methodology, including the theory of the 

proposed method, which can be used to estimate the thermal properties of ices at cryogenic 

temperatures. To implement the method, we built a new experimental facility at the University of 

Arkansas – named the Outer Solar System Astrophysics Lab (OSSAL). The laboratory has facilities 

to experiment with spectral and thermal properties of volatile ices found on the surfaces of outer 

solar system bodies. We provide detailed technical specifications of the new experimental facility 

so that it can help as a guideline for building a similar cryogenic chamber in the future for scientific 

experiments on the characteristics of ices.  

We also include the proposed experimental protocol to estimate the thermal properties of the ices 

in that laboratory setting. The parameters to be estimated are thermal conductivity, volumetric heat 

capacity, and thermal diffusivity of N2, CH4, and CO ices, and mixtures thereof at cryogenic 

conditions (20 - 60 K). As the key thermal properties are intended to be measured, the experimental 
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facility will help in estimating the thermal inertia of ice mixtures at different thermodynamic 

phases present in TNOs and KBOs surface environments. Accordingly, the results from the 

laboratory experiments will help in an improved understanding of the volatile transport 

mechanisms and the diurnal and seasonal variations of the surface temperature and other associated 

processes on TNOs and KBOs. As this has not been fully tested yet in the lab to date of publication 

of this paper, we also include potential limitations of the proposed methods and explain potential 

mitigations for these shortcomings.  

 

5.2. Method 

We use the dual-probe heat-pulse (DPHP) method (Bristow et al., 1994) to estimate the thermal 

properties of the ices. The method is based on radial heat conduction theory and has successfully 

been used for estimating the thermal properties of snow (Liu and Si, 2008). The same generic 

method has also been applied in measuring the thermal properties of icy Mars regolith simulants 

(Siegler et al., 2012). A DPHP device hosts two parallel needles as probes, though more needles 

are also used to estimate the thermal properties of materials using a similar theory. One needle 

probe contains a heater (heat probe) to produce a heat pulse for a short duration while another 

contains a temperature sensor (sensor probe). Both probes are separated by a certain distance. The 

DPHP method measures the temperature changes over time at the sensor probe liberated from the 

heater probe (Campbell et al., 1991). A heat pulse is propagated into the sample of interest by 

introducing an electric current through the heater probe. The temporal changes in temperature rise 

are recorded by a thermal sensor (thermistor/ silicon-diode/ thermocouple) at the sensor probe. 

Thermal properties including thermal conductivity, volumetric heat capacity, and thermal 

diffusivity are estimated from the data of amplitude and time of maximum temperature rise at the 

sensor probe. 
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5.2.1. Theory 

We consider the radial heat conduction from an infinite line source through a homogenous 

isotropic sample. Moreover, the sample is also considered to have an initial temperature that is 

uniform. The heat conduction equation for radial coordinates can be written as (Bristow et al., 

1994): 

𝜕𝑇

𝜕𝑡
= 𝜆 { 

𝜕2𝑇

𝜕𝑟2 + 𝑟−1 𝜕𝑇

𝜕𝑡
}  (2) 

where T is the temperature (K), t is time (s), λ is the thermal diffusivity (m2 s-1), and r is the radial 

distance (m). If a heat pulse of a short-duration t0 (s) at a constant rate per unit length q (J m-1 s-1) 

is applied to an infinite solid, then an analytic solution of the rise of temperature ΔT at a distance 

r can be derived as (De Vries, 1952; Kluitenberg et al., 1995): 

𝛥𝑇 (𝑡, 𝑟) = −
𝑞

4𝜋𝑘
 𝐸𝑖 [−

𝑟2

4𝜆𝑡 
]; 0 < t ≤ t0   (3) 

𝛥𝑇 (𝑡, 𝑟) =
𝑞

4𝜋𝑘
 {𝐸𝑖 [

− 𝑟2

4𝜆(𝑡−𝑡0)
] - 𝐸𝑖 [

− 𝑟2

4𝜆𝑡 
]}; t > t0  (4) 

here, -Ei(-x) is the exponential integral of the argument and k is the thermal conductivity (W m-

