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 Stochastic optimization methods are now being widely used in a multitude of 

applications. This dissertation includes three essays on applying stochastic 

optimization methods to solve problems in inventory management and financial 

engineering. 

Essay one addresses the problem of simultaneous price determination and 

inventory management. Demand depends explicitly on the product price p, and the 

inventory control system operates under a periodic review (s, S) ordering policy. To 

minimize the long-run average loss, we derive sample path derivatives that can be 

used in a gradient-based algorithm for determining the optimal values of the three 

parameters (s, S, p) in a simulation-based optimization procedure. Numerical results 

for several optimization examples via different stochastic algorithms are presented, 

and consistency proofs for the estimators are provided. 

Essay two considers the application of stochastic optimization methods to 

American-style option pricing. We apply a randomized optimization algorithm called 

Model Reference Adaptive Search (MRAS) to pricing American-style options 

through parameterizing the early exercise boundary. Numerical results are provided 



for pricing American-style call and put options written on underlying assets following 

geometric Brownian motion and Merton jump-diffusion processes. We also price 

American-style Asian options written on underlying assets following geometric 

Brownian motion. The results from the MRAS algorithm are compared with the 

cross-entropy (CE) method, and MRAS is found to be an efficient method. 

Essay three addresses the problem of finding the optimal importance sampling 

measure when simulating portfolios of credit risky assets.  We apply a gradient-based 

stochastic approximation method to find the parameters in the minimum variance 

problem when importance sampling is used. The gradient estimator is obtained under 

the original measure. We also employ the CE method to solve the same variance 

minimization problem. Numerical results illustrating the variance reduction are 

presented for the estimation of the portfolios’ expected loss, unexpected loss and 

quantiles. 
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Chapter 1  

 

Introduction 

 

Stochastic search and optimization techniques are widely used in a vast number of 

areas, including aerospace engineering, medicine, transportation, supply chain, 

statistics, and finance. Stochastic optimization refers to the minimization (or 

maximization) of a function in the presence of randomness in the optimization 

process and/or function evaluation. Stochastic methods are able to handle many 

problems for which deterministic optimization methods are inappropriate.  

This dissertation applies stochastic optimization methods to solve problems in 

the field of financial engineering and inventory management.  Specifically, the 

dissertation consists of three essays addressing the following problems: 

simultaneously determining optimal price and inventory levels in an (s, S) inventory 

system via stochastic approximation approaches; applying a model reference adaptive 

stochastic search algorithm to price American-style options; estimating the optimal 

measure change of importance sampling for portfolios of credit risky assets via a 

gradient-based stochastic approximation method and a random search algorithm.  
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1.1 Sample Path Derivatives for (s, S) Inventory Systems with Price 

Determination 

This essay addresses an important problem in the interface between marketing and 

inventory planning, specifically that of simultaneously finding the optimal price and 

the optimal inventory control parameters in the face of uncertain price-dependent 

demands. In particular, we study a periodic-review, single-product inventory system 

with the objective of minimizing the average infinite-horizon loss rate (maximizing 

the average long-term profit rate), where the stationary demands faced by the system 

depend on the constant price p, and the system adopts an (s, S) control policy, in 

which an order is placed when and only when its inventory position falls below the 

level s, and the order amount is such that it will bring the inventory level up to S. 

Under certain conditions, an (s, S) policy has been proven to be optimal for inventory 

systems with a fixed ordering cost. Scarf (1960) showed that an (s, S) policy was 

optimal for the finite horizon dynamic inventory system in which the ordering cost 

was linear plus a fixed reorder cost and holding/penalty costs were convex. Clark and 

Scarf (1960) extended the results to multi-echelon inventory systems. Iglehart (1963) 

extended Scarf's study to the infinite horizon case and considered non-zero delivery 

lead-times, obtaining bounds on s and S, and investigating the limiting behavior of (s, 

S) pairs. Veinott and Wagner (1963) developed a computational approach for finding 

an optimal (s, S) inventory policy for the fully backlogged model with fixed set-up 

cost, linear purchase cost and i.i.d. discrete random demands. Hollier et al. (2005) 

applied algorithms based on branch-and-bound tree search technique and genetic 

algorithms to a modified (s, S) inventory system with lumpy demand items. A 
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detailed review on the evolution of inventory theory can be found in Scarf's (2002) 

paper. 

Thomas (1974) incorporated pricing decisions into the (s, S) control policy, 

and the resultant strategy is referred to as an (s, S, p) policy.  In this policy, the 

optimal price p is set to be contingent upon the inventory level and can change from 

one period to another.  Federgruen and Heching (1999) characterized the structure of 

an optimal combined pricing and inventory strategy for both finite and infinite 

horizon models with variant price change restrictions. Feng and Xiao (2000) 

considered a continuous-time model with multiple prices and reversible changes in 

prices. They found that the optimal price level was based on the length of remaining 

sales time and on-hand inventory. More recently, Chen and Simchi-Levi (2002) used 

dynamic programming to determine price and inventory levels simultaneously at the 

beginning of each period. They showed that an (s, S, p) policy is optimal when the 

demand model is additive. 

Dynamic pricing may not be desirable in some industries or for some 

companies. Under many circumstances, a more stable pricing policy than the 

aforementioned inventory-contingent ones is preferred, e.g., Wal-Mart's “Everyday 

Low Prices”. Also for mature products with stable demand that generally incorporate 

little seasonal effect or advanced technologies, there is relatively little price 

fluctuation, so the single price model is appropriate. Furthermore, Gallego and Van 

Ryzin (1994) showed that the optimal fixed-price policy is nearly as good as the 

optimal inventory-contingent one under rather mild assumptions. In this essay, we 
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assume there is a fixed price to be selected that influences the future demand levels in 

a known way, and an (s, S) policy is used to control the inventory.  

According to Spall (2003), stochastic optimization algorithms are 

optimization algorithms that have one or both of the following properties: 1) There is 

random noise in the measurements of the criterion to be optimized and/or related 

information, such as the gradient vector of the criterion; 2) There is a random choice 

made in the search direction as the algorithm iterates toward a solution. The first 

property arises in simulation-based optimization where Monte Carlo simulations are 

run as estimates of an actual system. This class of algorithms includes Robbins-

Monro (1951) stochastic approximation (RMSA), finite difference stochastic 

optimization (FDSA), and simultaneous perturbation stochastic optimization (SPSA) 

introduced by Spall (1992). Algorithms satisfying the second property include genetic 

algorithms, simulated annealing, and random search algorithm (Zhigljavsky, 1991). 

Reviews of techniques for simulation-based optimization can be found in Jacobson 

and Schruben (1989), Safizadeh (1990), and Fu (1994, 2002); see also Spall (1999) 

for a detailed review on stochastic optimization. 

Three stochastic optimization algorithms are used to find the optimal 

parameters in this essay: RMSA, a gradient-based search algorithm, SPSA, and 

simulated annealing (Kirkpatrick et al., 1983). To use gradient-based optimization 

requires sample path derivatives, the main focus of our work. 

Fu (1994a) developed sample path derivatives using perturbation analysis (PA) 

for an inventory system adopting the (s, S) control policy, and Fu and Healy (1997) 

investigated their use in simulation-based optimization. Systematic and thorough 
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reviews on gradient estimation via perturbation analysis can be found in Glasserman 

(1991), Ho and Cao (1991), Fu and Hu (1997), and Fu (2006). We also use PA to 

derive our sample path derivatives. Similar to Fu's (1994a) approach, we implement 

infinitesimal perturbation analysis (IPA) and smoothed perturbation analysis (SPA) to 

estimate the derivatives. In Fu's model, demand is assumed to be exogenously 

specified, whereas in our model it depends on product price, which allows demand to 

be adjusted according to product properties such as price elasticity of demand. The 

inclusion of price in the model makes the derivation more complicated. 

 

1.2 Applying Model Reference Adaptive Search to American-style Option 

Pricing 

Pricing American option is a challenging problem in the financial engineering due to 

the early exercise features. Because of the complexity of the underlying dynamics, 

analytical models for option pricing entail many restrictive assumptions. Indeed, there 

is no analytical solution for the valuation of an American option on a single dividend-

paying asset in the standard Black-Scholes framework. Methods other than applying 

simulation include lattice methods such as binomial and trinomial trees, and finite 

difference methods to solve the associated boundary condition partial differential 

equations (PDEs). In general, the computational speed of these methods is 

significantly better than that of simulation methods for simple models; however, these 

methods often only handle limited number of uncertainty sources in low dimension 

and become impractical in situations where there are multiple factors. For instance, 

pricing an Asian option is generally required to solve a PDE in two space dimensions, 
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which is prone to oscillatory solutions. In contrast, Monte Carlo simulation methods 

are more widely applicable, because they have no problem in dealing with high 

dimension and can manage complicated derivatives with more state variables. A 

number of simulation-based approaches have been developed to price American 

options since the 1990s.  

A standard Monte Carlo simulation generates final payouts independently and 

averages them to obtain the expected value, while early exercise requires knowledge 

of the option value at intermediate dates and performs non-linear operations along the 

way. We classify Monte Carlo simulation algorithms designed to handle early 

exercise features into three main categories. The first class casts the problem in a 

stochastic dynamic programming framework and employs a backwards induction 

algorithm. At each early exercise date, the payoff from immediate exercise is 

compared to the holding value, i.e., the conditional expectation from keeping the 

derivative alive. However, computing this conditional expectation can become 

computationally prohibitive as the dimension of the problem increases, and the next-

stage value function is calculated over its entire asset space domain. Tilley (1993) 

first applied a bundling technique to approximate the holding values at early exercise 

points. Improvements on the Tilley’s methods include Carriere (1996), who used a 

spline and local regression technique to approximate the conditional expectations and 

find the optimal stopping in finite discrete time; and Longstaff and Schwartz (2001), 

who used least-square regression to provide a direct estimate of the conditional 

expectation function in high-dimensional setting. In addition, Tsitsiklis and Van Roy 

(2001) provided theoretical results that help explain the success of approximate 
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dynamic programming methods. Laprise et al. (2006) applied secant and tangent 

interpolations to construct a piecewise linear approximation of the value function, and 

estimate the American-style derivative by pricing a portfolio of European options at 

varying strike prices.  

The second class of algorithms characterizes the optimal early exercise 

policies directly. Grant et al. (1996, 1997) identified the optimal critical price, i.e., the 

price below (above) which it is optimal to exercise for American put (call), using the 

backward recursive technique of dynamic programming and incorporated this early 

exercise feature into Monte Carlo simulation. Fu and Hu (1995) cast the American 

option pricing problem as an optimization problem of maximizing the expected 

payoff with respect to the early exercise thresholds, and incorporated the gradient 

estimates in an iterative stochastic approximation algorithm. Fu et al. (2001) 

presented another way to solve this optimization problem using simultaneous 

perturbation stochastic approximation (SPSA) proposed by Spall (1992).  

The third class of algorithms is based on obtaining upper and lower bounds 

from simulated paths and backwards recursion. Broadie and Glasserman (1997) 

proposed a method based on simulated nonrecombining trees, where both bounds 

converge to the true price as computational effort increases. Broadie and Glasserman 

(2004) introduced a stochastic mesh method for pricing high-dimensional American 

options with a finite, but possibly large, number of exercise dates. The computational 

effort of this algorithm is linear in its dependence on the number of exercise dates, in 

contrast to the exponential dependence for random tree method.   
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Other versions of approximate value iteration have also been proposed in the 

options pricing literature. Some involve partitioning the state space and computing 

one value per partition. Barraquand and Martineau (1995) combined Monte Carlo 

simulation with stratified state aggregation techniques to approximate the price of 

American securities. This can be viewed as a version of approximate value iteration 

involving piecewise constant approximations. Furthermore, Keber (1999) 

implemented a genetic programming approach to derive a formula for American put 

options and showed that genetically determined formulas outperformed most 

frequently quoted analytical approximations in calculating the implied volatility 

based on the Black-Scholes model.  

In this essay, we apply a randomized algorithm called Model Reference 

Adaptive Search (MRAS) for pricing American-style options by solving an 

optimization problem in the spirit of the second class of algorithms discussed above. 

We compare our numerical results with those computed from perturbation analysis 

stochastic approximation (PASA) and SPSA approaches described in Fu et al. (2001).  

MRAS was proposed by Hu et al. (2007). The main idea of this approach is 

similar to that of the cross-entropy (CE) method (Rubinstein and Kroese 2004), which 

has been successfully applied to a wide range of combinatorial optimization and rare-

event estimation problems. In contrast to instance-based methods such as simulated 

annealing (Aarts and Korst, 1989), threshold acceptance (Dueck and Scheur, 1990), 

genetic algorithms (GAs) (Srinivas and Patnaik 1994) and tabu search (Glover 1990), 

where the new candidate solutions generated in the next iteration depend directly on 

solution or the ‘population’ of solutions from previous step, both MRAS and CE fall 
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in the category of model-based search algorithms, which construct a random sequence 

of solutions via an intermediate probabilistic model that is updated from the previous 

solutions in such a way that the search will concentrate in the regions containing high 

quality solutions, and usually involve the following two iterative phases: 

1. Generate candidate solutions (random data samples, vectors, trajectories, etc.) 

according to a specified random mechanism, e.g., a parameterized probability 

distribution. 

2. Update the parameters of the random mechanism, typically parameters of pdfs, 

on the basis of the data collected in the previous step, to produce a “better” 

sample of candidate solutions in the next iteration. 

The obtained parameters tend to coincide with the parameters that minimize 

variance in most cases such that the outcome converges probabilistically to the 

optimal or near-optimal solution.  

 

1.3 Optimizing Importance Sampling Parameter for Portfolios of Credit Risky 

Assets 

Credit risk modeling has gained increasing interest among bankers and other portfolio 

managers since the mid-1990s, and the development of market risk management 

measures such as value-at-risk (VAR) has accelerated this approach. Accurate 

assessments of the risk of large potential losses on a credit portfolio play a key role in 

the management of financial institutions with large credit portfolios. Credit risk is the 

risk due to uncertainty in counterparty’s ability to meet its obligations. The 

counterparty could be an individual, a corporation or financial institution, or a 
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sovereign government. The most common corporate credit instruments are bonds and 

loans.  

 Two primary types of credit risk have been described in the literature. The 

first — structural credit risk models — identify the loss in the portfolio if the obligor 

has defaulted on its legal obligations within a certain time horizon. The first structural 

model was proposed in Black and Scholes’ (1973) influential paper on option pricing 

and was studied in more detail in Merton (1974). In Merton’s model, default 

probabilities are calculated on the basis of a firm’s capital structure and asset 

volatility. A firm defaults when the value of its liabilities exceeds its assets at the 

debt’s maturity date, and it uses an option framework to calculate this risk neutral 

default probability. A popular implementation of this model is the commercial KMV 

(Kealhofer, McQuown and Vasicek) model that is the foundation of our study in this 

essay. Another approach, within the structural framework, was introduced by Black 

and Cox (1976). In contrast to the Merton model, defaults occur as soon as the firm’s 

asset value falls below a certain threshold in this model, that is, default can occur at 

any time. The structural models allow default hedging, but are difficult to calibrate to 

the market data.  

