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Avian malaria and related haematozoa are nearly ubiquitous parasites that can impose 

fitness costs of variable severity and may, in some cases, cause substantial mortality 

in their host populations. One example of the latter, the emergence of avian malaria in 

the endemic avifauna of Hawaii, has become a model for understanding the 

consequences of human-mediated disease introduction. The drastic declines of native 

Hawaiian birds due to avian malaria provided the impetus for examining more closely 

several aspects of host-parasite interactions in this system. Host-specificity is an 

important character determining the extent to which a parasite may emerge. 

Traditional parasite classification, however, has used host information as a character 

in taxonomical identification, potentially obscuring the true host range of many 

parasites. To improve upon previous methods, I first developed molecular tools to 

identify parasites infecting a particular host. I then used these molecular techniques to 



  

characterize host-specificity of parasites in the genera Plasmodium and 

Haemoproteus. I show that parasites in the genus Plasmodium exhibit low specificity 

and are therefore most likely to emerge in new hosts in the future. Subsequently, I 

characterized the global distribution of the single lineage of P. relictum that has 

emerged in Hawaii. I demonstrate that this parasite has a broad host distribution 

worldwide, that it is likely of Old World origin and that it has been introduced to 

numerous islands around the world, where it may have been overlooked as a cause of 

decline in native birds. I also demonstrate that morphological classification of P. 

relictum does not capture differences among groups of parasites that appear to be 

reproductively isolated based on molecular evidence. Finally, I examined whether 

reduced immunological capacity, which has been proposed to explain the 

susceptibility of Hawaiian endemics, is a general feature of an “island syndrome” in 

isolated avifauna of the remote Pacific. I show that, over multiple time scales, 

changes in immune response are not uniform and that observed changes probably 

reflect differences in genetic diversity, parasite exposure and life history that are 

unique to each species. 
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Preface 

This dissertation is comprised of an introduction and four chapters. Chapters I 

(Journal of Parasitology. 2005. 91, 683-685), II (Molecular Ecology. 2004. 13, 3829-

3844) and III (Proceedings of the Royal Society London B. 2006. 273, 2935-2944) are 

presented in the formats in which they were originally published. Chapter IV is 

formatted for submission to The American Naturalist. A single bibliography provides 

information on references cited throughout the dissertation. 
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INTRODUCTION 

 
“The role of disease in wildlife conservation has probably been radically 

underestimated” – Aldo Leopold, 1933 

 

Infectious disease, long recognized as a threat to human health and an 

economic problem in domestic animals, has increasingly been acknowledged as a 

major factor driving ecological and evolutionary processes in wild animal populations 

(Deem et al. 2001). In the decades immediately following Leopold’s observation, the 

role of disease in wildlife population dynamics remained somewhat obscure due in 

part to the absence of proper tools to detect and identify pathogens and skepticism on 

the part of some researchers that disease could be important in regulating wild 

populations (reviewed in Price 1991, Toft 1991). The advent of molecular biology, 

however, has allowed for agents of disease to be identified and traced on an 

increasingly fine scale. In addition, theoretical models have increasingly revealed the 

role parasites can have in the regulation of host populations (May and Anderson 

1983). And over the past several decades, globalization of travel and trade, increasing 

encroachment of a burgeoning human populace into previously isolated habitats, 

monotypic agricultural and animal husbandry practices, and changes in climate have 

precipitated the emergence of numerous infectious diseases with undeniably 

catastrophic consequences for both humans and wildlife (Daszak et al. 2000, 

Woolhouse and Gowtage-Sequeria 2005, Pearce-Duvet 2006). 
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Emerging disease may be broadly defined as any infectious agent that has 

been recently discovered, is newly evolved, or has recently increased in incidence, 

geographical distribution or host distribution (Cleaveland et al. 2001). Factors leading 

to emergence may be inherent to the host (e.g., immunosuppression due to increased 

exposure to pollution or stress) or the parasite (e.g., mutation, selection for higher 

virulence in the presence of a competing parasite) as well as extrinsic elements such 

as changes in the distribution, behavior or competency of vectors or alternative hosts. 

Although infectious disease may be extremely detrimental to wild populations, 

empirical data and theory both suggest that disease by itself is generally not capable 

of driving populations to extinction. Smith et al. (2006) reported that disease was a 

contributing factor in fewer than 4% of all extinctions known to have occurred in the 

last 500 years and that fewer than 8% of critically endangered taxa are threatened by 

disease. And in fact, while hypothesized to be involved in several extinctions (de 

Castro and Bolker 2005), infectious disease has been demonstrated to be the ultimate 

cause of extinction only in the case of a captive remnant population of Polynesian tree 

snail (due to a microsporidian parasite; Cunningham and Daszak 1998) and one wild 

frog species (due to fungal infection; Schloegel et al. 2006). Theoretical models 

predict that host-specific diseases that cause high mortality and exhibit density-

dependent transmission are likely to die out as the host population falls below some 

threshold density (Anderson and May 1992). Therefore, infectious disease may be 

more important in driving populations to small sizes at which point stochastic 

fluctuations in demographics or environment, allee effects, or genetic complications 

of inbreeding provide the ultimate force behind extinction. 
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Examples of emerging diseases that have detrimentally impacted wildlife 

include chytridiomycosis (fungi) in amphibians, rinderpest in African ruminants, 

phocine distemper in North Sea seals, rabies in African wild dogs and Ethiopian 

wolves, and myxomatosis in European rabbits (summaries in Cleaveland et al. 2001, 

Dobson and Foufopoulos 2001, Daszak et al. 2003). In birds, several diseases have 

come to public awareness not only because of their impact on their hosts, but also 

their potential to spillover into humans (e.g. HPAI H5N1, SARS, West Nile Virus). 

Other notable disease outbreaks (reviewed in Cooper 1993, Friend et al. 2001) have 

driven the decline of house finches on the eastern seaboard of the U.S. 

(mycoplasmosis; Hochachka and Dhondt 2000), pelicans in the Salton Sea (botulism), 

and the honeycreepers of Hawaii (avian malaria; Warner 1968, van Riper et al. 1986). 

This last example, the human-mediated introduction of avian malaria into the native 

avifauna of Hawaii, represents one of the best known examples of emerging disease 

and provides the motivation for the work described in this dissertation. 

Avian malaria (family Plasmodidae) and related haematozoan parasites in the 

families Haemoproteidae and Leucocytozoidae have been detected on every continent 

except Antarctica. Excluding a few host taxa restricted to extreme arctic 

environments (Bennett et al. 1992) and perhaps several island taxa, the vast majority 

of bird species are host to avian haematozoa with estimated prevalences based on 

microscopy averaging about 10% (Janovy 1997). Recent application of sensitive 

molecular techniques to the detection of haematozoa have indicated that actual 

prevalences are probably substantially higher (Jarvi et al. 2003, Kimura et al. 2006) 

though these values can vary dramatically with host age class (Mendes et al. 2005), 
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season of sampling (Fallon et al. 2004) and geographical location (Bensch and 

Åkesson 2003). Molecular techniques have also revealed a previously unrecognized 

diversity of parasite lineages (Perkins 2000, Ricklefs and Fallon 2002), calling into 

question previous species limits and raising the possibility that haematozoan species 

diversity is on the order of avian species diversity (Bensch et al. 2004). Supporting 

this hypothesis are surveys of single host species that have recovered between 5 and 

26 distinct parasite mitochondrial lineages (Bensch et al. 2007, Durrant et al. 

unpublished, Fallon et al. 2006, Ishtiaq et al. 2006, Kimura et al. 2006) and initial 

indications that mitochondrial lineages may represent good species (Bensch et al. 

2000). 

Direct measures of haematozoon infection intensity (Bensch et al. 2007), as 

well as the discrepancies typically encountered when detecting parasites by 

microscopy and PCR (Bentz et al. 2006), suggest that most infected birds carry low 

level chronic infections. While it is hypothesized that these infections are unlikely to 

have serious consequences for host fitness (Valkiunas 2005), quantifying non-lethal 

effects of infection in wild populations is notoriously difficult and therefore, the true 

impact of haematozoans is likely to be blurred. At least several studies have 

demonstrated negative consequences of haematozoan infection for survival, clutch 

size, incubation period, fledging success, motor activity and fat accumulation 

(Bennett et al. 1993, Gustafsson et al. 1994, Nordling et al. 1998, Merino 2000, 

Valkiunas 2005) though numerous other studies have yielded more equivocal results. 

Bennett et al. (1993) suggested that severe mortality attributable to haematozoan 

parasites appears to be limited to cases involving domesticated birds or species 
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introduced to exotic ranges. If haematozoa are important in limiting the range of most 

bird species, as hypothesized by Bennett et al. (1993), then changes to the distribution 

of local haematozoan faunas could have disastrous consequences for bird populations 

worldwide. High mortality observed upon translocation of presumably naïve species 

to foreign zoos (penguins, reviewed in Valkiunas 2005; New Zealand avifauna, 

Bennett et al. 1993, Tompkins and Gleeson 2006) and upon introduction of malaria to 

Hawaii provide experimental support for this possibility.  

Unlike most continental species, the native birds of Hawaii were likely not 

exposed to malaria until some time in the early 19th century, when mosquitoes were 

first introduced to the Hawaiian Islands (see Fonseca et al. 2006). Once established, 

the presence of a suitable vector (Culex quinquefasciatus) allowed for colonization of 

the islands by the parasites themselves, which may have arrived via migratory ducks 

and shorebirds or via the importation of domestic fowl, gamebirds and caged song 

birds (Warner 1968). Preliminary screening of historical specimens suggests that 

avian malaria only arrived as late as the middle of the twentieth century (Fleischer et 

al. unpublished data). Many native bird species, apparently unusually susceptible to 

disease and already decimated by the introduction of mosquito-vectored pox virus, 

experienced further declines and possible extinction as a result of exposure to 

malaria. Disease-driven extinction in this case may have been made possible by the 

presence of competent alternative hosts (non-native birds) which are largely 

unaffected by malaria (van Riper et al. 1986, Jarvi et al. 2003) yet provide a large 

reservoir of parasites which may then be transmitted to native hosts. The presence of 

alternative host reservoirs provides an important exception to models which predict 
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the density-dependent decline of parasite impact along with the host (Smith et al. 

2006). The extreme declines observed in Hawaii raise the following questions: To 

what extent can avian malaria exploit various hosts and thus, to what extent does 

avian malaria present an emerging threat to bird populations elsewhere across the 

globe? What is the identity of the parasite introduced to Hawaii? What is the 

geographical distribution of the Hawaiian parasite, what is its prevalence, and can we 

use this information to infer anything about its virulence outside of Hawaii? And 

finally, are other remote avifaunas of the Pacific likely to exhibit susceptibility 

similar to that of the Hawaiian honeycreepers? These questions are addressed in the 

chapters that follow. 

In Chapter I, I describe the development of a PCR assay that allows for the 

rapid and sensitive detection of haematozoan DNA within a sample extracted from 

bird tissue or blood. This method is an improvement upon previous assays based on 

microscopy, which can drastically underestimate the prevalence of chronic infections 

(Jarvi et al. 2003) and other PCR methods, which are inefficient because they employ 

nested amplifications (Valkiunas et al. 2006) or target relatively large fragments. The 

assay described in this chapter targets a small conserved fragment of mitochondrial 

DNA identified by sequencing full mitochondrial genomes from five avian 

haematozoan parasites. The assay also employs restriction fragment length 

polymorphism to provide a genetic fingerprint that is diagnostic of the genus of 

parasite present in an infected sample. 

In Chapter II, I investigate the degree to which haematozoan parasites are 

constrained to a particular host species or family. Most emerging diseases infect a 
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broad range of hosts (Taylor et al. 2001, Woolhouse and Gowtage-Sequeria 2005), 

and therefore, host-specificity is likely a key factor determining both the extent to 

which a parasite may “emerge” from its typical environment and also, whether 

density-dependent effects associated with the decline of a primary host are likely to 

extinguish the pathogen threat. An initial application of molecular techniques to this 

question may have been misleading due to spartan sampling and the fact that the 

authors neglected to distinguish between haematozoan genera (Ricklefs and Fallon 

2002). Here, I present the results of a parasitological survey of closely related hosts 

from several avian families found in a single geographic region. I show that host-

specificity of Haemoproteus spp. is high relative to Plasmodium spp. at multiple 

depths within the parasite phylogeny. This work highlights the potential for 

Plasmodium spp. to emerge as a problematic parasite in novel hosts. In addition, I 

show that host-specificity is not uniform even across lineages of Haemoproteus, 

suggesting that parasite differentiation has been the result of periodic host-switching 

events, followed by vicariance.  

In Chapter III, I use mitochondrial and nuclear markers to track the origins 

and spread of Plasmodium relictum, a species of avian malaria that emerged in the 

naïve avifauna of Hawaii. First I demonstrate that the Hawaiian parasites exhibit a 

uniform genetic signature and therefore, may be defined much more narrowly than 

the collection of parasites encompassed by the morphological species P. relictum. 

Using this genetic signature, I show that Hawaiian-like parasites are distributed across 

the globe, and currently occur on several other remote islands which could potentially 

share a similar history of avian demise. Finally, I use phylogenetic reconstructions of 
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additional parasite lineages recovered from a survey of over 13,000 specimens to 

show that the Hawaiian parasite likely originated from an Old World source. This, in 

turn, may influence conclusions regarding the evolution of virulence. 

Finally, in Chapter IV, I approach the topic of emerging disease from the 

perspective of a putatively naïve island avifauna. Here I ask the questions a) Is loss of 

immune function a component of an “island syndrome”?, and b) On what time scale 

do changes in immunity occur? To answer these questions, I characterized parasite 

exposure, genetic diversity and immune response in recently-introduced and endemic 

island taxa and compared the results to related mainland counterparts. As expected, I 

found that parasite exposure on the islands was generally lower than on the mainland 

and indices of genetic diversity also tended to be lower on the islands, particularly for 

long-term endemic residents. Interestingly, immune response in the island taxa was 

not necessarily lower than mainland taxa and the response was not uniform even 

among island taxa with similar residence times. 
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CHAPTER I 

A restriction enzyme-based assay to distinguish between avian 

hemosporidians 

ABSTRACT 
 
We describe a reliable and relatively inexpensive method for detecting and 

differentiating between the commonly studied avian blood parasite genera 

Haemoproteus, Plasmodium, and Leucocytozoon. The assay takes advantage of a 

Haemoproteus-specific restriction site identified by sequencing full mitochondrial 

genomes from two Haemoproteus and three Plasmodium lineages and an adjacent 

genus-specific restriction site identified in Leucocytozoon spp. The assay was 

sensitive to parasitemias of about 8 x 10-6 and was 100% accurate in differentiating 

between parasite genera isolated from a broad geographical and taxonomic sampling 

of infected hosts. 

MAIN TEXT 
 

Avian hemosporidia in the genera Haemoproteus, Plasmodium, and Leucocytozoon 

are widespread blood parasites occurring in diverse host species. The 3 genera are 

closely related evolutionarily (Perkins and Schall, 2002), but are characterized by 

considerable differences in ecology and life history. Plasmodium spp. are transmitted 

by culicine mosquitoes, whereas Haemoproteus spp. are transmitted by hippoboscid 
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and ceratopogonid flies, and Leucocytozoon spp. are vectored by simuliid flies. 

Species of Plasmodium generally exhibit broader host specificity (Atkinson and van 

Riper III, 1991) while both Plasmodium spp. and Leucocytozoon spp. are considered 

to be more pathogenic (Bennett, Peirce, and Ashford, 1993) than Haemoproteus spp. 

All 3 genera undergo alternating cycles of sexual and asexual reproduction, but only 

species of Plasmodium undergo schizogony in circulating erythrocytes (Atkinson and 

van Riper III, 1991), which leads to the symptoms of malaria (Garnham, 1966). 

Recently, the polymerase chain reaction (PCR) has become a valuable tool for 

detecting these parasites and sequencing has uncovered a wealth of genetic diversity 

(Bensch et al., 2000; Ricklefs and Fallon, 2002; Schrenzel et al., 2003). PCR screens 

offer increased sensitivity over traditional analysis of blood smears (Feldman et al., 

1995; Cann et al., 1996; Richard et al., 2002); however, the parasites (most often 

Haemoproteus spp. and Plasmodium spp.) are typically amplified indiscriminately, 

and identification to genus requires costly sequencing. Lineage-specific information 

may be useful when monitoring an epidemic or measuring migratory connectivity 

(Webster et al., 2002), but often, ecologists, wildlife managers, and zookeepers may 

benefit from genus-level knowledge of parasites present in an avian community. 

Here, we report the development of a relatively inexpensive restriction enzyme-based 

diagnostic for detecting and identifying Haemoproteus spp., Plasmodium spp. and 

Leucocytozoon spp. We have confirmed the utility of the test by correctly identifying 

the genus of genetically diverse parasite lineages from a broad taxonomic and 

geographic sampling of hosts. 
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We initially searched for a method to distinguish Haemoproteus spp. and 

Plasmodium spp., the two most common genera, and the two most commonly co-

amplified by existing PCR methods. To ensure that candidate nucleotide 

polymorphisms separating parasite genera fell in relatively conserved regions of 

DNA, we first sequenced the 6-kilobase mitochondrial genome of 5 avian parasite 

lineages. These included 2 lineages of Haemoproteus and 3 lineages of parasite 

putatively identified as P. relictum by morphology (Table I), but known to be 

genetically divergent (McConkey et al., 1996; J. Beadell unpubl. obs.). We extracted 

DNA using Qiaquick Dneasy kits (Qiagen, Valencia, California). We designed 

primers (available upon request) based on the sequences of relatively conserved 

regions of previously published mitochondrial genomes from mammalian malaria 

parasites. Primer pairs typically amplified between 500 and 600 base pairs (bp) and 

were spaced so that approximately 30 to 50 bp (excluding primed sequence) from one 

segment overlapped with the adjacent segment. Amplified DNA was sequenced bi-

directionally on an ABI 377 (Applied Biosystems, Inc., Foster City, California). 

Sequences were assembled, aligned and edited using the program SEQUENCHER 

version 4.1. Further alignment was performed by eye when necessary. Sequences of 

the five mitochondrial genomes have been deposited in GenBank (Accession numbers 

AY733086 to AY733090, Table I). 

Comparison of the frequency of insertions/deletions and nucleotide 

substitutions across the 5 genomes with the location of mitochondrial gene sequences 

(COI, COIII, CYb) identified in P. falciparum (AY283008, Joy et al., 2003) 

suggested that these regions were least conserved across hematozoan genera (Fig. 1). 
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Average uncorrected pairwise divergence among the 5 genomes was 2.5% outside 

gene-coding regions versus 7.7% within. Therefore, we targeted our search for 

polymorphisms to non-gene-coding regions where polymorphisms between genera 

were most likely to be fixed. We describe the resulting diagnostic below. 

We designed primers 213F (5’- GAG CTA TGA CGC TAT CGA -3’) and 

372R (5’- GGA ATG AGA GTT CAC CGT TA -3’) to amplify a 160 bp fragment of 

DNA encoding an Xmn I restriction site unique to Haemoproteus. Both primers 

shared 100% identity with corresponding sequence of mitochondrial DNA from the 

parasites listed in Table I, and the final fragment size was minimized so as to improve 

the likelihood of recovering PCR product from old and potentially degraded samples. 

We employed a PCR scheme typical of “ancient DNA” amplifications: initial 

denaturing step at 94 C for 8 min, 45 cycles of 92 C for 30 sec, 52 C for 30 sec, 72 C 

for 30 sec, and a final extension at 72 C for 7 min. We amplified 1.8 µl of DNA in a 

reaction volume of 25 µl, using final concentrations of 1X PCR Gold Buffer (Applied 

Biosystems, Inc.), 0.8 mM dNTPs, 2.0 mM MgCl2, 0.8 mg/ml BSA, 0.6 µM each 

primer and 0.5 U of AmpliTaq Gold DNA Polymerase (Applied Biosystems, Inc.). 

We digested 5.0 µl of the PCR product in a total volume of 10 µl for 3 hr at 37 C, 

using 1 U of restriction enzyme Xmn I, 0.1 mg/ml BSA and 1X NEBuffer 2 (New 

England Biolabs, Beverly, MA). We electrophoresed the digested product at 80 volts 

on a 4% 3:1 agarose gel (Amresco, Solon, OH) with 0.2X Gel Star (Cambrex Bio 

Science Rockland, Inc., Rockland, ME). PCR products derived from Plasmodium 

spp. remained undigested while PCR products derived from Haemoproteus spp. were 
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cleaved into fragments of 121 and 39 base pairs (Fig. 2). The smallest band was 

typically faint or indistinguishable from primer artifacts. 

We tested the method described above on DNA extracted from 33 infected 

birds representing 21 families from 3 continents (Appendix I). The genus of the 

infecting parasite had been determined by prior sequencing and phylogenetic analysis 

of a 295 base pair segment of cytochrome b. Uncorrected pairwise divergences 

ranged from 1.4 to 8.5% (average = 5.7%) among Plasmodium lineages tested 

(excluding samples from Schoeniophylax phyganophila and Gnorimopsar chopi for 

which the full 295 bp was not available) and from 0 to 9.5% (average = 5.2%) among 

Haemoproteus lineages. The diagnostic successfully resolved the genus of infection 

in all cases (17 Plasmodium sp. and 16 Haemoproteus sp.). Because the diversity of 

lineages tested within each genus resembled that recovered in other surveys of 

hematozoa (Bensch et al., 2000; Ricklefs and Fallon, 2002; Schrenzel et al., 2003), 

the test should be applicable on a broad scale. The test may also detect double 

infections by both genera when template DNA for each parasite occurs in sufficient 

concentration. We tested 4 samples for which prior sequencing and cloning had 

revealed infection with both Haemoproteus and Plasmodium. In each case, 2 bands 

were evident on the agarose gel (Fig. 2). Underdigestion of PCR products could also 

result in the appearance of a multi-genus infection, however, we did not observe 

double bands among the 33 samples tested above. The use of excess restriction 

enzyme and long incubation times should minimize these artifacts. 

We subsequently used primers 213F/372R to amplify DNA from diverse 

lineages of Leucocytozoon spp. extracted from blood smears (Appendix 2). 
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Sequencing revealed an absence of the Xmn I site, and digestion with Xmn I 

confirmed that the PCR products were indistinguishable from the products obtained 

from Plasmodium spp.  However, comparison of the sequences with those from the 

lineages of Haemoproteus and Plasmodium tested above revealed an Xba I site 

unique to lineages of Leucocytozoon. Digestion of PCR products from each of the 

Leucocytozoon spp. with Xba I under conditions identical to those described above 

produced 2 fragments of about 109 and 54 bp (small size differences arose from 

single base indels at two sites within the larger fragment), while digestion of the 

products obtained from Haemoproteus spp. and Plasmodium spp. resulted in no 

cleavage. The use of Xmn I and Xba I together, therefore, generated a diagnostic 

molecular fingerprint for the three hemosporidian genera (fragments of approx. 160 

bp for Plasmodium spp., 121 bp for Haemoproteus spp., 109 and 54 bp for 

Leucocytozoon spp.) when PCR products were electrophoresed on a 4% agarose gel 

(Fig. 2). 

