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ARTICLE OPEN

Machine learning for accurate estimation of fetal gestational
age based on ultrasound images
Lok Hin Lee1,19, Elizabeth Bradburn 2,19, Rachel Craik 2, Mohammad Yaqub3, Shane A. Norris4, Leila Cheikh Ismail5, Eric O. Ohuma2,6,
Fernando C. Barros7,8, Ann Lambert2, Maria Carvalho9, Yasmin A. Jaffer10, Michael Gravett11, Manorama Purwar12, Qingqing Wu13,
Enrico Bertino14, Shama Munim15, Aung Myat Min16, Zulfiqar Bhutta15,17, Jose Villar2,18, Stephen H. Kennedy2,18,
J. Alison Noble 1,20 and Aris T. Papageorghiou 2,18,20✉

Accurate estimation of gestational age is an essential component of good obstetric care and informs clinical decision-making
throughout pregnancy. As the date of the last menstrual period is often unknown or uncertain, ultrasound measurement of fetal
size is currently the best method for estimating gestational age. The calculation assumes an average fetal size at each gestational
age. The method is accurate in the first trimester, but less so in the second and third trimesters as growth deviates from the average
and variation in fetal size increases. Consequently, fetal ultrasound late in pregnancy has a wide margin of error of at least
±2 weeks’ gestation. Here, we utilise state-of-the-art machine learning methods to estimate gestational age using only image
analysis of standard ultrasound planes, without any measurement information. The machine learning model is based on ultrasound
images from two independent datasets: one for training and internal validation, and another for external validation. During
validation, the model was blinded to the ground truth of gestational age (based on a reliable last menstrual period date and
confirmatory first-trimester fetal crown rump length). We show that this approach compensates for increases in size variation and is
even accurate in cases of intrauterine growth restriction. Our best machine-learning based model estimates gestational age with a
mean absolute error of 3.0 (95% CI, 2.9–3.2) and 4.3 (95% CI, 4.1–4.5) days in the second and third trimesters, respectively, which
outperforms current ultrasound-based clinical biometry at these gestational ages. Our method for dating the pregnancy in the
second and third trimesters is, therefore, more accurate than published methods.
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INTRODUCTION
Failure to estimate gestational age (GA) accurately remains an
important barrier to the provision of evidence-based pregnancy
care in many low- and middle-income countries (LMICs)1. An
accurate estimate of GA is crucial to inform decision-making at the
individual level. It is also essential at population level to measure
causes of infant morbidity and mortality, such as preterm birth
and small for GA (SGA)2 - information that is needed for public
health strategies to improve health outcomes.
Currently, ultrasound measurement of the fetal crown rump

length (CRL) between 11 and 14 weeks’ gestation is the most
accurate method to establish GA, i.e., the gold standard. However,
many women, especially in LMICs, first seek antenatal care much
later in pregnancy because of lack of resources and/or socio-cultural
issues3,4. Relying on the reported last menstrual period (LMP) to
estimate GA is invariably unhelpful due to inaccurate recall of dates,
or irregular menstrual cycles, often exacerbated by malnutrition5.

Consequently, across the world, GA is mostly determined in the
second and third trimesters by measurement of symphysis-fundal
height (SFH) or fetal size using ultrasound. Even though
ultrasound is more accurate than SFH measurement6, biometry-
based GA assessment late in pregnancy is fundamentally flawed
because it assumes the fetus to have a mean size. By equating
fetal size with GA this practice neglects biological variation with
two main clinical effects: firstly, increased variation in ‘normal’ fetal
size7 means that accuracy of GA estimation becomes less reliable
as pregnancy advances, so that after 32 weeks’ gestation, dating
based on biometry has a prediction interval in excess of ±
2 weeks7; and secondly, pathological aberrations of growth
become more common as pregnancy advances, and the assump-
tion of average fetal size means biometry-based GA estimation
underestimates GA in SGA fetuses and overestimates it in large for
GA (LGA) fetuses8,9.
Here we propose machine learning as an alternative approach.

This is effective for multiple ultrasound image analysis tasks,

1Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK. 2Nuffield Department of Women’s & Reproductive Health, University
of Oxford, Oxford, UK. 3Intelligent Ultrasound Ltd, Hodge House, Cardiff CF10 1DY, UK. 4South African Medical Research Council Developmental Pathways for Health Research
Unit, Department of Paediatrics & Child Health, University of the Witwatersrand, Johannesburg, South Africa. 5College of Health Sciences, University of Sharjah, University City,
United Arab Emirates. 6Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine, London, UK. 7Programa de Pós-
Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, Brazil. 8Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de
Pelotas, Pelotas, Brazil. 9Faculty of Health Sciences, Aga Khan University, Nairobi, Kenya. 10Department of Family & Community Health, Ministry of Health, Muscat, Oman.
11Departments of Obstetrics and Gynecology and of Global Health, University of Washington, Seattle, WA, USA. 12Nagpur INTERGROWTH-21st Research Centre, Ketkar
Hospital, Nagpur, India. 13School of Public Health, Peking University, Beijing, China. 14Dipartimento di Scienze Pediatriche e dell’ Adolescenza, Struttura Complessa Direzione
Universitaria Neonatologia, Università di Torino, Torino, Italy. 15Department of Obstetrics & Gynaecology, Division of Women & Child Health, Aga Khan University, Karachi,
Pakistan. 16Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand. 17Center for
Global Child Health, Hospital for Sick Children, Toronto, Canada. 18Oxford Maternal & Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK.
19These authors contributed equally: Lok Hin Lee, Elizabeth Bradburn. 20These authors jointly supervised this work: J. Alison Noble, Aris T. Papageorghiou.
✉email: aris.papageorghiou@wrh.ox.ac.uk