 The second method — reduced form models, also called intensity models — 

is marked to market. They recognize any gains or losses in the value of a debt 

security caused by changes in the credit quality of the obligor over the measured time 

horizon. Reduced form models use market prices of the firms’ defaultable instruments 

such as bonds or credit default swaps, to extract both their default probabilities and 

their credit risk dependencies. In contrast to the structural models, they rely on the 
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market as the only source of information without considering any information 

included in balance sheets or equity prices. A portfolio's market value resulting from 

defaults or changes in credit ratings are modeled, and the time of default is not 

determined via the asset and liability value of the firm, but by an exogenously given 

jump process. The first published intensity model appears to be Jarrow and Turnbull 

(1995). Subsequent research includes Duffie and Huang (1996), Jarrow et al. (1997), 

and Duffie and Singleton (1997). Madan and Unal (1998) presented one of the first 

intensity-based credit risk models. In their model the event of default has two 

underlying risk components, one associated with the timing of the event and the other 

with its magnitude. The default intensity is directly linked to the market value of the 

firm's equity.  

 Despite the different methodologies, all credit risk models develop a 

distribution of possible credit portfolio values at some point in the future. Correlated 

changes in the credit quality of underlying risky assets result in changes in the value 

of exposures. These exposures are then aggregated to produce the portfolio loss 

distribution, which indicates the probability of achieving a certain portfolio value 

over a certain time period. Most of the time the risky asset does not default and the 

loss is zero; however, the loss is usually substantial when default occurs. 

Consequently, the distribution of possible future losses for a portfolio of credit risky 

assets shows strongly asymmetric behavior and a fat tail as a consequence of the 

limited upside of credit (the promised coupon payment) and substantial but rare 

downside if the corporation defaults. It is not possible to fully diversify away the fat 

tail because of correlation. There is always a large probability of relatively small 



 12 

losses and a small probability of rather large losses. Because of the complexity of the 

portfolio structure, Monte Carlo simulation is widely applied to determine the loss 

distribution for a credit portfolio. However, it is usually time consuming to apply 

Monte Carlo simulation to provide sufficiently accurate estimation. The size of the 

portfolios and the complexity of the assumptions make speed issues particularly acute. 

Therefore, variance reduction methods that can speed up the computation are of 

substantial interest.  

Importance sampling (IS) method is a common variance reduction technique 

for increasing the efficiency of Monte Carlo simulation. The basic idea is to focus 

simulation effort on the most important regions of the space from which samples are 

drawn. The simulation outputs are weighted to correct for the use of the biased 

distribution, and this ensures that the new IS estimator is unbiased. The weight is 

given by the likelihood ratio, that is, the Radon-Nikodym derivative of the true 

underlying distribution with respect to the biased simulation distribution. An 

overview of importance sampling methodology can be found in Glasserman (2003).  

Some recent work on applying IS in credit risk portfolios include Kalkbrener et al. 

(2003), Morokoff (2004), and Glasserman et al. (2005).  

The fundamental issue in implementing IS simulation is the choice of the 

biased distribution that enhances the frequency of the important events, and 

compensates the bias through the multiplication by the likelihood ratio. The rewards 

for a good distribution can be huge run-time savings; the penalty for a bad 

distribution can be longer run times than for a standard Monte Carlo simulation 

without any special techniques. Vazquez-Abad and Dufresne (1998) employed 
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gradient-based method to estimate the optimal importance sampling measure in 

pricing Asian options. Su and Fu (2002) proposed a similar stochastic approximation 

method but using a more general gradient estimator derived under a different measure. 

Because we can cast choosing the optimal measure change of importance sampling as 

an optimization problem, we will use stochastic search algorithms such as CE method 

to find the optimal solution, as well. More studies on the selection of an importance 

sampling change of measure that leads to an efficient variance reduction will be 

presented in this essay.    

 

1.4 Research Contributions  

Stochastic optimization methods have been playing a rapidly grow role in the analysis, 

design, and operation of modern systems. They provide a way of handling inherent 

system noise and models that are inappropriate for classical deterministic methods of 

optimization. In this dissertation, we studied extensively the application of stochastic 

optimization in the field of inventory management and financial engineering. The 

main contributions are: 

 

i) We apply a stochastic approximation algorithm to find optimal price and 

inventory levels for an (s, S) system with price determination. The 

gradient estimators are derived and used in an iterative gradient-based 

optimization algorithm. Consistency proofs for the estimators are provided. 

We apply three stochastic optimization algorithms to the (s, S, p) 

inventory model and study the behavior of optimal parameters. The results 
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from the gradient-based algorithm RMSA are compared with those from 

SPSA and simulated annealing approaches. We study the effect of unit 

holding cost, fixed ordering cost and price elasticity of demand in 

estimating optimal inventory levels and selling price. Price is found to be 

the determining factor, because revenue is much larger than the fixed 

ordering cost and holding costs in all the numerical cases. We also 

demonstrate that RMSA is most efficient in terms of convergence 

performance, because of the gradient information.  

  We consider a single product model in our studies, while the 

realistic problems are more complicated with possible correlations 

between similar products or dynamic pricing involved. There are 

numerous software packages available for merchandise optimization in 

industry, e.g., the leading retail software vendor ProfitLogic provides 

Retail Profit Optimization solutions to manage retailers’ pricing and 

discounting policies in order to get the most revenue possible on their 

inventories. Compared with those real-world models, only a simple case 

with three parameters is studied in this essay; however, our model 

provides a framework to determine the inventory levels and fixed price 

simultaneously under some mild conditions and it is extendable.  

 

ii) We apply a stochastic optimization method called Model Reference 

Adaptive Search to price American-style options through parameterizing 

the early exercise thresholds. The optimal values are reached for various 
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cases, including American call option, American put option, and path 

dependent American-style Asian options, assuming the underlying asset 

follows geometric Brownian motion or the Merton jump-diffusion process. 

We demonstrate that the global maximum is consistently found for 

varying initial condition settings and conclude that MRAS can be a very 

effective approach. The optimization algorithm presented in this essay is 

widely applicable, and not just limited to the cases we have studied.   

 

iii) We provide a general framework to find optimal measure change in 

employing importance sampling technique in Monte Carlo simulation. To 

reduce variance in estimating loss of a portfolio of credit risky assets by 

Monte Carlo simulation, we formulate a parametric minimization problem 

for the optimal importance sampling measure. We apply a gradient-based 

stochastic approximation algorithm via infinitesimal perturbation analysis 

and the CE method to solve the optimization problem. Both algorithms 

converge efficiently to the optimum and yield a significant improvement 

in accuracy in estimating the expected loss, unexpected loss, and quantiles. 

We also show that the objective function is a convex function. The 

stochastic optimization approaches we present in this essay are capable of 

finding the optimal change of importance sampling measure efficiently. 

We found significant variance reductions from the simulation results, with 

the computational gains ranging from 2.0 to 82.6 in our numerical 

examples.  
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Chapter 2  

 

Sample Path Derivatives for (s, S) Inventory Systems with 

Price Determination 

 

This essay is organized in the following manner. Section 1 reviews the (s, S, p) 

model and the demand structure. The IPA analysis is presented in Section 2, and the 

SPA analysis is developed in Section 3. Section 4 contains the consistency proof for 

the infinite horizon model. Section 5 presents a numerical example where the 

estimators are used in a gradient-based algorithm to search for the optimal setting of 

the parameters (s, S, p). The results are compared with those from SPSA and 

simulated annealing. Section 6 concludes the essay with a brief summary. 
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2.1 Model Formulation 

Consider a firm that has to make production and price decisions under stationary 

independently and identically distributed (i.i.d.) demand that depends on a constant 

product price. For each period t, t = 1,2 …, T, let 

       Dt := demand in period t, i.i.d., with p.d.f. f and c.d.f. F, 

       p: = selling price. 

where the demand function is of the general form  

       )()(:),( pppdD ttt δγεε +==                                                       (2.1) 

with γ(.) and δ(.) nonincreasing functions and εt assumed to be i.i.d. The cases γ(p) = 

1 and δ(p) = 0 are often referred to as the additive and multiplicative model, 

respectively. We use additive stochastic demand functions in our model with δ(p) = b 

– a*p, a, b > 0, where a is the price elasticity of demand, which measures the nature 

and degree of consumers’ respond in their buying decisions to a change in product 

price.  

             In this essay, we assume that the ordering decision is made at the beginning 

of the period, and the demand for the period is subtracted at the end of the period. Let 

xt be the inventory level at the beginning of period t before placing an order, and yt be 

the inventory level at the beginning of period t after placing an order. Hence, yt = xt if 

no order is made, and yt  =  S  >  xt if order is placed at beginning of period t.  The 

ordering cost includes both a fixed cost and a variable cost proportional to the amount 

ordered. Demand that cannot be met from inventory on hand is fully backordered. 

The inventory carrying and stockout costs all depend on the size of the end-of-the-

period inventory level and shortfall. In addition, we assume the order lead time is zero 
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throughout this essay, i.e., no delay between the placing of an order and the receipt of 

the goods ordered, thus, the inventory position coincides with the inventory level. We 

can easily obtain our derivatives with a fixed lead time by rewriting the expression 

between the inventory position and inventory level, as shown in Fu (1994a). The 

objective of this study is to find underlying parameters θ = (s, S, p) to minimize the 

long-run average loss L: 

)],()()())(}({[
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),(
1

1

1

tttttt

T

t

tt
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t

tT

ppDDygDyhxScksxI
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pyl
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=
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=

=

∑

∑
     (2.2a)  

 

 T
T

LL
∞→

= lim                                                                                       (2.2b)                     

where k is the fixed cost of placing an order, c is the variable order cost coefficient, h 

is the holding cost coefficient, g is the shortage cost coefficient, p is the revenue 

coefficient, I{.} is the indicator function, and  ),,0max( xx =+  and ),0max( xx −=− . 

 

2.2 IPA Estimation 

Our goal in this section is to develop derivative estimators for LT with respect to the 

control parameters θ, where θ = s, S, and p. Without loss of generality, we assume 

that y0 = S. We define q = S - s for notational convenience in the analysis that follows. 

According to the definition of xt and yt, the recursive dynamic equation for yt 

is given by 

{
sxifS

sxifDyx
y

t

tttt

t <

≥−=
= −− 11                                              (2.3) 
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That is to say, yt = xt if the beginning inventory level is greater than the reorder point 

s; otherwise, an order is placed so that yt = S. Thus 
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With the initial condition y0 = S = s + q, we have 0/,1// 000 =∂∂=∂∂=∂∂ pyqysy . 

According to the equation (2.4), we have 1// =∂∂=∂∂ qysy tt  for all t, 

because tt pabD ε+−= * , which is independent of s or q. Thus, 
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By applying above recursive dynamic equation backwards, for the no-order-decision-

made-period, if sxsxsxsx tttt <≥≥≥ +− '1'1 ,,...,, , we have 

attatt
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, 

where t’ is the most recent period that an order is placed before t. So we can rewrite 

equation (2.5) as  





<

<≥≥≥−
=

∂

∂ +−

sx

sxsxsxsxatt

p

y

t

ttttt

0

,...,)'( '1'1

                                   (2.6)

 

 

If we place an order in period t, the inventory level will be brought back to S 

in the same period since ordering lead time is zero. Recall that ordering cost consists 
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of a fixed set-up cost and a variable cost proportional to the ordering amount, so the 

ordering cost in period t can then be formulated as 





<−+

≥
=−+−

sxxSck

sx
xycxyk

tt

t

tttt
)(

0
)()(δ                                         (2.7) 

The first derivative of ordering cost in period t is straightforward: 







<
∂

−∂
≥

=
∂

−+−∂
sx

xS
c

sx
xycxyk

t

t

t
tttt

θ
θ

δ
)(

0
))()((

                             (2.8) 

 

When applying the recursive dynamic relation described in equation (2.4) and 

(2.5) for the case of xt < s, we have 
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The derivative of holding cost with respect to s and q is the holding cost 

coefficient itself for all the periods, considering the demand is independent on s or q, 

and 1=
∂

∂
=

∂

∂

q

y

s

y tt , specifically, h
y

h
Dyh ttt =

∂

∂
=

∂

−∂

θθ
)(

. Similarly, the derivative of 

shortage cost to s and q is -g. Applying equation (2.6), we obtain the direct 

differentiation of holding/shortage cost to price p in period t: 
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And 
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The sample path derivative of the revenue term p*Dt in period t with respect 

to s and q is 0, since they rely only on price, not stock levels, whereas the sample path 

derivatives with respect to p is -2ap+b+εt. Combining all the analyses, we obtain the 

complete IPA estimator for the time-average loss: 
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2.3 SPA Estimation 

In sample path analysis of the (s, S) model, Fu (1994a) concluded that IPA alone is 

sufficient for estimating the derivative with respect to θ = s, but not for θ = q, where 

an additional SPA (smoothed perturbation analysis) term must be added. This 

conclusion also holds for our model, so we need to use SPA. 

We consider a positive change in s. Fig.2.1 shows the perturbation path for a 

small positive change ∆s in the reorder point s. The sample path moves upward by ∆s 

smoothly, i.e., the sample performance is continuous, so IPA alone suffices for s 
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(assuming q is held constant). However, for ∆q > 0, it is possible that an ordering 

decision changes from order to not order in a period. Fig.2.2 represents the sample 

path for change in q, and period t is the order-decision-change period. Since ∆q is an 

infinitesimal amount and demand is finite, the demand during t will lead to an order 

decision in the next period. The perturbed path for inventory position can be 

constructed from the nominal path with an appropriate extra period “inserted'”. The 

beginning inventory in this period is y = s - α + ∆q. Then, an SPA term based upon 

conditional expectation is added to smooth the discontinuity: 
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                                                  (2.14) 

where syZ tt −= −1 , ttt ZD −= −1α , and }:{)(* SyTtTM t =≤= is the set of 

periods in which orders are placed.  

 

Figure 2.1. Effect on sample path with p, q fixed and s perturbed 
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Figure 2.2. Effect on sample path with s, p fixed and q perturbed 

 

 

Figure 2.3. Effect on sample path with s, q fixed and p perturbed 

 

Note that in the rest of the derivation, we will often drop the subscripts for 

notational convenience. The latter term can be estimated explicitly from the original 

sample path, given the demand distribution: 
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Hence, 
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We have the performance measure from the perturbed path as  

],][])[(])[(][),([
1

1

]]),([),([
1

1
)|)((

1

1

1

∑

∑

=

−+

=
+

−∆+−−+∆+−−++∆+
+

=

∆≤∆+−+∆+
+

=∆≤∆+

T

t

t

T

t

tTz

DpEqDsgEqDshEDcEpqyl
T

qpqslEpqyl
T

qqqLE

αα

ααα

and  

}),(
1

][])[(

])[(][)],(),([{
1

1

]|)()([]|[

1

1

1

∑

∑

=

−

=

+

+

−−∆+−−+

∆+−−++−∆+
+

=

∆≤−∆+=∆≤∆

T

i

t

T

t

tt

TTzTz

pyl
T

DpEqDsgE

qDshEDcEpylpqyl
T

qqLqqLEqLE

α

α

αα

 

Take ∆q→0, we get 
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Incorporating (2.15) and (2.16) and reinstalling our subscripts into (2.14), we have    
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The final estimator for the derivative with respect to q is the sum of the IPA and SPA 

parts: 
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         As the price changes from p to p+∆p, demand will decrease in each period by 

the amount of a∆p. Figure 2.3 illustrates the sample path with ∆p>0. An additional 

SPA term is needed for estimator with respect to p, since the order decision may 

change. The sample path is similar to that for q, but instead of a change ∆q, there is 

an accumulated change pattI ∆−=∆ )'( , where )(* TMt ∈ . The derivative analysis is 

similar to the analysis we had done for the perturbation path with a change of ∆q. 