To determine the utility of these primers in detecting low-level infection, we 

tested the primers on extractions of serial dilutions of duck blood containing the 

Hawaiian lineage of P. relictum. We estimated the parasitemia of the stock blood to 

be 3.23% by scanning 30 fields at 400x magnification. We consistently amplified 

extractions of stock blood diluted as much as 4,000-fold; however, amplification of 

more dilute DNA was sporadic or impossible. This level of sensitivity is similar to 

that for a protocol developed by Fallon et al. (2003), which outperformed previously 

published methods. Serological assays may be even more sensitive (Jarvi et al., 

2002); however, any single serological assay is specific for a limited set of lineages 
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and may detect both current and previous infections. PCR-based methods of detection 

may be imperfect (Freed and Cann, 2003), but using multiple primer sets can help 

reduce false negatives. We suggest that the assay described here will complement 

previous methods by providing a relatively sensitive method for detecting current 

hematozoan infection and a robust and cost-effective means for identifying 

Haemoproteus spp., Plasmodium spp. and Leucocytozoon spp. 

We also note here that divergences (based on mean character differences) 

between mitochondrial lineages from the three parasites identified by morphology as 

P. relictum ranged from 3.4 to 3.9%.  By comparison, P. reichenowi (AJ251941, 

Conway et al., 2000) and P. falciparum (AY283008, Joy et al., 2003), parasite species 

whose primary hosts are chimpanzees and humans, respectively, exhibited only 2.3% 

sequence divergence across their entire mitochondria. These data lend further support 

to authors who have questioned the phylogenetic significance of previous parasite 

classifications based on morphology (Manwell, 1936; Bensch et al., 2000; Perkins 

and Schall, 2002). If mitochondrial lineages are indicative of species-level 

differentiation, then extreme care should be taken in assessing evolutionary 

relationships or tracking the epidemiology of hematozoan parasites based solely on 

morphological and ecological phenotypes. This is particularly true for P. relictum, 

which has been implicated in the decline of Hawaii’s native avifauna (van Riper et 

al., 1986; Atkinson et al., 1995), but has also been reported in blood smears from a 

broad distribution of avian hosts around the world (Bennett et al., 1993). 

 
 



 

 16 
 

TABLE 

Table I. Host, geographical origin, and sources of parasite lineages for which full mitochondrial genomes were sequenced. 
 
Lineage Parasite name Host name Geographical Collector GenBank 

  Scientific Common origin  accession no. 

1 Haemoproteus 

sp. 

Meliphaga 

lewinii 

Lewin’s 

honeyeater 

Queensland, 

Australia 

J. Austin AY733086 

2 Haemoproteus 

sp. 

Lichenostomus 

frenatus 

Bridled 

honeyeater 

Queensland, 

Australia 

J. Austin AY733087 

3 Plasmodium 

relictum 

Spheniscus 

demersus 

African black-

footed penguin 

Baltimore Zoo, 

Maryland, U.S.A. 

M. Cranfield AY733088 

4 Plasmodium 

relictum 

Zenaida 

macroura 

Mourning 

dove 

Nebraska, U.S.A. ATCC 

#30141 

AY733089 

5 Plasmodium 

relictum 

Hemignathus 

virens 

Amakihi Hawaii, U.S.A. R. C. F. AY733090 
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FIGURE LEGENDS 

 
Figure 1. Frequency of insertions/deletions and nucleotide substitutions across five 

mitochondrial genomes from Plasmodium spp. and Haemoproteus spp. Upper limits of 

200-nucleotide intervals are numbered with respect to positions in P. falciparum 

(AY283008, Joy et al., 2003). The locations of cytochrome c oxidase subunits 1 (CO1) 

and III (COIII) and cytochrome b (CYb) are indicated at the top. 

 

Figure 2. Electrophoretic banding patterns indicative of infection with Plasmodium sp. 

(P), Haemoproteus sp. (H) or Leucocytozoon sp. (L) relative to a 100 base pair ladder. 

Multi-genus infections (M) may be resolved by electrophoresis of PCR products for 1.3 

hours on a 4% agarose gel. 
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APPENDICES 
 
Appendix I. Geographical origin and family designation of avian host species with 

known infections used to test ability of assay to distinguish between Plasmodium sp. (P) 

and Haemoproteus sp. (H). 

 Host Host family Parasite 

Australia   

 Acanthiza katherina Acanthizidae P 

 Sericornis citreogularis Acanthizidae H 

 Sericornis citreogularis Acanthizidae H 

 Meliphaga notata Meliphagidae P 

 Xanthotis macleayana Meliphagidae H 

 Monarcha trivirgatus Monarchidae P 

 Colluricincla megarhyncha Pachycephalidae H 

 Eopsaltria australis Petroicidae H 

 Eopsaltria australis Petroicidae H 

 Pitta versicolor Pittidae P 

 Ailuroedus melanotis Ptilonorhynchidae P 

Gabon   

 Ipsidina lecontei Alcedinidae H 

 Merops breweri Meropidae H 

 Trochocercus nigromitratus Monarchidae H 

 Stiphrornis erythrothorax Muscicapidae H 
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 Zoothera cameronensis Muscicapidae P 

 Zoothera cameronensis Muscicapidae P 

 Nectarinia fuliginosa Nectariniidae H 

 Camaroptera brachyura Sylviidae P 

 Illadopsis cleaveri Timaliidae H 

 Illadopsis cleaveri Timaliidae P 

 Illadopsis rufipennis Timaliidae P 

Uruguay   

 Basileuterus culicivorus Emberizidae P 

 Gnorimopsar chopi Emberizidae P 

 Icterus cayanensis Emberizidae H 

 Molothrus badius Emberizidae H 

 Schoeniophylax phyganophila Furnariidae P 

 Mimus saturninus Mimidae P 

 Colaptes campestris Picidae H 

 Polioptila dumicola Polioptilidae P 

 Aramides ypecaha Rallidae P 

 Rallus sanguinolentus Rallidae H 

 Troglodytes aedon Troglodytidae P 
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Appendix II. Host, geographical origin, source and number of Leucocytozoon spp. tested in assay. 
 
Parasite # Host Geographical origin Source 

L. mardouxi 2 Nesoenas mayeri Mauritius International Reference Centre for Avian 

Haematozoa, Brisbane, Australia 

L. toddi 2 Milvago chimango Chiloe Island, Chile U.S. National Parasite Collection, 

Maryland, U.S.A. 

Leucocytozoon sp. 1 Carduelis spinus Lithuania G. Valkiunas 

Leucocytozoon sp. 1 Sylvia borin Lithuania G. Valkiunas 

Leucocytozoon spp. 6 Junco hyemalis Alaska, U.S.A. P. Deviche 
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CHAPTER II 

Prevalence and differential host-specificity of two avian blood 

parasite genera in the Australo-Papuan region 

 

ABSTRACT 

The degree to which widespread avian blood parasites in the genera Plasmodium and 

Haemoproteus pose a threat to novel hosts depends in part on the degree to which 

they are constrained to a particular host or host family. We examined the host 

distribution and host-specificity of these parasites in birds from two relatively 

understudied and isolated locations: Australia and Papua New Guinea. Using PCR, 

we detected infection in 69 of 105 species, representing 44% of individuals surveyed 

(n = 428). Across host families, prevalence of Haemoproteus ranged from 13% 

(Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 

3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial 

lineages from 155 sequences. Related lineages of Haemoproteus were more likely to 

derive from the same host family than predicted by chance at shallow (avg. LogDet 

genetic distance = 0, n = 12, P = 0.001) and greater depths (avg. distance = 0.014, n = 

11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus 

subclades identified in a maximum likelihood phylogeny, host-specificity was evident 

up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We 

found no significant host relationship among lineages of Plasmodium by any method 

of analysis. These results support previous evidence of strong host-family specificity 
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in Haemoproteus and suggest that lineages of Plasmodium are more likely to form 

evolutionarily-stable associations with novel hosts. 

INTRODUCTION 

The application of molecular methods to the study of avian hematozoa has revealed 

surprising levels of genetic diversity. This diversity has been exploited to reveal 

phylogenetic relationships (Perkins and Schall 2002), assess disease linkage between 

breeding and wintering grounds (Waldenstroem et al. 2002), and investigate host-

parasite fidelity (Bensch et al. 2000, Ricklefs and Fallon 2002, Fallon et al. 2003). 

This last issue is of particular importance as human activities alter the ranges of 

vectors and avian hosts, thereby increasing exposure of potential hosts to novel 

parasites. In Hawaii, the introduction of the malarial parasite Plasmodium relictum 

has been implicated in the decline of native honeycreepers (van Riper et al. 1986). 

The negative impact of hematozoa introduced to domesticated birds has also been 

well documented (reviewed in Bennett et al. 1993a); however, discerning the fitness 

consequences of infections in wild birds with long histories of parasite exposure has 

been more difficult (Hatchwell et al. 2001, Siikamaki et al. 1997). Predicting the 

consequences of introduced disease is difficult, but we can begin to assess the 

chances of an exotic parasite spreading to novel hosts by determining the extent to 

which that parasite is evolutionarily constrained to a particular host or host family.  

Two of the most common and best-studied genera of avian blood parasites are 

Plasmodium and Haemoproteus. Earlier studies have suggested that Haemoproteus 

exhibits greater host-specificity than Plasmodium (Bennett and Peirce 1988, Bennett 

et al. 1993b). Traditional means of classifying parasites at the species level, however, 
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have often included host taxonomy as a character, thereby providing a biased estimate 

of host-parasite conservatism (Atkinson and van Riper 1991). In addition, 

reconstructions of parasite phylogenies based on DNA sequences have yielded 

evolutionary relationships that differ from those derived from traditional 

classification methods (Escalante et al. 1998).  

A recent molecular study of Haemoproteus lineages in old world warblers and 

tits produced discordant host and parasite phylogenies, suggesting frequent host-

switching (Bensch et al. 2000). A survey of parasites in African residents and 

European migrants revealed numerous cases of a single parasite lineage shared by 

multiple hosts; all Haemoproteus lineages were shared among hosts of the same 

family while at least one Plasmodium lineage occurred in multiple host families 

(Waldenström et al. 2002). On a global scale, Ricklefs and Fallon (2002) 

demonstrated relative conservatism of host-parasite evolution, but no distinction was 

made between the specificity of Plasmodium and Haemoproteus. Here, we attempt to 

merge the strengths of these studies by investigating host-parasite relationships at 

several evolutionary depths across multiple well-diversified host families within a 

single region.  

 As part of a global survey for the original host and geographical source of the 

Hawaiian parasite, we examined malarial parasites from a subset of bird species from 

tropical Australia and Papua New Guinea. To our knowledge, this is the first 

molecular exploration of host-parasite relationships in this fauna. The avifauna of this 

region is relatively isolated, both taxonomically and geographically, potentially 

reducing noise associated with transient introduction of foreign parasites. Prior 
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surveys for hematozoan parasites have identified Haemoproteus and Plasmodium in 

many of the hosts included here, but relatively few parasites have been 

morphologically identified beyond the genus level (Ewers 1967, Bennett and 

Campbell 1973, Jones 1985). Our goals were to 1) characterize the prevalence of 

hematozoa across varied bird families in this region and 2) determine the extent to 

which Haemoproteus and Plasmodium differ in host-specificity. 

MATERIALS AND METHODS 

Sample Collection and Preparation 

JA collected blood samples from mist-netted birds in 2002 and 2003 at sites in the 

Wet Tropics of northeastern Queensland, Australia and at Eungella National Park, 

which encompasses an isolated fragment of rainforest to the south (Figure 1). Blood 

smears for 40 samples were fixed with methanol and then stained with Giemsa for 30 

min. For each slide, we searched 100 fields at 400x magnification to determine 

infection status. High resolution digital images of representative parasites were used 

for final identification. 

TP provided blood samples from birds captured in 2003 from the 

d’Entrecasteaux Islands, Papua New Guinea. JD provided blood and tissue samples of 

birds netted between 1991 and 2002 from forested sites across the main island of 

Papua New Guinea.  

We extracted host and parasite DNA from blood and tissue samples using the 

relevant protocols accompanying Qiagen DNeasy kits. Each extraction included a 

negative control, which was screened for contamination. 

Parasite Detection 
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In order to detect divergent and possibly degraded parasite DNA, we screened 

samples with two primer sets originally designed to successfully amplify 

Haemoproteus and Plasmodium DNA from dried blood smears up to 30 years old: 

850F (5’-CTT CAA CTA TTC TTA TAA AGT ATG T-3’) with 1024R (5’-AGG 

TGA GTG TTT TGC ATC ATT-3’) and F2 (5’-AAG TGA CCC AAC CTT AAA 

AAG-3’) with R2 (5’-GCT GTA TCA TAC CCT AAA GG-3’). Prior use of these 

primers in a wide array of avian hosts from varied geographical regions amplified no 

other hematozoa (e.g. Leucocytozoon, Trypanosoma, Hepatozoon). Primers 

850F/1024R and F2/R2 amplify small fragments (167 and 132 base pairs) with 

homology to portions of mitochondrial cytochrome oxidase III and cytochrome b 

genes (Feagin 1992), respectively. We used annealing temperatures of 50 C and 52 C, 

respectively, and typical PCR reactions employed conditions developed for 

amplification of “ancient” DNA (Fleischer et al. 2000). 

 For those samples that were positive based on the tests above, we amplified a 

larger fragment of cytochrome b (533 bp + primers) for use in phylogenetic analyses 

using primers 3760F (5’-GAG TGG ATG GTG TTT TAG AT-3’) and 4292Rw2 (5’-

TGG AAC AAT ATG TAR AGG AGT-3’). If this fragment did not amplify, we 

attempted to amplify smaller fragments of either 433 bp or 295 bp (+ primers) using 

either F1 (5’-CAT ATT TAC CTT TAT CAT GGA T-3’) or F3 (5’-CCA GGA CTT 

GTT TCA TGG AT-3’) with 4292Rw2. The annealing temperature for these latter 

reactions was 51 C. 

 To ensure that DNA extractions were successful for those samples in which 

we did not detect infection, we amplified a small fragment (268 bp) of avian 
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cytochrome b DNA using primers cytb-2RC and cytb-wow following the methods 

described in Dumbacher et al. (2003). This amplification was successful in all cases. 

Following purification of PCR products using Qiaquick kits (Qiagen), we bi-

directionally sequenced the largest fragment available for a given sample on an ABI 

3100 Sequencer (Applied Biosystems, Inc.). Sequences were assembled, aligned and 

edited using the program SEQUENCHER version 4.1. Phylogenies based on 

cytochrome b sequence have consistently recovered two discrete clusters of lineages 

corresponding to Haemoproteus and Plasmodium (Bensch et al. 2000, Perkins and 

Schall 2002). Therefore, we assigned mitochondrial sequences (lineages) to each 

genus based on their associations in a phylogenetic tree (see below). Inclusion of 

sequence data from prior studies and morphological assessments of parasites for 

which we had smears generally allowed easy delineation of the two genera. In cases 

where limited sequence data did not provide sufficient resolution, we used a 

restriction enzyme test (JSB and RCF unpubl. data) to assign parasite lineages to 

genera. 

To assess whether prevalence of Haemoproteus and Plasmodium varied 

across host families, we performed an ANOVA (GLM in SAS v 8.2, SAS Institute, 

Inc., Cary, NC) on arcsine square-root transformed prevalences observed at the level 

of host species. We included only those species from families represented by greater 

than 10 individuals total (Table 1). We estimated the proportion of variance 

attributable to host family using the NESTED procedure in SAS. 

Cloning 
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In several cases, we detected multiple infections based on the occurrence of multiple 

peaks throughout the chromatogram. In these cases, we repeated the PCR and cloned 

the fragment using a TOPO-TA cloning kit (Invitrogen) following manufacturer 

guidelines. We picked 6 to 24 blue/white-selected colonies for each fragment cloned, 

boiled the colonies for 10 minutes, and amplified 2 ul of the resulting lysate for 30 

cycles with the relevant primer set. Fragments from successful amplifications were 

cleaned and sequenced as described above. Inspection of sequences obtained for a 

given clone, and comparison of those sequences with the original sequence, allowed 

for easy identification of PCR artifacts arising from polymerase error or in vitro 

recombination (Thompson et al. 2002). 

Phylogenetic Analysis 

We estimated parasite phylogenetic relationships using all samples for which we had 

at least 295 base pairs of cytochrome b sequence, though 533 bp were available for 

most samples (see Appendix A). Following the phylogeny developed by Perkins and 

Schall (2002), all trees were rooted with mammalian Plasmodium sequences 

(GenBank accession nos. AY069614, AF069624, AF055587, AY099051, AY283019, 

and AF069610). The program ModelTest v3.06 (Posada and Crandall 1998) indicated 

that the most likely model of base pair substitution was general time reversible 

(GTR), with the proportion of invariable sites = 0.3604 and gamma shape parameter 

= 0.5372. We used maximum likelihood (ML) to reconstruct a phylogeny using these 

parameters. We used 100 replicates and the “fast” heuristic in PAUP* (Swofford 

1999) to estimate bootstrap support. We also performed a full heuristic search for the 

shortest tree using tree-bisection reconnection (TBR) on both GTR and LogDet 



 

 30 
 

(Lockhart et al. 1994) distances. We compared the resulting minimum evolution tree 

to 1000 trees generated by bootstrap resampling with a TBR heuristic search. Nodes 

with greater than 50% support were retained. 

Host-Specificity 

We followed the binomial probability approach of Ricklefs and Fallon (2002) to 

assess the extent to which parasites of varying relatedness were likely to be found in 

host species from the same family. Host species were grouped into families as listed 

with the Handbook of the Birds of the World (2003), but we grouped all kingfishers 

in the Alcedinidae and included Rhipidura fantails within the Monarchidae (Sibley 

and Ahlquist 1985). First, we tested for a significant difference between the observed 

and expected probability that a shared parasite lineage (i.e., mitochondrial haplotypes 

indicated by light blue dots in Figure 2) derived from two host species of the same 

family. We calculated this separately for shared Haemoproteus and Plasmodium 

lineages. In cases where a single parasite lineage was found in more than two host 

species, we randomly paired hosts to represent that lineage. For example, if a lineage 

occurred in six different hosts, we randomly paired those hosts to form three 

observations.  

Subsequently, we repeated the analysis using pairs of parasite lineages joined 

by 1st-step nodes with greater than 70% bootstrap support (dark blue dots in Figure 

2). When a 1st-step node joined more than two host taxa, we randomly chose just a 

single independent pair. To quantify the phylogenetic depth being analyzed, we 

calculated average pairwise LogDet distances among parasites compared at each 

level. For all comparisons we used only lineages with greater than 470bp of sequence. 
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In order to extend the analysis beyond 1st-step nodes and to assess the parasite 

genetic distance at which host family conservatism was lost, we performed a logistic 

regression of host family (same or different) versus LogDet parasite distance 

(Ricklefs and Fallon 2002). We tested for a significant influence of region (same or 

different) on host family similarity before using the full data set for each application 

of the model. Logistic regression employs the model ln(P/(1-P)) = a + b*d where “P” 

is the probability that two parasites derive from hosts of the same family, “d” is 

genetic distance, and “a” and “b” are coefficients estimated by the model. We 

performed this regression on all pairwise comparisons of parasite lineages and their 

hosts at several levels of evolutionary organization. Because multiple pairwise 

distance comparisons violate assumptions of independence, we determined 

significance of the coefficients using a permutation of the original data. We randomly 

reassigned host families to the parasite phylogeny 999 times and performed logistic 

regression upon each iteration. Coefficients based on the original data were compared 

to those generated by randomization in order to estimate the probability of recovering 

the original estimates by chance alone.
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RESULTS 

Parasite Prevalence 

We used PCR to screen 428 individuals in total. Of 209 individuals from Papua New 

Guinea, 64 (31%) tested positive for Haemoproteus and 20 (10%) tested positive for 

Plasmodium. Of 77 species tested, 46 were positive for one or both genera and we 

detected infection in all 12 species for which we tested 5 or more individuals. Of 219 

individuals tested from Australia, 62 (28%) were positive for Haemoproteus and 30 

(14%) were positive for Plasmodium. We recovered Haemoproteus or Plasmodium 

from 27 of 32 species tested, and we found infection in 17 of 19 species for which 5 

or more individuals were screened. Chi-squared tests revealed no significant 

difference in prevalence of either parasite between regions. 

Low PCR amplification, poor-quality sequence, or unresolved multiple 

infections reduced the number of samples for which we could identify parasites to 

genus, and therefore, estimates of prevalence (Table 1) were biased low. Prevalence 

of Haemoproteus, which ranged from 13% in the Acanthizidae to 56% in the 

Petroicidae was not uniform across different host families (F = 3.71, df = 7, p = 

0.002), however, host family grouping explained only 22% of the total variance in 

prevalence among different host species. Except in the Ptilonorhynchidae, prevalence 

of Plasmodium was relatively low, and no significant difference was evident among 

families (F = 1.39, df = 7, p = 0.223). Only about 4% of the variance in prevalence 

between species could be attributed to host family. Family assignment and frequency 

of parasite detection for all host species examined is listed in Appendix B. 
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We detected mixed infections in 29 individuals. Among those with enough 

sequence data to identify parasite genera present, one individual harbored two 

Plasmodium lineages (66 and 72), 11 harbored two Haemoproteus lineages (see 

below), and four harbored mixed Plasmodium/Haemoproteus infection (11 and 61, 16 

and 72, 21 and 72, 18 and 70). Of the lineages involved in mixed Haemoproteus 

infections, four pairs derived from within well-supported clades composed of non-

passerines (3 and 4), Meliphagidae (28 and 29), or Petroicidae (35 and 36, 35 and 37). 

The remaining pairs (10 and 22, 13 and 37, 14 and 38, 14 and 39 repeatedly) were 

composed of parasites from each of the two main subclades (see phylogenetic results 

below). The average LogDet genetic distance between parasite combinations was 

0.0623 (n = 1) for mixed Plasmodium, 0.0414 (n = 11) for mixed Haemoproteus, and 

0.1352 (n = 4) for mixed Haemoproteus/Plasmodium. 

Reliability of Methods 

Failure to detect infection by PCR may have been due to low-quality or insufficient 

template, small daily variation in PCR conditions and reaction composition, and 

mismatches between the primer and parasite DNA template. To generate a minimum 

estimate of our detection error, we divided the number of false negatives produced by 

a given primer set by the total number of samples that were known to be positive by 

either primer set. By this method, the primer set F2/R2 had an error rate of 30%, 

while primer set 850F/1024R missed infections at a rate of 17%. Therefore, even 

under favorable PCR conditions, the chance that both primer sets failed to detect an 

infection was about 5%. 
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Estimation of hematozoa presence/absence was identical for 35 of 40 samples 

analyzed by both PCR and visual inspection of blood smears. PCR screening detected 

infection in three samples that went undetected by examination of blood smears. 