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00774-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00774-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00774-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-023-00774-2&domain=pdf
http://orcid.org/0000-0002-5165-6865
http://orcid.org/0000-0002-5165-6865
http://orcid.org/0000-0002-5165-6865
http://orcid.org/0000-0002-5165-6865
http://orcid.org/0000-0002-5165-6865
http://orcid.org/0000-0001-7885-0775
http://orcid.org/0000-0001-7885-0775
http://orcid.org/0000-0001-7885-0775
http://orcid.org/0000-0001-7885-0775
http://orcid.org/0000-0001-7885-0775
http://orcid.org/0000-0002-3060-3772
http://orcid.org/0000-0002-3060-3772
http://orcid.org/0000-0002-3060-3772
http://orcid.org/0000-0002-3060-3772
http://orcid.org/0000-0002-3060-3772
http://orcid.org/0000-0001-8143-2232
http://orcid.org/0000-0001-8143-2232
http://orcid.org/0000-0001-8143-2232
http://orcid.org/0000-0001-8143-2232
http://orcid.org/0000-0001-8143-2232
https://doi.org/10.1038/s41746-023-00774-2
mailto:aris.papageorghiou@wrh.ox.ac.uk
www.nature.com/npjdigitalmed


including image registration10, classification11 and regression12,13.
Nevertheless, existing methods that automatically derive bio-
metric measures from standard ultrasound planes result in the
same uncertainties as clinical measurement12, or limited to GA
estimation using a single fetal standard plane14 or video15.
As the appearance of ultrasound images varies according to GA

due to, for example, increased fetal brain gyration, enhanced liver
echogenicity, or skeletal ossification as pregnancy advances, we
aimed to examine whether machine learning of fetal ultrasound
images acquired in the second and third trimesters can generate
accurate GA estimates solely using image characteristics, without
resorting to any size-based information. This would provide an
alternative method for GA estimation for the large number of
women globally who first attend an antenatal clinic after 14 weeks’
gestation. Using ultrasound images from two large global
ultrasound studies we train and externally validate machine
learning models for GA assessment, blinded to the ground truth of
GA (based on assessment in the first trimester). All measurements
and scale information were removed from ultrasound images and
a CNN architecture consisting of modularised convolutional layers
characterised with skip connections between modules utlilsed.
Thus, fetal ultrasound image appearance is used to estimate GA.
Estimation using three standard planes of head circumference
(HC), abdominal circumference (AC) and femur length (FL) show a
mean absolute error of ±4 days; estimation is within ±7 days of the
gold standard in 85% of images in external validation throughout
second and third trimesters (13+0 to 42+0 weeks). Moreover, this
accuracy is maintained in the presence of SGA and LGA. The
method overcomes the longstanding problem of biometry-based
GA estimation in late pregnancy which results in much larger
errors due to increasing variability in fetal size, greater absolute
scanning error, and a higher incidence of SGA and LGA.

RESULTS
Demographics
The average age of women was 27.8, 27.9, and 30.2 years in the
training and internal validation set (INTERGROWTH-21st), and
external validation set (INTERBIO-21st), respectively. Women
enroled in INTERBIO-21st had a higher mean weight and body
mass index than those participating in INTERGROWTH-21st and

also a higher rate of preterm birth (11.8% versus 4.7 and 2.8% in
the training and internal validation datasets from INTERGROWTH-
21st), which is expected given the higher risk status. Further
demographic information can be found in Table 1.

Performance of single ultrasound planes versus MultiPlane
Table 2 shows the performance of four different models: on the
hold-out INTERGROWTH-21st Fetal Growth Longitudinal Study
(FGLS) test set (Table 2a and Fig. 1) and the independent
INTERBIO-21st Fetal Study dataset (Table 2b and Fig. 2) using a
single standard plane HC only, AC only, FL only, and using all three
standard planes (MultiPlane). Saliency maps demonstrate that the
model used information for GA estimation using characteristics
largely from within the fetal anatomy (see Supplementary Figs. 1,
2, and 3). MultiPlane outperforms HC only, AC only and FL only by
1, 2, and 3 days respectively for mean absolute error (MAE) across
all GAs. We also analysed the performance of each model split by
trimester, i.e., 18+0 to 27+6 weeks’ gestation (second trimester)
and 28+0 to 42+0 weeks’ gestation (third trimester) with all models
performing better in the second trimester.