First we define qapbttqpDpDp ttttt −−−+++=−++= −− ))('(...)(...)()( 1'1' εεβ . 

Then we have  
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Let )()( apbxfxf −+=ε and )()( apbxFxF −+=ε  the p.d.f. and c.d.f., respectively, 

of εt. We have 
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We also notice that the inserted period has inventory level y = s – β + ∆I, so 
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Therefore,  
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Summation of IPA and SPA terms gives derivate of loss function to p:  
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2.4 Consistency Proof 

Our goal is to prove the consistency: 
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period t. 

         Let X and Y denote the steady-state random variables for xt and yt. Then, we 

have  
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In our model, we have X=Y-D, therefore 
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        The long run average cost per period for infinite horizon is given by equation 

(2.2), 
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Regardless of policy taken, the average per period production amount is always E[D].   

According to PA derivatives equations (2.12) and (2.17), we have w.p.1 that 
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According to Fu’s paper, we have  
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We also have 
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Therefore, consistency proof is completed for s and q. 

         Consistency proof for p is more complicated. First we define N (q) to be the 

counting process for the demand renewal process: 

       }...|max{)( 21 qDDDtqN t ≤+++=  

Then for t∈M*
(T), we have t-t’-1 ~ N (q) and zt ~ q- (D1 + D2… + DN(q)). Hence, 

           ),(1),01'( qFqzttP t −===−−  

and for n = 1,2,… and z∈[0, q], 

          ))(1(*)(),(,1' zFzqfznf nztt t
−−=−− . 
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For PA analysis of price, according to equation (2.21), we have w.p.1 that: 
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The first term on the right hand side is derived as follows: 

Take t - t’ = n, n=1, 2, …, then we have 
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The first term on the right hand side is given by the similar derivation as iii) 
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Differentiate the expected value with respect to price, we have 
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So it’s consisted with limitation in part iv). 

 

For v), we have  
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Therefore, consistency proof is completed for PA estimator of price p. 

 

2.5 Optimization Example  

 In this section, the sample path derivatives derived from previous sections are 

used in the RMSA algorithm to find the optimal setting of the (s, S, p) system. The 

algorithm performance obtained from RMSA is compared with those from SPSA and 

SAN approaches in some numerical cases.  

 

2.5.1 Robbins-Monro Stochastic Approximation (RMSA) 

Our goal is to find θ* that solves )(min θθ LC∈ , where C represents a constraint set 

defining the allowable values for the parameters θ. We are interested in the gradient 

vector of the loss function with respect to the parameters: 
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Then for local optimization, a necessary condition for optimization when L is 

continuously differentiable is that θ* satisfies: L'(θ*) = 0. Using a Robbins-Monro 

stochastic approximation algorithm (Kushner and Yin 1997) and the gradient 

estimator derived in the previous section, we apply the following iterative gradient-

based procedure to update the parameter values, in order to reach a local optimum: 



 35 

kkk
p

L

q

L

s

L

e

p

q

s

p

q

s

pqs

PA

PA

PA

k

k

k

k

k

k

k

,,

)(

)(

)(

1

1

1

























∂
∂

∂
∂
∂
∂

−

















=

















+

+

+

,                                       (2.29) 

where k is the iteration number, and the gain sequence {ek} is a version of the 

accelerated harmonic series given by e/Ek, where e is some constant and 
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with E0 = 1, and sgn is the sign function of a vector of parameters. The step size 

changes only when all three signs of the vector elements change simultaneously. 

Since s, q, and p must be positive, we project back to the previous point whenever the 

algorithm brings s, q or p negative. The values of s, q and p are updated every T 

periods, with the PA estimator reinitialized at each update. Furthermore, we take the 

starting point to be s0 = q0 = E[D]/2, and p0 = (pmin + pmax)/2, where pmin and pmax are 

the lower bound and upper bound of price range, respectively. We expect that the 

parameters e and T greatly affect the initial convergence rate of the algorithm. 

  

2.5.2 Simultaneous Perturbation Stochastic Approximation (SPSA) 

SPSA is one of the gradient-free methods, which does not depend on direct gradient 

information or measurements. It is based on an approximation to the gradient formed 

from measurements of the loss function.  That is to say, such algorithm do not require 
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the detailed knowledge of the functional relationship between the parameters being 

optimized and the loss function being minimized, which is required in gradient-based 

algorithms. Spall (1998) illustrated SPSA for efficient optimization. 

The recursive procedure we consider in the SPSA is the same as RMSA, i.e. 

equation (2.29). All elements of θk are randomly perturbed together to obtain two 

measurements L(.), but each component of estimated L’k(θk) is formed from a ratio 

involving the individual components in the perturbation vector and the difference in 

the two corresponding measurements. Thus we have 
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We pick ek = e/(E+k)
α
, rk = r/k

β
, where e and E is some constants controlling 

algorithm’s convergence speed.   A simple choice for each component of ∆k is to use 

a Bernoulli ±1 distribution with probability of ½ for each ±1 outcome. We take the 

starting point at s0 = q0 = E[D]/2, and p0 = (pmin + pmax)/2. 

 

2.5.3 Simulated Annealing (SAN)  

RMSA and SPSA only guarantee to yield a local optimum, while SAN aims to find a 

global solution from among multiple local solutions. The general sequence of steps is 

as following: 
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Algorithm SAN:     

_____________________________________________________________________                                  

Step1: Choose an initial A0 and set of current parameter values θcurr; determine L(θcurr). 

Step2: Randomly determine a new value of θ, θnew, that is “close” to the current value, 

and determine L (θnew).  

Step 3: Compare the two L values: Let δ = L (θnew) – L(θcurr). Accept θnew if δ < 0. 

Alternatively, if δ >= 0, accept the new point θnew only if a uniform (0, 1) random 

variable U satisfies U <= exp(-δ/A). 

Step 4: Repeat steps 2 and 3 for some period until either the budget of function 

evaluations allocated for that A has been used or the system reaches some state of 

equilibrium. 

Step 5: Lower A according to the annealing schedule Ak = A0/ln(1+k), and return to 

step 2. Continue the process until the total budget for function evaluations has been 

used or some indication of convergence is satisfied. 

_____________________________________________________________________ 

 

2.5.4 Numerical Analysis 

Our numerical study is based on the data collected from a specialty retailer of high-

end women's apparel (Federgruen and Heching 1999). Table 2.1 summarizes all 

parameters for the base scenarios pertaining to the dress. The variables εt in the 
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additive stochastic demand function (equation (2.1)) are normally distributed with 

zero mean and standard deviation δ(p)*cv, where cv a specified coefficient of 

variation. The demand thus follows a normal distribution with mean of δ(p) = (b-ap) 

and standard deviation of cv*(b-ap). We truncated at - δ(p) to preclude negative 

demand realizations. 

Table 2.1 Base Parameters for Dress. 

Item b a cv k c h g Price 

Range 

Dress 174 3 0.25 0 22 0.22 21.78 25-44 

 

In our numerical experiment, initial values of the parameters are set at (s, q, p) 

= (35, 35, 34.5). We choose the update period T = 100 and run 100 replications. Each 

simulation replication for RMSA and SPSA is terminated when the sum of the 

gradient estimate components for the three parameters is less than 0.001 or the 

number of iteration is greater than 10,000, while SAN simulation terminates when the 

difference of loss value between two consecutive iterations is less than 0.1. Choosing 

proper gain sequence coefficients might be the most difficult issue in SPSA, we fix 

α=1, r=0.5, β=0.2, and we choose step size e and E by trial-and-error.  

 We consider three cases corresponding to different fixed cost k and holding 

cost h with cv = 0.25: 

Case 1 – k = 0, h = 0.22; 

Case 2 – k = 0, h = 5; 

Case 3 – k = 100, h = 0.22. 
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Tables 2.2, 2.3, and 2.4 show 95% confidence intervals of optimal values for 

three cases by RMSA, SPSA, and SAN, respectively. We found that optimal price 

and loss is close for three algorithms and RMSA has relatively large variance. When 

fixed ordering cost is 0 in case 1, the higher s we have, the least possibility would 

shortage occur. For case 2, the results indicate that s and S decreases as holding cost 

increases. Reorder point S converges closely for three algorithms, which is 

significantly different from the case of h=0.22. As expected, loss function becomes 

more sensitive to S when holding cost increases. The lower S we have, the less would 

holding cost be. Notice that fixed ordering cost is zero in this case, therefore, number 

of ordering period is not a main concern. We also find that the variance is generally 

small in this case since stock level (s, S) affects loss function more here. There is 

tradeoff between ordering cost and holding cost when fixed ordering cost is not zero. 

As we already known from previous case, high holding cost leads to low S. However, 

low S leads to frequent ordering, consequently, causing large ordering cost if ordering 

setup cost exists. In case 3, where holding cost is small compared with fixed ordering 

cost, q is relatively large, decreasing the number of ordering cycles.  

The optimal value of q is small for zero fixed ordering cost, substantially 

smaller than expected demand. In this situation, holding costs dominate, since 

frequent ordering is not penalized. Comparing case 1 and case 2, we find that s and S 

decrease as holding cost increases. In all three cases, price doesn't differ much, i.e., 

price does not appear to be a major determinant for the various inventory-related cost 

scenarios, which is also consistent with our PA gradient estimators. 
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Table 2.2 95% Confidence Interval for cv = 0.25 by RMSA. 

95% C. I. K = 0, h = 0.22 K = 0, h = 5 K = 100, h = 0.22 

s 65.92 ± 1.74 50.13 ± 0.13 68.55 ± 4.03 

S 95.05 ± 6.14 67.80 ± 0.65 181.57 ± 9.72 

P 39.17 ± 0.39 39.84 ± 0.07 39.29 ± 0.74 

L -980.14 ± 9.57 -895.42 ± 6.55  -926.01 ± 7.36 

 

Table 2.3 95% Confidence Interval for cv = 0.25 by SPSA. 

95% C. I. K = 0, h = 0.22 K = 0, h = 5 K = 100, h = 0.22 

s 42.13±0.33 35.19±0.31 68.29±1.61 

S 75.85±1.20 66.67±0.46 138.27±1.55 

P 40.37±0.28 40.67±0.08 40.15±0.08 

L -973.33±6.75 -890.23±6.50 -936.20±7.37 

 

Table 2.4 95% Confidence Interval for cv = 0.25 by SAN. 

95% C. I. K = 0, h = 0.22 K = 0, h = 5 K = 100, h = 0.22 

s 60.94±1.34 38.98±0.73 1.47 

S 88.86±3.61 64.46±0.53 139.87±13.92 

P 39.99±0.02 40.86±0.04 39.87±0.05 

L -993.74±5.59 -898.88±6.17 -935.68±11.22 

 

Figures 2.4, 2.5, 2.6, and 2.7 illustrate the convergence rate of RMSA 

algorithm for three cases based on one common run for L, p, s and S, respectively. 

The figures show that the algorithm converges very fast at the beginning. The 

fluctuations in case 3 are due to a large initial step size. 
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  Fig. 2.4 Expected loss as function of iteration number by RMSA 

 

 

 

 

 

 

 

 

 

             

 

                    Fig. 2.5 Selling price as function of iteration number by RMSA 
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  Fig.2.6 Base stock level as function of iteration number by RMSA 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.7 Reorder stock level as function of iteration number by RMSA 
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Figures 2.8, 2.9, 2.10 and 2.11 compare convergence rate of three algorithms 

in case 1 based on one common random number run for L, p, s and S, respectively.  

From Figures 2.8 and 2.9 we found RMSA has the greatest convergence rate, at least 

converges very fast at the beginning. Loss and price have a considerable jump at the 

first iteration. RMSA is efficient because it relies on direct gradient estimator. The 

figures illustrate strong dependence between loss and price: loss converges to the 

same level in spite of the fact that S and s don’t approach to close values from three 

algorithms. The basic idea behind SAN is to randomly pick the next step, and it 

allows worse objective value exist, so it’s not surprise when we observe that SAN 

converges slower than RMSA and SPSA for the first 100 iterations. 
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Figure 2.8 Expected loss as function of iteration number – case 1 
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Figure 2.9 Selling price as function of iteration number – case 1 
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Figure 2.10 Base stock level as function of iteration number – case 1 
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     Figure 2.11 Reorder stock level as function of iteration number – case 1 

 

 

Figures 2.12-2.15 illustrate relationship between parameters, objective function and 

number of iterations in case 2. RMSA is the most efficient algorithm among three 

stochastic optimization algorithms due to PA derivatives. Figures 2.16-2.19 show the 

convergence rate for L, p, s and S in case 3. The fluctuation on RMSA and SPSA is 

due to the large step size we choose to jump out initial trough.   
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Figure 2.12 Expected loss as function of iteration number – case 2 
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Figure 2.13 Selling price as function of iteration number – case 2 
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Figure 2.14 Base stock level as function of iteration number – case 2 
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Figure 2.15 Reorder stock level as function of iteration number – case2 
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Figure 2.16 Expected loss as function of iteration number – case 3 
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Figure 2.17 Selling price as function of iteration number – case 3 
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Figure 2.18 Base stock level as function of iteration number – case 3 
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Figure 2.19 Reorder stock level as function of iteration number – case 3 
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Finally, we investigate the impact of price elasticity of demand by modifying the 

slope a of the demand function to a = 1, a = 3, and a = 5, with k = 100 and h = 0.22. Table 2.5 

shows the values of the control parameters and total loss. Price decreases dramatically as a 

increases. Price elasticity measures the change of demand to change of price; thus, when it 

goes up, a manufacturer has to reduce price to attract more consumers so as to increase revenue. 

 

Table 2.5 Experimental Results for Different Price Elasticity of Demand a  

(cv=0.25, k=100, h=0.22) 

    RMSA     

a s S p L 

1 93.53 166.11 43.91 -2811.44 

3 53.70 133.32 40.37 -961.37 

5 47.62 121.07 25.04 -123.23 

    SPSA     

a s S p L 

1 353.10 717.89 43.44 -2824.00 

3 74.68 150.84 39.99 -921.82 

5 34.59 82.81 28.17 -173.57 

    SAN     

a s S p L 

1 157.08 244.28 44.00 -2821.64 

3 62.40 118.35 39.84 -913.14 

5 41.21 168.27 28.27 -203.92 

 

Some general observations from the simulation results: 

1. T = 100 is not sufficient for reaching steady state for large fixed ordering cost, 

since iterate updates are not carried out at regenerative points, so we have the `last 

period effect'. 
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2. In some simulations, periodic behavior occurs in the iterations, due to the 

implementation of the gain sequence, which only decreases if all three components in 

the gradient change signs. 