Conversely, an initial inspection of blood smears suggested that PCR had missed 

infections in two samples. Subsequent scanning of the slides by an unbiased second 

observer (MP), however, suggested that artifacts in these two slides had been 

misidentified as parasites. In samples where both methods identified a parasite to 

genus, 7 of 8 matched. The single disparity in genus identification was attributed to a 

poorly prepared slide and a second appraisal of the slide suggested that the parasite 

was representative of either Haemoproteus or Plasmodium. No other hematozoa were 

observed in blood smears. 

Phylogenetics 

Among the 165 samples for which we had at least 295 bp of sequence, we found 78 

unique mitochondrial lineages: 60 Haemoproteus and 18 Plasmodium (GenBank 

accession numbers listed in Appendix A). Lineage 60, isolated from Macropygia 

amboienensis, was included with Haemoproteus based on evidence from the 

restriction assay and morphological assessment of a parasite with a closely related 

mtDNA sequence (EG unpubl. data). Related lineages have also been found in 

Columbina passerina from North America (unpubl. data) and other doves (S Fallon 

pers. comm.). Phylogenies developed using ML and LogDet and GTR distances were 

similar. Because each of these methods yielded similar topologies and for consistency 

with previous work by Ricklefs and Fallon (2000), we used a tree derived from 

LogDet distances for tests of host-parasite specificity (Figure 2).  
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Within Haemoproteus, our data could not resolve deep hierarchical 

relationships, which resulted in a large basal polytomy. Parasites from two non-

passerine host families occurred in a unique, well-supported clade (top of Figure 2). 

Other clades descending from the genus-level polytomy included several which were 

largely derived from a single host family (Meliphagidae, Petroicidae, 

Pachycephalidae) and one well-supported clade with diverse host family 

representation (clade A). Several well-supported host-family-specific clades 

(Petroicidae, Pachycephalidae, Monarchidae) were nested within clade A. An ML 

estimate of the phylogeny (Figure 3) identified three major clades within 

Haemoproteus: two lineages derived from passerine hosts (clades A and B) and a 

third composed of lineages from the two non-passerine families studied. Bootstrap 

support was relatively low for all but the non-passerine clade. The ML phylogeny 

also indicated monophyly of all unshared parasites recovered from Meliphagidae. 

Deeper level relationships among Plasmodium lineages were similarly 

unresolved in a distance-based phylogeny (Figure 2). Beneath the genus-level 

polytomy, only a pair of lineages (64 and 65) from Meliphagidae fell into a small 

well-supported host-specific clade. 

Host-Specificity 

We found 12 Haemoproteus lineages that were each shared by two different host 

species and we found 6 Plasmodium lineages in more than one host species. Three of 

these Plasmodium lineages were each found in three to six host species. Related 

lineages of Haemoproteus were more likely to be found in related hosts than 

predicted by chance. At average parasite genetic distances of 0 (shared identical 
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lineages) and 0.014 (1st-step nodes), the probability of related parasites deriving from 

the same host family was 0.58 (n = 12, P = 0.001) and 0.73 (n = 11, P < 0.001), 

respectively.  

Sample sizes for comparisons within the Plasmodium genus were smaller. The 

probability that a shared Plasmodium lineage derived from the same host was 0.13 

(average distance = 0, n = 8, P = 0.65). This value was not significant even if pairs of 

hosts were chosen so as to maximize the probability (probability = 0.38, n = 8, P = 

0.11). Similarly, sister lineages joined by 1st-step nodes were not significantly likely 

to have derived from the same host family  (average distance = 0.008, probability = 

0.33, n = 3, P = 0.61). 

We applied logistic regression to four groups of parasites: all Plasmodium 

lineages, all Haemoproteus lineages, Haemoproteus clade A, and Haemoproteus 

clade B. Because “region” did not contribute significantly to the regression of host 

family on distance, we considered Australia/Papua New Guinea to be one region for 

all logistic regression analyses. Regression coefficients for the genus Haemoproteus 

were significant (a = 0.1909, b = -38.57, P < 0.001) as were coefficients for clade A 

(a = 1.5701, b = -214.6, P < 0.001) and clade B (a = 1.5513, b = -53.7664, P <0.001). 

Coefficients for the genus Plasmodium were not significant (a = -1.7248, b = -1.8373, 

P = 0.63). By evaluating the regression equation at P = 0.5, we could estimate the 

genetic distance at which pairs of parasite lineages were equally likely to have 

derived from the same or different host family. This distance at which host-family 

signal was lost was 0.005 for all Haemoproteus lineages, 0.007 for clade A, and 0.029 

for clade B. Evaluating the regression equation at a distance of zero, the predicted 
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probability of finding identical parasites in hosts of the same family was 0.55 

evaluated over all Haemoproteus lineages, 0.83 for clade A, and 0.83 for clade B. 

Figure 4 depicts the predicted regression curves for Plasmodium and Haemoproteus 

clades A and B. 

DISCUSSION 

Epizootiology 

Blood parasites in the genera Haemoproteus and Plasmodium appear to be nearly 

ubiquitous in avian communities. We detected one or both of these genera in almost 

66% of species and this number would likely rise substantially with deeper sampling 

of individual species. In the Australo-Papuan region studied, we estimated an overall 

prevalence of about 44% with no significant differences between northeast Australia 

and New Guinea lowlands. Estimates of prevalence in tropical regions have ranged 

from about 10% in Costa Rica and the Neotropics (White et al. 1978, Young et al. 

1993; by blood smear) to 28% in the Lesser Antilles (S Fallon pers. comm.), 40% in 

Central Africa (Richard et al. 2002) and 59% in American Samoa (Plasmodium only, 

Jarvi et al. 2003). Comparison of prevalence across surveys is confounded by 

differences in sensitivity of the diagnostics employed (Richard et al. 2002) and our 

PCR technique underestimated infection by at least 5%. Serological tests may provide 

the most accurate estimate of infection by detecting low-level chronic infections 

(Jarvi et al. 2002), but interpretation of the assays can be difficult (Jarvi et al. 2003), 

lineage identification is impossible, and the methods may not be applicable across 

varied hosts and parasite lineages. 
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Comparison of prevalence among regions is also likely to be confounded by 

the host families sampled. Except in the Ptilonorhynchidae, which were sampled only 

sparsely, prevalence of Plasmodium was low and fairly uniform among well-

represented host families. On the other hand, prevalence of Haemoproteus varied 

significantly among host families, and this could bias regional comparisons in cases 

where families are not represented equally. Although certain host families such as the 

Columbidae repeatedly exhibit relatively high prevalence of infection across studies 

(Atkinson and van Riper 1991), estimates of prevalence, even if accurate, should be 

considered snapshots in time and host space (Bensch and Akesson 2003, Scheuerlein 

and Ricklefs 2004). Infection rates can vary dramatically between years and may be 

more representative of differences in vector abundance and their distribution within 

different habitats than family-level differences in host immune response or other 

evolved characters (Bennett and Cameron 1974).  

Within the Pachycephalidae, we expected that parasite prevalence might have 

been lower among pitohuis, a group which produces varying amounts of a toxic 

alkaloid potentially active in invertebrate vectors (Dumbacher et al. 1992). The 

overall infection rate in this group (40%), however, was close to both the value for 

the entire family (35%) and the average prevalence within Papua New Guinea (46%). 

This suggests little role for the toxin in vector deterrence, however, collection of 

Papuan birds occurred over several years and the caveats mentioned above may 

apply. 

We uncovered multiple infections from a wide range of hosts. Given that at 

least 40% of individuals were infected by either Haemoproteus or Plasmodium, the 
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prevalence of mixed infections should have been fairly high if not constrained by 

parasite-parasite interaction (Hatchwell et al. 2000). The 29 cases of multiple 

infection that we uncovered fell below the expected number of about 60 (based on 

overall prevalences of about 30% and 12% for Haemoproteus and Plasmodium, 

respectively). While this may be indicative of competitive exclusion, the cases of 

multiple infection observed represent a minimum since we did not recover sequence 

data from every infected individual and even successful PCR was likely to miss some 

multiple infections due to primer bias or unequal quantities of parasite DNA. 

Hematozoan genera may have evolved distinctive antigenic signatures that avoid 

cross-generic immunity in a common host (Atkinson and van Riper 1991), but the 

extent to which the evolutionary relatedness of parasites within genera influences 

inter-lineage competition and thus, the distribution of parasites, should be addressed 

more carefully in the future. 

Host-Parasite Evolution 

Parasite lineages found in more than one host have often been cited as evidence of 

host-switching. While the introduction of parasites into novel hosts is a prerequisite 

for host-switching, the current distribution of parasites may not reflect long-term co-

evolution between the parasite and its vertebrate host, but may be more indicative of 

the cosmopolitan feeding of its invertebrate vector. Generalist feeders such as 

mosquitoes or ceratopogonid flies may drive the continuous introduction of varied 

Plasmodium and Haemoproteus lineages into diverse hosts. Not all of these 

interactions will necessarily be stable throughout time. For example, Atkinson (1986) 

demonstrated that Haemoproteus meleagridis, a parasite commonly found in turkeys, 
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was capable of developing in other Galliformes, but infections were transient and 

rapidly cleared from these secondary hosts to which the parasite may have been 

poorly adapted.  

We found several lineages of both Plasmodium and Haemoproteus in multiple 

host families, however, identical Haemoproteus lineages were more likely to derive 

from related hosts than Plasmodium. Even if we assume that these cases represent 

evolutionarily stable changes in host affinity, recent host-switching by Haemoproteus 

lineages has been relatively constrained to related hosts. The significant signal of host 

family specificity observed in Haemoproteus at greater depths within the phylogeny, 

however, suggests that not all of the apparent associations between a single parasite 

lineage and multiple host families represent stable interactions. Given the host-family 

conservatism at 1st-step nodes and the strong signals from logistic regression, 

evolutionarily stable jumps between host families are likely to be rare in the genus 

Haemoproteus.  

 Across the genus Haemoproteus, the signal for host family specificity was lost 

at a parasite divergence of about 0.005. The attenuation in the signal, measured across 

the entire genus, was probably due to the structure of relationships between lineages 

within the genus. Analyzed separately, the two large subclades of Haemoproteus 

lineages derived from passerine hosts both exhibited strong host specificity. For clade 

B, in which the average pairwise divergence among parasites was about 0.075, the 

host signal extended to a parasite divergence of about 0.029. Within clade A, average 

pairwise parasite divergence was only about 0.021, and host-specificity was evident 

up to a parasite divergence of only 0.007.  
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Lineages within clades A and B may have diversified via periodic host-

switching following an early vicariance event in an ancient Haemoproteus lineage. In 

both clades, however, we were largely unable to recover well-supported hierarchical 

relationships among groups of parasites derived from different host families, 

suggesting that the common ancestor to each clade spread rapidly across host 

families. Assuming that rates of nucleotide substitution are similar across various 

lineages of Haemoproteus, the short branch lengths in clade A suggest a relatively 

recent radiation of parasites across host taxa. Without further sampling, it will remain 

unclear how frequently lineages have escaped otherwise strong host constraint. If 

younger parasite radiations have spread broadly across avian hosts in the past, this 

phenomenon of escape and radiation would continually reset the parasite molecular 

clock relative to the avian clock. This in turn could help to explain the apparent slow 

divergence of parasite DNA relative to host DNA noted by Ricklefs and Fallon 

(2002). 

 Parasites in the genus Plasmodium appeared to be less constrained by the 

phylogenetic relationships of their hosts and showed no evidence of host-specificity 

at any depth within the parasite phylogeny. Our relatively small sample of 

Plasmodium may have limited our power to detect a signal, however, we detected 

host-specificity within the equally small Haemoproteus clade A. Interestingly, 

Ricklefs and Fallon (2002) detected host conservatism across both Haemoproteus and 

Plasmodium up to a parasite divergence of 0.026. Because they applied logistic 

regression across lineages from both genera, however, it is unclear how that value 

partitioned between genera or between distinct radiations within genera. The evidence 
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here supports a broad host range for at least some Plasmodium parasites and indicates 

a tendency for a high level of evolutionarily stable host-switching. Of the two parasite 

genera studied, Plasmodium likely presents the greatest threat of colonizing novel 

hosts and may warrant the most attention when managing the welfare of isolated and 

naïve hosts. 

Most of the avian lineages sampled for parasites derived from a radiation of 

songbirds unique to the Australo-Papuan region (Sibley and Ahlquist 1985). In 

addition, birds from tropical Australia and New Guinea may be more isolated than 

their continental counterparts such that interactions between hosts, vectors, and 

parasites that would otherwise confound estimates of host-specificity are minimized. 

Nonetheless, trends in host-specificity observed in the Australo-Papuan region appear 

to be in line with the picture emerging from many other regional studies (partial 

summary in Schrenzel et al. 2003). Additional molecular surveys of parasites at the 

regional level will add further insight into patterns of host-parasite interaction. 
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TABLE 

Table 1. Prevalence of Plasmodium and Haemoproteus assessed by PCR screening selected avian host families from the Australo-

Papuan region. Estimates of prevalence are biased low because identification of genus was not possible for all samples (Genus 

Unknown).  

 
Host Family # Species # Samples Plasmodium Haemoproteus Genus Unknown 
 Screened Screened # Positive % of Total # Positive % of Total # Positive % of Total 
Acanthizidae 12 69 9 13 9 13 1 2 
Alcedinidae 8 23 1 4 5 22 1 4 
Columbidae 8 17 1 6 9 53 1 6 
Meliphagidae 15 70 7 10 34 49 1 1 
Monarchidae 13 54 13 24 14 26 0 0 
Pachycephalidae 17 94 9 10 20 21 7 7 
Petroicidae 6 34 1 3 19 56 1 3 
Ptilonorhynchidae 2 15 7 47 6 40 0 0 
All Families 80 376 48 13 116 31 12 3 
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FIGURE LEGENDS 

Figure 1. Location of sampling sites in tropical Australia and Papua New Guinea. 

 

Figure 2.  Cladogram depiction of neighbor-joining tree based on LogDet distances 

between mitochondrial lineages of avian hematozoa. Region of origin (A for 

Australia, P for Papua New Guinea, B for both regions), lineage number, host species 

(color-coded for family), and frequency of detection (number in parenthesis when 

recovered more than once) are indicated at right. Red branches indicate bootstrap 

support greater than 70% (1000 replicates). Pale blue and dark blue dots indicate 

lineages used for binomial tests of host conservation. 

 

Figure 3. Relationships among hematozoan parasites based on maximum likelihood 

using the model GTR + I + G. Lineage number and host species (color-coded for 

family) are indicated at right. Red branches indicate bootstrap support greater than 

70% (stepwise addition, 100 replicates). 

 

Figure 4. Logistic regression curves relating the predicted probability of host 

relatedness to genetic differentiation of parasites in the genus Plasmodium (P) and 

Haemoproteus clade A (HA) and clade B (HB). Dotted lines indicate the genetic 

distance at which parasite pairs from clades A and B were equally likely to be found 

in hosts of the same or different families. 
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P   1.  Common paradise kingfisher (CPK)
P   2.  CPK (3), Yellow-billed kingfisher
P   3.  Superb fruit-dove
P   4.  Superb fruit-dove (3), Wompoo fruit-dove
P   5.  Yellow-billed kingfisher
P   6.  White-breasted fruit-dove
P   7.  Northern fantail
A   8.  Yellow-throated scrubwren, Large-billed scrubwren (LBSW, 4)
P   9.  Dwarf honeyeater (6), Rusty mouse-warbler
P  10. Western mountain white-eye
P  11. Black sunbird
P  12. Crested pitohui (2)
A  13. Pale-yellow robin
A  14. Grey-headed robin (GHR, 6)
P  15. Papuan black myzomela, Varied triller
A  16. Yellow-throated scrub wren, Large-billed scrubwren (2)
A  17. Bassian thrush
A  18. Little shrike-thrush (4), Bower!s shrike-thrush (BST)
P  19. Little shrike thrush (3)
P  20. White-bellied pitohui, Rusty pitohui
A  21. Tooth-billed bowerbird (TBBB, 3)
P  22. Western mountain white-eye (2)
P  23. Northern fantail (2)
P  24. Shining flycatcher
P  25. Spot-winged monarch
A  26. Yellow-breasted boatbill
P  27. Papuan black myzomela
A  28. Dusky honeyeater (3)
A  29. Dusky honeyeater
P  30. Helmeted friarbird
P  31. Papuan black myzomela, Little shrike-thrush
P  32. Long-billed honeyeater, Rufous babbler
A  33. Eastern spinebill
A  34. Pale-yellow robin (2)
A  35. Pale-yellow robin (2)
A  36. Pale-yellow robin (2)
A  37. Pale-yellow robin (2)
A  38. Grey-headed robin (2)
A  39. Grey-headed robin (7)
A  40. Pale-yellow robin (2)
A  41. Eastern yellow robin
A  42. Eastern yellow robin
P  43. Black berrypecker
A  44. Lewin!s honeyeater (2)
A  45. Bridled honeyeater (BHON)
A  46. Bridled honeyeater (5)
A  47. Chowchilla
A  48. Macleay!s honeyeater (3)
P  49. Tawny-breasted honeyeater
P  50. Tawny-breasted honeyeater
P  51. Smoky honeyeater (2)
P  52. Spot-winged monarch, Frilled monarch
P  53. Grey whistler
P  54. Variable pitohui
B  55. Variable pitohui, Eungella honeyeater
P  56. Hooded pitohui (2)
P  57. Magnificent riflebird
P  58. Golden monarch (3)
P  59. Black butcherbird (2)
P  60. Brown cuckoo-dove
P  61. Black sunbird
A  62. Golden whistler, Grey fantail
A  63. Rufous fantail
A  64. Yellow-spotted honeyeater
B  65. Mimic honeyeater, Lewin!s honeyeater
A  66. Spectacled monarch (SMON, 3), Pied monarch (3), GHR
P  67. Shining flycatcher (2)
P  68. Wattled ploughbill
A  69. Noisy pitta
A  70. Mountain thornbill, Little shrike-thrush, CPK
P  71. White-bellied pitohui
A  72. TBBB (3), SPC (2), BHON, LBSW (2), BST, SMON 
P  73. Hooded pitohui, Large scrubwren
A  74. Yellow-spotted honeyeater
A  75. Spotted catbird (SPC)
P  76. Emerald dove
P  77. Mountain mouse-warbler
P  78. Rusty mouse-warbler
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1. Common paradise kingfisher
2. Common paradise kingfisher, Yellow-billed kingfisher

3. Superb fruit-dove
4. Superb fruit-dove, Wompoo fruit-dove

5. Yellow-billed kingfisher
6. White-breasted fruit-dove

7. Northern fantail
8. Yellow-throated scrubwren, Large-billed scrubwren
9. Dwarf honeyeater, Rusty mouse-warbler

10. Western mountain white-eye
52. Spot-winged monarch, Frilled monarch

53. Grey whistler
27. Papuan black myzomela
28. Dusky honeyeater

29. Dusky honeyeater
30. Helmeted friarbird

33. Eastern spinebill
31. Papuan black myzomela, Little shrike-thrush
32. Long-billed honeyeater, Rufous babbler
44. Lewin!s honeyeater
45. Bridled honeyeater (BHON)

46. Bridled honeyeater
48. Macleay!s honeyeater
49. Tawny-breasted honeyeater
50. Tawny-breasted honeyeater

51. Smoky honeyeater
43. Black berrypecker

59. Black butcherbird
54. Variable pitohui

55. Variable pitohui, Eungella honeyeater
56. Hooded pitohui

47. Chowchilla
58. Golden monarch

57. Magnificent riflebird
34. Pale-yellow robin
35. Pale-yellow robin
36. Pale-yellow robin

37. Pale-yellow robin
40. Pale-yellow robin

41. Eastern yellow robin
42. Eastern yellow robin
38. Grey-headed robin

39. Grey-headed robin
11. Black sunbird
23. Northern fantail
24. Shining flycatcher
25. Spot-winged monarch
22. Western-mountain white-eye

12. Crested pitohui
15. Papuan black myzomela, Varied triller

16. Yellow-throated scrubwren, Large-billed scrubwren (LBSW)
17. Bassian thrush

21. Tooth-billed bowerbird (TBBB)
13. Pale-yellow robin
14. Grey-headed robin
18. Little shrike-thrush, Bower!s shrike-thrush (BST)
19. Little shrike-thrush
20. White-bellied pitohui, Rusty pitohui
26. Yellow-breasted boatbill

60. Brown cuckoo-dove
61. Black sunbird

62. Golden whistler, Grey fantail
70. Mountain thornbill, Little shrike-thrush, Common paradise kingfisher
71. White-bellied pitohui

63. Rufous fantail
64. Yellow-spotted honeyeater
65. Mimic honeyeater, Lewin!s honeyeater

66. Spectacled monarch (SMON), Pied monarch, Grey-headed robin
72. TBBB, SPC, BHON, LBSW, BST, SMON

68. Wattled ploughbill
67. Shining flycatcher

73. Hooded pitohui, Large scrubwren
74. Yellow-spotted honeyeater

75. Spotted catbird (SPC)
77. Mountain mouse-warbler
76. Emerald dove
78. Rusty mouse-warbler

69. Noisy pitta
P. reichenowi

P. falciparum
P. vivax

P. simiovale
P. yoelli

P. malariae0.01 substitutions/site
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APPENDICES 
 
Appendix A. Avian host names, geographical origin, sequence length and GenBank accession numbers for parasite lineages listed in 

Figure 2. 

