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Abstract 

Little to no work has been conducted assessing field variability using repeated 

electromagnetic induction (EMI) apparent electrical conductivity (ECa) surveys in agroforestry 

(AF) systems within regions similar to the Ozark Highlands. The objectives of this thesis were to 

identify i) spatiotemporal ECa variability; ii) ECa-derived soil management zones (SMZs); iii) 

correlations among EMI-ECa and in-situ, sentential-site soil properties; iv) whether fewer, EMI-

ECa surveys could be conducted to capture similar ECa variance as mid-monthly EMI-ECa 

surveys; v) correlations between ECa and forage yield, tree growth, and terrain attributes based 

on plant (forage and tree) species, and fertility treatments, and ECa-derived SMZs, and vi); and 

terrain attributes that have the largest contribution to ECa variability at a 20-year-old, 4.25-ha, 

AF system in the Ozark Highlands of northwest Arkansas. Between August 2020 and July 2021, 

12, mid-monthly ECa surveys were conducted and soil-sensor-based volumetric water content 

and ECa measurement were made and soil samples for gravimetric water content, EC, and pH 

were collected from various soil depths at fixed locations. Fourteen terrain attributes of the AF 

site were obtained. Tree diameter at breast height (DBH) and tree height (TH) measurements 

were made in December 2020 and March 2021, respectively, and total forage yield samples were 

collected seven times during Summer 2018 and 2019. The overall mean perpendicular geometry 

(PRP) and horizontal coplanar geometry (HCP) ECa ranged between 1.8 to 18.0 and 3.1 to 25.8 

mS m-1, respectively, and the overall mean HCP ECa was 67% greater than the mean PRP ECa. 

Largest measured ECa occurred within the local drainage way, which has mapped inclusions 

with aquic soil moisture regimes, or areas of potential groundwater movement, and smallest 

measured ECa values occurred within areas with decreased effective soil depth and increased 

coarse fragments. A positive (r2 = 0.4; P < 0.05) linear relationship occurred over time between 



 

PRP ECa standard deviation, with a negative linear relationship (r2 = 0.93; P < 0.05) between 

HCP ECa coefficient of variation across season (i.e., Summer to Spring). The K-means-

clustering method was used to delineate three precision SMZs that were reflective of areas with 

similar ECa and ECa variability. Relationships between ECa and tree properties were generally 

stronger within the whole-site, averaged across tree property and ECa configuration (| r | = 0.38), 

than the SMZs, averaged across tree property, ECa configuration, and SMZ (| r | = 0.27). The 

strength of the SMZs’ terrain-attribute-PRP-ECa relationships were 9 to 205% greater than that 

for the whole-site. Whole-site, multi-linear regressions showed that Slope Length and Steepness 

(LS)-Factor (10.5%), Mid-slope (9.4%), and Valley Depth (7.2%) were terrain attributes that had 

the greatest influence (i.e., largest percent of total sum of squares) on PRP ECa variability, 

whereas Valley Depth (15.3%), Wetness Index (11.9%), and Mid-slope (11.2%) had the greatest 

influence on HCP ECa variability. Results of this study show how ECa varies and relates to soil, 

plant (i.e., DBH and TH and forage yield), and terrain attributes in AF systems with varying 

topography that could be used to influence AF management.  
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Crop yield variability due to spatially heterogeneous soil properties has been well 

recognized. As a result, several methods have been developed to map spatial variability and 

delineate management zones at the field-scale, including soil sampling (i.e., grid sampling), 

yield-monitor maps, and geophysical methods for proximal soil sensing [i.e., electromagnetic-

induction (EMI)-based methods; Allered et al., 2016; Soil Science Division Staff, 2017]. 

However, soil sampling and yield-monitor maps are often expensive and labor-intensive, making 

grid sampling impractical for whole-farm-scale operations (Johnson et al., 2001, 2003). Because 

EMI-based methods are non-invasive, simple to implement, able to cover large areas quickly, 

and can accurately delineate spatial changes in belowground properties, EMI-based methods 

have become a common tool for landscape-scale and field-variability characterization in lieu of 

intensive soil sampling (Corwin & Lesch, 2005a,b). 

Electromagnetic-induction-based methods are able to delineate spatial changes in 

belowground properties through proximally sensing soil apparent electrical conductivity (ECa), 

which is the ability of a soil to conduct an electrical current (Corwin & Lesch, 2005a,b). The 

measurements collected from EMI-ECa surveys have been used for digital soil mapping, remote 

sensing, optimizing soil sampling strategies, delineating crop and soil management zones, yield 

prediction, and many more applications and disciplines (Heil & Schmidhalter, 2017; Johnson et 

al., 2001). Additionally, EMI-ECa surveys have been used to evaluate variations in a multitude of 

soil and plant properties within a variety of different land management systems and ecosystems 

across the world (Heil & Schmidhalter, 2017; Johnson et al., 2001). However, no work has been 

conducted that assesses the spatiotemporal variability of the EMI-ECa, and the EMI-ECa’s 

relationships with soil, plant, and terrain attributes, of an agroforestry system within the Ozark 

Highlands. 
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Soil Variability and Spatial Soil Mapping Methods 

Soils are innately heterogeneous, where they vary spatially and temporally (Corwin & 

Scudiero, 2019; Garcia-Tomillo et al., 2017). Spatial soil variability is a result of temporal, local, 

and regional differences in topography, climate, vegetation, and parent material (Garcia-Tomillo 

et al., 2017). However, soil property variations may also be attributed to management, including 

land use, crop type, tillage (frequency and intensity), and fertilizer sources (organic and 

inorganic) and rates (Garcia-Tomillo et al., 2017). Such variabilities often create challenges for 

agricultural producers, as variations in soil properties substantially affect water movement, solute 

transport, and plant–water–soil interactions, which, in turn, influence soil quality and crop yield 

(Corwin & Scudiero, 2019). Additionally, soil spatial variability also affects tillage and planting 

equipment performance, resulting in uneven stand establishment, which increases competition 

between plants, and further reduces yield. Accurate characterization of spatial variability of soils 

is not only essential for understanding field-scale processes across landscapes and within the soil, 

but also an essential component of soil quality (SQ) assessments, site-specific crop management, 

and non-point pollutant transport within the vadose zone (Corwin & Lesch, 2005b).  

Several methods are documented in literature to map spatial variability and delineate 

management zones in a field. However, little work has been conducted to assess the accuracy of 

these methods in different ecosystems and further research is required to develop standard 

guidelines, proven to work under field conditions, to help growers select the most accurate 

mapping and delineation method for their specific application and environment (Abdu et al., 

2017; Garcia-Tomillo et al., 2017). Soil spatial variability is often characterized using soil 

sampling or a variety of different sensors, with each method having its advantages and 

limitations (Johnson et al., 2001). For instance, soil samples can be collected using different 
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sampling strategies (grid, random, stratified). They provide a direct measurement of soil 

properties in the sampling location and data are interpolated using different techniques to 

estimate soil properties across the study area (Garcia-Tomillo et al., 2017; Johnson et al., 2003). 

However, soil sampling is often expensive and labor-intensive, making grid sampling impractical 

for whole-farm-scale operations and identifying soil-landscape relationships (Johnson et al., 

2001, 2003).  

Geophysical methods for proximal soil sensing can help overcome the limitations of 

spatial characterization via soil sampling and be used as an alternative method for measuring 

spatial variability (Abdu et al., 2017). Proximal soil sensing methods are techniques which use 

different sensors to measure soil properties, where these sensors can operate in direct contact 

with, or near (< 2 m) the soil surface (Soil Science Division Staff, 2017; Viscarra Rossel et al., 

2011). The data collected by proximal soil sensing methods do not provide a direct measurement 

of soil properties, but rather correlate to specific geophysical attributes. As a result, the collected 

data must be processed and interpreted to predict or infer spatial changes in soil physico-

chemical properties; identify soil lithologic and stratigraphic boundaries; and describe soil 

patterns and characteristics (Soil Science Division Staff, 2017). The data processing step uses 

machine learning and various statistical techniques to identify contrasts within the study area. 

There are many different types of geophysical methods for proximal soil sensing [e.g., ground-

penetrating radar (GPR), electrical resistivity (ER), electromagnetic induction (EMI), optical 

reflectance, gamma-ray spectrometry, time domain reflectometry]; however, EMI, ER, and GPR 

are most commonly used in soil and agricultural applications (Allered et al., 2016; Soil Science 

Division Staff, 2017). 
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Electromagnetic-induction-based Methods and Apparent Electrical Conductivity 

Electromagnetic-induction-based methods are non-invasive and are the most frequently 

used proximal soil sensing (Serrano et al., 2014). Electromagnetic induction methods 

characterize a soil’s bulk apparent electrical conductivity (ECa), which is the ability of a soil to 

conduct an electrical current (Abdu et al., 2017; Garcia-Tomillo et al., 2017). There are three 

parallel pathways in which a soil can conduct an electrical current, including i) a soil-liquid 

pathway, where the current largely travels through the exchangeable cations associated with clay 

particles; ii) a liquid-phase pathway, where the current travels through the dissolved salts in the 

soil water of macropores; and iii) a solid pathway, where the current travels through the soil 

particles that come into direct, continuous contact with each other (Corwin & Scudiero, 2017). 

As a result of these pathways of conductance, in-field measured soil ECa is the result of complex 

interactions of many soil properties, including soil salinity, base saturation (BS), bulk density 

(BD), clay content and mineralogy, soil water content (SWC), soil organic matter (SOM), cation 

exchange capacity (CEC), and soil temperature (Corwin & Scudiero, 2017).  

The soil properties that affect measured ECa can be grouped into three categories: the 

bulk soil, solid particles, and the soil solution (Friedman, 2005; Pedrera-Parrilla et al., 2014). The 

bulk-soil category includes soil properties that describe the volumetric portions of the soil’s three 

phases (i.e., solid, liquid, and gas) and potential secondary structural arrangements, including 

aggregation, porosity, and SWC (Friedman, 2005; Pedrera-Parrilla et al., 2014). Soil properties 

in the solid-particle category are relatively temporally stable, including particle-size distribution, 

particle shape and orientation, wettability, and CEC (Friedman, 2005; Pedrera-Parrilla et al., 

2014). The soil-solution category includes soil properties that are temporally variable and react 

rapidly with changes in environmental conditions and management, including cation 
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composition, ionic strength, sodium adsorption ratio (SAR), and soil temperature (Friedman, 

2005; Pedrera-Parrilla et al., 2014). 

Soil properties that affect ECa also contribute to varying degrees when the soil is under 

different conditions. In saline soils, most variations in soil ECa measurements can be attributed to 

the salt concentration, whereas, in non-saline soils, measured soil ECa is reflects the combined 

effects of soil texture, SWC, BD, and CEC (Corwin & Lesch, 2005b). A saline soil is defined as 

a soil that has a saturated extract EC (ECe) of > 400 mS m-1, exchangeable sodium percentage 

(ESP) of < 15%, and a pH of < 8.5 (Weil & Brady, 2017). Additionally, a sodic soil is defined as 

a soil with an ECe of < 400 mS m-1, ESP > 15%, and a pH of > 8.5, while a saline-sodic soil has 

an ECe of > 400 mS m-1, ESP > 15%, and a pH of < 8.5 (Weil & Brady, 2017). 

Electromagnetic induction methods characterize a soil’s ECa using a ground conductivity 

meter (GCM). When operated, a transmitter coil positioned at one side of the GCM produces 

eddy-current loops in the soil directly below the device, where the size of these loops is directly 

proportional to the EC of the soil that is within the vicinity of the loop (Serrano et al., 2014). 

Additionally, each current loop emitted by the GCM produces a secondary EM field, which is 

proportional to the current moving in the soil within the loop vicinity (Serrano et al., 2014). A 

proportion of the generated secondary EM field from each loop is received by the receiver coil of 

the GCM, and the combined quantity of these loops is increased and turned into a produced 

voltage that corresponds to depth-weighted soil ECa (Serrano et al., 2014). Common EMI-based 

GCM are the EM31-MK2, EM34-3, and EM38-MK2, produced by Geonics Limited 

(Mississauga, ON, Canada), and the DUALEM-1S, DUALEM-1HS, DUALEM-2S, produced by 

Dualem Inc. (Milton, ON, Canada).  
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Areas of Application for EMI-based Spatial ECa Measurements 

Although ECa measurements are complex, obtaining ECa measurements via EMI-based 

methods has become a common tool for landscape-scale and field-variability characterization in 

lieu of intensive soil sampling for a multitude of reasons. Electromagnetic induction ECa surveys 

are simple of implement, capable of covering large areas in limited amounts of time because they 

are non-invasive, mobile, have an instant measurement, and can travel at relatively high speeds 

(Corwin & Lesch, 2005a,b). Additionally, EMI-ECa surveys are cost affordable, recognized for 

their reliability, and have the ability to help characterize a multitude of soil properties and 

processes (Corwin & Lesch, 2005a,b). However, because measured soil ECa represents a 

combination of specific soil properties, in-situ soil property measurements (i.e., soil sampling or 

soil sensor) are still required for ground-truthing/calibrating and correlating EMI-ECa variability 

with in-field soil property variability (Abdu et al., 2017; Corwin & Lesch, 2005b; Corwin & 

Scudiero, 2017).  

Lab-measured electrical conductivity (EC) has commonly been used to measure soil 

salinity (Abdu et al., 2017; Garcia-Tomillo et al., 2017). However, through calibrations and 

correlations, soil characteristics that can be derived from EMI-ECa surveys include salinity, 

nutrients, SWC, texture, depth to sand layers or claypans, BD, and many indirect properties and 

processes [i.e., OM, CEC, leaching, groundwater recharge, and soil drainage class, among 

others; Corwin & Lesch, 2005b]. Additionally, applications of EMI-ECa measurements include: 

digital soil mapping, remote sensing, precision agriculture (Heil & Schmidhalter, 2017; Johnson 

et al., 2001), and the collected data can be used to optimize soil sampling strategies, characterize 

soil texture boundaries, delineate crop management zones, predict yield (Heil & Schmidhalter, 
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2017), map depth to limiting layer (i.e., petrocalcic horizons and claypans), assess herbicide 

leaching potential, and identify site-specific septic-system failure locations (Abdu et al., 2017).  

 

EMI-ECa Measurements and Terrain Attributes 

Understanding the controlling factors (i.e., terrain and geologic attributes) of soil property 

development is also important when contextualizing and characterizing spatial ECa 

measurements (Kühn et al., 2009). For instance, the mobilization and transportation of 

sediments, colloids, and solutes from the surrounding landscape affect soil development and soil 

properties at all landscape positions (Kühn et al., 2009). Additionally, transport processes are 

governed by geology and terrain attributes (i.e., elevation, slope, aspect, flow accumulation, etc.) 

at the landscape rather than the field scale (Kühn et al., 2009). Thus, as a result of landscape 

terrain attributes influencing the soil properties that directly affect ECa, landscape terrain 

attributes, in turn, indirectly affect the measured ECa (Kühn et al., 2009). 

Relationships between terrain attributes and EMI-ECa have been evaluated and both have 

been used to create management zones or functional units and for predictive mapping, 

individually and/or in combination (Altdorff & Dietrich, 2014; Beucher et al., 2020; Jiang et al., 

2021; Kitchen et al., 2003; Pedrera-Parrilla et al., 2014; Robinson et al., 2010; Singh et al., 2016; 

Taghizadeh-Mehrjardi et al., 2014). In order to assess the relationship between ECa and terrain 

attributes (i.e., elevation, slope, curvature), Kitchen et al. (2003) conducted an ECa survey on a 

13-ha field in Boone County, Missouri that had been previously planted with corn (Zea mays L.) 

and soybean (Glycine max L.) over the previous three years, respectively. The two dominate 

soils mapped at the field were the Mexico (Aeric Vertic Epiaqualfs) and Adco (Vertic 

Albaqualfs) soil series and a Veris 3100 sensor system (Veris 3100 Division of Geoprobe 
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Systems, Salina, KS) was used to conduct the ECa survey (Kitchen et al., 2003). The shallow 

ECa (0-30 cm) had a positive relationship (P ≤ 0.01) with slope and aspect (r = 0.30 and r = 0.41, 

respectively), while the deep ECa (0-100 cm) had a positive relationship with elevation, slope, 

and aspect (r = 0.37, 0.12, and 0.26, respectively) and a negative relationship with curvature (r = 

-0.18; Kitchen et al., 2003). However, more information on additional terrain attributes that 

affect ECa and their relationship within different agroecosystems and land management systems 

is necessary to further enhance spatial predictions of soil properties based on measured ECa and 

to improve the ECa-derived management zones in precision agriculture. 

 

Application of EMI-based Spatial ECa Measurements in Agroforestry 

Although there has been significant research conducted using EMI-ECa surveys (Corwin 

& Lesch, 2005a), little work has been conducted using EMI-ECa surveys within agroforestry 

(AF) systems. Agroforestry is a conservation-oriented, land management practice which has 

continued to gain appeal and recognition by growers due to the many provided benefits of AF 

systems being documented in published literature. An AF system is defined as the intentional 

integration of agriculture/horticulture and forestry to benefit from the subsequent interactive 

effects that are produced from growing agricultural/horticultural crops and/or livestock alongside 

trees and/or shrubs (NAC, 2019). Additionally, although there are multiple types of AF systems 

(i.e., alley-cropping, silviculture, silvopasture, forest farming, windbreaks, and riparian forest 

buffer), common AF systems are alley-cropping and silvopastoral systems. In alley-cropping 

system, trees are planted in rows and agricultural crops are grown in the subsequent alleys, 

whereas in silvopastoral systems, trees and forages are integrated for livestock production. Both 

alley-cropping and silvopastoral systems provide growers with different, short- and long-term, 
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income sources due to the production of their main/original product (i.e., agricultural crops or 

livestock products), alongside the production of additional high-value crops (i.e., nuts and fruits) 

or other products (i.e., lumber and biofuel) on the same parcel of land, allowing producers to 

respond to variations in markets.  

In addition to AF practices producing multiple products, AF practices have also displayed 

their ability to improve SQ, while also providing ecosystem services (Dollinger & Jose, 2018). 

Potential AF-provide ecosystem services include water quality (WQ) enhancement, increased 

biodiversity, reduced soil erosion (wind and water), elevated aesthetic value, carbon (C) 

sequestration, oxygen (O) production, and greenhouse gas mitigation (Jose, 2009). Additionally, 

silvopastoral systems benefit livestock by creating cooler environments (microclimates) in 

warmer months for livestock; and facilitating livestock protection from weather events (NAC, 

2019). Other ecosystem services or benefits provided by AF systems include reduced particulate 

matter in the air from reduced wind velocity, and thus also reduced wind erosion, reduced noise 

pollution, and odor mitigation of concentrated livestock operations (Jose, 2009). Furthermore, 

SQ benefits from AF have include enhanced soil fertility (Dollinger & Jose, 2018), soil organic 

C (SOC) storage (Lorenz & Lal, 2014; Schoeneberger et al., 2012; Udawatta & Jose, 2012), soil 

structure (Gelaw et al., 2015), and conservation of biodiversity (Jose, 2009; Nair, 2011). 

However, the magnitude of the effects of AF systems varies by soil type, climate, and 

management system. Thus, further research is needed to identify the drivers of variability and 

quantify effect of AF systems on soil properties, SQ dynamics, and landscape-level processes in 

different ecosystems. 

Although there has been little application of EMI-ECa surveys in AF systems, Huth & 

Poulton (2007) developed techniques for the application of EMI-ECa measurements in AF 
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systems for the monitoring of soil moisture variations. Huth & Poulton (2007) used EMI-ECa 

surveys to generate data to assess whether their developed linear calibration equation could be 

used to successfully estimate soil moisture changes when monitoring tree-crop competition. Huth 

& Poulton (2007) conducted their study at a farm near Warra, Queensland, Australia. At the 

farm, there were 7-year-old, Queensland western white gum (Eucalyptus argophloia), planted in 

a belt of 4 rows (~ 5 x 5 m spacing) alongside the border of a field used for cotton (Gossypium 

hirsutum), wheat (Triticum aestivum), and chickpea (Cicer arietinum) production. The soil at the 

site was characterized as a self-mulching Grey-Vertisols (Huth & Poulton, 2007). In order to 

study soil moisture extraction via the trees in cropped and fallow land within the same season, 

two adjacent cropping bays were selected. Two soil cores were extracted at 6 to 8 sampling 

locations at different times of the year from the top 1.5-m depth and separated into 0.15-m 

increments to assess soil properties (Huth & Poulton, 2007). Additionally, an EM38 was used to 

measure the ECv and ECh (vertical and horizontal dipole, respectively) at transects of 5-m 

intervals between 0 and 50 m away from the trees. The transects were replicated four times total 

in three adjacent fields (Huth & Poulton, 2007). The study took place over a 1.5-year period, 

where Huth & Poulton (2007) built a calibration dataset that consisted of paired values of both 

soil moisture and a weighted average of the ECv and ECh. Huth & Poulton (2007) concluded that 

their calibrated EMI techniques were successful in describing the measured soil moisture and 

that the techniques enable greater flexibility when precise knowledge of the vertical distribution 

of soil moisture is less important than knowing its variability in time and space. Thus, the 

information generated by Huth & Poulton (2007) supports that EMI-based techniques can be an 

efficient and effective method for observing temporal soil moisture patterns in AF systems (Huth 

& Poulton, 2007). 
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Although potentially not considered an AF system, EMI-ECa surveys have also been 

applied within olive (Olea europaea L.) orchards. Pedrera-Parrilla et al. (2014) collected soil 

sample, soil pit, and EMI-ECa measurements on two occasions, 1-year apart, across an 8-ha olive 

orchard near Córdoba, Spain to establish areas of impaired olive tree development and determine 

the relationships between EMI-ECa and the soil properties that caused the spatial variability in 

the olive tree development. The olive orchard was established in 1993 at 240 trees ha-1 and was 

located on a Chromic Haploxerert (Pedrera-Parrilla et al., 2014). Additionally, Pedrera-Parrilla et 

al. (2014) used a DUALEM-21S (Dualem Inc., Milton, ON, Canada) to conduct the two EMI-

ECa surveys. Through the ECa surveys, Pedrera-Parrilla et al. (2014) delineated three zones 

across the olive orchard based on ECa values, ranging between 0 and 27.5, 27.5 and 57.5, and > 

57.5 mS m-1, and determined that the spatial pattern of the measured ECa correlated to the spatial 

pattern of canopy coverage. The zone with the lowest ECa range (0–27.5 mS m−1) displayed 

optimal tree growth (45 % canopy coverage) and was likely the result of sufficient drainage 

conditions, as the zone possessed substantially less average clay contents than the other zones 

(Pedrera-Parrilla et al., 2014). Furthermore, the zone with the intermediate ECa range (27.5–57.5 

mS m−1) displayed deficient tree development (12 % canopy coverage) and was likely the result 

of poor drainage conditions, as the zone was located along the drainage pathway and possessed 

the greatest clay, coarse fragments, OM, and SWC (Pedrera-Parrilla et al., 2014). Through the 

results of their study, Pedrera-Parrilla et al. (2014) concluded that, not only did EMI-ECa surveys 

distinguished slight soil property variations and yielded practical knowledge on delimiting areas 

with constrained tree development, but also that their procedure could be used as a pre-

examination technique before establishing tree plantations. 
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Although ECa surveys have not been applied within silvopastoral AF systems, ECa 

surveys have been applied in pastoral production systems. Cicore et al. (2019) collected biomass 

accumulation samples and conducted an ECa survey at a 5.75-ha paddock in the Buenos Aires 

Province of Argentina to assess whether ECa surveys can delimit areas of varying yield potential 

in tall fescue [Lolium arundinaceum (Schreb.) Darbysh] during contrasting growing seasons and 

at different nitrogen (N) fertilization rates (0 and 250 kg N ha–1) for site-specific management. 

Cicore et al. (2019) conducted the ECa survey with a Veris 3100 sensor system and then 

collected biomass accumulation samples in the spring and fall for two consecutive years. 

Additionally, the mapped soils at the AF site were the Chelforo (Vertic Natraqualfs), Monsalvo 

(Vertic Argiudoll), and Juncalito series (Glossic Natraqualf; Cicore et al., 2019). Although ECa-

derived management zones were not able to be delineated during the fall, Cicore et al. (2019) 

determined that tall fescue production in the Argentinean Pampas can still be managed by ECa-

derived management zones, as a correlation between the ECa and tall fescue forage yield during 

the spring growing period was observed.   

 

Application of Agroforestry in the Ozark Highlands 

Major Land Resource Area 116A - Ozark Highlands  

A region with unique features that could benefit greatly from the application of 

conservative land management practices, like AF systems, is the Ozark Highlands. The Ozark 

Highlands (36–38° N, 91–95° W), Major Land Resource Area (MLRA) 116A, spans 85,110 km2 

across southern Missouri, northern Arkansas, and northeast Oklahoma (Brion et al., 2011; 

NRCS, 2006). The Ozark Highlands resides within the Springfield-Salem Plateaus Section of the 

Ozark Plateaus Province of the Interior Highlands, and acts as a transitional zone between the 
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more arid Great Plains to west and north and the more humid forestlands to the south and east 

(Brion et al., 2011; Brye & West, 2005; NRCS, 2006). The annual air temperature in the Ozark 

Highlands ranges from ~ 12 to 16°C and the majority of the Ozark Highlands has an annual 

precipitation range of 96.5 to 114.5 cm (NRCS, 2006). Landscapes within the Ozark Highlands 

range from gentle, prairie-like, rolling upland hills to greatly divided, steep-sloped wooded hills 

and narrow gravel valleys, and possess well-developed karst topography (i.e., sinkholes, caves, 

dry valleys, box valleys, and large springs; NRCS, 2006). Furthermore, oak (Quercus spp.)-

hickory (Carya spp.) forests, with inclusions of tallgrass prairies, originally dominated the Ozark 

Highlands (Brion et al., 2011). However, the majority of the Ozark Highlands’ native tallgrass 

prairies have been converted to hay meadows and pastures. Additionally, livestock grazing (i.e., 

beef cattle and horses) and poultry production are becoming increasingly more dominant in the 

Ozark Highlands (Brion et al., 2011). 

 Sedimentary rock makes up a large portion of the bedrock in the Ozark Highlands. 

Sedimentary rock types in the Ozark Highlands include Lower Mississippian-age dolostone and 

limestone, Ordovician-age dolostone and sandstone, and Pennsylvanian-age shale and sandstone 

(NRCS, 2006). The elevation within the Ozark Highlands ranges between ~ 90 and ~ 490 m 

above sea level and relief in the Ozark Highlands usually varies between ~ 60 and 245 m 

(NRCS, 2006). Generally, the majority of the soils in the Ozark Highlands MLRA are Alfisols or 

Ultisols. These soils are formed in materials that have been weathered from cherty limestone. 

Physical and chemical weathering have resulted in the cherty limestone disintegrating into its 

least soluble components of chert and clay (NRCS, 2006). The combination of overland flow and 

gravitational creep have resulted in the alteration of the cherty material in the upper portion of 

some soils in the area. Furthermore, a majority of the northern and eastern regions of the Ozark 
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Highlands are partially covered with a minor layer of loess deposits (NRCS, 2006). On average, 

the soils in the Ozark Highlands range between medium- to fine-textured, shallow to very deep 

profiles and are moderately well to excessively drained. Additionally, the soils in the Ozark 

Highlands generally have mixed or siliceous mineralogy, a soil temperature regime of mesic or 

borderline thermic, and have a soil moisture regime of udic (NRCS, 2006). 

 

Conservation Issues Due to Ozark Highlands Features 

The combined effects of the Ozark Highlands’ unique features subject MLRA 116A to 

numerous potential conservation issues. The Ozark Highlands’ soil properties (i.e., cherty and 

shallow), topography, climate, underlying karst geology, rapid urbanization, and predominant 

animal agriculture cause WQ, both surface- and groundwater, to be of particular concern as a 

result of elevated potential for WQ degradation via nutrient-rich runoff to surface water bodies 

and nutrient-rich leaching to shallow and/or easily accessed groundwater sources. Many of the 

soils in the Ozark Highlands, which overlie dolomitic bedrock and limestone, exist on steep 

slopes and are shallow to bedrock and stony. This unique combination of topography, soil 

properties, and geology results in the Ozark Highlands having an increased potential for rapid 

transmission of rainfall, thus any potential pollutants present at the soil surface, down slope as 

runoff and into surface waters. Additionally, if any rainfall and/or surface flow are able to 

infiltrate and potentially pollutant-carrying leachate be rapidly transmitted through the soil and 

into groundwater.  

The physical landscape attributes that cause the Ozark Highlands to be at an increased 

potential for WQ degradation are compounded by the dominant form of agriculture in the Ozark 

Highlands, which is animal production (i.e., poultry production and pastoral livestock systems; 
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Brion et al., 2011; Brye & West, 2005). In 2019, the livestock inventory of Arkansas alone 

totaled over 1.7 million head of cattle [i.e., beef and milk cows and calves (Bos taurus)], 1.1 

billion head of chickens [i.e., broilers; (Gallus gallus domesticus)], and 30 million head of turkey 

(Meleagris gallopavo domesticus; NASS, 2019), much of which are located in northwest 

Arkansas (NWA). Consequently, large quantities of animal manure and poultry litter (PL) are 

also produced. The combination of NWA producing large quantities of PL, PL being an excellent 

fertilizer, and there being economic limitations of transporting the manure has resulted in 

extensive annual applications of PL to pastures in the surrounding region for multiple decades 

(Brion et al., 2011; Pirani et al., 2006). Additionally, PL application rates are primarily based off 

the plant-N requirement, which has consequently caused an accumulation of phosphorus (P) in 

pasture soils (Brion et al., 2011). Furthermore, due PL being applied to perennial pastures and P 

accumulating near the soil surface, precipitated and sediment-bound P are often lost in runoff 

causing an increased potential of surface WQ degradation. Thus, PL-applied pastures have been 

determined to be a major contributor to non-point pollution source (i.e., excess P input) to NWA 

surface water bodies (Brion et al., 2011). 

The manner in which livestock (i.e., cattle) are managed on pastures also has a major 

effect on WQ. For instance, cattle, with unrestricted stream access, frequently graze the 

vegetation in the riparian-aquatic zone to a greater extent than upland-terrestrial areas and reduce 

the stability of stream banks (BWA, 2012; Brion et al., 2011). Riparian buffers promote the 

removal of pollutants in runoff and help support the stability of stream banks (BWA, 2012). The 

degradation of riparian vegetation and stream bank stability, in turn, increases stream 

bank/channel erosion and reduces how effective the riparian zone is at reducing soil erosion and 
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runoff velocity, volume, erosivity, and sediment and nutrient loads (BWA, 2012; Brion et al., 

2011). 

An example of a reservoir watershed in the Ozark Highlands being affected by non-point 

pollution is the Beaver Lake Watershed. Beaver Lake is located at the very southwestern edge of 

the Ozark Highlands in NWA, where the largest tributary to Beaver Lake is the upper portion of 

the White River. Within the Beaver Lake Watershed, it is estimated that ~ 25% of the riparian 

buffers are impacted (< 30% vegetation), which has contributed to stream bank/channel erosion 

to become the largest sediment and P contributor to Beaver Lake, followed by pasture/agriculture 

(BWA, 2012). Phosphorus is of particular concern regarding the health of aquatic ecosystems 

because P is often the most limiting nutrient in aquatic systems. Thus, relatively small increases 

in P in surface waters can lead to surface water degradation via eutrophication. Eutrophication, in 

turn, feeds algal blooms followed by the creation of hypoxic zones, which are detrimental to 

aquatic organisms. Additionally, cattle also have the potential to overgraze forages, resulting in a 

barer soil surface, and cause soil compaction if not managed properly. Increased compaction and 

decreased surface cover further result in the potential of increased soil erosion and agricultural 

runoff into surface water bodies (Brion et al., 2011). 