1 K-1). From the time derivatives of equations (3) and (4) we estimate the thermal diffusivity, λ and 

volumetric heat capacity, ρc (J m-3 K-1) as (Bristow et al., 1994): 

𝜆 =
𝑟2

4
{

1

(𝑡𝑚−𝑡0)
−

1

𝑡𝑚
 

ln[
𝑡𝑚

𝑡𝑚−𝑡0
]

}   (5) 

𝜌𝑐 =
𝑞

4𝜋𝜆 𝛥𝑇𝑚
{𝐸𝑖 (

− 𝑟2

4𝜆(𝑡𝑚−𝑡0)
) −  𝐸𝑖 (

− 𝑟2

4𝜆𝑡𝑚
)}  (6) 
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where ΔTm is the maximum temperature rise and tm is the time at which ΔTm occurs. Once λ and ρc 

are known, the thermal conductivity, k can be computed from the following relation: 

 𝜆 =
𝑘

ρ 𝑐
  (7) 

Alternatively, k can also be derived as (Noborio et al., 1996):  

𝑘 =
𝑞

4𝜋𝜆 𝛥𝑇𝑚
[𝐸𝑖 {−

ln[
𝑡𝑚

𝑡𝑚−𝑡0
]

𝑡0
𝑡𝑚

} −  𝐸𝑖 {−
ln[

𝑡𝑚
𝑡𝑚−𝑡0

]

𝑡0
𝑡𝑚

}  (8) 

The parameters (r, q, t0, tm, and ΔTm) present in equations (5) to (8) are known or directly 

measured. From those, we can estimate the thermal conductivity, volumetric heat capacity, thermal 

diffusivity, and thermal inertia of samples. 

 

5.2.2. Samples 

The laboratory experiment starts by making sample mixtures (pure, binary, and ternary) of N2, 

CH4, and CO ices. Binary samples (N2-CH4, N2-CO, and CH4-CO) are prepared in a range of 10 

mol% - 90 mol% in 10 mol% increments. Consequently, each binary adds up to 9 different ratios 

every 10 K in the range of 20-60 K, totaling 45 thermal inertia measurements. Likewise, ternary 

samples (N2-CH4-CO) are prepared at different mol% combinations at a minimum of 5 mol% to a 

maximum of 90 mol% of each constituent which adds to 12 mixture samples to be tested at 

different temperatures. 

Each ice sample is prepared initially at an experimental minimum of 20 K. Once the sample is 

at an initial uniform temperature, a short-duration radiating heat pulse is liberated from the heater 

probe of a DPHP device. The temperature histories (rise) of the samples are recorded at the sensor 
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probe. This procedure is repeated for each sample by ramping up the temperature at 10 K 

increments up to an experimental maximum of 60 K. For each temperature point, the parameter 

values of r, q, t0, tm, and ΔTm are recorded from the DPHP device. Lastly, the thermal properties of 

the samples are calculated by plugging in the parameters’ values in equations (5) to (8), and finally 

(1) to derive thermal inertia. 

 

5.3.  Outer Solar System Astrophysics Lab 

We built a brand-new planetary simulation chamber – named the Outer Solar System 

Astrophysics Lab (OSSAL) – which is the latest addition to the W.M. Keck Laboratory for 

Planetary Simulations at the University of Arkansas, Fayetteville. The chamber has been built to 

investigate spectral and thermal properties of ices under tantamount TNOs and KBOs surface 

conditions. The basic configuration of the chamber was designed following the similar facility 

available at the Astrophysical Materials Laboratory located in the Department of Astronomy and 

Planetary Science at Northern Arizona University (Tegler et al., 2010). We employ expertise and 

previous experiences in building our existing Pluto Simulation Chamber, which is currently being 

used for spectral characterization of outer solar system ices. However, the existing Pluto 

Simulation Chamber is, unfortunately, not designed to prepare large volumes (cm-sized cubes) of 

ice requires for the investigation of the thermal properties. 

