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Speculation plays an ever-increasing role in optimizing the execution of
programs in computer architecture. Speculative decision-makers are typically
required to have high speed and small size, thus limiting their complexity and
capability. Because of these restrictions, predictors often consider only a small subset
of the available data in making decisions, and consequently do not realize their
potential accuracy. Perceptrons, or simple neural networks, can be highly useful in
speculation for their ability to examine larger quantities of available data, and identify
which data lead to accurate results. Recent research has demonstrated that
perceptrons can operate successfully within the strict size and latency restrictions of
speculation in computer architecture.

This dissertation first studies how perceptrons can be made to predict
accurately when they directly replace the traditional pattern table predictor. Severa
weight training methods and multiple-bit perceptron topol ogies are modeled and
evaluated in their ability to learn data patterns that pattern tables can learn. The

effects of interference between past data on perceptrons are evaluated, and different

interference reduction strategies are explored.



Perceptrons are then applied to two speculative applications. data value
prediction and dataflow critical path prediction. Several new perceptron value
predictors are proposed that can consider longer or more varied data histories than
existing table-based value predictors. These include a global-based local predictor
that uses global correlations between data values to predict past local values, a global-
based global predictor that uses global correlations to predict past global values, and a
bitwise predictor that can use global correlations to generate new data values. Several
new perceptron criticality predictors are proposed that use global correlations
between instruction behaviors to accurately determine whether instructions lie on the
critical path. These predictors are evaluated against local table-based approaches on a
custom cycle-accurate processor simulator, and are shown on average to have both
superior accuracy and higher instruction-per-cycle performance.

Finally, the perceptron predictors are simulated using the different weight
training approaches and multiple-bit topologies. It is shown that for these
applications, perceptron topologies and training approaches must be selected that

respond well to highly imbalanced and poorly correlated past data patterns.
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Chapter 1. Introduction

This dissertation studies how perceptrons perform as speculatorsin
microprocessors. | analyze the accuracy and learning capability of perceptron-based
predictors and compare them against the more commonly used pattern table-based
predictors. | then propose and study perceptron-based predictors in two applications
where they have not been widely used before: data value prediction, and dataflow

critical-path prediction.

1.1. Speculation

Over the last several years, a series of perceptron-based dynamic branch
predictors have been proposed, primarily by Daniel Jimenez [Jim00,Jim04,Jim05].
These predictors use very simple single-layer perceptrons to predict the outcome of a
branch instruction in a program at runtime. The perceptron isasimple and early form
of neura network, of which more complex versions have been widely used in
classification and pattern recognition [ Sch92,Sch96]. However, up until the work by
Jmenez and Lin, neural networks have generally been absent from processor
architecture.

Perceptrons, as well as more advanced neural networks, are an artificial
intelligence technigue meant to mimic the brain. They learn mathematical functions
through an iterative process of guessing and training. The neural network is given an
input value to afunction it is meant to learn. From the function that it has learned so
far, it produces an output value based on that input value. The output valueis

compared to the output value it should have given had the function been accurate, and



the difference is used to adjust the neural network. Over aperiod of training
iterations, the neural network learns the mathematical function without ever being
explicitly told what the function is. In fact, the function need not even be known.

At first sight, neural networks seem completely inapplicable to the strict
determinism of computer architecture. Computers process data by taking a series of
instructions from the programmer and executing them sequentially. An essential
characteristic of a computer isits deterministic nature -- for a given set of input data
and a given sequence of instructions, the computer will always produce the same
output data after executing the instructions. Neural networks, with all their
guesswork and approximations, appear to have no place in computer architecture.

However, thisis not entirely the case. Modern computer design is very
concerned with optimizations. A computer must execute a program correctly, but
within that constraint it should run its program quickly, consume little power, be
physically small, and cheap to produce. Modern computers must be sensitive to the
needs of the application: while a computer running computationally intensive
software must execute quickly, a handheld computer should sacrifice speed for low
power consumption. An efficient computer processor should be able to adapt its
optimization tactics during the execution of a single program and even from one
instruction to another.

Speculation plays an increasingly essential role in computer optimization. It
isused to create parallelism in sequential programs, to make frequently used data
more accessible to the processor, to adjust the speed of computation, and even to

determine whether to apply additional speculation [Bur99]. Speculative systems



generally follow the same model. They accumulate information based on earlier
program execution. They use the information to make a decision affecting how data
is allocated or how the processor executes instructions. The decision can have correct
or incorrect results, where a correct result causes an increase in performance, and an
incorrect result frequently causes a decrease in performance (as the system has to
backtrack and remedy the results of the incorrect decision). In most cases the ideal
result, when known, is used to tune the decision maker.

From an intuitive standpoint, neural networks ought to be ideal for making
speculative decisions in a computer system. One can imagine a neural network used
asfollows. Previous execution information can be fed as input to the network. The
output can be used as the speculative decision. When the correct result is known
later, it can be used to train the network. There are several reasons, however, that
have traditionally barred neural networks from microarchitecture. Neura networks
suffer from alarge hardware complexity. They are slow and training can take many
iterations. Additionally, perceptrons suffer from intrinsic limitations that limit what
functions they can learn.

Thisisnot to say that neural networks have been completely absent from
computer architecture. However, the few previous applications of neural networksin
computer architecture have been in situations where slow speed and high physical
complexity are permissible, allowing for large multilayer neural networks [Cav97].
High speed speculative problems, particularly those used to increase instruction level

parallelism, have until recently been unable to use neural networks.



Branch prediction research, however, has shown that perceptrons’ timein
computer architecture has come. Single-layer perceptrons do not have the massive
size and training time problems of larger neura networks, and the mathematical
l[imitations do not prevent it from performing well in branch prediction. With the
shrinking size and cost of hardware removing the barriers, it is time to introduce more
intelligent approaches to speculation problems in microarchitecture.

Many speculators in computer architecture tend to use similar prediction
approaches. A typical decision-making approach is a hash table of saturating
counters, indexed by a history of past data. The value of the selected counter, is
compared to a predetermined threshold, and the result relative to that threshold
becomes the prediction. The predictor is later trained when the actual result is known
by incrementing or decrementing the counter. Such counter based approaches have
been proposed for branch prediction [Y eh92], value prediction [Lip96], criticality
prediction [Tun01], confidence estimation [Bur99], last touch cache use prediction
[Lai00], voltage and frequency scaling [Gov95], and other applications.

The weakness of the saturating counter approach isits physical size.
Speculative applications tend to perform better as the past data history sizeis
increased [Yeh92]. However, by using this history size to index the counter table, a
single bit increase in history size doubles the size of the table. This exponential
growth strictly limits the history size that can be considered. Thus for table-based
dynamic branch prediction, a history size of 17 branches was considered a maximum
[Yeh93], despite the fact that greater history sizes could further improve the

prediction accuracy.



To cope with this limitation, many predictor designs have severely limited the
scope of the past data to values that can be most easily used in making predictions.
Local predictors were designed, for which only values observed at past instances of
the current static instruction were considered in prediction. Because many
applications have high local datalocality, reasonably good prediction accuracies
could be obtained by focusing exclusively on recent local values. Thiswas done, for
example, in branch prediction with the PAp predictor [ Y eh93], value prediction with
the stride and context predictors [Saz97 2], and criticality prediction with the criteria-
based predictors [Tun01]. These table-based predictors obtained fair accuracies while
only indexing their tables with a small quantity of past values.

By limiting themselves only to local data, these predictors lose information
available globally, or from other instructions, that could alow them to predict more
accurately. It has been shown for branch prediction [Yeh93], criticality prediction
[Tun02], and confidence estimation [Bla03] that there isinformation available
globally that is not available locally which can improve the accuracy of the
predictors. In some studies [Nak99], impractical global predictors were simulated
and were shown to substantially outperform the local predictors.

In the perceptron branch predictor, the pattern table indexed by past history is
entirely replaced by a perceptron. The advantage of the perceptron isthat it grows
largely linearly with the past history, not exponentialy. The perceptron isthus able
to consider significantly longer history sizes than tables and yet remain feasible to

implement. Perceptrons are thus able to be used as global predictors. Thiswas the



key factor behind the excellent performance of the perceptron branch predictor
[Jim02].

However, the perceptron branch predictor did not perform as well as a global
table-based predictor considering an equal size history. The weakness of perceptrons
isthat they are limited to learning only linearly separable functions. Thiswill be
defined in detail in the next chapter. It was found that branch prediction history
information often exhibits linearly inseparable functions. The effect of thisis that
while a perceptron is capable of considering alarger history size than atable, itis
typically incapable of extracting as much information from the history as the table.

Despite this learning limitation, the perceptron approach did perform better
for branch prediction than other practical predictors. Asthere are many other
speculative applications in which the predictor models are very similar to those in
branch prediction, there are other applications that may benefit from a perceptron
replacing the pattern-table.