The annual application of PL to pastures can also have negative effects on groundwater 

sources. Increased nitrate-N (NO3-N) levels have been reported in vadose zone water as a direct 

result of PL applications (Adams et al., 1994). Elevated levels of NO3-N in the vadose zone are 

of particular concern due to there being many shallow, cherty soils throughout the Ozark 

Highlands, which overlie karst bedrock, where, with adequate soil wetness, could result in the 

rapid transmission of NO3-N into the groundwater supply. Background groundwater NO3-N 

concentrations from pristine sampling sites in NWA have been measured at < 1.0 mg NO3-N L-1 
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(Peterson et al., 2002). However, certain springs during baseflow have been measured to range 

between 3.6 and 13.0 mg NO3-N L-1 and 2.7 to 16.7 mg NO3-N L-1 during storm events. The 

primary culprit of the elevated NO3-N in springs has shown to be PL applications to pastures 

(Peterson et al., 2002). Although the water is not used for drinking purposes, it is worth 

mentioning that the upper concentration ranges during base- and storm-flow exceed the 

maximum NO3-N concentration of 10 mg NO3-N L-1 for drinking water (USEPA, 2009). 

 

Unique Opportunity for Agroforestry in the Ozark Highlands 

As result of the Ozark Highlands unique landscape attributes (i.e., topography and 

shallow, cherty soils overlying karst limestone geology), any agricultural activities (i.e., poultry 

production and pastoral livestock systems) must be carefully managed and the conservation of 

soil and water resources must be top priorities (Brion et al., 2011). Thus, the Ozark Highlands’ 

distinctive features and need for conservative land management practices provide a particularly 

suitable ecosystems for the implementation of AF systems (i.e., riparian forest buffers and 

silvopastoral systems) to be particularly advantageous and multi-beneficial.  

In addition to providing growers with supplementary and diversified income and 

ecosystem services, the conversion to and/or implementation of AF systems (i.e., silvopastoral 

systems) in the Ozark Highlands may also help reduce the potential for WQ degradation by 

limiting the amount of non-point source pollution (i.e., nutrient and sediment pollution) entering 

surface water bodies (Blanco & Lal, 2008). Silvopastoral systems have the potential to limit non-

point source pollution from reduced soil erosion and sediment and nutrient transport in surface 

flow and runoff due to: reduced rain drop impact from tree canopy and leaf litter cover; reduced 

runoff volume and velocity; reduced soil erodibility due to increased SOM which improves soil 
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structure and increase porosity and infiltration; and increasing on-site sediment and nutrient 

deposition from reduced slope length and steepness from tree trunk interception of surface flow 

(Blanco & Lal, 2008). Additionally, trees in a silvopastoral systems can potentially reduce 

nutrient movement to groundwater sources in the Ozark Highlands by taking up excess nutrients 

(i.e., PL applications) from close to the surface and from below the root zone of 

forage/agronomic crops (Jose, 2009). Furthermore, the nutrient use efficiency (NUE) is increased 

in silvopastoral systems from the nutrients taken up in the trees, which are eventually returned to 

the soil from tree leaf litter decay and root turnover (Jose, 2009). Trees in AF systems also have 

a longer growing-season than most agronomic crops and forage species, thus improving NUE in 

AF systems from nutrient capture before, during, and after the cropping season (Jose, 2009). 

Nair et al. (2007) conducted a study to compare the impacts of a pastoral system and 

varying silvopastoral systems on surface- and groundwater quality. The study was conducted in 

Ona, Florida, where, in December 1991, Florida slash pines (Pinus elliotti) were planted in a 

double-tree row formation at a tree density of 1120 trees ha−1 on a range with Pensacola 

bahiagrass (Paspalum notatum) and a native range made up of mostly wiregrass (Aristida 

stricta), creeping bluestem (Schizachyrium stoloniferum), and saw palmetto (Serenoa repens; 

Nair et al., 2007). The double-row planted trees were 2.4 m apart, with 1.2 m spacing among 

trees in a row, and 12.2-m wide alley between double-tree rows (Nair et al., 2007). In 1994, the 

pine-bahiagrass silvopasture was sown to Florida carpon desmodium (Desmodium 

heterocarpum) and Shaw vigna (Vigna pakeri) in 2001 (Nair et al., 2007). In 2002, the tree-less 

pasture was sown to Florida carpon desmodium and Shaw vigna (Nair et al., 2007). For all 

configurations, both legumes were sown at 5 kg ha−1 (Nair et al., 2007). Soils for all pasture 
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configurations were mapped as a Myakka fine sand (sandy, siliceous, hyperthermic Aeric 

Alaquod; Nair et al., 2007). 

Cattle began grazing the native silvopasture every March and September after 1993 (Nair 

et al., 2007). In 2002 and 2003, the pine-bahiagrass silvopasture was split into 8-ha halves, where 

one half was not thinned and had a tree density of 494 trees ha−1 and one half was thinned to 309 

trees ha−1 (Nair et al., 2007). Ten soil profile locations were randomly selected and sampled from 

each of the four pasture configurations and separated into six different depth increments (0-5-, 5-

15-, 15-30-, 30-50, 50-75-, and 75-100-cm; Nair et al., 2007). Soil samples were then analyzed 

for water-soluble P (WSP), NO3–N, and ammonium–N (NH4–N), and P saturation ratio (PSR; 

Nair et al., 2007). The tree-less pasture had a greater WSP concentration (9.1 mg kg−1 in the 0-5 

cm depth and 0.2 mg kg−1 at 1.0 m) than that of all silvopastures (2.5 mg kg−1 in the 0-5 cm 

depth and 0.1 mg kg−1 at 1.0 m; Nair et al., 2007). The tree-less pasture had a greater NO3–N 

(2.4 mg kg−1) and NH4–N (9.8 mg kg−1) concentration in the top 5 cm than that of all 

silvopastures (1.0 NO3–N mg kg−1and 6.5 NH4–N mg kg−1 at 0-5 cm; Nair et al., 2007). Soils 

under all silvopasture configurations had greater soil P storage capacity (1,494 kg P ha-1) than 

that of the tree-less pasture (270 kg P ha-1; Nair et al., 2007). 

The results of Nair et al. (2007) further suggests that silvopastoral systems increase 

nutrient retention within the system, thus reducing the potential for nutrient transport to surface 

water sources compared to a tree-less pasture system. Thus, the unique features of the Ozark 

Highlands (i.e., topography and shallow, cherty soils overlying karst limestone geology, poultry 

production, and pastoral livestock systems; Brion et al., 2011), which cause MLRA 116A to be 

at an increased potential for conservation issues (i.e., surface and groundwater quality 

degradation), makes the implementation and research of AF systems, specifically silvopastoral 
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systems, to be particularly advantageous, multi-beneficial, and intriguing due to the many 

potential ecosystem services and benefits that silvopastoral systems offer [i.e., producer 

economic and livestock benefits and ecosystem services (i.e., WQ and SQ enhancement and 

reduced soil erosion and runoff)]. 

 

Justification 

Although EMI-ECa surveys have been used for landscape-scale and field-variability 

characterization within many different land management systems and ecosystems across the 

world, EMI-ECa surveys have been minimally applied in AF systems. As a consequence, little to 

no work has been conducted using repeated EMI-ECa surveys to create ECa-derived soil 

management zones (SMZs) and explore the spatiotemporal relationship between EMI-ECa and 

soil property, tree growth, forage yield, and terrain attributes in AF systems, let alone AF 

systems within regions that have similar features to the Ozark Highlands. Additionally, no 

research has been conducted evaluating the necessary number of EMI-ECa surveys to capture the 

full amount of spatiotemporal ECa variance within 1 year at an AF system.  

 

Objectives and Hypotheses 

As a result of the lack of information on EMI-ECa surveys in AF systems, the goals of 

this study were to assess the spatiotemporal variability of measured EMI-ECa, evaluate the 

relationship between EMI-ECa and other variables, and provide soil data for precision soil 

management for a 20-year-old AF system within the Ozark Highlands of northwest Arkansas. 

Two sets of research objectives were established to accomplish the goals for this study. 

The first set of objectives of this study were to i) use monthly EMI-ECa surveys to assess the 
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spatiotemporal pixel variation of the measured ECa, ii) use k-means to identify clusters of 

similarly behaving populations for precision soil management, iii) identify correlations between 

EMI-ECa data and in-situ, soil-sensor-measured volumetric water content (VWC) and ECa 

measurements at two depths (15 and 75 cm and 15 and 50 cm, respectively) and benchtop-

measured soil sample EC, gravimetric water content (GWC), and pH in two depth intervals (0-15 

and 45-55 cm), and iv) determine whether fewer, evenly spaced, strategically selected EMI-ECa 

surveys could have been conducted in one year to capture similar overall ECa variance as the 12 

mid-monthly EMI-ECa surveys. It was hypothesized that i) there would be a significant change 

in the mean ECa and ECa variability [i.e., standard deviation (SD) and coefficient of variation 

(CV)] across time (i.e., survey dates and weather season) and that there would be significant 

difference between the ECa mean, SD, and CV of surveys that were conducted in different 

weather seasons and in the tree growing/non-growing season, ii) monthly EMI-ECa surveys can 

be grouped into similar functional populations and be delineated into zones for precision soil 

management, iii) monthly EMI-ECa survey data are correlated with soil-sensor-based VWC and 

ECa and soil-sample-based EC, GWC, and pH, and iv) fewer surveys than monthly could be 

conducted in a 1-year period to capture the same amount of overall ECa variance as the 12 mid-

monthly EMI-ECa surveys conducted.  

The second set of objectives were to: i) identify correlations between EMI-ECa and total 

forage yield and tree growth data [tree height (TH) and diameter at breast height (DBH)] within 

the whole site and three ECa-derived SMZs, ii) identify correlations between ECa and total forage 

yield and tree growth data within forage/tree species and fertility treatment combinations, within 

the whole site and three ECa-derived SMZs, and iii) identify correlations between EMI-ECa and 

terrain attribute data at a 20-year AF system within the Ozark Highlands. It was hypothesized 
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that EMI-ECa data are correlated with total forage yield, tree growth, and terrain attribute data 

and that correlations between EMI-ECa and total forage yield and tree growth data can be 

improved with ECa-derived SMZs.  
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Chapter 2 

Using Apparent Electrical Conductivity to Delineate Field Variation in an Agroforestry 

System in the Ozark Highlands  



 

31 
 

Abstract 

Minimal work has been conducted using repeated electromagnetic induction (EMI) 

apparent electrical conductivity (ECa) surveys in agroforestry (AF) systems within regions 

similar to the Ozark Highlands of northwest Arkansas. Using remotely sensed field data may 

provide a non-destructive option to identify areas with similar properties and expected soil and 

plant responses that could serve as soil management zones (SMZs). Objectives of this study were 

to i) use EMI-ECa surveys to assess the spatiotemporal pixel variation of measured ECa; ii) 

identify clusters of similarly behaving populations for precision soil management; iii) identify 

correlations among EMI-ECa data and in-situ volumetric water content (VWC), and ECa 

measurements and sentential site soil-sample electrical conductivity (EC), gravimetric water 

content (GWC), and pH; and iv) determine whether fewer, EMI-ECa surveys could be conducted 

to capture the same amount of ECa variance as the 12 mid-monthly EMI-ECa surveys. Between 

August 2020 and July 2021, 12 mid-monthly ECa surveys were conducted at a 4.25-ha AF site in 

Fayetteville, AR. During each ECa survey, soil-sensor-based VWC, soil temperature, and ECa 

measurements were collected at two soil depths (15-, 15-, and 15-cm, respectively, and 75-, 75-, 

and 50-cm, respectively) and soil-sample-based GWC, EC, and pH measurements were collected 

from two soil depth intervals (0-15- and 45-55-cm) at fixed locations. Potential pedogenic and 

surface management effects were observed for the universally kriged ECa data. The overall mean 

perpendicular geometry (PRP) and horizontal coplanar geometry (HCP) ECa ranged between 1.8 

to 18.0 and 3.1 to 25.8 mS m-1, respectively, and the overall mean HCP ECa was 67% greater 

than the mean PRP ECa. The largest measured ECa values occurred within the local drainage 

way, which has mapped inclusions with aquic soil moisture regimes, or areas of potential 

groundwater movement, and the smallest measured ECa values occurred within areas with 
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decreased effective soil depth and increased coarse fragments. A positive (r2 = 0.4; P < 0.05) 

linear relationship occurred over time between PRP ECa standard deviation (SD), with a negative 

linear relationship (r2 = 0.93; P < 0.05) between HCP ECa coefficient of variation (CV) across 

weather seasons (i.e., Summer to Spring). The PRP and HCP ECa mean, SD, and CV were 

unaffected by weather or tree growing-season. K-means clustering delineated three precision 

SMZs that were reflective of areas with similar ECa and ECa variability. The variance of the 12 

HCP ECa surveys did not differ from that of the four and two HCP ECa surveys conducted in the 

middle of the four annual weather seasons and in the middle of the Winter and Summer seasons 

specifically, respectively. Results of this study provided valuable information on the 

spatiotemporal variability of EMI-ECa, how ECa correlates with soil properties and ECa-derived 

SMZs in an AF system with varying topography in the Ozark Highlands. 
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Introduction 

Soils are innately heterogeneous, where they vary spatially and temporally [1,2]. Such 

variabilities often create challenges for agricultural producers, as variations in soil properties 

substantially affect water movement, solute transport, and plant–water–soil interactions, which, 

in turn, influence soil quality and crop yield [1]. Additionally, soil spatial variability also affects 

tillage and planting equipment performance, resulting in uneven stand establishment, which 

increases competition between plants and further reduces yield. Accurate characterization of 

spatial variability of soils is not only essential for understanding field-scale processes across 

landscapes and within the soil, but also an essential component of soil quality (SQ) assessments, 

site-specific crop management, and non-point pollutant transport within the vadose zone [3].  

Several methods are available to map spatial variability and delineate management zones 

in a field. Soil spatial variability is often characterized using soil sampling or a variety of 

different sensors, with each method having advantages and limitations [4]. For instance, soil 

samples can be collected using different sampling strategies (i.e., grid, random, stratified, and 

transect). Soil sampling provides direct measurement of soil properties in sampling locations, 

where the data can be interpolated using different techniques to estimate soil properties across 

the study area [2,5]. However, soil sampling is often expensive and labor-intensive, making grid 

sampling impractical for whole-farm-scale operations and identifying soil-landscape 

relationships 4,5].  

Non-destructive, geophysical methods for proximal soil sensing can help overcome the 

limitations of spatial characterization via soil sampling and be used as an alternative method for 

quantifying spatial variability [6]. There are many different types of geophysical methods for 

proximal soil sensing, however, electromagnetic-induction (EMI)-based methods are the most 
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frequently used [7]. Electromagnetic induction sensors are non-invasive and characterize a soil’s 

apparent electrical conductivity (ECa), which is the ability of a soil to conduct an electrical 

current and is most commonly used to measure soil salinity [2,6]. Measured soil ECa in the field 

is the result of complex interactions of soil salinity, base saturation (BS), bulk density (BD), clay 

content and mineralogy, soil water content (SWC), soil organic matter (SOM), cation exchange 

capacity (CEC), and soil temperature [8].  

Using EMI-based methods to obtain spatial ECa measurements in lieu of intensive soil 

sampling has become a common tool for landscape-scale and field-variability characterization 

for many reasons. Electromagnetic induction-based methods are simple to implement, capable of 

covering large surface areas in a limited amount of time (i.e., non-invasive, instant measurement, 

mobile, and relatively high-speed), affordable, reliable, and can accurately delineate spatial 

changes in belowground properties [3,9]. Soil characteristics derived from EMI-ECa surveys 

include salinity, nutrients, SWC, texture, depth to sand layers or claypans, BD, and many indirect 

properties and processes [i.e., organic matter (OM), CEC, leaching, groundwater recharge, and 

soil drainage class, among others] [3]. Additionally, applications of EMI-based ECa 

measurements include digital soil mapping, remote sensing, and precision agriculture [4,10], and 

the collected data can be used to optimize soil sampling strategies, characterize soil texture 

boundaries, delineate crop management zones, predict yield [10], map depth to limiting layer 

(i.e., petrocalcic horizons and claypans), assess herbicide leaching potential, and identify site-

specific septic-system failure locations [6]. However, because measured soil ECa represents a 

combination of specific soil properties, sampling is still required to verify (i.e., ground-truth) and 

calibrate the data collected within agricultural field for precision agriculture, land management, 

and environmental research applications [3,6,8]. 
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Although there has been significant research conducted relating EMI-ECa surveys to a 

multitude of soil properties in different types of land management systems and ecosystems [9], 

little work has been conducted using EMI-ECa surveys to investigate soil property variations 

within agroforestry (AF) systems. Agroforestry is a conservation-oriented, land management 

practice that has continued to gain appeal and recognition by growers. An AF system is defined 

as the intentional integration of agriculture/horticulture and forestry to benefit from the 

subsequent interactive effects that are produced from growing agricultural/horticultural crops 

and/or livestock alongside trees and/or shrubs [11]. The benefits of AF practices include SQ 

enhancements, additional ecosystem services [12], and opportunities for short- and long-term 

income sources for the producer. There are numerous potential ecosystem services that AF 

systems provide, including water quality (WQ) enhancement, increased biodiversity, reduced 

soil erosion (wind and water), elevated aesthetic value, carbon (C) sequestration, oxygen (O) 

production, and mitigation of greenhouse gases [13]. Furthermore, SQ benefits from AF have 

included enhanced soil fertility [12], soil organic C (SOC) storage [14–16], soil structure [17], 

conservation of biodiversity, and production diversity [13,18]. However, the magnitude of the 

effects of AF systems varies by soil series, climate, and management system.  

A region with unique features that could benefit greatly from the application of 

conservative land management practices, like AF systems, is the Ozark Highlands. The Ozark 

Highlands (36–38° N, 91–95° W), Major Land Resource Area (MLRA) 116A, spans 85,110 km2 

across southern Missouri, northern Arkansas, and northeast Oklahoma [19,20]. The annual air 

temperature in the Ozark Highlands ranges from ~ 12 to 16°C and the majority of the Ozark 

Highlands has an annual precipitation range of 96.5 to 114.5 cm [19,20]. Landscapes within the 

Ozark Highlands range from gentle, prairie-like, rolling upland hills to greatly divided, steep-
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sloped wooded hills and narrow gravel valleys, and possess well-developed karst topography 

(i.e., sinkholes, caves, dry valleys, box valleys, and large springs) [19,20]. Furthermore, the 

majority of the soils are Alfisols or Ultisols and are formed from materials that have been 

weathered from cherty limestone, where physical and chemical weathering have resulted in the 

cherty limestone disintegrating into its least soluble components of chert and clay [20]. On 

average, the soils in the Ozark Highlands range between medium- to fine-textured, shallow to 

very deep profiles and are moderately well to excessively drained. Additionally, many of the 

soils in the Ozark Highlands, which overlie dolomitic bedrock and limestone, exist on steep 

slopes and are stony and shallow to bedrock. 

 The combination of the Ozark Highlands’ topography, soil properties, and climate result 

in an increased potential for conservation issues, specifically surface and groundwater quality 

degradation [19,20]. For instance, the topography of the Ozark Highlands results in an increased 

potential for rapid transmission of rainfall, and thus any potential pollutants present at the soil 

surface, down slope as runoff and into surface waters. Additionally, if rainfall and/or surface 

flow are able to infiltrate the Ozark Highlands’ shallow, cherty soils that overlie karst limestone 

geology, any potential pollutant-carrying leachate may be rapidly transmitted through the soil 

and into groundwater [21]. Thus, the unique combination of the Ozark Highlands’ features (i.e., 

topography; shallow, cherty soils overlying karst limestone geology; and climate) suggests the 

implementation and research of AF systems within the Ozark Highlands would be particularly 

advantageous, multi-beneficial, and intriguing due to the many potential ecosystem services and 

benefits that AF systems offer (i.e., WQ and SQ enhancement and reduced soil erosion and 

runoff). 
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Justification, Objectives, and Hypotheses 

Although EMI-ECa surveys have been applied to evaluate variations in a multitude of soil 

properties within many different land management systems and ecosystems across the world, 

EMI-ECa surveys have been minimally applied in AF systems to investigate soil property 

variations. Additionally, little to no work has been conducted to explore the spatiotemporal 

relationship between repeated EMI-ECa surveys and soil property variations in AF systems 

within regions that have similar features to the Ozark Highlands. As a result of this lack of 

information and to provide spatially resolved soil data for precision soil management, the 

objectives of this study were to i) use monthly EMI-ECa surveys to assess the spatiotemporal 

pixel variation of the measured ECa of a 20-year-old AF system within the Ozark Highlands; ii) 

use k-means to identify clusters of similarly behaving populations for precision soil 

management; iii) identify correlations between EMI-based ECa data and in-situ, soil-sensor-

measured volumetric water content (VWC) and ECa measurements at two depths (15 and 75 cm 

and 15 and 50 cm, respectively) and benchtop-measured soil sample EC, gravimetric water 

content (GWC), and pH in two depth intervals (0-15 and 45-55 cm); and iv) determine whether 

fewer, evenly spaced, strategically selected EMI-ECa surveys could have been conducted in one 

year to capture the same amount of overall ECa variance as the 12 mid-monthly EMI-ECa 

surveys conducted. It was hypothesized that there would be a significant (P < 0.05) change in the 

mean ECa and ECa variability [i.e., standard deviation (SD) and coefficient of variation (CV)] 

across time (i.e., survey dates and weather season) and that there would be significant difference 

between the ECa mean, SD, and CV of surveys that were conducted in different weather seasons 

and in the tree growing/non-growing season at a 20-year AF system within the Ozark Highlands. 

Furthermore, it was hypothesized that monthly EMI-ECa surveys can be grouped into similar 
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functional populations and be made into zones for precision soil management. It was also 

hypothesized that monthly EMI-ECa survey data are correlated with soil-sensor-based VWC and 

ECa and soil-sample-based EC, GWC, and pH. Additionally, it was hypothesized that fewer 

surveys than monthly could have been conducted in a 1-year period to capture the same amount 

of overall ECa variance as the 12 mid-monthly EMI-ECa surveys conducted. 

 

Materials and Methods 

Site Description 

Mapped Soils and Tree and Forage Establishment 

This study was conducted on a 4.25-ha paddock at the University of Arkansas Milo J. 

Shult Agricultural Research and Extension Center (SAREC) in Fayetteville, AR (36.09°N, 

94.19°W). The study site is located within the Ozark Highlands, Major Land Resource Area 

(MLRA) 116A [22]. The experimental area is mostly mapped as Captina silt loam (fine-silty, 

siliceous, active, mesic Typic Fragiudults) with some Pickwick silt loam (fine-silty, mixed, 

semiactive, thermic Typic Paleudults) and small areas containing Johnsburg silt loam (fine-silty, 

mixed, active, mesic Aquic Fragiudults), Cleora fine sandy loam (Coarse-loamy, mixed, active, 

thermic Fluventic Hapludolls), and Nixa cherty silt loam (loamy-skeletal, siliceous, active, mesic 

Glossic Fragiudults; Figure 1) [23]. The paddock also contains an inclusion that is dissimilar, 

lower in elevation, and consistently wetter than surrounding areas and is not captured in the soil 

mapping units across the site. The wetter location within the paddock was classified as fine, 

mixed, active, thermic Typic Endoaqualfs [24]. The study site has an annual minimum, 

maximum, and average air temperature of 8.7, 20.3, and 14.6°C, respectively, and receives an 

annual average (30-yr mean, 1981 to 2010) of 1156 mm of precipitation [25]. 
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Before the AF site was established, the paddock was split into two paddocks by a north-

south fence, which were poorly managed, covered in weeds, and only used for equipment 

storage. Additionally, the paddocks had small terraces from previous management and had a 

gully forming. Prior to the site’s conversion to an AF system, the fences were removed, the gully 

was filled in, the soil was leveled, and the vegetation was killed. In 2000, sixteen rows of eastern 

black walnut (Juglans nigra L.), Northern red oak (Quercus rubra L.), and pecan (Carya 

illinoinensis Wangenh. K. Koch) were established and oriented east-west at 15-m spacing 

between rows (Figure 1). The study site was never ideal for growing eastern black walnut, where 

they grew adequately on the east end, but struggled to grow in the wet, middle portion and dry 

Nixa soil on the west end of the rows. As a result, the eastern black walnut trees were replaced in 

2014 with rows that consisted of three different fast-growing species: American sycamore 

(Plantanus occidentalis L.) in the well-drained portion, cottonwood (Populus deltoides W. 

Bartram ex Marshall) in the poorly drained portion, and pitch/loblolly pine (Pinus rigida x Pinus 

taeda) in the drought-prone area of the field (Figure 1). Additionally, two forage-species 

treatments were established in the alleys between tree rows, including a cool-season species 

[orchardgrass (Dactylis glomerata L., var. Tekapo)] that was seeded in Fall 2015 at 17 kg pure 

live seed (PLS) ha-1 and a native warm-season mix [8:1:1 big bluestem (Andropogon gerardii 

Vitman), little bluestem (Schizachyrium scoparium {Michx. Nash} and indiangrass 

(Sorghastrum nutans L.)] seeded in spring 2016 at 10 kg PLS ha-1 (Figure 1). A Haybuster 107C 

no-till drill (DuraTech, Jamestown, ND) was used to plant the alleys. Cornerstone® Plus (N-

[phosphonomethyl] glycine, Winfield Solutions, St. Paul, MN) was applied before establishment 

to rid the alleys of any existing vegetation at a 2.2 kg ha-1 rate [41% active ingredient (ai)] and 
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alleys were treated with PlateauTM (ammonium salt of imazapic) after establishment at a 0.28 kg 

ha-1 rate (23.6% ai).  

 

Fertilizer Applications 

Each spring between 2001 and 2007, except for 2005, 3.9 to 6.7 Mg poultry litter (PL) ha-

1 were distributed via broadcast application over the eastern half of the AF site and 50 to 76 kg 

nitrogen (N) ha-1, as ammonium nitrate (NH4NO3) fertilizer, were broadcast applied over the 

western half of the AF site [26]. In 2005, PL and NH4NO3 were applied at a rate of 8.9 Mg PL 

ha-1 and 123 kg N ha-1 in the spring and fall, respectively [26]. Starting in June 2004, additional 

fertilizer was surface-applied to the surrounding ground near each tree as an annual application 

of Osmocote (The Scotts Miracle-Grow Co., Marysville, OH), a slow-release fertilizer, that 

contained 5.6, 2.4, and 4.6 g of N, phosphorus (P), and potassium (K), respectively [26]. In 2005, 

both PL and NH4NO3 applications were made in the spring and fall in order to evaluate the 

impacts of nutrient source on soil physiochemical properties. 

In March 2017 and 2018 and April 2019, orchardgrass and native grass treatments in the 

alleys between tree rows received 84 kg N ha-1 (4.94 Mg ha-1, fresh weight basis) of locally 

sourced PL (Figure 1). The chemical composition of the 2017 PL application was 2.69, 0.7, and 

1.12 % N, P, and K, respectively, and had a pH of 6.1. The 2018 PL had 1.98, 0.58, and 1.02 % 

N, P, and K, respectively, and had a pH of 6.2. The 2019 PL had 2.48, 0.69, and 0.94 N, P, and 

K, respectively, and had a pH of 5.2. Additionally, the site was grazed by heifers (Bos taurus L.) 

at a density of 1.9 animal units (AU) ha-1 from May to June 2017, 2.2 AU ha-1 from May to July 

2018, and 2.42 AU ha-1 from May to July 2019 [24,27,28]. Additionally, N, in the form of urea 

(46-0-0), was applied at a rate of 67.3 kg N ha-1 or 146 kg urea ha-1 on 30 March 2020 and 31 
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March 2021. Urea was applied to all alleys with a fertilizer spreader attached to a 3-point hookup 

with a spreading width of 15.2 m. 

In April 2016, all trees at the AF site were amended with three different fertilizers at 

varying rates and areas surrounding the tree. Pecan trees were fertilized with 2.3 kg of NH4NO3, 

5.7 kg of a 13-13-13 fertilizer (Greenkeeper’s Secret 13-13-13 Premium Fertilizer, T&M, Inc., 

Foristell, MO), and 0.27 kg of gypsum (CaSO4) in a circular area around each tree with an 9.1-m 

diameter. Sycamore, cottonwood, and loblolly pine trees were fertilized with 0.2 kg of NH4NO3, 

0.48 kg of a 13-13-13 fertilizer, and 0.1 kg of gypsum, where the fertilizers were spread within a 

rectangular area around the trees in 2.4-m wide strips and 2.3 m between adjacent trees. For the 

northern red oak fertilization, if there were other red oak trees that were 2.4 m away on both 

sides of a red oak tree, the red oak tree was fertilized with 0.52 kg of NH4NO3, 1.3 kg of a 13-13-

13 fertilizer, and 0.27 kg of gypsum in a 2.4- x 6.1-m rectangular area around the tree. If there 

were no other red oak trees within 2.4 m of either side of a red oak tree, the red oak tree was 

fertilized with 1.0 kg of NH4NO3, 2.6 kg of a 13-13-13 fertilizer, and 0.54 kg of gypsum in a 4.9- 

x 6.1-m rectangular area around the tree. If there was a red oak tree that was 2.4 m away of a red 

oak tree on one side only, the red oak tree was fertilized with 0.79 kg of NH4NO3, 2.0 kg of a 13-

13-13 fertilizer, and 0.4 kg of gypsum in a 3.7- x 6.1-m rectangular area around the tree and 

offset to the open side of the tree 1.2 m and 2.4 m.  

In April 2017, pecan trees were fertilized with 2.3 kg of a 32-0-0 fertilizer, 5.7 kg of a 13-

13-13 fertilizer, and 0.27 kg of gypsum in a circular area around each tree with an 9.1-m 

diameter. Red oak trees were fertilized with 1.0 kg of a 32-0-0 fertilizer, 2.6 kg of a 13-13-13 

fertilizer, and 0.54 kg of gypsum in a 4.9 x 6.1 m rectangular area around the tree (i.e., 2.4 m to 

either side of the red oak tree in the row and 3.0 m to each side of tree into the adjacent alley). In 
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May 2017, sycamore, cottonwood, and loblolly pine trees were fertilized with 0.2 kg of a 32-0-0 

fertilizer, 0.48 kg of a 13-13-13 fertilizer, and 0.1 kg of gypsum in a 2.3 x 2.4 m rectangular area 

around the tree (i.e., 1.1 m to either side of the red oak tree in the row and 1.2 m to each side of 

tree into the adjacent alley). 

All tree fertilizer rates were the same in 2018, 2019, and 2020 for red oak, pecan, and 

loblolly pine trees. Pecan trees were fertilized in May 2018, April 2019, and June 2020 with 11.7 

kg of a 13-13-13 fertilizer, 4.7 kg of NH4NO3, and 2.4 kg of gypsum in a circular area around 

each tree with a 10.7-m diameter. Red oak trees were fertilized in May 2018, April 2019, and 

June 2020 with 8.5 kg of a 13-13-13 fertilizer, 3.4 kg of NH4NO3, and 1.8 kg of gypsum in a 

circular area around each tree with a 9.1-m diameter. Loblolly pine trees were fertilized in May 

2018, April 2019, and May 2020 with 0.72 kg of a 13-13-13 fertilizer, 0.29 kg of NH4NO3, and 

0.15 kg of gypsum based on a 2.4-m wide strip and 2.3 m between trees. Additionally, sycamore 

and cottonwood trees were thinned in summer 2019, however, the fertilizer footprint per tree was 

increased, making the per-area rate the same for 2018, 2019, and 2020. Sycamore trees were 

fertilized in May 2018, June 2019, and May 2020. For the 2018 and 2019 fertilizer applications, 

sycamore trees were fertilized with 1.1 kg of a 13-13-13 fertilizer, 0.44 kg of NH4NO3, and 0.23 

kg of gypsum based on a 3.7-m wide strip and 2.3 m between trees. For the 2020 sycamore 

fertilizer application, trees were fertilized with 2.1 kg of a 13-13-13 fertilizer, 0.87 kg of 

NH4NO3, and 0.45 kg of gypsum in a circular area around each tree with a 4.6-m diameter. 