3. Adjusting step size coefficients is critical and depends on initial conditions. We use 

trial-and-error in the simulation. All stochastic optimization techniques suffer from 

this problem.  

 

2.6 Conclusions 

This essay presents a period review inventory model with price-dependent uncertain 

demand. The proposed inventory control policy reflects a common practice in some 

industries. To minimize the expected loss, management determines both the optimal 

stock level and price. Using perturbation analysis, we develop sample path 

derivatives for this (s, S, p) inventory model, which could be incorporated into 

gradient-based algorithms to select optimal values for the three controllable 

parameters. Consistency proofs are provided for the infinite horizon case. Some 

numerical results for simulation optimization are presented using a Robbins-Monro 

stochastic approximation algorithm. We also apply two other stochastic optimization 

algorithms to compare with RMSA in different scenarios. Though we don’t have 

analytical outcomes to replicate in the stochastic demand circumstance, the results 

from three algorithms are comparable and explainable. Measuring of convergence 

rate for three algorithms demonstrate that RMSA is most efficient, at least at the 

beginning of the simulation. 
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We study the effect of unit holding cost, fixed ordering cost and price 

elasticity of demand for the (s, S, p) system. The results are intuitive and verify our 

algorithms to some extent. When holding cost is large compared to fixed ordering 

cost, reorder stock level S will decrease to reduce holding cost. On the contrary, S and 

q will increase so that number of ordering period decreases. Price goes down as price 

elasticity of demand increases. We also found that selling price is the determinant 

factor.   

For future research, useful extensions of our model include applying our 

method to stochastic lead-time scenarios, and investigating a multiple-market setting 

problem in which demand distribution is dependent on market selection.  
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Chapter 3  

 

Applying Model Reference Adaptive Search to American-

style Option Pricing 

 

This essay is organized as follows. The problem setting is described in Section 

1. The MRAS algorithm applied to American-style option pricing is discussed in 

Section 2, and it is implemented in pricing American-style call options with dividend, 

pricing American-style put options written on underlying assets following geometric 

Brownian motion and Merton jump diffusion model, and pricing American-style 

Asian call options without dividend in Section 3. The results from MRAS algorithm 

are compared with CE method in this section. Finally we offer some conclusions 

based on the numerical results in Section 4. 
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3.1 Problem Setting 

We consider the American option pricing problem as a maximization problem and 

apply optimization techniques to parameterize the early exercise boundary. The value 

of American call option written on a single stock with finite early exercise dates can 

be written as 
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1{�}: indicator function, 

K: strike price, 

r: risk free rate, 

T: maturity, 

n: number of exercise opportunities, including the exercise at maturity, 

Si*: early exercise threshold at exercise date ti; the parameters to be estimated for the 

optimization problem. Note that for convenience we will use S* to represent the 

critical prices set {Si*} in the following work,   

Si: stock price at exercise date ti, 

L: the sample performance is the net present value of the option payoff.  

The first term on the right side is the payoff of early exercise, and the second term is 

the payoff without early exercise, i.e., the payoff at the time of maturity. 

Similarly, the American put option can be written as  
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and 
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For convenience, we omit subscript i of Si*, using S* to represent the set of 

critical prices in the following. Once we find the estimates for the thresholds at all 

exercise points through optimization, we can obtain the value of the option through a 

forward moving simulation starting from time 0. The procedure simultaneously 

optimizes all parameters by iteration, and no dynamic programming is involved. In 

addition, this flexible value function can handle pure-jump and jump-diffusion 

processes, which can sometimes be problematic for the most popular pricing methods, 

such as partial differential equation methods, binomial trees, and other lattice 

methods. In the following numerical examples, we consider the underlying asset 

following two stochastic processes – geometric Brownian motion and jump diffusion 

model from Merton (1976).  

 

3.2 Algorithm Description 

MRAS is an adaptive algorithm equipped with a random mechanism and a reference 

model, which work with a family of parameterized distributions on the solution space. 

The basic idea is to assign more weight to the solutions that have better performance 

at each step. Kullback-Leibler (KL) divergence is a natural distance measure between 

two probability distributions in probability theory. At each iteration, samples are 

generated according to the distribution that has the minimum KL-divergence with 

respect to the reference model from the previous iteration, and the parameters of the 
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next distribution are updated based on those samples in a way so that the distribution 

possesses the minimum KL-divergence with respect to the current reference model. 

  The main difference between MRAS and CE is that CE method uses a single 

optimal (importance sampling) distribution focused on the set of optimal solutions 

(i.e., zero variance) to guide the updating of parameters, while the MRAS uses a 

sequence of intermediate reference distributions to facilitate and direct its parameter 

updating associated with the family of parameterized distributions during the search 

process. We will compare the results from MRAS with those from CE methods in the 

following sections.     

The MRAS method also resembles another model-based method - the 

estimation of distribution algorithms (EDAs). EDAs were introduced in the field of 

Evolutionary Computation for the first time by Mühlenbein and Paaβ (1996). EDAs 

generate new solutions according to the probability distribution of all promising 

solutions of the previous iteration. No recombination process such as crossover and 

mutation operators is involved to avoid the disruptions of partial solutions of genetic 

algorithm.  In EDAs the problem specific interactions among the variables of 

individuals are taken into consideration and the interrelations are expressed explicitly 

through the joint probability distribution associated with the individuals of variables 

selected at each generation. New population is generated by sampling the probability 

distribution, which is estimated from a database containing selected individuals of the 

previous generation. Larranaga et al. (1999) and Paul et al. (2002) give reviews of 

implementing EDA approaches using various underlying probabilistic models. 

However, the estimation of the joint probability distribution associated with the 
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selected samples is a bottleneck of this method. There is no easy method to calculate 

it. If the distribution is more general, we expect to get high quality result, but 

calculation of this distribution is time consuming and complicated, and sampling of 

new instances using this distribution is not an easy task. In contrast, MRAS uses the 

sequence of reference models implicitly to guide the parameter updating procedure 

and there is no need to calculate them explicitly; therefore MRAS overcomes the 

most difficult obstacle of the EDAs.  

Hu et al. (2005) demonstrate the global convergence of MRAS for a class of 

parameterized probability distributions called Natural Exponential Family (NEF), 

which includes multivariate normal distribution. In the following numerical 

experiments, we assume the parameters to be estimated are multi-normally distributed 

with p.d.f. of 
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where µk is the mean vector and ∑k the covariance matrix at iteration k, and the 

parameters that minimize the KL divergence are updated as 
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where the function U (·) is used to account for the case that the values of L(S*) are 

negative.    
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We employed a method called acceptance-rejection to the optimization 

problem. The key idea is to generate a random vector from a parameterized 

distribution (multivariate normal distribution in our cases). The sample is accepted or 

rejected depending on whether it falls or not in the interval of interest. The accepted 

sample can be viewed as the one generated from the truncated multivariate normal 

distribution. In the case of pricing American-style put options, the critical price 

increases as time approaches maturity, and the critical price at the maturity is the 

strike price K. We generate the critical price increments at the exercise dates from a 

multivariate normal distribution with given parameters. For those increments not at 

the first exercisable date, we accept the positive ones and rule out the negative ones. 

In addition, we only accept those samples in which the critical price at the last 

exercise date before maturity is less than the strike price K, i.e. the critical price at 

maturity. Similarly, in the case of American-style call options: we accept the random 

samples that give negative increments at the exercisable dates except the first date, 

and satisfy the constraint that the threshold at the last exercise date before maturity is 

larger than the strike price K. 

To avoid the (possible) premature convergence to a degenerate distribution 

and result in a sub-optimal solution, we applied a dynamic smoothing scheme as 

described in Kroese et al. (2004) instead of a fixed scheme. Define 

,)
1

1(
q

k
k

−−= βββ                    (3.6) 

and the smoothed parameter updating procedure is 

1
ˆ)1(ˆ −−+= kkkkk µβµβµ ,                   (3.7) 
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and 

1
ˆ)1(ˆ

−∑−+∑=∑ kkkkk ββ .                                                                                      (3.8) 

where k is the iteration number, β is a smoothing constant (0.8 in our examples), and 

q is an integer (5 in our examples).  

In practice, the MRAS algorithm in the Monte Carlo version works as follows: 

------------------------------------------------------------------------------------------------------- 

Algorithm MRAS 
------------------------------------------------------------------------------------------------------- 

1. Initialize: quantile parameter ρ0, initial sample size N0, the multivariate 

normal distribution parameters µ0 and Σ0. Specify smoothing parameter β and 

q, sample size control parameter α, threshold increase parameter ε, and a 

continuous and strictly increasing function U (·). Set k=0. 

2. Repeat until a specified stopping rule is satisfied: 

 2.1 Generate Nk i.i.d. samples 
k

N

k

k
SS *)(,...,*)( 1  from the )ˆ,ˆ( kkN Σµ distribution. 

 2.2 Find the sample (1 - ρk)-quantile γk+1(ρk, Nk) of the samples {L(Si*)}
k
, i = 

1,…,Nk.  

 2.3 If k = 0 or εγργ +≥+ kkkk N ),(1 , then 

               Set   kkkkkkkk NNN ←←← ++++ 1111 ,),,( ρρργγ . 

 Else, find the largest ),0( kρρ ∈ such that εγργ +≥+ kkk N ),(1 . 

                If such a ρ  exists, then set 

kkkkkk NNN ←←← ++++ 1111 ,),,( ρρργγ . 

                Else set kkkkkk NN αρργγ ←←← +++ 111 ,,  



 60 

 2.4 Update the distribution parameters µk+1 and ∑k+1 according to equations (3.4) 

and (3.5).  

 2.5 Smooth the parameters by using equation (3.6), (3.7), and (3.8).   

 2.6 Set k ← k+1. 

------------------------------------------------------------------------------------------------------- 

 

We choose a strictly increase function U (·), because we consider a 

maximization problem here. U (·) needs to be a strictly decreasing function for a 

minimization problem. kµ̂ and kΣ̂ are the parameters after smoothing the µk+1 and 

∑k+1 originally computed from the samples. In step 2.2, since our goal is a 

maximization problem, the sample (1 - ρk)-quantile γk+1 is obtained by first ordering 

the sample performances {L(Si*)}
k
, i = 1, …, Nk from smallest to largest, and then 

taking the [(1 - ρk)Nk]th order statistic. Step 2.3 is to find a non-decreasing threshold 

kγ , the sample size, and good performance samples selection parameter for the next 

iteration. A small size of sample paths Nk might cause the algorithm to fail to 

converge and result in poor quality solutions, while a too large sample size will lead 

to high computational cost. Large ρk tends to use both the “good” and “bad” samples 

to update the probabilistic model, which slows down the convergence process, 

whereas a too small ρ might lead to an illogical result. Therefore, we make sample 

size Nk and threshold proportion parameter ρk dynamically adjusted in our algorithm, 

more specifically, the sample size is adaptively increasing and the parameter is 

adaptively decreasing as described in step 2.3. α is the rate of sample size increase. A 
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small positive number ε is selected to ensure that }{ kγ  is non-decreasing in the 

update procedure. At each iteration k, if the new quantile γk+1 is large enough 

( εγργ +≥+ kkkk N ),(1 ), then we use this quantile as the new threshold and use the 

current sample size and ρk in the next iteration. Otherwise, it indicates that either ρk is 

too large or Nk is too small. First we try to find a smaller kρρ <  such that the new 

sample )1( ρ− quantile satisfies the above inequality. If such a ρ  exists, then we 

decrease the kρ  value and keep Nk unchanged in the next iteration. If no such ρ  

exists, then we increase the sample size by rate of α while kρ  and kγ  remain 

unchanged. After we find 1+kρ , Nk+1, and threshold 1+kγ , only those candidate 

solutions that have better performances than the new threshold will be used in the 

next iteration.  

 

3.3 Numerical Results 

In this section we present numerical results from the MRAS algorithm for both 

American call/put options and Asian options, respectively. We also give results from 

the CE method for comparison purpose. All the options in our numerical experiments 

have a finite number of early exercise opportunities, and are sometimes termed 

Bermudan derivatives. The stopping criteria at iteration k is 1) cov_max < 1.0, or 2) 

γk = γk-1 = γk-2, or 3) Nk > Nmax. The cov_max is the maximum element in the 

covariance matrix of the multivariate normal distribution model. It is a measure of the 

convergence quality. For each test case we use the following parameters: ρ0 = 0.5, N0 
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= 100, α = 2, ε = 10-3, and Nmax = 1000. Throughout this essay, we assume options 

are not exercisable at time 0. We choose U (L (S*)) := exp(χL(S*)), where χ = 0.1. 

The random number generator is taken from Pierre L’Ecuyer’s random number 

package (2002), which offers a better control of streams and seeds. The experiments 

were implemented with Matlab on a 1.5GHz computer. 

 

3.3.1 American-Style Call Option  

The parameters to be estimated in the optimization problem are the critical prices 

{Si*}, which we obtain by estimating the critical price increments {Xi} ~ N(µk, Σk) at 

each exercise date, given a starting point S0*. After we obtain the optimized 

increments, the critical prices are computed.  Thus, for an option with n exercise dates, 

we have the following n-1 critical prices to be estimated (the critical price at the last 

exercise date, the maturity, is known): 

 

S1* = S0* + X1; 

S2* = S1* + X2; 

…. 

Sn-1* = Sn-2* + Xn-1. 

 

Therefore, the initial conditions for simulation include the selection of S0*, the 

{Xi}’s initial mean vector µ0, and initial variance-covariance matrix ∑0. We set the 

initial covariance between parameters as 0, and the initial variance is same for all Xi, 

i.e., ∑0 is a diagonal matrix. The MRAS algorithm is not sensitive to the choice of 
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initial mean and covariance matrix, provided that the initial sampling variance is 

chosen large enough. Note that ∑ at steps other than the initial one is not necessarily 

diagonal matrix, because the updating scheme (equation (3.5)) will cause the nonzero 

covariance between parameters.  

We first apply MRAS algorithm to price the American-style call option. We 

assume the underlying stock price follows geometric Brownian motion:  

dWSdtSrdS ttt σδ +−= )( ,                              (3.9) 

where Wt is a standard Brownian motion process, r is the interest rate, δ is the 

dividend yield, and σ is the volatility. This leads to the discrete form used in the 

simulation:  

ZttrSS ttt ∆+∆−−=∆+ σσδ )2/exp(( 2 ,                                                            (3.10) 

where Z is random variate generated from standard normal distribution, i.e., Z ~ 

N(0,1). Table 3.1 illustrates the price estimates and their 95% confidence intervals 

based on 1,000,000 replications (50,000 replications each run for 20 different seeds ) 

with obtained parameters of early exercise boundary from simulation, for a 3 year (T 

= 3) Bermudan call option with r = 0.05, σ = 0.2, δ = 0.04 and K=100. The option is 

exercisable every 0.5yr (n = 6). We study the performance of MRAS for different 

initial condition settings: µ0 = [-5, -5, -5, -5, -5] for initial critical price starting point 

S0* = 130, 140, 150, 160, 170, and 180, [-4, -4, -4, -4, -4] for S0* = 120, and [-2, -2, -

2, -2, -2] for S0* = 110, that are bounded by the lower limit of the critical price at 

maturity. The diagonal (variance) of ∑0 is 100 for all cases. The circumstances of 

options considered here include in-the-money (S0 = 110 and 140), at-the-money (S0 = 
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100), and out-of-the-money (S0 = 60 and 90). Results from MRAS are compared with 

those from SPSA, PASA and sequential dynamic programming (DP) algorithms 

presented in Fu et al. (2001). We also compare them with the outcomes from secant 

and tangent methods described in Laprise et al. (2006); moreover, the corresponding 

European call option prices are available at the last row of the table.  