Since the original branch prediction work, perceptrons have been proposed for
branch confidence estimation [Akk04] and value prediction confidence estimation
[Bla03]. In both of these applications, the table was simply replaced by a perceptron.
In some cases, the perceptron performed better. In other cases, it did not [Bla03].
Simply replacing the table with a perceptron without considering the capabilities of
the perceptron is likely to produce good predictors only by accident. It isimportant to
understand when and why perceptrons perform better than a table-predictor, what
exactly the pattern table learns that they do not learn, and when those unlearnable

patterns arise. Knowing this alows a perceptron to be designed that is a good fit for



the application. Perceptrons can be designed with different training procedures or
topologies. It isimportant to understand how to choose the right perceptron for an

application.

1.2. Dissertation Overview
This dissertation has three core parts. Inthefirst part | seek to understand

how perceptrons behave and learn in theory when compared to the pattern table. The
second and third parts explore different perceptron approaches for data value
prediction and critical instruction prediction, respectively.

Why these two applications? Recent past perceptron applications other than
branch prediction, such as confidence estimation, use very similar predictor designs
to branch prediction. Both confidence estimation and branch prediction use single bit
outputs (take/don’t take). Both have single bit past inputs. Both can be trained soon
after aprediction is made. Value prediction and criticality prediction are interesting
because, while being similar to branch prediction in many ways such as latency
requirements, each of them pose challenges that branch prediction does not pose.

Value prediction, unlike branch prediction, requires a multiple bit value to be
predicted. Thisraises many challenges. How can a perceptron be best designed to
produce multiple bits? Do perceptrons learn the same for multiple bits as for one bit?

Criticality prediction only requires asingle bit decision: instruction is on the
critical path / instruction is not on the critical path. However, unlike branch
prediction, criticality cannot be immediately evaluated for an instruction, even after
that instruction commits. How can the predictor be trained? A solution to thisis not

to train on criticality directly, but to train on whether the instruction exhibits critical



behaviors (or criteria) [Tun01]. However, this introduces additional questions.
Which criteria should the perceptron use to train? How should the perceptron train
when there are multiple criteria, and multiple correct answers?

My research in this dissertation follows the following methodology. Inthe
theory chapter, | describe different perceptron training approaches and topologies,
and determine when one approach works better than another. For both value
prediction and criticality, | propose and evaluate many different predictors using
different perceptron styles and configurations. These different perceptron predictor
configurations are chosen without regard for which theoretically makes the best use
of the perceptron for that application. All are evaluated, and through the evaluation it
becomes apparent which is the better perceptron approach for that application.
Finaly, I look at how the perceptrons approaches learned in each application, and
analyze why one approach turned out to be a better fit for that application than
another.

The dissertation is organized in the following way. The next chapter, Chapter
2, coversthe origins and background of perceptrons, and discusses how they are used
in branch prediction and confidence estimation.

Chapter 3 contains my theoretical contributions. The chapter first looks at
how perceptrons learn relative to how tables learn, and then analyzes several
perceptron training approaches. Next it proposes several multibit perceptron
topologies, and analyzes how they learn. The chapter finally discusses interferencein

the history and discusses several ways of overcoming it.



Chapter 4 presents the simulation methodology. It provides a detailed
description of the processor simulator | designed for thiswork. The chapter also
provides the simulation parameters used in the subsequent chapter. It finally
describes the algorithms used to simulate the perceptrons.

Chapters 5 and 6 respectively propose and evaluate several perceptron value
prediction and criticality prediction approaches. Both chapters commence with a
background discussing previous work in value prediction and criticality prediction.
In Chapter 5 | next propose two perceptron predictors that only consider local value
history, a perceptron predictor that considers global history to predict locally
available values, a perceptron predictor that predicts past globally available values,
and a perceptron predictor that can produce new data values. In Chapter 6 | propose
four different configurations for a perceptron criticality predictor. Chapters5 and 6
conclude by evaluating each perceptron predictor against a standard baseline
predictor. In Chapter 5, improvements are shown over the baseline in both prediction
accuracy and instruction-per-cycle performance for several of the value predictors. In
Chapter 6, improvements are shown over the baseline in prediction accuracy for
severa of the criticality predictors. Performance improvement is then demonstrated
by using the criticality predictors as confidence estimators for value prediction.

In Chapter 7, which concludes the dissertation, the perceptron weight values
and performances for different training styles are used to determine why one
perceptron approach works better than another perceptron approach for each
application. The chapter concludes by summarizing the dissertation findings and

results, and proposes some future areas of study.



1.3. Contributions

The following isaconcise list of the contributions of this dissertation:

In Chapter 3:
An analysis of how perceptrons learn context patterns with regard to
imbal ance between patterns and compatibility between patterns
An analysis of two perceptron training strategies and their learning rates with
regard to the number of correlated inputs
Three multibit perceptron topologies: digoint, fully coupled, weight for each
input value and an analysis of the number of value correlations each can learn
An analysis of history interference, its effect on perceptron learning, and two
strategies for combating it: assigned seats, piecewise linear

In Chapter 4:
A completely new execution-driven out-of-order processor simulator

In Chapter 5:
Two perceptron-based local value predictors. perceptronsin value table,
perceptronsin pattern table
Three perceptron-based local predictors using global information, based on
the three multibit topol ogies.
A perceptron-based global predictor using a global value cache
A perceptron-based global predictor using no stored past values (bitwise)

In Chapter 6:

Three perceptron-based critical criteria prediction approaches

10



Chapter 2. Background

2.1. The Perceptron

The perceptron model used in the recent branch prediction research is possibly
the simplest and earliest nontrivial neural network model in existence. Itiscommon
for textbooks on neural networks to open with that example before proceeding to
more complex neural networks [Rus95]. The reasons for its use in branch prediction,
as mentioned previoudly, are due to strict speed and training latency restrictions.

Modern neural network research has largely forsaken the original perceptron,
duetoitslearning restrictions and simplicity. In fact, a scan of all the papers
published in the IEEE Transactions on Neural Networks since 1990 shows only 3
papers that even mention this perceptron model in the title or abstract, and no papers
that deal with it exclusively. Besides computer architecture, there would appear to be
no major current applications of the basic perceptron. Consequently, to find any
analyses of the perceptron, it is necessary to step back 40-50 years to the original

work that proposed it.

2.1.1. Rosenblatt’s perceptron

The earliest form of neural network, the perceptron, was first formally
proposed by Frank Rosenblatt in 1957, and was inspired partly from a symbolic logic
representation of neuron cells introduced by McCulloch and Pitts in 1943 [Nag91].
Modeled after collections of neurons, the perceptron was among the first so-called
“black box” artificial intelligence approaches, which could learn functions and

perform tasks without being explicitly told the rules [Rus95]. Although the
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perceptron and neural networks were at first supposed to be the key to artificia
intelligence, not to mention atool for understanding the brain, perceptrons have since
become generally limited to the role of pattern recognition and classification.

In his book “Principles of Neurodynamics’, Rosenblatt defines perceptrons
thus. “aset of signal generating units (or “neurons’) connected together to form a
network. Each of these units, upon receiving a suitable input signal (either from other
units in the network or from the environment) responds by generating an output
signal, which may be transmitted, through connections, to a selected set of receiving
units’ [Ros62].

Rosenblatt defined the perceptron in terms of S (sensory) units, A
(association) units, and R (response) units, the coupling of which is defined by an
interaction matrix. At thistime, perceptrons were considered in terms of a computer
software model (to be simulated on the Mark 1) and the interaction matrix comprised
the memory of the neural network. The S units were defined as a “transducer
responding to physical energy” which “generates an output signal si=+1 if itsinput
signal exceeds a given threshold, and O otherwise.” The A unitis“alogical decision
element which generates an output signal if the algebraic sum of the input signals
aphaisequal or greater than athreshold quantity theta>0. The output signal is equal
to 1 if alpha>=theta and O otherwise. If alpha=+1, the unit issaid to be active.” The
R unit “emits the output r=+1 isthe sum of it input signalsis strictly positive, and r=-
1if the sum of the input signalsis strictly negative. If the sum of the input signalsis
zero, the output can be considered equal to zero or indeterminate.” The interaction

matrix is “the matrix of coupling coefficients for all pairs of units.” Each pair hasa
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value in the matrix; if the valueis zero the units are considered unconnected.
Rosenblatt defines a* simple perceptron” as a perceptron satisfying five conditions,
among them that there is only one R unit with a connection from every A unit, that
the perceptron has connections only from S unit to A unitsand A to R units, the Sto
A connections have an unchanging unit value, and that the connections are
unidirectional. An example of thisisshown in Figure 2.1. In modern work, this

simple perceptron has become what is meant when the word “perceptron” is used.