 
 

 Host Information   
Lineage Family Genus Species Common Name Locality bp GenBank 

1 Alcedinidae Tanysiptera galatea Common paradise kingfisher PNG 487 AY714134 
2 Alcedinidae Tanysiptera galatea Common paradise kingfisher PNG 533 AY714135 
2 Alcedinidae Halcyon torotoro Yellow-billed kingfisher PNG 533 AY714135 
3 Columbidae Ptilinopus superbus Superb fruit-dove PNG 533 AY714136 
4 Columbidae Ptilinopus superbus Superb fruit-dove PNG 533 AY714137 
4 Columbidae Ptilinopus magnificus Wompoo fruit-dove PNG 533 AY714137 
5 Alcedinidae Halcyon torotoro Yellow-billed kingfisher PNG 533 AY714138 
6 Columbidae Ptilinopus rivoli White-breasted fruit-dove PNG 533 AY714139 
7 Monarchidae Rhipidura rufiventris Northern fantail PNG 295 AY714140 
8 Acanthizidae Sericornis citreogularis Yellow-throated scrubwren AUS 533 AY714141 
8 Acanthizidae Sericornis magnirostris Large-billed scrubwren AUS 533 AY714141 
9 Meliphagidae Oedistoma iliolophus Dwarf honeyeater PNG 533 AY714142 
9 Acanthizidae Crateroscelis murina Rusty mouse-warbler PNG 533 AY714142 
10 Zosteropidae Zosterops fuscicapillus Western mountain white-eye PNG 533 AY714143 
11 Nectariniidae Nectarinia aspasia Black sunbird PNG 295 AY714144 
12 Pachycephalidae Pitohui cristatus Crested pitohui PNG 533 AY714145 
13 Petroicidae Tregellasia capito Pale-yellow robin AUS 533 AY714146 
14 Petroicidae Heteromyias albispecularis Grey-headed robin AUS 533 AY714147 
15 Campephagidae Lalage leucomela Varied triller PNG 533 AY714148 
15 Meliphagidae Myzomela nigrita Papuan black myzomela PNG 533 AY714148 
16 Acanthizidae Sericornis citreogularis Yellow-throated scrubwren AUS 533 AY714149 
16 Acanthizidae Sericornis magnirostris Large-billed scrubwren AUS 533 AY714149 
17 Muscicapidae Zoothera lunulata Bassian thrush AUS 533 AY714150 
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18 Pachycephalidae Colluricincla megarhyncha Little shrike-thrush AUS 533 AY714151 
18 Pachycephalidae Colluricincla boweri Bower’s shrike-thrush AUS 533 AY714151 
19 Pachycephalidae Colluricincla megarhyncha Little shrike-thrush AUS 533 AY714152 
20 Pachycephalidae Pitohui incertus White-bellied pitohui PNG 533 AY714153 
20 Pachycephalidae Pitohui ferrugineus Rusty pitohui PNG 533 AY714153 
21 Ptilonorhynchidae Scenopoeetes dentirostris Tooth-billed bowerbird AUS 533 AY714154 
22 Zosteropidae Zosterops fuscicapillus Western mountain white-eye PNG 533 AY714155 
23 Monarchidae Rhipidura rufiventris Northern fantail PNG 533 AY714156 
24 Monarchidae Myiagra alecto Shining flycatcher PNG 533 AY714157 
25 Monarchidae Monarcha guttula Spot-winged monarch PNG 533 AY714158 
26 Monarchidae Machaerirhynchus flaviventer Yellow-breasted boatbill AUS 271 AY714159 
27 Meliphagidae Myzomela nigrita Papuan black myzomela PNG 533 AY714160 
28 Meliphagidae Myzomela obscura Dusky honeyeater AUS 533 AY714161 
29 Meliphagidae Myzomela obscura Dusky honeyeater AUS 533 AY714162 
30 Meliphagidae Philemon buceroides Helmeted friarbird PNG 533 AY714163 
31 Meliphagidae Myzomela nigrita Papuan black myzomela PNG 533 AY714164 
31 Pachycephalidae Colluricincla megarhyncha Little shrike-thrush PNG 533 AY714164 
32 Meliphagidae Melilestes megarhynchus Long-billed honeyeater PNG 533 AY714165 
32 Pomatostomidae Pomatostomus isodorei Rufous babbler PNG 533 AY714165 
33 Meliphagidae Acanthorhynchus tenuirostris Eastern spinebill AUS 533 AY714166 
34 Petroicidae Tregellasia capito Pale-yellow robin AUS 533 AY714167 
35 Petroicidae Tregellasia capito Pale-yellow robin AUS 533 AY714168 
36 Petroicidae Tregellasia capito Pale-yellow robin AUS 533 AY714169 
37 Petroicidae Tregellasia capito Pale-yellow robin AUS 533 AY714170 
38 Petroicidae Heteromyias albispecularis Grey-headed robin AUS 533 AY714171 
39 Petroicidae Heteromyias albispecularis Grey-headed robin AUS 533 AY714172 
40 Petroicidae Tregellasia capito Pale-yellow robin AUS 533 AY714173 
41 Petroicidae Eopsaltria australis Eastern yellow robin AUS 533 AY714174 
42 Petroicidae Eopsaltria australis Eastern yellow robin AUS 533 AY714175 
43 Melanocharitidae Melanocharis nigra Black berrypecker PNG 533 AY714176 
44 Meliphagidae Meliphaga lewinii Lewin’s honeyeater AUS 533 AY714177 
45 Meliphagidae Lichenostomus frenatus Bridled honeyeater AUS 533 AY714178 
46 Meliphagidae Lichenostomus frenatus Bridled honeyeater AUS 533 AY714179 
47 Orthonychidae Orthonyx spaldingii Chowchilla AUS 533 AY714180 
48 Meliphagidae Xanthotis macleayana Macleay’s honeyeater AUS 533 AY714181 
49 Meliphagidae Xanthotis flaviventer Tawny-breasted honeyeater PNG 533 AY714182 
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50 Meliphagidae Xanthotis flaviventer Tawny-breasted honeyeater PNG 533 AY714183 
51 Meliphagidae Melipotes fumigatus Smoky honeyeater PNG 533 AY714184 
52 Monarchidae Monarcha guttula Spot-winged monarch PNG 533 AY714185 
52 Monarchidae Arses telescophthalmus Frilled monarch PNG 533 AY714185 
53 Pachycephalidae Pachycephala simplex Grey whistler PNG 533 AY714186 
54 Pachycephalidae Pitohui kirhocephalus Variable pitohui PNG 533 AY714187 
55 Pachycephalidae Pitohui kirhocephalus Variable pitohui PNG 533 AY714188 
55 Meliphagidae Lichenostomus hindwoodi Eungella honeyeater AUS 533 AY714188 
56 Pachycephalidae Pitohui dichrous Hooded pitohui PNG 533 AY714189 
57 Paradisaeidae Ptilloris magnificus Magnificent riflebird PNG 533 AY714190 
58 Monarchidae Monarcha chrysomela Golden monarch PNG 533 AY714191 
59 Cracticidae Cracticus quoyi Black butcherbird PNG 533 AY714192 
60 Columbidae Macropygia amboinensis Brown cuckoo-dove PNG 533 AY714193 
61 Nectariniidae Nectarinia aspasia Black sunbird PNG 295 AY714194 
62 Pachycephalidae Pachycephala pectoralis Golden whistler AUS 533 AY714195 
62 Monarchidae Rhipidura fuliginosa Grey fantail AUS 533 AY714195 
63 Monarchidae Rhipidura rufifrons Rufous fantail AUS 533 AY714196 
64 Meliphagidae Meliphaga notata Yellow-spotted honeyeater AUS 533 AY714197 
65 Meliphagidae Meliphaga analoga Mimic honeyeater PNG 533 AY714198 
65 Meliphagidae Meliphaga lewinii Lewin’s honeyeater AUS 533 AY714198 
66 Monarchidae Monarcha trivirgatus Spectacled monarch AUS 533 AY714199 
66 Monarchidae Monarcha kaupi Pied monarch AUS 533 AY714199 
66 Petroicidae Heteromyias albispecularis Grey-headed robin AUS 533 AY714199 
67 Monarchidae Myiagra alecto Shining flycatcher PNG 533 AY714200 
68 Pachycephalidae Eulecestoma nigripectus Wattled ploughbill PNG 533 AY714201 
69 Pittidae Pitta versicolor Noisy pitta AUS 533 AY714202 
70 Acanthizidae Acanthiza katherina Mountain thornbill AUS 533 AY714203 
70 Pachycephalidae Colluricincla megarhyncha Little shrike-thrush AUS 533 AY714203 
70 Alcedinidae Tanysiptera galatea Common paradise kingfisher PNG 533 AY714203 
71 Pachycephalidae Pitohui incertus White-bellied pitohui PNG 533 AY714204 
72 Ptilonorhynchidae Scenopoeetes dentirostris Tooth-billed bowerbird AUS 533 AY714205 
72 Ptilonorhynchidae Ailuroedes melanotis Spotted catbird AUS 533 AY714205 
72 Meliphagidae Lichenostomus frenatus Bridled honeyeater AUS 533 AY714205 
72 Acanthizidae Sericornis magnirostris Large-billed scrubwren AUS 533 AY714205 
72 Pachycephalidae Colluricincla boweri Bower’s shrike-thrush AUS 533 AY714205 
72 Monarchidae Monarcha trivirgatus Spectacled monarch AUS 533 AY714205 
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73 Pachycephalidae Pitohui dichrous Hooded pitohui PNG 533 AY714206 
73 Acanthizidae Sericornis  nouhuysi Large scrubwren PNG 469 AY714206 
74 Meliphagidae Meliphaga notata Yellow-spotted honeyeater AUS 533 AY714207 
75 Ptilonorhynchidae Ailuroedes melanotis Spotted catbird AUS 485 AY714208 
76 Columbidae Chalcophaps indica Emerald dove PNG 295 AY714209 
77 Acanthizidae Crateroscelis robusta Mountain mouse-warbler PNG 295 AY714210 
78 Acanthizidae Crateroscelis murina Rusty mouse-warbler PNG 295 AY714211 
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Appendix B. Frequency of detection of Haemoproteus (H), Plasmodium (P), 

unknown genus (U) or mixed infection (M) across host families from Australia 

(AUS) and Papua New Guinea (PNG). Composition of mixed infections is indicated 

at right. 

 
 
Host Location Total H P U M INF Mixed 
Accipitridae         
 Accipiter poliocephalus PNG 1     0  
Megapodidae         
 Megapodius reinwardt PNG 1     0  
Columbidae         
 Chalcophaps indica PNG 3 1 1  1 3 H 
 Chalcophaps stephani PNG 1 1    1  
 Ducula pinon PNG 1     0  
 Macropygia amboinensis PNG 3 1    1  
 Ptilinopus magnificus PNG 2 1    1  
 Ptilinopus pulchellus PNG 1     0  
 Ptilinopus rivoli PNG 2 1    1  
 Ptilinopus superbus PNG 4 2  1 1 4 H 
Podargidae         
 Podargus ocellatus PNG 2   1  1  
Aegothelidae         
 Aegotheles bennettii PNG 2     0  
Alcedinidae         
 Alcedo azurea PNG 1     0  
 Alcedo pusilla PNG 1     0  
 Halcyon chloris PNG 1     0  
 Halcyon sancta PNG 1     0  
 Halcyon torotoro PNG 4 2  1  3  
 Melidora macrorhina PNG 1     0  
 Tanysiptera danae PNG 4     0  
 Tanysiptera galatea PNG 10 3 1   4  
Pittidae         
 Pitta versicolor AUS 3  1   1  
Climacteridae         
 Cormobates leucophaeus AUS 3     0  
Ptilonorhynchidae         
 Ailuroedus melanotis AUS 8 3 2  1 6 P 
 Scenopoeetes dentirostris AUS 7 2 2  2 6 P,PH 
Acanthizidae         
 Acanthiza katherina AUS 8  1   1  
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 Crateroscelis murina PNG 5 1 3   4  
 Crateroscelis robusta PNG 6  3   3  
 Gerygone mouki AUS 2     0  
 Oreoscopus gutturalis AUS 6   1  1  
 Sericornis citreogularis AUS 12 2    2  
 Sericornis frontalis AUS 7     0  
 Sericornis keri AUS 4     0  
 Sericornis magnirostris AUS 14 5   1 6 PH 
 Sericornis nouhuysi PNG 1  1   1  
 Sericornis papuensis PNG 2     0  
 Sericornis perspicillatus PNG 2     0  
Meliphagidae         
 Acanthorhynchus 

tenuirostris 
AUS 7 1  1  2  

 Lichenostomus frenatus AUS 8 6 1   7  
 Lichenostomus hindwoodi AUS 4 1    1  
 Melilestes megarhynchus PNG 3 1    1  
 Meliphaga analoga PNG 1  1   1  
 Meliphaga aruensis PNG 4  1   1  
 Meliphaga lewinii AUS 16 5 2   7  
 Meliphaga notata AUS 3  2   2  
 Melipotes fumigatus PNG 5 2    2  
 Myzomela nigrita PNG 2 1   1 2 H 
 Myzomela obscura AUS 3 2   1 3 H 
 Oedistoma iliolophus PNG 6 6    6  
 Philemon buceroides PNG 1 1    1  
 Xanthotis flaviventer PNG 2 2    2  
 Xanthotis macleayana AUS 5 4    4  
Petroicidae         
 Amalocichla incerta PNG 2     0  
 Eopsaltria australis AUS 3 2  1  3  
 Heteromyias albispecularis AUS 17 5 1  5 11 H 
 Melanodryas cucullata PNG 1     0  
 Petroica rosea PNG 1     0  
 Tregellasia capito AUS 10 3   4 7 H 
Orthonychidae         
 Orthonyx spaldingii AUS 4 1    1  
Pomatostomidae         
 Pomatostomus isidorei PNG 5 1    1  
Cinclosomatidae         
 Cinclosoma ajax PNG 2     0  
 Psophodes olivaceus AUS 7     0  
 Psophodes olivaceus PNG 1     0  
Pachycephalidae         
 Colluricincla boweri AUS 8 1 1   2  
 Colluricincla harmonica PNG 1     0  
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 Colluricincla megarhyncha AUS 11 4   1 5 PH 
 Colluricincla megarhyncha PNG 16 4 1   5  
 Colluricincla woodwardi PNG 1    1 1 ? 
 Eulecestoma nigripectus PNG 1  1   1  
 Falcunculus frontatus PNG 1   1  1  
 Pachycephala melanura PNG 2     0  
 Pachycephala olivacea PNG 1   1  1  
 Pachycephala pectoralis AUS 11  1   1  
 Pachycephala pectoralis PNG 1     0  
 Pachycephala schlegelii PNG 1     0  
 Pachycephala simplex PNG 3 1  1  2  
 Pitohui cristatus PNG 3 2    2  
 Pitohui dichrous PNG 10 2 1   3  
 Pitohui ferrugineus PNG 14 1  1 1 3 ? 
 Pitohui incertus PNG 3 1 1   2  
 Pitohui kirhocephalus PNG 5 1  1 2 4 PH 
 Rhagologus leucostigma PNG 1     0  
Paradisaeidae         
 Cicinnurus magnificus PNG 1     0  
 Paradiseae raggiana PNG 1   1  1  
 Ptilloris magnificus PNG 1 1    1  
Cracticidae         
 Cracticus quoyi PNG 2 2    2  
Campephagidae         
 Lalage leucomela PNG 1 1    1  
Dicruridae         
 Chaetorynchus papuensis PNG 1     0  
 Dicrurus hottentottus PNG 2     0  
Monarchidae         
 Arses telescopthalmus PNG 3 1   1 2 H 
 Machaerirynchus 

flaviventer 
AUS 3 1 1   2  

 Monarcha chrysomela PNG 3 3    3  
 Monarcha guttula PNG 5 3    3  
 Monarcha kaupi AUS 3  3   3  
 Monarcha trivirgatus AUS 12  3  1 4 P 
 Myiagra alecto PNG 3 1 2   3  
 Rhipidura albolimbata PNG 2     0  
 Rhipidura atra PNG 3     0  
 Rhipidura brachyrhyncha PNG 1     0  
 Rhipidura fulginosa AUS 7  2   2  
 Rhipidura rufifrons PNG 2     0  
 Rhipidura rufifrons AUS 1  1   1  
 Rhipidura rufiventris PNG 6 3   1 5 H 
Sylviidae         
 Phylloscopus trivirgatus PNG 1     0  
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Muscicapidae         
 Zoothera lunulata AUS 2 1    1  
Melanocharitidae         
 Melanocharis nigra PNG 1 1    1  
Nectariniidae         
 Nectarinia aspasia PNG 2    1 1 PH 
Zosteropidae         
 Zosterops fuscicapillus PNG 3 1   1 2 H 
 Zosterops griseotinctus PNG 2     0  
Passeridae         
 Erythrura trichroa PNG 1     0  
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CHAPTER III 

Global phylogeographic limits of Hawaii’s avian malaria 

 

ABSTRACT 

The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a 

model system for studying the influence of exotic disease on naïve host populations. 

Little is known, however, about the origin or genetic variation of Hawaii’s malaria 

and traditional classification methods have confounded attempts to place the parasite 

within a global ecological and evolutionary context. Using fragments of the parasite 

mitochondrial gene cytochrome b and the nuclear gene DHFR-TS obtained from a 

global survey of >13,000 avian samples, we show that Hawaii’s avian malaria, which 

can cause high mortality and is a major limiting factor for many species of native 

passerines, represents just one of numerous lineages composing the morphological 

parasite species. The single parasite lineage detected in Hawaii exhibits a broad host 

distribution worldwide and is dominant on several other remote oceanic islands, 

including Bermuda and Moorea, French Polynesia. Rarity of this lineage in the 

continental New World and the restriction of closely-related lineages to the Old 

World suggest limitations to the transmission of reproductively-isolated parasite 

groups within the morphological species. 
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INTRODUCTION 

The introduction of avian malaria (Plasmodium relictum) to the remote Hawaiian 

Islands has been implicated in the widespread decline and possible extinction of many 

species within the endemic avian radiation of honeycreepers (Warner 1968; van Riper 

et al. 1986). While mortality in introduced bird species is negligible, mortality in 

many endemic species can range from 50-90% (Jarvi et al. 2001), possibly reflecting 

their long isolation (ca. 4 million years; Fleischer & McIntosh 2001) from malarial 

parasites. Although the epidemiology of malaria in Hawaiian birds has been well 

studied, little is known about the diversity of parasite strains in Hawaii or their origin. 

Transmission of malaria was impossible until the human-mediated introduction of a 

competent vector (Culex quinquefasciatus) to Hawaii in 1826 (Warner 1968). Since 

then, resident Hawaiian birds may have been exposed to reservoirs of parasites 

harbored by the hundreds of exotic birds released in the late 19th and early 20th 

centuries (Long 1981) and by the thousands of ducks and shorebirds which annually 

migrate to Hawaii from their breeding grounds in the arctic. 

Understanding the host range of P. relictum in Hawaii and elsewhere across 

the globe is essential for the purpose of identifying its original host, for understanding 

limits to its transmission, and for eventually understanding its extreme virulence in 

native honeycreepers relative to its effects in other hosts. Unfortunately, classical 

techniques for identifying parasites may be confounding this understanding. P. 

relictum has been reported to occur in a broad spectrum of hosts from all continents 

except Antarctica (Bennett et al. 1993), however, to date, identification has been 

based both on morphology, which can vary within strains of the same parasite species 
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(Peirce 1979; van Riper 1991), and on biological characteristics such as vector, 

endogenous development and host range (Garnham 1966). These characters may not 

accurately reflect phylogenetic relationships among parasites (Escalante et al. 1998). 

The recent detection of extensive genetic diversity across avian malaria 

parasites (Ricklefs & Fallon 2002; Waldenström et al. 2002; Beadell et al. 2004) 

suggests that cryptic structure in parasite populations may underlie differences in host 

susceptibility, vector competence and parasite virulence. Here, we use molecular 

markers to characterize Hawaii’s avian malaria and to place this genotype in a global 

context in order to better understand its origin, its current and historic impact, and 

limits to its transmission. 

MATERIAL AND METHODS 

Lineage Identification 

Although phylogenetic species limits have not been well defined in avian malaria 

parasites, a previous study indicated that mitochondrial lineages appear to represent 

reproductively-isolated units (Bensch et al. 2004), and therefore, we characterized the 

Hawaiian strain and its global distribution using cytochrome b (cyt b). Determination 

of parasite haplotype frequencies in Europe and Nigeria (table 1) followed PCR 

methods described in Waldenström et al. (2004). Data for the Lesser Antilles and 

Venezuela were provided by S. Fallon. Detection and identification of all other 

parasite mitochondrial lineages generally followed the methods described in Beadell 

et al. (2004). Briefly, we screened DNA extracted from blood or tissue for parasites 

using primers F2/R2, 850F/1024R or 213F/372R (Beadell & Fleischer 2005). For 

positively infected samples, we then sequenced a larger fragment generated with 
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primers 3760F/4292rw2 (533 bp) or with primers Fifi/4292rw2 (351 bp; Ishtiaq et al. 

2006) or F2/4292rw2 (295 bp) in cases where degraded template precluded the 

amplification of the larger piece (appendix 1). For lineages used in detailed 

phylogenetic analysis, we also obtained an additional 220 bp of sequence using 

primers L15368/H15730 (Fallon et al. 2003), which generated a 338 bp fragment 

overlapping previously-generated fragments by 118 bp. Sequences were assembled, 

aligned and edited using SEQUENCHER v. 4.1. For the purpose of describing the 

worldwide distribution of Hawaii’s parasite lineage (GRW4; Bensch et al. 2000), we 

identified as GRW4 any sequences that identically matched the largest fragment of 

parasite cyt b isolated from a Hawaiian host (AY733090). In Korea, we detected the 

presence of GRW4 based on matching a single 91 bp fragment alone, but in all other 

locations, detection of GRW4 was based on recovery of identical sequences of 

between 256 and 753 bp (appendix 1). When defining all other lineages, we grouped 

together only identical sequences exhibiting matching sequence of 256 bp or more. 

Therefore, within the limits of the sequence examined, parasite lineages are defined 

by unique mitochondrial haplotypes. 

Phylogeny of Plasmodium spp. 

To examine the concordance between parasite classification based on morphology 

and on DNA, we assembled cyt b sequence from avian Plasmodium spp. previously 

identified by morphology and recognized as valid by Bennett et al. (1993). We 

obtained sequences from Genbank and from DNA extracted from blood smears, 

which were obtained from the International Reference Collection for Avian 

Haematozoa (IRCAH; Brisbane, Australia) or from M. Peirce. Classification of 
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parasites in IRCAH smears were checked by C. Atkinson and M. Peirce and smears 

exhibiting multiple infections (upon visual inspection or after molecular analysis) 

were not used. We constructed phylogenetic trees using taxa for which we had 

recovered between 335 and 753 bp of sequence and rooted trees with sequences from 

Haemoproteus spp., parasites in the sister genus to avian Plasmodium (Perkins & 

Schall 2002). We estimated phylogenies using minimum evolution (ME; on K2P and 

GTR distances), maximum likelihood (ML), and maximum parsimony (MP) as 

implemented by PAUP* (Swofford 1999). For ML analysis, we chose the most likely 

model of base pair substitution (GTR+I+G) and parameters (pinv = 0.5509, shape = 

0.6505) based on a likelihood ratio test employed by Modeltest version 3.07 (Posada 

& Crandall 1998). Bootstrap support was estimated for each method using 1000 

replicates. 

Phylogenetic Analysis of Lineages Related to GRW4 

We assembled a total of 166 unique Plasmodium cyt b sequences gathered from our 

global survey and from GenBank. Due to the large number of mitochondrial lineages, 

we initially constructed an ME tree using K2P distances and PAUP* in order to 

identify those lineages which shared most recent common ancestry with GRW4 and 

which were most relevant to tracing the origin of this lineage. The resulting tree (data 

not shown) exhibited a clade containing GRW4 (lineages 15 through 37), a sister 

clade (lineages 1 through 14) and two clades immediately ancestral (lineages 38 

through 51); combined, these 51 lineages formed a monophyletic clade nested within 

the other 115 lineages. For subsequent analyses, therefore, we focused only on these 

51 lineages plus several lineages with known morphological classification to help 
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polarize the tree. Lineage 56 was included because a representative (AF254962) was 

originally classified as P. nucleophilum, however, its status is undergoing revision (G. 