Cottonwood trees were fertilized in May 2018, June 2019, and June 2020. For the 2018 and 2019 

fertilizer applications, sycamore trees were fertilized with 1.4 kg of a 13-13-13 fertilizer, 0.55 kg 

of NH4NO3, and 0.29 kg of gypsum based on a 4.6 m wide strip and 2.3 m between trees. For the 

2020 cottonwood fertilizer application, the trees were fertilized with 2.1 kg of a 13-13-13 
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fertilizer, 0.87 kg of NH4NO3, and 0.45 kg of gypsum in a circular area around each tree with a 

4.6-m diameter. Furthermore, the loblolly pine trees were also fertilized in June 2021 with 0.5 kg 

of a 13-13-13 fertilizer in a circular area around each tree with a 2.0-m diameter. Additional site 

establishment and management details were reported in Adams et al. [29], Adhikari et al. [30], 

Amorim et al. [31], Ashworth et al. [24], Ashworth et al. [32], DeFauw et al. [33], Dold et al. 

[34], Gurmessa et al. [28], Jiang et al. [35], Kharel et al. [36], Niyigena et al. [27], O’Brien et al. 

[37], Sauer et al. [26], Thomas et al. [38], and Ylagan et al. [39]. 

 

Survey Equipment  

Geospatial, EMI-based ECa measurements were obtained using a DUALEM-1S sensor 

(DUAL‐geometry Electro‐Magnetic; Dualem Inc., Milton, ON, Canada) and a Trimble R2 

global positioning system (GPS) unit (Trimble Inc., Westminster, CO). The DUALEM-1S is a 

non-invasive, geo-conductivity sensor that has a transmitter, which operates at 9 kHz, and has 

two receivers that have different orientations [6,40]. With a 1-m separation, both the transmitter 

and the receiver use vertical dipoles in the horizontal coplanar geometry. The perpendicular 

geometry also uses a vertical dipole transmitter and the receiver, located 1.1 m away, and utilizes 

a horizontal dipole [6,40]. The depths of exploration (DOE) for the horizontal coplanar geometry 

(HCP) and the perpendicular geometry (PRP) are roughly 1.6 and 0.5 m, where the DOE is 

defined as the depth to which an array accumulates 70% of its total sensitivity. Thus, the HCP 

measures the bulk ECa of the 0 to 1.6-m depth and the PRP measures the bulk ECa of the 0 to 

0.5-m depth and the conductivity range for the DUALEM-1S is 3000 mS m-1 [6,40].  

The DUALEM-1S is powered by a 12-V, direct current (DC), external power source 

[6,40]. In this study, a Can-Am Side-by-Side (Defender, BRP US, Inc., Sturtevant, WI) was used 
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to power and pull the DUALEM-1S on a sled during surveying (Figure 2). Measurements from 

the DUALEM-1S were transmitted serially through a 9-socket, DB-9 connector port, and were 

collected concurrently with the GPS data via a hand-held geoinformation system program 

(HGIS; HGIS version 10.90, StarPal Inc., Fort Collins, CO) on a Trimble Yuma 2 rugged tablet 

computer (Trimble Inc., Westminster, CO) [6,40].  

 

Survey Procedures 

In order to capture the spatial and temporal variability of ECa measurements at the AF 

site, mid-month scans were conducted between August 2020 and July 2021. To minimize the 

effects of temperature drift on the DUALEM-1S signal during surveying, surveys were 

conducted in the early morning and the DUALEM-1S sensor was powered on 30 minutes prior 

each survey in order for the sensor to reach ambient temperature. For each survey, the 

DUALEM-1S was securely suspended on a sled, 12.7 cm above the sled bottom, and was pulled 

at a rate of 4.8 to 8.0 km hr-1. The front of the DUALEM-1S was located 2.10 m behind the side-

by-side and the center of the DUALEM-1S was located 4.15 m behind the Trimble R2 GPS unit. 

Each survey was conducted in a looping pattern over two alleys at a time until four parallel drive 

paths per alley, 2 to 5 m apart, had been achieved (Figure 3). During the survey period, 

unnecessary stops were avoided and the sensor was kept > 1 m away from any metal objects. 

After each survey, a calibration line was driven over all subsequent survey lines so that any drift 

that occurred in the DUALEM-1S’s measurement during the survey period could be monitored 

and accounted for. The calibration line was conducted in a “V” shape, starting in the northwest 

corner, ending in the southwest corner of the AF site, with the midpoint being around the eastern 

edge of Row 8 or 9 (Figure 3). 
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Weather and Soil Property Collection 

The local air temperature and precipitation of the University of Arkansas SAREC in 

Fayetteville, AR was recorded every 30 minutes on a micrometeorological weather station, using 

a tipping bucket gauge, located 1.67 km away (36.101002°N, 94.173728°W) to the northeast of 

the northeast corner of the AF site. The recorded air temperature was averaged per day to obtain 

the daily average air temperature (DAAT) and the recorded daily precipitation was totaled to 

obtain the total daily precipitation (TDP).  

Soil VWC and soil temperature were recorded every 4 hours using 5TM soil moisture 

sensors (ECH2O 5TM Soil Moisture Sensor; METER Group, Pullman, WA) at the 15- and 75-

cm soil depths from the soil surface and logged on a Decagon EM50 data logger (METER 

Group, Pullman, WA; Figure 1). Additionally, two EC sensors (Teros 12; METER Group, 

Pullman, WA) were installed on 26 January 2021 at the 15- and 50-cm depths at each of the 

three sampling locations and at a location in the southwest corner of the site (Figure 1), where in-

situ soil EC was measured every 4 hours on a Decagon EM50 data logger. At the conclusion of 

the measurement period, VWC and soil temperature recorded between 1 August 2020 and 31 

July 2021 and EC recorded between 26 January 2021 and 31 July 2021 were averaged for each 

day and expressed as daily means.  

During each scan, soil samples were collected at three sentinel sites across the study area. 

The sentinel sites were located near the local summit, depression area, and a mid-slope area 

(Figure 1). At each sentinel site, soil samples were collected by auguring as deep as possible near 

each logger. During the auguring process, the removed soil was placed on its specific depth on 

the marked auger rug. Afterward, soil from the 0- to 15-and 45- to 55-cm depth intervals was 
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collected beginning on 20 November 2020 and 15 July 2020, respectively. The collected soil 

samples were placed in a sealed, plastic-lined bag and then weighed in the laboratory. Afterward, 

the samples were oven-dried in a forced-air oven at 70°C for 48 hours, re-weighed for moisture 

content determinations, and then mechanically ground and sieved to < 2 mm. Afterward, soil EC 

and pH were measured potentiometrically in a 2:1 water-volume-to-soil-mass slurry, where 40 g 

(± 0.05 g) of the oven-dried, sieved soil were mixed with 40 mL of deionized water and 

reciprocally shook on a mechanical shaker for 1 hr. The soil-water slurry was then filtered twice 

(No.1 filter paper, Cat No 1001 125; Whatman Cytiva, Little Chalfont, Buckinghamshire, UK) 

until there were 40 mL of filtrate, where the filtrate was then mixed by pouring the filtrate back-

and-forth between two plastic vails. Afterward, the volume of the filtrate was evenly split (20 

mL) between the two plastic vial and the pH and EC were determined by placing a pH (Orion 

9107BNMD; Thermo Scientific, Waltham, MA) and EC probe (Orion 013005MD; Thermo 

Scientific, Waltham, MA) into each of the vial, which both were connected to a pH/Conductivity 

Benchtop Meter (Orion Star A215; Thermo Scientific, Waltham, MA).  

 

EMI-ECa Survey Data Processing  

Prior to data analyses, survey data were cleaned, GPS coordinates adjusted, outliers 

removed, and calibrated. Survey data cleaning began with the deletion of any duplicate GPS 

output that were generated for a single DUALEM-1S measurement. Secondly, because the 

Trimble R2 GPS unit was located 4.15 m ahead of the DUALEM-1S sensor during each scan, a 

GPS adjustment between the DUALEM-1S sensor and the Trimble R2 GPS unit was needed 

[41]. Because the DUALEM-1S sensor was pulled behind the side-by-side at a rate of 4.8 to 8.0 

km hr-1 for every scan, an average of 6.4 km hr-1 was used to calculate the time it would take for 
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the center of the sensor to travel 4.15 m, which was 2.32 s. As a result, the DUALEM-1S output 

was adjusted to the GPS point that occurred the closest to 2.32 s earlier. Furthermore, any 

measurements that occurred during a stop that took place during the survey period were 

subsequently removed from the survey dataset. Additionally, all survey cleaning and GPS 

adjustments were also conducted on the calibration line data set.  

The next step in the pre-analyses data cleaning was the removal of outliers. If highly 

conductive objects (i.e., metal) were near the DUALEM-1S when a measurement was recorded, 

the object can result in interference with the produced electromagnetic fields of the DUALEM-

1S and cause the recording of soil ECa values that are biologically impossible (i.e., ≤ 0.0 mS m-

1). Thus, the outlier removal process began with the removal of any measurement points that had 

an HCP or PRP ECa conductivity measurement that were less than 0.1 mS m-1 for both the 

survey and calibration line. Additionally, similar to Rudolph et al. [42] and Martini et al. [43], 

any points that occurred within a 2.0-m buffer around the cables of the soil sensor network at the 

AF site were removed in order to remove the potential of any alteration of the ECa data that was 

caused by the magnetic components of the sensors. Afterward, a Hampel filter [44] was applied 

to each of the survey’s and calibration line’s HCP and PRP ECa data with a 10-point, half-width 

(i.e., 21 point moving data window) and a threshold of 3. A Hampel filter normally replaces a 

determined outlier with the local median; however, any measurement point that was determined 

to be an outlier in the HCP and/or PRP ECa of the survey or calibration line was simply removed 

altogether. Similarly, Delefortrie et al. [45] applied a Hampel filter to their DUALEM collected 

ECa surveys; although, they applied the Hampel filter later in the calibration procedure rather 

than on their original datasets and replaced the determined outliers with the local median. The 
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Hampel filter in this study was applied in R (version 4.05, R Core Team, Boston, MA) using the 

pracma package [46]. 

The decision to delete an entire measurement point due to either its HCP or PRP ECa 

measurement being an outlier, rather than just replacing the HCP and/or PRP ECa measurement 

outlier with the local median, was due to: 1) the belief that removing rather than replacing values 

with the local median was a better method for a more accurate dataset, 2) the attempt of being 

consistent with the earlier procedure of removing entire measurement points that had an HCP or 

PRP ECa conductivity measurement that was < 0.1 mS m-1; and 3) the belief that the removal of 

the relatively few measurement points with HCP or PRP ECa outliers would only affect the 

overall size of the survey and calibration line datasets and the end result of kriged surveys to a 

small degree. Furthermore, the removal of the entire point based on whether its HCP and/or PRP 

ECa was less than 0.1 mS m-1 or if the applied Hampel filter determined that either a point’s HCP 

and/or PRP ECa was an outlier was believed to be a proper method of removing outliers due to 

many of the removed points from all the completed survey and calibration lines occur around 

known locations of metal objects at the AF site. Additionally, there are groupings of removed 

outliers that occur in locations that do not have known metal objects. However, these isolated 

apparent outliers could be the result of a metal object that was placed or left in the ground prior 

to the establishment of the AF site.   

After the survey and calibration line had been cleaned, GPS coordinates adjusted, and 

outliers were removed, the survey data were then ready to be calibrated. Although the 

DUALEM-1S sensor was turned on roughly 30 min before each survey in order to bring the 

sensor to a stable internal temperature, it was necessary to calibrate the collected HCP and PRP 

ECa data because the internal temperature of the DUALEM-1S sensor can increase overtime 
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during the survey and cause ECa data to be slightly skewed. Similar calibration procedures 

produced by Delefortrie et al. [41], Martini et al. [43], and Simpson et al. [45] were used as 

references when conducting the calibration. The calibration procedure began with finding the 

survey points that occurred within 1.5 m of each point of the calibration line. The HCP and PRP 

ECa data and the measurement time of the survey points that occurred within 1.5 m of each 

calibration point were averaged. Similar to Martini et al. [43], a linear regression model was 

created based on the difference between the average HCP and PRP ECa of the survey points that 

occurred within 1.5 m of each calibration point and the HCP and PRP ECa of the calibration 

point versus the average measurement time of the survey points that occurred within 1.5 m of 

each calibration point. The linear regression model was applied to the cleaned, GPS-coordinate-

adjusted, outlier-removed survey dataset to obtain the projected differences between the HCP 

and PRP ECa of the survey and calibration line throughout the survey period. The projected 

differences between the HCP and PRP ECa of the survey and the calibration line were subtracted 

from the HCP and PRP ECa of the survey points at a given time, which resulted in a drift-

calibrated ECa survey dataset. The calibration procedure was performed in R Studio (version 

4.05, R Core Team, Boston, MA) using the geosphere package [47].  

 Because the ECa surveys were conducted at relatively equal intervals throughout the year, 

the ECa of each survey occurred at a different soil temperature. As a result, it was necessary to 

standardize the ECa measurements to a reference temperature. The HCP and PRP ECa were both 

standardized to 25°C (EC25) using the equation of Corwin & Lesch (2005b;1): 

 

���� = ���  × 	0.447 +  1.4034��/��.�����    (1) 

 



 

50 
 

In the equation, ECT (mS m−1) is the ECa at a particular soil temperature and T (°C) is the soil 

temperature [9]. The soil temperature (T) used in the EC temperature standardization equation 

(1) was the average recorded soil temperature of the soil sensors at the three sentinel sites (Figure 

3), at the time of a particular ECa survey, at the 15-cm depth for the PRP ECa standardization and 

at the 50-cm depth for the HCP ECa standardization. Additionally, any measurement point that 

had an HCP and PRP ECa value of < 0.1 mS m-1 after the EC temperature standardization 

equation (1) was applied was removed to be consistent with earlier procedures. The HCP and 

PRP ECa of any coincidental points were then averaged. Afterward, the cleaned, GPS-

coordinate-adjusted, outlier-removed, drift-calibrated, temperature-adjusted, coincidental point-

averaged HCP and PRP ECa survey datasets, referred to as HCP and PRP ECa, were then ready 

for interpolation procedures. 

Twenty percent of the HCP and PRP ECa survey data were selected at random and set 

aside for model validation. The experimental semi-variogram was calculated with the remaining 

80% and fitted with a nugget and exponential, spherical, Gaussian, Matern, circular, and linear 

models. The best model minimized the sum of square of error and was selected for universal 

kriging to a 5-m resolution. A 5-m resolution was chosen to be consistent with the resolution of 

previous studies at the AF’s site [35]. Values from the interpolated raster were then extracted to 

each of the validation locations. The model residuals were calculated using Equation (2): 

 

�� =  ��� − ��           (2) 
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where �� is the residual value in location i, ���  is the predicted value in location i, �� is the 

observed value in location i, and i belongs to all locations selected at random to form the 

validation dataset. The model error was calculated from the model residuals using Equation (3): 

  

�� =  � 

! 
                  (3) 

 

where �� is the model error at location i. Additionally, the interpolation procedures were 

conducted in R Studio (version 4.05, R Core Team, Boston, MA) using the sp [48], rgdal [49], 

gstat [50], geodist [51], raster [52], and terra [53] packages. 

Statistical Analyses 

The cleaned, GPS-coordinate-adjusted, outlier-removed, drift-calibrated, temperature-

adjusted, coincidental point-averaged, universally-kriged HCP and PRP ECa survey datasets, 

hereafter referred to as HCP and PRP ECa, were used to determine the mean, standard deviation 

(SD), and coefficient of variation (CV) among the 5-m pixels to assess the spatial variability of 

the AF site’s HCP and PRP ECa during the 12-month study period. Furthermore, in order to 

assess the AF site’s temporal variability, linear regression was applied over the mean, SD, and 

CV across all 12 chronologically ordered survey dates for both ECa configurations. Additionally, 

the mean, SD, and CV for the HCP and PRP ECa data for each season (i.e., summer, fall, winter, 

and spring) determined by averaging the means, SDs, and CVs of the surveys that fell within 

each season. Afterward, a linear regression was also applied over the mean, SD, and CV of the 

HCP and PRP ECa data for each season to assess the AF site’s seasonal temporal variability 

across the seasons. It was decided that the order of the weather seasons would begin with 

summer and end with spring because the first survey took place at the end of summer. 
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Furthermore, the mean, SD, and CV of the HCP and PRP ECa per tree growing (GS)/non-

growing season (NGS) were determined by averaging the mean, SD, and CV for each survey that 

fell within the GS or NGS groups. The surveys that took place during the GS and NGS were 

determined using soil sensor and air temperature data recorded at or near the AF site along with 

guidelines provided by the NRCS’s National Water and Climate Center [54]. Table 1 

summarizes each survey’s seasonal grouping (i.e., weather season and GS/NGS) and all linear 

regression were applied in R studio.  

A one-factor analysis of variance (ANOVA) was conducted in R Studio (version 4.05, R 

Core Team, Boston, MA) to evaluate the effect of season and GS/NGS on HCP and PRP ECa. 

When main effect differences were found, means were separated by least significant difference 

(LSD) at the alpha level of 0.05. Furthermore, precision soil management zones within the AF 

site were generated using the k-means clustering algorithm [55] by overlaying and grouping 

HCP and PRP ECa surveys. The optimal number of clusters used in the k-means clustering was 

determined using the factoextra package [56] in R Studio.  

Correlation analyses were conducted with proximally sensed and sensor-based 

measurements to identify potential linkages between variables. Specifically, correlations among 

PRP and HCP ECa (independently and combined) and in-situ, soil-sensor-collected VWC and 

ECa and benchtop-measured soil sample GWC, EC, and pH (at all depths) were analyzed using 

Pearson correlations at an alpha level of 0.05. Additionally, Levene’s test for homogeneity of 

variance was conducted to assess if fewer, strategically selected ECa surveys could have been 

conducted to capture the same amount of overall ECa variance at the AF site as the 12 monthly 

ECa surveys for both the HCP and PRP ECa. The non-universally-kriged HCP and PRP ECa 
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survey data sets were used in the Levene’s test. Table 1 also summarizes the survey groupings 

used in the Levene’s test. 

 

Results and Discussion 

Weather, Soil Sensor, and Soil Sample Data 

 Air temperature and precipitation measured at the AF site throughout the 

measurement period were below historical climate means. Between 1 August 2020 and 31 July 

2021, the overall average daily air temperature at the AF site was 14.0°C, which was slightly 

numerically lower to the 30-yr mean (i.e., 1981 to 2010) of 14.6°C [25]. Conversely, the range in 

the recorded air temperature at the AF site differed greatly from the annual average (Figure 4) 

[25]. The recorded minimum and maximum daily mean air temperatures at the AF site were - 

18.7 (15 February 2021) and 28.3°C (28 June 2021), respectively, which were 27.4°C lower and 

7.7°C greater, respectively, than the 30-yr mean annual minimum and maximum air temperatures 

(Figure 4) [25]. Furthermore, the AF site received a total of 818 mm of precipitation during the 

sampling period of the study, where the largest precipitation event occurred over a course of four 

days at the end of September 2020, totaling 141 mm (Figure 4). Similar to the range in recorded 

air temperatures, the total precipitation at the AF site differed from the mean annual precipitation 

of 1156 mm [25].  

 The daily mean soil temperatures generally followed the overall trend of the recorded 

daily mean air temperature. The daily mean soil temperature at the AF site averaged 15.5 and 

14.9°C for the 15- and 75-cm depths and ranged between 1.6 (Logger 6b, 15-cm depth, 15 

February 2021) and 26.5°C (Logger 2, 15-cm depth, 16 August 2020; Figures 1 and 5), 

respectively. The plunge in daily mean soil and air temperatures, which occurred in the middle of 
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February 2021, was due to a winter storm that occurred between 13 and 17 February 2021 

(Figure 5). Furthermore, the daily mean soil VWC averaged 31.1 and 31.3 % (v v-1) for the 15- 

and 75-cm depths and ranged between 9.9 (Logger 2, 75-cm depth, 11 September 2021) and 57.7 

% (v v-1) (Logger 6b, 15-cm depth, 14 July 2021; Figures 1 and 5), respectively. Fluctuations in 

the recorded soil VWC following precipitation events were observed, where the area with the 

greatest response, and generally greatest overall soil moisture, was at Logger 6b at the 15-cm 

depth (Figures 1 and 5). Logger 6b is positioned in the depressional area within the local 

drainage way, where water pools not only during precipitation events, but throughout the year 

(Figure 1) [24,30,36]. After the precipitation event at the end of September 2020, soils remained 

consistently wetter throughout the end of fall, winter, and spring compared to the summer 

months, especially at Logger 6b (Figures 1 and 5). The daily mean soil ECa averaged 18.0 and 

18.5 mS m-1 for the 15- and 50-cm depths and ranged between 5.7 (Logger 2, 50-cm depth, 12-

14 September 2021) and 43.7 mS m-1 (Logger 6b, 15-cm depth, 27 May 2021; Figures 1 and 5), 

respectively.  

 Unlike the soil sensors at the AF site, soil samples were only collected for each survey 

conducted. Soil GWC averaged of 26.9 and 21.8 % (m m-1) for the 0-15- and 45-55-cm depth 

intervals and ranged between 7.9 (Logger 2, 45-55 cm depth, 18 September 2020) and 38.4 % (m 

m-1) (Logger 6b, 0-15 cm depth, 11 June 2021; Figures 1 and 6), respectively. The measured EC 

of the soil samples averaged 17.8 and 8.8 mS m-1 for the 0-15- and 45-55-cm depth intervals and 

ranged between 6.3 (Logger 9, 45-55 cm depth, 18 September 2020) and 27.9 mS m-1 (Logger 

6b, 0-15 cm depth, 14 July 2021; Figures 1 and 6), respectively. The pH of the soil samples 

averaged of 6.2 and 5.8 for the 0-15- and 45-55-cm depth intervals and ranged between 4.6 
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(Logger 2, 45-55 cm depth, 19 August 2020) and 6.7 (Logger 6b, 0-15 cm depth, 13 May 2021; 

Figures 1 and 6), respectively. 

 

EMI-ECa Survey Data 

Semi-variogram Information  

 After data processing, the ECa surveys ranged between 5,271 and 6,854 and averaged 

6,108 measurement points (Table 2 and 3). The number of points used in the universal kriging 

and model validation averaged 4,887 and 1,222, respectively (Table 2 and 3). Additionally, the 

universally-kriged PRP and HCP ECa data sets totaled 1836, 5-m pixel measurements across the 

AF site. The experimental semi-variograms for the PRP ECa surveys primarily consisted of 

exponential models, but two surveys had Matern as the best-fit model (Table 2). Alternatively, 

the experimental semi-variograms for the HCP ECa surveys primarily consisted of Matern 

models, but also had spherical, circular, and exponential as best-fit models (Table 3).  

 For the PRP ECa, the nugget ranged between 0.00 (February, May, and June 2021 

surveys) and 0.61 (August 2020 survey), the sill ranged between the 3.5 (September 2020 

survey) and 13.1 (June 2021 survey), and the range ranged between 24.0 (March and May 2021 

surveys) and 41.4 m (November 2021 survey; Table 2). For the HCP ECa, the nugget ranged 

between 0.00 (December 2020 and January, February, March, April, and May 2021 surveys) and 

0.32 (October 2020 survey), the sill ranged between 11.8 (July 2021 survey) and 19.1 (June 2021 

survey), and the range ranged between 42.1 (March 2021 survey) and 97.9 m (August 2020 

survey; Table 3).  

 Each parameter of the experimental semi-variogram provides different information. 

The sill represents the value where the semi-variance of the modeled variable plateaus, and the 
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range corresponds to the distance where the sill first occurs and the distance where 

measurements are no longer spatially correlated [57–59]. The nugget represents small-scale, 

uncorrelated spatial variations within the 5-m pixels at the AF site, including measurement error 

[57,59]. Practically, the range indicates how within-site differences are spatially dependent, 

where a larger range represents greater spatial correlation, and a small range represents smaller 

spatial correlation [57–59]. Additionally, when data sets are kriged, the range of the semi-

variogram model governs the average radius/correlation length of the nodes created and the sill 

governs the magnitude of the nodes [58]. 

 The sill, range, and nugget can also be used as an indicator of the spatial structure and 

variability of the modeled variable [59,60]. The strength of the spatial structure (i.e., spatial 

pattern) can be described by the nugget to sill ratio (nugget/sill), which is the ratio of 

unexplained variability to the total variability [59,60]. Specifically, the nugget/sill ratio relates to 

the proportion of small-scale variability that cannot be characterized by the geostatistical model 

within the measured field [59,60]. If no small-scale variability/measurement error is present, then 

the nugget is 0 [61]. Originally proposed by Kravchenko (2003) [60] and similarly used by Zhu 

et al. [59], a nugget/sill ratio of 0.6, 0.3, and 0.1 correlates to a weak, medium, and strong spatial 

structure, respectively. All ECa survey data sets (i.e., HCP and PRP), excluding the PRP ECa 

August 2020 (0.13), had nugget/sill ratios of < 0.1, indicating that all ECa survey data sets in this 

study had strong, or just under strong, spatial structure [60].  

 In addition to the nugget/sill ratio, the range can also be used to help understand the 

modeled variable. Specifically, increased correlation lengths/ranges are indicative that the 

variable of interest (e.g., ECa in this study) varies steadily over smaller spatial distances and that 

the parameter’s variability becomes greater at larger spatial distances, while decreased 
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correlation lengths/ranges are indicative that the variable of interest varies erratically over small 

distances [59,61]. The ranges of the PRP ECa surveys were 31 to 68% less than from the 

corresponding HCP ECa surveys (Tables 2 and 3), which is indicative of the PRP ECa being 

more spatially erratic and variable than the HCP ECa [61]. DeCaires et al. [62] conducted 

repeated DUALEM-1S surveys on a 5.81-ha cacao (Theobroma cacao L.) plantation, classified 

as an alluvially formed silty-clay Inceptisol in Trinidad, and also reported that the PRP ECa 

generally had a larger nugget, smaller sill, and a shorter range than the HCP ECa. It is important 

to mention that no other study has conducted similar repeated, evenly spaced EMI-ECa surveys 

at a site of similar size, topography, and land management (i.e., AF) within a similar 

environment as the Ozark Highlands. Additionally, making exact comparisons to other similarly 

collected and produced EMI-ECa data was not feasible, as no other study conducted similar data 

processing procedures and analyses as those conducted for this study. However, several studies 

exist that possess similar aspects to the current study, thus these studies have been used for 

indirect comparisons.  

 The PRP ECa being more spatially variable than the HCP ECa is likely a result of the 

HCP measuring deeper into the soil profile than the PRP. Specifically, the PRP incorporates less 

of the soil profile into its measurement, and the part that is incorporated into the ECa 

measurement (i.e., 0-0.5 m) is generally much more variable in pedogenesis factors and soil 

properties (i.e., SWC, OM, nutrients, structure/porosity, and coarse fragments), hence ECa is 

more variable as well. The variations in pedogenesis and soil properties are the result of the 

upper portion of the soil being more exposed to surface factors that are also spatially and 

temporally variable, such as weather (i.e., precipitation, air temperature, wind, and sunlight), 
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environmental processes (i.e., runoff, surface erosion/accumulation, and evapotranspiration), and 

land management (i.e., fertilizer/manure and type and quantity of trees/grasses/animals). 

 

Monthly Kriged EMI-ECa Survey Data 

 Each monthly survey had a similar spatial pattern for both PRP and HCP ECa. For the 

PRP configuration, the September 2020 and June 2021 surveys had the lowest (0.2 mS m-1) and 

largest (29.1 mS m-1), respectively, recorded ECa values at the AF site during the sampling 

period (Table 2; Figure 7). The June 2021 survey had the greatest mean (8.7 mS m-1), SD (3.6 

mS m-1), and range (26.4 mS m-1) and the September 2020 survey had the largest CV (48.1 %) 

for the PRP ECa (Table 2; Figure 7). Furthermore, the September 2020 survey had the smallest 

mean (3.4 mS m-1), SD (1.7 mS m-1), and range (14.2 mS m-1) and the November 2020 survey 

had the smallest CV (32.2 %) for the PRP ECa (Table 2; Figure 7).  

 For the HCP configuration, the September 2020 and March 2021 surveys had the 

numerically smallest (0.4 mS m-1) and largest (34.2 mS m-1), respectively, recorded ECa values 

at AF site during the sampling period (Table 3; Figure 8). The December 2020 survey had the 

greatest mean (12.3 mS m-1), the June 2021 survey had the greatest SD (5.1 mS m-1), the 

September 2020 survey had the largest CV (61.1 %), and the March and May 2021 surveys had 

the greatest range (29.4 mS m-1) for the HCP ECa (Table 3; Figure 8). Furthermore, the 

September 2020 survey had the smallest mean (6.7 mS m-1), the July 2021 survey had the 

smallest SD (3.9 mS m-1), the March 2021 survey had the smallest CV (35.5 %), and the July 

2021 survey had the smallest range (18.9 mS m-1) for the HCP ECa (Table 3; Figure 8).  

 Overall, the HCP ECa was numerically greater and more numerically variable than the 

PRP ECa (Table 2 and 3). The mean HCP ECa was numerically greater than the mean PRP ECa 
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for every survey date (Table 2 and 3). Additionally, besides the CV for the October 2020 and 

January, March, and April 2021 surveys, the SD, CV, and range were numerically greater from 

the HCP than the PRP ECa (Table 2 and 3). Although the HCP ECa was generally more variable 

per survey than the PRP ECa (i.e., SD and CV), the range in the SD for the PRP ECa surveys (1.9 

mS m-1) was numerically greater than that from the HCP ECa surveys (1.2 mS m-1; Table 2 and 

3).  

 Because the PRP and HCP measure the bulk ECa of the 0-0.5- and 0-1.6-m soil 

depths, respectively, the measured PRP ECa was more likely a reflection of soil surface 

management and the HCP ECa was more likely a reflection of pedogenic factors (i.e., time, 

parent material, organisms, topography/relief, and climate). Additionally, because different soils 

have varying properties, it can be expected that different mapped soils would result in varying 

ECa measurements across the AF site. However, based on the generated PRP and HCP ECa maps 

(Figures 7 and 8) and soil boundary data (Figure 1), soil boundaries were not detailed enough to 

show visual correlations with the measured ECa values for either ECa configuration. Although 

the soil boundary data were not detailed enough for visual correlations with the ECa data, the 

western portion of the AF site was still generally characterized by a shallower depth to bedrock 

and an increase in chert coarse fragment abundance (Figure 1). Coarse fragments have been 

shown to be negatively corelated with ECa [63]. Thus, the increased chert coarse fragments could 

have resulted in the decreased PRP and HCP ECa values in the western portion of the AF site 

(Figures 7 and 8).  

 An additional potential residual effect is that PL was applied between 2001 to 2007 

and can be observed through increased ECa values occurring in the eastern half of the AF site in 

both ECa configurations (Figures 7 and 8). Specifically, PL and NH4NO3 were annually applied 
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based on the annual soil total-N concentrations to the eastern and western halves of the AF site 

between 2001 and 2007, respectively [26]. After the PL and NH4NO3 applications, Sauer et al. 

[26] reported numerically larger percent changes in nutrient concentrations in 9 of the 11 soil 

nutrients measured [i.e., N, P, K, magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), zinc (Zn), 

and copper (Cu)] in the soils that received PL, than the soils that received NH4NO3. Thus, 

increased nutrients concentrations likely remain in the soils that received PL and may be 

contributing to increased PRP and HCP ECa measurements (Figures 7 and 8).  