The OSSAL is a custom-designed chamber made of 304L stainless steel in a cylindrical shape. 

The main chamber is analogous to a vacuum-evacuated body and was built keeping in mind that 

it maintains proper thermal insulation and does not allow contaminants to condense inside it. The 

chamber is 20" (50.8 cm) long by 12" (30.48 cm) in diameter in the outer dimension (see Fig. 5.2 

for the schematic of the chamber). The top and bottom of the cylindrical chamber hold 14" ConFlat 
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(CF) flanges (1-fixed feed-thru, 1-rotating feed-thru) such that the lid of the chamber holds the 

fixed feed-thru. The bottom flange adapter is the rotating feed-thru with a machined profile to mate 

with a CH-110LT 40K Cryocooler Series helium refrigerator system. The chamber has eight 2.75" 

CF ports, of which 4 are fixed feed-thru and the rest 4 are rotating feed-thru (see Fig. 5.3 for the 

pictures of the chamber).  

The port enables access to facilities for inserting sample gas, thermocouples, fiber optics feed 

port for Raman and NIR spectroscopic investigations, optical camera, LED light, and electric 

supply inside the chamber from outside. Furthermore, there is a 6" CF port (rotating fee-thru) for 

connecting vacuum pumps with the chamber. The main body of the chamber was built by Kurt J. 

Lesker at Jefferson, PA. Vacuum pumps are used to achieve a simulant pressure (~14 μbar) and 

the cryocooler is used to obtain cryogenic temperatures (down to 15 K) inside the chamber. These 

temperature and pressure conditions are relevant to the outer solar system bodies. Note that the 

chamber was designed in such a way that it can accommodate both roughing and turbo pumps to 

achieve high to ultra-vacuum conditions inside the chamber.  

We use an enclosed ice sample cell with a cubic volume inside (edge of ~15 mm) made of 

aluminum alloy. The cell device was machined by the electronic shop in the Department of Physics 

at the University of Arkansas. The DPHP device was built and tested by the East 30 Sensor in 

Pullman, WA. The cell is mounted/ placed onto the upward-pointing cold tip of the helium 

cryocooler within the chamber cylinder (see Fig. 5.4 for the schematic of the cell). For visual 

investigation of samples, there is a glass window on one side of the cell sealed in place with indium 

gaskets. Furthermore, for reflectance spectroscopy such as Raman and Fourier-transform infrared 

spectroscopy (FTIR) of samples, there is a sapphire/quartz window on another side of the cell 

sealed in place also with indium gaskets.  
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To monitor the temperature of the cell, we use a pair of silicon diode thermometers attached to 

the body of the cell. One silicon diode is placed in the upper part (T2) and another in the lower 

part (T1) of the cell. We wrap a pair of heater wires (nickel-chromium) around the cell to tweak 

the temperature gradient in different parts of the cell. To maintain good thermal contact, the heater 

wires are cemented with an epoxy glue that has higher thermal conductivity. Like the silicon 

diodes, one heater wire is warped around the upper part (H2) and another in the lower part (H1) of 

the cell. To monitor and control the temperature of the cell, we use a high-performance temperature 

controller. This control of cell temperature is accomplished via proportional, integral, and 

derivative (PID) closed-loop control of both heater wires. The temperature controller is regulated 

by a program written in the LabView programming environment developed by the Department of 

Physics at the University of Arkansas. 

The DPHP probes are inserted into the cell from above in such a way that the heater probe is 

placed in the center of the cell volume (see Fig. 5.4). In this instance, the DPHP device consists of 

two needle probes each 12-mm length mounted in a sensor body. The probes are placed parallel 

with a 6 mm spacing between them. The sensor probe contains a temperature sensor (silicon diode 

thermometer) placed in the needle’s center, and the other probe contains a heater wire with a 

known resistance. The probes are fabricated from thin stainless-steel tubing filled with thermally 

conductive epoxy glue to reduce radial heat gradient across the probe and provide liquid resistance 

and electric insulation. We use a LabView controller program to make our lab protocol facility 

automatic, such that it generates a heat pulse of short duration at the heater probe, and then records 

the temperature rise at the sensor probe as the time elapses. 
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Fig. 5.2: Schematic diagram of the Outer Solar System Astrophysics Lab at the University of 

Arkansas. The chamber is 20" (50.8 cm) long by 12" (30.48 cm) in diameter in the outer dimension. 