Inputs

= nodes

A onodes

Figure 2.1. Rosenblatt’s perceptron

In this dissertation, the units will be called with more modern names. The S
units are called “inputs,” and always output avalue of 1 or -1. In most of the
applications discussed, the stimuli are single bits; thus the purpose of the input isto
simply convert 0to -1. The A units, which were later renamed “hidden nodes’, are

simply dispensed with, and the inputs are directly connected to the R unit. The value
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of the connection between each input and the R unit is called a“weight” - these
weights comprise the entire storage of the network. Like in Rosenblatt’s definitions,
the value arriving at the R unit from the inputsisthe 1/ -1 input value times the
weight. The R unit performs two functions: it sums the weights, and it compares with
the threshold to produce the output value. In this dissertation the unit will simply be
considered as a sum unit and a threshold unit. Figure 2.2 shows this perceptron. It
effectively takes the dot produce of the inputs and the weights, and returns 1 if that
dot produce exceeds the threshold, and -1 otherwise. Thus the perceptron basically

predicts using:

[o]
aWlis 09 171,

Figure 2.2. Basic perceptron

2.1.2. Training
The purpose of the training procedures is to adjust the weights in response to a

desired output, so that the perceptron can learn to predict that output for a current set

of inputs. Rosenblatt introduces three training procedures. response-controlled
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reinforcement, stimulus-controlled reinforcement, and error-corrective reinforcement.
Two weight adjustment methods are proposed: “alpha system reinforcement”, which
adjusts the weights by a constant value eta, and “ gamma system reinforcement”,
which adjusts in such away that the total quantity of all weightsiszero. Inthis
dissertation, only alpha system reinforcement is used. Response-controlled
reinforcement determines eta entirely from the output value of the perceptron, and
adjusts all weights equally. This approach, being highly limited, is not used in this
dissertation, and asfar as | can tell, has not been seriously considered since
Rosenblatt. Stimulus-controlled reinforcement, which | term “training-by-
correlation”, has been used in the perceptron branch prediction work. It usesthe
input values to determine eta for each weight. Error-corrective reinforcement, which
| term “training-by-error”, adjusts weights only when the perceptron iswrong; it
determines an error value using the output value of the perceptron, and uses the input
values to determine an etafor each input. The magnitude of eta for apha system
reinforcement is called alpha; in this dissertation, an alpha of 1 is aways used.

The objective of the perceptron isto learn correlations between each input
value and the output. Each weight determines what and how much effect itsinput has
on the output. A positive weight means that the input has a direct effect on the
output, whereas a negative weight means the input has an inverse effect on the output.
If the weight is close to zero, the input is found to have little effect on the output; if
the weight has a large magnitude it has a strong effect on the output. Thusthe

perceptron is able to judge which inputs affect the output, and to what degree they do.
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The objective of training is to adjust the weight value according to the perceived
correlation.

Training-by-correlation works as follows. The weights are adjusted in
response to the correlation observed for each input. Thusif an input isthe same as
the desired output, the weight for that input isincremented; if it is different, the
weight is decremented. The prediction output of the perceptron is not taken into
account.

Training-by-error only adjustsif the perceptron was wrong. An error value &
is computed as a= desired output - predicted output. The perceptron is trained by
multiplying aby each input and adding it to the corresponding weight:

(Wk =w, + ike).

Not yet covered is how the threshold value thetais chosen. One simple
approach isto use a constant value, such as0. However, it is generally considered
desirable to dynamically adjust thetain such away that it reflect the proportion of
desired 1 outputs to desired O outputs (the more 1's, the lower the theta). This can be
accomplished by subtracting the desired output from theta, in training-by-correlation,
or the error, in training-by-error. A more easily implemented way, however, which is
mathematically equivalent isto have an extraweight “bias weight” connected to an
extrainput hardwired to 1 [Rus95]. The biasweight is adjusted like any other weight,
according to the training policy, and is added to the sum to produce the perceptron

output. By including a bias weight, theta can be permanently set to 0.
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2.1.3. Linear Inseparability

It was originally theorized that neural networks, of unlimited size, could learn
all continuous functions. 1n a 1969 work by Minsky and Papert [Min69], it was
shown that this was not the case for perceptrons; that they were in fact limited to
learning only functions that are “linearly separable.” Minsky’swork originally
claimed that this was the case for al neural networks, but it was later discovered that
linearly inseparable functions can be learned in larger neural networks using hidden
layers and more advanced training mechanisms. However, thisis still a handicap for
the simple single-layered perceptron.

Linear separability is classically pictured geometrically in an n-dimensional
space, where n is the number of inputs. All the possible outputs are placed in the
gpace. If the space can be divided by a plane so that all positive outputs are on one
side of the plane and all negative outputs are on the other side, the function is linearly
separable [Rus95]. If no plane can be drawn, the function cannot be learned by a
perceptron. Thisisillustrated in Figure 2.3 with the AND function, which is linearly
separable, and the XOR function, which is not. This geometrical analysis most likely
became popular because image classification was one of the first major applications

of neural networks.
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Figure 2.3. Linear inseparability

Linear separability may be better illustrated for computer architecture

applications by looking intuitively at why perceptrons can only learn such functions.

In a perceptron, the effect of an input on the output is determined by itsweight. As

stated before, a positive weight means that the output varies directly with the input,

while a negative weight causes the output to vary inversely with the input. Based on

itsweight, a1 at a particular input can make the total output more positive or more

negative. However, al at a particular input cannot make the total output more

positive sometimes and more negative at other times. Functions tend not to be

linearly separable if oneinput’s effect on the output relies on another input’ s effect.

The effect of limiting a perceptron to linear separable functionsis analyzed in more

depth in the next chapter.
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2.1.4. The Perceptronin Hardware

Figure 2.4 shows how a perceptron can be implemented in hardware. The
weights are implemented as up-down binary counters that saturate at maximum and
minimum values (the minimum has the same magnitude as the maximum and
opposite sign). The range of the weights needed to learn effectively isanalyzed in
Chapter 7; weights with a size ranging from 6 to 9 bits tend to suffice. The analyses

in [Jim02] used an 8 bit weight.
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Figure 2.4. Perceptron modeled in hardware

Because an input bit isinterpreted only as -1 or 1, the product between the
input bit and its corresponding weight can be implemented simply by using the input
bit to choose whether to invert the sign of the weight. These products are summed
together, but by using a threshold of 0, only the sign of the total sum is used as the

output.
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To implement training-by-error, the weights are only adjusted if actual XOR
predicted is1. Inthiscase, theerrorislif apis2, and-1if apis-2; thustheerroris
simply aif the weights are adjusted. The weight adjustment, eta, issimply a XOR
error (with O changed to -1) added to the weights. Because etais always of
magnitude 1, the weights can be simply implemented as a binary counter.

Thus the primary hardware costs are 1) the storage of each weight bit, and 2)
the binary adder to sum all the weights, with the remaining logic being of trivia size
in comparison. Of these, the storage complexity grows for n inputs at O(n) for the
weights, and O(n log n) for the adder [Jim02]. The prediction delay grows at O(log
n) for the adder, and is O(1) elsewhere, if aWallace-Tree adder isused. Training
timeis O(1). Intheir analysis, the authors determined that the physical space cost
was dominated by the weight storage. In the cost analyses of the various perceptron
approach described in this dissertation, the weight storage space for 8-bit weightsis
used as physical cost of the perceptron.

The hardware latencies were formally analyzed in [Jim02] using HSPICE to
model the perceptron and CACTI to model tables of perceptrons. Table 2.1 shows
the perceptron delay as afunction of perceptron inputs using 180 nm technology as
reported in [Jim02]. The delay in indexing a 4096 entry perceptron table was
reported as 571 ps. Thusthe total latency for making predictions can be determined
by adding the two figures. On a1 GHz processor, a prediction for a perceptron with a
16 bit history takes 1.7 cycles. As processor speeds increase, this number will grow

worse, but as transistor technology improves, it should grow better. Inthis
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dissertation, it is assumed that all predictions can be madein 2 cycles or less, and

training can be performed in 1 cycle.

History Perceptron Delay
Size (ps)
4 811
9 725
13 1090
17 1170
23 1860

Table2.1. Perceptron delaysasreported in [Jim02]

This 2 cycle latency was a problem for branch prediction because branch
predictions must be made at Fetch. In the other applications analyzed in this
dissertation, predictions are not needed until Dispatch, while the information needed
to make predictions (the instruction PC) is available at Fetch. Consequently, the

prediction latency is not considered as an issue in this work.

2.1.5. Multilayer Neural Networks

Most modern neural networks have multiple layers and more elaborate
training approaches. A standard approach used for training is backpropagation,
which was described in [Rus95]. A three layer neural network employing
backpropagation is capable of learning linearly inseparable functions.