Comparison with biometry-based methods for GA estimation
Further breakdown of MultiPlane’s performance is compared to
existing, clinical, biometry-based methods for estimating GA that
are currently in use, namely Hadlock16 and INTERGROWTH-21st7,

in Table 3. Here we see that biometry-based methods perform
comparably to MultiPlane at earlier GAs, but that biometry-based
GA estimation is less accurate beyond 32 weeks’ gestation with
MultiPlane outperforming both biometry-based estimations7,16.

MultiPlane performance
In internal validation (INTERGROWTH-21st dataset), for all GAs
from 13+0 to 42+0 weeks, we achieved a MAE in GA estimation of
3.5 days for the MultiPlane model, with 90.7% within ±7 days of
the gold standard. The proportion estimated within ±7 days of the
gold standard was 94.5% in the second trimester and 85.6% in the
third trimester. For GAs between 14+0 and 27+6 weeks, arguably
the more important GA window clinically in LMICs, the MAE was
3.0 days and 94.5% were correctly estimated within ±7 days of the
gold standard (Table 2a).

Table 1. Demographics of women included in this study.

INTERGROWTH-21st (n= 4233) INTERBIO-21st

Characteristic Training set (n= 3809) Internal validation (n= 424) External validation (n= 2433)

Maternal age (years) 27.8 ± 3.8 27.9 ± 3.9 30.2 ± 5.1

Maternal height (cm) 162.2 ± 5.8 162.4 ± 6.0 160.9 ± 7.1

Maternal weight (kg) 61.6 ± 9.2 61.2 ± 9.2 65.2 ± 12.3

Maternal BMI (kg/m2) 23.3 ± 3.0 23.0 ± 2.8 25.1 ± 4.2

GA at first visit (weeks) 11.8 ± 1.4 11.8 ± 1.4 11.9 ± 1.3

Nulliparous 2612 (68.6) 292 (69.3) 976 (40.1)

Pre-eclampsia 29 (0.8) 5 (1.2) 33 (1.4)

Preterm delivery (<37 weeks’ gestation) 179 (4.7) 12 (2.8) 286 (11.8)

Birth weight (kg)* 3.3 ± 0.441 3.2 ± 0.465 3.2 ± 0.5

Birth weight <2500 g* 103 (2.8) 23 (5.6) 100 (4.7)

Newborn sex male 1903 (50.0) 199 (46.9) 1281 (52.7)

Table showing the demographics of the INTERGROWTH-21st dataset used to train the model, the separate dataset used for internal validation and the
INTERBIO-21st dataset used for external validation of the model.
*≥37 weeks gestation only.
Data are given as mean ± SD or n (%).
Maternal baseline characteristics were measured at <14 weeks’ gestation.
BMI Body Mass Index, GA Gestational Age.
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Table 2. a Performance per plane in the INTERGROWTH-21st internal validation set.

Algorithm performance

HC
plane only

AC
plane only

FL
plane only

MultiPlane (HC+AC
+FL)

INTERGROWTH-
21st (Test set)

GA 13+0–42+0 weeks
(424 patients)

MAE (days) ±4.5 ±5.8 ±6.0 ±3.5

95% CI for MAE (4.4–4.6) (5.8–5.9) (5.8–6.1) (3.4–3.7)

R2 0.99 0.98 0.98 0.99

Estimated GA within ± 1 week of
GA estimated by gold standard (%)

81.0% 70.4% 70.3% 90.7%

Estimated GA within ± 2 weeks of
GA estimated by gold standard (%)

97.3% 93.2% 93.3% 98.9%

GA 18+0–27+6 weeks
(419 patients)

MAE (days) ±3.9 ±5.2 ±5.3 ±3.0

95% CI for MAE (3.8–4.0) (5.1–5.3) (5.2–5.5) (2.9–3.2)

R2 0.94 0.89 0.88 0.96

Estimated GA within ± 1 week of
GA estimated by gold standard (%)

86.9% 75.3% 74.8% 94.5%

Estimated GA within ± 2 weeks of
GA estimated by gold standard (%)

99.2% 96.1% 97.1% 99.7%

GA 28+0–42+0 weeks
(424 patients)

MAE (days) ±5.3 ±6.9 ±7.1 ±4.3

95% CI for MAE (5.2–5.4) (6.8–7.1) (6.9–7.3) (4.1–4.5)

R2 0.91 0.85 0.85 0.94

Estimated GA within ± 1 week of
GA estimated by gold standard (%)

73.0% 61.2% 61.7% 85.6%

Estimated GA within ± 2 weeks of
GA estimated by gold standard (%)

95.1% 89.0% 88.5% 98.0%

b Performance per plane in the INTERBIO-21st external validation set

Algorithm performance

HC
plane only

AC
plane only

FL
plane only

MultiPlanea (HC+AC
+FL)

INTERBIO-21st GA 13+0–42+0 weeks
(2443 Patients)

MAE (days) ±5.0 ±6.1 ±7.0 ±4.1

95% CI for MAE (4.9–5.0) (6.1–6.2) (6.9–7.0) (4.0–4.2)

R2 0.98 0.97 0.95 0.99

Estimated GA within ± 1 week of
GA estimated by gold standard (%)

75.7% 66.7% 62.5% 85.1%

Estimated GA within ± 2 weeks of
GA estimated by gold standard (%)