Valkiunas pers. comm.). Employing the longest fragment of cyt b available for each 

lineage (appendix 1), we used ML to re-estimate a phylogeny using a model 

(GTR+I+G, pinv = 0.5445, shape = 0.7154) chosen by Modeltest. We estimated 

support for nodes based on 100 replicates. Due to uncertainty about parasite species 

limits and because a dichotomously-branching tree may not appropriately capture 

relationships among mitochondrial lineages within a species, we also generated a 

haplotype network using statistical parsimony as implemented in TCS1.21 (Clement 

et al. 2000). Lineages were joined at the 95% confidence criterion unless noted. 

Parasite lineages which could not be joined to GRW4 at the 90% level were excluded. 

 In order to generate a second, independent estimate of relationships among 

lineages, we followed the protocols in Bensch et al. (2004) to amplify and sequence a 

portion of the nuclear gene dihydrofolate reductase-thymidylate synthase (DHFR-TS; 

236 bp) from samples for which we had already recovered mitochondrial sequence 

(appendix 2). Because nuclear DNA occurs in much lower copy number than 

mitochondrial DNA, we recovered DHFR-TS from only a fraction of the samples for 

which we recovered mitochondrial lineages. In addition, we did not include DHFR-

TS sequences from samples for which nuclear or mitochondrial sequence provided 

evidence of multiple infections (e.g., double peaks in the chromatogram or different 

sequences from different primer sets). Nuclear haplotype Q (AY033582) was derived 

from P. gallinaceum but not necessarily the same strain of P. gallinaceum from 

which mitochondrial lineage 50 (AY099029) was derived. We used the methods 
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described above to estimate an ML tree using the model GTR+I+G (pinv = 0.5620, 

shape = 2.0791). Bootstrap support was based on 1000 replicates. 

 To improve resolution of hierarchical relationships among lineages, we used 

Bayesian analysis as implemented in MrBayes v3.1.1 (Ronquist & Huelsenbeck 

2003) to estimate phylogenetic relationships among lineages for which we could 

combine both mitochondrial and nuclear markers. Parameters of the GTR+I+G model 

of DNA substitution were allowed to vary independently for each marker within the 

concatenated dataset. We performed two runs of 25 million generations, each with 

one cold and three heated chains and sampled the resulting trees every 1000 

generations. Graphical plotting of ML scores suggested that stationarity was reached 

after approximately 100,000 generations, however, we discarded the first million 

generations as burn-in. Posterior probabilities of nodes were estimated from the 

remaining 24,000 trees. Flat priors were assumed for all parameters. 

 Using a well-supported group of lineages within the Bayesian tree (Clade A) 

and the program Mesquite v1.05 (Maddison & Maddison 2004), we calculated the 

likelihood that ancestral parasites were found in the New World. We employed the 

Mk1 model and considered ancestral state reconstruction to be signficant when raw 

likelihood scores for the two possible states (in New World or not-in-New World) 

differed by greater than 2 and the proportional likelihood of the best state was > 0.95. 

RESULTS AND DISCUSSION 

From 245 introduced and endemic resident forest birds captured during various 

seasons between 1971 and 1998 on Hawaii, Maui, Molokai, Oahu and Kauai, we 

recovered only a single mitochondrial lineage of Plasmodium (lineage 15; n = 75 
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sequenced infections; previously identified as GRW4, Bensch et al. 2000) and only 

one nuclear haplotype (DHFR haplotype G). We detected a second lineage of parasite 

(lineage 43) in a single migratory golden plover (Pluvialis fulva) from the 

Northwestern Hawaiian Islands, however we found no evidence for transmission of 

this parasite to Hawaiian forest birds. This result corroborates reports of just a single 

morphological subspecies of parasite in Hawaii (P. relictum capistranoae) (Laird & 

van Riper 1981; van Riper et al. 1986) and suggests that the recent expansion of 

native host populations into low-elevation forests over the last decade (Woodworth et 

al. 2005) has not been facilitated by the cryptic introduction of different parasite 

lineages of lower virulence. 

While Hawaiian mitochondrial lineages of P. relictum were monotypic, 

pairwise divergence of other parasites identified as P. relictum averaged 4.0% (range: 

0 to 7.6%), substantially greater than the intraspecific divergence observed in the 

human parasite P. falciparum across the entire mitochondrial genome (0.2%; Joy et 

al. 2003) and the divergence observed between sympatric haematozoan parasites 

restricted to different avian hosts (0.6%; Ricklefs et al. 2004). In addition, 

phylogenetic analysis of avian malaria parasites classified by morphology indicated 

that P. relictum does not form a monophyletic clade (figure 1). Deep nodes were 

generally not well supported, however, the close relationship of one isolate of P. 

cathemerium and two isolates of P. elongatum to P. relictum indicated that either 

morphology does not reflect evolutionary relationships or that previous classification 

has been in error. This conflict, as well as the disparity between the broad genetic 

diversity of parasites identified as P. relictum by morphology and the single type 
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found in Hawaii, suggests that ecological data, such as host and geographical ranges, 

which have been compiled for parasites classically identified as P. relictum are not 

necessarily applicable to the Hawaiian parasite. 

Pinpointing the original host is difficult given the broad host range of 

Plasmodium spp. in general (Bennett et al. 1993; Beadell et al. 2004; Fallon et al. 

2005) and of the GRW4 lineage in particular. Worldwide, we recovered GRW4 from 

39 species of birds, representing 13 families (appendix I). We found the lineage 

frequently in continental populations of common mynas (Acridotheres tristis) and 

house sparrows (Passer domesticus), both of which were introduced to Hawaii, and 

also in great reed warblers (Acrocephalus arundinaceus). We did not detect GRW4 in 

a survey of 75 migratory shorebirds sampled from Hawaii, the French Frigate Shoals 

and Laysan Island, however, the lineage has been detected in a shorebird from 

Mauritania (Mendes et al. 2005). 

The apparent lack of host-specificity of GRW4 is reflected by its broad 

geographic distribution. In addition to Hawaii, we detected GRW4 throughout the 

Old World, where it was particularly common relative to other malaria lineages in 

Europe (but only in adults of migratory species), India, and on several Indian Ocean 

islands (figure 2; table 1). Evidence from our surveys and extensive sampling of 

thousands of North American birds by R. Ricklefs and coworkers (R. E. Ricklefs, 

personal communication), however, suggests that the lineage is rare in birds from 

mainland North and South America. To our knowledge, the only two mainland hosts 

in which GRW4 has been detected are a house sparrow from California (Schrenzel et 

al. 2003) and a house finch from Arizona (M. Kimura pers. comm.). The only other 
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New World records of this lineage were derived from two individuals in the Lesser 

Antilles (Fallon et al. 2005). Given the wide host range of GRW4 and its presence in 

at least some New World host families (Emberizidae and Mimidae), our failure to 

detect GRW4 more widely in the New World likely reflects its rarity there and not 

simply an artifact attributable to differences in the composition of hosts sampled in 

different regions. 

In contrast to its rarity relative to other lineages elsewhere in the New World, 

GRW4 was the only lineage detected in resident passerines of Bermuda, an oceanic 

island of volcanic origin lying 1000 km off the coast of North America. Colonization 

of Bermuda by GRW4 is likely to have occurred only recently since mosquitoes were 

reported as absent from Bermuda by the Spanish sailor Diego Ramirez, who was 

shipwrecked on the then-uninhabited island in 1603 (account published in Wilkinson 

1950). Given subfossil evidence of unique endemic resident passerines existing in 

Bermuda prior to human colonization (Olson et al. 2005), it is possible that, as in 

Hawaii, the arrival of a competent vector (C. quinquefasciatus is currently present) 

and an Old World lineage of Plasmodium may have contributed to the extinction of 

another island avifauna. 

In the Pacific, the Hawaiian form of malaria was also the only lineage of 

malaria parasite detected in passerines of French Polynesia, though we detected a 

second lineage exclusively in junglefowl (Gallus gallus). In a survey of birds from 

Moorea, we found GRW4 at low frequency in several introduced species including 

red-browed firetails (Neochmia temporalis; 2 of 34 individuals), silvereyes (Zosterops 

lateralis; 1 of 60 individuals) and common mynas (Acridotheres tristis; 2 of 10 
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individuals). We did not sample any of the native passerines on Moorea because 

populations of those species, namely the Tahiti reed warbler (Acrocephalus caffer 

longirostris), Pacific swallow (Hirundo tahitica) and Polynesian swiftlet 

(Aerodramus leucophaeus), if extant, were extremely small. However, among a small 

sample of endemic Marquesan reed warblers (Acrocephalus mendanae) collected in 

1987 on Nuku Hiva, we detected GRW4 in 9 of 11 individuals. Because populations 

of Marquesan reed warblers remain fairly robust (Holyoak & Thibault 1984; J.-C. 

Thibault personal communication), this finding presents the possibility that, unlike its 

effect on Hawaiian honeycreepers, GRW4 may not pose a threat to these endemic 

French Polynesian passerines, which are relatively recently diverged from a mainland 

ancestor (ca. 1-2 Ma; Fleischer et al. unpublished data) and of Old World descent. 

Conversely, for older Polynesian endemics such as the Pomarea flycatchers, which 

have likely evolved for a longer time in isolation (ca. 3.6 Ma; Cibois et al. 2004), the 

introduction of GRW4 may represent a previously unrecognized factor driving the 

decline of these species, most of which are threatened or endangered (BirdLife 

International 2000). The detection of GRW4 in French Polynesia and the Cook 

Islands (Ishtiaq et al. 2006), and of a closely related parasite in the Marianas (lineage 

32), warrants further investigation into the effects of avian malaria on isolated 

avifaunas outside of Hawaii. 

While GRW4 itself exhibited a broad geographical distribution, the 

distribution of related parasite lineages provided evidence of an Old World ancestry 

for GRW4. Phylogenetic reconstructions of mitochondrial parasite lineages and 

associated nuclear haplotypes yielded broadly concordant topologies (figure 3). 
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Although there was little support for deep nodes when loci were analyzed separately, 

Bayesian analysis of data from both mitochondrial and nuclear loci combined 

recovered similar clustering of parasite lineages and provided support for the 

monophyly of parasite genotypes 1B through 38P (Clade A, figure 4). Within this 

group, but with the exception of 15G (GRW4), all of the parasite genotypes detected 

in the New World fell within a well-supported clade (Clade B, genotypes 1B through 

14F) that was either sister to or derived from the remainder of genotypes in Clade A. 

Among the remainder of Clade A, all genotypes except 15G (GRW4) were recovered 

exclusively from the Old World and likelihood estimation of ancestral origins 

confirmed that the immediate ancestors of GRW4 likely derived from the Old World 

(figure 4). Among the 24 parasite mitochondrial lineages composing this group, 18 

were recovered from hosts in Africa (figure 3). A haplotype network (figure 5), which 

may more appropriately describe non-bifurcating relationships among mitochondrial 

lineages derived from a single species, similarly indicated broad geographical 

substructure within Clade A and close association of GRW4 (lineage 15) with Old 

World lineages recovered from Africa (16) and New Guinea (17). The derived 

position of GRW4 relative to other lineages from the Old World further suggests that 

its range has only recently expanded to include parts of the New World. 

The mitochondrial lineage GRW4 was associated with nuclear haplotype G 

everywhere except on several Indian Ocean islands where GRW4 was instead 

associated with haplotype H (figure 3). We identified several additional cases of a 

single mitochondrial lineage (e.g., 1, 30 and 31) associated with multiple nuclear 

haplotypes as well as cases of a single DHFR-TS sequence associated with multiple 
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divergent mitochondrial lineages (e.g., haplotype G and lineages 15, 16, 17, 18, 27, 

28, 32, 33; figure 3). If every mitochondrial lineage of Plasmodium represents a 

sexually-isolated unit (Bensch et al. 2004), then these results may reflect either 

incomplete lineage sorting amongst genes in otherwise reproductively-isolated 

species or insufficient variation in our markers. On the other hand, the sharing of 

mitochondrial or nuclear haplotypes among different parasite lineages may simply 

represent intraspecific genetic variation. The resolution of our data precludes 

investigation of this on a fine scale, however, several cases in which nuclear and 

mitochondrial haplotypes exhibit similar clustering (e.g., lineages 11, 12, 13 and 

nuclear haplotypes D, E), combined with an apparent lack of genetic exchange with 

closely related parasites, provide an indication that species limits may be very narrow. 

Within the resolution of our data, the complete linkage disequilibrium of 

mitochondrial and nuclear markers found among parasites in Clade B (average cyt b 

p-dist: 1.5%) relative to other parasites in Clade A (avg. p-dist: 1.9%), and among 

parasites in Clade A (avg. p-dist: 2.2%) relative to the next most related lineages, 

suggests that these groups, at least, are reproductively isolated. Except for two 

parasites, which were described as P. elongatum and P. cathemerium, all other 

morphologically-described parasites with associated mitochondrial sequences falling 

within Clade A were identified as P. relictum (lineages 2, 5, 15, 16 and 22; figure 3). 

Given the results above, the morphological taxon P. relictum appears to be composed 

of at least two, and probably several more, reproductively-isolated groups. 

The geographical structuring of parasite lineages within Clade A is surprising 

in light of the massive commercial and migratory movement of birds worldwide. 
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Parasites are often lost when their hosts are introduced to novel regions (Torchin et 

al. 2003; Colautti et al. 2004) and competence of novel hosts, host migration patterns, 

and competing strains of parasite may retard the exchange of parasites between 

hemispheres. Nonetheless, the prominence of GRW4 on several remote oceanic 

islands and its wide host distribution suggest that these are not primary factors 

limiting the range of GRW4. Instead, differential vector-parasite compatibility may 

be limiting transmission of GRW4 and driving genetic isolation between populations 

of P. relictum. Vector incompatibility may be preventing the transmission of GRW4 

in northern Europe (Waldenström et al. 2002) and appears to be responsible for the 

isolation of New World and Old World forms of P. vivax (Li et al. 2001), the 

dominant form of malaria in humans.  

We found further evidence for transmission limits in Bermuda, where we 

recovered three lineages of Plasmodium, but GRW4 was the only lineage of 

Plasmodium detected in blood from resident Bermuda passerines (n = 42 sequenced 

infections) sampled between 2002 and 2004. Among resident birds, we detected 

GRW4 in both introduced Old World hosts [house sparrows (P. domesticus) and 

European starlings (Sturnus vulgaris)] and New World hosts [grey catbirds 

(Dumetella carolinensis) and Eastern bluebirds (Sialia sialis), but never in white-eyed 

vireos (Vireo griseus; n=16) or great kiskadees (Pitangus sulphuratus; n= 33)]. As in 

Hawaii, Bermuda provides a wintering ground for numerous North American 

migrants, some of which may exhibit transmissible erythrocytic-stage malaria 

infections. Assuming that winter parasitemias are not low enough to prevent 

transmission, the absence of all lineages except GRW4 in Bermuda residents suggests 
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that either resident Bermuda birds are not competent hosts for most North American 

Plasmodium lineages or that the local vector is refractory to these lineages. The 

former is unlikely to be true for all resident passerines since many of these species 

colonized or were introduced to the island from the New World only within the last 

several hundred years (C. E. McIntosh et al., unpublished work). In addition, we 

found one of the non-GRW4 lineages (lineage 1) in a migratory ovenbird in Bermuda 

and in house sparrows from continental North America, but never in resident house 

sparrows from Bermuda (n = 15 sequenced infections). The other non-GRW4 lineage 

in Bermuda was recovered from two migratory yellow-throated warblers (Dendroica 

dominica). This sequence matched a parasite lineage recovered in several other North 

American species and was only distantly related to lineages in Clades A. Given the 

distinct parasite lineages in resident and migratory species, it appears that 

refractoriness of the local strain of C. quinquefasciatus to parasites carried by 

migrants may be important in structuring the parasite community in Bermuda. 

If transmission of GRW4 was initially limited to the Old World, as seems 

possible given the distribution of lineages most closely related to it, the spread and 

admixture of Old World populations of C. quinquefasciatus with genetically-

differentiated New World populations (Fonseca et al. 2006) may be facilitating the 

expansion of GRW4 into new locations. Future experimental infections of New 

World mosquitoes with isolates of P. relictum from different regions could shed light 

on the mechanism underlying the current rarity of GRW4 in the New World. Given 

the diversity of lineages encompassed by the morphological taxon P. relictum, future 

assessment of the ecological and evolutionary impacts of GRW4 and other avian 
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malarias will require a molecular characterization of the pathogen in question. This 

will be particularly valuable, for example, when identifying an independent source of 

GRW4 with which to assess co-evolutionary models of virulence change in Hawaii. 

Previous hypotheses of virulence change (van Riper 1991; Atkinson et al. 1995) have 

been based in part on comparisons of pathogenicity between the Hawaiian parasite 

and a North American strain that was presumed to be its closest counterpart (van 

Riper 1991). Our results, which provide evidence of cryptic population structure 

within Plasmodium relictum and an Old World origin for the Hawaiian parasite, 

should provide a more robust foundation for understanding the evolution of virulence 

and the dynamics of host-parasite-vector interactions in Hawaii’s model system. 
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TABLE 

Table 1. Sampling effort and frequency with which the Hawaiian lineage of Plasmodium (GRW4, lineage 15) was recovered from 

regions shown in figure 2. Lineages defined as unique (differing by at least 1 bp) within a given region may be shared between 

regions. 

 
# region total host 

individuals 
sampled (n) 

total species 
sampled (n) 

host species 
with 

Plasmodium (n) 

Plasmodium 
sequences 

recovered (n) 

sequences 
matching 

GRW4 (n) 

minimum 
unique 

lineages (n) 
1. Hawaiian Archipelago 320 17 8 79 78 2 
2. French Polynesiaa 161 8 4 14 14 1 
3. USA 161 21 10 61 0 12 
4. Bermuda 142 14 7 42 39 3 
5. Antilles/Venezuela 5553 169 47 303 2 17 
6. Guyana 195 53 22 42 0 23 
7. Uruguay 322 111 33 57 0 13 
8. Northern Europeb 2835 26 19 305 131 36 
9. Southern Europec 1151 9 8 206 4 16 
10. Nigeria 827 71 33 101 7 30 
11. Western Africad 656 105 62 174 0 44 
12. South Africa 171 15 8 60 1 15 
13. Indian Ocean Islandse 150 20 15 48 23 8 
14. India 259 43 23 71 18 23 
15. Burma 344 133 42 60 0 28 
16. Japan/Korea 209 58 26 48 1 15 
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17. Australia/Papua New 
Guinea 

454 106 30 56 3 22 

 
aFrench Polynesia: Moorea (Society Islands), Nuku Hiva (Marquesas).  bNorthern Europe: Belarus, Belgium, England, Germany, 

Lithuania, Sweden. cSouthern Europe: France, Israel, Italy, Spain, Ukraine. dWestern Africa: Annabon, Bioko, Cameroon, Gabon, 

Principe, Sao Tome. eIndian Ocean Islands: Anjouan, Fregate, Grand Comore, Madagascar, Mauritius, Mayotte, Moheli, Praslin, 

Reunion, Rodrigues. 
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FIGURE LEGENDS 

Figure 1. Phylogenetic relationships among morphologically-identified species of 

Plasmodium estimated using ML, MP and ME with cytochrome b sequences. 

Numbers above branches indicate bootstrap support based on 1000 replicates. 

Numbers before species names correspond to mitochondrial lineage numbers in figure 

3. Sequences were obtained directly from Genbank (accession number in italics) or 

from extracts of blood smears obtained from the International Reference Collection 

for Avian Haematozoa (IRCAH) and M. Peirce. 

 

Figure 2. Map depicting the global distribution of the single mitochondrial lineage of 

malaria parasite (GRW4) found in resident Hawaiian passerines. Pie charts indicate 

the proportion of all sequenced Plasmodium infections in a given region that were 

identical to GRW4 (red). Details concerning locations and sampling effort are in table 

1. Red dots indicate additional locations in which GRW4 has been reported 

previously (Ishtiaq et al.; Mendes et al. 2005; Schrenzel et al. 2003; M. Kimura pers. 

comm.) or in which GRW4 was recovered from a relatively small group of samples 

(Kazakhstan).  

 

Figure 3. Phylogenetic trees of parasite mitochondrial lineages (cyt b; left; 

numbered) and associated nuclear haplotypes (DHFR-TS; right; lettered), constructed 

using maximum likelihood (GTR+I+G for both markers). The distribution of 

mitochondrial lineages across global regions is indicated with squares, color-coded to 

help identify the associated DHFR-TS sequence (when available, otherwise black). 
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Background shading reflects the limits of two clades with good support in analysis of 

combined data (figure 4). Mitochondrial lineages which derived from at least one 

parasite identified as P. relictum by morphology are indicated in bold. Bootstrap 

support values (>60) are indicated above branches. 

 

Figure 4. Majority rule consensus tree of avian malaria parasite lineages generated by 

Bayesian analysis of combined mitochondrial (cytb b) and nuclear (DHFR-TS) 

sequence. Parasite genotypes are identified by their respective cytb b lineage 

(number) and DHFR-TS haplotype (letter), which are depicted separately in figure 3. 

Clade credibility values are indicated above branches. Background shading identifies 

two well-supported clades (A and B) referenced in the text. Dots within Clade A 

indicate nodes for which New World (open circle) or non-New World (black) origin 

could be confidently assigned based on ancestral trait reconstruction performed with 

Mesquite. 