 In addition to the PRP ECa most likely reflecting surface management actvities, the 

PRP ECa likely varied overtime more than the HCP ECa due to variations in soil properties from 

fluctuating weather (i.e., soil moisture). Specifically, the SD for the HCP ECa was generally 

more consistent than SD for the PRP ECa (Table 2 and 3). Additionally, the SD for the PRP ECa 

was generally smaller in the summer months than in the fall, winter, and spring (Table 2 and 3), 

which was most likely a reflection of increased soil moisture [59,64]. During wetter periods (i.e., 

fall, winter, and spring), the spatial distribution of soil moisture is heavily influenced by 

topography, where topography strongly controls the lateral distribution of water, which increases 

soil moisture variability, and thus the variability of measured ECa [59,64]. 

 Although no surveys for either the HCP or PRP ECa were exactly alike, each survey 

per configuration had a similar geospatial pattern to the other (Figure 7 and 8). For both the HCP 

or PRP ECa, an elevated trail in ECa values can been seen starting in the northwest corner, 

peaking in the center (Rows 5 to 7), and trailing off to bottom middle of the AF site (Figure 7 

and 8). This apparent pattern can be attributed to landscape properties that affect water flow and 

runoff accumulation and factors that affect measured ECa. Specifically, the trail of elevated ECa 

values occurs in the local drainage way of the AF site, where the northwest corner has the AF 
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site’s greatest elevation and the local landscape depression is in the center of Rows 5 to 7 

(Figures 1, 7, and 8) [30,36]. Additionally, runon from the surrounding, up-slope landscapes 

enters through a culvert in the northwest corner of the AF site (Figure 1). Prior to the site’s 

conversion to an AF system, this drainage way characterized by the formation of major gullies 

(Figure 9) [30,36,65]. However, the gullies were subsequently filled in once the site began to be 

converted into an AF system. Additionally, although the gullies have been filled in, this area of 

the site continues to be the surface drainage way of the AF site and shows evidence of water 

movement, water accumulation, and landscape drainage (Figure 9) [30,36,65].  

 As water moves across the land surface, sediment, nutrients, and OM accumulate from 

up-slope and are deposited in areas of flow accumulation at a lower elevation. Overtime, the 

overland flow accumulation results in an accumulation of water and transported nutrients, OM, 

and sediment in channels or low-lying areas, which also have the potential to increase plant 

productivity in those areas. Furthermore, some of the major influencing factors of soil ECa are 

soil salinity, SWC, and OM [8]. Additionally, saturated soil or ponded water on the soil surface 

was visually observed at Logger 6b during most of the surveys conducted, and the upper soil-

senor VWC measurements and upper and lower soil-sample GWC measurements at Logger 6b 

had some of the largest VWC throughout the sampling period (Figure 5). Thus, the elevated PRP 

and HCP ECa values in the northwest corner of the AF site towards the center of Rows 5 to 7 

were most likely the result of greater SWC and accumulated transported materials from the local 

landscape, but also from the up-slope runoff into the northwest corner from the surrounding 

landscape (Figures 7 and 8).  

 Although more visible in the HCP ECa surveys, two trails of elevated ECa values 

starting at the middle-eastern edge that connect to the elevated EC a of the local depressional area 
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and drainage way of the AF site can be observed in both configurations (Figures 7 and 8) 

[24,36]. Unlike at the local depressional area (Logger 6b; Figure 9), no visual signs of soil 

wetness were observed in these areas during the duration of the study. However, the lower soil 

sensor at Logger 9, which was located at the more southern of the two trails of elevated ECa 

values, recorded similar VWC measurements as the upper soil sensor measurement at Logger 6b 

throughout the winter during this study (Figure 5). Additionally, Smith et al. [66] conducted 

ground penetrating radar surveys at the AF site and produced measurements that potentially 

show groundwater movement in the same areas with elevated ECa values. Thus, the trails of 

elevated ECa values starting at the middle-eastern edge of the AF site are most likely due to 

increased SWC from a shallow groundwater table (Figure 8).  

 

 

Overall Kriged EMI-ECa Survey Data 

 The spatial patterns of the overall mean, SD, and CV differed greatly between PRP 

and HCP ECa. Averaged across all 12 surveys, mean PRP and HCP ECa ranged between 1.8 and 

18.0 mS m-1 and 3.1 and 25.8 mS m-1, respectively (Figure 10), and shared a similar spatial 

pattern as the monthly survey (Figures 7 and 8). The SD for PRP and HCP ECa ranged between 

0.6 and 4.8 mS m-1 and 1.3 and 4.9 mS m-1 within the AF site across all surveys, respectively 

(Figure 10). Additionally, the CV for the PRP and HCP ECa ranged between 15.1 and 62.9 % 

and 7.3 and 54.6 % within the AF site across all surveys, respectively (Figure 10). 

 Most of the AF site is classified as a Captina silt loam (Figure 1), which is 

characterized by a large increase in clay content with depth [23]. Additionally, a fine-textured 

soil generally has a greater water-holding capacity than a coarse-textured soil and SWC 
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generally increases with depth. Thus, the mean HCP ECa being numerically greater than the 

mean PRP ECa was most likely due to the SWC and clay content increasing with depth [8,59]. 

Additionally, measured soil ECa is influenced both by stable and dynamic soil properties. 

Numerous soil properties (i.e., soil texture, clay content, OM content, and depth to bedrock) are 

temporally stable within short time spans (i.e., within a year). Thus, within humid regions, 

temporal fluctuations in the measured soil ECa are generally reflective of variations in SWC and 

water movement [59].  

 For both the PRP and HCP ECa, the SD was generally elevated in the NW corner and 

across the middle-eastern edges of the AF (Figure 10), where both were most likely a result of 

fluctuating SWC. The NW corner is where runon from the surrounding, up-slope landscape 

enters into the AF site. Therefore, runoff-producing precipitation events would cause the NW 

corner to have varying SWC, hence varying ECa, throughout the year. Additionally, the elevated 

ECa across the middle-eastern edges of the AF site are likely where subsurface water movement 

occurs [66], and thus fluctuation in the SWC in these areas would cause fluctuation in the 

measured ECa throughout the year (Figure 10). However, one major difference in the SD 

between the PRP and the HCP was PRP had elevated SD values along the drainage way at the 

site and the HCP did not (Figures 9 and 10) [24,30]. Elevated SD for the PRP, and not the HCP, 

was also likely from fluctuating SWCs throughout the year (Figure 10). Specifically, the PRP 

measures the upper 0.5 m of the soil, which is going to be more affected throughout the year by 

changes in weather and surface conditions (i.e., precipitation, air temperature, wind, sunlight, 

and evapotranspiration) than the 0-1.6 m of the soil profile which the HCP measures. As a result, 

the SD of the HCP ECa likely did not vary to the same extent as the PRP ECa because SWC 
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varied less throughout the year due to the HCP ECa representing the portion of the soil that is 

less affected by surface factors (Figure 10).  

 The CV of the PRP and HCP ECa generally had a similar spatial pattern, where there 

were increased CVs in the west/southwest portion and small CVs occurring in the eastern 

portion, which slightly increase moving towards the northeast of the AF site (Figure 10). 

However, the CV of the PRP ECa had a less cohesive pattern and was visually more variable 

across the AF site than that of the HCP ECa CV (Figure 10). The CV of the PRP ECa was 

visually more variable than the CV of the HCP ECa, which was potentially due to two reasons 

(Figure 10). First, the PRP ECa is a reflection of a smaller, upper portion of the soil profile (i.e., 

0-0.5 m). Secondly, the 0-0.5-m portion of soil is generally more spatially and temporally 

variable in soil properties (i.e., SWC, OM, nutrients, structure/porosity, and coarse fragments) 

than the 0-1.6-m depth from the 0-0.5-m portion of the soil being exposed to surface factors that 

are also spatially and temporally variable (i.e., weather, environmental processes, and land 

management; Figure 10). Furthermore, the smallest CVs in the HCP ECa were generally located 

in wetter areas at the AF site [30] likely due to the SWC deeper in the soil profile at these 

locations being consistently moist to saturated throughout the year (Figure 10). Additionally, 

unlike the SD, there were no elevated CVs in the NW corner or along the middle-eastern edges 

of the AF site for both ECa configurations (Figure 10). Thus, the ECa variability (i.e., SD) in the 

NW corner and along the middle-eastern was minimal when standardized with the mean for both 

ECa configurations (Figure 10).  

 Elevated HCP ECa SDs and CVs occurred under the pine tree canopies (Figure 10). 

Authors offer several likely explanations, including a decreased water-holding capacity from a 

decreased effective soil depth and increased coarse fragment concentration in the Nixa cherty silt 
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portion of the site (Figure 1) [31]. Additionally, it is possible that the coniferous trees may be 

acidifying soils relative to deciduous species at the site, thus resulting in greater ECa, as Burgess-

Conforti et al. [67] reported that coniferous was more acidic than deciduous leaf litter in 

northwest Arkansas.   

 

ECa Temporal Trends 

 The linear relationship between the PRP and HCP ECa survey data and chronological 

season sequence was assessed. Of the 12 data sets the linear regression was applied to (i.e., HCP 

and PRP mean ECa, SD, and CV across time and by weather season), only two significant (P < 

0.05) relationships resulted (Figure 11): PRP ECa SD increasing over time (i.e., August 2020 to 

July 2021) and HCP ECa CV decreasing across weather seasons (i.e., summer to spring; Figure 

11). The mean ECa for the PRP and HCP did not differ across time (i.e., survey dates) nor across 

weather seasons, the HCP ECa SD did not differ over time or across weather seasons, the PRP 

ECa SD did not differ across weather seasons, and the HCP ECa CV did not differ over time 

during the sampling period (P > 0.05; Figure 11). Thus, the hypothesis that there would be a 

change in the mean ECa and ECa variability (i.e., SD and CV) across time and across the weather 

seasons was supported for some, but not all ECa summary statistics across time (i.e., survey dates 

and weather season) combinations. 

 The significant relationship for the PRP ECa SD across time was most likely due to a 

combination of reasons. First, the PRP measures the bulk ECa of the 0-0.5 m depth, which is the 

soil depth interval where soil priorities (i.e., soil moisture) fluctuate across time more so than in 

the deeper depth measured by the HCP. Secondly, after November 2020, precipitation continued 

to increase at the AF site until the middle of July 2021 (Figure 4) and, during wetter periods, the 
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spatial variability of soil moisture also increases [59,64]. Specifically, topography heavily 

controls the lateral distribution of water (i.e., precipitation and overland flow), and thus the 

spatial distribution of soil moisture, during wetter periods, resulting in increased soil moisture 

content (SMC) and ECa spatial variability [59,64]. Therefore, the local topography and increased 

precipitation at the AF site most likely caused the spatial variability of soil moisture, and thus 

measured ECa variability (i.e., SD), to increase over time within the study period [59,64].  

 Unlike the PRP ECa SD over time, the HCP ECa CV across weather seasons decreased 

from summer to spring (Figure 11). The explanation for why HCP ECa CV across the weather 

seasons decreased is not clear, as the PRP ECa CV across weather seasons and the PRP and HCP 

ECa over time did not widely vary (Figure 11). Additionally, there could have been a different 

trend over time, or no trend at all, in the ECa data across time/season if the surveys had been 

conducted in a different month and/or seasonal order (i.e., spring to winter). However, perhaps 

the increase in precipitation between February to May 2021 (Figure 4) led to an increase in SWC 

and salinity homogeneity in the upper 1.6 m of the soil profile, and thus reduced variability in the 

measured HCP ECa, across the AF site, resulting in the HCP ECa CV decreasing from summer to 

spring (Figure 11).   

 

Seasonal Effects on ECa  

 The PRP and HCP mean ECa, SD, and CV were unaffected (P > 0.05) by either 

weather season or tree growing season. Thus, there was no difference between the mean or 

variation (SD and CV) among surveys that were conducted in different weather seasons or 

surveys that were recorded in the tree growing season versus the tree non-growing season. 

Furthermore, the hypothesis that there would be significant difference between the ECa mean, 
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SD, and CV of surveys that were conducted in different weather seasons and in the tree 

growing/non-growing season at a 20-year AF system within the Ozark Highlands was rejected. 

These results highlight that the measured ECa at the AF site was more reflective of and 

influenced by temporally stable soil (i.e., soil texture, clay content, OM content, and depth to 

bedrock), vegetative (i.e., coniferous versus deciduous trees), and terrain properties than 

temporally variable soil properties (i.e., SWC) within short time spans (i.e., < 1 year). Similar 

results have been reported by Harvey & Morgan (2009) who conducted EMI-ECa surveys in 

Spring 2005, Fall 2005, and Spring 2006 across four different fields in north-central Texas that 

primarily consisted of the Miles (Typic Paleustalfs) and Abilene (Pachic Argiustolls) soil series 

and had been intensively cultivated with cotton (Gossypium hirsutum L.) and wheat (Triticum 

aestivum L.) [68]. Although the effect of season on the mean ECa or SD was not formally 

evaluated, Harvey & Morgan (2009) reported relatively similar mean ECa and SD values for the 

surveys conducted during different seasons within the same field [68]. Additionally, Harvey & 

Morgan (2009) also reported visual similarities among the kriged maps for the three surveys 

[68].  

 

Soil Management Zones  

 Three precision soil management zones (SMZ) were delineated based on k-means 

clustering at the AF site using the PRP and HCP ECa data (Figure 12). Three SMZs were 

determined to be the optimal number of zones to delineate using the factoextra package in R 

Studio [56]. The location and geospatial pattern of the SMZs were similar between the PRP and 

HCP (Figure 12) and both were visually similar to their respective overall means map (Figure 

10). Thus, the hypothesis that the monthly EMI-ECa surveys at a 20-year-old AF system within 
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the Ozark Highlands could be grouped into similar functional populations and delineated into 

zones for precision soil management was confirmed.  

 For both the PRP and HCP ECa, SMZ 1, 3, and 2 (Figure 12) occurred where the 

recorded ECa was numerically smallest, in between, and the largest throughout the sampling 

period, respectively (Figure 10). With the exception of the CV, all summary statistics (i.e., mean, 

minimum, maximum, SD, and SE) for the HCP were numerically greater than for the PRP 

(Figure 12; Table 4). For both the PRP and HCP, SMZ 2 was more variable (i.e., greater range, 

SD, and SE) than the other two SMZs (Figure 12; Table 4). However, when the SMZs’ 

variability was standardized by the mean (i.e., CV), SMZ 1 had the numerically greatest 

variability relative to the mean compared to the other SMZs (Figure 12; Table 4). However, 

SMZ 1’s numerically largest variability relative to the mean was more likely a result of just the 

PRP and HCP mean ECa being 42 to 60% and 46 to 66%, respectively, than the other two SMZs, 

rather than a soil property or terrain attribute causing variability in the measured ECa within 

SMZ 1 (Figure 12; Table 4). Additionally, SMZ 3 was generally the second numerical greatest 

occurring and second most variable (i.e., range, SD, CV, and SE; Figure 12; Table 4) among the 

three SMZs. 

 Except for the CV, SMZ 2 had the numerically greatest mean and variability in the 

PRP and HCP ECa was most likely due to SMZ 2 encompassing the local drainage way [30,36] 

and areas of potential subsurface water movement (Figure 12). Soil constituents, such as water, 

OM, nutrients/salinity, and clay particles, can increase soil ECa [1] and may have accumulated 

over time in the drainage way at the AF site, likely resulting in SMZ 2 having the greatest mean 

ECa among the three SMZs (Figure 12). Additionally, because SMZ 2 includes the local drainage 

way and zones of potential subsurface water flow, SMZ 2 experiences the greatest fluctuations in 
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SWC throughout the year, likely contributing to SMZ 2 having the greatest variability in 

measured ECa of the three SMZs, in three out of four variability statistics (i.e., range, SD, and 

SE; Figure 12).  

 Furthermore, SMZ 1 had the numerically smallest mean and variability in three out of 

four variability statistics (i.e., range, SD, and SE) in the PRP and HCP ECa and was most likely 

due SMZ 1 encompassing the area of shallower depth to bedrock and increased coarse fragment 

abundance and SMZ 1 not being a zone of accumulation (Figure 12) [30,35]. Although no soil 

sensor or sample data were collected from this area, SMZ 1 likely had the smallest VWC among 

the three SMZs for several reasons. First, SMZ 1 is not an area of water accumulation during 

precipitation events, thus soil constituents (i.e., sediment, OM, and nutrients) have been eroded 

from the area and less water is able to infiltrate into the soil, resulting in decreased SWC and 

SWC variability than in SMZ 2. Secondly, increased coarse fragments increases soil BD, which, 

in turn, decreases porosity, soil water-holding capacity, and VWC [69], and thus ECa. 

Additionally, Zhu et al. [59] and Brevik et al. [70] reported larger soil ECa responses to SWC 

fluctuations at wetter positions in the landscape than in drier locations, suggesting that soil ECa is 

less dependent on SWC in drier locations than in wetter locations. Zhu et al. [59] also reported 

that at drier landscape positions or during drier time periods, the influence of water flow paths 

and SWC were masked by other soil and terrain attributes. Thus, the ECa values that resulted in 

the delineation of SMZ 1 and 2 could have been primarily influenced by SWC in SMZ 2, 

primarily influenced by soil and terrain properties in SMZ 1 (Figure 12).  

 The ECa-derived SMZs were produced in order to delineate soils with similar 

properties for precision/site-specific soil management. Adhikari et al. [30] created four 

topographical functional units (TFUs) at the AF site from a principal component analysis and k-
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means clustering of 14 terrain attributes (i.e., flow accumulation, slope length factor, mid-slope 

position, multi-resolution ridge top flatness index, multi-resolution valley bottom flatness index, 

normalized height, slope percent, slope height, system for automated geoscientific analysis 

wetness index, valley depth, altitude above channel network). However, the four terrain attribute-

derived TFUs of Adhikari et al. [30] did not show any major visual similarities with the three 

ECa-derived SMZs created in this study (Figure 12). Additionally, for actual management of this 

4.25-ha AF site, the grid size would likely need to be increased from the current 5-m grid to 

perhaps a 10-x 10-m grid in order improve manageability of the AF site and its SMZs.  

 Either the PRP or HCP ECa may be more beneficial for creating SMZs depending on 

the land use/management system. For example, the PRP ECa configuration would be the most 

beneficial to use when creating SMZs for precision soil management because topsoil is the layer 

that agricultural production is most concerned with. Furthermore, ECa measurements and/or ECa-

derived SMZs can be used as a blueprint for where to collect future soil samples, referred to as 

ECa-directed soil sampling [1,4,9]. Because the ECa-derived SMZs delineate areas of potential 

differing soil properties, ECa-directed soil sampling can reduce the degree of soil surface 

disturbance and the quantity of necessary soil samples, and thus time, energy, and cost spent on 

soil sampling compared to traditional grid soil sampling schemes [3–5,8]. Additionally, 

collecting soil samples and soil property data from each SMZ potentially allows for the 

characterization of the most spatially and temporally influential soil properties effecting the 

measured ECa within each SMZ.  

 Apparent EC measurements and ECa-derived SMZs can also be used to explain crop 

yield variability. Specifically, when the ECa is correlated with crop yield, the ECa-directed soil 

sampling method can be used to help characterize the soil properties that are causing crop yield 
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variations [3,71], and potentially variations in forage and/or tree growth. Through establishing 

SMZs and identifying soil properties most effecting their crop yield, producers have the potential 

to spatially and temporally target fertilizer, pesticide, and irrigation. As a result, SMZ-targeted 

resource applications have the potential to increase resource-use efficiency, yield, and profits, 

while reducing excess resource applications, loss of applied nutrients and pesticides, unintended 

environmental damage (i.e., surface and groundwater degradation), labor, and costs for the 

producer [72]. Additionally, establishing ECa-derived SMZs with soil property data before the 

establishment of an agricultural system can allow the producer to not only decide what type of 

crops to use and where to plant them, but also what type of agricultural system to establish (i.e., 

conservation agricultural, agroforestry, or pastoral) in order to have the most productive 

agricultural system based on the present soil and land properties.  

 

Correlations Among ECa and Soil Properties 

 There were positive correlations between the EMI-ECa data [i.e., PRP, HCP, and 

combined (PRP and HCP)] and at least two measured soil properties (P < 0.05; Table 5; Figure 

13). The HCP ECa and soil-sample GWC from the 45-55 cm depth interval (r = 0.71) and the 

PRP ECa and the soil-sample GWC in the 0-15 cm depth interval (r = 0.70) were significantly, 

positively correlated (Table 5; Figure 13). The PRP ECa and the soil-sensor-measured ECa from 

the 15-cm soil depth (r = 0.84), the HCP ECa and the soil-sensor-measured ECa from the 50-cm 

soil depth (r = 0.74), and the combined ECa and the soil-sensor-measured ECa combined across 

soil depths (r = 0.65) were also positively correlated (Table 5; Figure 13).  

 The PRP ECa and the 15-cm, soil-sensor-measurement correlation was the only 

comparison where the soil-sensor-measured VWC was correlated to EMI-ECa but had a low 
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correlation coefficient (r = 0.09; Table 5; Figure 13). Additionally, the HCP ECa and the 45-55 

cm soil-sample-measurement correlation was the only comparison where the soil-sample-

measured EC and pH were significant correlated to any EMI-ECa measurement. Specifically, 

HCP ECa and the 45-55 cm EC and pH had a positive correlation (r = 0.37 and r = 0.42, 

respectively; Table 5; Figure 13). As a result, the hypothesis that the monthly EMI-ECa surveys 

were correlated with soil-sensor- and/or soil-sample-based soil properties at a 20-year-old AF 

system within the Ozark Highlands was supported for some, but not all, soil parameters. 

Because the sensor-measured ECa is a point measurement within what the PRP and HCP 

ECa measure (i.e., 0-0.5- and 0-1.6-m, respectively), it was expected that sensor-measured ECa 

would have positive relationships with the PRP, HCP, and combined ECa data (Table 5; Figure 

13). Furthermore, the lack of a relationship between the HCP ECa and the lower VWC 

measurement was potentially due to the VWC only representing the VWC at a discrete depth 

(i.e., 75 cm), whereas the HCP represents the ECa of the 0-1.6-m depth range. With the exception 

of the sensor-measured ECa, GWC had the strongest correlation with EMI-ECa in the PRP, HCP, 

and combined ECa data sets (Table 5; Figure 13). Thus, of the measured soil properties, GWC 

most likely contributed to the greatest extent of the measured ECa variability for both the PRP 

and HCP configurations (Table 5; Figure 13). Additionally, PRP and HCP ECa correlations were 

likely due to different soil properties (i.e., pH and EC) contributing varying degrees to the ECa 

variability for the PRP and HCP configurations (Table 5; Figure 13). 

 The resulting ECa and soil property correlations in this study were similar to previous 

results. Abdu et al. [6], Martini et al. [43], and Zhu et al. [59] conducted repeated ECa surveys 

with SMC measurements at fixed locations across each of their fields. Abdu et al. [6] conducted 

their study in north-central Utah over a soil of the Millville soil series (Typic Haploxerolls), 
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Martini et al. [43] conducted their study in central Germany over soils primarily consisting of 

Cambisols, Luvisols, and Gleyols [73], and Zhu et al. [59] conducted their study in central 

Pennsylvania over soils primarily consisting of the Hagerstown (Typic Hapludalfs), Opequon 

(Lithic Hapludalfs), Murrill (Typic Hapludults), Nolin (Dystric Fluventic Eutrudepts), and 

Melvin (Fluvaquentic Endoaquepts) series. Similar to the results of this study, Abdu et al. [6], 

Martini et al. [43], and Zhu et al. [59] reported positive relationships between the ECa and SMC. 

Using a Spearman rank correlation, DeCaires et al. [62] also conducted repeated ECa surveys and 

random soil sample measurements on a 5.81-ha cacao plantation with a silty-clay Inceptisol soil 

in Trinidad and reported a strong positive relationship between both the PRP and HCP ECa and 

soil EC. Additionally, DeCaires et al. [62] reported significant relationships between both the 

PRP and HCP ECa and soil pH and a weak, but significant, positive correlation between the PRP 

and HCP ECa and GWC. Furthermore, Corwin et al. [71] conducted one ECa survey and 

collected multi-depth soil sample measurements at a site classified as Panoche silty clay 

(Thermic Xerorthents) and located within the San Joaquin Valley in central California. Corwin et 

al. [71] collected ECa and soil sample measurements for mapping and correlating ECa and soil 

properties to cotton yield variations and reported significant positive relationships between the 0-

1.5-m ECa and the 0-1.5-m GWC, EC, and pH.  

 

Homogeneity of Variance Assessment 

 Homogeneity of variance was used to assess whether fewer, strategically selected ECa 

surveys could be conducted to capture the same amount of overall ECa variance at the AF site as 

the 12 monthly ECa surveys captured. The five reduced survey groupings that were used for the 

homogeneity of variance assessment are summarized in Table 1. For the PRP ECa, there were 
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differences between the variance of all 12 surveys and the variance of all five of the reduced 

number of survey groupings [i.e., odd half of surveys in sequential order of conduction (H1), 

even half of surveys in sequential order of conduction (H2), middle of the season (MS), middle 

of Fall and Spring (MFS), middle of Winter and Summer (MWS); P < 0.05; Table 1 and 6]. 

Except for when compared to the H1 survey group, the variance of all 12 PRP ECa surveys was 

greater than the variance of the other four reduced number of survey groupings for the PRP ECa 

(i.e., H2, MS, MFS, and MWS; Table 6). Consequently, for the PRP configuration, with the 

exception of the H1 survey grouping, conducting an ECa survey every month for one year 

captured more numerical ECa variability than conducting six, four, or two evenly temporally 

spaced ECa surveys within a year (Table 6). It is not clear why the H1 grouping for the PRP ECa 

had greater ECa variance than all 12 surveys combined; however, perhaps the greater ECa 

variance in the H1 grouping was potentially due the H1 grouping dataset having fewer 

observations than the 12-survey dataset (Table 6). 

 In contrast to the PRP, for the HCP configuration, there were differences between the 

variance of all 12 monthly surveys and the variance of MS and MFS reduced groupings (Table 

6). Specifically, the variance of all 12 monthly HCP ECa surveys was greater than the variance of 

both the MS and MFS groupings (Table 6). Consequently, only conducting four HCP ECa 

surveys in the middle of the weather seasons (i.e., summer, fall, winter, and spring) or two HCP 

ECa surveys in the middle of fall and spring at this AF site would potentially result in not 

capturing all of the ECa variability within one year. Conversely, there was no difference between 

the variance of all 12 monthly HCP ECa surveys and the reduced H1, H2, and MWS survey 

groupings (Table 6). Therefore, one could potentially conduct only six evenly temporally spaced 

HCP ECa surveys within a one-year period and/or one HCP ECa survey in the middle of winter 
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and summer and obtain the same numerical ECa variability as 12 monthly ECa surveys across 

one year (Table 6). As a result, the hypothesis that fewer ECa surveys could have been conducted 

in one year to capture the same amount of overall ECa variance as the 12, mid-monthly EMI-ECa 

surveys was supported for the HCP ECa, but not for the PRP ECa. Being able to capture the same 

amount of ECa variability with fewer surveys would be greatly beneficial for researchers, 

agricultural consultants, and producers due to reduced time and energy spent collecting and 

processing the data and would reduce surface traffic within the AF site, which could positively 

contribute to maintaining good soil surface health. 

 

Summary and Conclusions 

Repeated EMI-based ECa surveys have been widely used to assess the spatial and 

temporal variability of a multitude of soil properties within different ecosystems and land 

management systems. However, little work has been conducted on the spatiotemporal 

relationship among repeated EMI-ECa surveys and soil property variations in AF systems within 

regions that have similar features to the Ozark Highlands. As a consequence, the objectives of 

this study were to i) use 12 mid-monthly EMI-ECa surveys to assess the spatiotemporal pixel 

variation of the measured ECa; ii) use k-means to identify clusters of similarly behaving 

populations for precision soil management; iii) identify correlations among EMI-ECa data and 

in-situ VWC and ECa measurements at two depths and soil-sample EC, GWC, and pH in two 

depth intervals; and iv) determine whether fewer, evenly spaced, strategically selected EMI-ECa 

surveys could have been conducted in one year to capture the same amount of overall ECa 

variance as the 12 mid-monthly EMI-ECa surveys conducted.  
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Results of this study demonstrated measured ECa at the AF site was spatially variable. 

The experimental semi-variogram models of all mid-monthly PRP and HCP ECa data sets had a 

strong, or nearly strong, spatial structure. Additionally, the experimental semi-variogram model 

ranges of the PRP ECa surveys indicated that the PRP ECa was more spatially erratic and 

variable than the HCP ECa. Although no surveys for either the HCP or PRP ECa were exactly 

alike, each survey per configuration had a similar geospatial pattern to the other. Additionally, 

potential effects of pedogenic (i.e., topography, depth to bedrock, and coarse fragments), 

biologic (i.e., pine trees) and surface management factors (i.e., PL applications) were observed 

on the measured ECa. The overall mean HCP ECa was numerically greater than that of the PRP 

ECa and was likely due to increases in SWC and clay content with depth. The greatest measured 

ECa values in both the PRP and HCP were recorded in the local drainage way or areas of 

potential groundwater movement at the AF site. Additionally, the temporal variability of SWC 

and water movement were likely the primary cause of the temporal fluctuations in the measured 

PRP and HCP ECa at the AF site. The overall PRP ECa SD and CV were more visually variable 

than the HCP ECa SD and CV, likely as a result of the 0-0.5-m portion of soil generally being 

more spatially and temporally variable in soil properties (i.e., SWC, OM, nutrients, 

structure/porosity, and coarse fragments) than the 0-1.6-m depth, as the 0-0.5-m portion of the 

soil was more exposed to surface factors that are also spatially and temporally variable (i.e., 

weather, environmental processes, and land management). 

Results of this study partially supported the hypothesis that there would be a significant 

change in the mean ECa and ECa variability (i.e., SD and CV) across time and the weather 

seasons. Through the linear regression analyses, only a positive relationship between PRP ECa 

SD over time (i.e., August 2020 to July 2021) and a negative relationship between HCP ECa CV 
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across weather seasons (i.e., summer to spring) was observed. Furthermore, results of this study 

did not support the hypothesis that there would be differences between the ECa mean, SD, and 

CV of surveys that were conducted in different weather seasons and in the tree growing/non-

growing season at a 20-year AF system within the Ozark Highlands. Through the ANOVA, there 

was no difference between the PRP and HCP ECa mean or variation (i.e., SD and CV) among 

surveys that were conducted in different weather seasons or surveys that were recorded in the 

tree growing season versus the non-growing season. Thus, the measured ECa at the AF site was 

more reflective of and influenced by temporally stable soil (i.e., soil texture, clay content, OM 

content, and depth to bedrock), vegetative, and terrain properties than temporally variable soil 

properties (i.e., SWC) within short time spans (i.e., < 1 year). The results of this study 

demonstrated that the repeated EMI-ECa surveys can be used to assess the spatiotemporal pixel 

variation of the measured ECa of a 20-year-old AF system within the Ozark Highlands. 

However, further research needs to be conducted to better understand and provide more 

information on the spatiotemporally variability of measured ECa, not just within AF systems, but 

AF systems within similar environments as the Ozark Highlands. 

Results of this study supported the hypothesis that monthly EMI-ECa surveys at a 20-

year-old AF system within the Ozark Highlands can be grouped into similar functional 

populations and be made into zones for precision soil management. The k-means clustering 

method delineated three SMZs that were reflective of areas of similar ECa and ECa variability, 

and thus areas of similar soil properties (i.e., increased SWC and coarse fragment and decreased 

depth to bedrock areas). However, future ECa-directed soil sampling and further in-situ terrain 

and soil property investigations are required to fully understand the causes of the measured ECa 

variations that defined the SMZs and to know how to properly manage each of the SMZs.  
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Results of this study partially supported the hypothesis that monthly EMI-ECa survey 

data are correlated with soil-sensor-based VWC and ECa and soil-sample-based EC, GWC, and 

pH. Within each of the correlation pairs assessed (i.e., PRP ECa and upper, HCP ECa and lower, 

and combined ECa and combined soil property measurement), the EMI-collected ECa was only 

correlated with two to four of the five measured soil properties (i.e., soil-sensor-measured VWC 

and ECa and soil-sample-derived GWC, EC, and pH). However, the EMI-collected ECa was 

correlated to the soil-sensor-measured ECa and soil-sample-derived GWC in all three correlation 

pairs assessed, where GWC likely contributed to the greatest extent of the measured ECa 

variability for both the PRP and HCP configurations. Furthermore, not only would further ECa 

surveys with increased in-field soil property measurement locations and additional soil properties 

measured help better understand the causes of the measured ECa variation at the AF site, but also 

ECa-directed soil property investigations in each SMZs have the potential to identify the most 

influential soil property related to the measured ECa, thus plant response, in each SMZ.  