96.3% 92.1% 89.7% 98.2%

GA 18+0–27+6 weeks
(1893 patients)

MAE (days) ±4.6 ±5.8 ±6.5 ±3.7

95% CI for MAE (4.5–4.6) (5.7–5.9) (6.4–6.7) (3.6–3.9)

R2 0.91 0.86 0.79 0.94

Estimated GA within ± 1 week of
GA estimated by gold standard (%)

79.8% 68.6% 64.1% 88.1%

Estimated GA within ± 2 weeks of
GA estimated by gold standard (%)

97.5% 93.7% 91.5% 98.8%

GA 28+0–42+0 weeks
(1942 patients)

MAE (days) ±5.9 ±7.3 ±8.0 ±5.0

95% CI for MAE (5.8–5.9) (7.2–7.4) (7.8–8.2) (4.8–5.1)

R2 0.86 0.77 0.69 0.90

Estimated GA within ± 1 week of
GA estimated by gold standard (%)

67.3% 58.6% 55.4% 78.1%

Estimated GA within ± 2 weeks of
GA estimated by gold standard (%)

93.9% 87.7% 85.8% 96.9%

Table showing the performance per plane (HC only, AC only, FL only, and MultiPlane) in the INTERGROWTH-21st test set (2a) and the INTERBIO-21st external
validation set (2b).
HC Head Circumference, AC Abdominal Circumference, FL Femur Length, MAE Mean Absolute Error, CI Confidence Interval.
aAs not all planes were available for all participants, MultiPlane is based on 2304 participants.
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In the external validation dataset (INTERBIO-21st), the Multi-
Plane model achieved a MAE of 4.1 days across the entire GA
range (13+0 to 42+0 weeks), with 85.1% estimated within ±7 days
of the gold standard. For GAs between 14+0 and 27+6 weeks,
there was a MAE of 3.7 days with 88.1% estimated within ±7 days
from the gold standard (Table 2b). Thus, there was no significant
MAE loss when comparing the INTERBIO-21st dataset to the
INTERGROWTH-21st test set despite the higher rates in the
INTERBIO-21st study of maternal and perinatal complications,
including SGA, associated with a much less healthy cohort of
mothers (Table 2a, b).
Modified Bland–Altman plots are shown in Fig. 3 for the GA

estimation models, with ground truth plotted on the x-axis instead

of the mean of the measures. As expected, the binning procedure
during the initial pre-training step led to stratification of the
predicted GAs. Furthermore, using all three standard planes of a
single fetus during inference reduced the standard deviation (SD)
of difference across all GAs. The plot also shows that there was no
systematic over- or under-estimation of GA across the evaluated
GA range on the overall dataset.

Performance in SGA and LGA fetuses
In a sub-analysis, we investigated model accuracy for SGA
(n= 326) and LGA (n= 201) newborns in the INTERBIO-21st study.
The best performing MultiPlane algorithm predicted GA across the

Fig. 1 Performance per plane and MutliPlane on the INTERGROWTH-21st internal validation set. Composite figure showing scatter plot of
the performance of the proposed single standard plane and MultiPlane models on the hold-out INTERGROWTH-21st test set with histograms
showing the spread of planes across gestational ages. HCP Head Circumference Plane, ACP Abdominal Circumference Plane, FLP Femur
Length Plane.
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second and third trimesters to 3.7 (95% Confidence Interval (CI);
3.5 to 3.9) and 4.7 (95% CI; 4.3 to 5.1) days for SGA and LGA
newborns, respectively (Table 3 and Fig. 4). We compared this
performance to biometry estimates for these fetuses and found
that biometry-based estimates were more prone to error than
MultiPlane beyond 32+0 weeks’ gestation (Table 3) with a MAE of
7.4 and 10.6 days for SGA and LGA using the Hadlock16 formula
compared with 4.7 and 5.3 days for MultiPlane, respectively.

Review of outliers
An expert sonologist (EB) qualitatively reviewed images that were
outliers (estimation error >14 days). No obvious systematic clinical

or image features resulting in inaccurate estimation by the models
were evident, although we did identify a pregnancy affected by
achondroplasia (only apparent after 24 weeks’ gestation). The
model performed well with a 0.3-week estimation error until the
scan at 36 weeks; at this point the error was greater than 3 weeks.

Performance of MultiPlane per site
Subanalysis of the MultiPlane performance by site participating in
the external validation INTERBIO-21st is shown in Table 4,
demonstrating high performance throughout, and all differences
between sites within 0.5 days from the pooled MAE, which is
clinically insignificant.

Fig. 2 Performance per plane and MultiPlane on the INTERBIO-21st external validation set. Composite figure showing scatter plot of the
performance of the proposed single standard plane and MultiPlane models on the INTERBIO-21st test set with histograms showing the spread
of planes across gestational ages. HCP Head Circumference Plane, ACP Abdominal Circumference Plane, FLP Femur Length Plane.