The top and bottom of the cylindrical chamber hold 14" ConFlat (CF) flanges (1-fixed feed-thru, 

1-rotating feed-thru) such that the lid of the chamber is the fixed feed-thru. The bottom flange 

adapter is the rotating feed-thru with a machined profile to mate with a CH-110LT 40K Cryocooler 

Series helium refrigerator system. The chamber has eight 2.75" CF ports, of which 4 are fixed 

feed-thru and the rest 4 are rotating feed-thru. The chamber drawing was adopted and subsequently 

modified from the official manufacture order at Kurt J. Lesker in Jefferson, PA. For a higher 

resolution version of the diagram, the readers are referred to the online version of the figure. 
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Fig. 5.3: Pictures of the Outer Solar System Astrophysics Lab at the Keck Laboratory for Planetary 

Simulations at the University of Arkansas. A CH-110LT 40K Cryocooler Series helium 

refrigerator system is attached to the chamber with the bottom flange adapter. The chamber has 

eight CF ports, of which 4 are fixed feed-thru and the rest 4 are rotating feed-thru. A pressure 

gauge is connected to the chamber with a feed-thru (see Super Bee pressure gauge attached on the 

left side of the chamber). For measurement of temperature inside the chamber, a thermocouple 

feed-thru is also connected to the chamber. For a higher resolution version of the diagram, the 

readers are referred to the online version of the figure. 
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Fig. 5.4: The schematic diagram of the cell 

(mounted upon the cold tip of the cryocooler) in 

cross-section as seen from the side. Gas enters the 

cell via a fill tube. Glass windows for visual 

inspections of ice and the sapphire window for 

Raman and FTIR (reflectance spectroscopic) 

investigations. Thermometer T1 and T2 and 

heating wires H1 and H2 are used to monitor and 

control temperature, respectively. The DPHP 

sensor probe enters the cell from above.  

 

 

 

 

 

 

5.4.  Experimental procedure 

The chamber has access points for instrumentation probe purposes. Amid a similar laboratory 

configuration, we adopt the basic experimental procedure followed by Tegler et al. (2010) and 

Protopapa et al. (2015), with some modifications based on our intended objectives and chamber 

uniqueness.  Binary and ternary mixtures of N2-CH4-CO ice are prepared in a pre-mixing chamber 

using partial pressures and ideal gas law to control molar ratios. A purging process is carried out 

several times before the experiment starts. Upon purge, we fill the pre-mixing chamber with a gas 

mixture of a particular molar ratio, depending on the experiment, at around 1 bar and room 

temperature. Next, the cell is pumped down to ~ 5x10-8 torr and starts cooling down. Initially, we 

cool down the cell at a temperature that is slightly higher than the melting point of the sample ice. 

For instance, a temperature of ~ 65 K is kept at the bottom of the cell. However, this temperature 

is subject to change depending on the gas mixing ratio. An analogous procedure has been shown 

to be successful in making ice in a similar laboratory setting (Tegler et al., 2010). 
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The mixture of gases is then transferred through a flexible fill tube (made of stainless steel) into 

the simulation chamber and bled into the cell where it immediately condenses into liquid and starts 

filling in the cell volume. Once the cell volume is filled with the liquid sample, we immediately 

stop the transfer of gas. Upon filling the cell with a liquid sample, we slowly decrease the cell 

temperature (at a rate of ~0.1 K/minute) to below the sample’s melting point based on existing 

phase diagrams, such as the CH4-N2 binary system (Prokhvatilov and Yantsevich, 1983) or visual 

inspection of the sample. A thermal gradient (~2 K) is maintained across the cell during the 

freezing of the ice using heater wires (Fig. 5.4) so that the sample freezes from bottom to top.   