Although multilevel neural networks, once trained, might theoretically
outperform perceptrons in speculation, there are several problems with employing
them. Thefirst problem isthe physical size of adding additional layers with
additional weights. Adding a hidden layer effectively doubles the size of the
network. A more serious problem is the additional latency of performing another

summation. Doubling the latency to 4 cycles would have a substantial deleterious
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effect on neural approaches to the applications discussed here; even making the
predictor redundant.

However, the most serious problems relate to training. Backpropagation
requires a continuous threshold function because the derivative of the threshold
function is used to adjust the weights. The perceptron threshold function is the step
function, which cannot be differentiated. Most neural networks employing

1
backpropagation use the sigmoid function (1+€ ™ ) as athreshold function because it

approximates the shape and mathematical characteristics of the step function while
being continuous (and differentiable). However, using a continuous function requires
floating point numbers (or at least large integers), substantially complicating the
hardware costs and increasing the latencies. This may be compensated by
implementing the neural network as analog components, but it is not clear that analog
neural networks yet run at the desired latencies.

The most serious concernistraining time. Aswill be shown in the next
chapter, perceptrons can typically be trained in approximately the same number of
training iterations as the table-based predictors they replace. Because of the slower
learning rate and multiple layers, larger neural networks require substantially more
(orders of magnitude higher) training iterations to learn. This makes them slow to
predict correctly at first, and slow to adapt to context changes in programs. Thus
even if ahigh latency, implementable multilevel neural network could be
implemented, it would be highly unlikely to predict accurately as rapidly as the

perceptron, and would consequently almost certainly perform worse.
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2.2. Perceptron Branch Prediction and Other Architecture
Applications

Branch prediction, being the first successful perceptron application, becomes
my template for designing other perceptron predictors. Before discussing other
approaches, it is necessary to cover perceptron branch prediction, how it works, and

whereit evolved from.

2.2.1. TheTwo-Level Branch Predictor
The two-level branch predictor, proposed by Y eh and Patt in 1992 [Y eh92],

became a standard for branch predictor design. The predictor was based off of the
original dynamic branch predictor by Smith, which worked by using atable of
counters hashed by the branch PC. The Y eh and Patt predictor took this a step further
by using information from other branch instructions to make predictions. A shift
register holding the history of global branch outcomes was used to hash a second
table of counters. Their significantly more accurate two-level predictor captured
correlations between the outcomes of different branch instructions. A variation on
the two-level predictor that uses a combination of global branch history and branch
PC to hash the counter table, McFarling’ s gshare predictor became widely used as a
baseline predictor for performance comparisons.

The Yeh and Patt PAg predictor works asfollows. A global history of branch
directionsis stored in a shift register. Branch outcomes are shifted into the table as
soon as they are known. A pattern table is selected from a table of pattern tables
using the lower bits of the current branch program counter. The concatenated binary

branch outcomes form an index to this pattern table, selecting a saturating counter.
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This counter value determines whether to take the branch prediction; if it is greater
than athreshold, it predicts take, otherwise it predicts to not take.

The problem with this prediction approach isits large size. The pattern table
grows exponentially with the number of bitsin the history register, and it then must
be replicated for each branch instruction in the first level table. Because this
predictor was too massive to be practical (it was estimated that the global history size
cannot exceed 17 and be practical [Yeh93]), the gshare predictor emerged. It usesa
global pattern table, but isindexed by the global branch history XORed with the
current branch PC, making a unique index. The gshare predictor was claimed to
achieve 97% accuracy for 32k hardware size [McF93]. However, the weakness of the
predictor isthe aliasing between hashes to the global table. McFarling’'s own

measurements showed alocal PAp predictor performing significantly better.

2.2.2. Perceptron Branch Prediction

The success of the perceptron branch prediction, proposed by Jimenez and Lin
[JimOQ], over gshare is partly due to the fact that it is effectively a PAp predictor
without the problems of exponential table growth. The aliasing problems of gshare
arethus avoided. Figure 2.5 shows a block diagram of this predictor. A global
branch history stores the recent branch outcomes. The last bits of the branch
instruction address index atable of perceptrons (analogous to the table of pattern
tables) and choose a perceptron. Each branch outcomeisconvertedtoalor-1andis
fed to a separate perceptron input. The perceptron output is simply the decision of
whether to take the branch or not. Training is performed using the training-by-

correlations approach.
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Figure 2.5. Perceptron-based branch predictor block diagram

In their earliest paper, the authors claimed a 25.6% reduction in relative
misprediction rate over gshare at a 128k hardware size, and estimated a 18% increase
in program performance [Jim0Q]. In follow up work the authors increased the
misprediction rate to 27% [Jim02]. However, the predictor suffered from a2 cycle
long latency, making it impractical to achieve thisrateinitially. To compensate for
latency issues, the authors used a gshare predictor to make the initial prediction, and
then used a perceptron on the next cycle to overturn the gshare prediction if
inaccurate [JimQ0Q].

In amore extensive follow-up work that considered latency and hardware size
issues, the authors also tried to quantify the branch information that the perceptron
could not learn. They determined linearly inseparable branches as sets of branch
history patterns that required the perceptron to learn alinearly inseparable function.

They found that approximately 3-4% of branches had completely linearly inseparable
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functions [Jim02]. They also found that when the history size was increased, the
perceptron was more capable of learning the linearly inseparable functions. My
analysis and rationale behind this phenomenon is explained in detail in the first part
of Chapter 3.

It isimportant to note that thisis not the very first neural branch predictor
proposed. Two neural approaches were proposed in a paper by Vintan in 1999
[Vin99]. These predictors were not even close to practical from a hardware
standpoint, however, but did manage to achieve accuracies comparable to the table-
based approaches. An even earlier seminar paper in 1996 by Kuvayev [Kuv96]
claimsto have developed a neural branch predictor; however, the prediction

algorithms, predictor topology, and methodology are never mentioned in the paper.

2.2.3. Piecewise Linear Predictor
Jimenez refined his predictor in afollow up work [Jim05], which addressed

interference problems in the global history table. His piecewise linear predictor
maintains the past branch addresses as well as past branch history. Rather than have a
single weight for each history entry, an array of weightsis maintained, and is selected
using the history. This avoids multiple branches from occurring at the same global
history entry and interfering with each other. A 3.21% misprediction rate was
claimed for this predictor at a history length of over 80. This predictor is discussed in

detail at the end of Chapter 3.
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2.2.4. Other Perceptron Applicationsin Architecture

Two additional notable perceptron applications are both in confidence
estimation. Branch confidence estimation was explored in [Akk04]. Confidence

estimation for value prediction was explored in [Bla03,Bla04,Bla05 2].

2.2.4.1. Perceptron-based Confidence Estimation for Branch

Prediction
Perceptron-based branch confidence estimation, while suggested as a future

work by Jimenez [Jim0Q], was first performed by Akkary et al in 2004 [AkkO4].
Confidence estimation for branch prediction has been proposed to limit CPU
resources wasted in predicting unpredictable branches. It is practical if the CPU
resources dedicated to prediction could be used for other tasks, or if the branch
predictor consumes sufficient power so that not predicting can significantly reduce
the CPU energy usage. As branch predictors become more complex (the perceptron
branch predictor being a case in point), reducing the energy consumption of the
branch predictor becomes increasingly useful [Gru98].

The perceptron-based branch confidence estimator is virtually identical to the
perceptron branch predictor, with aglobal branch history and a table of perceptron
indexed by the branch instruction address. The key difference is that the accuracy of
the branch prediction is stored in the global history rather than the direction of the
branch. The authors evaluated their predictor against a preexisting table-based branch
confidence estimator that was organized similarly to gshare. The authors claimed a
10% reduction in the number of microoperations performed by the CPU without a

loss in performance.
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An interesting facet of this branch confidence estimator isthat, whileit is
clearly based on Jimenez’ s perceptron branch predictor, it uses a training-by-error
training strategy rather than the training-by-correlation strategy which Jimenez
consistently used in his predictor. Since the reason for the change is not discussed
(and in fact the authors even explicitly claim that the training approach is based on
Jimenez) it is tempting to assume that the authors were not aware that they were using

adifferent training strategy.

2.2.4.2. Perceptron-based Confidence Estimation for Value
Prediction

Confidence estimation for value prediction was introduced by this author in
my Master’ sthesis and is detailed in [Bla03]. Confidence estimation is used to lessen
the value prediction misprediction penalty by guessing whether or not to use avalue
prediction result. The perceptron approach was compared to the local saturating
counter approach used by Lipasti’s value predictor [Lip97_2] and in subsequent
approaches. The perceptron-based confidence estimator is shown in Figure 2.6 and is
structured very similarly to the perceptron-based branch predictor. Past global value
prediction accuracies were stored in aglobal history table. A perceptron was selected
from atable of perceptrons by the instruction address, and the global prediction
accuracy history was sourced to the inputs of the selected perceptron. The perceptron
output decided whether the value prediction would be used. The perceptron was

trained using training-by-error.