L.H. Lee et al.
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DISCUSSION
In this study, we have developed and applied machine learning
models that analyse fetal ultrasound images to estimate GA, which
have been validated on a separate large dataset that was unseen
during model training. The images were acquired prospectively by
trained sonographers in the context of two independent research
studies with the same protocol and ultrasound machines. All
included pregnancies were dated using: (a) CRL (INTERBIO-21st)
or (b) the certain LMP if it was ≤7 days of the CRL dating
(INTERGROWTH-21st), which was used as the ground truth to train
the model and evaluate the results. Comparing our results to
current clinical practice for dating pregnancies in the second and
third trimesters based on fetal biometry7,16, we report greatly
improved GA estimation accuracy, especially in late pregnancy.
This is highly relevant clinically as late pregnancy assessment of
GA has long been problematic due to large variability in biological
size, greater absolute scanning error, and a higher incidence of
SGA and LGA.
There are several important strengths to this work. Our training

dataset, encompassing the second and third trimesters, was large
and acquired under standardised conditions from eight study sites
on five continents. It represents a well-phenotyped cohort of
healthy fetuses with satisfactory growth and neurodevelopment
up to 2 years of age17. Ground truth was rigorously established
based on certain LMP and regular 24–32 day menstrual cycles,
corroborated by CRL measurement at <14+0 weeks’ gestation.
Although originally developed on a low-risk population we have

validated these GA estimation models on a separate dataset from
a cohort with broader inclusion criteria reflecting real-world
scenarios. This has allowed us to demonstrate that our model
works in a population comprising high and low-risk pregnancies
as well as in different geographical settings. Through sub-group
analysis, we have demonstrated that MultiPlane is more resistant
to errors in GA estimation for SGA and LGA fetuses beyond 32+0

weeks’ gestation as it was developed without information relating
to scale and it relies solely on the appearance of the three
standard ultrasound planes. Ground truth in the INTERBIO-21st
study was established by measuring CRL < 14+0 weeks’ gestation
in every case. We found that GA estimation performance on this
second dataset was comparable to the hold-out testing set of the
original dataset. Crucially, we did not utilise any biometric
information in model training or testing. Rather, our solution,
which works in real-time, uses and combines image analysis of
multiple anatomical planes that are routinely acquired as part of
standard clinical scans, allowing a single GA estimate at any time
point of pregnancy. This was found to be more accurate than
existing methods.
For context, we have also compared our work to current

methods of GA estimation, namely clinical biometry-based
methods (Hadlock16 and INTERGROWTH-21st7,), and showed that
our MultiPlane model is the most accurate for late third-trimester
GA estimation. We have also compared the MultiPlane model to a
machine-learning model that uses only fetal head ultrasound
images for GA estimation14. Our MultiPlane model outperforms

Table 3. Table showing comparison of MultiPlane performance to biometry-based methods of gestational age estimation throughout gestation.

Biometry MultiPlane

Hadlock16 (BPD, HC,
AC, FL)

INTERGROWTH-21st7

(HC & FL)

INTERGROWTH-21st Internal Validation (424 patients) 14+0–19+6 weeks 2.6 (2.5 to 2.8) 2.1 (1.9 to 2.3) 2.6 (2.4 to 2.8)

20+0–25+6 weeks 3.5 (3.2 to 3.7) 3.2 (2.9 to 3.4) 3.1 (2.8 to 3.3)

26+0–31+6 weeks 4.8 (4.5 to 5.1) 4.8 (4.4 to 5.1) 3.3 (3.1 to 3.5)

32+0–37+6 weeks 8.3 (7.8 to 8.9) 7.4 (6.8 to 8.0) 4.6 (4.3 to 4.9)

≥38+0 weeks 15.5 (13.8 to 17.3) 11.7 (10.0 to 13.5) 5.4 (4.5 to 6.2)

14+0–42+0 weeks 5.6 (5.3 to 5.8) 4.9 (4.6 to 5.1) 3.5 (3.4 to 3.7)

INTERBIO-21st External Validation (2304 patients) 14+0–19+6 weeks 2.3 (2.3 to 2.4) 2.5 (2.4 to 2.6) 2.9 (2.8 to 3.0)

20+0–25+6 weeks 4.0 (3.9 to 4.1) 3.6 (3.5 to 3.7) 3.8 (3.6 to 3.9)

26+0–31+6 weeks 5.4 (5.3 to 5.5) 5.5 (5.4 to 5.7) 4.1 (4.0 to 4.3)

32+0–37+6 weeks 8.7 (8.4 to 8.9) 7.9 (7.7 to 8.2) 5.2 (5.0 to 5.4)

≥38+0 weeks 13.9 (13.2 to 14.5) 10.6 (9.7 to 11.4) 7.5 (6.4 to 8.7)

14+0–42+0 weeks 5.7 (5.6 to 5.7) 5.3 (5.2 to 5.4) 4.1 (4.0 to 4.2)

SGA cohort from INTERBIO-21st (326 patients) 14+0–19+6 weeks 1.8 (1.7 to 2.0) 2.0 (1.8 to 2.1) 2.7 (2.4 to 3.1)

20+0–25+6 weeks 3.5 (3.3 to 3.7) 2.8 (2.6 to 3.0) 3.2 (2.7 to 3.6)