Results of this study also partially supported the hypothesis that fewer, strategically 

timed, and evenly spaced ECa surveys could be conducted to capture the same amount of overall 

ECa variance at the AF site as the 12 monthly ECa surveys conducted. With the exception of the 

H1 survey group, the variance of the 12 monthly ECa surveys conducted was greater than the 

variance of the other reduced number of survey groupings for the PRP ECa (i.e., H2, MS, MFS, 

and MWS). Although, there was no difference between the variance of all 12 monthly ECa 

surveys conducted and the reduced H1, H2, and MWS survey groupings for the HCP ECa. Thus, 

it is recommended that at least 12 monthly ECa surveys are necessary to be conducted to capture 

the full ECa variance in the 0-0.5-m soil depth of AF site within a 1-year period. However, to 

capture the full ECa variance in the 0-1.6-m soil depth of AF site within a 1-year period, it is 
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recommended to conduct either six ECa surveys every other month or one ECa survey in the 

middle of Winter and Summer to limit soil surface disturbance and to save time resources.  

Results of this study provided beneficial and valuable insight on the spatial and temporal 

variability of measured EMI-ECa over time, not only in an AF system, but also an AF system 

that is located within a unique environment like the Ozark Highlands. Results of this study 

demonstrated that a variety of different methods can be used to assess spatial and temporal 

changes in measured EMI-ECa, and that the effects of pedogenic and anthropogenic factors on 

measured EMI-ECa can be observed in an AF system within the Ozark Highlands. Results of this 

study also demonstrated that measured EMI-ECa can be correlated to multiple soil properties and 

used to create precision SMZs in an AF system within the Ozark Highlands. Thus, results of this 

study provide further evidence of the potential versatility, applicability, and ability of an EMI-

ECa survey device to quickly and accurately delineate in-field variability in a multitude of 

landscapes with different land uses and management systems.   



 

80 
 

References 

1.  Corwin, D. L.; Scudiero, E. Mapping Soil Spatial Variability with Apparent Soil 

Electrical Conductivity (ECa) Directed Soil Sampling. Soil Sci. Soc. Am. J. 2019, 83, 3–

4. 

2.  Garcia-Tomillo, A.; Miras-Avalos, J.; Dafonte-Dafonte, J.; Paz-Gonzalez, A. Mapping 

Soil Texture Using Geostatistical Interpolation Combined with Electromagnetic 

Induction Measurements. Soil Sci. 2017, 182, 278–284. 

3.  Corwin, D. L.; Lesch, S. M. Characterizing Soil Spatial Variability with Apparent Soil 

Electrical Conductivity – Survey Protocols. Comput. Electron. Agric. 2005, 46, 103–133. 

4.  Johnson, C. K.; Doran, J. W.; Duke, H. R.; Wienhold, B. J.; Eskridge, K. M.; Shanahan, 

J. F. Field‐scale Electrical Conductivity Mapping for Delineating Soil Condition. Soil 

Sci. Soc. Am. J. 2001, 65, 1829–1837. 

5.  Johnson, C. K.; Mortensen, D. A.; Wienhold, B. J.; Shanahan, J. F.; Doran, J. W. Site-

Specific Management Zones Based on Soil Electrical Conductivity in a Semiarid 

Cropping System. Agron. J. 2003, 95, 303–315. 

6.  Abdu, H.; Robinson, D. A.; Boettinger, J.; Jones, S. B. Electromagnetic Induction 

Mapping at Varied Soil Moisture Reveals Field-Scale Soil Textural Patterns and Gravel 

Lenses. Front. Agric. Sci. Eng. 2017, 4, 135–145. 

7.  Serrano, J.; Shahidian, S.; Silva, J. Spatial and Temporal Patterns of Apparent Electrical 

Conductivity: DUALEM vs. Veris Sensors for Monitoring Soil Properties. Sensors 2014, 

14, 1–19. 

8.  Corwin, D. L.; Scudiero, E. Field-Scale Apparent Soil Electrical Conductivity. In 

Methods of soil analysis; Logsdon, S., Ed.; Soil Science Society of America: Madison, 

WI, US, 2017; Volume 1, pp 1–29. 

9.  Corwin, D. L.; Lesch, S. M. Apparent soil electrical conductivity measurements in 

agriculture. Comput. Electron. Agric. 2005, 46, 11–43. 

10.  Heil, K.; Schmidhalter, U. The Application of EM38: Determination of Soil Parameters, 

Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors 

2017, 17, 1–44. 

11.  Agroforestry. Available online: https://www.usda.gov/topics/forestry/agroforestry 

(accessed 23 April 2022). 

12.  Dollinger, J.; Jose, S. Agroforestry for Soil Health. Agrofor. Syst. 2018, 92, 213–219. 

13.  Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. 

Agrofor. Syst. 2009, 76, 1–10. 

14.  Schoeneberger, M.; Bentrup, G.; Gooijer, H.; Soolanayakanahally, R.; Sauer, T.; Brandle, 

J.; Zhou, X.; Current, D. Branching out: Agroforestry as a Climate Change Mitigation 

and Adaptation Tool for Agriculture. J. Soil Water Conserv. 2012, 67, 128–136. 



 

81 
 

15.  Udawatta, R. P.; Jose, S. Agroforestry Strategies to Sequester Carbon in Temperate North 

America. Agrofor. Syst. 2012, 86, 225–242. 

16.  Lorenz, K.; Lal., R. Soil Organic Carbon Sequestration in Agroforestry Systems. A 

Review. Agron. Sustain. Dev. 2014, 34, 443–454. 

17.  Gelaw, A. M.; Singh, B. R.; Lal, R. Soil Quality Indices for Evaluating Smallholder 

Agricultural Land Uses in Northern Ethiopia. Sustainability 2015, 7, 2322–2337. 

18.  Nair, P. K. R. Agroforestry Systems and Environmental Quality: Introduction. J. Environ. 

Qual. 2011, 40, 784–790. 

19.  Brye, K. R.; West, C. P. Grassland Management Effects on Soil Surface Properties in the 

Ozark Highlands. Soil Sci. 2005, 170, 63–73. 

20.  Natural Resources Conservation Service. Land Resource Regions and Major Land 

Resource Areas of the United States, the Caribbean, and the Pacific Basin. In USDA 

Handbook 296; Government Printing Office: Washington, DC, US, 2006; pp 373–375. 

21.  Brion, G.; Brye, K. R.; Haggard, B.; West, C. P.; Brahana, J. Land‐use Effects on Water 

Quality of a First‐order Stream in the Ozark Highlands, Mid‐southern United States. 

River Res. Appl. 2011, 27, 772–790. 

22.  Major Land Resource Areas. Available online: https://data.nal.usda.gov/dataset/major-

land-resource-areas-mlra (accessed 23 June 2022). 

23.  Web Soil Survey. Available online: 

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (accessed 23 June 

2022). 

24.  Ashworth, A. J.; Adams, T. C.; Kharel, T.; Philip, D.; Owens, P. R.; Sauer, T. Root 

Decomposition in Silvopastures Is Influenced by Grazing, Fertility, and Grass Species. 

Agrosystems Geosci. Environ. 2021, 4, 1–15. 

25.  Data tools: 1981-2010 Normals. Fayetteville experimental station, AR US. Available 

online: https://www.ncei.noaa.gov/access/us-climate-normals/#dataset=normals-

monthly&timeframe=81 (accessed 23 June 2022). 

26.  Sauer, T. J.; Coblentz, W. K.; Thomas, A. L.; Brye, K. R.; Brauer, D. K.; Skinner, B.; 

J.V., D.; S.L., H.; P.D., M.; D.C., R.; J.L., J.; T.A.; Hickie, K. A. Nutrient Cycling in an 

Agroforestry Alley Cropping System Receiving Poultry Litter or Nitrogen Fertilizer. 

Nutr. Cycl. Agroecosystems 2014, 101, 167–179. 

27.  Niyigena, V.; Ashworth, A. J.; Nieman, C.; Acharya, M.; Coffey, K. P.; Philipp, D.; 

Meadors, L.; Sauer, T. J. Factors Affecting Sugar Accumulation and Fluxes in Warm- 

and Cool-Season Forages Grown in a Silvopastoral System. Agronomy 2021, 11, 1–14. 

28.  Gurmessa, B.; Ashworth, A. J.; Yang, Y.; Adhikari, K.; Savin, M.; Owens, P. R.; Sauer, 

T. J.; Pedretti, E. F.; S., C.; Corti, G. Soil Bacterial Diversity Based on Management and 

Topography in a Silvopastoral System. Appl. Soil Ecol. 2021, 163, 1–10. 



 

82 
 

29.  Adams, T.; Ashworth, A. J.; Sauer, T. Soil CO2 Evolution Is Driven by Forage Species, 

Soil Moisture, Grazing Pressure, Poultry Litter Fertilization, and Seasonality in 

Silvopastures. Agrosystems Geosci. Environ. 2021, 4, 1–10. 

30.  Adhikari, K.; Owens, P. R.; Ashworth, A. J.; Sauer, T. J.; Libohova, Z.; Miller, D. M. 

Topographic controls on soil nutrient variations in a silvopasture system. Agrosystems 

Geosci. Environ. 2018, 1, 1–15. 

31.  Amorim, H. C. S.; Ashworth, A. J.; Sauer, T. J.; Zinn, Y. L. Soil Organic Carbon and 

Fertility Based on Tree Species and Management in a 17-Year Agroforestry Site. 

Agronomy 2022, 12, 1–13. 

32.  Ashworth, A. J.; Kharel, T.; Sauer, T.; Adams, T. C.; Philip, D.; Thomas, A. L.; Owens, 

P. R. Spatial Monitoring Technologies for Coupling the Soil Plant Water Animal Nexus. 

Sci. Rep. 2022, 12, 1–14. 

33.  DeFauw, S. L.; Brye, K. R.; Sauer, T. J.; Hays, P. Hydraulic and Physiochemical 

Properties of a Hillslope Soil Assemblage in the Ozark Highlands. Soil Sci. 2014, 179, 

107–117. 

34.  Dold, C.; Thomas, A. L.; Ashworth, A. J.; Philipp, D.; Brauer, D. K.; Sauer, T. J. Carbon 

Sequestration and Nitrogen Uptake in a Temperate Silvopasture System. Nutr. Cycl. 

Agroecosystems 2019, 114, 85–98. 

35.  Jiang, Z.-D.; Owens, P. R.; Ashworth, A. J.; Ponce, B. F.; Thomas, A. L.; Sauer, T. 

Evaluating Tree Growth Factors into Species-Specific Functional Soil Maps for 

Improved Agroforestry System Efficiency. Agrofor. Syst. 2021, 96, 479–490. 

36.  Kharel, T. P.; Ashworth, A. J.; Owens, P. R.; Philipp, D.; Thomas, A. L.; Sauer, T. 

Teasing Apart Silvopasture System Components Using Machine Learning for 

Optimization. Soil Syst. 2021, 5, 1–16. 

37.  O’Brien, P. L.; Thomas, A. L.; Sauer, T. J.; Brauer, D. K. Foliar nutrient concentrations 

of three economically important tree species in an alley-cropping system. J. Plant Nutr. 

2020, 43, 1–12. 

38.  Thomas, A. L.; Brauer, D. K.; Sauer, T. J.; Coggeshall, M. V.; Ellersieck, M. R. Cultivar 

Influences Early Rootstock and Scion Survival of Grafted Black Walnut. J. Am. Pomol. 

Soc. 2008, 62, 3–12. 

39.  Ylagan, S.; Amorim, H. C. S.; Ashworth, A. J.; Sauer, T.; Wienhold, B. J.; Owens, P. R.; 

Zinn, Y. L.; Brye, K. R. Soil Quality Assessment of an Agroforestry System Following 

Long-Term Management in the Ozark Highlands. Agrosystems Geosci. Environ. 2021, 4, 

1–15. 

40.  Abdu, H.; Robinson, D.; Jones, S. Comparing Bulk Soil Electrical Conductivity 

Determination Using the DUALEM‐1S and EM38‐DD Electromagnetic Induction 

Instruments. Soil Sci. Soc. Am. J. 2007, 71, 189–196. 



 

83 
 

41.  Simpson, D.; Lehouck, A.; Verdonck, L.; Vermeersch, H.; Meirvenne, M.; Bourgeois, J.; 

Thoen, E.; Docter, R. Comparison between Electromagnetic Induction and Fluxgate 

Gradiometer Measurements on the Buried Remains of a 17th Century Castle. J. Appl. 

Geophys. 2009, 68, 294–300. 

42.  Rudolph, S.; Wongleecharoen, C.; Lark, R. M.; Marchant, B. P.; Garré, S.; Herbst, M.; 

Vereecken, H.; Weihermüller, L. Soil Apparent Conductivity Measurements for Planning 

and Analysis of Agricultural Experiments: A Case Study from Western-Thailand. 

Geoderma 2016, 267, 220–229. 

43.  Martini, E.; Werban, U.; Zacharias, S.; Pohle, M.; Dietrich, P.; Wollschläger, U. 

Repeated Electromagnetic Induction Measurements for Mapping Soil Moisture at the 

Field Scale: Validation with Data from a Wireless Soil Moisture Monitoring Network. 

Hydrol. Earth Syst. Sci. 2017, 21, 495–513. 

44.  Pearson, R. K.; Neuvo, Y.; Astola, J.; Gabbouj, M. Generalized Hampel Filters. 

EURASIP J. Adv. Signal Process. 2016, 1–18. 

45.  Delefortrie, S.; Smedt, P.; Saey, T.; Vijver, E.; Meirvenne, M. An efficient calibration 

procedure for correction of drift in EMI survey data. J. Appl. Geophys. 2014, 110, 115–

125. 

46.  Borchers, H. W. Pracma: Practical Numerical Math Functions. R package version 2.3.3., 

2021. 

47.  Hijmans, R. J. Geosphere: Spherical Trigonometry. R package version 1.5.10., 2019. 

48.  Pebesma, E.; Bivand, R.; Rowlingson, B.; Gomez-Rubio, V. Sp: Package Providing 

Classes and Methods for Spatial Data: Points, Lines, Polygons and Grids. R package 

version 2.0.7., 2005. 

49.  Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the “geospatial” Data 

Abstraction Library. R package version 1.5.23., 2021. 

50.  Pebesma, E. J. gstat: Multivariable geostatisitcs in S. R package version 2.0.8., 2004. 

51.  Padgham, M.; Sumner, M. D. geodist: Fast, dependency-free geodesic distance 

calculations. R package version 0.0.7., 2021. 

52.  Hijmans, R. J. Raster: Geographic Data Analysis and Modeling. R package version 

3.4.10., 2021. 

53.  Hijmans, R. J. terra: Spatial data analysis. R package version 1.2.10., 2021. 

54.  Growing Season Dates and Length. Available online: 

https://www.nrcs.usda.gov/wps/portal/wcc/home/climateSupport/wetlandsClimateTables/

growingSeasonDatesLength/ (accessed 23 June 2022). 

55.  Hartigan, J. A. Clustering Algorithms; John Wiley & Sons: Hoboken, NJ, US, 1975; pp 

1–351. 



 

84 
 

56.  Kassambara, A.; Mundt, F. factoextra: Extract and visualize the results of multivariate 

data analyses. R package version 1.0.7., 2020. 

57.  Chilés, J.-C.; Delfiner, P. Structural Analysis. In Geostatisitcs: Modeling spatial 

uncertainty; Balding, D. J., Cressie, N. A. C., Fitzmaurice, G. M., Goldstein, H., 

Johnstone, I. M., Molenberghs, G., Scott, D. W., Smith, A. F. M., Tsay, R. S., Weisberg, 

S., Eds.; John Wiley & Sons: Hoboken, NJ, US, 2012; pp 28–146. 

58.  Fortin, M.-J.; Dale, M. R. T.; Ver Hoef, J. Spatial Analysis in Ecology. In Encyclopedia 

of environmetrics; El-Shaarawi, A. H., Pieforsch, W. W., Eds.; John Wiley & Sons: 

Chichester, England, UK, 2002; Volume 4, pp 2051–2058. 

59.  Zhu, Q.; Lin, H.; Doolittle, J. Repeated Electromagnetic Induction Surveys for 

Determining Subsurface Hydrologic Dynamics in an Agricultural Landscape. Soil Sci. 

Soc. Am. J. 2010, 74, 1750–1762. 

60.  Kravchenko, A. N. Influence of Spatial Structure on Accuracy of Interpolation Methods. 

Soil Sci. Soc. Am. J. 2003, 67, 1564–1571. 

61.  Skøien, J. O.; Blöschl, G. Scale Effects in Estimating the Variogram and Implications for 

Soil Hydrology. Vadose Zone J. 2006, 5, 153–167. 

62.  DeCaires, S. A.; Wuddivira, M. N.; Bekele, I. Assessing the Temporal Stability of Spatial 

Patterns of Soil Apparent Electrical Conductivity Using Geophysical Methods. Int. 

Agrophysics 2014, 28, 423–433. 

63.  Khakural, B. R.; Robert, P. C.; Hugins, D. R. Use of non‐contacting electromagnetic 

inductive method for estimating soil moisture across a landscape. Commun. Soil Sci. 

Plant Anal. 1998, 29, 2055–2065. 

64.  Western, A. W.; Blöschl, G.; Grayson, R. B. Geostatistical Characterization of Soil 

Moisture Patterns in the Tarrawarra Catchment. J. Hydrol. 1998, 205, 20–37. 

65.  General Reference and Data Downloads. Available online: https://maps.fayetteville-

ar.gov/viewer/index.html?webmap=46ac3a6201624738a961f1f3123d7d5b (accessed 23 

June 2022). 

66.  Smith, H.; Ashworth, A.J.; Owens, P. R. Applications and Analytical Methods of Ground 

Penetrating Radar for Soil Characterization in a Silvopastoral System. J. Environ. Eng. 

Geophys. 2022, accepted. 

67.  Burgess-Conforti, J. R.; Moore, P. A.; Owens, P. R.; Miller, D. M.; Ashworth, A. J.; 

Hays, P. D.; Evans-White, M. A.; Anderson, K. R. Are Soils beneath Coniferous Tree 

Stands More Acidic than Soils beneath Deciduous Tree Stands? Environ. Sci. Pollut. Res. 

2019, 26, 14920–14929. 

68.  Harvey, O. R.; Morgan, C. L. S. Predicting Regional-Scale Soil Variability Using a 

Single Calibrated Apparent Soil Electrical Conductivity Model. Soil Sci. Soc. Am. J. 

2009, 73, 164–169. 



 

85 
 

69.  Chow, T. L.; Rees, H. W.; Monteith, J. O.; Toner, P.; Lavoie, J. Effects of Coarse 

Fragment Content on Soil Physical Properties, Soil Erosion and Potato Production. Can. 

J. Soil Sci. 2007, 87, 565–577. 

70.  Brevik, E. C.; Fenton, T. E.; Lazari, A. Soil Electrical Conductivity as a Function of Soil 

Water Content and Implications for Soil Mapping. Precis. Agric. 2006, 7, 393–404. 

71.  Corwin, D. L.; Lesch, S. M.; Shouse, P. J.; Soppe, R.; Ayars, J. E. Identifying Soil 

Properties That Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil 

Electrical Conductivity. Agron. J. 2003, 95, 352–364. 

72.  Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. 

Agric. 2004, 5, 359–387. 

73. Food Agriculture Organization. FAO/Unesco Soil Map of the World, Revised Legend, 

with Corrections and Updates (Technical paper 20); FAO: Rome, Italy, 1988; pp. 1–146. 

 

  



 

86 
 

Tables and Figures 

Table 1. Summary of the seasonal [i.e., weather season (summer, fall, winter, and spring) and 
tree growing season (growing season and non-growing season)] groupings and the survey 
groupings compared against all 12 monthly conducted electromagnetic-induction (EMI) apparent 
electrical conductivity (ECa) surveys for the homogeneity of variance assessment. The EMI ECa 
surveys were conducted at an agroforestry site in Fayetteville, AR between August 2020 and 
July 2021.  

   Seasonal Groupings  Test Groupings†† 

Survey 

 

Survey 

(Month-Year) 

 Weather 

Season 

Growing† 

Season 

 
H1 H2 MS MFS MWS 

1 Aug-2020  Summer GS  X     

2 Sep-2020  Fall GS   X    

3 Oct-2020  Fall GS  X  X X  

4 Nov-2020  Fall NGS   X    

5 Dec-2020  Winter NGS  X     

6 Jan-2021  Winter NGS   X X  X 

7 Feb-2021  Winter GS  X     

8 Mar-2021  Spring GS   X    

9 Apr-2021  Spring GS  X  X X  

10 May-2021  Spring GS   X    

11 Jun-2021  Summer GS  X     

12 Jul-2021  Summer GS   X X  X 
† Growing season (GS), non-rowing season (NGS) 

†† Odd half of surveys in sequential order of conduction (H1), even half of surveys in sequential 
order of conduction (H2), middle of climate season (MS), middle of Fall and Spring (MFS), 
middle of Winter and Summer (MWS)  
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Table 2. Summary of the perpendicular geometry (PRP) apparent electrical conductivity (ECa) survey dates, number of measurements 
per survey, semi-variogram information (i.e., experimental model, nugget, sill, and range), and resulting summary statistics [i.e., 
mean, minimum (min), maximum (max), standard deviation (SD), and coefficient of variation (CV)] of each PRP ECa survey after 
universal kriging at an agroforestry site in Fayetteville, AR between August 2020 and July 2021. 

    PRP ECa 

    Semi-variogram Information  Kriged Survey Summary Statistics 

Survey 
Date  

(Month-Year) 

Survey 

Points 
 Model Nugget Sill Range  Mean Min Max SD CV 

       m  _____________ mS m-1 _____________ % 

1 Aug-2020 5271  Exponential 0.61 4.8 39.4  4.2 1.0 17.0 1.9 44.1 

2 Sep-2020 5422  Matern 0.18 3.5 34.4  3.4 0.4 14.6 1.7 48.1 

3 Oct-2020 5769  Exponential 0.17 3.7 28.9  4.6 0.9 16.6 1.9 42.1 

4 Nov-2020 6083  Exponential 0.38 5.0 41.4  7.4 2.3 18.2 2.4 32.2 

5 Dec-2020 6085  Exponential 0.30 4.8 29.3  6.7 2.6 21.0 2.3 34.1 

6 Jan-2021 6340  Exponential 0.10 3.6 27.8  5.5 1.4 17.2 2.1 38.0 

7 Feb-2021 5777  Exponential 0.00 3.7 26.8  6.2 1.7 20.5 2.3 36.3 

8 Mar-2021 6173  Exponential 0.10 5.6 24.0  5.9 1.3 21.9 2.5 41.8 

9 Apr-2021 6329  Exponential 0.03 6.0 25.3  5.5 0.6 17.6 2.6 46.8 

10 May-2021 6854  Exponential 0.00 8.4 24.0  7.5 2.2 21.4 2.9 38.6 

11 Jun-2021 6671  Matern 0.00 13.1 27.6  8.7 2.7 29.1 3.6 41.2 

12 Jul-2021 6527  Exponential 0.18 4.2 27.7  5.1 0.2 15.9 2.1 40.3 
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Table 3. Summary of the horizontal coplanar geometry (HCP) apparent electrical conductivity (ECa) survey dates, number of 
measurements per survey, semi-variogram information (i.e., experimental model, nugget, sill, and range), and resulting summary 
statistics [i.e., mean, minimum (min), maximum (max), standard deviation (SD), and coefficient of variation (CV)] for each HCP ECa 
survey after universal kriging at an agroforestry site in Fayetteville, AR between August 2020 and July 2021. 

    HCP ECa 

    Semi-variogram Information  Kriged Survey Summary Statistics 

Survey 
Date  

(Month-Year) 

Survey 

Points 
 Model Nugget Sill Range  Mean Min Max SD CV 

       m  _____________ mS m-1 _____________ % 

1 Aug-2020 5271  Spherical 0.25 16.5 97.9  8.6 1.6 25.5 4.4 51.2 

2 Sep-2020 5422  Circular 0.14 13.8 84.0  6.7 0.4 19.7 4.1 61.1 

3 Oct-2020 5769  Spherical 0.32 14.3 91.6  9.9 3.6 25.6 4.1 41.2 

4 Nov-2020 6083  Matern 0.08 15.9 60.0  9.8 2.9 26.2 4.2 42.1 

5 Dec-2020 6085  Matern 0.00 15.7 50.0  12.3 3.6 28.4 4.4 35.9 

6 Jan-2021 6340  Matern 0.00 14.6 48.9  11.7 4.4 29.2 4.2 36.4 

7 Feb-2021 5777  Matern 0.00 15.2 58.9  8.8 2.2 23.6 4.2 47.5 

8 Mar-2021 6173  Matern 0.00 16.0 42.1  11.9 4.8 34.2 4.2 35.5 

9 Apr-2021 6329  Exponential 0.00 16.5 43.2  11.6 4.1 27.2 4.2 36.3 

10 May-2021 6854  Matern 0.00 18.9 46.1  9.7 2.0 31.4 4.4 45.6 

11 Jun-2021 6671  Spherical 0.13 19.1 69.3  10.1 1.7 28.6 5.1 50.1 

12 Jul-2021 6527  Spherical 0.18 11.8 77.7  7.2 1.0 19.9 3.9 53.2 
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Table 4. Summary of the perpendicular (PRP) and horizontal coplanar geometry (HCP) apparent 
electrical conductivity (ECa) for each cluster generated by the k-means clustering algorithm 
(Hartigan, 1975) using 12 electromagnetic-induction ECa surveys conducted at an agroforestry 
site in Fayetteville AR between August 2020 and July 2021. 

  Summary Statistics† 

ECa Cluster Mean Min Max SD CV SE 

  ___________________ mS m-1 ___________________ %  

HCP 1 5.7 0.4 15.0 2.2 38.8 0.024 

 2 16.6 7.5 34.2 3.2 19.3 0.050 

 3 10.5 2.4 19.2 2.4 22.6 0.024 

PRP 1 3.6 0.2 9.0 1.4 38.3 0.016 

 2 9.0 3.1 29.1 2.8 31.3 0.042 

 3 6.2 1.3 13.4 1.9 29.9 0.019 
† Minimum (Min), maximum (Max), standard deviation (SD), coefficient of variation (CV), 
standard error (SE) 
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Table 5. Summary of the resulting correlation coefficients (r) and P-values from Pearson linear 
correlations evaluating the relationship between the perpendicular (PRP), horizontal coplanar 
geometry (HCP), and combined (PRP and HCP) apparent electrical conductivity (ECa) and the 
upper, lower, and combined (upper and lower) soil-sensor-measured volumetric water content 
(VWC) and ECa measurements and the upper, lower, and combined soil-sample-derived 
gravimetric water content (GWC), electrical conductivity (EC), and pH, respectively. Figures for 
each correlation are presented on Figure 12. Electromagnetic-induction ECa survey, soil sensor, 
and soil sample data were collected from an agroforestry site in Fayetteville AR between August 
2020 and July 2021. 

Correlation Data Set  r P 

PRP ECa & Upper   
 VWC 0.09 < 0.01† 

 ECa 0.84 0.01 
 GWC 0.70 < 0.01 
 EC 0.57 0.17 
 pH 0.61 0.13 

HCP ECa & Lower   
 VWC 0.62 0.79 
 ECa 0.74 < 0.01 
 GWC 0.71 < 0.01 
 EC 0.37 < 0.01 
 pH 0.42 < 0.01 

Combined ECa & Combined   
 VWC 0.25 0.24 
 ECa 0.65 < 0.01 
 GWC 0.36 0.03 
 EC -0.22 0.28 
 pH 0.15 0.49 

† Bolded values are significant at P < 0.05 
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Table 6. Summary of the homogeneity of variance between all 12 monthly perpendicular (PRP) 
and horizontal coplanar geometry (HCP) apparent electrical conductivity (ECa) surveys and five 
reduced survey groupings (i.e., H1, H2, MS, MFS, and MWS). Additional details of the survey 
groupings are presented on Table 1. Homogeneity of variance was evaluated using the Levene’s 
test.   

ECa  
Survey grouping 

comparison 
P 

Survey grouping with 

greater variance 

PRP H1† < 0.01†† H1 

 H2 < 0.01 All 

 MS < 0.01 All 

 MFS < 0.01 All 

 MWS < 0.01 All 

HCP H1† 0.60 - 

 H2 0.93 - 

 MS < 0.01 All 

 MFS < 0.01 All 

 MWS 0.87 - 
† Odd half of surveys in sequential order of conduction (H1), even half of surveys in sequential 
order of conduction (H2), middle of season (MS), middle of Fall and Spring (MFS), middle of 
Winter and Summer (MWS) 
†† Bolded values are significant at P < 0.05
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Figure 1. The agroforestry site in Fayetteville, AR is organized into 16 rows, where Row 1 starts at the northern most row. Rows 1-5 
consists of the northern red oak; the western, central, and eastern portion of Rows 6-10 consists of the pitch/loblolly pine, cottonwood, 
and American Sycamore; and Rows 11-16 consist of pecan. The three sampling/logger locations are located at a local summit (Logger 
2), depression area (Logger 6b), and mid-slope area between the summit and depression (Logger 9). The soils at the site include 
Captina silt loam (CaB), Pickwick silt loam (PsC2), Nixa cherty silt loam (NaC), Johnsburg silt loam (Js), and Cleora fine sandy loam 
(Cr; Soil Survey Staff, 2019b). The alleys between the tree rows consist of either orchardgrass or a native grass mix (big bluestem, 
little bluestem, and Indiangrass), where fertility treatments were fertilized with poultry litter in 2017, 2018, and 2019. Maps were 
created in ArcGIS (ArcGISmap version 10.6.1, Esri, Redlands, CA).    
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Figure 2. The survey setup included a DUALEM-1S sensor that was suspended on a sled that 
was tied to a Side-by-Side vehicle, a Trimble R2 global positioning system unit mounted inside 
of the Side-by-Side, and both the DUALEM-1S and Trimble R2 were connected to a Trimble 
Yuma 2 field computer inside the Side-by-Side that interpolated the data in a hand-held 
geoinformation system.  

Trimble R2 GPS 

DUALEM-1S 
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Figure 3. The measurement locations of the EMI-ECa survey (grey dots) and calibration line (red 
dots) for all 12, mid-monthly scans conducted at the agroforestry site in Fayetteville, AR. Maps 
were created in ArcGIS (ArcGISmap version 10.6.1, Esri, Redlands, CA).
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Figure 4. The local, daily average air temperature and total daily precipitation at the University 
of Arkansas’ Milo J. Shult Agricultural Research and Extension Center, recorded on a 
micrometeorological weather station (36.101002°N, 94.173728°W) from 1 August 2020 to 31 
July 2021. Electromagnetic-induction apparent electrical conductivity surveys dates are 
represented by the vertical dashed lines. 
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Figure 5. The recorded daily mean soil temperature (temp; a), volumetric water content (VWC; 
b), and apparent electrical conductivity (ECa; c) for the upper (U; 15, 15, 15 cm, respectively) 
and lower (L; 75, 75, and 50 cm, respectively) soil sensor depths at logger 2, 6b, and 9, at the 
agroforestry site in Fayetteville, AR.  Electromagnetic-induction ECa surveys dates are 
represented by the vertical dashed lines. Figures were created in R Studio (version 4.05, R Core 
Team, Boston, MA).  