Our experiments indicate that MRAS algorithm provides an accurate and 

efficient way to price American call option. It converges to the optimal value within 

10 iterations, and the convergence is independent on the initial conditions. We can 

achieve a cov_max less than 10 in all cases. The results are consistent with the 

findings of other approaches to similar accuracy, and 95% confidence interval is 

about 5%. The price of S0 = 60 is close to European call price, because it is deep out-

of-the-money and the possibility of exercise is very small.  

 

Table 3.1 Bermudan Call Option on Asset under Geometric Brownian Motion 

K = 100, T = 3.0, n = 6, r = 0.05, δ = 0.04, σ = 0.2 
S0 = 60 S0 = 90 S0 = 100 S0 = 110 S0 = 140 Method Initial 

Condition Price C.I. Price C.I. Price C.I. Price C.I. Price C.I. 

110 0.87 0.01 8.64 0.03 13.56 0.04 19.52 0.04 42.32 0.06 

120 0.87 0.01 8.64 0.03 13.56 0.04 19.52 0.04 42.32 0.06 

130 0.86 0.01 8.65 0.03 13.57 0.03 19.52 0.04 42.33 0.06 

140 0.87 0.02 8.64 0.03 13.56 0.03 19.52 0.04 42.28 0.09 

150 0.88 0.02 8.64 0.04 13.57 0.04 19.52 0.04 42.33 0.06 

160 0.87 0.01 8.65 0.03 13.56 0.04 19.51 0.04 42.33 0.06 

170 0.87 0.01 8.64 0.03 13.56 0.04 19.52 0.04 42.32 0.06 

MRAS 

180 0.87 0.01 8.65 0.03 13.57 0.04 19.52 0.04 42.32 0.06 

SPSA 13.69 0.04 

PASA 13.65 0.04 

DP 

  

13.39 0.04 

  

Secant 0.88 8.63 13.56 19.53 42.29 

Tangent 0.87 8.63 13.55 19.53 42.29 

Eur 

 

0.87 8.55 13.37 19.18 40.74 
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Table 3.2 displays the thresholds for S0 = K = 100 at t = 0.5, 1.0, 1.5, 2.0, and 

2.5. The deviation between the obtained optimal prices related to the initial settings is 

relatively small, specifically, values fluctuating within the range of less than 5%. It is 

important to note that this table illustrates an at-the-money American call option 

example, where the fluctuation is expected to be large for the property of at-the-

money option itself. Our results from other scenarios suggest an even smaller critical 

price region depended on S0*.   

 

Table 3.2 Thresholds of Bermudan Call Option 

K = S0 = 100, T = 3.0, n = 6, r = 0.05, δ = 0.04, σ = 0.2 
Method Initial 

Condition 
t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5 

110 155.05 153.74 151.36 148.20 140.69 

120 153.35 151.69 148.50 146.70 133.22 

130 158.55 155.40 150.46 144.04 132.96 

140 157.06 151.27 148.67 143.94 130.80 

150 153.77 152.64 149.59 144.47 126.46 

160 158.04 154.36 147.74 145.58 129.43 

170 162.47 156.70 152.65 148.91 136.35 

MRAS 

180 157.11 150.56 147.60 144.28 132.88 

Secant  158.43 154.06 148.68 141.70  

Tangent  158.42 154.05 148.67 141.70  

 

3.3.2 American-Style Put Option 

3.3.2.1. Underlying Asset Follows Geometric Brownian Motion 

We now consider the case of implementing MRAS algorithm for pricing American-

style put option whose underlying stock price follows geometric Brownian motion 

(eq.(3.10)). The optimized parameter setting of American put option is similar to that 

of American call option. 
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Shown in Table 3.3 is the price of a 3 year (T = 3) American put options with 

r = 0.05, σ = 0.2, δ = 0, K = 100, and n = 6. µ0 is [5, 5, 5, 5, 5] for S0* = 30, 40, 50, 60, 

and 70, [4, 4, 4, 4, 4] for S0* = 80, and [2, 2, 2, 2, 2] for S0* = 30, according to the 

upper limit of the critical price at maturity. The diagonal (variance) of ∑0 is 100. Like 

the example of American call option, various scenarios of in-the-money (S0 = 60 and 

90), at-the-money (S0 = 100), and out-of-the-money (S0 = 100 and 140) are examined. 

The results from secant and tangent methods of Laprise (2006) are listed for 

comparison. Analogous to Table 3.2, Table 3.4 presents the threshold estimates for at-

the-money put option for each choice of S0*.  

Our experiments find consistently the maximum values regardless of the 

initial choices, indicating that the true global optimum is reached in each case. For 

some initial settings, we add constraint ρ > 0.1 so that the algorithm can avoid a local 

optimum or an extreme case from stochastic simulation. The algorithm approaches to 

the optimal value within 15 iterations for most cases, and less than 5 for S0 ≠ K with 

an initial critical price close to the optimum (S0* = 50, 60, 70, 80, 90). The at-the-

money prices are the least accurate, e.g., for S0 = 110, only 5 iterations are needed for 

convergence, while more than 10 iterations are required for comparable accuracy for 

S0 = 100. We also find the threshold bounds for the put options are tighter than for the 

calls (Table 3.2) as shown in Table 3.4.  
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Table 3.3 Bermudan Put Option on Asset under Geometric Brownian Motion 

K = 100, T = 3.0, n = 6, r = 0.05, δ = 0, σ = 0.2 
Method Initial 

Condition 

S0 = 60 S0 = 90 S0 = 100 S0 = 110 S0 = 140 

30 37.31 12.96 8.39 5.52 1.51 

40 37.48 12.95 8.39 5.52 1.48 

50 37.51 12.91 8.40 5.52 1.52 

60 37.52 12.95 8.39 5.52 1.51 

70 37.52 12.94 8.39 5.50 1.51 

80 37.52 12.95 8.43 5.52 1.51 

MRAS 

90 37.53 12.97 8.45 5.49 1.53 

Secant 37.55 12.91 8.45 5.50 1.50 

Tangent 37.55 12.91 8.45 5.50 1.50 

European 

 

27.97 10.24 7.00 4.71 1.37 

 

 
 

Table 3.4 Thresholds of Bermudan Put Option  

K = S0 = 100, T = 3.0, n = 6, r = 0.05, δ = 0, σ = 0.2 
Method Initial 

Condition 

t = 0.5 t = 1.0 t = 1.5 t = 2.0 t = 2.5 

30 81.87 84.29 86.63 88.54 90.64 

40 81.50 84.38 87.62 88.86 90.22 

50 83.63 85.27 85.87 86.89 89.02 

60 80.30 83.38 84.78 86.07 89.61 

70 83.86 85.31 87.83 88.37 90.33 

80 80.57 81.99 84.49 88.07 89.19 

MRAS 

90 81.60 82.29 85.06 86.65 89.00 

Secant  83.06 84.02 85.32 87.20  

Tangent  83.06 84.3 85.32 87.20  

 

 

3.3.2.2. Underlying Asset Follows Merton Jump Diffusion Model 

The jump-diffusion process is appealing because it allows price discontinuities and 

addresses the issue of ‘fat tails’, but the presence of random jumps complicates the 

valuation of the American put option. As a Monte Carlo simulation method, MRAS 
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algorithm is capable of effectively incorporating the jump process. The Merton jump 

diffusion model is formulated as: 

dqJdWdtr
S

dS
t

t

t ++−= σδ )(     

where dq is a Poisson random variable that takes value zero (no jump realized) with 

probability 1-λdt, and value one (jump realized) with probability λdt, and J is a 

stochastic jump size.  

The discrete form used in simulation can be written as follows: 

))2/()2/exp((
)(

1

2

0

2 ∑ ∆

=∆+ −+∆+∆−−=
tN

j jttt ZZttrSS γγσσδ                        (3.11) 

where Zj ~ N(0,1) i.i.d., N(∆t) ~ Poisson (λ∆t) is the number of jumps within time ∆t , 

the jump sizes are i.i.d. lognormally distributed: LN(-γ2/2,  γ2), λ is the jump 

frequency, and γ is the jump volatility.  

Table 3.5 shows the results of applying the MRAS algorithm to a six-month 

(T = 0.5yr) put option written on a single stock modeled by the jump-diffusion model 

without dividend (δ = 0), and r = 0.1, σ = 0.2828, λ = 2, γ = 0.2, S0 = K = 100. 

European price (n = 1) for this example is 8.393. After we obtained the early exercise 

thresholds, we simulate the pricing process by 50,000 replications each run for 20 

different seeds, and 95% confidence interval is calculated and the value of the 

confident interval is within 0.02 - 0.04.   

We compare the outcome of MRAS with other algorithms including SPSA, 

DP, and Secant/Tangent interpolation methods, and we found the MRAS results are 

closest to those of secant/tangent algorithms, and the values are between those from 

SPSA and DP when n is small (n = 2, 3) and they are more consistent as n increases. 
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Moreover, Secant method provides the upper bound for the results. MRAS is an 

efficient way to price American put option written on jump-diffusion process since 

the simulations converge to the optimal value within 20 iterations regardless of the 

initial choice of S0*. 

 

Table 3.5 Bermudan Put Option on Asset under Merton Jump-Diffusion  

S0 = 100, K = 100, T = 0.5, r = 0.1, δ = 0, σ = 0.2828, λ = 2, γ = 0.2 
 

n = 2 n = 3 n = 4 n = 6 Method Initial 

Condition Initial Final Initial Final Initial Final Initial final 

30 8.38 8.56 8.37 8.65 8.32 8.62 8.39 8.73 

40 8.37 8.56 8.38 8.65 8.34 8.63 8.43 8.72 

50 8.39 8.57 8.41 8.64 8.38 8.63 8.53 8.73 

60 8.42 8.57 8.48 8.66 8.49 8.63 8.68 8.71 

70 8.51 8.57 8.61 8.63 8.61 8.63 8.64 8.73 

80 8.59 8.58 8.62 8.65 8.46 8.62 8.22 8.71 

MRAS 

90 8.27 8.58 7.75 8.65 8.04 8.63 7.58 8.73 

SPSA 8.49 8.62 8.70 

DP 8.57 8.88 8.73 

 

Secant 8.61 8.69 8.73 8.77 

Tangent 

 

8.61 

 

8.68 

 

8.72 

 

8.76 

 

 

Table 3.6 shows the threshold range estimated on different S0* for the 

American put option written on jump-diffusion model with various number of 

exercise opportunities. For n = 6, the critical prices are similar to those without jumps. 

The algorithm converges efficiently because the upper and low limit of the range is 

relatively small, less than 5% of the mean critical price, independent of the initial 

setting.    
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Table 3.6 Thresholds of Bermudan Put Option on Asset under Merton Jump-

Diffusion S0 = 100, K = 100, T = 0.5, r = 0.1, δ = 0, σ = 0.2828, λ = 2, γ = 0.2 
 

n  

2 t = 1/4 

 80.0 ~ 83.3 

 

3 t = 1/6 t = 1/3 

 77.7 ~ 82.9 83.5 ~ 85.6 

 

4 t = 1/8 t = 1/4 t = 3/8 

 78.3 ~ 81.1 81.0 ~ 83.7 84.3 ~ 85.9 

 

6 t = 1/12 t =1/6 t = 1/4 t = 1/3 t = 5/12 

 77.7 ~ 79.9 80.5 ~ 82.2 82.2 ~ 84.5 82.7 ~ 88.7 86.7 ~ 90.5 

 

3.3.3 American-style Asian Call Option 

Trading in Asian options grows rapidly because Asian options provide payoffs with 

average property that may well match risk management characteristics. Hull and 

White (1993) applied modified binomial and trinomial lattices to value American-

style Asian options. Their method is limited in its applicability since only an average 

beginning at time zero can be handled. Due to the dependence on the entire path of 

the underlying asset, no explicit formula for the distribution of the average price 

exists yet and Asian options appear to be particularly suited for Monte Carlo 

simulation. Grant et al. (1997) incorporated optimal early exercise in the Monte Carlo 

method of valuing American-style Asian options by linking forward-moving 

simulation and the backward-moving recursion of dynamic programming. They 

identified the locus of critical prices for American-Asian options by equating the 

holding value and early exercise payoff from a preset finite parameter grid. Following 

a piecewise linear approximation of the exercise boundary illustrated in Grant et al. 
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(1997), Fu et al. (2001) applied stochastic approximation with gradient estimators to 

characterize the early exercise thresholds for American-Asian options.  

Asian options have payoffs that depend on the average value of the underlying 

asset at some specified time point. The payoff function at early exercise date ti of 

American-Asian call option is defined as  

+−= )( KSL ii  

where ∑
=

+−
=

it

tj

j
i

i S
tt

S

0

1

1

0

is the arithmetic average of the stock prices from date t0 up 

to the exercise time ti. For the American-Asian call option, we can still employ the 

maximize payoff function (equation (3.1)) with iS  instead of Si, and the option should 

be exercised when the average asset price is greater than the exercise critical price.  

Different from American call and put options, the early exercise boundary of 

Asian options relies on both the average asset price and the current asset price. There 

is a critical average price for each asset price Si, and the early exercise thresholds are 

expressed as a locus of critical prices, )(* ii SS . Two parameters are used to estimate 

critical price *
iS  at each exercise point in Grant et al. (1997) and Fu et al. (2001). We 

use only one parameter to estimate the locus of critical prices as 

 

iii XSS +=* , if KS i > ; 

ii XKS +=* , if KS i ≤ . 
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It’s a one-parameter linear approximation of the early exercise boundary; 

however, we will show later that the simulation results are reasonable with only one 

parameter and comparable with the results from two-parameter model. This 

demonstrates the conclusion from Grant et al. (1997) that the estimated value of the 

American-style Asian call option is relatively insensitive to modest errors in the early 

exercise boundaries.  