26+0–31+6 weeks 4.7 (4.4 to 5.0) 4.4 (3.8 to 4.9) 3.6 (3.2 to 3.9)

32+0–37+6 weeks 7.4 (6.9 to 8.0) 6.3 (5.8 to 6.9) 4.7 (4.2 to 5.1)

≥38+0 weeks 15.6 (13.4 to 17.8) 11.8 (9.1 to 14.4) 4.6 (3.2 to 5.9)

14+0–42+0 weeks 5.0 (4.7 to 5.2) 4.4 (4.1 to 4.7) 3.7 (3.5 to 3.9)

LGA cohort from INTERBIO-21st (201 patients) 14+0–19+6 weeks 2.3 (2.0 to 2.6) 2.5 (2.2 to 2.8) 3.3 (2.5 to 4.0)

20+0–25+6 weeks 4.2 (3.8 to 4.6) 3.5 (3.1 to 3.8) 4.6 (3.6 to 5.5)

26+0–31+6 weeks 5.9 (5.4 to 6.5) 4.8 (4.2 to 5.3) 5.1 (4.3 to 5.8)

32+0–37+6 weeks 10.6 (9.7 to 11.5) 7.9 (6.8 to 9.0) 5.3 (4.5 to 6.1)

≥38+0 weeks 15.3 (9.2 to 21.5) 10.2 (5.9 to 14.5) Insufficient data

14+0–42+0 weeks 6.2 (5.8 to 6.6) 4.9 (4.5 to 5.3) 4.7 (4.3 to 5.1)

Table showing performance of MultiPlane and current biometry methods used for estimating gestational age throughout gestation. Figures shown are mean
absolute error (MAE) in days with the 95% confidence interval for the MAE in parenthesis. BPD Biparietal Diameter, HC Head Circumference, AC Abdominal
Circumference, FL Femur Length, SGA Small for Gestational Age, LGA Large for Gestational Age.
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Fig. 3 Modified Bland-Altman plots showing per plane performance on the INTERGROWTH-21st internal validation set. Modified Bland-
Altman plots of the performance of the gestational age (GA) estimation models on the INTERGROWTH-21st dataset. The striations visible on
the data points for the single standard plane models are due to the CORAL binning process employed during training, which is removed for
the final MultiPlane regression loss. Due to the variation in the number of data points per figure, the transparency of each scatter point was
normalised so that the overall appearance is normalised. HCP Head Circumference Plane; GA Gestational Age; CORAL Consistent Ordinal RAnk
Logits; GT Ground Truth; SD Standard Deviation; ACP Abdominal Circumference Plane; FLP Femur Length Plane.

Fig. 4 MultiPlane performance in small and large for gestational age fetuses. Gestational age (GA) estimation results in pregnancies
resulting in small for gestational age (SGA) or large for gestational age (LGA) newborns, defined by a birth weight >90th centile (LGA) or <10th
centile (SGA) according to the INTERGROWTH-21st international standard30.
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this, as well as an additional method that takes as input fetal
biometry during inference in the third trimester (7.1 and 5.5 days
respectively vs. 4.3 days).
The generalisability of the MultiPlane model for images

acquired with other ultrasound machines requires future assess-
ment as our data were acquired using the same type of ultrasound
machine across all eight study sites. It is possible that our method
would not perform as accurately “as-is” when presented with
standard planes acquired using other ultrasound machines.
However, we believe that we have for the first time established
the principle that GA can accurately be assessed based on
Multiplane image characteristics, and emerging techniques to
overcome the domain shift in image characteristics could be used
to fine-tune the machine-learning models. The requirement to
retrain models on data from a new domain to achieve the highest
possible diagnostic accuracy is a recognised limitation of current
machine learning modelling techniques, rather than a limitation
specific to our application. It should be said that, while our models
were built on large datasets, relatively small amounts of data from
a new domain would be expected to allow a model to adapt to
images from a different ultrasound machine. Fetal abnormalities
were not excluded from our dataset. However, one of the scans
MultiPlane estimated to be >3 weeks from the ground truth was a
case with achondroplasia; hence, further analysis of the perfor-
mance in fetal abnormalities is warranted to understand how the
model is affected. We have demonstrated that our model works
well in cases of SGA and LGA; thus, when a discrepancy between
the MultiPlane GA estimate and biometry suggests growth
restriction, a repeat scan time to monitor fetal growth would be
a reasonable precaution.
One challenge to implementation is that the MultiPlane model

requires standard anatomical planes as input. It is, therefore,
dependent on the acquisition of these planes by healthcare
providers trained in ultrasonography. In practice, such planes are
part of standard ultrasound examination to assess fetal growth
and wellbeing, and with appropriate training can be acquired by
local health workers in an LMIC setting18. The availability of these
skilled professionals and the possibility of human error during
acquisition are potential limitations to implementation, which may
be overcome by integration with machine-learning-based meth-
ods for automated standard plane detection19,20. Other barriers to
routine ultrasound in LMICs such as cost, maintenance and repair
remain important considerations for implementation, and suc-
cessful integration of these automated algorithms into low-cost
point of care devices should be considered.
We have demonstrated that MultiPlane improves on current

biometry-based methods of GA estimation in the second and third
trimesters, even in cases of growth aberration. It, therefore, has
the potential to improve the care of women and babies, especially
in LMICs where GA is unknown in half of all pregnancies1.