 

97 

 
Figure 6. The lab measured gravimetric water content (GWC; a), electrical conductivity (EC; b), 
and pH for the upper (U; 0-15 cm) and lower (L; 45-55 cm) soil sample depth intervals at logger 
2, 6b, and 9 for each electromagnetic-induction apparent electrical conductivity survey, at the 
agroforestry site in Fayetteville, AR. Figures were created in R Studio (version 4.05, R Core 
Team, Boston, MA). 
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Figure 7. The perpendicular geometry (PRP) apparent electrical conductivity (ECa) after 
universal kriging for all 12 survey months (2020-2021) at the agroforestry site in Fayetteville, 
AR. Maps were created in R Studio (version 4.05, R Core Team, Boston, MA).  
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Figure 8. The horizontal coplanar geometry (HCP) apparent electrical conductivity (ECa) after 
universal kriging for all 12 survey months (2020-2021) at the agroforestry site in Fayetteville, 
AR. Maps were created in R Studio (version 4.05, R Core Team, Boston, MA).  
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Figure 9. A satellite image of the agroforestry site in Fayetteville, AR prior to being converted 
into an agroforestry system in 1998 (left image) and the agroforestry site in 2021 (right image) 
with the three sampling/logger locations. The three sampling/logger locations are located at a 
local summit (Logger 2), depression area (Logger 6b), and mid-slope area between the summit 
and depression (Logger 9). Imagery was obtained from City of Fayetteville, AR (2022) and the 
maps were created in ArcGIS (ArcGISmap version 10.6.1, Esri, Redlands, CA). 
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Figure 10. The overall mean, standard deviation (SD), and coefficient of variation (CV) for all 12 
perpendicular (PRP) and horizontal coplanar geometry (HCP) apparent electrical conductivity 
(ECa) surveys after universal kriging at the agroforestry site in Fayetteville, AR. Maps were 
created in R Studio (version 4.05, R Core Team, Boston, MA).  
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Figure 11. Relationship between mean apparent electrical conductivity (ECa; a), standard 
deviation (SD; c), and coefficient of variation (CV; e) and survey sequence (i.e., time; 1, August 
2020; 2, September 2020; 3, October 2020; 4, November 2020; 5, December 2020; 6, January 
2021; 7, February 2021; 8, March 2021; 9, April 2021; 10, May 2021; 11, June 2021; 12, July 
2021), and the relationship between mean ECa (b), SD (d), and CV (f) and season sequence (i.e., 
time; 1, summer; 2, fall; 3, winter; 4, spring) for both the perpendicular (PRP) and horizontal 
coplanar geometry (HCP) configurations. Linear regression fit to the data are also plotted when 
the regression slope was significant (P < 0.05). 
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Figure 12. Precision soil management zones within the agroforestry site in Fayetteville, AR that 
were generated by the k-means (KM) clustering algorithm using all 12, perpendicular (PRP) and 
horizontal coplanar geometry (HCP) apparent electrical conductivity surveys.  
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Figure 13. Relationship between the perpendicular (PRP) and horizontal coplanar geometry 
(HCP) apparent electrical conductivity (ECa) and the a) upper (15 cm) and lower (75 cm) in situ 

soil sensor based volumetric water content (VWC), respectively; b) upper (15 cm) and lower (50 
cm) in situ soil sensor based ECa, respectively; c) upper (0-15 cm) and lower (45-55 cm) field 
collected gravimetric water content (GWC), respectively; d) upper (0-15 cm) and lower (45-55 
cm) field collected EC, respectively; and e) upper (0-15 cm) and lower (45-55 cm) soil sample 
collected pH, respectively. Measurements were made at three sentinel sampling/logger locations 
at an agroforestry site in Fayetteville, AR from 2020 to 2021. Each figure’s resulting r- and p-
value from the Pearson correlation are reported on Table 6.  
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Chapter 3 

Relationships Among Apparent Electrical Conductivity and Plant and Terrain Data in an 

Agroforestry System in the Ozark Highlands 
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Abstract 

Minimal research has been conducted relating electromagnetic induction (EMI) apparent 

electrical conductivity (ECa) surveys to plant and terrain properties in agroforestry (AF) systems. 

Objectives of this study were to i) evaluate correlations between ECa and forage yield, tree 

growth, and terrain attributes based on plant (forage and tree) species, and fertility treatments, 

and ECa-derived soil management zones (SMZs), and ii) identify terrain attributes that have the 

largest contribution to ECa variability at a 20-year-old, 4.25-ha, AF system in the Ozark 

Highlands of northwest Arkansas. Fourteen terrain attributes and average of 12 mid-monthly ECa 

surveys (August 2020 to July 2021) were obtained. Tree diameter at breast height (DBH) and 

tree height (TH) measurements were made in December 2020 and March 2021, respectively, and 

forage yield samples were collected seven times during Summer 2018 and 2019. Perpendicular 

geometry (PRP) and horizontal coplanar geometry (HCP) ECa ranged between 1.8 and 18.0 and 

3.1 and 25.8 mS m-1, respectively. Relationships between ECa and tree properties were generally 

stronger within the whole-site (averaged across tree property and ECa configuration, | r | = 0.38) 

than the SMZs (averaged across tree property, ECa configuration, and SMZ, | r | = 0.27). The 

strength of the SMZs’ terrain-attribute-PRP-ECa relationships were 9 to 205% greater than that 

for the whole-site. Whole-site, multi-linear regressions, Slope Length and Steepness (LS)-Factor 

(10.5%), Mid-slope (9.4%), and Valley Depth (7.2%) had the greatest influence (i.e., largest 

percent of total sum of squares) on PRP ECa variability, whereas Valley Depth (15.3%), Wetness 

Index (11.9%), and Mid-slope (11.2%) had the greatest influence on HCP ECa variability. 

Results of this study show how ECa relates to plant properties (i.e., tree DBH and TH and forage 

yield) and terrain attributes within SMZs in AF systems with varying topography that could be 

used to influence AF management.  
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Introduction 

Crop yield variability due to spatially heterogeneous soil properties has been well 

recognized. As a result, whole-field land management has increasingly been identified as 

inefficient, as whole-field land management causes the under- and over-application of resources 

in regions of high- and low-yield potential, respectively [1]. Intra-field management, the spatially 

directed management of pests, crops, and soils based on differing characteristics within a field, is 

a precision agriculture management approach that produces smaller management units and 

optimizes field production and sustainability [1,2]. However, site-specific management requires 

the characterization of within-field variability and the identification of areas of homogeneous 

characteristics, or soil management zones (SMZs) [2].  

Several methods have been used to map spatial variability and delineate management 

zones within a field. These methods include soil sampling for digital soil mapping yield 

monitoring and geophysical methods for proximal soil sensing [i.e., ground-penetrating radar 

(GPR), electrical resistivity (ER), electromagnetic induction (EMI), optical reflectance, gamma-

ray spectrometry, time domain reflectometry (TDR)] [3,4], with EMI-based methods being the 

most frequently used for proximal soil sensing [5]. Electromagnetic induction-based methods use 

ground conductivity meters, which are non-invasive, simple to implement, and are capable of 

measuring large areas relatively quickly [6,7]. Electromagnetic-induction sensors are able to help 

delineate soil property variability through proximally sensing the soil’s apparent electrical 

conductivity (ECa), which is the ability of a soil to conduct an electrical current. Lab-measured 

EC has commonly been used has a measurement of soil salinity [8,9]; however, in-field EMI-

ECa is the result of complex interactions of many soil properties [i.e., base saturation (BS), bulk 

density (BD), cation exchange capacity (CEC), clay content and mineralogy, soil organic matter 
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(SOM), soil salinity, soil temperature, and soil water content (SWC)] and, in turn, can be used to 

help identify within-field soil property variability through correlations [10]. In addition to 

establishing relationships between measured EMI-ECa and soil properties, EMI-ECa surveys 

have been used in digital soil mapping, optimizing soil sampling strategies, and delineating 

crop/soil management zones [11,12].  

Electromagnetic induction-ECa surveys have been used to evaluate variations in a 

multitude of soil and crop responses within a variety of different land management systems and 

ecosystems across the world. In addition to soil properties, relationships between EMI-ECa and 

crop yield have been assessed [1,13,14]. However, minimal work has been conducted exploring 

the relationships between EMI-ECa and pasture forage yield and tree growth in agroforestry (AF) 

systems, or whether the relationships could be improved with ECa-derived SMZs within an AF 

system in an environment similar to the Ozark Highlands. Similarly, relationships between 

terrain attributes and EMI-ECa have been evaluated and both have been used to create 

management zones or functional units and for predictive mapping, individually or in 

combination [13,15–22]. However, no work has been conducted evaluating relationships 

between terrain attributes and EMI-ECa within an AF system in an environment like the Ozark 

Highlands. 

 The Ozark Highlands is a region with unique characteristics that result in the area having 

increased potential for conservation issues. Specifically, the Ozark Highlands is characterized by 

a relatively warm and wet climate, rolling topography, inclusions of shallow, cherty soils 

overlying karst limestone geology, rapid urbanization, and pastoral systems with repeated, excess 

applications of poultry litter (PL). The characteristics of the Ozark Highlands, in turn, cause the 

region to have an elevated potential for surface and sub-surface water quality degradation via 
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nutrient-rich runoff to surface waters and leaching to shallow and/or easily accessed groundwater 

sources. Considering the conservation issues in the Ozark Highlands, AF systems may be 

beneficial due to the many potential ecosystem services that AF systems offer (i.e., reduced soil 

erosion and runoff and water and soil quality enhancement). 

Considering the lack of information relating EMI-ECa surveys to plant characteristics and 

terrain attributes in a sloped, topographically variable AF system in the Ozark Highlands, the 

objectives of this study were to identify: i) correlations between EMI-ECa and forage yield, tree 

growth, and terrain attribute data at the whole-site and ECa-derived SMZs level, ii) correlations 

between ECa and forage yield and tree growth data per species and fertility treatments within the 

whole site and three ECa-derived SMZs, and iii) terrain attributes that drive EMI-ECa variations 

at a 20-year AF system in the Ozark Highlands of northwest Arkansas. It was hypothesized that 

EMI-ECa data will be correlated with forage yield, tree growth characteristics, and terrain 

attributes and that correlations among EMI-ECa and forage yield, tree growth data, and terrain 

attributes can be improved with ECa-derived SMZs. It was also hypothesized that terrain 

attributes would contribute to the ECa variability to varying degrees within the AF site and across 

the SMZs.  

 

Materials and Methods 

Site Description 

Mapped Soils and Tree and Forage Establishment 

The study site was located in the Ozark Highlands, Major Land Resource Area (MLRA) 

116A [23], at the University of Arkansas Milo J. Shult Agricultural Research and Extension 

Center (SAREC) in Fayetteville, AR (36.09°N, 94.19°W). The study site was a 4.25-ha paddock 
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primarily mapped as Captina silt loam (fine-silty, siliceous, active, mesic Typic Fragiudults), but 

contains some Pickwick silt loam (fine-silty, mixed, semiactive, thermic Typic Paleudults), Nixa 

cherty silt loam (loamy-skeletal, siliceous, active, mesic Glossic Fragiudults), Johnsburg silt 

loam (fine-silty, mixed, active, mesic Aquic Fragiudults), and Cleora fine sandy loam (Coarse-

loamy, mixed, active, thermic Fluventic Hapludolls; Figure 1) [24]. The research area also 

contained a dissimilar soil inclusion that is consistently wetter and lower in elevation than the 

immediate surrounding areas at the AF site. The dissimilar inclusion within the study site is not 

captured in the formal soil mapping units across the site, but is classified as fine, mixed, active, 

thermic Typic Endoaqualfs [25]. The AF site receives an average of 1156 mm of precipitation 

annually and has annual minimum, maximum, and average air temperature of 8.7, 20.3, and 

14.6°C, respectively, based on 30-yr means (1981 to 2010) [26]. 

Before the AF site was established, the paddock was split into two paddocks by a north-

south fence, which were poorly managed, covered in weeds, and only used for equipment 

storage. Additionally, the paddocks had small terraces from previous management and had a 

gully forming. Prior to the site’s conversion to an AF system, the fences were removed, the gully 

was filled in, the soil was leveled, and the vegetation was killed. Sixteen rows of northern red 

oak (Quercus rubra L.), pecan (Carya illinoinensis Wangenh. K. Koch), and eastern black 

walnut (Juglans nigra L.) were established at the study site in 2000 in an east-west orientation 

with 15-m spacing between tree rows (Figure 1). The eastern black walnut trees grew adequately 

on the east side, but struggled to grow in the central, wetter area and in the dry Nixa soil on the 

west side of the tree rows. Consequently, in 2014, the eastern black walnut trees were removed 

and replaced with three fast-growing tree species: pitch/loblolly pine (Pinus rigida x Pinus 

taeda) in the drought-prone portion, American sycamore (Plantanus occidentalis L.) in the well-
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drained portion, and cottonwood (Populus deltoides W. Bartram ex Marshall) in the poorly 

drained portion of the study site (Figure 1). Furthermore, two forage-species treatments were 

established in the tree-row alleys, which included a cool-season species [orchardgrass (Dactylis 

glomerata L., var. Tekapo)] that was seeded in Fall 2015 at 17 kg pure live seed (PLS) ha-1 and a 

native warm-season mix [8:1:1 big bluestem (Andropogon gerardii Vitman), little bluestem 

(Schizachyrium scoparium {Michx. Nash}, indiangrass (Sorghastrum nutans L.)] seeded in 

spring 2016 at 10 kg PLS ha-1 (Figure 1). To remove any existing vegetation from the alleys 

before forage establishment, Cornerstone® Plus (N-[phosphonomethyl] glycine, Winfield 

Solutions, St. Paul, MN) was applied at a 2.2 kg ha-1 rate [41% active ingredient (ai)]. 

Additionally, a Haybuster 107C no-tillage drill (DuraTech, Jamestown, ND) was used to plant 

the alleys and PlateauTM (ammonium salt of imazapic) was applied after establishment at a rate 

of 0.28 kg ha-1 (23.6% ai) to remove any remaining non-forage vegetation.  

 

Fertilizer Applications 

Between 2001 and 2007, except for 2005, 50 to 76 kg nitrogen (N) ha-1, as ammonium 

nitrate (NH4NO3), and 3.9 to 6.7 Mg PL ha-1 were broadcast applied over the western and eastern 

halves, respectively, of the AF site each spring (Figure 2) [27]. In 2005, NH4NO3 and PL were 

applied in the spring and fall at rates of 123 kg N ha-1 and 8.9 Mg PL ha-1 to evaluate the impacts 

of nutrient source on soil physiochemical properties [27]. Additionally, annual applications of 

Osmocote (The Scotts Miracle-Grow Co., Marysville, OH), a slow-release fertilizer that 

contained 5.6, 2.4, and 4.6 g of N, phosphorus (P), and potassium (K), respectively, began in 

June 2004 and were surface-applied to the surrounding ground near each tree [27]. Between 

2016 and 2021, trees were annually fertilized in the spring/summer with variable rates and 
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combinations of NH4NO3 or a 32-0-0 fertilizer blend, a 13-13-13 fertilizer (Greenkeeper’s Secret 

13-13-13 Premium Fertilizer, T&M, Inc., Foristell, MO), and gypsum (CaSO4). The 2016 to 

2021 tree fertilizer application rates were based on the nutrient concentrations of 2016 soil 

samples and the fertilizer combinations applied to the trees were based on fertility treatment. 

Further information regarding the 2016 to 2021 tree fertilization scheme was previously 

summarized [28]. 

Native grass (NG) and orchardgrass (OG) forage treatments in the alleys between tree 

rows (15 m wide) received 84 kg N ha-1 (4.94 Mg ha-1, fresh weight basis) of locally sourced PL 

in March 2017 and 2018 and April 2019 (Figure 2). The PL in the 2017 application had a 

chemical composition of 2.7, 0.7, and 1.1 % N, P, and K, respectively, and had a pH of 6.1. The 

PL in the 2018 application had a chemical composition of 2.0, 0.6, and 1.0 % N, P, and K, 

respectively, and had a pH of 6.2. The PL in the 2019 application had a chemical composition of 

2.5, 0.7, and 0.9 % N, P, and K, respectively, and had a pH of 5.2. Afterward fertilization each 

year, heifers (Bos taurus L.) grazed the study site at a density of 1.9 animal units (AU) ha-1 from 

May to June 2017, 2.2 AU ha-1 from May to July 2018, and 2.4 AU ha-1 from May to July 2019 

[25,29,30]. On 30 March 2020 and 31 March 2021, urea (46-0-0) was applied to all alleys at a 

rate of 67.3 kg N ha-1 with a fertilizer spreader (Willmar S500;. Duluth, GA). 

 

Survey Equipment  

A Trimble R2 global positioning system (GPS) unit (Trimble Inc., Westminster, CO) and 

a DUALEM-1S sensor (DUAL‐geometry Electro‐Magnetic; Dualem Inc., Milton, ON, 

Canada) were used to collect the EMI-ECa measurements. The DUALEM-1S has a 3000 mS m-1 

conductivity range and a 9-kHz transmitter with two receivers that have different orientations 
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[9,31]. The first receiver and the transmitter have a 1-m separation and both use vertical dipoles 

in horizontal coplanar geometry (HCP) [9,31]. The second receiver and the transmitter have a 

1.1-m separation and use a vertical and horizontal dipole in the perpendicular geometry (PRP) 

[9,31]. The depths of exploration (DOE), which is defined as the depth to which an array 

accumulates 70% of its total sensitivity, were ~ 0.5 and 1.6 m for the PRP and HCP, 

respectively. Thus, the PRP measures the bulk ECa of the 0 to 0.5-m depth the HCP measures the 

bulk ECa of the 0 to 1.6-m depth [9,31]. Furthermore, a Can-Am Side-by-Side (Defender, BRP 

US, Inc., Sturtevant, WI) was used to power the DUALEM-1S through a 12-V, direct current 

(DC) battery and pull the DUALEM-1S on a sled during each survey. The DUALEM-1S’s EMI-

ECa measurements were transmitted serially through a 9-socket, DB-9 connector port, and were 

obtained simultaneously with the GPS data though a hand-held geoinformation system program 

(HGIS; HGIS version 10.90, StarPal Inc., Fort Collins, CO) on a Trimble Yuma 2 rugged tablet 

computer (Trimble Inc., Westminster, CO) [9,31].  

 

Survey Procedures ECa Data Processing 

Between August 2020 and July 2021, 12, mid-monthly ECa-surveys were conducted at 

the AF site. To minimize temperature drift effects on the DUALEM-1S signal during surveying, 

the DUALEM-1S was powered on 30 minutes before each survey began to allow the DUALEM-

1S to reach ambient temperature, and the ECa surveys were conducted in the early morning. The 

DUALEM-1S was suspended in a plastic sled, 12.7 cm above the sled bottom, and the center of 

the DUALEM-1S was located 4.15 m behind the Trimble R2 GPS unit, where the front of the 

DUALEM-1S was located 2.1 m behind the side-by-side. For each survey, the DUALEM-1S 

was pulled at a rate of 4.8 to 8.0 km hr-1 in a looping pattern over two alleys at a time until four 
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parallel drive paths, 2 to 5 m apart, per alley had been completed. The DUALEM-1S was kept > 

1 m away from any metal objects and unnecessary stops were avoided while each survey was 

being conducted. Once each survey had been completed, a temperature-drift calibration line was 

driven over all subsequent survey drive paths so that any measurement drift that occurred during 

the survey period due to increases in internal temperature could be assessed and accounted for. 

The temperature-drift calibration line was conducted in a sideways “V” shape, where the 

calibration line began in the northwest corner and ended in the southwest corner of the site, with 

the midpoint being around the eastern edge of Row 8 or 9 (Figure 1). After each ECa survey was 

conducted, the PRP and HCP ECa of each survey underwent data cleaning, GPS-coordinate 

adjustment, outlier removal, temperature-drift calibration, temperature standardization to 25°C, 

averaging of coincidental points, experimental semi-variogram modeling, and universally-

kriging to a 5-m resolution. A 5-m resolution was chosen to be consistent with the resolution of 

previous studies at the AF’s site [18]. Specific details of the ECa survey data processing 

procedures were previously described [22]. The PRP and HCP ECa of the 12, mid-monthly 

surveys conducted were averaged to produce a single ECa data file per configuration for the 

analyses. Hereafter, the mean PRP and HCP ECa of the 12 universally kriged surveys are 

referred to as PRP and HCP ECa, respectively.  

 

Tree and Forage Data Collection 

On 9 December 2020, the diameter at breast height (DBH) of the trees were measured at 

137 cm above the soil surface [18,32]. Additionally, a hand-held clinometer (SS011096010; 

Suunto; Vantaa, Finland) was used 12.2 m from each tree trunk to measure the angle to the 
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highest point on each tree on 15 March 2021. The angle’s tangent was then used to calculate the 

vertical tree height (TH), with the clinometer operator’s eye height added to Equation (1):  

                        "��� ℎ�$%ℎ& = 'tan'+,$-./�&�� 0-%,�1 × 2$3&0-+� 4�./ &�5-61 +

                                                     ��� ℎ�$%ℎ& .4 +,$-./�&�� .7��0&.�          (1) 

During Summer 2018 and 2019, 4-m2 cattle exclosures, three for each forage species-fertility 

treatment combination, were placed in alley centers to exclude forage areas from cattle grazing 

(Figure 2) [18,29,32]. Two, 0.25-m2 forage total biomass subsamples were collected from each 

cattle exclosure on multiple occasions in 2018 and 2019 [18,29,32]. In 2018, forage biomass 

samples were collected on 25 May and 4, 15, and 29 June. In 2019, forage biomass samples were 

collected on 4 and 20 June and 3 July (n = 54 per timepoint). Forage samples were obtained by 

hand clipping aboveground biomass 6 cm above the soil surface [18,29,32]. Afterward, forage 

samples were geo-referenced, weighed, oven-dried at 70°C for 48 hr, and reweighed for moisture 

content and dry matter determinations [18,29,32]. 

 

Terrain Attribute and Soil Management Zone Data Collection 

Terrain attribute data for the study site was obtained from a bare-earth digital elevation 

model (DEM) that was originally derived from Light Detection and Ranging (LiDAR) imagery 

[33]. The DEM had a 5-m resolution and was obtained from the United States Department of 

Agriculture’s Natural Resources Conservation Service (USDA-NRCS) Geospatial Data Gateway 

[34], where the DEM was used to extract 14 terrain attributes within in System for Automated 

Geoscientific Analysis (SAGA GIS; SAGA GIS version 7.9.0) [35] and ArcGIS platforms 

(ArcGISmap version 10.6.1, Esri, Redlands, CA) [33]. The 14 terrain attributes and their 
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abbreviations, definitions, and summary statistics are presented in Table 1 and their spatial 

pattern across the AF site can be visualized in Figure 3.  

Furthermore, recently created ECa-derived SMZs [22] were used for this study. The same 

12 ECa surveys used for the current study were used to create three precision SMZs at the AF 

site [22] using the k-means clustering algorithm [36] by overlaying and grouping HCP and PRP 

ECa surveys [22]. Only the SMZs created by the HCP ECa were used, as the SMZs created by the 

PRP ECa were less cohesive and presented less manageable SMZs as the HCP ECa SMZs. Of the 

three SMZs, SMZ 1 generally had the smallest mean ECa and ECa variability and was 

characterized as an area of shallower depth to bedrock, increased coarse fragment abundance, 

and an area of erosion rather deposition (Figure 2) [22]. Additionally, SMZ 2 generally had the 

largest mean ECa and ECa variability of the three SMZs and contained the local drainageway and 

areas of potential subsurface water movement [22].  

 

Statistical Analyses 

 Correlation analyses were conducted with the collected ECa and tree, forage, and terrain 

attribute measurements to identify potential linkages among variables within treatment 

combinations. Specific correlations conducted in this study were among 1) PRP and HCP ECa 

and TH, DBH, and total forage yield within the whole AF site and each SMZ, 2) PRP and HCP 

ECa and TH, DBH, and total forage yield within tree/forage species and 2001-2007 PL/N-

fertilizer treatment combinations within the whole AF site and each SMZ, 3) correlations among 

PRP and HCP ECa and total forage yield within forage species and 2017-2019 PL/control 

treatment combinations within the whole AF site, and 4) correlations among PRP and HCP ECa 

and the terrain attribute data within the whole AF site and each SMZ. Pearson correlations were 
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performed between ECa and plant properties (i.e., total forage yield, TH, and DBH) because the 

plant properties were generally normally distributed, while Spearman correlations were 

conducted between terrain attributes and ECa because both ECa configurations were generally 

non-normally distributed. Additionally, multi-linear regression (MLR) models were applied over 

the PRP and HCP ECa to identify terrain attributes that had an effect on PRP and HCP ECa, and 

to determine which terrain attributes contributed the most to overall PRP and HCP ECa 

variability using terrain attributes’ percent of total sum of squares within the MLR model. 

Significance in the MLR models were judged at P ≤ 0.05 and all statistical analyses were 

conducted in R Studio (version 4.05, R Core Team, Boston, MA). 

 

Results and Discussion 

PRP and HCP ECa 

Correlations (P < 0.05) were identified between measured ECa and tree growth (i.e., DBH 

and TH), forage yield, and terrain attributes for both configurations (HCP and PRP; Figure 4). 

The PRP ECa ranged from 1.8 to 18.0 mS m-1 and averaged 5.9 mS m-1, while the HCP ECa 

ranged from 3.1 to 25.8 mS m-1 and averaged 9.9 mS m-1 (Figure 4). For both the PRP and HCP 

ECa, maximum ECa occurred within the local drainageway or areas of potential groundwater 

movement [22], which was characterized by the trail of elevated ECa that started in the northwest 

corner, peaks in the center (Rows 5 to 7) and extends eastward, and dissipates towards bottom 

middle of the AF site (Figures 1 and 4). The minimum ECa for both the PRP and HCP occurred 

within the areas of shallower depth to bedrock, increased coarse fragment abundance, and areas 

of erosion rather than deposition [22], which were characterized by reduced ECa occurring in the 

western/southwestern portion of the AF site (Figure 4). Additional information regarding the 
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experimental semi-variogram parameters, models, summary statistics, and spatial pattern of the 

12, universally kriged PRP and HCP ECa that were averaged and used to create PRP and HCP 

ECa maps are available in Ylagan et al. [22].  

 

Correlations Among ECa and Forage and Tree Data  

Whole-site Correlations  

Within the whole AF site, total forage yield did not have the same relationship to ECa as 

the tree data (Table 2). The forage yields ranged from 284 (OG, 15 June 2018) to 6,387 kg ha-1 

(NG mix, 3 July 2019), tree DBH ranged from 0.50 (pine) to 45.7 cm (oak), and TH ranged from 

0.9 (pine) to 22.7 m (cottonwood). Forage yield was unrelated (P > 0.05) with either the PRP or 

HCP ECa (Table 2). However, both DBH (r = 0.34 and 0.21) and TH (r = 0.54 and 0.42) were 

moderately, positively (P < 0.05) related with both the PRP and HCP ECa, respectively, where 

the PRP ECa had stronger relationships with tree properties than the HCP ECa (averaged across 

DBH and TH, r = 0.44 and 0.32, respectively; Table 2). The positive relationship between the 

ECa and tree properties at the whole-site level were likely the result of factors that increase ECa 

and plant productivity (Table 2). Specifically, some of the largest measured ECa values occurred 

within the local drainage way of the AF site [22] and were likely the result of the accumulation 

of transported water, nutrients/salinity, OM, and sediment from overland flow over time [10]. 

Increases in the SWC, nutrients, and OM also have the potential to increase plant productivity. 

Thus, increases in soil properties, such as SWC, nutrients, and OM, likely resulted in the positive 

relationship between the ECa and DBH and TH for both ECa configurations (Table 2).  

Correlations were also conducted among ECa and tree/forage data for the tree/forage 

species and 2001-2007 fertility treatment combinations, where only 10 of 72 total combinations 
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had a significant relationship (Tables 3 and 4). Tree height was moderately, negatively (P < 0.05) 

correlated with the PRP and HCP ECa within the oaks treated with the 2001-2007 fertilizer-N 

applications (r = -0.53 and -0.46, respectively) and was also moderately, negatively (P < 0.05) 

within the oaks treated with 2001-2007 PL applications (r = -0.53 and -0.46, respectively; Tables 

3 and 4). Within the pecans with 2001-2007 fertilizer-N applications, DBH was moderately, 

positively (P < 0.05) correlated with PRP and HCP ECa (r = 0.59 and 0.56, respectively) and TH 

was also moderately, positively (P < 0.05) correlating the PRP and HCP ECa (r = 0.37 and 0.36, 

respectively; Tables 3 and 4). Forage yield of the NG mix within the 2001-2007 fertilizer-N 

application areas was moderately, positively (P < 0.05) correlated with the PRP ECa (r = 0.48; 

Tables 3). However, there was a moderate, negative (P < 0.05) correlation between forage yield 

of the OG within the 2001-2007 PL application areas and the HCP ECa (r = -0.44; Tables 4). 

Additionally, there were no relationships between forage yield and ECa for any of the eight ECa 

configuration (PRP or HCP), forage species (NG mix or OG), and 2017-2019 fertility (PL or no 

fertilizer control) treatment combinations (Table 5).   

The moderate, negative relationships between both the PRP and HCP ECa and TH of the 

oaks that were within the 2001-2007 fertilizer-N and PL application areas were likely the result 

of soil properties that increase measured ECa and decrease plant productivity (Tables 3 and 4). 

Jiang et al. [18] collected 51, 0-15-cm soil core samples from the tree-row alleys at the same AF 

site as used in the current study using a 3.3-cm-diameter soil core and used the Soil-Land 

Inference Model (SoLIM) to create interpolated maps of different soil properties across the AF 

site. The BD map that Jiang et al. [18] created displayed elevated BDs (1.45 to 1.70 g cm3) 

across the oak area. Not only can increased BD cause increased measured ECa through increased 

solid conductance pathways [10], but increased BD can also reduce plant growth, as increased 



 

120 

BD decreases soil water-holding capacity, air and water movement, microbial activity, and 

restricts root growth. Thus, elevated soil BD likely resulted in the negative relationship between 

the ECa and the TH of the oaks that were within the 2001-2007 fertilizer-N and PL application 

areas (Tables 3 and 4). 

It is unclear why there were moderate, positive relationships between the both the PRP 

and HCP ECa and DBH and TH of the pecans within the 2001-2007 fertilizer-N application areas 

(Tables 3 and 4). However, perhaps because the pecans on the fertilizer-N side received less 

overall nutrient inputs than the PL side during the 2001-2007 period, pecan tree growth on the 

fertilizer-N side was more related to the inherent soil properties, including ECa, than the pecan 

tree growth that occurred on the side that received PL (Tables 3 and 4). It is also unclear why 

there was a moderate, positive relationship between the PRP ECa and forage yield of the NG mix 

in the 2001-2007 fertilizer-N application area, or why there was a moderate, negative 

relationship between the HCP ECa and forage yield of the OG in the 2001-2007 PL application 

area (Tables 3 and 4). However, perhaps the relationships are dependent on other soil, terrain, or 

plant properties that were not assessed, rather than a lasting effect from the 2001-2007 fertilizer 

applications.  

 

SMZ Correlations  

 Within a SMZ, relationships among ECa and forage and tree data were generally similar 

between both ECa configurations. Within SMZ 1, forage yield was unrelated (P > 0.05) to either 

PRP or HCP ECa (Table 2). However, forage yield was moderately, positively (P < 0.05) 

correlated with both the PRP and HCP ECa within SMZ 2 (r = 0.52 and 0.54, respectively; Table 

2). Within SMZ 3, forage yield was moderately, negatively (P < 0.05) correlated with the HCP 
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ECa (r = -0.51), but was unrelated to the PRP ECa (Table 2). Within SMZ 1, both DBH and TH 

were moderately, positively (P < 0.05) correlated with the PRP ECa (r = 0.37 and 0.35, 

respectively), but was weakly, negatively (P < 0.05) correlated with the HCP ECa (r = -0.20 and 

-0.22, respectively; Table 2). Of the tree and ECa data within SMZ 2, there was only a weak, 

positive (P < 0.05) correlation between TH and PRP ECa (r = 0.26; Table 2). Only DBH was 

weakly, negatively (P < 0.05) correlated with HCP ECa within SMZ 3 (r = -0.22; Table 2).  