We followed numerical examples from Grant et al. (1997) and Fu et al. (2001), 

where the early exercise opportunities are the discrete points {tj, j = 1, …, N}. More 

specifically, we have maturity T = 120 days, averaging starts at day 91 (t0 = 91), and 

the earliest exercise is day 105. We test three settings of early exercise opportunities: 

{105, 120}, {105, 110, 115, 120}, and {105, 108, 111, 114, 117}. In addition, we use 

the initial stock price S0 = 100, strike price K = 90, 95, 100, 105, 110, interest rate r = 

0.09, dividend δ = 0, and volatility σ = 0.2 or 0.3. We assume the underlying stock 

price process follows geometric Brownian motion according to equation (3.10). We 

run the simulation based on 100,000 generated samples. Results from MRAS method 

are compared with those from SPSA, PASA and DP methods. Table 3.7 shows 

American-Asian option prices for varying strike prices and exercises opportunities as 

well as the 95% confidence interval when σ = 0.2, and Table 3.8 shows the results for 

σ = 0.3. We find that the MRAS algorithm converges very quickly by obtaining the 

optimal parameters within 10 iterations for most cases.  
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Table 3.7 American-Asian Call Option on Asset under Geometric Brownian Motion 

S0 = 100, T = 120, r = 0.09, δ = 0, σ = 0.2 

 

ti = 105, 120 ti = 105, 110,115,120 ti=105, 108,111,…,120  

Price 95% C. I. Price 95% C. I. Price 95% C. I. 

K = 90 

MRAS 13.06 0.03 13.12 0.04 13.10 0.03 

SPSA 13.11 0.02 13.04 0.02 13.17 0.02 

PASA 13.09 0.02 13.18 0.02 13.20 0.02 

DP 13.08 0.02 13.17 0.02 13.19 0.02 

K = 95 

MRAS 9.01 0.03 9.04 0.03 9.10 0.03 

SPSA 8.98 0.02 8.97 0.02 9.05 0.02 

PASA 9.02 0.02 9.11 0.02 9.12 0.02 

DP 9.02 0.02 9.10 0.02 9.12 0.02 

K = 100 

MRAS 5.70 0.02 5.71 0.02 5.71 0.02 

SPSA 5.67 0.01 5.74 0.01 5.69 0.01 

PASA 5.71 0.01 5.77 0.01 5.79 0.01 

DP 5.70 0.01 5.77 0.01 5.79 0.01 

K = 105 

MRAS 3.28 0.02 3.30 0.02 3.32 0.02 

SPSA 3.22 0.01 3.28 0.01 3.20 0.01 

PASA 3.29 0.01 3.33 0.01 3.34 0.01 

DP 3.28 0.01 3.33 0.01 3.34 0.01 

K = 110 

MRAS 1.68 0.01 1.73 0.01 1.72 0.01 

SPSA 1.64 0.01 1.66 0.01 1.66 0.01 

PASA 1.72 0.01 1.75 0.01 1.75 0.01 

DP 1.72 0.01 1.75 0.01 1.75 0.01 
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Table 3.8 American-Asian Call Option on Asset under Geometric Brownian Motion 

S0 = 100, T = 120, r = 0.09, δ = 0, σ = 0.3 

 

ti = 105, 120 ti = 105, 110,115,120 ti=105, 108,111,…,120  

Price 95% C. I. Price 95% C. I. Price 95% C. I. 

K = 90 

MRAS 14.35 0.05 14.42 0.05 14.46 0.05 

SPSA 14.20 0.03 14.23 0.03 14.25 0.03 

PASA 14.38 0.03 14.50 0.03 14.53 0.03 

DP 14.37 0.03 14.49 0.03 14.53 0.03 

K = 95 

MRAS 10.78 0.04 10.86 0.04 10.91 0.04 

SPSA 10.65 0.02 10.73 0.03 10.83 0.03 

PASA 10.82 0.03 10.91 0.03 10.94 0.03 

DP 10.80 0.03 10.91 0.03 10.94 0.03 

K = 100 

MRAS 7.80 0.03 7.87 0.03 7.87 0.03 

SPSA 7.68 0.02 7.93 0.02 7.81 0.02 

PASA 7.82 0.02 7.92 0.02 7.93 0.02 

DP 7.81 0.02 7.92 0.02 7.94 0.02 

K = 105 

MRAS 5.44 0.02 5.49 0.03 5.50 0.03 

SPSA 5.46 0.02 5.51 0.02 5.44 0.02 

PASA 5.45 0.02 5.53 0.02 5.54 0.02 

DP 5.45 0.02 5.53 0.02 5.54 0.02 

K = 110 

MRAS 3.66 0.02 3.69 0.02 3.70 0.02 

SPSA 3.61 0.02 3.67 0.02 3.59 0.02 

PASA 3.67 0.02 3.72 0.02 3.73 0.02 

DP 3.66 0.02 3.73 0.02 3.74 0.02 

 

 

3.3.4 Comparison between MRAS and CE Methods 

Both MRAS and CE are model-based methods, which start with a parameterized 

probability distribution on the solution space and update the parameters at each 

iteration towards a ‘better’ solution. KL-divergence is used as a measure and is 

expected to be minimized. In MRAS, a sequence of reference distributions is adopted 

and the minimum KL-divergence is achieved between the next step distribution and 
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the current reference model, while in CE a single optimal distribution is used and KL-

divergence measures the distance between the optimal distribution and the family of 

parameterized distributions.   

The CE algorithm works as follows: 

------------------------------------------------------------------------------------------------------- 

Algorithm CE: Continuous Optimization – Monte Carlo version 

------------------------------------------------------------------------------------------------------- 

1. Initialize: Specify quantile parameter ρ and sample size N. Initialize 

parameters of the probabilistic model (multivariate normal distribution) µ0 and 

Σ0. Set k=0. 

2. Repeat until a specified stopping rule is satisfied: 

a. Generate N i.i.d. samples X 1, …, XN from the )ˆ,ˆ( kkN Σµ distribution. 

b. Select the ρN best performing (elite) samples, and let I be the indices 

of the ρN best performing samples.  

c. Update the parameters as: 

        ∑
∈

+ =
Ii

ik X
Nρ

µ
1
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                    T

ki
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kik XX
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1
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∈
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ρ

 

d. Smooth by using equation (3.6), (3.7) and (3.8).   

e. Set k ← k+1. 

------------------------------------------------------------------------------------------------------- 

In CE method, a fixed number (ρN) of best performing samples is selected at 

each iteration, while the quantile parameter ρk and sample size Nk keep updating in 

MRAS. ρk in MRAS is a proportion of samples that will be used to update the 
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probabilistic model, and the purpose is to concentrate the computational effort on the 

set of elite samples. We study the sensitivity on choice of initial ρ using an example 

of Bermudan put option written on a single asset following geometric Brownian 

motion, and the model setting is K = 100, T = 3.0, N = 6, r = 0.05, δ = 0, σ = 0.2, the 

initial critical prices [35, 40, 45, 50, 55], and initial covariance matrix with 100 on the 

diagonal and 0 otherwise. ρ remains unchanged through the CE simulation and varies 

according to some updating mechanism in MRAS.  

Figures 3.1 and 3.2 display the thresholds evolution from CE and MRAS 

when initial ρ = 0.2, and we found CE method gives a smoother convergence while 

MRAS converges a little faster. Both algorithms provide sound results efficiently. 

The graphical representations of the critical prices convergence of CE and MRAS in 

the case of ρ = 0.5 are given in Figures 3.3 and 3.4, respectively. It is not difficult to 

see that MRAS approaches to the optimal value much quicker than CE method, more 

specifically, MRAS reaches the optimum at iteration 5 whereas it takes 20 iterations 

for CE. Figure 3.4 also shows the sequence of (1- ρk) quantile of MRAS, and it 

increases as expected since this is a maximization problem. As mentioned before, the 

maximum element in the covariance matrix of the multivariate normal distribution 

model (cov_max) is one measure of the convergence. Figure 3.5 illustrates the 

progress of cov_max from MRAS and CE algorithms when ρ = 0.5. It is not surprise 

to see that cov_max of MRAS declines much faster though fluctuates more, e.g., it 

reaches 450 for one instance, while those for CE are less than 250. Figures 3.7 and 

3.8 present the similar thresholds evolution for ρ = 0.8. It is obvious that CE method 

doesn’t converge well, but MRAS reaches the optimum efficiently despite the large ρ 
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we choose. The critical prices from CE don’t show convergence after even 200 

iterations while MRAS satisfy terminate conditions within 30 steps. Figure 3.6 

compares the cov_max from MRAS with CE method for ρ = 0.8. The left y axis is for 

MRAS and right y-axis is for CE. The graph implies a similar finding as the one 

suggested by the example of ρ = 0.5, but in a more extreme instance:  MRAS 

converges significantly better and efficient than CE and the development of cov_max 

is flatter in CE algorithm. Tables 3.9 and 3.10 present the evolution of MRAS and CE 

algorithms for ρ = 0.8, respectively. For MRAS, ρk decreases from the initial 0.8 to 

0.11 at termination point, cov_max is reduced by 2 magnitudes, and number of 

sample size doubles at the last iteration, whereas the cov_max from CE keeps 

relatively smooth with most in the range of 70 to 200, and the critical prices moves 

slowly.   

From the analysis, we can conclude that ρ assumes an important role in the 

optimization process of CE method. Unlike MRAS, where the convergence of the 

sequence of reference models to an optimal distribution model is guaranteed, the 

convergence of the sequence in CE relies on the quantile parameter ρ. CE method can 

obtain a favorable result only when the value of ρ is chosen sufficiently small because 

an importance sampling technique is simply and solely employed in the parameter 

updating procedure. In contrast, the MRAS algorithm is insensitive to the choice of 

initial quantile parameter and sample size, since both parameters will adapt 

corresponding to the updating schemes in the successive iterations.  
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Amercan Put Option Pricing by CE (rho=0.2)
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Fig.3.1.Critical price of CE (ρ=0.2) 

 

Amercan Put Option Pricing by MRAS (rho=0.2)
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Fig.3.2.Critical price and quantile of MRAS (ρ=0.2) 
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Amercan Put Option Pricing by CE (rho=0.5)
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Fig.3.3. Critical price of CE (ρ=0.5) 

 

Amercan Put Option Pricing by MRAS (rho=0.5) 
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Fig.3.4. Critical price and quantile of MRAS (ρ=0.5) 
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Cov_Max (rho=0.5)
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Fig.3.5.Cov_max of CE and MRAS (ρ=0.5) 
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Fig.3.6.Cov_max of CE and MRAS (ρ=0.8) 
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Amercan Put Option Pricing by CE (rho=0.8) 
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Fig.3.7.Critical Price of CE (ρ=0.8) 
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Fig.3.8.Critical Price and quantile of MRAS (ρ=0.8) 
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Table 3.9 The evolution of MRAS algorithm for ρ0 = 0.8 

iter k rho N 
quantil
e 

cov_ma
x     

Critical 
Price     

0       100.00 35.00 40.00 45.00 50.00 55.00 

1 0.8 100 6.66 193.99 31.94 34.49 36.83 38.95 41.44 

2 0.8 100 6.78 477.48 47.17 49.75 52.18 54.60 57.76 

3 0.8 100 6.85 756.34 49.63 52.38 54.82 57.38 60.20 

4 0.8 100 6.85 743.62 57.36 59.57 61.74 64.15 66.89 

5 0.76 100 6.95 774.53 36.55 38.41 40.95 42.93 45.06 

6 0.76 100 6.99 607.75 63.76 66.03 68.45 70.84 73.52 

7 0.76 100 6.99 782.79 53.43 55.57 57.73 60.19 62.48 

8 0.67 100 7.10 638.92 61.55 64.04 66.67 69.41 71.75 

9 0.67 100 7.24 322.54 67.88 70.61 72.18 74.41 76.57 

10 0.67 100 7.26 386.77 68.52 71.24 74.05 77.21 79.79 

11 0.62 100 7.38 1004.31 59.60 62.40 65.63 67.68 70.64 

12 0.62 100 7.39 150.27 74.04 76.37 79.36 82.11 84.85 

13 0.48 100 7.64 134.87 73.22 74.47 77.84 79.99 81.89 

14 0.48 100 7.67 116.94 77.93 81.93 85.39 87.04 88.48 

15 0.31 100 7.98 70.53 78.49 80.75 83.84 86.47 88.71 

16 0.31 100 8.17 66.38 77.32 81.04 83.66 85.49 86.92 

17 0.31 100 8.18 28.78 77.34 79.92 83.42 85.56 88.76 

18 0.16 100 8.49 33.71 78.20 81.20 84.31 87.02 89.80 

19 0.16 100 8.51 24.66 78.82 81.61 84.30 86.98 89.65 

20 0.15 100 8.51 10.33 76.29 78.89 81.39 84.29 85.19 

21 0.13 100 8.53 32.02 78.10 80.72 83.87 85.99 87.77 

22 0.12 100 8.59 4.55 78.23 82.13 85.93 88.52 89.95 

23 0.12 100 8.69 11.47 75.50 78.53 81.49 84.01 86.31 

24 0.12 100 8.69 4.36 78.64 81.61 84.10 85.84 87.72 

25 0.11 100 8.70 13.32 78.22 80.98 84.32 87.29 88.87 

26 0.11 100 8.81 4.61 75.86 77.15 79.41 83.58 85.48 

27 0.11 100 8.81 2.19 76.85 80.36 83.72 85.46 87.09 

28 0.11 200 8.81 2.75 82.08 85.19 85.73 87.03 88.09 
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Table 3.10 The evolution of CE algorithm for ρ = 0.8 

iter k cov_max     
Critical 
Price     

0 100.00 35.00 40.00 45.00 50.00 55.00 

1 72.60 36.03 38.63 41.12 43.67 46.23 

5 100.69 38.60 40.88 43.07 45.43 48.03 

10 98.96 42.84 45.33 47.59 50.12 52.72 

15 132.54 43.58 45.82 48.13 50.57 53.21 

20 113.32 44.43 46.99 49.25 51.57 53.87 

25 149.23 43.88 46.41 48.71 50.99 53.36 

30 123.54 45.75 48.18 50.41 52.88 55.38 

35 143.50 46.40 48.93 51.35 53.71 56.13 

40 163.27 44.54 47.06 49.46 51.83 54.24 

45 214.35 46.87 49.41 51.77 54.02 56.44 

50 171.89 46.64 49.20 51.64 53.87 56.19 

55 134.90 48.71 51.26 53.70 56.25 58.38 

60 163.51 51.27 53.86 56.26 58.59 61.02 

65 145.24 50.68 53.32 55.73 58.24 60.87 

70 145.20 50.30 52.85 55.35 57.75 60.12 

75 130.16 52.43 54.96 57.33 59.73 62.14 

80 162.61 54.37 56.84 59.36 62.01 64.31 

85 133.25 52.16 54.82 57.42 59.85 62.31 

90 125.56 55.32 57.96 60.48 62.89 65.21 

95 181.41 52.11 54.74 57.20 59.77 62.15 

100 129.14 54.53 57.05 59.45 61.89 64.41 

105 133.59 53.98 56.65 59.18 61.74 64.11 

110 132.67 53.86 56.26 58.64 61.02 63.42 

115 183.10 56.50 59.14 61.67 64.21 66.59 

120 117.98 53.83 56.35 58.99 61.37 63.78 

125 147.28 54.88 57.48 59.99 62.55 64.98 

130 137.97 56.37 58.89 61.31 63.78 66.17 

135 116.85 56.71 59.34 61.81 64.22 66.84 

140 104.32 57.04 59.76 62.19 64.50 66.92 

145 124.33 56.91 59.41 61.97 64.31 66.72 

150 134.26 56.48 59.17 61.63 64.01 66.33 

155 133.75 57.67 60.34 62.90 65.34 67.76 

160 120.70 57.78 60.29 62.79 65.27 67.62 

165 111.36 57.16 59.78 62.19 64.66 67.07 

170 134.84 56.52 59.05 61.55 64.11 66.47 

175 93.82 58.84 61.41 63.79 66.08 68.44 

180 88.70 59.98 62.62 65.07 67.57 69.83 

185 108.25 55.46 57.86 60.12 62.72 65.21 

190 83.37 57.62 60.20 62.71 65.16 67.52 

195 94.05 59.35 61.99 64.49 66.96 69.43 

200 110.25 59.93 62.47 64.96 67.28 69.57 
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3.4 Conclusions  

This essay applies a stochastic approach, MRAS algorithm, for the pricing of 

American style options. The method casts the pricing problem as an optimization 

problem, and optimizes the early exercise thresholds simultaneously by iterative 

updates via a reference model. We study the case of American call option, American 

put option and Asian option, which are written on the underlying assets following 

geometric Brownian motion or jump-diffusion processes. In repeated experiments the 

global maximum is consistently found for varying initial condition settings. We 

demonstrate its accuracy and efficiency and give an example where MRAS provides a 

better solution than CE method. We focus on American-style options with a single 

underlying asset in this essay, but this methodology can be applied to other types of 

options, especially the derivatives with complicated exercise regions or higher 

dimensional options. We can conclude that MRAS is a flexible and useful 

randomized optimization algorithm in pricing derivatives.  
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Chapter 4 

 

Optimizing Importance Sampling Parameter for Portfolios 

of Credit Risky Assets 

 

This essay is organized in the following manner. Section 1 introduces the 

portfolio model, the application of Monte Carlo simulation and importance sampling 

technique, and the optimization problem setting. We then describe two stochastic 

methods used to find optimal importance sampling measure change in Section 2. The 

derivation of the gradient estimator and the detailed implementation of the 

approaches are also illustrated in this section. Section 3 sets up the numerical 

experiment and presents the numerical results of various descriptive statistics outputs. 