Once the entire sample inside the cell is condensed, the thermal gradient is removed, and the cell 

temperature is further dropped down to an experiment minimum of 20 K. Once the sample achieves 

a uniform temperature within the cell, a heat pulse is introduced by applying a known voltage from 

a direct-current (DC) source to the heater needle probe (q). Note that the heat pulse is produced 

for a fixed short period of time (t0). We plan to initially apply a heat pulse for ~8s for most of the 

experiments (subject to change based on experimental results). The LabView controller controls 

the heat pulse, monitors the current through the heater, and measures the resulting temperature rise 

as the time elapses using the sensor probe at a particular distance (r). Next, the values of tm and 

ΔTm are obtained from temperature histories recorded by the DPHP device.  

While the values of tm and ΔTm along with r, q, and t0 are determined, we calculate the thermal 

conductivity, volumetric heat capacity, thermal diffusivity, and eventually thermal inertia of ice 

mixtures using the equations (5) to (8) and (1). To maximize accuracy, we repeat this measurement 

5 times at each temperature point for each sample ratio. Once done with the experiment at 20 K, 

we increase the temperature of the sample by 10 K increments up to the experimental maximum 

of 60 K to constrain the temperature phase transition of mixtures, and particularly the α-β 
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transitions of nitrogen and methane at ~35 and 21 K, respectively. Thus, the above DPHP 

procedure is repeated at temperatures of 30, 40, 50, and 60 K. 

 

 

5.5.  Uncertainty and mitigation of risk 

The generic DPHP technique is a well-established method and has successfully been applied to 

terrestrial materials (Bristow et al., 1994), planetary icy regolith simulants (Siegler et al., 2012), 

and snow (Liu and Si, 2008). Thus, we are confident that the method works successfully in 

estimating the thermal properties of N2, CH4, and CO ices at cryogenic temperatures. Thermal 

conductivity measurement may slightly be influenced by the contact resistance between the probe 

and sample (Siegler et al., 2012). Consequently, a portion of the pulse-generated heat may flow to 

the body of the DPHP device. To limit this issue, the body of the device is glued with epoxy of 

low thermal conductivity in a Teflon spin, for instance (Siegler et al., 2012). 

The studied ices are highly volatile even at the surface temperatures of TNOs and KBOs and, 

thus, liberating a short-duration heat pulse may cause some sublimation of the sample. To mitigate 

this possible setback, we generate a small amount of heat pulse, determined by trial-and-error and 

experimental results, so that radial heat conduction happens through the sample without 

sublimation of ices. Moreover, all experiments run below the melting points of ice mixtures in an 

enclosed cell and the sample is heated in the center of the ice cube - leaving a negligible chance of 

sample sublimation due to introducing a short-duration heat pulse. 

As thermodynamics dictates, at lower temperatures in the outer solar system, such as the 

temperature on Pluto, the N2, CH4, and CO ices condense and form van der Waals bonded 

crystalline ices (e.g., Cruickshank et al., 2021). Accordingly, we make crystallized solid ices from 



 

167 
 

liquid and the quality of crystalline samples is primarily dependent on the cooling rates, more 

specifically during β –> α phase transition (Stachowiak et al., 1994). We cool down the sample at 

a rate slow enough (initially 0.1 K/min) so that the sample does not have any visually observable 

defects – the samples are transparent without cracks. We repeat each experiment multiple times to 

confirm the good quality of the samples and adapt the cooling rate to minimize defects (e.g., 

inhomogeneity) in the sample.  

Because of how the ices are grown and mixed from the liquid phase, the method doesn’t account 

for porosity, a parameter that can affect the thermal properties of ices (Ferrari and Lucas, 2016). 