The weak to moderate, positive correlations between PRP ECa and DBH and TH in SMZ 

1, the PRP ECa and the TH and forage yield in SMZ 2, and the HCP ECa and forage yield in 

SMZ 2 were potentially the result of topographic features and soil properties that increase ECa 

and plant productivity (Table 2). Soil management zone 1 contains the greatest change in slope 

(Figures 2 and 3) and SMZ 2 includes the local drainage way at the site. Overland flow causes 

water and transported materials (i.e., sediment, nutrients, and OM) to be deposited downslope 

and in depressional areas. Accumulation of transported material over time can result in increased 

soil moisture, nutrient, clay, and OM contents, all of which can increase measured ECa and can 

increase plant productivity [10]. Thus, the positive relationships between ECa and DBH, TH, and 

forage yield in SMZ 1 and 2 were likely the result of transported materials increasing both ECa 

and plant growth (Table 2). Additionally, Ashworth et al. [25] observed cattle spent less time 

grazing forages that were located within the drainage way at the AF site between 2017 and 2019. 

Furthermore, it is unclear why there was a negative correlation between the HCP ECa and DBH 

and TH within SMZ 1, as the PRP ECa and DBH and TH within SMZ 1 were positively 

correlated (Table 2). Using the AF site’s BD map created by Jiang et al. [18], SMZ 3 contains 

more areas of elevated BD (~1.5 to 1.7 g cm-3) than the other SMZs (Table 2; Figure 2). Elevated 

BD can cause increased ECa measurements and can cause decreased plant productivity [10]; 
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thus, the elevated BD within SMZ 3 likely resulted in the negative correlations between HCP 

ECa and DBH and forage yield (Table 2).  

Although tree growth properties and forage yield were not correlated to ECa in all 

correlation groups evaluated (i.e., within the whole-site, SMZs, and species and fertility 

treatments), ECa-tree and -forage correlations were established. Thus, the hypothesis that EMI-

ECa data will be correlated with forage yield and tree growth characteristics was confirmed 

within some, but not all correlation groups. Additionally, the ECa-tree and -forage correlations 

demonstrated that relationships between ECa and plant growth properties can vary from whole-

site relationships and become explanatory (i.e., forage yield) when separated into SMZs (Table 

2). As a result, using ECa to describe plant growth variability in AF systems is potentially more 

effective within SMZs because more accurate ECa-plant relationships can be established within 

sub-regions at a site that contain specific landscape features, soil properties, or ECa ranges. 

However, the relationship strength (i.e., | r |) of the whole-site, ECa-tree-property relationships, 

averaged across tree property (DBH and TH) and ECa configuration, r = 0.38, was stronger than 

the relationship strength of SMZ ECa-tree-property relationships, averaged across tree property, 

ECa configuration, and SMZ, r = 0.27 (Table 2). Thus, the hypothesis that correlations among 

EMI-ECa and total forage yield and tree growth data can be improved with ECa-derived SMZs 

was confirmed for forage yield in some SMZs, but not for tree growth in any SMZ.  

 

Correlations Among ECa and Terrain Attributes  

Whole-site Correlations  

Most terrain attributes had correlations (P < 0.05) with ECa; however, there were a few 

differences in the terrain attributes’ relationships with both ECa configurations. Specifically, both 



 

123 

NormHt and TPI identify areas of higher or lower relative elevation, and SlopeHt and VDistChn 

identify areas of increased height of above modeled drainage accumulation or channel network, 

respectively (Table 1) [37]. Additionally, LS-factor, which incorporates SlopePer, identifies 

areas of increased erosion potential, FlowAccum identifies where runoff accumulates, MRVBF 

identifies depositional areas, and SAGAWI identifies areas in valley floors with an increased 

potential of water accumulation (Table 1) [37]. Soil constituents (i.e., sediment, OM, nutrients, 

and water), which greatly contribute to ECa [10], are eroded and/or transported from upslope 

positions and are deposited downslope in valley, depressional, and flow accumulation areas over 

time. The accumulation of soil constituents downslope and in depressional areas often results in 

these areas having greater ECa than higher elevation areas and/or areas with increased erosion 

[22,38]. Thus, the negative relationships that NormHt, TPI, and SlopeHt had with the PRP ECa; 

the negative relationships that LS-Factor, SlopePer, and VDistChn had with the PRP and HCP 

ECa; and the positive relationships that FlowAccum, MRVBF, and SAGAWI had with the PRP 

and HCP ECa within the whole AF site were likely the result of the terrain attributes identifying 

areas where increased soil erosion and deposition/accumulation occur, which decreased and 

increased ECa measurements, respectively (Tables 1 and 6).  

Other explanations for the relationships between terrain attributes and ECa were not as 

obvious. Specifically, the weak, positive correlations between Aspect and both PRP and HCP 

ECa were unexpected, as the mean and median slope aspect of the AF site were 185 and 189°, 

respectively, making the AF site primarily south facing (Tables 1 and 6). Additionally, it is 

unclear why there were weak, positive correlations between Elevation, NormHt, and SlopeHt 

and HCP ECa, and a weak, negative correlation between ValleyDep and HCP ECa (Tables 1 and 

6). Specifically, it can be expected that ECa will likely decrease with increasing elevation and 
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distance from valleys and drainage ways, as there would be decreasing ECa-contributing soil 

properties (i.e., clay, OM, nutrients, and water content, soil water-holding capacity, and soil 

depth) from erosional forces removing and depositing soil constituents downslope and in 

depositional areas [22,38]. However, the weak, positive correlations between Aspect and both 

the PRP and HCP ECa and between Elevation and HCP ECa within the whole AF site (Table 6) 

were similar to the result of Kitchen et al. [19]. Kitchen et al. [19] conducted an ECa survey on a 

13-ha field in Boone County, Missouri that had been previously planted with corn (Zea mays L.) 

and soybean (Glycine max L.) and was mapped as Mexico (Aeric Vertic Epiaqualfs) and Adco 

(Vertic Albaqualfs) soil series. The shallow ECa (0-30 cm) had a positive relationship with 

aspect (r = 0.41), while the deep ECa (0-100 cm) had a positive relationship with aspect and 

elevation (r = 0.26 and 0.37, respectively) [19].  

The terrain attribute MidSlope identifies the mid-slope position between the greatest and 

lowest elevation in the defined landscape (Table 1). The weak, negative correlation between the 

MidSlope and both PRP and HCP ECa was an indication that ECa decreased with increasing 

distance from the mid-slope position, vertically up- or down (Tables 1 and 6). However, the 

negative relationship between the MidSlope and ECa was likely a result of some of the largest 

ECa values at the AF site occurring within the local depressional area in the drainage way, which 

was located within or just around the mid-slope position of study site (Figures 3 and 4; Table 6).   

 

SMZ Correlations   

Correlations between ECa and terrain attributes within the SMZs differed from the whole-

site results and varied between SMZs and ECa configuration (Table 6). Specifically, no terrain 

attribute had a consistent relationship with the HCP ECa across all three SMZs, whereas eight 
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terrain attributes had consistent relationships with PRP ECa across all three SMZs (i.e., 

Elevation, LS-Factor, MRVBF, NormHt, SlopeHt, SlopePer, TPI, and ValleyDep; Tables 1 and 

6). The PRP ECa had 4 to 10 more significant correlations to the terrain attributes than the HCP 

ECa in each of the SMZs (Tables 1 and 6). Additionally, all 15 correlations between terrain 

attributes and HCP ECa within SMZs were weak (| r | < 0.30), whereas the 75% of the 36 

significant correlations between the terrain attributes and the PRP ECa within the SMZs were 

moderate (| r | ≥ 0.30; Tables 1 and 6). In all instances where both the PRP and HCP ECa had a 

significant relationship with the same terrain attribute within the SMZs, the absolute value of the 

correlation coefficient was numerically greater from the PRP than the HCP ECa (Tables 1 and 6). 

The increased quantity and strength of correlations between the terrain attributes and PRP ECa, 

compared to HCP ECa, was likely a result of the 0-0.5 m soil depth and its properties being more 

associated with the surface terrain attributes and the landscape-level process that they influence 

(i.e., overland flow, erosion, deposition, accumulation, and sunlight exposure) than the 0-1.6 m 

soil depth. The differences between the terrain attributes’ relationships with the PRP and/or HCP 

ECa across SMZs, and between the SMZs and whole site, were likely a result of different terrain 

attributes affecting the soil and its properties, including ECa, to different degrees and depths 

within the configuration boundaries. 

Because terrain-attribute-ECa correlations were established within both the whole-site 

and SMZs, the hypothesis that EMI-ECa data will be correlated with terrain attributes was 

confirmed. Additionally, when terrain attributes had a relationship with PRP ECa for the whole-

site and all SMZs (i.e., LS-Factor, MRVBF, NormHt, SlopeHt, SlopePer, and TPI), the strength 

of the relationships between the terrain attributes and the PRP ECa were 9 to 205% greater for 
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the SMZs than for the whole-site (Table 6). Thus, the hypothesis that correlations among EMI-

ECa and terrain attribute data can be improved with ECa-derived SMZs was confirmed.  

  

Terrain Attribute MLR Model on ECa 

Whole-site MLR Models 

The relationships among the terrain attributes and ECa in the MLR models varied 

between ECa configurations and among the whole-site and SMZs (Tables 1 and 7). Within the 

whole-site, all terrain attributes were significant (P < 0.05) in the models for both the PRP and 

HCP ECa; however, the degree to which the terrain attributes influenced (i.e., percent of total 

sum of squares) the whole-site PRP and HCP ECa variability varied (Table 7). Thus, the 

hypothesis that different terrain attributes would contribute to the ECa variability to different 

degrees within the AF site was confirmed. The terrain attributes LS-Factor, MidSlope, and 

ValleyDep had the greatest influence (i.e., largest percent of total sum of squares) on the PRP 

ECa variability (10.5, 9.4, and 7.2 %, respectively), with MRVBF and SAGAWI following 

closely behind (7.1 and 6.1 %, respectively; Tables 1 and 7). Alternatively, ValleyDep, 

SAGWAI, and MidSlope and the greatest influence on the HCP ECa variability (15.3, 11.9, and 

11.2 %, respectfully; Tables 1 and 7).  

With exception of MidSlope, the terrain attributes that had the greatest influence on the 

ECa variability across the whole AF site were likely due to the effect of topography and climate 

and the properties the terrain attributes describe (Table 7). As previously mentioned, the effect of 

MidSlope on ECa was more likely due to some of the largest ECa values at the AF site occurring 

within the local depressional area in the drainage way, which is located within or just around the 

mid-slope position of study site (Figures 3 and 4; Tables 1 and 7). The study site has variable 
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topography (8-m elevation change and < 9.1 % slope gradient) and is located in the humid 

subtropics, where the AF site receives a large amount of precipitation annually [1156 mm, 30-yr 

means (1981 to 2010)] [26]. As a result of the AF site’s elevation change and level of 

precipitation, it can be expected that some of the largest contributors to the development of soils 

and their properties, including ECa, to be dominated by alluvial- and colluvial-related processes 

(i.e., erosion upslope and translocation and deposition downslope) within the local scale. Thus, 

because LS-Factor depicts erosional areas and MRVBF, SAGAWI, and ValleyDep depict 

depositional and water accumulation areas, it was expected that LS-Factor, MRVBF, SAGAWI, 

and ValleyDep be large contributors to the ECa variability at this AF site (Tables 1 and 7).   

 

SMZ MLR Models 

Unlike the whole-site MLR models, neither ECa configuration was influenced (P < 0.05) 

by all terrain attributes in any of the three SMZs (Tables 1 and 7). Within SMZ 1, Aspect, 

Elevation, FlowAccum, LS-Factor, MRVBF, SAGAWI, SlopeHt, ValleyDep, and VDistChn 

were significant in the model for PRP ECa, where MRVBF, LS-Factor, and SlopeHt had the 

greatest influence on the PRP ECa variability (19.8, 18.2, and 3.0 %, respectively; Tables 1 and 

7). Alternatively, except for VDistChn, all other terrain attributes were significant in the model 

for HCP ECa in the SMZ 1, where MRVBF, NormHt, and LS-Factor had the greatest influence 

on the HCP ECa variability (9.0, 5.5, and 5.4 %, respectively; Tables 1 and 7). Furthermore, 

within SMZ 2, except for SAGAWI, ValleyDep, and VDistChn, all other terrain attributes were 

significant in the model for PRP ECa, where Aspect, SlopePer, and MidSlope had the greatest 

influence on the PRP ECa variability (13.1, 8.8, and 7.1 %, respectively; Tables 1 and 7). Except 

for LS-Factor, SAGAWI, and SlopeHt VD, all other terrain attributes in SMZ 2 were significant 
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in the model for HCP ECa, where SlopePer, TPI, and NormHt had the greatest influence on the 

HCP ECa variability (7.8, 5.5, and 5.3 %, respectively; Tables 1 and 7). Additionally, within 

SMZ 3, Elevation, FlowAccum, LS-Factor, MRRTF, MRVBF, NormHt, SAGAWI, SlopeHt, 

and SlopePer were significant in the model for PRP ECa, where LS-Factor, FlowAccum, and 

MRRTF had the greatest influence on the PRP ECa variability (13.8, 8.9, and 3.6 % respectively; 

Tables 1 and 7). Alternatively, Elevation, FlowAccum, LS-Factor, MidSlope, SAGAWI, 

SlopeHt, SlopePer, ValleyDep, and VDistChn were significant in the model for HCP ECa within 

SMZ 3, where MidSlope, SAGAWI, and ValleyDep had the greatest influence on the HCP ECa 

variability (7.6, 4.4, and 3.7 %, respectively; Tables 1 and 7). 

Similar to the terrain attribute-ECa correlations within the SMZs (Table 6), the terrain 

attributes that had a significant influence on the ECa variability varied across the SMZs and 

between the ECa configurations (Tables 1 and 7). Thus, the hypothesis that different terrain 

attributes would contribute to the ECa variability to different degrees across the SMZs was 

confirmed. The terrain attributes that had no or minimal influence on the PRP or HCP ECa 

variability within the SMZs were likely the result of those terrain attributes having minimal 

variability within the SMZs, or terrain attributes other than the ones evaluated being the 

dominant factor(s) influencing ECa within SMZs (Tables 1 and 7). Furthermore, Elevation, 

FlowAccum, LS-Factor, MRVBF, and SlopeHt had a consistent influence on the PRP ECa 

variability across the SMZs, whereas Elevation, FlowAccum, MidSlope, SlopePer, and 

ValleyDep had a consistent, significant influence on the HCP ECa variability across the SMZs 

(Tables 1 and 7). Additionally, unlike the whole-site MLR models, the terrain attributes that had 

a significant effect on the ECas in the SMZ MLR models were able to describe 10.2 to 17.9% 

more of the PRP variability than the HCP variability (Tables 1 and 7). Alternatively, in the 
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whole-site MLR models, the terrain attributes were able to describe 10.3% more of the HCP ECa 

variability than the PRP ECa variability (Tables 1 and 6).  

Because this study site was relatively small (4.25 ha), the factors that likely influenced 

the overall study site’s soil, and thus ECa, variability also likely contributed to the SMZs’ ECa 

variability. Additionally, many of the terrain attributes that were the greatest contributors to PRP 

and HCP ECa variability in the SMZs were, or were similar to, the terrain attributes (i.e., LS-

Factor, MRVBF, SAGAWI, and ValleyDep) that had the greatest contribution to the ECa 

variability across the whole site. The terrain attributes that were the largest contributors to the 

ECa variability in the SMZs included ones that identified areas of higher and/or lower elevation 

(NormHt, TPI, and SlopeHt), depositional/accumulation (MRVBF, FlowAccum, SAGAWI, and 

ValleyDep), and increased erosion potential (LS-Factor and SlopePer; Tables 1 and 7).  

Although the correlations and MLR models between the terrain attributes and ECa were 

slightly different methods, both provided similar, useful information on what terrain attributes 

were related and significant influencers on the site’s ECa. The correlations between the terrain 

attributes and ECa assessed whether there was an individual relationship between the terrain 

attributes and ECa, whereas the MLR models evaluated which terrain attributes had the largest 

impact on ECa. Additionally, the MLR models demonstrated that, even though terrain attributes 

may have an individual relationship with ECa, the terrain attributes may not be contributors to 

the overall ECa variability when evaluating all terrain attributes together. The MLR models also 

demonstrated that the largest contributors to the overall ECa variability can vary when assessed 

at different soil depths or when separated into SMZs with potentially specific ECa ranges, 

landscape features, or soil properties. 
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Evaluating the relationships between ECa and plant responses in limited ECa-investigated 

systems (i.e., AF) is essential for determining if, when, and what agronomic systems EMI-ECa 

sensing is a useful tool for assessing plant property variations. Additionally, quantifying plant-

soil-terrain relationships is necessary for efficient management and maximization of AF systems’ 

potential [33]. Terrain attributes control soil formation by dictating water and energy flow across 

landscapes and have the potential to have a greater influence on tree growth than soil properties 

[18,33]. Understanding the relationships between terrain attributes and ECa allows for better 

contextualization of spatial ECa measurements. Furthermore, assessing field variability within 

SMZs, whether its soil property, ECa, or terrain attribute variability, potentially allows for a 

better understanding of the causes of yield variability, allowing managers to adjust practices for 

each SMZ to improve yields while efficiently managing resources.  

The relationships between the terrain attributes and plant properties were not assessed in 

this study because of previous work already completed. Jiang et al. [18] assessed the absolute 

growth rate (AGR) of the different tree species at the AF site compared to seven of the same 

terrain attributes used in this study (i.e., SlopePer, Aspect, FlowAccum, SAGAWI, MRRTF, 

MRVBF, and VDistChn). Excluding the pines, the AGR was calculated using the 2019 DBH for 

all tree species and the DBH in 2004 for pecans, BDH in 2005 for oaks, and DBH in 2016 for 

cottonwoods and sycamores [18]. Jiang et al. [18] reported positive correlations (P < 0.05) 

between MRRTF and the AGR for the oaks and pecans, between SAGAWAI and the AGR for 

the pecans and cottonwoods, between MRVBF and the AGR for the cottonwoods, and between 

VDistChn and the AGR for the oaks. Jiang et al. [18] also concluded that the terrain attributes 

had a greater effect on tree growth variability than soil properties within each tree species. In 

addition, Ashworth et al. [32] assessed the relationships between the same terrain attributes used 
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in the current study at 1-m resolution and the same forage samples used in the current study and 

annual DBH and TH measurements made between 2017 and 2019. Ashworth et al. [32] reported 

no correlation (P > 0.05) between any of the terrain attributes and either total forage yield or 

biomass accumulation. However, Ashworth et al. [32] reported moderate, negative correlations 

between SlopeHt and TH and DBH (r = -0.44 and -0.40, respectively) and a moderate, positive 

correlation between Aspect and DBH (r = 0.40). 

Although not in AF systems, Kitchen et al. [19] conducted a study that assessed the 

relationship between ECa, terrain attributes, and grain yield in three different soil-crop 

agroecosystems using correlations, forward stepwise regression, nonlinear neural network (NNs), 

and boundary-line analyses. A Veris model 3100 (Veris 3100 Division of Geoprobe Systems, 

Salina, KS) was used to collect ECa measurements from the 0-30- and 0-100-cm soil depths and 

yield measurements were obtained between 1997 and 1999 from three different fields: Colorado 

(Ustic Haplargids), Missouri (Cumuic Haplustoll), and Kansas (Aeric Vertic Epiaqualfs) [19]. 

The crops produced at these fields during the study period were corn, soybean, grain sorghum 

[Sorghum bicolor (L.) Moench], and winter wheat (Triticum aestivum L.) and the terrain 

attributes used in the analyses were slope, curvature, and aspect [19]. Although many of the 

correlations between the yield data and the ECa and terrain attributes were significant, it was 

concluded that the correlations were not that useful in describing yield variability [19]. Apparent 

EC alone better described yield variability than the terrain attributes in the regression (averaged 

over sites and years, R2 = 0.21) and NNs analyses (averaged over sites and years, R2 = 0.17) and 

the R2 was generally increased when ECa was combined with terrain attributes (averaged over 

sites and years, R2 = 0.32) [19]. However, more information on additional terrain-attribute-ECa 

relationships within AF and uninvestigated agroecosystems is necessary to further enhance 
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spatial ECa characterization, field variability (i.e., soil and plant) prediction, and to improve ECa-

derived SMZs in precision agriculture. 

 

Practical Implications 

The ECa-tree and -terrain-attribute correlations and MLR models provided useful 

information on using EMI-ECa to describe and contextualize field variability in AF systems. 

Specifically, the stronger relationships between the PRP ECa and tree properties at the whole-site 

level, compared to the HCP ECa, are a potential indication that AF managers could describe the 

relationship between ECa and tree growth variability to a greater extent using the PRP rather than 

the HCP ECa. Additionally, the increased number and strength of significant terrain-attribute-

PRP-ECa relationships suggest that the ECa variability, thus soil variability, in the 0-0.5-m soil 

depth can be better described by terrain attributes in AF systems with variable topography than 

in the 0-1.6-m soil depth. Furthermore, because the terrain attributes significantly related to the 

PRP ECa generally had stronger relationships in the SMZs than the whole-site, AF managers can 

potentially better describe 0-0.5-m ECa and soil variability with terrain attributes using ECa-

derived SMZs.  

 

Conclusions 

Electromagnetic induction-ECa surveys and terrain attribute data have been used to assess 

field variability within a variety of land management systems and ecosystems across the world. 

However, no research has been conducted exploring relationships between EMI-ECa and pasture 

forage yield, tree growth, and terrain attributes or whether the relationships could be improved 

with ECa-derived SMZs within an AF system within an environment similar to the Ozark 
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Highlands. Due to this lack of information, the objectives of this study were to: i) identify 

correlations between EMI-ECa and forage yield, tree growth, and terrain attribute data within the 

whole site and three ECa-derived SMZs, ii) identify correlations between ECa and total forage 

yield and tree growth data within forage/tree species and fertility treatment combinations, and iii) 

identify terrain attributes that contribute to EMI-ECa variations at a 20-year AF system in the 

Ozark Highlands of northwest Arkansas. Results partially supported the hypothesis that EMI-

ECa data would be correlated with total forage yield and tree growth characteristics and 

supported the hypothesis that EMI-ECa data would be correlated with terrain attributes. 

However, results did not support the hypothesis that correlations among EMI-ECa and tree 

growth data can be improved with ECa-derived SMZs. Results supported the hypothesis that 

correlations among EMI-ECa and total forage yield and terrain attribute data can be improved 

with ECa-derived SMZs. Results also supported the hypothesis that different terrain attributes 

would contribute to the ECa variability to different degrees within the AF site and across the 

SMZs. 

Results demonstrated that ECa-tree, -forage, and -terrain attribute relationships can be 

established in AF systems in the Ozark Highlands and can vary with soil depth and when 

separated into ECa-derived SMZs and management history (species and fertility treatments). 

Results also demonstrated that the largest contributors of ECa/soil variability (i.e., terrain 

attributes) can vary with soil depth and when separated into ECa-derived SMZs. Additionally, 

results demonstrated that the PRP ECa can potentially have stronger and additional relationships 

with tree, forage properties, and/or terrain properties in AF systems than the HCP ECa. Results 

also demonstrated that terrain attributes that identify areas of higher and/or lower elevation, 

deposition/accumulation, and increased erosion potential are potentially necessary to include 
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when developing yield-soil-terrain variability models in AF systems with variable topography 

and increased precipitation. Results provided further support and information on the potential 

versatility, applicability, and usefulness of EMI-ECa surveys for assessing and contextualizing 

in-field variability in a variety of ecosystems with different land management systems. 
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Tables and Figures 

 
Table 1. Summary of the abbreviations, definitions, units, and summary statistics [i.e., minimum (Min), maximum (Max), mean] for 
14 terrain attributes describing an agroforestry site in the Ozark Highlands northwest Arkansas. 

Terrain Attribute Abbreviation Definition Unit Min Max Mean 

Aspect Aspect Direction of the steepest slope from the north ° 5.3 357.1 185.0 

Elevation Elevation Height above sea level m 379 387 382 

Flow Accumulation FlowAccum Quantity of upland cells draining to a given cell n† 25 21538 653 

Slope-length Factor LS-Factor Calculates the slope length as used in the 
Universal Soil Loss Equation 

m < 0.01 0.74 0.22 

Mid-slope Position MidSlope Classifies the slope position in both crest and 
valley directions 

index < 0.01 0.85 0.41 

Multi-resolution Ridge 
Top Flatness Index 

MRRTF Identifies high flat regions at a range of scales index < 0.01 4.86 1.34 

Multi-resolution Valley 
Bottom Flatness Index 

MRVBF Identifies zones of deposited material in flat valley 
bottoms 

index < 0.01 5.77 2.24 

Normalized Height NormHt Assigns a value of 1 and 0 to the highest and 
lowest elevation, respectively 

index 0.14 0.92 0.44 

System for Automated 
Geoscientific 
Analysis Wetness Index 

SAGAWI A specific catchment area and slope-based wetness 
index 

index 4.5 10.5 7.2 

Slope Height SlopeHt Relative height difference to the immediate 
adjacent crest lines 

m 0.35 4.67 1.46 

Slope Percent SlopePer Maximum rate of change between a cell and its 
neighboring cells 

% 0.02 9.10 3.02 

Topographic Position 
Index 

TPI + and - values identify cells that are higher and 
lower than their surroundings, respectively 

index -1.27 2.39 0.04 

Valley Depth ValleyDep Relative height difference to the immediate 
adjacent channel lines 

m 0.00 3.23 1.18 

Altitude Above Channel 
Network 

VDistChn Difference between channel base and surface 
elevation 

m 0.00 2.28 0.21 

† Degrees from true north (°), Number of pixels (n).
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Table 2. Summary of the number of observations (n) and resulting correlation coefficients (r) 
from Pearson linear correlations evaluating the relationship between the perpendicular (PRP) and 
horizontal coplanar geometry (HCP) apparent electrical conductivity (ECa) and tree diameter at 
breast height (DBH), tree height, and total forage yield across multiple sampling dates in 2018 
and 2019, within the whole-site and three ECa-derived soil management zones (SMZs) [22], at 
an agroforestry site in the Ozark Highlands of northwest Arkansas. The location of the trees, 
forages, yield samples, and SMZs are presented on Figure 1 and 2. 

   Tree Data†  Forage Data†† 

   DBH  Tree Height 
 

Total Yield 

ECa Area  n r  n r n r 

PRP Whole-Site  417 0.34*  421 0.54*  84 0.01 
 SMZ 1 

 
188 0.37*  191 0.35*  39 -0.02 

 SMZ 2 
 

82 0.15  81 0.26*  17 0.52* 
 SMZ 3 

 
147 -0.13  149 0.16  28 -0.26 

HCP Whole-Site  417 0.21*  421 0.42*  84 -0.04 
 SMZ 1 

 
188 -0.20*  191 -0.22*  39 0.07 

 SMZ 2 
 

82 0.11  81 0.12  17 0.54* 
 SMZ 3 

 
147 -0.22*  149 0.05  28 -0.51* 

† DBH and tree height measurements were collected on 9 December 2020 and 15 March 2021, 
respectively. 
†† Forage total yield measurements were collected on 25 May and 5, 15, 29 June 2018, and 4 and 
20 June and 3 July 2019. 
* Significant correlation at P < 0.05.  
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Table 3. Summary of the number of observations (n) and resulting correlation coefficients (r) 
from Pearson linear correlations evaluating the relationship between the perpendicular geometry 
(PRP) apparent electrical conductivity (ECa) and tree diameter at breast height (DBH), tree 
height, and total forage yield across multiple sampling dates in 2018 and 2019, within six 
tree/forage species and 2001-2007 fertility treatments [i.e., inorganic-N fertilizer (NF) and 
poultry litter applications (PL)] at an agroforestry site in the Ozark Highlands of northwest 
Arkansas. The location of the trees, forages, yield samples, and fertility treatments are presented 
on Figure 1 and 2. 

   Tree Data†  Forage Data†† 

Treatment Combinations  DBH  Tree Height  Total Yield 

Species 
2001-2007 

Fertility 
 n r 

 n r 
 n r 

Cottonwood NF  27 0.27   27 0.31   - - 
 PL  23 0.24   23 0.24   - - 

Oak NF  32 -0.25   32 -0.53*   - - 
 PL  32 -0.25   32 -0.53*   - - 

Pecan NF  52 0.59*   53 0.37*   - - 
 PL  48 -0.08   48 -0.06   - - 

Pine NF  127 0.15   131 0.09   - - 

Sycamore PL  57 0.08   56 0.20   - - 

Native grass mix NF  - -   - -   21 0.48* 
 PL  - -   - -   21 0.30 

Orchardgrass NF  - -   - -   21 -0.14 
 PL  - -   - -   21 -0.13 

† DBH and tree height measurements were collected on 9 December 2020 and 15 March 2021, 
respectively. 
†† Forage total yield measurements were collected on 25 May and 5, 15, 29 June 2018, and 4 and 
20 June and 3 July 2019. 
* Significant correlation at P < 0.05. 
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Table 4. Summary of the number of observations (n) and resulting correlation coefficients (r) 
from Pearson linear correlations evaluating the relationship between the horizontal coplanar 
geometry (HCP) apparent electrical conductivity (ECa) and tree diameter at breast height (DBH), 
tree height, and total forage yield across multiple sampling dates in 2018 and 2019, within six 
tree/forage species and 2001-2007 fertility treatments [i.e., inorganic-N fertilizer (NF) and 
poultry litter applications (PL)] at an agroforestry site in the Ozark Highlands of northwest 
Arkansas. The location of the trees, forages, yield samples, and fertility treatments are presented 
on Figure 1 and 2. 

   Tree Data†  Forage Data†† 

Treatment Combinations  DBH  Tree Height  Total Yield 

Species 
2001-2007 

Fertility 
 n r 

 n r 
 n r 

Cottonwood NF  27 0.29   27 0.34   - - 
 PL  23 0.13   23 0.12   - - 

Oak NF  32 -0.31   32 -0.46*   - - 
 PL  32 -0.31   32 -0.46*   - - 

Pecan NF  52 0.56*   53 0.36*   - - 
 PL  48 -0.08   48 -0.14   - - 

Pine NF  127 0.10   131 0.02   - - 

Sycamore PL  57 0.21   56 0.07   - - 

Native grass mix NF  - -   - -   21 0.40 
 PL  - -   - -   21 0.26 

Orchardgrass NF  - -   - -   21 -0.10 
 PL  - -   - -   21 -0.44* 

† DBH and tree height measurements were collected on 9 December 2020 and 15 March 2021, 
respectively. 
†† Forage total yield measurements were collected on 25 May and 5, 15, 29 June 2018, and 4 and 
20 June and 3 July 2019. 
* Significant correlation at P < 0.05.  
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Table 5. Summary of the number of observations (n) and resulting correlation coefficients (r) 
from Pearson linear correlations evaluating the relationship between the perpendicular (PRP) and 
horizontal coplanar geometry (HCP) apparent electrical conductivity (ECa) and the total forage 
yield across multiple sampling dates in 2018 and 2019, within four forage species and 2017-2019 
fertility treatments [i.e., no fertilizer control (Control) and poultry litter applications (PL)] at an 
agroforestry site in the Ozark Highlands of northwest Arkansas.  