We also compare the performance of IPA and CE methods. Section 4 concludes the 

essay with a summary and a direction for further study.  
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4.1 Portfolio Model and Problem Setting 

4.1.1 Portfolio Model 

Quantitative methods for portfolio analysis have been developed since Markowitz’s 

(1952) pioneering work in 1950s, and have been applied effectively in a variety of 

areas of finance, particularly to equity portfolios. Similar progress has not occurred 

for debt portfolios because of the difficulty to quantify the level of default risk in a 

single asset, and to identify the correlation between the various default risks. Merton 

(1974) made use of the Black and Scholes (1973) option pricing model to model a 

single company’s credit risk by characterizing the company’s equity as a call option 

on its assets and assuming the firm value follows a random process similar to the one 

describes generic stocks in equity markets. Kealhofer and Bohn (2001) developed a 

credit risk model in this framework to manage portfolio of default risk. In the paper, 

they described methods to measure probabilities of default for each asset, the 

recovery in the event of default, and the default relationship between the assets in the 

portfolio. We adopt this model to study the optimal choice of the importance 

sampling measure parameter in this essay.  

 The basic idea in the default model is that firms default when their asset return 

falls below a certain threshold over a fixed time horizon, where the firm asset returns 

are drawn from a multivariate normal distribution with a given correlation matrix. 

The loss associated with a default depends on the recovery rate, which refers to the 

fraction of the amount may be recovered through bankruptcy proceedings or some 

other form of settlement. Loss given default (LGD) is typically expressed as a 

proportion of the nominal, and is equivalent to one minus recovery rate. In our model, 
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we assume the LGD is known and follows an independent and identically Beta 

distribution, because Beta distribution can be bound between two points and can 

assume a wide range of shapes.  

 Default correlation measures the strength of the default relationship between 

two assets, and can be estimated via historical data of firms’ equity return correlations. 

We turn to a factor model to calculate the correlations, and the firm asset returns ei* is 

expressed as  

ii

T

iii rzre εβ 22 1* −+= ,                  (4.1) 

where  

z: a vector of the systematic risks with M elements. The component could represent 

various risks such as global economic, regional, sector, country, and industry factors. 

2

ir : the firm’s R-square value, that is, the percentage of the asset return variance 

explained by the total systematic risks.  

βi: a vector of the normalized weights of the systematic risks, and 

Ti

M

ii

i ),...,,( 21 ββββ = . 

εi: the firm-specified risk. 

 We build a Monte Carlo simulation that draws the inputs in equation (4.1) 

repeatedly to determine the portfolio loss. If we define Γ to be the diagonal matrix 

with 2

iii r=Γ , let B to be the matrix B = [β1, …, βM], and I as the identity matrix, then 

we can rewrite equation (4.1) as 

ε2/12/1 )(* Γ−+Γ= IzBe T ,                  (4.2)  

and the correlation matrix becomes 
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Γ−+ΓΓ= IBBP T 2/12/1 .                  (4.3)

 A firm defaults when its asset value falls below a certain default threshold, 

and the loss to the firm is LGD. Thus, the loss of the portfolio with N risky assets is 

given by 

 }0*){(
1

1

≥−= ∑
=

ii

N

i

i eILGD
N

L α ,                 (4.4) 

where  

N: number of risky assets in the portfolio, 

LGDi: loss given default of asset i,  

I{.}: indicator function, 

αi: default threshold that is related to the default probability pi by the standard 

cumulative normal distribution function.  

ei*: firm asset returns that are drawn from a multivariate normal distribution with a 

given correlation matrix.  

 Some assumptions in this portfolio model include the following: 

1. We implement a simulation over a single time horizon and assume the 

maturity of all the instruments in the portfolio is the same as this horizon. 

2. The portfolio is homogeneous in exposure size, i.e., each asset accounts 

for 1/N of the total exposure for a portfolio of N credit risky assets.  

3. All the credit exposures are priced at par, so that no uncertain discount 

factor needs to be considered in the model. 

4. There is no correlation between LGD and the asset return for a defaulted 

loan.  
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5. All the credit exposures are issued by distinct firms and the firm specified 

risks are independent.  

 In this essay, we will study both the expected loss and unexpected loss for the 

credit risk portfolio. The expected loss (EL) is simply the expected value of portfolio 

losses due to default over a certain horizon, whereas the unexpected loss (UL) 

measures the second moment of portfolio losses and it can be either the volatility or 

some measure of the loss distribution tail such as quantile of portfolio loss. In this 

essay, the UL refers particularly to the volatility of loss. By the definition, the EL and 

UL are calculated as  

∫= **)(*)()( deefeLLE , 

and 

)()(])[( 222 LELEELLEUL −=−= . 

In an attempt to measure the loss at a specified probability level, we also 

estimate the quantile of the loss distribution.  The calculation of the loss quantile 

gives financial institutions the market risk of the portfolio, and it can be used to 

calculate Value-at-risk that is widely used by banks, securities firms, and other 

trading organizations. Since the error analysis is more straightforward for the 

integration problem of estimating percentage given the loss level than for the rank 

statistics of estimating loss given a probability level, we study the variance of the 

probability p that the loss value is greater than a given loss Lq, where Lq is a quantile 

value at probability level q calculated from standard Monte Carlo simulation in the 

following numerical study. The formula of the probability can be expressed as  
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**)()(1)( deefLLLP qq ∫ >= ,                  (4.5) 

where 1(·) is the indicator function and f(·) is the probability density function of the 

asset return.  

 

4.1.2 Importance Sampling Method 

 From equations (4.1) and (4.4), almost all the input parameters in the portfolio 

loss model are generated randomly; hence even for a small number of risk exposures 

such as 100 loans, it would take a long time for the standard Monte Carlo simulation 

to estimate the loss distribution. Therefore, we want to make use of some variance 

reduction methods to speed up the computation. One common method is importance 

sampling. The idea behind importance sampling is to concentrate simulation on 

sample paths that contribute most to estimating the expected value; in our case, since 

the default is a rare event, the importance sampling technique changes the distribution 

from which the random samples are drawn so that a high number of defaults will 

occur and result in large losses under the new measure. It has been applied to increase 

the accuracy and reduce the variance of estimator in the aforementioned default risk 

portfolio model by Morokoff (2004).  

The importance sampling method in Morokoff’s model considers a single 

dimension only and manages to find one which has the largest impact on the portfolio 

value. For a normal distribution, the usual importance sampling technique used when 

more samples in the tails are needed is to scale up the variance so that there are more 

points further out. Specifically, more asset return values in the tails are produced so 

that more risky assets are likely to default and more losses will accumulate.  In 
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contrast to a simple shift on the covariance matrix, the basic idea here is to 

orthogonalize the correlation matrix P (equation (4.3)) and scale up the variance 

corresponding to the largest eigenvalue. The detailed implementation work as follows.  

Let Q be the orthogonal matrix whose columns are the orthonormal 

eigenvectors of correlation matrix P, and Λ be the diagonal matrix of eigenvalues 

sorted such that λ1> λ2>…> λN. Then we have
TQQP Λ= , and the probability density 

function of asset return vector e, which follows a normal distribution with mean zero 

and covariance matrix P is 

)
2

1
exp(

||)2(

1
)(* 1ePe

P

ef T

N

−−=
π

. 

By applying the importance sampling method, we change the correlation 

matrix PP
~

→ , with TQQP Λ=
~~

, where 1

2

1

~
λθλ =  and jj λλ =

~
, for j > 1. In this way, 

P
~
 is the covariance matrix which results from scaling up the largest eigenvalue by a 

factor θ
2
. The asset return vector e under this new correlation matrix has the p.d.f. as 
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and from the properties of orthogonal matrices, we have the weight function of 
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where q1 is the first column of Q corresponding the largest eigenvalue λ1. The asset 

return generated from importance sampling approach is  

*)( eQQe TΣ= ,                   (4.7) 

where Σ is a diagonal matrix with Σ11 = θ, and Σjj = 1 for j > 1. In practical 

implementation, we can generate the asset return e following new correlation matrix 

and compute weight w(e) according to equation (4.6) after we obtain λ1 and q1. The 

expected loss estimate via importance sampling becomes 

)].()([

)()()(

)(
)(

)(*
)(

)(*)(*)]([

eweLE

deefeweL

deef
ef

ef
eL

deefeLeLE

•=

=

=

=

∫

∫
∫

 

Similarly, the probability that loss exceed some certain quantile level is given by 

deefewLeLLP qq )()())((1)( ∫ >= . 

 

4.1.3 Importance Sampling Measure Parameter 

The fundamental idea of importance sampling is to express an expectation 

under one probability measure by one under another probability measure through the 

Radon-Nikodym theorem. The right choice of the new probability measure will result 

in effective variance reduction. The issue on finding the optimal scale parameter θ 

that determines the performance of the importance sampling method for the portfolio 

of credit risky assets has been raised in Morokoff’s paper. Morokoff uses trial and 

error to generate some general guidelines; however, no further study on the optimal 
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value has been conducted. The efficiency of Monte Carlo simulation depends on the 

variance of the estimation; hence our goal in this essay is to obtain the optimal choice 

of θ that minimizes the variance of the loss estimator under new measure with the 

importance sampling implementation.  

The portfolio loss estimator under original measure Q is obtained by 

generating the asset return based on the original correlation matrix and then taking the 

sample mean over replications of L(e*), i.e., *)]([ˆ eLEL Q= . If there is a new measure 

P such that measure Q is absolutely continuous with respect to the measure P, then by 

the Radon-Nikodym theorem, we have 

],[

][ˆ

dP

dQP

Q

LE

dP
dP

dQ
L

LdQ

LEL

=

=

=

=

∫
∫

 

and the formula ])([ˆ
dP

dQP eLEL = gives an alternative unbiased estimator for the loss 

under measure P.  The variance of this new estimator is given by 

2222 ˆ])[(])[(])[( LLELELE
dP

dQP

dP

dQP

dP

dQP −=− . 

Since 2L̂  is a constant, the optimization problem can be expressed as follows:          

 Min ])/()([)( 22 dPdQeLEV PP •=θ ,                    (4.8) 

where Q is the original measure and P is the new measure with importance sampling. 

dQ/dP can be explicitly expressed as w(e) in our model. Notice that the optimization 

function of importance sampling measure discussed here and the optimal parameter 

used in the following implementations are all with respect to the expected loss. 



 94 

Unexpected loss is driven by the same default events and we didn’t run the 

optimization based on quantiles. 

 

4.2 Method Descriptions 

4.2.1 IPA_Q Method 

We use gradient-based stochastic approximation to solve the variance minimization 

problem as )(minarg* θθ
θ

V
Θ∈

= . The direct differentiating of the term inside equestion 

(4.7) requires the derivative of L(e) and dQ/dP. The derivative is complicated, 

because L(e) is calculated under measure P and is obviously dependent on θ.  Su and 

Fu (2002) propose an optimal importance sampling method, called IPA_Q here, 

which carries out the simulation to find the best change of measure under original 

measure Q based on an estimate of the gradient of the variance. It is different from 

the IPA_P method described by Vazquez-Abad et al. (1998), in that the gradient 

estimate under the new measure P is used to find the minimized variance.  

First, we have 
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Therefore, the importance sampling problem is transformed into a 

minimization problem under original measure, which eliminates the dependence 

between the loss function and the parameters in the optimization. Recall that dQ/dP is 

the weight function, the minimization problem in Equation (4.8) then becomes 

Min )]*,(*)([)( 2 θθ eweLEV QQ •= .                                    (4.10) 

Note that the loss function L(e*) does not depend on θ under measure Q.  

We next derive the IPA_Q gradient estimator as follows. According to the 

portfolio model, we have 
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Defining
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1 *)(
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= > 0 for notional convenience, the gradient estimator becomes 
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The derivation shows that IPA_Q method provides a much simpler gradient 

estimator, since no differentiability of the loss function with respect to the 

optimization parameter θ is needed. 
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Next we show the objective function is a convex function, so that the IPA 

estimator is unbiased and the simulation converges to the optimum. The second 

derivative of objective function to parameter is 

.0]])
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The last inequality is valid since L2 > 0, exp(•) > 0, and 0352 >+ −− σσ MM . This 

positive second derivative guarantees an optimum exists for the objective function.  

 After the IPA estimator is obtained, we can find the optimal parameter θ* for 

importance sampling procedure via an iterative scheme: 

kkkk ga−=+ θθ 1 ,  

where θk is the parameter at k
th
 iteration, gk is an estimator of the derivative with 

respect to θ of the variance of the estimator V(θ), and {ak} is a positive sequence of 

numbers converging to 0. The selection of the step size is critical and we choose the 

step size according to varying initial conditions by trial and error. The simulation 

stops when 510|| −<kk ga . 

The algorithm for applying importance sampling via IPA_Q is as follows: 

Algorithm IPA_Q 

Stage I: Find θ*. 