However, the thermal properties of a porous sample can be computed if the thermal properties of 

the solid/particle sample – measured in this project – are known. For instance, the effective thermal 

conductivity of a porous solid can be derived from the Maxwell–Eucken relation (Woodside and 

Messmer, 1961) or equivalently the Hashin–Shtrikman upper bound (Smith et al., 2013). Note that 

the porous regolith of TNOs and KBOs is filled with N2-CH4-CO gas mixtures. The thermal 

conductivity of the N2-CH4-CO gas mixture is known kg = k0T
α; where T is the temperature; α = 

1.12; k0 = 5.63 erg cm−1s−1 K−2 (Zhang et al., 2017). Thus, the net effective thermal conductivity 

of the icy porous regolith can be computed once the thermal conductivities of the solid ices are 

known and modified to account for porosity. 

The experimental results, here measurement of thermal properties e.g., thermal conductivity and 

specific heat, may have errors due to instrumental glitches. We estimate and subsequently calibrate 

these errors by comparing the result of thermal conductivity (and thermal inertia) of pure N2, CH4, 

and CO ices at a range of temperatures from our experiments to existing literature listed in table II 

by Spencer et al. (1997) and other references found in Sagmiller and Hartwig (2020). Comparison 

with the existing data also provides an understanding of the sensitivity of the implemented 



 

168 
 

technique (DPHP) in deriving the thermal properties of ices at cryogenic temperatures in a 

laboratory setting.  

 

5.6.  Conclusions 

The surface-atmospheric interactions at TNOs and KBOs involve the exchange of matter and 

energy, which are associated with the constituent materials involved and their thermal states. 

Thermal inertia influences surface volatile transport on icy bodies such as Pluto, Triton, and Titan 

by controlling the subsurface heat conduction, diurnal and seasonal temperature variation, and 

subsurface heat storage (Spencer and Moore, 1992). On Triton, thermal inertia determines the 

thickness and extent of seasonal N2 frosts (Spencer and Moore, 1992), which is a major surface 

constituent of TNOs and KBOs. Surface thermal inertia, together with topography and albedo, 

controls energy exchange between the surface and atmosphere and, thus, influences the weather 

and climate of a planetary body (MacKenzie et al., 2019). In this way, the determination of 

variation in thermal inertia, at a large scale, is essential for better simulation of global circulation 

models (GCM) for planetary bodies in the outer solar system.  

Though estimated for other planetary bodies (terrestrial and icy surfaces) of the solar system, no 

attempt has been put forward in determining the thermal properties of the vast amount of TNOs 

and KBOs. Thus, determining thermal inertia will certainly uncover a new avenue for a better 

understanding of a large number of planetary objects on the outer edge of the solar system. In this 

paper, we propose a method to estimate the thermal properties of N2, CH4, and CO ices, and 

mixtures thereof in a simulated laboratory setting at temperatures of 20 – 60 K. To implement the 

method, we built a new experimental facility at the University of Arkansas, which has facilities to 

experiment with spectral and thermal properties of ices found on KBOs and TNOs. We provide 
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detailed technical specifications of the chamber in this paper so that it can be utilized as a guideline 

for building similar laboratory facilities in the future. The resulting thermal data, estimated from 

the implementation of the proposed method using the new laboratory facility, will provide a wealth 

of information about the thermal properties of ices at cryogenic temperatures. Since N2, CH4, and 

CO ices are abundant volatiles on the planetary bodies of the outer solar system, therefore, the 

output from this paper will help with the interpretation of the mysteries of KBOs and TNOs. 
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5.8. Appendix 

 

List of notations used in this paper 

c Specific heat 

Ei Exponential of integral 

k Thermal conductivity  

q Heat pulse 

r Radial distance 

T Temperature 

t Time 

TI Thermal inertia 

Tm Time at maximum temperature 

to Short duration 

ΔT Temperature rise 

λ Thermal diffusivity 

ρ Density 

ρc Volumetric heat capacity 
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Chapter 6 

Conclusions 

6.1. Summary and contributions 

The icy (solid) planetary bodies in the outer fringe of the solar system, beyond the orbit of 