METHODS
The Biometry Automation in OBstetrics And Beyond (BAOBAB)
Study aims to overcome roadblocks to effective pregnancy

ultrasound in LMICs by bringing together engineers, clinician-
scientists and healthcare providers, and by learning from existing
studies wherever possible. In this study our aim was to establish
whether machine learning of image-based appearance of
standard biometric planes is associated with GA; and whether
this is sufficiently discriminatory to be of clinical utility. The
ground truth for GA estimation was based on first trimester CRL
measurements or LMP if this was within ≤7 days of the CRL (see
below for details).

Fetal ultrasound datasets
We developed a machine learning model based on ultrasound
images from two independent datasets. Ultrasound images from
the Fetal Growth Longitudinal Study (FGLS) of the INTERGROWTH-
21st21, Project were used to train, validate and test (internally
validate) the model. External validation was then performed on
ultrasound images from the INTERBIO-21st Fetal Study22 which
were unseen by the model during the development phase. During
internal validation (using INTERGROWTH-21st data) and external
validation (using INTERBIO-21st data) the model was blinded to
the ground truth.

Training and internal validation
INTERGROWTH-21st was a multicentre, multiethnic, population-
based project, conducted between 2009 and 2014 in eight
countries. The primary aim was to study growth, health, nutrition,
and neurodevelopment from less than 14 weeks’ gestation to
2 years of age. Details of the study have been described
elsewhere23–25. In brief, all institutions providing obstetric care in
eight geographically diverse regions in Brazil, China, India, Italy,
Kenya, Oman, UK, and USA were chosen as study sites. From these,
healthy women with a naturally conceived, singleton pregnancy
who were at low risk of adverse maternal and perinatal outcomes
were prospectively enroled into FGLS, one of the main compo-
nents of INTERGROWTH-21st. GA was estimated from the LMP
provided that: (a) the date was certain; (b) the woman had a
regular 24–32 day menstrual cycle; (c) she had not been using
hormonal contraception or breastfeeding in the preceding
2 months, and (d) any discrepancy between the GAs based on
LMP and CRL, measured by ultrasound at 9+0 to 13+6 weeks from
the LMP was ≤7 days26.
Trained, dedicated research sonographers performed ultra-

sound scans every 5±1 weeks using identical equipment at all sites
(Philips HD9 [Philips Ultrasound, Bothell, WA, USA] with curvilinear
abdominal transducers C5–2, C6-3, V7-3). We used stored images
of the three standard anatomical planes: (a) fetal head in the axial
view at the level of the thalami, as required for measurement of
the HC; (b) abdomen in an axial view at the level of measurement
of the AC, and (c) femur in the longitudinal view used for
measuring FL. The detailed measurement protocol, training,
standardisation, and quality-control methods, including quality
scoring of images, used across all study sites are described in
detail elsewhere25,27,28 and all documentation, protocols, data

Table 4. Performance of gestational age assessment using MultiPlane per study site.

Study site Overall (2304
patients)

A (287 patients) B (492 patients) C (565 patients) D (142 patients) E (462 patients) F (392 patients)

MAE (days) 3.6 4.2 3.8 3.8 4.6 4.3 4.1

95% CI MAE (days) (3.4 to 3.8) (4.0 to 4.4) (3.6 to 3.9) (3.4 to 4.2) (4.4 to 4.8) (4.0 to 4.6) (4.0 to 4.2)

Table showing the performance of MultiPlane for individual study sites included in the INTERBIO-21st study throughout the second and third trimester, coded
A–E. MAE Mean Absolute Error, CI Confidence Interval, GA Gestational Age.
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collection forms, and electronic transfer strategies are freely
available on the INTERGROWTH-21st website.

External validation
The INTERBIO-21st Fetal Study was conducted, between 2012 and
2019, at six sites in Pelotas (Brazil), Nairobi (Kenya), Karachi
(Pakistan), Soweto (South Africa), Mae Sot (Thailand) and Oxford
(UK), all sites were urban, except Mae Sot which was a rural site29.
All aspects of the study, including the ultrasound protocol, were
identical to FGLS except that GA was estimated by CRL
measurement at <14 weeks’ gestation (as a certain LMP would
not be expected in a large proportion of this high-risk cohort
owing to maternal conditions, poor nutrition, anaemia etc); thus,
any woman with a singleton pregnancy was eligible. Hence, the
population was more heterogenous and at higher risk of fetal
growth impairment because of exposures such as HIV, malaria,
and malnutrition, adding external validity to the automated GA
estimation model.
FGLS provided 293,811 images from 4233 pregnancies which

were randomly split in the following manner on a per fetus
basis: 75% for model training (219,974 images), 15% for
validation (44,173 images) and 10% for testing (29,664 images).
The validity of the GA estimation model was then tested on
94,832 images from 2443 pregnancies in the INTERBIO-21st Fetal
Study. Due to the longitudinal nature of both studies, the data
were selected with evenly distributed GAs across the second
and third trimesters.
In a sub-analysis, we further validated the automated GA

estimation model in SGA and LGA pregnancies, as these pose a
particular challenge in GA estimation using methods based on
biometry. These were identified by birth weight for GA and sex
below the 10th or above the 90th centiles, respectively30. Further
analysis comparing MultiPlane to biometry-based estimates
(Hadlock16 and INTERGROWTH-21st7,) was also performed for all
pregnancies in the INTERGROWTH-21st test set and INTERBIO-21st.
Finally, we performed subanalysis of MultiPlane’s performance
across the participating sites in the INTERBIO-21st dataset.