 

Figure 5. Statistical parsimony network of Plasmodium mitochondrial lineages 

related to the Hawaiian strain (lineage 15). Sampled haplotypes are numbered as in 

figure 3 and inferred haplotypes are indicated by black dots. Shading indicates 

whether the lineage was detected in the Old World (white), New World (black) or in 

both regions (grey). Lineages 9, 19, and 36 were not included due to missing 

sequence. Lineages 7, 8, and 29 were joined at the 90% connection limit (13 

substitutions).
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APPENDICES 

Appendix 1. Avian hosts, geographical origin, frequency of detection and GenBank accession numbers for parasite mitochondrial (cyt 

b) lineages. GenBank numbers for sequences obtained from previously published data are in italics. 

 
lineage host information n length GenBank 

 family genus species common name localitya  (bp) no. 
1 Fringillidae Carpodacus mexicanus House finch USA 1 753 DQ659538 
1 Parulidae Seiurus aurocapillus Ovenbird BER 1 256 DQ838987 
1 Passeridae Passer domesticus House sparrow USA 4 533 DQ838988 
1 Troglodytidae Thryomanes bewickii Bewick’s wren USA 1 533 DQ838989 
1 Cardinalidae Cardinalis cardinalis Northern cardinal USA 28 533 DQ838990 
1 Emberizidae Melospiza georgiana Swamp sparrow USA - 551 AY640130 
1 Hirundinidae Tachycineta bicolor Tree swallow USA - 551 AY640130 
2 Icteridae Molothrus ater Brown-headed 

cowbird 
USA 1 753 DQ659539 

2 Fringillidae Carpodacus mexicanus House finch USA 2 653 DQ659540 
3 Fringillidae Carpodacus mexicanus House finch USA 1 753 DQ659541 
4 Parulidae Geothlypis trichas Common 

yellowthroat 
USA 1 753 DQ659542 

5 Muscicapidae Luscinia svecica Bluethroat NOR 1 753 DQ659543 
5 Phasianidae Phasianus colchicus Ring-necked 

pheasant 
KOR 1 533 DQ838991 

5 Motacillidae Anthus hodgsoni Olive-backed pipit KOR 2 753 DQ838992 
5 Corvidae Corvus corone Carrion crow JAP 1 433 DQ659544 
6 Icteridae Icterus cayanensis Epaulet oriole URU 1 753 DQ659545 
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6 Emberizidae Poospiza lateralis Red-rumped 
warbling finch 

URU 1 256 DQ838993 

6 Emberizidae Loxigilla noctis Lesser Antillean 
bullfinch 

DOM - 312 AF465558 

6 Troglodytidae Troglodytes aedon House wren URU 1 515 DQ838994 
7 Parulidae Icteria virens Yellow-breasted 

chat 
USA 2 753 DQ659546 

7 Pachycephalidae Eulacestoma nigropectus Wattled ploughbill PNG - 533 AY714201 
8 Parulidae Icteria virens Yellow-breasted 

chat 
USA 2 753 DQ659547 

9 Muscicapidae Cercotrichas podobe Black scrub-robin NIG - 478 AF495549 
10 Tyrannidae Myiarchus tyrannulus Brown-crested 

flycatcher 
USA 1 753 DQ659548 

11 Parulidae Geothlypis trichas Common 
yellowthroat 

USA 1 753 DQ659549 

11 Passeridae Passer domesticus House sparrow USA - 533 AF069611 
11 Icteridae Gnorimopsar chopi Chopi blackbird URU 2 322 DQ838995 
11 Turdidae Turdus rufiventris Rufous-bellied 

thrush 
URU 1 313 DQ838996 

11 Troglodytidae Troglodytes aedon House wren URU 3 753 DQ838997 
11 Icteridae Pseudoleistes guirahuro Yellow-rumped 

marshbird 
URU 1 533 DQ838998 

11 Thraupidae Tangara preciosa Chestnut-backed 
tanager 

URU 1 533 DQ838999 

11 Thraupidae Stephanophorus diadematus Diademed tanager URU 1 335 DQ839000 
12 Emberizidae Emberizoides herbicola Wedge-tailed grass-

finch 
GUY 1 753 DQ659550 

12 Icteridae Sturnella militaris Red-breasted 
blackbird 

GUY 1 256 DQ839001 

13 Icteridae Sturnella supercilliaris White-browed URU 2 753 DQ659551 
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blackbird 
14 Turdidae Alethe diademata Fire-crested alethe GAB 4 753 DQ659552 
15 Drepanididae Hemignathus virens Hawaii amakihi HI 12 753 DQ659553 
15 Drepanididae Hemignathus flavus Oahu amakihi HI 6 533 DQ839002 
15 Drepanididae Himatione sanguinea Apapane HI 4 315 DQ839003 
15 Drepanididae Vestiaria coccinea I’iwi HI 2 338 DQ839004 
15 Emberizidae Carpodacus mexicanus House finch HI 2 351 DQ839005 
15 Emberizidae Loxigilla violacea Greater Antillean 

bullfinch 
DOM 1 533 DQ839006 

15 Estrildidae Lonchura punctulata Nutmeg mannikin HI 1 351 DQ839007 
15 Estrildidae Lonchura malacca Black-headed munia IND 1 256 DQ839008 
15 Estrildidae Neochmia temporalis Red-browed firetail FP 2 753 DQ839009 
15 Mimidae Dumetella carolinensis Grey catbird BER 7 533 DQ839010 
15 Mimidae Mimus gilvus Tropical 

mockingbird 
GRE 1 533 DQ839011 

15 Muscicapidae Cercomela fusca Indian chat IND 1 351 DQ839012 
15 Muscicapidae Humblotia flavirostris Grand Comoro 

flycatcher 
GCO 1 295 DQ839013 

15 Muscicapidae Luscinia svecica Bluethroat SWE 5 478 DQ839014 
15 Nectariniidae Nectarinia humbloti Humblot’s sunbird GCO 1 295 DQ839015 
15 Nectariniidae Nectarinia notata Long-billed green 

sunbird 
GCO 1 533 DQ839016 

15 Nectariniidae Cinnyris sovimanga Souimanga sunbird MAD 1 91 DQ839017 
15 Paradoxornithidae Paradoxornis webbianus Vinous-throated 

parrotbill 
KOR 1 91 DQ839018 

15 Passeridae Passer domesticus House sparrow BER, HI, IND 67 533 DQ839019 
15 Ploceidae Foudia madagascarensis Red fody GCO, MAD, 

PRA 
5 533 DQ839020 

15 Ploceidae Foudia eminentissima Red-headed fody GCO 2 533 DQ839021 
15 Ploceidae Foudia flavicans Rodrigues fody ROD 1 533 DQ839022 



 

 85 
 

15 Ploceidae Quelea quelea Red-billed quelea SAF 1 295 DQ839023 
15 Sturnidae Acridotheres tristis Common myna AUS, HI, 

IND, FP 
19 533 DQ839024 

15 Sturnidae Sturnus vulgaris European starling BER 13 533 DQ839025 
15 Sylviidae Acrocephalus arundinaceus Greet reed-warbler BEL, ISR, 

NIG, 
SWE,UKR 

133 478 DQ839026 

15 Sylviidae Acrocephalus baeticatus African reed-
warbler 

NIG 1 478 DQ839027 

15 Sylviidae Acrocephalus gracilirostris Lesser swamp-
warbler 

NIG 1 478 DQ839028 

15 Sylviidae Acrocephalus schoenobaenus Sedge warbler NIG 1 478 DQ839029 
15 Sylviidae Acrocephalus mendanae Marquesan reed-

warbler 
FP 9 753 DQ839030 

15 Sylviidae Hippolais pallida Olivaceous warbler NIG 1 478 DQ839031 
15 Sylviidae Megalurus palustris Striated grassbird IND 1 351 DQ839032 
15 Sylviidae Orthotomus cuculatus Common tailorbird IND 1 351 DQ839033 
15 Timaliidae Stachyris pyrrhops Black-chinned 

babbler 
IND 1 351 DQ839034 

15 Zosteropidae Zosterops borbonicus Mascarene white-
eye 

MAU, REU 3 533 DQ839035 

15 Zosteropidae Zosterops mouroniensis Comoro white-eye GCO 2 295 DQ839036 
15 Zosteropidae Zosterops maderaspatanus Madagascar white-

eye 
GCO, MAD, 

MAY 
5 533 DQ839037 

15 Zosteropidae Zosterops choloronothos Mauritius white-eye MAU 1 121 DQ839038 
15 Zosteropidae Zosterops lateralis Silvereye FP 1 351 DQ839039 
16 Fringillidae Linurgus olivaceus Oriole finch BIO 1 753 DQ659554 
16 Fringillidae Serinus atrogularis Black-throated 

canary 
SAF 2 753 DQ839040 

16 Ploceidae Ploceus velatus African masked- BOT, SAF 3 653 DQ659555 



 

 86 
 

weaver 
16 Ploceidae Quelea quelea Red-billed quelea SAF, ZIM 19 533 DQ839041 
16 Ploceidae Euplectes orix Red bishop SAF 1 295 DQ839042 
16 Cisticolidae Cisticola fulvicapillus Piping cisticola SAF 1 295 DQ839043 
16 Sulidae Sula capensis Cape gannet SAF 1 533 DQ659556 
17 Monarchidae Myiagra alecto Shining flycatcher PNG 2 753 DQ659557 
18 Ploceidae Ploceus velatus African masked 

weaver 
SAF 1 753 DQ659558 

18 Ploceidae Quelea quelea Red-billed quelea BOT, SAF, 
ZIM 

15 533 DQ839044 

19 Ploceidae Quelea quelea Red-billed quelea BOT 1 351 DQ659559 
20 Nectariniidae Cinnyris coquerellii Mayotte sunbird MAY 3 753 DQ659560 
20 Nectariniidae Cinnyris sovimanga Souimanga sunbird MAD 1 533 DQ839045 
21 Ploceidae Foudia seychellarum Seychelles Fody FRE 1 753 DQ659561 
21 Nectariniidae Cinnyris dussumieri Seychelles sunbird FRE 1 533 DQ839046 
22 Sylviidae Acrocephalus arundinaceus Great reed warbler SWE 1 753 DQ659562 
22 Sylviidae Sylvia atricapilla Blackcap SPA - 478 AF495571 
22 Passeridae Passer luteus Sudan golden-

sparrow 
NIG - 478 AF495571 

22 Fringillidae Carduelis chloris European greenfinch UKR 1 456 DQ659563 
22 Paridae Parus major Great tit KOR 1 351 DQ839047 
22 Paridae Sittiparus varius Varied tit KOR 1 256 DQ839048 
22 Corvidae Garrulus glandarius Eurasian jay KOR 1 753 DQ839049 
22 Sturnidae Acridotheres tristis Common myna IND, NZ 3 256 DQ839050 
23 Passeridae Passer melanurus Mossie SAF 1 753 DQ659564 
24 Motacillidae Motacilla alba White wagtail KOR 1 753 DQ659565 
24 Sylviidae Acrocephalus orientalis Oriental reed 

warbler 
KOR 1 256 DQ839051 

25 Ploceidae Quelea quelea Red-billed quelea SAF 1 753 DQ659566 
26 Zosteropidae Zosterops senegalensis African yellow SAF 1 753 DQ659567 
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white-eye 
27 Nectariniidae Cyanomitra oritis Cameroon sunbird BIO 1 753 DQ659568 
27 Ploceidae Ploceus melanogaster Black-billed weaver BIO 1 517 DQ839052 
28 Alaudidae Alauda arvensis Sky lark KOR 1 753 DQ659569 
28 Paridae Parus major Great tit KOR 2 256 DQ839053 
29 Nectariniidae Cyanomitra olivacea Olive sunbird GAB, CAM, 

PRI 
6 753 DQ659570 

29 Nectariniidae Cinnyris chloropygius Olive-bellied 
sunbird 

GAB 3 533 DQ839054 

30 Ploceidae Ploceus nigerrimus Vieillot’s weaver GAB 1 753 DQ659571 
30 Ploceidae Ploceus nigricollis Black-necked 

weaver 
GAB 1 533 DQ839055 

30 Muscicapidae Copsychus malabaricus White-rumped 
shama 

BUR 1 533 DQ839056 

30 Muscicapidae Copsychus saularis Oriental magpie-
robin 

BUR 1 533 DQ839057 

30 Estrildidae Lonchura punctulata Nutmeg manikin IND 1 351 DQ839058 
30 Monarchidae Hypothymis azurrea Black-naped 

monarch 
BUR 1 295 DQ839059 

31 Ploceidae Foudia madagascariensis Red fody MAD, MAY, 
MAU 

5 753 DQ659572 

31 Ploceidae Ploceus grandis Giant weaver SAO 2 533 DQ839060 
31 Ploceidae Ploceus princeps Principe golden-

weaver 
PRI 1 491 DQ839061 

32 Rhipiduridae Rhipdiura rufifrons Rufous fantail MAR 2 753 DQ659573 
33 Monarchidae Monarcha kaupi Pied monarch AUS 3 753 DQ659574 
33 Monarchidae Monarcha trivirgatus Spectacled monarch AUS 3 533 AY714199 
33 Petroicidae Heteromyias albispecularis Grey-headed robin AUS 1 533 AY714199 
34 Ploceidae Ploceus princeps Principe golden-

weaver 
PRI 1 753 DQ659575 
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34 Nectariniidae Hedydipna collaris Collared sunbird GAB 1 533 DQ839062 
34 Nectariniidae Hedydipna platura Pygmy sunbird NIG - 478 AF495566 
34 Sturnidae Lamprotornis splendidus Splendid glossy-

starling 
PRI 1 518 DQ839063 

35 Muscicapidae Fraseria cinerascens White-browed forest 
flycatcher 

GAB 1 753 DQ659576 

36 Nectariniidae Cinnyris chloropygius Olive-bellied 
sunbird 

CAM 1 533 DQ659577 

37 Sylviidae Phylloscopus trochilus Willow warbler SWE 1 753 DQ659578 
38 Nectariniidae Cyanomitra olivacea Olive sunbird GAB 1 753 DQ659579 
39 Ptilonorhynchidae Scenopoeetes dentirostris Tooth-billed 

bowerbird 
AUS 3 753 DQ659580 

39 Ptilonorhynchidae Ailuroedes melanotis Spotted catbird AUS 2 533 AY714205 
39 Acanthizidae Sericornis magnirostris Large-billed 

scrubwren 
AUS 2 533 AY714205 

39 Meliphagidae Lichenostomus frenatus Bridled honeyeater AUS 1 533 AY714205 
39 Monarchidae Monarcha trivirgatus Spectacled monarch AUS 1 533 AY714205 
39 Pachycephalidae Colluricincla boweri Bower’s shrike-

thrush 
AUS 1 533 AY714205 

40 Aegithinidae Aegithina tiphia Common iora BUR 2 753 DQ659581 
41 Turdidae Turdus migratorius American robin USA - 753 AY099033 
42 Emberizidae Emberiza rutila Chestnut bunting KOR 1 753 DQ659582 
42 Emberizidae Emberiza spodocephala Black-faced bunting KOR 2 533 DQ839064 
43 Charadriidae Pluvialis fulva Pacific golden 

plover 
HI 1 753 DQ659583 

43 Fringillidae Carpodacus erythrinus Common rosefinch KOR 1 753 DQ839065 
43 Paridae Parus major Great tit SWE - 413 AF254978 
44 Paridae Parus major Great tit SWE - 447 AF495564 
45 Turdidae Turdus philomelos Song thrush SWE - 472 AF495576 
46 Cisticolidae Camaroptera brachyura Green-backed GAB 1 753 DQ659584 
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camaroptera 
46 Dicruridae Dicrurus adsimilis Fork-tailed drongo GAB 1 334 DQ839066 
46 Estrildidae Pyrenestes ostrinus Black-bellied 

seedcracker 
GAB 1 335 DQ839067 

46 Estrildidae Estrilda astrild Common waxbill TAN 1 533 DQ839068 
46 Estrildidae Spermophaga haematina Western bluebill GAB 1 334 DQ839069 
46 Muscicapidae Cossypha niveicapilla Snowy-crowned 

robin-chat 
GAB 1 333 DQ839070 

46 Muscicapidae Muscicapa olivascens Olivaceous 
flycatcher 

GAB 1 533 DQ839071 

46 Muscicapidae Stiphrornis erythrothorax Forest robin GAB 2 533 DQ839072 
46 Nectariniidae Chalcomitra rubescens Green-throated 

sunbird 
GAB 1 334 DQ839073 

46 Nectariniidae Cyanomitra olivacea Olive sunbird GAB 1 334 DQ839074 
46 Nectariniidae Hedydipna collaris Collared sunbird GAB 1 533 DQ839075 
46 Ploceidae Malimbus nitens Grey’s malimbe GAB 1 334 DQ839076 
46 Ploceidae Ploceus cucullatus Village weaver GAB 1 503 DQ839077 
46 Pycnonotidae Andropadus gracilis Grey greenbul GAB 1 533 DQ839078 
46 Pycnonotidae Andropadus virens Little greenbul CAM 2 533 DQ839079 
46 Pycnonotidae Bleda notata Lesser bristlebill GAB 1 334 DQ839080 
46 Pycnonotidae Bleda syndactyla Common bristlebill GAB 2 334 DQ839081 
46 Pycnonotidae Criniger calurus Red-tailed greenbul GAB 1 533 DQ839082 
46 Pycnonotidae Criniger chloronotus Eastern bearded 

greenbul 
GAB 1 334 DQ839083 

46 Pycnonotidae Nicator chloris Yellow-spotted 
nicator 

GAB 1 315 DQ839084 

46 Rhipiduridae Rhipidura rufifrons Rufous fantail MAR 2 753 DQ839085 
46 Turdidae Alethe poliocephala Brown-chested 

alethe 
GAB 4 533 DQ839086 

46 Turdidae Neocossyphus fraseri Rufous thrush GAB 4 533 DQ839087 
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46 Turdidae Neocossyphus poensis White-tailed ant-
thrush 

GAB 2 334 DQ839088 

46 Turdidae Neocossyphus rufus Red-tailed ant-
thrush 

GAB 1 533 DQ839089 

46 Turdidae Zoothera cameronensis Black-eared ground-
thrush 

GAB 1 533 DQ839090 

46 Turdidae Cyanomitra olivacea Olive sunbird GAB 1 533 DQ839091 
47 Timaliidae Pomatorhinus ferruginosus Coral-billed 

scimitar-babbler 
BUR 1 753 DQ659585 

47 Timaliidae Alcippe morrisonia Grey-cheeked 
fulvetta 

BUR 1 295 DQ839092 

47 Muscicapidae Cinclidium leucurum White-tailed robin BUR 1 533 DQ839093 
48 Muscicapidae Niltava sundara Rufous-bellied 

niltava 
BUR 1 533 DQ659586 

49 Nectariniidae Cyanomitra olivacea Olive sunbird GAB 1 533 DQ659587 
50 Icteridae Quiscalus quiscula Common grackle USA - 753 AY099031 
50 n/a n/a n/a n/a VIE - 753 AY099029 
51 Strigidae Ninox scutulata Brown hawk-owl SIN - 753 AY099035 
52 Ardeidae Ardea herodias Great blue heron USA 1 753 DQ659588 
53 Columbidae Zenaida macroura Mourning dove USA - 753 AY099032 
53 Spheniscidae Spheniscus demursus African penguin SAF 1 335 DQ659589 
54 Paridae Parus major Great tit SWE 1 753 DQ659590 
55 n/a n/a n/a n/a n/a - 478 AY178904 
56 Sylviidae Acrocephalus arundinaceus Great reed warbler SWE 1 753 DQ659591 
57 Sylviidae Acrocephalus arundinaceus Great reed warbler SWE - 753 AY099040 
58 Paridae Cyanistes caeruleus Blue tit SWE - 753 AY099045 
59 Alcedinidae Alcedo leucogaster White-bellied 

kingfisher 
GAB 1 753 DQ659592 
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aAUS, Australia; BER, Bermuda; BEL, Belarus; BIO, Bioko; BOT, Botswana; BUR, Burma; CAM, Cameroon; DOM, Dominican 

Republic; FRE, Fregate; FP, French Polynesia; GAB, Gabon; GCO, Grand Comore; GRE, Grenada; GUY, Guyana; HI, Hawaii; IND, 

India; ISR, Israel; KOR, Korea; MAD, Madagascar; MAU, Mauritius; MAR, Marianas; MAY, Mayotte; NIG, Nigeria; NOR, 

Norway; NZ, New Zealand; PNG, Papua New Guinea; PRA, Praslin; PRI, Principe; REU, Reunion; ROD, Rodrigues Island; SAF, 

South Africa; SAO, Sao Tome; SIN, Singapore; SWE, Sweden; TAN, Tanzania; UKR, Ukraine; URU, Uruguay; USA, United States; 

VIE, Vietnam; ZIM, Zimbabwe 

 

Appendix 2. Avian hosts, geographical origin, frequency of detection, associated mitochondrial lineage and GenBank accession 

numbers for DHFR-TS haplotypes shown in figure 3. DHFR-TS did not amplify from all samples for which a mitochondrial lineage 

was recovered. 

 
lineage host locationa n associated mtDNA lineage GenBank no. 

A Yellow-breasted chat USA 2 7 DQ659597 
A Yellow-breasted chat USA 3 8 DQ659597 
B House finch USA 1 1 DQ659598 
B Brown-headed cowbird USA 1 2 DQ839094 
B Bluethroat NOR 1 5 DQ839095 
B Carrion crow JAP 1 5 DQ839096 
B Olive-backed pipit KOR 2 5 DQ839097 
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B Ring-necked pheasant KOR 1 5 DQ839098 
B Epaulet oriole URU 1 6 DQ839099 
B Red-rumped warbling finch URU 1 6 DQ839100 
B House wren URU 1 6 DQ839101 
C Northern cardinal USA 2 1 DQ659599 
D Chestnut-backed tanager URU 1 11 DQ659600 
D Wedge-tailed grass-finch GUY 1 12 DQ839102 
E White-browed blackbird URU 1 13 DQ659601 
F Fire-crested alethe GAB 2 14 DQ659602 
G Hawaii amakihi HI 4 15 DQ659603 
G Gray catbird BER 4 15 DQ839103 
G Greater Antillean bullfinch DOM 1 15 DQ839104 
G Red-browed firetail FP 2 15 DQ839105 
G Marquesan reed-warbler FP 2 15 DQ839106 
G European starling BER 4 15 DQ839107 
G House sparrow BER, HI 7 15 DQ839108 
G Iiwi HI 2 15 DQ839109 
G Oahu amakihi HI 1 15 DQ839110 
G Shining flycatcher PNG 1 17 DQ839111 
G African masked weaver SAF 1 18 DQ839112 
G Red-billed quelea SAF 1 18 DQ839113 
G African masked weaver SAF 1 16 DQ839112 
G Oriole finch BIO 1 16 DQ839114 
G Black-billed weaver BIO 1 27 DQ839115 
G Sky lark KOR 1 28 DQ839116 
G Rufous fantail MAR 2 32 DQ839117 
G Spectacled monarch AUS 2 33 DQ839118 
H Madagascar white-eye GCO, MAD 4 15 DQ659604 
I Black-naped monarch BUR 1 30 DQ659605 
J Red fody MAD, MAY 2 31 DQ659606 
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K White-rumped shama BUR 1 30 DQ659607 
L Collared sunbird GAB 1 34 DQ659608 
M Vieillot’s weaver GAB 1 30 DQ659609 
M Giant weaver SAO 1 31 DQ839119 
M Principe golden-weaver PRI 1 31 DQ839120 
N Eurasian jay KOR 1 22 DQ659610 
N Great tit KOR 1 22 DQ839121 
N White wagtail KOR 1 24 DQ839122 
N Blackcap SPA 1 22 AY560372 
O Mossie SAF 1 23 DQ659611 
P Olive sunbird GAB 1 38 DQ659612 
Q n/a – Plasmodium gallinaceum n/a - - AY033582 
R Bower’s shrike thrush AUS 1 39 DQ659613 
R Bridled honeyeater AUS 1 39 DQ839123 
R Spotted catbird AUS 1 39 DQ839124 
S Common iora BUR 1 40 DQ659614 
T Black-eared ground thrush GAB 1 46 DQ659615 
T Little greenbul CAM 1 46 DQ839125 
T Rufous fantail MAR 2 46 DQ839126 
U Common rosefinch KOR 1 43 DQ659616 
U Black-faced bunting KOR 2 42 DQ839127 
U Chestnut bunting KOR 1 42 DQ839128 
V Mourning dove USA 1 53 DQ659617 
W Great reed-warbler SWE - 56 AY560373 
X Blue tit SWE - 58 AY560369 
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aAUS, Australia; BER, Bermuda; BIO, Bioko; BUR, Burma; CAM, Cameroon; DOM, Dominican Republic; FP, French Polynesia; 

GAB, Gabon; GCO, Grand Comore; GUY, Guyana; HI, Hawaii; JAP, Japan; KEN, Kenya; KOR, Korea; MAD, Madagascar; MAR, 

Marianas; MAY, Mayotte; NOR, Norway; PNG, Papua New Guinea; PRI, Principe; SAF, South Africa; SAO, Sao Tome; URU, 

Uruguay; USA, United States 
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CHAPTER IV 

Immunological change in island birds: no uniform evidence of 

an “island syndrome” 

ABSTRACT 

Dramatic declines of native Hawaiian avifauna due to the human-mediated 

emergence of avian malaria and pox prompted an examination of whether reduced 

immune response is a generalized component of an island syndrome, potentially 

driven by increased inbreeding and reduced exposure to parasites. We tested this 

hypothesis by characterizing parasite exposure, genetic diversity and several 

measures of immune response in both recently-introduced and endemic island taxa 

and by comparing the results to those observed in closely-related mainland 

counterparts. We show that significant reorganization of the inflammatory cell-

mediated response as well as levels of innate immune compounds such as natural 

antibodies and complement may occur following island colonization. However, we 

did not find evidence of uniformly reduced immune response in island taxa, even 

amongst those taxa with the longest residence times.  Our results point to the potential 

importance of small differences in the pathogenic landscape and the stochastic history 

of mutation and genetic drift in shaping the immunological profiles of small isolated 

populations. Consequently, predicting the impact of introduced disease on the many 

other endemic faunas of the remote Pacific will remain a challenge. 
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INTRODUCTION 

Emerging disease in wildlife is an important force driving the decline and extinction 

of threatened populations (Cooper 1993, Lyles and Dobson 1993, Wikelski et al. 