Neptune, are collectively referred to as trans-Neptunian and Kuiper Belt objects. The planetary 

bodies in the Kuiper Belt show a wide range of colors in optical wavelengths (Doressoundiram, 

2004) and remarkably diverse albedos (Grundy et al., 2005). Understanding these bodies provides 

an important insight into the early history of the solar system because they are considered remnants 

of the formation of the solar system (Barucci et al., 2005; Wu et al., 2013).  The planetary bodies 

in the Kuiper Belt are, thus, thought to contain chemical, dynamic, and thermal fingerprints of the 

solar system (Schaller, 2010). Triton (the largest moon of Neptune) and the dwarf planet Pluto are 

two of the interesting planetary bodies in the Kuiper Belt. 

  

An abundance of volatile (N2, CH4, and CO) and non-volatile (H2O) ices have been detected 

or inferred to be present on the surfaces of TNOs and KBOs (e.g., Cruikshank et al., 1993; Owen 

et al., 1993; Schmitt et al., 2017). Many of the KBOs also host non-ice materials, such as tholins, 

on their surfaces. The planetary bodies in the Kuiper Belt—for instance, Pluto and Triton along 

with others—have been identified to host volatile-supported or vapor-supported atmospheres 

including an active interaction with surface constituents. This interaction between the surface and 

atmospheric constituents of the icy bodies in the Kuiper Belt takes place through the exchange of 

matter and energy and is complex in nature. 
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The surface-atmospheric exchange of matter and energy is closely associated with the 

constituent materials involved (N2, CH4, CO, and H2O ices) – their physical properties (such as 

solid phases and grain sizes) and thermal states. On top of that, the mechanical strengths and 

thermal properties of planetary surfaces are directly influenced by the grain size of planetary 

regolith (Gundlach and Blum, 2013). Thus, a complete interpretation of the surface-atmospheric 

interactions of TNOs and KBOs requires an understanding of the physical properties of the surface 

constituents. An accurate grain size estimation of ices on the outer solar system bodies is important 

for an improved understanding of the surface volatile transport and thermophysical modeling of 

the planetary bodies.  

 

The surface volatile transport on icy planetary bodies is influenced by the thermal properties 

of the surface volatile materials (Spencer and Moore, 1992). Understanding volatile transport 

mechanisms and ultimately the surface-atmospheric interactions, thus, requires an accurate 

estimation of the thermal properties of volatile ices found on KBO and TNO surfaces. Moreover, 

mapping the spatial distribution of ices and their relationship with surface geology and 

atmospheres is very important for an improved understanding of the volatile transport models on 

TNOs and KBOs such as dwarf planet Pluto (Bertrand and Forget, 2016). In this thesis, we provide 

a recipe for investigating the physical and thermal properties of ices and mapping the geographic 

distribution of ice mixtures – helping in an improved understanding of volatile transport on trans-

Neptunian and Kuiper Belt objects. 

 

In Chapter 2, we assess the uncertainty in grain size estimation of pure CH4 and N2:CH4 ices, 

the most abundant volatile materials on TNOs and KBOs. We compare the single scattering albedo 
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of these ices using the Mie scattering model and two other Hapke approximations – equivalent 

slab and internal scattering model (ISM) – at wavelengths between 1 and 5 µm. Our study reveals 

that the equivalent slab (Hapke slab) approximation model predicts much closer results to Mie 

scattering over the NIR wavelengths at a wide range of grain sizes. Owing to the Rayleigh effect 

on single-scattering properties, neither of the Hapke approximation models could predict an 

accurate grain size estimation for small particles (radii ≤5µm). Based on this study, we recommend 

that future studies should favor the Mie model for unknown spectra or the Hapke slab model as an 

approximation when employing RTMs for estimating the grain size of volatiles on the surfaces of 

TNOs and KBOs in the outer solar system. 