1. Initialize: set θ = θ0, k = 1. 

2. Repeat until a specified stopping rule is satisfied: 

a. Generate sample paths under original measure Q. 

            b. Calculate IPA_Q and gk based on equation (4.11). 
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c. Update kkkk ga−=+ θθ 1 . 

d. Set k ← k+1. 

      3.  Set 1* += kθθ . 

Stage II: Simulate the loss model using importance sampling at θ = θ*. 

------------------------------------------------------------------------------------------------------- 

 

4.2.2 Cross-entropy Method 

Since the selection of importance sampling measure change parameter is a 

minimization problem as showed in equation (4.8), we can apply the CE method to 

obtain the best solution. The CE method adaptively finds the optimal value. We 

assume the importance sampling measure parameter to be estimated in the 

optimization problem is generated from a normal distribution model at each iteration. 

We will compare the performance of IPA_Q and CE algorithms in the following 

numerical examples.  

Algorithm CE 

Stage I: Find θ*. 

1. Initialize: Specify quantile parameter ρ and sample size N. Initialize 

parameters of the probabilistic model (normal distribution) µ0 and σ0. Set k=0. 

2. Repeat until a specified stopping rule is satisfied: 

a. Generate N i.i.d. samples θ1,k, …, θN,k from the )ˆ,ˆ( kkN σµ distribution. 

b. Select the ρN best performing (elite) samples, and let I be the indices 

of the ρN best performing samples.  

c. Update the parameters as: 
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d. Smooth by using equation (3.6), (3.7) and (3.8).   

e. Set k ← k+1. 

3. Set 1* += kµθ . 

Stage II: Simulate the loss model using importance sampling at θ = θ*. 

------------------------------------------------------------------------------------------------------- 

 

4.3 Numerical Analysis 

In this session, we apply both IPA_Q and CE methods in a test case to illustrate the 

effectiveness of the methods in variance reduction of importance sampling in the 

Monte Carlo simulation. Our goal is to find the minimum V
Q 
(θ) as shown in the 

equation (4.10). In our numerical example, we consider a fixed horizon of one year 

and have the following input parameters: 

 The number of risky assets in the portfolio is N = 100. 

 The number of factors in equation (4.2) is M = 50. 

 The factor zi is generated from the standard normal distribution. 

 The factor loadings B = [β1, β2, …, βM]
 are generated randomly. The weight 

corresponding to the first factor is uniformly distributed on [0.21, 0.31], the weights 

on the second to fifth factors are uniformly distributed on [0.11, 0.21], and two 

additional factors are chosen randomly from the remaining 45 factors, and their 
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weights are uniformly distributed on [0, 0.1]. All other factors loadings are zero. 

Finally, the factor loadings are normalized so that 1=i

T

i ββ . 

 R-square 2

ir  is uniformly distributed on [0.1, 0.4]. 

 The default probability has the formula of )1/1(01.0 2 −= ii rp , and the 

default threshold )(1 ii p−Φ=α , where Φ is the cumulative density function of the 

standard normal distribution.  

 εi is generated from i.i.d. standard normal distribution.  

 LGDi is generated from Beta distribution with mean 0.5 and standard 

deviation 0.25.  

We run 1,000 replications to find the optimal importance sampling parameter 

based on the expected loss, and the results are shown in Figures 4.1 and 4.2. For the 

IPA_Q method, we conduct the experiments with initial θ0 = 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10. Figure 4.2 gives the results of the CE algorithm with different values of the initial 

condition. We assume θ is generated from a normal distribution model at each 

iteration, and two sets of initial conditions are tested: initial mean of the normal 

distribution is 5.0 with initial standard deviation of 3.0; and initial mean of 10.0 with 

initial standard deviation of 5.0. The above two lines in Figure 4.2 shows the 

evolution of θ under varying initial conditions, and the bottom two lines illustrate the 

evolution of standard deviation as simulation progresses. The standard deviation in 

the preset normal distribution model reaches zero. Using the CE method, convergence 

is achieved within the first five or six iterations of the stochastic simulation. Both 

methods converge to the optimum quickly regardless of the initial choice and give an 
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optimal value θ around 1.5. The running time was 45 seconds per iteration for IPA_Q 

method and 15 minutes per iteration for CE method on a 1.5GHz Pentium PC; 

therefore the total computational time to achieve the convergence for IPA_Q method 

is less than that of CE method. 

           

Theta Evolution by IPA_Q
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   Figure 4.1 Optimal theta evolution by IPA_Q for EL 

         

Theta Evolution by CE Method
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          Figure 4.2 Optimal theta evolution by CE method for EL  
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In our numerical case, we have the exact formula of expected loss 

as pLGDEL *= . Considering LGD following a Beta distribution with standard 

deviation of 0..25 and p is a function of R-square which is uniformly distributed 

between 0.1 and 0.4, we can calculate the analytical value of the expected loss as 

0.5541%. We apply the optimal IS scalar parameter obtained by both methods, 1.5, to 

the simulation based on 100,000 replications. Table 4.1 compares the simulation error 

of EL and UL for the standard Monte Carlo simulation, the Monte Carlo simulation 

with importance sampling method by selecting θ = 3 obtained from Morokoff’s trial 

and error process, and the IS method by choosing θ = 1.5 from our optimization 

results. In the table, σs represents the standard deviation of the raw Monte Carlo 

simulation, σIS-M is the standard deviation of the IS method with Morokoff’s scale 

parameters, and σIS the standard deviation of the IS method with scalar from IPA_Q 

and CE methods. In the table, we also show the ratio of the estimate of naïve variance 

and the estimate of importance sampling variance, which is sometimes called 

variance reduction factor. We found our importance sampling approach leads to a 

reduction of expected loss standard deviation from 1.06% to 0.75%. Substantial 

improvement in accuracy is found in estimating unexpected loss with the standard 

deviation decreasing from 0.074% to 0.017%. Because the importance sampling 

method requires only a small amount of additional computation to evaluate asset 

return and weight under new measure, the variance reduction factor is a measure of 

the degree of computational savings achieved by importance sampling. For our 

experiment, we found that the expected loss could run 2 times faster, while for the 

unexpected loss the speed up is 18. According to the variance ratio in the table, the 
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same accuracy in estimating EL obtained by a standard Monte Carlo simulation at 

100,000 runs could be acquired with the Morokoff importance sampling method 

using approximately 8550 runs, or with our importance sampling method using 

around 50,000 runs. The accuracy enhancement becomes even more pronounced in 

estimating the unexpected loss. 100,000 runs of standard Monte Carlo simulation is 

reduced to about 24,500 runs in Morokoff IS method, and 5500 runs in our method. 

The variance estimator of the IS method with scalar 1.5 is about 42% and 78% lower 

than the calculation with scalar 3, in estimating the expected loss and unexpected loss, 

respectively. The results indicate that our optimization algorithm gives a better 

importance sampling measure parameter than the one from Morokoff’s trial and error 

method. For instance, in order to achieve the same level of precision as IPA_Q in 

estimating expected loss, Morokoff’s method would require approximately 1.7 times 

as many simulations, while for unexpected loss it is about 4.5 times.  

Other than the expected loss and unexpected loss functions, we also examine 

the accuracy improvement of the simulation in the tail quantile levels. According to 

equation (4.5), the standard deviation σs without importance sampling is 

.)1(

)(*)))((1( 22

qq

deefqLeL qs

−=

−>= ∫σ
 

A similar formula is obtained for the importance sampling simulation as 

deefqewLeL qIS )())())((1(
22 −⋅>= ∫σ . 
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Table 4.1 EL and UL for portfolio of 100 exposures 

  Expected Loss (%) Unexpected Loss (%) 

True Value Mean 0.5541 NA 

Mean 0.5534 1.0616 

Standard MCS 

σs 1.0616 0.0739 

Mean 0.5561 0.9817 IS – Morokoff 

(θ=3.0) σIS-M 0.9817 0.0367 

Mean 0.5533 0.7503 

IS (θ=1.5) 

σIS 0.7503 0.0174 

σs
2
/σIS-M

2
 1.17 4.05 

σs
2/σIS

2 2.00 18.04 

 

 In the same way as we treat the expected loss, we use IPA_Q method to find 

the optimal importance sampling measure for the probability that loss exceed some 

certain quantile level. The minimization problem becomes 

Min )]*,()(1[)( 2 θθ ewLLEV q
QQ •>= , 

and the gradient estimator is 
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We also see that the objective function V
Q
(θ) is a convex function by calculate the 

second derivative with respect to θ.  
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Because we use IPA under the original measure, we only need the loss at 

some certain quantile level obtained from a standard Monte Carlo simulation. From 

our calculation, Lq = 5.06%, 10.01%, and 14.20% corresponding to q = 1%, 0.1%, 

and 0.01%, respectively, as shown in table 4.2. Figure 4.3 shows the evolution of 

finding optimal θ for q = 1% with initial condition of θ0 = 1 and 5. Both optimization 

converge to θ* = 2.3. By applying the same approach, we find the optimal IS measure 

is θ* = 2.5 for q = 0.1%, and θ* = 5.0 for q = 0.01%. In the following experiments, 

we will use those optimal values in our importance sampling simulation to estimate 

loss at different quantile levels.  

 

Theta Evolution by IPA_Q for Loss at q=1%
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Figure 4.3 Optimal theta evolution by IPA_Q method for loss at q= 1% 

 

Table 4.2 shows the quantile results of the credit risk portfolio at the level of 

1%, 0.1%, and 0.01%, based on 10,000 runs. From the standard Monte Carlo 
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simulation, the quantile of the loss distribution is 0.0506 at quantile level 1%, 0.1001 

at 0.1%, and 0.1420 at level 0.01%. The large loss value indicates the loss distribution 

is a fat tailed distribution. The results show that a significant improvement in 

accuracy is achieved by applying importance sampling method and more 

improvement is obtained by using the optimal IS measure parameter. At the 1% level, 

the standard Monte Carlo method gives σs = 9.95%, the Morokoff importance 

sampling gives σIS-M = 4.97%, and our method has σIS = 4.43%. In terms of the 

computational speed up, there is a speed up factor of 5.04 at level 1%, 27.24 at 0.1% 

level, and 82.64 at 0.01% level by applying the optimal measure scalar. As shown in 

the table, the results of σIS-M and σIS at different quantile levels indicate that the 

variance is reduced effectively by using the optimal importance sampling measure 

parameter acquired from IPA_Q and CE methods.  

 

Table 4.2 Quantiles for Portfolio of 100 exposures 

                   Quantile level q 

Loss 

1 % 0.1% 0.01% 

Loss Lq 5.06% 10.01% 14.20% 

Standard MCS σs 9.95% 3.16% 1.00% 

Morokoff IS (θ=3.0) σIS-M 4.97% 0.61% 0.13% 

IS  σIS 4.43% 0.60% 0.11 

σs
2/σIS-M

2 4.01 26.84 59.17 

σs
2
/σIS

2
 5.04 27.74 82.64 
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4.4 Antithetic Variate Method 

Antithetic variate (AV) approach is a common variance reduction technique for 

increasing the precision of the estimates, and it usually accelerates the convergence. 

This method is easy to apply, because it concentrates on the process used for 

generating the random deviates. The fundamental idea behind is to bring in negative 

correlation between two estimates.  

Suppose that a sequence of random variates are generated using the random 

number sequence u1, u2,…, un, where the {ui} are uniformly distributed in the interval 

(0,1). Then the sequence (1- u1), (1- u2),…, (1- un) follow the same uniform 

distribution and are used to generate a second set of variates. Assume the estimate of 

the value function using the first set is g(u), and the estimate using the second set is 

g(1-u), then we have an unbiased estimate of  

)]1()([
2

1
ugug −+ ,  

with variance  

))]1(),([cov(
2

1
))]1(var())([var(

4

1
ugugugug −+−+ .  

If the covariance between g(u) and g(1-u) is negative, this will yield a smaller 

estimate of the variance than an independent estimate.  

 For those standard normally distributed random variables used in our model, 

we first generate a set of random normal deviates for the initial estimate, and a second 

estimate is then obtained by using the same set of random normal deviates with their 

signs reversed because if x is a standard normal random variable, so is –x. 
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 Table 4.3 shows the variance reduction results by applying antithetic variate 

method based on 10,000 replications.  We estimate the expected loss, unexpected loss 

and quantiles. Compared with standard Monte Carlo simulation, the variance is 

reduced approximately by 10% by applying antithetic sampling only. The speedup 

factor of simulation is in the range between 1.00 and 1.66. We try to combine 

antithetic variate method with importance sampling to reduce the variance further, 

however, there is no obvious improvement over the results by using importance 

sampling only, as illustrated in table 4.1 and 4.2. The results indicate that the effect of 

importance sampling in reducing variance dominates that of antithetic sampling.  

 From the outcome we find the speed improvement of using antithetic variate 

approach is minor in our model. The reason behind is that although normal variates 

have perfect negative correlations, this does not hold for the corresponding 

transformed return function in the portfolio loss model. Therefore, while the 

covariance term is negative, its magnitude is not large enough to result in a significant 

reduction in the variance of the revised estimate.  

Table 4.3 Variance Reduction by Using Antithetic Variate Method 

 EL UL P(0.1) P(0.01) P(0.001) 

σs
 

1.07% 0.078% 9.95% 3.16% 1.00% 

σAV 1.03% 0.071% 9.29% 2.45% 1.00% 

σAV-IS 0.76% 0.018% 4.45% 0.62% 0.12 

σs
2
/ σAV

2 
1.08 1.21 1.15 1.66 1.00 

σs
2
/ σAV-IS

2
 1.98. 18.8 5.00 25.98 69.44 
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4.5 Conclusions 

This essay describes two stochastic optimization methods for choosing an optimal 

importance sampling measure change factor, thereby improving the accuracy of a 

Monte Carlo simulation used to estimate the loss distribution on a portfolio of credit 

risky assets. Scaling up the scalar parameter in the asset correlation model increases 

the correlations, thus inducing a larger number of correlated defaults and generating 

samples further out in the loss tail. The implementation of importance sampling with 

optimal scalar yields more precise estimates of the descriptive statistics value than 

naïve simulation. It leads to a significant variance reduction in estimating expected 

loss, loss volatility and quantile. For example, in the case of estimating the volatility, 

it reduces the number of simulation runs by a factor of 18 compared with a standard 

Monte Carlo simulation and 4.5 compared with Morokoff’s choice of importance 

sampling measure. More substantial variance reduction is expected if more risky 

assets are involved. 

 When using the gradient-based method to estimate the optimal importance 

sampling measure, we cast the minimization problem under the original probability 

measure, which removes the dependence between the loss function and the scalar 

parameter in the optimization. As a result, we do not require differentiability of the 

loss function with respect to the underlying variable and our method is applicable in 

much more general settings. It results in a simpler IPA gradient estimator than the 

original IPA estimator. We further prove that the objective function in our 

minimization problem is a convex function. We also apply antithetic variate method 

to further reduce variance and the effect of antithetic sampling is limited. 
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Future studies include applying copula function in the portfolio analysis to 

account for the credit risk dependence structure. In addition, we can relax the 

assumption of the multivariate normal distribution for the asset return because our 

approach could apply to a multivariate distribution for which the correlation matrix is 

used in the sampling process.  
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