   Total Yield† 

ECa Species 2017-2019 Fertility  n r 

PRP Native grass mix Control  21 0.39 
  PL  21 -0.37 
 Orchardgrass Control  21 0.26 
  PL  21 0.00 

HCP Native grass mix Control  21 0.37 
  PL  21 -0.34 
 Orchardgrass Control  21 -0.23 
  PL  21 0.02 

† Forage total yield measurements were collected on 25 May and 5, 15, 29 June 2018, and 4 and 
20 June and 3 July 2019. 
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Table 6. Summary of the number of observations (n) and resulting correlation coefficients (r) from Pearson linear correlations 
evaluating the relationship between the perpendicular (PRP) and horizontal coplanar geometry (HCP) apparent electrical conductivity 
(ECa) and 14 terrain attributes, within the whole-site and three ECa-derived soil management zones (SMZs) [22], at an agroforestry 
site in the Ozark Highlands of northwest Arkansas. The non-abbreviated terrain attribute names and their definitions are presented on 
Table 1. 

      Soil Management Zones 

  Whole-site  1  2  3 

Terrain 

Attribute 
 n PRP HCP  n PRP HCP  n PRP HCP  n PRP HCP 

   ______ r ______   ______ r ______   ______ r ______   ______ r ______ 
Aspect  1836 0.22* 0.23*  691 0.17* -0.11*  344 -0.38* -0.17*  801 -0.04 -0.01 
Elevation  1836 < -0.01 0.27*  691 -0.31* 0.09  344 -0.22* 0.18*  801 -0.49* 0.02 
FlowAccum  1836 0.14* 0.07*  691 0.12* -0.05  344 0.12 0.10  801 0.19* 0.12* 
LS-Factor  1836 -0.38* -0.20*  691 -0.45* -0.24*  344 -0.41* -0.08  801 -0.38* 0.07 
MidSlope  1836 -0.09* -0.21*  691 0.07 0.17*  344 -0.30* 0.11  801 0.26* -0.22* 
MRRTF  1836 0.01 0.14*  691 -0.05* 0.02  344 0.07 0.02  801 -0.37* -0.07 
MRVBF  1836 0.33* 0.10*  691 0.44* 0.17*  344 0.45* 0.05  801 0.49* < -0.01 
NormHt  1836 -0.20* 0.06*  691 -0.41* -0.04  344 -0.24* 0.15*  801 -0.53* -0.01 
SAGAWI  1836 0.36* 0.16*  691 0.47* 0.20*  344 0.08 -0.12  801 0.50* 0.05 
SlopeHt  1836 -0.13* 0.11*  691 -0.40* < -0.01  344 -0.38* 0.20*  801 -0.41* 0.05 
SlopePer  1836 -0.43* -0.23*  691 -0.44* -0.21*  344 -0.56* -0.16*  801 -0.50* 0.03 
TPI  1836 -0.21* 0.02  691 -0.35* 0.01  344 -0.33* 0.02  801 -0.51* -0.04 
ValleyDep  1836 -0.02 -0.25*  691 0.33* -0.08  344 0.24* -0.16*  801 0.50* -0.03 
VDistChn  1836 -0.33* -0.22*  691 -0.30* 0.05  344 -0.15 -0.02  801 -0.29* -0.12* 

* Significant correlation at P < 0.05.  
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Table 7. Summary of the percent of total sum of squares of each terrain attribute that was used in a multiple linear regression model 
evaluating the effect of 14 terrain attributes on the perpendicular (PRP) and horizontal coplanar geometry (HCP) apparent electrical 
conductivity (ECa), within the whole-site and three ECa-derived soil management zones (SMZs) [22], at an agroforestry site in the 
Ozark Highlands of northwest Arkansas. The non-abbreviated terrain attribute names and their definitions are presented on Table 1. 

 Percent of Total Sum of Squares 

    Soil Management Zone 

 Whole-site  1  2  3 

Terrain Attribute PRP HCP  PRP HCP  PRP HCP  PRP HCP 

 _______________________________________________________________ % ______________________________________________________________ 
Aspect 1.3* 1.7*  2.2* 1.0*  13.1* 2.8*  < 0.1 < 0.1 
Elevation 0.9* 0.8*  0.4* 2.0*  2.3* 2.6*  0.5* 2.3* 
FlowAccum 4.2* 1.6*  0.7* 1.3*  0.7* 1.7*  8.9* 0.7* 
LS-Factor 10.5* 1.8*  18.2* 5.4*  6.7* 0.2  13.8* 0.7* 
MidSlope 9.4* 11.2*  0.1 1.4*  7.1* 2.7*  < 0.1 7.6* 
MRRTF 3.6* 6.0*  0.3 1.0*  5.7* 1.0*  3.6* 0.3 
MRVBF 7.1* 1.2*  19.8* 9.0*  6.8* 0.7*  3.0* < 0.1 
NormHt 1.4* 5.3*  0.1 5.5*  1.0* 5.3*  1.8* 0.2 
SAGAWI 6.1* 11.9*  0.4* 3.7*  0.1 0.1  1.2* 4.4* 
SlopeHt 0.7* 1.6*  3.0* 2.5*  2.2* < 0.1  1.6* 3.3* 
SlopePer 5.0* 5.7*  0.3 2.0*  8.8* 7.8*  1.2* 1.1* 
TPI 1.7* 4.5*  < 0.1 0.5*  1.2* 5.5*  0.0 0.2 
ValleyDep 7.2* 15.3*  1.1* 4.5*  0.2 4.0*  0.3 3.7* 
VDistChn 0.2* 0.8*  1.0* 0.1  < 0.1 3.5*  0.2 1.6* 

* Terrain attribute was significant (P < 0.05) in the multiple regression model to explain ECa variations.
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Figure 1. The agroforestry (AF) site in the Ozark Highlands of northwest Arkansas is organized 
into 16 rows, where Row 1 starts at the northern most row. Rows 1-5 consists of the northern red 
oak; the western, central, and eastern portion of Rows 6-10 consists of the pitch/loblolly pine, 
cottonwood, and American Sycamore; and Rows 11-16 consist of pecan. The soils at the AF site 
include Captina silt loam (CaB), Pickwick silt loam (PsC2), Nixa cherty silt loam (NaC), 
Johnsburg silt loam (Js), and Cleora fine sandy loam (Cr; Soil Survey Staff, 2019b) and the 
alleys between the tree rows consist of either orchardgrass or a native grass mix forages (big 
bluestem, little bluestem, and Indiangrass). The forage total yield samples were collected from 
within cattle exclosures on 25 May and 5, 15, 29 June 2018 (X), and 4 and 20 June and 3 July 
2019 (•). Maps were created in ArcGIS (ArcGISmap version 10.6.1, Esri, Redlands, CA).  
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Figure 2. The agroforestry (AF) site in the Ozark Highlands of northwest Arkansas had poultry litter or inorganic-nitrogen (N) 
applications across the whole site between 2001 and 2007 based on fertility treatment. The alleys between the tree rows consist of 
either orchardgrass or a native grass mix (big bluestem, little bluestem, and Indiangrass), where fertility treatments were fertilized with 
poultry litter in 2017, 2018, and 2019. Three precision soil management zones (SMZs) at the AF site were created by Ylagan et al. 
[22] using 12 horizontal coplanar geometry (HCP) apparent electrical conductivity (ECa) surveys. Maps were created in ArcGIS 
(ArcGISmap version 10.6.1, Esri, Redlands, CA).  
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Figure 3. The spatial pattern of the terrain attributes of the agroforestry site the Ozark Highlands of northwest Arkansas. Terrain 

attribute data were obtained from the USDA-NRCS Geospatial Data Gateway [34] and are derived from a Light Detection and 

Ranging (LiDAR)-based, 5-m bare earth digital elevation model (DEM). The non-abbreviated terrain attribute names, definitions, 

units, and summary statistics are presented on Table 1. Maps were created in ArcGIS (ArcGISmap version 10.6.1, Esri, Redlands, 

CA).
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Figure 4. The overall mean of 12 perpendicular (PRP) and horizontal coplanar geometry (HCP) 

apparent electrical conductivity (ECa) surveys after universal kriging at the agroforestry site in 

the Ozark Highlands of northwest Arkansas. Maps were created in ArcGIS (ArcGISmap version 

10.6.1, Esri, Redlands, CA).  
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Electromagnetic induction-ECa surveys have been widely used to assess field variability 

within different ecosystems and land management systems across the world. However, little to 

no work has been conducted using repeated EMI-ECa surveys to assess spatiotemporal field 

variability and create SMZs in AF systems within similar regions to the Ozark Highlands. As a 

result, objectives were to identify i) spatiotemporal ECa variability; ii) ECa-derived SMZs; iii) 

correlations among EMI-ECa and in-situ, sentential-site soil properties; iv) whether fewer, EMI-

ECa surveys could be conducted to capture similar ECa variance as mid-monthly EMI-ECa 

surveys; v) correlations between ECa and forage yield, tree growth, and terrain attributes based 

on plant (forage and tree) species, and fertility treatments, and ECa-derived SMZs, and vi); and 

terrain attributes that have the largest contribution to ECa variability at a 20-year-old, 4.25-ha, 

AF system in the Ozark Highlands of northwest Arkansas. 

In Chapter 2, results partially supported the hypothesis that there would be a change in 

the mean ECa and ECa variability (i.e., SD and CV) across time and the weather seasons. 

However, results of did not support the hypothesis that there would be differences between the 

ECa mean, SD, and CV of surveys that were conducted in different weather seasons and in the 

tree growing/non-growing season at a 20-year AF system within the Ozark Highlands. Results 

also supported the hypothesis that monthly EMI-ECa surveys at a 20-year-old AF system within 

the Ozark Highlands can be grouped into similar functional populations and be made into zones 

for precision soil management. Results of this study partially supported the hypothesis that 

monthly EMI-ECa survey data are correlated with soil-sensor-based VWC and ECa and soil-

sample-based EC, GWC, and pH. Results of this study also partially supported the hypothesis 

that fewer, strategically timed, and evenly spaced ECa surveys could be conducted to capture the 

same amount of overall ECa variance at the AF site as the 12 monthly ECa surveys conducted.  
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In Chapter 3, results partially supported the hypothesis that EMI-ECa data would be 

correlated with total forage yield and tree growth characteristics and supported the hypothesis 

that EMI-ECa data would be correlated with terrain attributes. However, results did not support 

the hypothesis that correlations among EMI-ECa and tree growth data can be improved with ECa-

derived SMZs. Results supported the hypothesis that correlations among EMI-ECa and total 

forage yield and terrain attribute data can be improved with ECa-derived SMZs. Results also 

supported the hypothesis that different terrain attributes would contribute to the ECa variability to 

different degrees within the AF site and across the SMZs. 

Results from these studies provide beneficial and valuable insight on the spatiotemporal 

variability of measured EMI-ECa over time, not only in an AF system, but also an AF system 

that is located within a unique environment like the Ozark Highlands. Results of this study 

demonstrated that a variety of different methods can be used to assess spatial and temporal 

changes in measured EMI-ECa, and that the effects of pedogenic and anthropogenic factors on 

measured EMI-ECa can be observed in AF systems. Additionally, results also demonstrated that 

measured EMI-ECa can be used to create precision SMZs in an AF system within the Ozark 

Highlands. Results demonstrated that ECa-tree, -forage, and -terrain attribute relationships can be 

established in AF systems in the Ozark Highlands and can vary with soil depth and when 

separated into ECa-derived SMZs and management history (species and fertility treatments). 

Results also demonstrated that the PRP ECa can potentially have stronger and additional 

relationships with tree, forage properties, and/or terrain properties in AF systems than the HCP 

ECa. Results of these studies provide further evidence on the potential versatility and ability of 

EMI-ECa surveys to help delineate and contextualize in-field variability in a variety of 

ecosystems with different land management systems.   
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Appendix 

EMI-ECa Survey Instructions 

 

General Information  

 

• For most surveying, DUALEM-1S should always be >1 m distance from the substantial 
metal area of the all-terrain vehicle (ATV) and at low clearance above the ground.  

• It should be held in a sled securely to prevent rotation about its axis during surveying.  

• It’s always preferred to align the instrument with the direction of travel and with transmitter 
closest to the ATV.  

• A Trimble GPS Unit is provided to position the data and a Field Computer for user input, 
data recording and to guide navigation. 

• Both units should be securely mounted in the ATV.  

• During the survey, the sensor and position data are synchronously logged to a field 
computer with HGIS software and can be downloaded using USB ports.  

• Usually, the power to the sensor is provided by the ATV but external power could also be 
used if needed. 

 

Survey Instructions  

 

*Note: Read the entire Survey Instruction section before conducting a survey.* 

 

Equipment Set Up 
 

1. To begin with the survey, first bring all equipment’s [ATV, DUALEM-1S sensor, 
Field Computer (Yuma 2), GPS Unit, cables, extension cords etc.] together, 
preferably in an open space.   

2. Dualem set up options  
a. Mounted to the side-by-side with GPS above the dualem 

i. Securely mount the Dualem > 1 m away from the side-by-side as 
close to the ground as possible 

ii. Securely mount the Field Computer and GPS Unit above the 
DUALEM-1S Sensor 

iii. Skip to step 3. 
b. Sled set up 

i. Securely mount the Field Computer and GPS Unit in the ATV.  
ii. Take the DUALEM-1S sensor (Boom) out of its housing and place 

it in the sled, make sure the black mark on either end of the sensor 
is facing upward, and the transmitter (boom end with LED lights) 
closest to the ATV.   

iii. The front of the DUALEM-1S in the sled should be 2.1 m behind 
the side-by-side and the center of the DUALEM-1S should be 4.15 
m behind the Trimble R2 GPS unit. 

iv. Duct tape the DUALEM securely to the sled. 
v. Tie up the sled to the back of the ATV.  
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3. It is recommended to cover the DUALEM-1S with a non-metallic relative cover 
or a thin, white cloth to reduce increases in the DUALEM-1S’s internal 
temperatures due to sunlight. 

4. Connect the DUALEM-1S and GPS Unit to the Field Computer using the cables 
provided.  

5. Plug in the power outlet to the ATV. 
6. Plug in the DUALEM-1S and the Field Computer’s charger to the power outlet. 
7. Make sure all cables are out of the way and will not get snapped during the 

survey.  
a. You may need to use an extension cord to connect everything and to make 

sure things are out of the way.  
8. It is recommended that the DUALEM-1S is powered on ~30 minutes before 

conducting a survey. 
9. Make sure the LED light labeled P located at front of DUALEM-1S is steady 

green.  

 

Preparing the Dualem for the Survey 

 

10. Turn the GPS Unit on and log into the Field Computer.  
11. To find what comm port the DUALEM-1S is connected to go to Device Manager 

in the control panel and click Ports. 
12. The comm port for the DUALEM-1S should be “Prolific USB-to-Serial Comm 

Port (COM#),” and remember the comm port within the parentheses.  
13. Open and run Termite. 
14. In Termite, go to Settings and click the drop-down arrow for Port.  
15. Select the comm port for the DUALEM-1S that you remembered from Step 12.  
16. Make sure the baud rate is 38400, then click ok. 
17. Make sure $PDLM1 and $PDLMA data are continuously appearing, if so, close 

Termite.  
18. Open HGIS. 
19. Click Start GPS in the pop-up window and click ok. 
20. Name the file appropriately AND YOU MUST PUT “.txt” AT THE END OF 

THE FILE NAME, if not, it will not save the file as a .txt file and cannot be 
assessed after the survey.  

21. A GPS port pop-up window will appear, if you do not know the appropriate 
comm port for the GPS, click Find, and then click ok when it has found one. 

22. A pop-up window will appear to confirm to Auto Start GPS, click ok.  
23. Make sure that there are at least four (4) satellites in the GPS summary pop-up 

window, if so, close the pop-up window. 
24. A cross-mark should be blinking in the middle of the screen now. 
25. Click the File button at the top left of the screen, then click PRO, followed by 

clicking Device Setup. 
26. A SensorTrack pop-up window should appear, click the drop-down arrow and 

select the comm port for the DUALEM-1S that you used in Step 12 and 15. 
27. Click the next drop-down arrow and select Dualem EC meter.  
28. Make sure the baud rate is 38400. 
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29. Click the check box for Connect Device. 
30. Then click View Data, make sure $PDLM data is popping up. 
31. Then click Manual. 
32. In the new pop-up window, check both boxes for Add to map and Log to File, 

then click Sensor + GPS. 
33. Click New Layer in the new pop-up window and then select the PRO template. 
34. Name and date the layer appropriately, and then click ok. 
35. Click Point in the new pop-up window and then click Done. 
36. In the new pop-up window, name the start value appropriately, then check the box 

for Label, then click ok. 
37. Close all the remaining small pop-up windows. 
38. Click the drop-down arrow (to the right of the Help Menu) and select GPS 

draw. 
39. Click the Point button at the top of the screen and then click the Auto button.  
40. In the GPS Auto Collect pop-up window, make the necessary edits to the Auto 

Collect measurement values so that the DUALEM-1S and the GPS will take 
measurements within your desired measurement interval, then click ok. 

a. If you would like to alter the measurement interval to something other 
than every 1 s, you will need to abort this current survey, go into Termite, 
and follow the instructions in the DUALEM-1S manual, in section 4x20 

Operation, on how to edit the measurement interval for the DUALEMS-
1S using the ROOT menu.  

i. After editing the measurement interval, unplug and re-plug in the 
DUALEMS-1S to the power outlet.  

 
Starting the Survey 
 

41. In order to start the scan, click the User Pause button in the top right of the 
screen, it will then say “Run.” It is now collecting data and you can now begin 
your scan.  

42. You can click the Run button during surveying to pause the scan.  
43. Survey the field in a serpentine pattern, where the drive paths are parallel and 2-5 

m apart from each other and make sure the sensor stays > 1 m away from any 
metal objects.  

44. While surveying, avoid unnecessary stops and stays at a drive speed of 3 to 5 mi 

hr-1.  
a. You can increase or decrease the drive speed of your survey by increasing 

or decreasing your sampling/measurement interval. 
i. This can be done before the survey in the GPS Auto Collect pop-

up window and in the DUALEM-1S ROOT menu in Termite, as 
mentioned back in Step 40. 

 

Calibration Line 

 

45. Once you completed the survey, conduct the calibration line. 
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46. To conduct the calibration line, start in one corner of the field and drive in a zig-
zag pattern across the field, going across all of your previous survey drive paths, 
and ending at the opposite corner of the field. 

a. It should look something like this.  

  

 

47. Once you completed the survey and calibration line, click the Run button to stop 
measurements. 

 
After the Survey  
 

48. Click the File button at the top left of the screen, click the >> button, and then 
click Save Project As. 

49. Name the entire project file appropriately and then click Save. 
50. You can now exit HGIS. 
51. The txt file of the data will be in Computer > OS Disk (C:) > My HGIS 

Documents > Logs. 

52. To export the data, plug in an external memory device (i.e., flash drive), Copy 

and paste/drag the file to the flash drive, and then Eject and remove the flash 
drive. 

 

Temperature Measurements  

 
1. Soil temperature measurements need to be taken in order to temperature-adjust 

the recorded ECa values later in the data post-processing procedures.  
a. During the survey, record the soil temperature at the 15-cm (for the PRP 

ECa) and 75-cm soil depth (for the HCP ECa) at multiple locations across 
the field.  

 

*Note: If you are surveying multiple large fields, you will need to conduct a survey with a 

calibration line, and collected additional temperature measurements, for every field you 

are surveying in same manner.* 

 
  

Viewing the Data on the Computer 

 

1. To access the data in organized columns, you will have to insert the flash drive 
into a compatible device and open a new blank excel file. 

2. Click Import in the File tab. 



 

156 

3. In the pop-up window, click the .CSV check box, then select the file. 
4. Select the check box for delimited and then click Next. 
5. Unselect the check box for Tab and select the check box for Comma, then click 

Next. 
6. Click the check box for General and then click Finish.  
7. For more detail, refer to Dualem Termite, DUALEM-1S, and HGIS manual 

provided separately. 

 

Survey Data Post Processing 

 

*Note: Post-processing of data can be done different ways. The following is how Shane 

Ylagan in 2021 processed his data*  

 

*Note: For each step in the following data handling procedures, read the entire bullet 

point, and its sub-bullet points, before executing the instructions that are given at each 

step*  

 

Data-cleaning, GPS-shift, and Survey and Calibration Line Separation  

 

1. Change column names to (left to right in the following order): 

a. DATE, GPS_TIME, GPS_FIX, Longitude, Latitude, Altitude, 

Height_Above_Ellipsoid, Speed_(KPH), STATION_ID, REMARK, 

$PDLM1, EC_Time, HCP_Conductivity_(mS/m), HCP_Inphase_(ppt), 

PRP_Conductivity_(mS/m), PRP_Inphase_(ppt), $PDLMA, Voltage, 

Internal_sensor_temp_(C), Pitch_(deg), Roll_(deg). 

b. The first 11 columns are a part of the GPS output. 

c. The second 11 columns are a part of the DUALEM-1S output. 

2. Delete any row which contains “com”# in the REMARK column and shift up the 

cells upward (usually just one row). 

3. Insert a blank column to the right of the DATE with and title it as “Seconds”. 

4. Adjusting for the GPS and DUALEM-1S location difference.  

a. If you mounted the DUALEM-1S with the GPS unit above the DUALEM-

1S. 

i. Delete one row of cells above the DUALEM-1S data (columns 

$PDLM1 and on), so that the DUALEM-1S and GPS data are on 

the same rows, shift the cells upward, and then skip to Step 5. 

ii. It should look like this 

1. Before 
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2. After 

 
b. If you mounted the DUALEM-1S on the sled with its center being 4.15 m 

behind the GPS unit, traveled 3-5 mph during the survey, and had a 

sampling interval of every 3 m or 1 s. 

i. Bring the DUALEM-1S data (columns $PDLM1 and on) back 2.32 

s to closest GPS point (usually 7 rows), and align the GPS data 

with the DUALEM-1S $PDLM1 data row, and then skip to Step 5. 

ii. It should look like something below 

1. Before 
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2. After 

 
 

c. If you mounted the DUALEM-1S on the sled with its center being 4.15 m 

behind the GPS unit, BUT traveled at a speed other than 3-5 mph during 

the survey, and had a sampling interval of something other than every 1 s. 

i. You will need to find the time it took you to travel 4.15 m using 

the average speed you traveled during the survey. 

ii. Using the value you just found, bring the DUALEM-1S data 

(columns $PDLM1 and on) back that amount to closest GPS point, 

and align the GPS data with the DUALEM-1S $PDLM1 data row. 

1. Similar to the procedure done in Step 4bi.  

iii. It should look like something below 

1. Before 

5. Delete the rows above the first GPS + DUALEM-1S data point, and also the rows 

after the last GPS + DUALEM-1S data point. 

a. Above 
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a. Below 

 
2. Sort by remark then GPS time. 

3. Number the rows by starting at 1 and increasing by 1 in the Seconds column. 

4. Sort by $PDLM1 then GPS time. 

5. Delete the extra rows at the bottom below the last row with $PDLMA data in it. 
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6. Move $PDLMA data rows next to $PDLM1 rows. 

a. Before 

 
b. After 
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7. Delete remaining extra rows at the bottom columns and shift over. 

 
 

8. The DUALEM-1S starts collecting measurements when it is turned on, thus 

during the 30 min it was turned on before the survey started and when the dualem 

stopped moving at the end of the survey, it was collecting measurements. Remove 

the points which occurred before the survey started and afterward. 

a. You can do this by either bring the file into GIS program and looking at 

when DUALEM-1S started moving, or by looking when the recorded 

speed began to increase/slowdown in the Speed_(KPH) column. For 

instructions on how to bring the data in ArcMap, go to Page 18.  

i. Before survey 

 
i. After survey 
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9. Renumber the cells in the Seconds column (starting at 1 and increasing by 1). 

10. If any major stops occurred during the survey, delete those points as well. 

a. This can also be found by bringing the file to a GIS program and visually 

looking for where the stops occurred and deleting those points or 

i. A potential quick and dirty method is to delete and points with a 

speed of less than 1 kph. 

11. Now calibration line must be separated from the survey. Find where the 

calibration line begins by bringing the file to a GIS program and visually looking 

for where the calibration began, and the survey ended.  

12. Select all of the calibration line points and move them to a new file. Now you 

have a file for the calibration line and one for the survey.  

13. If your calibration line occurred in reverse direction that you did your survey (i.e., 

Survey: South to north, Calibration line: North to south), renumber the calibration 

line’s Seconds column in reverse order (i.e., bottom to top), starting at 1 and 

increasing by 1, and then resort. 

14. If your calibration line went in the same direction as your survey (i.e., Survey: 

South to north, Calibration line: South to north). Renumber the calibration line’s 

Seconds column from top to bottom, starting at 1 and increasing by 1. 

15. Now you have your base survey and calibration line file.  

 

Column Information 

 

1. Columns (most important columns are underlined)  

a. DATE: Date of the survey (Year-month-day) 

b. Seconds: Was created to number and index the measurement points 

c. GPS_TIME: Measurement time recorded by the GPS 

i. Do not trust 

d. GPS_FIX: unknown meaning 

e. Longitude: WGS84 (°) 

f. Latitude: WGS84 (°) 
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g. Altitude: WGS84 (m) 

h. Height_Above_Ellipsoid: WGS84 (m) 

i. Speed_(KPH): Speed that the GPS was moving at time of measurement 

(KPH) 

i. Do not trust 

j. STATION_ID: unknown meaning 

k. REMARK: unknown meaning 

l. $PDLM1: Start of the DUALEM-1S output columns 

m. EC_Time: Measurement time recorded by the DUALEM-1S 

i. Do not trust 

n. HCP_Conductivity_(mS/m): The horizontal co-planar geometry which 

measures the bulk ECa of the ~ 0-1.6 m depth (mS/m) 

o. HCP_Inphase_(ppt): HCP inphase (ppt) 

p. PRP_Conductivity_(mS/m): The perpendicular geometry which measures the 

bulk ECa of the ~ 0-0.5 m depth (mS/m) 

q. PRP_Inphase_(ppt): PRP inphase (ppt) 

r. $PDLMA: Start of information of the DUALEM-1S sensor during 

measurement 

s. Voltage: The voltage produced in the DUALEM-1S to create the 

electromagnetic field (V) 

t. Internal_sensor_temp_(C): The temperature inside the DUALEM-1S during 

measurement 

u. Pitch_(deg): The degree of rotation front-to-back (i.e., long ways) of the 

DUALEM-1S during measurement (°) 

v. Roll_(deg): The degree of rotation side-to-side (i.e., short ways) of the 

DUALEM-1S during measurement (°) 

 

*The following steps are best conducted in R* 

 

Outlier Removal  

 

1. If there are soil sensors at the site, delete any points that occurred within 2.0-m of 

the soil sensor network (including the sensor head and their cables) in the survey 

and calibration line data sets to remove any points that were potentially altered due to 

magnetic components of the sensors. (Finding these points can be conducted in a GIS 

program).  

a. Create a new data frame with the removed points to be combined with 

outliers found later. 

2. Delete entire measurement points (i.e., rows) that have an HCP [column 

HCP_Conductivity_(mS/m)] and/or PRP ECa [column PRP_Conductivity_(mS/m)] 

of less than 0.1 mS/m in both the survey and calibration line data sets. 

a. Combined the removed points with the points that were removed in Step 1. 
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3. In the Survey data set, create a column titled “index” and index the rows by starting at 

1. 

4. In the Calibration Line data set, create a column titled “calindex” and index the rows 

by starting at 1. 

5. Hampel filter (optional) 

a. Apply a Hampel filter with a 10-point half-width (K= 10), (i.e., 21 point 

moving data window), and a threshold of t=3, according to the 3σ edit rule of 

Pearson, 1999 on to the: 

i. ≥ 0.1 mS/m Survey  

1. HCP ECa [column HCP_Conductivity_(mS/m)]  

2. PRP ECa [column PRP_Conductivity_(mS/m)]  

ii. ≥ 0.1 mS/m Calibration line  

1. HCP ECa [column HCP_Conductivity_(mS/m)]  

2. PRP ECa [column PRP_Conductivity_(mS/m)]  

b. The Hampel filter replaces the point it deemed as an outlier with the median. 

Instead of replacing the outlier, remove the values that the Hampel filter 

deemed to be an outlier 

i. The Hampel filter applied to the PRP and HCP ECa will most likely 

determine different observations/measurement points as outliers.  

ii. Because of that and to be consistent with earlier procedures, remove 

the entire observation/measurement points (i.e., row) from the 

survey or calibration line data sets wherever the Hampel filter 

determines there to be an outlier (i.e., in the HCP or PRP ECa)  

6. Combine the outliers from the Hampel filter, the measurement points that were 

removed because they had an HCP and PRP ECa values of < 0.1 mS/m, and the 

measurement that removed because they occurred within 2.0-m of the soil sensor 

network 

7. The four data sets you should have are: 

a. The outlier-removed  

i. Survey data set 

ii. Calibration Line data set 

b. All the removed outliers and values of the  

i. Survey data set 

ii. Calibration Line data set 

 

Calibration 

 

1. Using the outlier-removed survey and calibration line data set, find Survey points 

that occurred within 1.5 m of the Calibration Line points, and identify them with 

the calindex of the Calibration Line point that were within 1.5 m.  

2. Average the HCP and PRP ECa and time (i.e., Seconds) of the Survey’s 

measurement points that occurred within 1.5 m of the Calibration Line points, and 

group them by calindex. 
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3. Create a data frame of the HCP and PRP ECa of the Calibration Line points, and the 

average time, HCP, and PRP of the survey point that occurred with in 1.5 m  of the 

calibration line points. 

a. It should something like this 

 
 

4. Subtract the Calibration line’s HCP from the average HCP of the survey points, and 

the Calibration line’s PRP from the average PRP of the survey points, and add the 

values to the data frame.  

a. It should look something like this  

 
5. Plot both the difference between the Survey and Calibration Line’s HCP and PRP 

across the average time of Survey points that occurred within 1.5 m of the Calibration 

Line points. 

a. It should look like this 
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6. Create a linear regression model over difference between the Survey and Calibration 

Line’s HCP and PRP across the average time of Survey points that occurred within 

1.5 m of the Calibration Line points 
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7. Apply both linear regression models to the Seconds of the full, outlier-removed 

Survey data set, and add the values to the Survey data frame. 

 

 
8. Subtract the Survey data frame’s actual HCP and PRP from the projected difference 

created from the model and add those values to the Survey data frame.  

 

 
9. Now you have a calibrated Survey. 

 

Temperature adjustment of the ECa 

 
1. Using the outlier-removed, calibrated Survey data set, the HCP ECa will be adjusted 

using the temperature recorded at the 75-cm depth, and the PRP ECa will be adjusted 
using the temperature recorded at the 15-cm depth. 

2. Apply the following equation to both the HCP and PRP ECa of the outlier-removed, 
calibrated Survey data set and add them to the Survey data frame 
 

���� = ���  × 	0.447 +  1.4034��/��.����� 

 
a. EC25: The ECa standardized to 25°C (mS m−1) 
b. ECT: The ECa at a particular soil temperature 
c. T: Soil temperature (°C) 
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3. This is the outlier-removed, calibrated, temperature-adjusted data set which can be 

used for analysis. 

 

Interpolation Through Kriging 

 

1. Average any points that coincidentally occurred in the same GPS location. 

2. Using the outlier-removed, calibrated, temperature-adjusted Survey data set, 

randomly select 20 % of the Survey data. This will be used for model validation. 

3. Using the remaining 80 % of the data, calculate an experimental semi-variogram for 

the HCP and PRP ECa and fit semi-variogram with a nugget and exponential, 

spherical, Gaussian, Matern, circular, and linear models.  
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4. Select the best model which minimized the sum of square of error for the HCP and 

PRP ECa 

a. They can have different models,  

5. Use the selected model to preform universal kriging to a 5-m resolution (or to a 

dimension of your choosing) and within the boundaries of the site for both the HCP 

and PRP ECa. 

6. Now you have interpolated images of site’s HCP and PRP ECa.  
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