28



[31obal Prediction History
Tay Dsta Predictor l lPErceptronsl l

N Training “alue
//_.
—*
o
E [
C =
o]
Instruction Hazh Actual Outcome
; — D
Address Function E
R
\\_'
————————¥Predicted Data alid
¥ Predicted Outcome

Figure 2.6. Perceptron-based confidence estimator for value prediction

Evaluation was performed using the confidence estimator on three value
prediction approaches: stride, last value, and context. The value predictor employing
the confidence estimator was evaluated on its prediction accuracy and its coverage, or
the percentage of the time that predictions were used. The evaluations showed a
coverage improvement of 6% to 10%, and accuracy improvement of 2% to 6%.

An important note about the perceptron confidence estimator is that it
replaced alocal approach that only used past iterations of the instruction to make a
value prediction with aglobal approach that used the prediction accuracies of past
global instructions. While global confidence estimation had been proposed using
tables [Cal98], the massive size of the tables made it impractical. By using
perceptrons, global value prediction predictability information could be harnessed

with suffering the exponential growth of a globally indexed table.
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Chapter 3. Theory

Prior to the use of perceptrons, the most accurate branch predictor was the
two-level table-based branch predictor. When replacing the table-based predictor
with the perceptron, the authors largely mimicked the basic table-based layout
[JmOQ]. Their perceptron predictor still used the same per-branch-address
construction, the same value table, and the same global branch history. The principal
differences are that the pattern table is replaced by the perceptron, and the summation
of perceptron weightsis used to determine the branch prediction, not the value of a
saturating counter. The perceptrons are thus given the same information as the table,
the same past branch sequences, and are asked to make predictions for the same
branch instructions in the same order. In the implementations in this dissertation for
value prediction and critical instruction prediction, the perceptron approaches will
likewise replace a previoudly existing table-based predictor. Thereal question is
consequently not how accurately the perceptron predictor predicts in isolation, but
how accurately the perceptron predictor predicts when compared to a similarly
constructed two-level table predictor incorporating saturating counters. When does
the perceptron learn faster than the table? When does the perceptron fail to learn
patterns that the table easily grasps?

This chapter explores several facets of how a perceptron behaves when it
directly replaces alookup table. Thefirst topic | examine is under what
circumstances a perceptron can learn the same patterns atable can learn. Arethere

patterns a table can learn that a perceptron cannot learn at all, and what are they?
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When can atable learn input data faster than a perceptron, and when could a
perceptron learn faster?

The second topic is how the perceptron training strategy affectsits learning
when the perceptron replaces the lookup table. Past works have used two different
training strategies for perceptrons in computer architecture applications. Under what
circumstances is one training strategy better than another? What input data
characteristics affect the performance of each training approach?

In prior computer architecture work using perceptrons, the applications have
all required only asingle bit output. Branch prediction and confidence estimation
need only abinary “yes/no” decision from their predictors. However, there are many
speculative applications that require a multiple bit decision, and lookup tables have
been designed for these problems. Asthethird topic, | examine several ways that
perceptrons can be used to predict multiple-bit values. When are perceptrons unable
to predict values that lookup tables can predict? Isthere any way a multibit
perceptron-based predictor can be designed so that it has the same learning power as a
multibit table-based predictor?

Thelast topic | exploreis how perceptron predictors cope with interference
and aliasing. Because no predictor can be designed that is massive enough to
independently consider every single instruction in a program, aliasing between
instructions has always reduced table-based predictors accuracies and learning
potential. Perceptron predictors will likewise suffer from interference. Do
perceptron predictors respond to interference in the same way as table-based

predictors? Isthere any way of reducing aliasing’'s harmful effectsin perceptrons?
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3.1. Perceptron Learning

The basic function of a perceptron isto learn correlations between pairs of
single-bit data points. The classic perceptron has a single weight for each binary
input. The polarity of that weight tells whether that input is directly correlated with
the target (a positive weight), or inversely correlated with the target (a negative
weight). The magnitude of the weight tells the degree of correlation between the
input and the target. A large weight impliesthat the input is greatly correlated, and
always carries the same value relative to the target, while a small weight implies that
the input is modestly correlated, and is not necessarily atrustworthy guide for
predicting the target. A large weight carries a great degree of influence on the final
decision, while asmall weight has little influence. Thustraining a perceptron for a
given target means detecting which inputs are correlated with the target, in what way
they are correlated, to what degree they are correlated; and setting a weight
appropriately.

The lookup table uses a sequence of past values asinput. A hash of the
particular value sequence chooses a particular counter which makes the prediction. In
contrast to the perceptron, which considers the effect of each input value
independently, the table considers the effect of each combination of values. What
happens when a perceptron is directly substituted for the lookup table and is asked to

learn the effects of combinations of values?

3.1.1 Perceptron Context-based Prediction
Recall how prediction is performed in the two-level table-based branch

predictor. A sequence of past branch results is concatenated to form an index, which
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chooses a counter from a pattern table. The prediction is then made from the counter
state. While thisform of prediction is capable of learning correlations between
branches, it is not overtly designed to pick out correlations. Instead, it picks out
sequences of branches. It learnsthat a series of particular branch resultsis always
followed by a particular branch result. Thisform of prediction can be loosely
classified as “ context-based prediction”, because it uses the context of a specific
pattern of branch results to determine the result of the next branch.

Context-based predictors are greatly dependent on the quantity of data points
forming their context pattern. A basic first-order context-based predictor learns pairs
of datavalues. value“a’ isawaysfollowed by value “b”, value“c” by value“d’. A
second-order context-based predictor learns triplets of data values. value sequence
“ab” isawaysfollowed by “c”. The order of the context-based predictor is based on
its history size.

Just like table based predictors are designed for context-based learning but can
learn individual correlations, perceptrons, while being designed for correlational
learning, can pick up some context patterns. There are two important limitations,
however: 1) linearly inseparable patterns will be ignored, and 2) all the patterns will
need to occur with equal frequency. If the set of patterns conflict with each other, the
perceptron will be typicaly unable to learn all of the patternsin that set. If any
pattern occurs significantly more often than another pattern, it can bias the perceptron
and prevent it from predicting the less common pattern correctly.

What does it mean for two patternsto conflict? Recall that a perceptron learns

by seeking a correlation, either direct or inverse, between each input and the target. If
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two patterns contradict each other on an input, one pattern producing a direct
correlation for the input, and the other producing an inverse correlation for the input,
the two patterns cancel each other out, driving that input’ s weight to zero. Thisis
acceptable, provided that another input that can be used to predict is not cancelled
out. However, if the patterns contradict each other on every input, the perceptron
cannot learn both patterns. Thus a set of patterns can be in conflict and cannot be
learned by a perceptron. For a set of patterns to be compatible, there hasto be at least
one input that has the same correlation for every pattern in the set. If there are no
inputs that have the same correlation throughout the set, the set of patternsis not
compatible.

For example, consider that athird-order perceptron context-based predictor is
taught that the sequence 101 is always followed by 1. The perceptron will train its
weights accordingly: the first weight will learn a direct correlation, the second an
inverse, and the third adirect. Next suppose that the predictor is taught 001 is
followed by 0. The perceptron will train itsfirst and second weights to learn a direct
correlation, and the third an inverse. Thereis a conflict on the second input and third
inputs; however, because there is no conflict on the first input, the perceptron can
learn both patterns. However, suppose that the perceptron is then taught that the
sequence 100 isfollowed by 0. In this case, the perceptron trains the first weight to
learn an inverse correlation, and the second and third weights to learn a direct
correlation. This 100 pattern conflicts with the 101 pattern on the first and second

inputs, and with the 001 pattern on the third input. The three patterns are thusin



conflict with each other, and the perceptron cannot learn them (although it could learn

any two of the three patterns).

Compatible Patterns

0 1 0 1 0 1
1 0 0 1 0 o
0 1 1 0 g 1
g g g g

inverse direct conflict conflict

Conflicting Patterns

0 1 0 1 0 1
1 0 0 1 0 o
0 1 1 0 0 o
g g g g

conflict conflict conflict conflict

Figure 3.1. Compatible patternsand conflicting patterns

So what happens when a perceptron context-based predictor is taught
conflicting patterns? If there are two patternsin conflict, and they occur equally
often, all the perceptron weights will cancelled to zero. The perceptron will thus
predict arbitrarily. However, if there are three or more patternsin conflict, some of
the perceptron weights may not cancel to zero. When this happens, the perceptron
may predict arbitrarily. 1t may nevertheless learn the patterns.

In the above example, suppose that 101-1, 001-0, and 100-0 occur equally

often. For each input, two of the three patterns will bias the weight. Figure 3.2
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shows what happens when a perceptron is fed these patterns. Notice that while the
perceptron does not precisely learn any input, the dominant two weights at any point
happen to force the correct answer to occur for al threeinputs. It isthus possible for
a perceptron to consistently predict correctly on a conflicted pattern.