2004) and may pose a threat to worldwide biodiversity (Daszak et al. 2000). Human-

mediated environmental changes are often the root cause of disease emergence 

(Friend et al. 2001) and may have particularly dire consequences in island 

ecosystems. In Hawaii, for example, the introduction of non-native songbirds and the 

mosquito vector Culex quinquefasciatus has led to the emergence of avian malaria 

and avian poxvirus in endemic honeycreepers (Drepanididae), contributing to the 

dramatic declines and contracting range limits of several species (Warner 1968, 

Atkinson et al. 1995, 2000, Yorinks and Atkinson 2000). While host species that have 

been introduced to Hawaii from continental sources over the last several centuries are 

largely unaffected by avian malaria, endemic species may exhibit mortalities ranging 

as high as 100% (Atkinson et al. 2001, summary in Jarvi et al. 2001). This suggests 

that the introduced strain of malaria is not unusually virulent; instead, it appears that 

at least some long-term island residents are unusually susceptible to this parasite. 

 High susceptibility of island endemics to infectious disease has been proposed 

as a component of an “island syndrome” (Hochberg and Moller 2001, Matson 2006), 

which seeks to codify typical changes observed in body size (Millien 2006), life 

history traits such as survival and fecundity (Wiggins et al. 1998, Goltsman et al. 

2005) and other features associated with insular organisms (Blondel 2000). Several 

factors common to insular life could be driving susceptibility in island endemics. 

First, the strength of selection exerted by infectious agents on the immune systems of 
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remote island taxa is likely to be lower than that experienced by mainland birds over 

their evolutionary history. Because the parasites that are successfully transported to 

an island by avian colonists are only a subsample of those present in the source host 

population and because even those parasites may go extinct due to reduced 

transmission probabilities while the small island host population becomes established 

(Colautti et al. 2004), parasite richness is typically low on islands compared to the 

mainland (Fromont et al. 2001, Beadell et al. 2006), though prevalence may vary 

depending on relative transmission efficiency and host densities (Dobson 1988). On 

the remote islands of the Pacific in particular, even accounting for recent extinctions 

(Steadman 1997), bird communities are extremely depauperate and unlikely to sustain 

the diversity or abundance of parasites observed in large and diverse mainland host 

communities. Given the physiological costs associated with developing, maintaining, 

and using an immune system (Klasing and Barnes 1988, Scrimshaw 1991, Lochmiller 

and Deerenberg 2000, Zuk and Stoehr 2002, Martin et al. 2003), in a parasite-

impoverished environment, selection should favor birds that maximize fitness by 

allocating resources away from the immune system and perhaps towards other 

fitness-related traits such as reproductive effort (Gustafsson et al. 1994, Deerenberg et 

al. 1997, Nordling et al. 1998), survival (Gonzalez et al. 1999) or the expression of 

sexual ornaments (Hillgarth and Wingfield 1997, Peters et al. 2004). 

 A second factor which may contribute to susceptibility of island fauna is the 

low genetic diversity typically associated with small population sizes (Frankham 

1997). Theory (Wright 1931, Nei et al. 1975) and observations on natural avian 

systems (Baker and Moeed 1987, Tarr et al. 1998) suggest that bottlenecks, such as 
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those experienced upon colonization of an island, are most likely to decrease allelic 

diversity (due to the loss of rare alleles) while heterozygosity will decline only if the 

bottleneck is severe and the growth rate of the population is low. Additional diversity 

may be lost due to serial bottlenecks (Clegg et al. 2002) if island populations, already 

constrained to be small by island size, are repeatedly reduced due to demographic 

stochasticity. This latter effect may be important in driving the differences in disease 

susceptibility observed in recently introduced versus endemic species. Observations 

in wild populations have confirmed the deleterious impacts of bottlenecks and 

inbreeding on immunological parameters (Reid et al. 2003, Hawley et al. 2005, Hale 

and Briskie 2007) and parasite susceptibility (Acevedo-Whitehouse et al. 2006, 

Pearman and Garner 2005, Whiteman et al. 2006), however, drift is unlikely to affect 

all populations similarly and thus, the impact of inbreeding on disease susceptibility 

is not likely to be uniform (Spielman et al. 2004). 

The Hawaiian honeycreepers have become a model for understanding the 

susceptibility of a naïve fauna to exotic disease, but given a relative paucity of data on 

disease prevalence and consequences in island taxa (but see Goltsman et al. 1996, 

Wikelski et al. 2004, Gottdenker et al. 2005, Smits et al. 2005, Clifford et al. 2006), 

the extent to which this model applies elsewhere across the globe is not obvious. For 

example, in contrast to Hawaii, the avifauna of American Samoa is characterized by 

stable native communities exhibiting relatively high prevalence of chronic infection 

with possibly indigenous blood parasites (Jarvi et al. 2003, Atkinson et al. 2007). 

Lack of clear parallels to the Hawaiian model may reflect Hawaii’s unique position as 

the most remote archipelago in the world or the unique susceptibility of the 
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Drepanidine radiation to exotic disease. Alternatively, introduced pathogens may 

have decimated similarly susceptible species so quickly that parallel declines have 

gone unrecorded elsewhere in the world. In the Pacific region especially, which 

harbors 24% of all threatened birds species (BirdLife International 2006), Hawaii, the 

Galapagos (Wikelski et al. 2004, Gottdenker et al. 2005, Parker et al. 2006) and New 

Zealand (Tompkins and Gleeson 2006) have received the vast majority of attention, 

to the neglect of numerous other archipelagoes, many of which are extremely isolated 

and home to small populations of endemics.  

To investigate the evolution of immunity in island taxa and to test for a 

common immunological signature of an island syndrome, we characterized 

immunological responses in endemic and recently-introduced bird populations on 

remote islands of the Pacific and compared the results to closely-related taxa from 

mainland Australia. Because vertebrate immunity depends on a diversity of defenses 

of variable specificity and inducibility (Schmid-Hempel and Ebert 2003) and because 

successful immune defense may emphasize just a single component of those defenses 

(Zuk and Stoehr 2002), we characterized multiple components of immunity using 

techniques that were applicable to wild and, in some cases, vulnerable populations. 

As a measure of constitutive innate immunity, we assayed levels of natural antibodies 

and complement in plasma (Matson et al. 2005). Natural antibodies are germ-line 

encoded molecules that are important in initial recognition of pathogens (Ochsenbein 

et al.1999) and may be linked to activation of the B-cell mediated production of 

specific antibodies (Parmentier et al. 2004). They are also integral for initiating the 

action of complement, a suite of enzymes that function together to lyse foreign cells 
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(Janeway et al. 2005). As an index of cell-mediated immunity, we measured the 

delayed-type hypersensitivity response to injection with the plant-derived mitogen 

PHA. The swelling that results reflects the action of T-lymphocytes, which secrete 

cytokines and direct the recruitment of macrophages, basophils, heterophils and B-

lymphocytes to the site of injection (Janeway et al. 2005). This response is potentially 

important in the defense against intracellular parasites such as viruses and 

haemosporidia (Gonzalez et al. 1999). A strong response has been linked to increased 

probability of survival (Gonzalez et al. 1999, Merino et al. 2000, Moller and Saino 

2004) and may be indicative of high exposure to parasites over evolutionary time 

(Martin et al. 2001). 

If evolution on remote, parasite-impoverished islands necessarily leads to 

increased susceptibility to exotic parasites, then we would expect immune responses 

to be lower in island populations relative to their mainland counterparts. In addition, 

we would expect this pattern to be most evident in island endemics relative to species 

that have been introduced to an island only recently. Alternatively, island 

colonization may lead to variable upregulation or downregulation of immune 

components depending on the costs of those components in a new environment, their 

lability in the face of genetic changes, and the particular parasites with which they are 

challenged. While a previous study pointed to defined patterns of immunological 

reorganization characteristic of an island syndrome (Matson 2006), here, we find no 

evidence for a uniformly reduced immune response or for other fixed patterns of 

change in island taxa. We explore this outcome in light of the genetic and 

parasitological context in which immunity has evolved and, through the consideration 
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of both recently-introduced and endemic island species, we address the timescale on 

which immunological changes have occurred in an extremely isolated avifauna. 

METHODS 

Avian System 

We characterized immune response, genetic variability, and parasite exposure in 

mainland populations of three species of songbirds and compared the results to 

closely related island populations or species representing isolation at two different 

time scales. As a model of short-term isolation on islands, we sampled populations of 

Red-browed firetails (Neochmia temporalis) and Silvereyes (Zosterops lateralis) from 

their native range in Australia (Blakers et al. 1985) and also from French Polynesia. 

N. temporalis was introduced to French Polynesia in the late 19th century and may 

have been reintroduced in 1938, while Z. lateralis was most likely introduced in 1938 

(Long 1981). As a model of long-term evolution in an island environment, we 

compared two island endemic species of Acrocephalus reed warbler to their most 

closely related mainland form (A. australis, Fleischer et al., unpublished manuscript). 

We sampled the Rimitara reed warbler (A. rimitarae) on Rimitara, Austral Islands, 

French Polynesia and the Bokikokiko (A. aequinoctialis) on Kiritimati, Line Islands, 

Kiribati as these species likely represent two distinct lineages of Pacific warblers 

(Fleischer et al., unpublished manuscript) and their populations were sufficiently 

large and accessible to accommodate sampling. 

Australian populations of N. temporalis, Z. lateralis and A. australis were 

sampled using mistnets between June and July, 2005 at several sites in the region 

from Brisbane south to the Clarence River. Island populations of N. temporalis and Z. 
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lateralis were sampled at two sites on Moorea, French Polynesia in July and August, 

2005. Rimitara reed warblers were sampled in August 2005 and Bokikokiko were 

sampled in March 2006. The timing of sampling insured that birds were not breeding, 

except in the case of the Bokikokiko which may breed opportunistically throughout 

the year given evidence of terrritoriality and nesting by some individuals in both 

March (pers. obs.) and mid-July (Milder and Schreiber 1982). In this case, we did not 

perform immune assays on females that were obviously attending a nest (i.e. females 

carrying an egg or possessing a well-developed brood patch). Protocols for handling 

birds were approved by Animal Care and Use Committees at the University of 

Maryland (R-05-19) and the Smithsonian National Zoological Park (05-10). 

Parasite Screening 

All captured birds were visually inspected for evidence of exposure to Avipoxvirus 

spp. (wartlike lesions on exposed skin). In addition, we screened blood smears for 

trypanosomes and microfilaria. For each slide, we scanned 30 fields at 100x and 50 

fields at 500x magnification. Finally, we screened DNA, extracted from blood 

samples using DNeasy kits (Qiagen), for evidence of haematozoa in the genera 

Haemoproteus, Leucocytozoon, and Plasmodium using molecular methods described 

previously (Beadell et al. 2004, Beadell and Fleischer 2005). PCR methods have 

proven more likely to detect haematozoon infection than microscopy alone (Richard 

et al. 2002). Briefly, we used primers F2/R2 and 213F/372R to detect parasite 

infections. The latter includes restriction sites that are diagnostic for the three 

different parasite genera. In order to evaluate the diversity of parasite lineages present 

in any population, we used forward primers F2, Fifi, or 3760F with reverse primer 
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4292rw2 to amplify a 295 to 533 bp fragment of cytochrome b, which was then 

sequenced and compared to sequences on GenBank to confirm parasite identification. 

We tested for significant differences in prevalence between island and mainland 

populations using Fisher’s exact test, since all comparisons involved cells with low 

values. 

Genetic Variability 

We quantified levels of genetic diversity using microsatellites designed by previous 

authors for use with taxa related to N. temporalis (6 loci; Sefc et al. 2001), Z. lateralis 

(12 loci; Degnan et al. 1999, Frentiu et al. 2003), and Acrocephalus spp. (12 loci; 

Hansson et al. 2000, Richardson et al. 2000). Loci chosen for use across species of 

Pacific Acrocephalus were originally isolated from distantly related taxa (A. 

arundinaceus or A. seychellensis) and therefore, ascertainment bias should not 

contribute to any differences in diversity observed between species. Generally, PCR 

reactions were carried out in a total volume of 10 uL with 1x PCR buffer, 1 U of 

AmpliTaq DNA polymerase (Applied Biosystems), 0.2 mM each dNTP (NEB), 0.5 

uM each primer, and concentrations of MgCl and/or betaine and other conditions as 

indicated in the online appendix. Products were separated on an ABI 3100 Genetic 

Analyzer (Applied Biosystems). Alleles were aligned and scored using Genotyper 2.5 

(Perkin-Elmer) and manually binned. All loci were tested for significant deviations 

from Hardy-Weinberg equilibrium (HWE) in Genepop. Samples that yielded 

homozygotes at any locus showing significant departures from HWE were rerun at 

less stringent conditions to reduce the likelihood of allelic dropout. 
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Values for observed heterozygosity were obtained from Genepop while values 

for allelic richness, genic diversity and the coefficient of inbreeding (FIS) were 

calculated using FSTAT v 2.9.3. Differences between mainland and island values 

were tested for significance across loci within each species (i.e., N. temporalis, Z. 

lateralis) or species group (i.e., Acrocephalus spp.) using a Wilcoxon signed-ranks 

test implemented with SAS v 9.1. In addition, we calculated internal relatedness (IR) 

for each individual using microsatellite allele data and the Excel spreadsheet 

IR_macroN3 (Amos et al. 2001). IR provides a measure of inbreeding (i.e. parental 

relatedness), which is similar to standardized heterozygosity but weights alleles by 

their frequency in the population. Thus, an individual homozygous for a rare allele 

will be scored as more inbred than an individual homozygous for a common allele. 

To test for a significant effect of inbreeding on immune measures, we reran the 

analysis of immune differences (described below), but added IR, as well as the 

interaction of IR with population, as fixed effects in the ANCOVA. 

Immunological Tests 

We characterized multiple components of the avian immune system. As a measure of 

investment in the cell-mediated immune response, we challenged a subsample of 

captured birds with the plant-derived mitogen phytohaemagglutinin (PHA). 

Following the basic protocol of Smits et al. (1999), we measured the patagium of 

captured birds to the nearest 0.01 mm with a digital small-face spline micrometer 

(Fowler) prior to and 24 hours after injection with PHA. Each measurement was 

repeated three times and averaged. Resultant swelling, which is widely used as a 

measure of the cell-mediated response (reviewed in Martin et al. 2001), reflects the 
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recruitment and proliferation of T-lymphocytes and macrophages at the site of 

injection, as well as the action of other leucocytes (Martin et al. 2006). For N. 

temporalis and Z. lateralis, we injected 20uL of a 1.5mg/mL solution of PHA (Sigma 

L9017) in PBS buffer (Sigma P4417) into the patagium. For all Acrocephalus spp., 

which were larger, we injected 25ul of a 3mg/mL solution. Birds were housed in 

portable cages in the shade and provided with ad libitum water and food (seeds, fruit, 

or larval-stage invertebrates depending on the species). 

We also characterized two components of constitutive innate immunity in 

plasma sampled from island and mainland populations. We measured levels of natural 

antibodies, as indicated by the agglutination of foreign red blood cells, and we 

measured levels of complement, as indicated by the lysis of these foreign cells 

(Matson et al.  2005). In the case of the island endemics A. aequinoctialis and A. 

rimitarae, as well as island and mainland populations of N. temporalis and Z. 

lateralis, plasma was obtained from blood samples taken immediately after capture of 

individuals that did not undergo further immunological testing. In the case of A. 

australis, several blood samples (n = 15) were collected after completion of the PHA 

assay (see results). Plasma was stored in a minus 20°C freezer in the field and then 

transferred to a -80°C freezer until assayed (June 2006). We performed serial 

dilutions (in PBS, Sigma P-4417) of plasma samples across 12 wells of a 96-well 

plate (Corning 3798) and then added an equal volume (25 uL) of 1% washed rabbit 

red blood cells (Hemostat R83546). Each plate included a dilution series of 7 

randomly chosen plasma samples plus a row of negative controls (PBS only) to aid in 

scoring agglutination and lysis endpoints. Plates were covered with parafilm, mixed 
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for 2 minutes on a rotary shaker, then placed in a 37°C incubator for 90 minutes. 

Following tilting of the plate at 45 degrees for 20 minutes, we created a computerized 

image for future scoring of agglutination, and then incubated the plate at 37°C for an 

additional 70 minutes. At this point, plates were again scanned to record the extent of 

lysis. Agglutination titer, scored blindly with respect to species and location, was 

determined by the last plasma dilution at which aggregated blood cells showed 

“peaking” relative to the negative control. Lysis titer was determined by the lowest 

concentration of plasma at which >50% of rabbit red blood cells had ruptured. Assays 

were repeated on samples for which sufficient plasma was available and scores for 

these samples were averaged. 

 Least squares means for mainland and island immune responses were 

generated and tested separately for each taxa using contrasts in PROC MIXED (SAS 

v 9.1). We employed an ANCOVA framework with immune response as the 

dependent variable, population (or species in the case of Acrocephalus) as the main 

effect, and body condition (the residuals of the regression of mass on tarsus length) as 

a covariate. In all cases, we tested for a significant interaction of condition with 

population before proceeding with a model that did not include the interaction term. 

RESULTS 

Parasite Prevalence and Diversity 

We did not detect trypanosomes, microfilarae or pox lesions in any individuals and 

therefore, parasite analyses are limited to haematozoan infections (fig. 1). Across all 

individuals of the three species surveyed in Australia (n = 165), we detected 8 unique 

lineages of blood parasite. In contrast, we detected only a single lineage of blood 
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parasite among the four island species (n = 174) surveyed on Kiritimati, Moorea and 

Rimitara.  

Within Z. lateralis, prevalence of Haemoproteus spp. in the introduced 

population on Moorea, French Polynesia (0%, n = 59) was significantly lower than 

that observed in Australia (39.1%, n = 64; p < 0.001), where only a single lineage was 

detected. Prevalence of Plasmodium spp. did not differ significantly between island 

(1.7%) and mainland (6.3%) populations of Z. lateralis, however, mainland 

populations harbored at least 2 lineages of Plasmodium, both of which were divergent 

from the single lineage detected in just one individual from the French Polynesian 

population (see below). 

No significant differences were observed in the prevalence of any blood 

parasites between island (n = 34) and mainland (n = 67) populations of N. temporalis. 

We detected a single individual infected with Leucocytozoon spp. in Australia and 

this parasite was not detected in the introduced population on Moorea, French 

Polynesia. In addition, Plasmodium spp. was detected in individuals from both 

populations at low prevalence (1.5 to 5.9%), however the lineage in Australia was 

different from that found in N. temporalis from French Polynesia. Interestingly, the 

only lineage of blood parasite recovered from any forest bird sampled on Moorea 

(including introduced species N. temporalis, Z. lateralis, Pycnonotus cafer (n = 10), 

Lonchura castaneothorax (n = 24), Acridotheres tristis (n = 10), Estrilda astrild (n = 

10), Geopelia striata (n = 8) and the endemic dove Ptilinopus purpuratus (n = 5)) 

identically matched the strain of avian malaria introduced to Hawaii (Beadell et al. 

2006), suggesting that it is a relatively recent introduction.  
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 Plasmodium spp. was the only blood parasite detected in the mainland taxon 

A. australis. The prevalence of Plasmodium spp. in A. australis was 17.7% (n = 34) 

and we detected three distinct lineages of parasite. In contrast, we did not detect any 

blood parasites in the endemic reed warblers A. aequinoctialis (n = 25) or A. 

rimitarae (n = 56). The difference in the prevalence of Plasmodium spp. between 

island and mainland taxa was significant (p = 0.03 for both comparisons). 

Genetic Diversity 

No locus exhibited a significant departure from HWE within any island or mainland 

population when p-values were Bonferroni corrected for multiple comparisons (p > 

0.004 for Acrocephalus spp. and Z. lateralis; p > 0.008 for N. temporalis). Ase13 and 

Ase58 exhibited significant linkage disequilibrium, but only within A. aequinoctialis 

(p < 0.0001). This is likely an artifact of low diversity given that these loci have been 

mapped to distinct linkage groups in the related warbler A. arundinaceus (B. Hansson 

pers. comm.) and that we did not detect linkage disequilibrium between these loci in 

either A. australis or A. rimitarae. All other pairs of loci appeared to segregate 

independently within each population when p-values were corrected for multiple 

comparisons (p > 0.0001 for Acrocephalus spp. and Z. lateralis; p > 0.003 for N. 

temporalis) and therefore, we treated locus-specific indices of diversity as 

independent samples when comparing genetic diversity between populations. 

 All loci examined were polymorphic in mainland populations of Z. lateralis 

and N. temporalis as well as recently introduced island populations of these species. 

In contrast, while 100% of loci were polymorphic in the mainland species A. 

australis, 3 of 12 loci were fixed in the island endemic A. aequinoctialis and 7 of 12 
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loci were fixed in A. rimitarae (genetic diversity indices summarized in table 1). 