 

In Chapter 3, we evaluate the discrepancy in grain size estimation of H2O ice (both amorphous 

and crystalline phases) in the outer solar system. Radiative scatting models (Mie theory and Hapke 

approximations) were implemented to predict the H2O ice grain sizes at temperatures of 15, 40, 

60, and 80 K (amorphous) and 20, 40, 60, and 80 K (crystalline). We compare the single scattering 

albedos of H2O ice phases from the optical constants at near-infrared wavelengths. This study 

reveals that the Hapke approximation models predict grain size of the crystalline phase, overall, 

much better than the amorphous phase at temperatures of 15 – 80 K. However, the Hapke slab 

model predicts, in general, grain sizes much closer to that of the Mie model’s estimations while 

ISM predicted grain sizes exhibit a higher uncertainty.  

 

We recommend using the Mie model for unknown spectra of outer solar system bodies to 

estimate the grain size of H2O ice. When using an approximation model for RTMs, we recommend 

using the Hapke slab approximation model over the internal scattering model. Accordingly, 
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incorporating the results from Chapter 2, we explored which approximate model is better in 

predicting the grain sizes of a variety of surface ices (both volatile and non-volatile) found in the 

outer solar system, specifically on trans-Neptunian and Kuiper Belt objects. 

 

In Chapter 4, we use the principal component reduced Gaussian mixture model (PC-GMM), 

an unsupervised machine learning technique, to map the geographic distribution of ices on Pluto’s 

surface from the near-infrared observations of the LEISA/Ralph instrument onboard NASA’s New 

Horizons spacecraft. The geographic distribution of the surface units shows a correlation with 

geologic features. Average I/F spectra of each unit were analyzed – in terms of the position and 

strengths of absorption bands of abundant volatiles such as N2, CH4, and CO and nonvolatile H2O 

– to connect the unit to surface composition, geology, and geographic location. The distribution of 

surface units shows a latitudinal pattern with distinct surface compositions of volatiles – consistent 

with existing literature.  

 

The implemented PC-GMM method was able to recognize local-scale variations in surface 

compositions of geological features on the dwarf planet. The mapped distribution of surface units 

and their compositions help in an improved understanding of the volatile transport mechanism on 

Pluto, both on global (encounter hemisphere of Pluto during New Horizons flyby in 2015) and 

local scales. Thus, we emphasize that the unsupervised learning (PC-GMM) used in this thesis has 

wide applicability and can be expanded to other planetary bodies of the solar system for mapping 

surface material distribution and achieving a complete understating of volatile transport modeling 

in particular and physical processes in general on the icy bodies at the outer solar system. 
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In Chapter 5, we propose a method to estimate thermal conductivity, volumetric heat capacity, 

thermal diffusivity, and thermal inertia of N2, CH4, and CO ices, and mixtures thereof in a 

simulated laboratory setting at temperatures of 20 to 60 K – relevant to TNOs and KBOs. To 

implement the method, we built a new experimental facility – named the Outer Solar System 

Astrophysics Lab – housed at the University of Arkansas. We provide detailed technical 

specifications of the chamber in this thesis with the objective that it can be used as a guideline for 

building similar cryogenic facilities in the future. We expect that the laboratory will provide a 

wealth of thermal (as well as spectral) data on ices that will pave the way to an improved 

understanding of the surface-subsurface heat flow, volatile transport mechanisms, and surface-

atmospheric interactions on the planetary bodies in the outer solar system.  

 

An improved interpretation of surface-atmospheric interactions and volatile transport 

mechanisms on TNOs and KBOs requires an understanding of the physical and thermal properties 

of the constituent ices and their geographic distribution on the planetary surfaces. In this 

dissertation, we presented a holistic study of the properties of ices through the implementation of 

widely used radiative scattering models to assess the discrepancies in grain size estimation of ices, 

mapped the distribution of surface compositions on Pluto by utilizing unsupervised machine 

learning techniques, and integrated laboratory experiments. Thus, this research was able to bring 

together a set of methods, tools, and techniques used in planetary science for an improved 

understanding of the physical and thermal properties of surface ices found in the Kuiper Belt and 

deciphering the surface-atmospheric interactions and volatile transport mechanisms on the 

planetary bodies in the outer edge of the solar system.  
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