Why can a perceptron learn a conflicted pattern? The reason is because
pattern compatibility is not exactly the same as linear separability. Recall the
definition of linear inseparability givenin 2.1.3. The perceptron may learn a set of
inputs if the positive cases and negative cases can be separated by a straight line (or
plane for three dimensions). The three patternsin Figure 3.2 can be separated by a
straight plane when plotted by their input variables; however, the planeis a diagona
plane. My above definition of conflict requires that the cases be separated by asingle
variable; to be compatible, the patterns must be separated by a horizontal or vertical
line or plane. Consequently, not al conflicted patterns are linearly inseparable.

However, all compatible patterns are linearly separable.
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Iteration Pattern Weights Output Correct?

0 1010 1 00 0 O 00 N
1 0010 O 1 -110 11 N
2 1000 O 2 0 00 21 N
3 1010 1 11 10 21 Y
4 0010 O 2 0 2 0 00 Y
5 1000 O 31 10 11 N
6 1010 1 2 2 20 21 Y
7 0010 O 31 3 0 -10 Y
8 1000 0O 42 20 00 Y
9 1010 1 3 3 3 0 61 Y
10 0010 O 42 40 20 Y
11 1000 O 53 3 0 -10 Y

Figure 3.2. Learningincompatible patterns

Figure 3.3 shows the chance that p randomly chosen patterns are in conflict
for a 16 input perceptron. For this study, | run 1000 tests for each value of p from 1
to 16. In each test, p random 16-bit input patterns and p random target bits were
generated. Conflict was determined by checking whether each input for each pattern
follows either adirect or inverse relationship with the output. 1f no bits are learnable,
the patterns are considered to be in conflict. The figure shows the average chance
that p patterns are in conflict over 1000 iterations of p randomly selected patterns.

For 16 inputs, 5 patterns can be learned over 50% of the time.
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Figure 3.3. Chancethat p patternswill be in conflict

Figure 3.4 shows the chance that p randomly chosen patterns are unlearnable
for a 16 input perceptron. | ran 1000 tests for each value of p, andin each test, p
random patterns and target bits were created. A perceptron using training-by-
correlation is given 1000 iterations to learn the p patterns. If it gets every value
correct for 2p iterations, the patterns are said to be learnable by this perceptron. If
after 1000 iterations the perceptron has not learned the pattern, they are said to be

unlearnable by the perceptron.
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Figure 3.4. Percentage of the time the perceptron cannot learn p patterns

Evenif aset of patternsis compatible, the perceptron may nevertheless be
unableto learn it if some patterns occur more often than other patterns. When this
happens, a dominant pattern can bias the perceptron weights. When the less common
pattern occurs, even though the weights are able to represent the pattern, they are
unable to set the threshold.

An example of thisis shown in Figure 3.5. Suppose that pattern 101-1 occurs
four times, and pattern 001-0 occurs once. These two patterns are compatible: the
first weight learns adirect correlation in both cases, even though the other two
weights do conflict. However, the more common 101-1 pattern biases the weights.
When the less common 001-0 pattern occurs, the sum total is positive, even though

the second and third weights are weaker than the first. The perceptron would
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consequently predict incorrectly on a subsequent 001-0 pattern, even though both
patterns are compatible.

Patterns Weights Output Correct?

1010 1 00 OO 00 N

1010 1 1 -1 10 31 Y

1010 1 2 -2 2 0 61 Y

1010 1 3330 91 Y

0010 O 4 -4 4 0O 411 N

0010 O 5-330 11 N

Figure 3.5. Effect of imbalance on learning

There are several factors that affect the severity of this biasing problem.
Among these are: 1) the degree of imbalance, 2) the amount of training, 3) the degree
of conflict between the patterns, and 4) the training strategy.

It is easy to see why the degree of imbalance affects the problem. If the 101-1
pattern occurred slightly more often than the 001-0 pattern, the second and third
weights would remain small due to the conflict, while the first weight would grow
large. Although the second and third weights would not be precisely zero because the
101-1 pattern occurs more often, the magnitude of the first weight would overcome
them and determine the perceptron output.

If the perceptron patterns are greatly imbalanced, the imbalance could mean
that the perceptron never actually learns the patterns, regardless of the fact that the
patterns are compatible. Thisis shown in Figure 3.6 by extending the sequence

shown in Figure 3.5. Notice that the difference gap between the magnitude of the
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first weight and the combined second and third weights grows with each training

iteration, meaning that the perceptron can never learn the pattern.

Iteration Pattern Weights Output Correct?
0 1010 1 0 O 0 O 00 N
1 1010 1 1 -1 1 0O 31 Y
2 1010 1 2 -2 2 0O 61 Y
3 1010 1 3 3 3 0O 91 Y
4 0010 O 4 -4 4 0O 41 N
5 1010 1 5 -3 3 0 111 Y
6 1010 1 6 -4 4 0O 141 Y
7 1010 1 7 -5 5 0O 171 Y
8 1010 1 8 -6 6 0O 201 Y
9 oo10 o0 9 -7 7 0O 51 N
10 1010 1 10 6 6 0O 221 Y
11 1010 1 11 -7 7 0O 251 Y
12 1010 1 12 -8 8 0O 281 Y
13 1010 1 13 -9 9 0O 311 Y
14 0010 O 14 -10 10 O 61 N

Figure 3.6. Unlearnable patternsduetoimbalance

The imbalance problem is exacerbated by the number of conflicting weights
between the patterns. Even though the 101-1 and 001-0 patterns are compatible due
to the first weight, only one of the three weightsis not in conflict. Suppose that the

perceptron were asked to learn the patterns 101-1 and 011-0, where two of the three
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weights are not in conflict. Figure 3.7 shows the result with the same imbalance as
before. Observe that the two conflict-free weights are able to easily overcome the
unbalanced conflicted third weight. Pattern imbalance only affects conflicted
weights. The more conflict-free weights that exist between the patterns, the more

imbalance the perceptron can handle.

Iteration Pattern Weights Output Correct?
0 1010 1 00 0O 00 N
1 1010 1 1 -1 10 31 Y
2 1010 1 2 -2 2 0 61 Y
3 1010 1 3330 91 Y
4 0110 O 4 -4 4 0O -4/0 Y
5 1010 1 5 -5 3 0 131 Y
6 1010 1 6 -6 4 O 16/1 Y
7 1010 1 7 -7 5 0 191 Y
8 1010 1 8 -8 6 O 221 Y
9 0110 O 9 970 -11/1 Y

Figure 3.7 Imbalanced patterns are lear nable with sufficient compatible inputs

The construction of the perceptron can have a great deal to do with the amount
of pattern imbalance it can handle. The training strategy used in the above example
handles pattern imbalance very poorly by allowing conflicted weights to grow away
from zero. Aswill be discussed later, alternative training mechanisms are able to

reduce the effects of pattern imbalance.

42



In the following study I try to quantify the effect of pattern imbalance on
learning time. | implemented a perceptron in C with n inputs, where nisfixed at 16. |
choose p compatible patterns and target values in such away that c of the n inputs are
in conflict. Thisisdone asfollows. First, p target values are chosen randomly.
Second, n-c nonconflicted correlation directions are chosen at random for the first n-c
inputs. Because n-c is greater than 0, the patterns are guaranteed to be compatible.
Thefirst n-c bits are then chosen for each pattern based on these correlations. Third,
for each of c remaining bits, p bit values are randomly chosen. If these values are not
in conflict, they are repeatedly discarded and chosen again.

The balance b between the patterns is quantified as the ratio between how
often the last pattern is supplied to the inputs versus how often the first p-1 patterns
are. Thelast pattern isreplicated b-1 times to form the complete pattern set.

The perceptron is repeatedly supplied these inputs and trained using the
training-by-correlation strategy discussed later. The perceptron is considered to have
learned the p patterns when it predicts the correct value every iteration for 2* (b+(p-
1)) iterations (in other words, it predicts the correct output for every input pattern
twiceinarow). Thetraining time for the perceptron to learn these patternsis
computed as the average of the number of iterations needed to learn minus b+(p-1),
for 1000 tests with different randomly generated input patterns. A patternis
considered unlearnableif it is not trained after 1000 training iterations.

Figures 3.8, 3.9, and 3.10 show the percentage of the patterns that were
learnable as a function of b and the number of conflicted inputs ¢ for p=4, 8, and 16.

Figures 3.11, 3.12, and 3.13 show the training times for those patterns that were
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learnable. Asb increases, the percentage of unlearnable patterns increases.
Interestingly, however, the training time for those patterns that are learnable is not
affected by the balance. Notice that balance is never a problem if the percentage of
conflicted inputs is under 50%.
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3.1.2 Can a Perceptron Outperform a Table?