Image pre-processing and augmentation
It is important to note that all measurement or scale information
was removed from ultrasound images. INTERGROWTH-21st and
INTERBIO-21st images included sonographer markings such as
measurement calipers and other text annotations. The locations

of these artefacts were found using image cross-correlation-
based template matching, and anomalous pixels were smoothed
with bilinear intensity interpolation. Images were then paired
with their respective ground truth GAs, as described above.
Crucially, at no point was the GA estimation algorithm provided
with any biometric information, image calibration markings or
pixel size, including the centimetre “rule” within ultrasound
images; it was therefore entirely reliant on the appearance of the
images for GA estimation.
Images were first downsampled to 224×224 pixels using

bilinear interpolation. An experienced sonographer (EB) then
manually validated a subset of the resized images (n= 100 per
standard plane) to check that the resizing and interpolation
procedure using this subset did not invalidate the planes. Images
were then intensity normalised to have zero mean and unary SD
per individual image to aid in convolutional neural network (CNN)
model convergence.

Algorithm design and development
The CNN model architecture used was based on the ResNet-50
network31 as a backbone, an architecture routinely used in natural
image analysis. The CNN architecture consists of modularised
convolutional layers characterised with skip connections between
modules. We modified the standard CNN architecture with two
major components: (i) Consistent Ordinal RAnk Logits (CORAL)
for Classification Loss32 during single standard plane pre-training
and (ii) plane-specific pre-trained models for automated feature
extraction.
Neural networks perform worse on regression tasks when

trained from scratch with a regression-based loss, such as the
MAE33, because large outlier predictions can lead to drastic
gradient updates during back-propagation, which results in
network instability during the initial stages of training. Conse-
quently, naively treating GA estimation as a regression problem
may reduce final accuracy. So, “binned” classification loss is
commonly used when training neural networks for regression,
where the final target variable is binned before classification loss is
applied. However, ordinal information is lost using this method.
Therefore, we used CORAL to train the network as this retains the
ordinal information between each bin32 but has the stability of
binned classification-based training for neural networks. In our
case, GA data were binned into integers per week during the
training of single-plane networks before being optimised with
CORAL for Classification Loss (Fig. 5).

Image 
Preprocessing

Image 
Preprocessing

Image 
Preprocessing

Image 
Preprocessing

ResNet-50 (TV)

ResNet-50 (AC)

ResNet-50 (FL)

Consistent 
Logits

Consistent 
Logits

Consistent 
Logits

Binned GA 
Estimation

Binned GA 
Estimation

Binned GA 
Estimation

Fig. 5 Training process for single plane estimation of gestational age. Schematic of training process for single ultrasound standard plane-
based gestational age (GA) estimation using Consistent Rank Logit Loss. HC Head Circumference; GA Gestational Age; AC Abdominal
Circumference; FL Femur Length.
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We hypothesised that there was additional information in
each standard plane that could be independently used for
more accurate GA estimation. The Multiplane model was based
on a concatenation of the final layers of the pre-trained single-
plane models with pre-trained weights, and subsequently fine-
tuned using multiple planes (HC, AC, FL) from the same fetus in
an additional training loop. We used L1 regularisation to
minimise the loss gradients of outliers during the training
process, and found that this provided a good final performance
(see Fig. 6).
All CNN architectures were trained and tested on a 75, 15, and

10% split of training, validation and test, respectively (on a per-
fetus basis) in the INTERGROWTH-21st dataset, ensuring no
overlap between groups. As recommended34, the INTERBIO-21st

dataset was used solely for final model testing, and no models
were exposed to any INTERBIO-21st images during the training
process, allowing the INTERBIO-21st dataset to be used to study
model generalisability.

Implementation details
All models were implemented using PyTorch (1.1.0). Model
training was performed on an NVIDIA Tesla V100, and the
optimised convergence of each GA estimation model was found
in approximately 48 h per single standard plane model. The
convergence and fine-tuning of a multiple standard plane model
using the single standard plane models as pre-trained weights
took a further 12 h, with images augmented in a process
described elsewhere19. However, after training and convergence,
inference with new images could be performed on an average of
39 (95% CI; 35 to 43) frames/s, which is fast enough for inference
during real-time ultrasound scanning.

Inclusion and ethics
The INTERGROWTH-21st Project protocol and amendment exten-
sion to INTERBIO-21st were approved by the Oxfordshire Research
Ethics Committee C (reference: 08/H0606/139); all the pregnant
women enroled gave informed written consent.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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CODE AVAILABILITY
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