Allelic richness tended to be lower in island populations of all species (or species 

groups) and the difference was significant in the case of the recently introduced island 

population of Z. lateralis (minimum n = 59, difference = -4.3 alleles, S = 33, p = 

0.001) as well as the endemic warblers A. aequinoctialis (minimum n = 25, difference 

= -5.8 alleles, S = 39, p = 0.001) and A. rimitarae (minimum n = 25, difference = -6.6 

alleles, S = 39, p = 0.001) relative to mainland counterparts. For Z. lateralis and N. 

temporalis, which were recently introduced to French Polynesia and in which allele 

frequency changes were unlikely to have been altered by mutation events, we tested 

whether low allelic diversity in French Polynesian populations could be attributed to 

the loss of rare alleles. For each species, we divided alleles recovered from the 

Australian source population into two classes depending on whether they had been 

retained or lost upon founding of the French Polynesian population. We excluded loci 

in which all alleles had been retained. For the remaining loci, we calculated the 

average frequency of alleles in each class and compared the difference across loci 

using a Wilcoxon signed-ranks test. As expected, the average frequency of alleles (in 

the Australian population) that were lost in French Polynesia tended to be lower than 

the frequency of alleles that were retained following colonization in N. temporalis (n 

= 5, ∆  frequency = -0.14, S = 7.5, p = 0.063) and this difference was signficant in Z. 

lateralis (n = 11, ∆ frequency = -0.226, S = 33, p = 0.001). 

No significant differences were detected in either gene diversity (HE) or 

observed heterozygosity (Ho) between recently introduced taxa and their mainland 

counterparts. However, both measures of heterozygosity were significantly lower in 
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the island endemics A. aequinoctialis (∆HE = -0.34, S = 36, p = 0.002, ∆Ho = -0.42, S 

= 39, p = 0.001) and A. rimitarae (∆HE = -0.50, S = 39, p = 0.001, ∆Ho = -0.51, S = 

39, p = 0.001) compared to A. australis. FIS, a measure of the overall level of 

inbreeding in a population, tended to be slightly, but not significantly, lower in 

recently introduced populations of Z. lateralis and N. temporalis relative to their 

mainland source (table 1). Conversely, FIS was higher in both island endemic 

warblers compared to the mainland taxon however this difference was not significant. 

Our power to detect a significant difference among warblers was impaired by high 

levels of fixation across microsatellite loci, which allowed for the comparison of FIS 

at just 4 polymorphic loci across all three species. 

Immune Response 

Across all immune tests, we did not observe consistent changes in island birds 

relative to their mainland counterparts, nor did we observe consistent trends even 

when island birds were grouped by island residence time (fig. 2). With regard to 

recently-introduced island residents, Z. lateralis in French Polynesia exhibited a 

significant decrease in cell-mediated response relative to the Australian population 

(difference = -0.34 mm, t = -4.37, df = 60, p < 0.001), however, no difference was 

evident between the innate response of island and mainland populations as measured 

by agglutination. The French Polynesian population of N. temporalis, on the other 

hand, showed no significant differences in either cell-mediated or innate immune 

response when compared to a mainland population. Neither species demonstrated a 

measurable lysis response in either island or mainland populations. 
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The two Acrocephalus species representing long-term island evolution 

exhibited strikingly divergent patterns of immune response across all three tests. A 

Wilcoxon-Mann-Whitney test for differences in innate immune responses between A. 

australis that had been treated with PHA (n = 15) and those that were untreated (n = 

4) revealed no significant differences (agglutination, Z = -1.18, p = 0.24; lysis, Z = -

1.52, p = 0.13), and therefore data were combined to provide a baseline for 

comparison to responses in endemic warblers. A. aequinoctialis exhibited little 

change in cell-mediated immune response relative to A. australis, however both 

measures of innate immunity were significantly lower (agglutination difference = -1.1 

titers, t =  -2.42, df = 40, p = 0.020; lysis difference = -1.1 titers, t = -3.15, df = 41, p 

= 0.003). In contrast, A. rimitarae exhibited significantly increased immune responses 

relative to A. australis across all three assays (patagial swelling difference = 0.26 mm, 

t = 3.66, df = 62, p < 0.001; agglutination difference = 1.3 titers, t = 3.91, df = 40, p < 

0.001; lysis difference = 0.6 titers, t = 2.38, df = 41, p = 0.022). 

Across Acrocephalus spp., agglutination titers and lysis titers were 

significantly correlated (n = 46, r = 0.69, p < 0.001). Among the 15 individuals of A. 

australis that were assayed for both cell-mediated and innate components of 

immunity, no correlation was evident between degree of patagial swelling and either 

agglutination or lysis titers. 

The effect of body condition on immune response was significant in the 

models of cell-mediated (F = 8.47, df = 60, p = 0.005) and innate (F = 4.96, df = 21, p 

= 0.037) responses observed in Z. lateralis. Condition did not contribute significantly 

to any other model of immune response in either N. temporalis or Acrocephalus spp. 
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Individual measures of breeding (IR) did not account for a significant proportion of 

variance in any immune response in any of the taxa assayed, nor did we recover a 

significant interaction between IR and population (or species in the case of 

Acrocephalus spp.). 

We examined the effect of infection status on immune response in A. australis 

and Z. lateralis from Australia, two populations in which infection rates were high 

enough to warrant tests. In A. australis, cell-mediated response tended to be lower in 

individuals infected with Plasmodium spp. (mean patagial swelling = 0.22, n = 5) 

compared to those that were uninfected (mean = 0.38, n = 19) but this difference was 

not signficant based on a t-test (t = 1.36, df = 22, p = 0.19). Similarly, no significant 

differences were observed in innate immune responses between infected and 

uninfected A. australis. Cell-mediated responses in Z. lateralis that were infected with 

Haemoproteus spp. (mean patagial swelling = 0.471, n = 9) also showed a decline 

relative to uninfected individuals (mean = 0.7088, n = 22) but this difference was not 

significant (t = 1.79, df = 29, p = 0.084), and the relationship became less obvious 

when comparing cell-mediated responses of mainland Z. lateralis infected (mean = 

0.55, n = 11) or uninfected (mean = 0.69, n = 20) with any blood parasite (t = 1.10, df 

= 29, p = 0.28). Again, no significant differences were observed in innate immune 

response between infected and uninfected individuals. 

DISCUSSION 

Our results do not uniformly support the hypothesis that island taxa exhibit reduced 

immunological capacity compared to mainland relatives, despite the fact that our 

system incorporated two key components that could theoretically drive an island 
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syndrome: reduced exposure to pathogens and reduced genetic diversity. Those taxa 

with the longest history of evolution on islands were no more likely to exhibit 

reduced immune responses than taxa with shorter island residence times. 

Furthermore, changes in the response of island taxa relative to their mainland 

counterparts were not consistent among taxa with similar island residency times. 

These results, along with similar reports of significant population-level variation in 

immune response (Lindström et al. 2004, Matson 2006, Whiteman et al. 2006), 

suggest that this response may be more appropriately considered in light of the 

particular parasite communities to which a population is exposed and the particular 

genetic background in which immunity is evolving. 

Recently Introduced Island Populations 

In keeping with the prediction of an island syndrome, the island population of Z. 

lateralis showed a significant decrease in cell-mediated immunity relative to its 

mainland source population, although innate immunity was unchanged. In contrast to 

Z. lateralis, however, the immunological profile of the other recently-introduced 

island resident N. temporalis was largely similar to that found in mainland 

individuals, though our sample size for innate immunity provided low power with 

which to detect a difference. The differential effects of island life on the cell-mediated 

immune response in these two species may be attributable to the degree to which the 

island forms have escaped mainland parasites. While the island population of Z. 

lateralis appeared to have lost a common mainland parasite (Haemoproteus spp.), 

prevalence of haemosporidian parasites in N. temporalis was largely unchanged in the 

island population relative to the mainland. N. temporalis exhibited a low prevalence 
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of infection with avian malaria (Plasmodium spp.) both on the mainland and in 

French Polynesia and the one parasite that may have been lost by the island 

population occurred only infrequently on the mainland (Leucocytozoon spp.). 

Haemosporidia represent only one class of parasite to which island birds may 

be differentially exposed. Given their potentially deleterious effects on reproduction 

and survival (Bennett et al. 1993, Merino et al. 2000, Valkiunas 2005), however, they 

are likely to be important factors structuring host immunity. The absence of 

Haemoproteus spp. in the island population of Z. lateralis may represent a relaxation 

of selection on the immune system, allowing for a shift in resources away from a 

costly nonspecific inflammatory cell-mediated response. Given that we did not detect 

any difference in response to PHA between mainland individuals that were infected 

or uninfected with Haemoproteus spp, it is unlikely that the population-level 

reduction in cell-mediated response observed in French Polynesia can be attributed to 

direct effects of parasitism on the response of mainland individuals. Parasitized 

individuals on the mainland tended to have lower cell-mediated response and thus, if 

these individuals were removed from consideration, the difference in response 

between island and mainland populations would have been even larger. 

Among recently-introduced taxa, the effects of reduced parasite exposure on 

immune response cannot be fully decoupled from the potential effects of reduced 

genetic diversity. As with blood parasite exposure, genetic composition was similar 

between the immunologically indistinguishable island and mainland populations of N. 

temporalis. On the other hand, the island population of Z. lateralis, which exhibited 

lower prevalence of parasites, also exhibited reduced allelic richness. Conforming to 



 

 115 
 

theoretical expectation, the alleles that were lost were rare in the mainland source 

population. If this reduction in allelic richness at neutral loci was accompanied by a 

parallel loss of functional alleles (e.g., antigen-binding motifs encompassed by the 

major histocompatibility locus and expressed on T-cells, Hansson and Richardson 

2005; but see Aguilar et al. 2004), then this loss might be reflected by reduced 

sensitivity to a novel antigen such as PHA. Increased inbreeding has also been 

demonstrated to be negatively correlated to cell-mediated immune response within 

bottlenecked populations of song sparrows (Reid et al. 2003) and house finches 

(Hawley et al. 2005). In Z. lateralis, however, we observed similar levels of 

heterozygosity in island and mainland populations and found no support for a 

relationship between immune response and individual measures of inbreeding. 

Therefore, while we cannot exclude the possibility that the loss of a particular allele 

has contributed to a population-level effect of reduced cell-mediated immune 

response, inbreeding is unlikely to have affected this response 

Island Endemics 

While the change observed in cell-mediated response across populations of Z. 

lateralis could simply reflect plasticity in the immune system, the changes observed 

in the two island endemics relative to their mainland counterpart may represent long-

term evolutionary responses to their isolated environment. A. aequinoctialis and A. 

rimitarae exhibit average pairwise cytochrome b divergences of 1.7% and 2.3%, 

respectively, from their closest mainland relative A. australis (based on 551 bp of 

cytb, K2P distances, data not shown). Using a molecular clock calibrated for 

passerine cytb (1.6% per million years; Fleischer et al. 1998) and correcting for 
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ancestral polymorphism (Nei and Li 1979, Avise et al. 1998) by subtracting the mean 

intraspecific divergence observed in the continental form (0.4%), these divergences 

equate to approximate separation times of 0.8 and 1.2 million years. Given this period 

of isolation, we expected that the strongest signal of an island syndrome would be 

found in the endemic reed warblers. Interestingly, the immunological profiles 

observed in A. aequinoctialis and A. rimitarae were extremely divergent and did not 

support this hypothesis, even though both species exhibited significant reductions in 

genetic diversity and reduced exposure to parasites. While A. aequinoctialis exhibited 

only reduced innate immune response relative to the baseline provided by A. 

australis, A. rimitarae exhibited significantly higher innate and cell-mediated 

responses than the mainland control. 

 If investment in immunity is costly, then the latter result is particularly 

surprising given the degree to which A. rimitarae has likely been exposed to 

pathogens. A. rimitarae, like A. aequinoctialis, appears to have escaped the avian 

malaria parasites present in its mainland congener, though the presence of a recently 

introduced lineage of parasite on adjacent archipelagoes suggests that this may soon 

change. Considering the isolation of Rimitara (ca. 3200 km east of Fiji, 6400 km east 

of Australia), the small island size (ca. 9km2), and the paucity of alternative terrestrial 

reservoirs for pathogens (four species including junglefowl and one introduced finch), 

our failure to detect haematozoa in A. rimitarae (as well as in the co-occurring finch 

L. castaneothorax, n = 10) may reflect an impoverished pathogen community in 

general. The same is likely true for Kiritimati, which is substantially larger, but 

similarly isolated (ca. 6400 km east-northeast of Australia) and host to just two 
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additional terrestrial bird species (a native lorikeet and junglefowl). On the other 

hand, native passerines may be exposed to at least some of the pathogens known to be 

present in semi-domesticated junglefowl in both French Polynesia and Kiribati 

(Pacific Animal Health Information System http://www.spc.int/rahs, Gottdenker et al. 

2005). We surveyed only a small fraction of the total pathogen community that may 

occur on these islands and therefore, it is possible that differential exposure to just a 

handful of unmeasured pathogens could be driving differential immune response. 

Futhermore, even if parasite communities on both islands are currently impoverished, 

slightly different histories of pathogen colonization and extinction on Rimitara and 

Kiritimati could be sufficient to drive differential investment in the immune system as 

well as differential partitioning of resources between arms of immunity. 

Another possible explanation for the generally high response observed in A. 

rimitarae may be that the particular immune reponses that we measured are not 

extremely costly to maintain and use. For example, Matson (2006) has proposed that 

insular birds may actually favor innate immune responses over adaptive humoral 

immunity. Likewise, while the inflammatory cell-mediated response can be costly in 

terms of both nutrients required (Lochmiller and Deerenberg 2000) and potential 

damage inflicted to the organism itself (Janeway et al. 2005), it is not well understood 

how these costs compare to those required to support the adaptive antibody mediated 

response, which we did not measure. Adaptive responses are generally cheap to use 

but can incur substantial developmental costs associated with the time and resources 

required to produce a diverse B-cell repertoire (Humphrey et al. 2002). 

Immunocompetence in the face of a particular challenge may manifest itself by the 
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absence of a response (Boots and Bowers 2004), or at least by varied emphasis on any 

particular arm of the immune system (Zuk and Stoehr 2002). Therefore, our results 

for A. rimitarae would support the hypothesis of an island syndrome if the high 

responses observed were coupled to downregulation of a much more costly adaptive 

immune response. The increased cell-mediated response observed in A. rimitarae is 

consistent with the gradient of increasing inflammatory response observed in 

Galapagos finches exposed to fewer pathogens on increasingly smaller islands 

(Lindström et al. 2004). However, we did not observe a concomitant reduction in 

natural antibody titers, which was observed in the Galapagos finches and which may 

be indicative of adaptive antibody immune capacity (Parmentier et al. 2004). In 

addition, the contrasting immunological profile of A. aequinoctialis highlights the fact 

that immunological reorganization in island taxa, if it occurs at all, is not uniform. 

 One factor underlying this lack of uniformity in immune response may be the 

stochastic nature of genetic drift acting on regulatory regions or functional genes 

associated with immunity. As observed in Z. lateralis, an initial bottleneck associated 

with island colonization may result in a loss of allelic diversity across the genome, 

which if associated with a concomitant loss of MHC diversity (Richardson and 

Hansson 2005) could lead to reduced surveillance for foreign antigens. Over the 

longer-term, small island populations may exhibit further erosion of allelic diversity, 

as well as reduced heterozygosity and higher levels of inbreeding, as evidenced in A. 

aequinoctialis and A. rimitarae. Changes in immune response observed in 

bottlenecked or inbred populations (Reid et al. 2003, Hawley et al. 2005, Hale and 

Briskie 2007) may be linked to indirect effects of inbreeding, the random loss of 
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resistance alleles, and also the loss of any advantages that may be associated with 

overdominance. In addition, deleterious mutations in immunologically-important 

regions of DNA may become fixed given the increasing strength of drift over 

selection in small populations and the fact that selection may be reduced if the 

pathogenicity of the island environment is indeed reduced. Fixation of a mutation 

affecting regulation of the cell-mediated immune pathway could explain the 

unusually strong response observed in A. rimitarae. An optimal immune response is 

not necessarily a maximal response (Viney et al. 2005) and therefore, the strong 

immune response that we observed may be more indicative of a damaging allergic 

reaction than increased investment in that particular arm of immunity or increased 

ability to fight off disease. 

Conclusions 

Our results indicate that 1) significant reorganization of the inflammatory cell-

mediated response as well as levels of innate immune compounds such as natural 

antibodies and complement may occur following island colonization and 2) 

immunological reorganization in island taxa is not uniform, even among taxa with 

similar residence times. Variation in immunological profiles likely reflect small 

differences in the pathogenic landscape and the stochastic history of mutation and 

genetic drift in small populations. Unfortunately, it is not clear to what extent high or 

low immune response can be linked to the phenotypes in which we are most 

interested: disease resistance or susceptibility (Adamo 2004). Similarly, while 

numerous studies have equated reduced genetic diversity to increased disease 

susceptibility (O’brien et al. 1985, Roelke et al. 1993, Acevedo-Whitehouse 2006, 
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Reid et al. 2003, Hawley et al. 2005, Pearman and Garner 2005), this relationship is 

not universally applicable (Reid et al. 2003, Spieleman 2004). Therefore, predicting 

the susceptibility of the many small and threatened populations of birds residing on 

islands of the remote Pacific may not be feasible. In the case of the genus 

Acrocephalus, the detection of a Hawaiian-like strain of avian malaria in populations 

of A. mendanae from the Marquesas, French Polynesia (Beadell et al. 2006) has 

provided the basis for a natural experiment. This species, like A. aequinoctialis and A. 

rimitarae, is a long-term island resident and exhibits reduced genetic diversity similar 

to its congeners studied here (unpubl. data). Interestingly, A. mendanae is apparently 

robust to infection with the introduced parasite and provides some hope that related 

members of the widely-distributed and highly endemic Pacific genus Acrocephalus 

will not be decimated by this parasite. We should be careful, however, in 

extrapolating even this far, considering that even the Hawaiian honeycreepers exhibit 

substantial variation in susceptibility to malaria (Jarvi et al. 2001) although they share 

a common evolutionary background. Immunity integrates not only energetic 

investments, which may be constrained by variable physiological demands of 

alternate life histories and differential parasite exposure, but also genetically-

determined molecular recognition and regulation systems which are subject to 

random, population-specific effects of drift. Therefore, immunity in isolated fauna is 

unlikely to follow the simple heuristic of an island syndrome and may be best assayed 

with experimental challenges employing the particular pathogen of interest. 
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TABLE 

Table 1. Genetic diversity indices for introduced and endemic island taxa compared 

to their mainland counterpart. 

 
Population n % Loci 

polymorphic 
(total surveyed) 

Allelic 
richness 

HE Ho FIS
a 

       
Introduced       
       
Z. lateralis       
    Mainland 64 100 (12) 8.1 0.57 0.54 0.048 
    Island 59 100 (12) 3.8 0.52 0.53 -0.027 
       
N. temporalis       
    Mainland 68 100 (6)    10.1 0.69 0.67 0.032 
    Island 34 100 (6) 8.0 0.70 0.69 0.007 
       
Endemic       
       
Acrocephalus spp.       
    Mainland  
    (A. australis) 

34 100 (12) 8.3 0.69 0.68  -0.005 

    Island  
    (A. aequinoctialis) 

25  75 (12)      2.5 0.35  0.28 0.124 

    Island  
    (A. rimitarae) 

56  42 (12)      1.7 0.19  0.17   0.145 

 

Bold face indicates significant differences in the island index relative to the mainland 

(p < 0.05). 

a For comparative purposes, FIS for Acrocephalus is based on only 4 loci for which 

gene diversity (i.e., expected heterozygosity) was non-zero in all three species. 
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FIGURE LEGENDS 

Figure 1. Prevalence of the haematozoan parasites Plasmodium spp. (black), 

Haemoproteus spp. (light grey) and Leucocytozoon spp. (dark grey) across mainland 

and island populations of Z. lateralis, N. temporalis, and Acrocephalus spp. Asterisks 

indicate significantly lower parasite prevalences in recently introduced island 

populations (Haemoproteus spp. in Z. lateralis) or island endemic species 

(Plasmodium spp. in A. aequinoctialis, above, and A. rimitarae, below) relative to 

their mainland counterparts. 

 

Figure 2. Cell-mediated (PHA-induced patagial swelling) and innate (agglutination 

and lysis of rabbit red blood cells) measures of immune response in endemic and 

recently-introduced island taxa (circles) relative to a mainland control (centered at 

zero). Numbers indicate sample size and standard error is depicted by vertical bars, or 

by grey shading in the case of the mainland control. Filled circles indicate a 

significant difference from the mainland control. 
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APPENDIX 

Appendix 1. PCR conditions for microsatellite loci. 

    Locus Tm (°C) Mg (mM) Betaine (%) BSA (mg/mL) Cycles Source 
N. temporalis       
    IND7 54 1.5 -- -- 35 Sefc et al. 2001 
    IND8 56 1.0 -- -- 35 Sefc et al. 2001 
    IND28 56 1.5 -- -- 35 Sefc et al. 2001 
    IND29 56 1.5 -- -- 35 Sefc et al. 2001 
    IND38 54 1.5 -- -- 35 Sefc et al. 2001 
    IND41 54 1.5 -- -- 35 Sefc et al. 2001 
Z. lateralis       
    ZL12 58 1.5 10 -- 35 Degnan et al. 1999 
    ZL14 58 2.0 -- 1.0 35 Degnan et al. 1999 
    ZL18 58 1.5 10 1.0 35 Degnan et al. 1999 
    ZL22 57 1.5 10 -- 35 Degnan et al. 1999 
    ZL35 60 1.5 10 -- 35 Degnan et al. 1999 
    ZL38 56 2.0 -- -- 35 Degnan et al. 1999 
    ZL41 53 2.0 -- 1.0 35 Frentiu et al. 2003 
    ZL44 53 1.0 10 -- 30 Frentiu et al. 2003 
    ZL45 58 1.5 -- -- 39 Frentiu et al. 2003 
    ZL46 54 2.0 10 1.0 35 Frentiu et al. 2003 
    ZL50 59 1.5 -- -- 35 Frentiu et al. 2003 
    ZL54 58 1.5 10 -- 35 Frentiu et al. 2003 
Acrocephalus spp.       
    Aar2 60 1.5 -- -- 35 Hansson et al. 2000 
    Ase7 60 1.0 -- -- 35 Richardson et al. 2000 
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    Ase9 60 1.0 -- -- 35 Richardson et al. 2000 
    Ase11 62 1.5 -- -- 35 Richardson et al. 2000 
    Ase12 60 1.5 -- -- 35 Richardson et al. 2000 
    Ase13 62 1.5 -- -- 35 Richardson et al. 2000 
    Ase34 60 1.5 -- -- 35 Richardson et al. 2000 
    Ase48 60 2.0 -- -- 35 Richardson et al. 2000 
    Ase51 60 1.5 -- -- 35 Richardson et al. 2000 
    Ase56 60 1.5 -- -- 35 Richardson et al. 2000 
    Ase57 TDa 1.5 -- -- 35 Richardson et al. 2000 
    Ase58 60 2.0 -- -- 35 Richardson et al. 2000 
 
a Touch-down cycle as in Richardson et al. 2000.
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