The perceptron’s primary method of learning, as discussed earlier, is
correlational, capturing the relationship between each input and the output. The table,
on the other hand, learns from a context, with the combination of branch results,
combined, choosing the pattern table entry. The question, consequently, is whether
the table learns correlations as well as a perceptron? If so, atable with equal history
size would always perform at least as well as a perceptron. If not, then there are some
input sets (those best learned correlationally) for which a perceptron would

outperform atable.

47



Recall that while a perceptron can learn all single input correlational input
sets, there are some context-based input sets that a perceptron cannot learn - those
pattern sets previously defined asincompatible. A table on the other hand can learn
correlational inputs, aswell as all context-based inputs. Thisis because a set of
correlations can be mapped to a set of contexts, as shown in Figure 3.14' s example.
However, atable cannot necessarily learn the correlational inputsin as few iterations
as aperceptron can. As mentioned above, the perceptron can infer the negative case
of a correlation from the positive case, and vice versa. The lookup table, however,
must observe both cases before they can be learned. An example of thisisshownin
Figure 3.15; notice that the perceptron can learn the patternsin 1 iteration, while the
table takes 2 iterations.

i d i

ono

1 010 O
01100 1
Figure 3.14. Correlation converted to context patterns

Iteration Pattern Perceptron Table
output output

0 10010 0 O 0

1 01100 1 1 0

2 10010 0 O 0

3 01100 1 1 1

Figure 3.15. A perceptron can learn faster than atable

This difference between the rate of perceptron learning versus the rate of
table-based |earning becomes more severe with larger input sets containing greater
guantities of correlated inputs. The perceptron learns a correlation between an input
and the target independently of the other inputs. The table approach cannot learn an
input correlation independently of the other inputs. To learn the same correlation, the

table, on the other hand, must observe the input’ s negative and positive case for all
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possible values of the other input. If there are e correlated inputs, the perceptron can
learn al the possible correlationsin as few as e iterations. The table, however,
requires aminimum of 2™ jterations to learn the correlation, assuming the
remaining uncorrelated inputs are random (or noise). Thisis because each
combination of noisy inputs maps to a different table entry. Before producing reliable
outputs, the table must observe every possible combination of noisy inputs.
Consequently, tables learn correlations significantly more slowly if one or more
inputs are both uncorrelated with the target and random.

The table performs better when only afew different patterns are referenced, as
the table can be trained on a few patterns quickly. There are consequently two cases
when atable can learn asingle input correlation rapidly. The first case is when the
other inputs are also correlated with the target. As correlation istransitive, two inputs
correlated with the target are also correlated with each other. Thus the two inputs will
always have the same value relative to each other. The table will consequently not
need to observe all combinations of the two inputs, as the inputs together will never
form more than two patterns. The second case is when the other inputs always keep
the same values from one iteration to the next. If atwo input history has one
correlated input and one constant input, there will likewise be only two patterns to be
learned, as the constant input never changes.

It isinteresting to note that while both the table and the perceptron can mask
uncorrelated inputs, the behavior of a masked input is different for atable and a
perceptron. A perceptron ignores an input if it isuncorrelated with the target. The

table ignores an input if it maintains a constant, unchanging value. As showed above,
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atableis unable to cope with an uncorrelated input that is not constant. For reasons
to be discussed later, a perceptron likewise can be stymied by false correlations,

where a constant input appears to be correlated with the target.

3.1.3. Perceptron Learning Beyond Context

3.1.3.1. Masking

As part of learning which inputs are correlated with a target, a perceptron also
learns which inputs are not correlated with the target. These inputs are assigned
weight values of zero, or near zero, and are consequently inhibited from affecting the
perceptron decision. The ability of the perceptron thus to mask uncorrelated inputs
has greatly contributed to its success in branch prediction. In table-based branch
prediction, these uncorrelated branches create substantial wasted table space and
make learning slower, as discussed above. The only wasted space that uncorrelated
inputs cause in a perceptron are their weight bits, and the only slowdown in learning
is the time needed for the perceptron to learn which inputs are uncorrelated. This
masking of uncorrelated inputs allows the correlated inputs to have a greater effect on
the actual prediction.

Previous perceptron implementations in computer architecture have focused
on using perceptrons to detect correlations, with uncorrelated input masking being a
pleasant side effect. However, a perceptron could be instead used exclusively for
classifying inputs as correlated and uncorrelated. Thisisshown in Figure 3.16. The

perceptron determines which inputs contain useful information and which inputs
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contain irrelevant information. The perceptron is piggy-backed on a table-based

predictor that uses only the useful inputs to hash its table and make predictions.

| nputs
Per ceptron
Weights
| nputs X
Weights
Prediction

Figure 3.16. Perceptron masksuncorrelated inputsfor alookup table

It should be clear why a masking perceptron can be generally useful for
speculation in architecture. Computer architecture speculative applications typically
have large quantities of past data available, of which only part of it contains useful
patterns. Aswill be seen later with value prediction, promising prediction strategies
are often impractical due to their inabilities to cope with massive amounts of
irrelevant past data.

It is easy, however, to abuse masking perceptrons. Thiscan beillustrated in
the following example. Suppose that a novice architect were trying to design a
branch predictor that uses other data besides past branches to make a prediction, on
the premise that branches could be correlated with data values and other readily

available information. However, the architect does not know which types of past data
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isuseful and which isnot. The architect might take a huge perceptron, and feed it
hundreds of past data values, |oad/store target addresses, processor state information,
and even the time of day, assuming that the perceptron will somehow “sort it all out.”
Unfortunately, the perceptron probably will not.

There are several reasons for this. First, perceptrons can learn false patterns.
Suppose that aloop branch is taken (a perceptron output of “1”) 100 times, and not
taken on the 101st iteration. Suppose also that an irrelevant data point, ways*“1”, is
sourced to one of the perceptron inputs. The perceptron will falsely learn adirect
correlation for that input very well over 100 iterations. That correlation will fail on
the 101st iteration. However, during those first 100 iterations, the perceptron will
incorrectly identify the input as correlated. Second, increasing the number of inputs
of a perceptron also increases the noise from uncorrelated inputs, lowering the
perceptron accuracy. If itisclear that a past value will be uncorrelated, it does no
good to the perceptron to include it.

There is amore subtle problem in piggy-backing a masking perceptron on top
of another predictor. Suppose that a table-based branch predictor is used instead of a
perceptron because a table-based predictor is able to learn linearly inseparable
patterns between past branches. However, a perceptron is used to weed out
uncorrelated branches before they are used in the table hash value. Thiswould
appear to be the best of both worlds: the table would supposedly capture alarge
variety of branch patterns, while remaining small because only correlated branches
areused in theindex. The problem isthat, to a perceptron, two inputs that, while

themselves not individually correlated with the target, together form alinearly
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inseparable pattern, are indistinguishable from two uncorrelated inputs. These inputs
would be assigned zero weights and would be weeded out before reaching the table.
Thus while the table could predict using those past branches, the masking perceptron

would prevent those branches from ever reaching the table.

3.1.3.2. Recognizing new patterns

If there is one thing neural networks are known for, it istheir ability to learn a
generalization from alimited set of examples, and apply their generalization to new
input patterns. In many other neural network applications, the network weights are
set through repeated application of atraining set of patterns. After the neural network
istrained, it is given actual patterns, which may or may not have been part of the
training set. Having learned a generalized function from the training set, the network
is able to produce correct outputs from these previously unseen patterns. The
perceptron, being a small neural network, is also able to learn certain generalizations
from training and apply them to new patterns. However, for reasons discussed below,
this ability is not likely to be very useful in computer architecture applications.

Recall that the basic function of a perceptron isto learn individual correlations
between many binary inputs and a binary target. Each perceptron weight reflects the
correlation learned for the respective input, with a positive weight meaning a direct
correlation, a negative meaning an inverse, and a zero meaning no correlation
observed. Depending on how the perceptron is used, a previously unseen input could
mean one of two things: it could be a change in a specific perceptron input, such asa
branch not being taken that had always previously been taken, or it could be a new

pattern of input values together correlating with a new output value. Unlessthe
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perceptron is untrained, it will produce some output value for the new input.
However, whether that output value is useful or not depends on the application.

Suppose that a perceptron is used to determine correlations between individual
inputs (maybe different past branches), and the target (the branch to be predicted).
The weights thus reflect how each individual past branch is correlated with the target.
Suppose that a particular past branch always produced an input of “taken” (1) when
the target branch wastaken (1), and a direct correlation was learned. If the branch
produces the previously unseen value of not taken (0), the perceptron will assume that
this means that the target branch should not be taken. In thisway, the perceptron has
been able to determine an output from a previously unseen input value, extrapolating
on the generalization learned: that the input correlates directly with the output.
However, this may not necessarily be a correct generalization. The input might have
been uncorrelated with the target branch, but both might have been taken most of the
time. A direct correlation might have been observed and well learned, but prove
useless in making predictions. Consequently, for an application to be able to use a
perceptron to predict for previously unseen input values, the new values must follow
the same correl ations observed for the past values.

Suppose that a perceptron is instead used as a context-based predictor,
determining an output value from the pattern of input values. The weights reflect
how an output should be chosen from the set of patterns. In this case, a previousy
unseen input pattern requires the perceptron to apply a previously made
generalization to anew input. However, the generalization that the perceptron

learned is simply the emphasizing of nonconflicted inputs between the pattern, and



the ignoring of conflicted inputs. The ability of the perceptron to guess the new
pattern depends entirely on how much it conflicts with other patterns. If the majority
of the inputs in the pattern do not conflict with other patterns, the perceptron will
likely correctly guess the output. If most of the pattern inputs conflict with other
patterns, the perceptron will most likely guess incorrectly. Consequently, in order for
an application to be able to use a perceptron to predict for new patterns, the new

patterns must conflict minimally with the old patterns.

3.2. Training
A perceptron’ s training approach greatly determines not only the speed at

which it can learn a particular set of input values, but whether it can learn those input
values at al. Interestingly enough, prior perceptron work in computer architecture
have used two different perceptron training mechanisms almost interchangeably.
While both of these mechanisms have the same effect of teaching a perceptron to
learn direct and inverse correlations, the actual effects the two mechanisms have on
the perceptron weights are drastically different. Aswe shall see, the two training
mechanisms both have good points and bad points, and there are definite reasonsin
most applications to use one instead of the other.

The main objective of training a perceptron is to adjust each weight so that it
reflects the correlation between the corresponding input and the target, and is able to
influence the perceptron output appropriately. A weight should tell whether thereisa
correlation (by whether it is zero or nonzero), what type of correlation it is (by the
sign: positive if direct, negative if inverse), and how strong the correlation is (by the

magnitude). The weights should be adjusted so that inputs for which the perceptron

55



is confident about the correlation have a strong effect on the perceptron result, while
inputs for which the perceptron is not-confident about the correlation should have a

negligible effect on the resullt.

3.2.1. Training lssues

There are several issues when designing atraining strategy for computer
architecture applications. Might many noncorrelated weights together override a
correlated weight? Can a pattern that is not a correlation be mistaken for one? Will
weight patterns be quickly unlearned on a context switch? How susceptible isthe
predictor to biasing from pattern imbalance? How many training iterations are
needed? Choices made for the above issues should suit the application and its data
patterns.

Weights associated with a noncorrelated input do not necessarily have avalue
of exactly zero. A noncorrelated input produces arbitrary (or noisy) values that cause
its weight to fluctuate continually. Such aweight may have avalue of zero or avalue
close to zero, depending on theiteration. Clearly, in the presence of alarge
magnitude weight reflecting a strong correlation, these noncorrelated weights have
little influence on the result. However, if there are sufficiently more noncorrelated
weights than correlated weights, the noise from the noncorrelated weights could drive
the result. Anexample of thisisshown in Figure 3.17. The correlated weight, 5, is
overruled by the uncorrelated weights. Left unsolved, this problem creates an upper
bound to the perceptron input size. With too many inputs, and too few of them

correlated, the uncorrelated weights tend to dominate the output.
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Figure 3.17. Uncorrelated weight noise can bias a per ceptron

A perceptron’ s weights can sometimes learn correlations where none exist
from heavily biased inputs. This occurs when both the target and a particular input
tend to have one value occur much more frequently than the other value. Suppose,
for example, the perceptron target valueistypicaly 1, and seldom 0O, and another
perceptron input is also virtually always 1 aswell. However, they are uncorrelated,
because the target does not produce 0 when the input produces 0. The perceptron
might nevertheless observe a strong positive correlation, not because one exists, but
because the input and target are so often 1 at the sametime. If the corresponding
weight is allowed to grow large, a0 at that input will strongly influence the
perceptron output to 0, producing an incorrect output. This problem isvery common
in branch prediction, where both the target branch and a past input branch may
control iteration in aloop, and will both consequently be taken most of the time.

Another problem particular to computer architecture applicationsis context

switches, when one phase of a program ends and another begins. When this happens,
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previous patterns may no longer occur, and new patterns must be learned. A
perceptron undergoing a context switch will need to unlearn the past patterns before it
can reliably learn the new patterns. |If the weights are allowed to grow too large, the
perceptron will need to spend many iterations reducing the large weights before the
weight can be adjusted to learn the new pattern.

As mentioned earlier, perceptrons being used as context predictors can suffer
from pattern imbalance, when one data pattern occurs much more frequently than
another data pattern. Thisrequires more training iterations to learn the pattern set.
This can be countered by preventing perceptron weights from growing excessively
large on majority patterns so that they are able to learn the infrequent patterns.

Training timeis crucial in many computer architecture applications. Unlike
other applications of neural networks where the networks are subjected to thousands
of training iterations before being required to make accurate predictions, perceptrons
must make correct predictions after only afew training iterations. There are two
reasons for this. First, many predictable patternsin programs only occur afew times,
not thousands of times; if a perceptron is not trained rapidly enough, it could miss the
pattern entirely. Second, since a perceptron in architecture applicationsis being used
whileit isbeing trained, it needs to make accurate predictions almost immediately. It
should be noted that table-based predictors, the alternative to perceptrons, do not
typically require thousands of iterations to predict accurately.

It should be observed that the above problems require conflicting solutions.
Uncorrel ated weight noise can be countered by making the correlated weights grow

very large. Large weights, however, make training take longer, context switch
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retraining take longer, and pattern imbalance more severe. If weights are allowed to
grow large because of heavily biased inputs, the false correlation problem becomes
more severe. Thus, when determining how large the weights can be allowed to grow,
the percentage of uncorrelated inputs must be weighed against frequency of pattern

imbal ance and biased inputs.

3.2.2. Trainingusing an error value

In [AkkO4], the perceptron weights were trained using an error value. An
error is computed on each training iteration by subtracting the predicted output from
the desired output (e=a-p). Thiserror isthen applied to the weights by multiplying it
by each weight’s corresponding input and adding it to the weight. It should be
pointed out that in order for this approach to work correctly, an input of 0 should be
treated as -1 so that the error is added negatively on O inputs. However, when the
error is calculated, a prediction of O should be treated as 0 so that the error is always
0,-1,or1l.

A variation on this training approach is to multiply the error value by some
integer constant alpha[Ros62]. A larger training factor causes the weights to grow
faster in the same number of iterations, and makes for larger weight values.

The interesting characteristic of this error value based training approach is that
the weights are adjusted until correct output values are obtained, and then training is
stopped when the error value becomes zero. Subsequent training only occurs when
an incorrect prediction is made. Assuming that the perceptron starts producing
correct outputs after afew training iterations, no weight will ever become very large.

Thisis, of course, just fineif the perceptron fully learned the correlations in those
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iterations. However, the perceptron might have only learned enough of the
correlation set to predict correctly most of the time.

The basic positive side to this approach isthat it is focused on the final goal of
having the perceptron produce the correct result. If the perceptron is already
predicting correctly, why change the weights and disturb it?

The negative side to this approach is that it needs incorrect predictions to
driveit. Because weights are not changed on correct predictions, training can only
occur on incorrect predictions. Theresult isthat al training isin response to
perceptron mispredictions. An aternative is preventative training. In preventative
training, even though the perceptron is predicting correct outputs, the more well
correlated weights are strengthened further. In future predictions when more weakly
correlated inputs produce unreliable values, the perceptron will have learned to
identify the more strongly correlated inputs, and can rely on them without suffering a
misprediction. With error based training, however, the perceptron cannot identify the
lessreliably correlated inputs until they force it to mispredict.

This error-based training approach is very susceptible to uncorrel ated weight
noise because correlated weights are not permitted to grow past the point where
predictions become correct most of the time. The correlated weights may rise above
the typical noise level fairly quickly, because the perceptron will initially be
producing incorrect outputs. However, they will stop rising after that, leaving the
perceptron susceptible to bursts of noise. It istrue that on each burst of noise
sufficient to cause an incorrect prediction, the correlated weights will be trained. But

the incorrect prediction nevertheless occurred. Had the correlated weights been
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trained further even after correct predictions were produced, they would have been
resilient to the noise burst.

Because the weights do not grow large, this training approach makes the
perceptron less susceptible to being biased by false correlations. An example of this
isshown in Figure 3.18. Although the perceptron isinitially misled by input 2’'sfalse
correlation and sets weight 2 equal to weight 1, the misprediction on iteration 3
reduces weight 2. Because weight 2 was never permitted to grow large, this reduction
greatly reduces input 2's influence relative to input 1. On the other hand, the
perceptron had to actually mispredict for input 2's false correlation to be observed.

Had input 2 not caused a misprediction in iteration 3, its weight would not have been

reduced.
Iteration inputO inputl input?2 Weights [ Output Correct?
0 0 1 1 0o 1 0 OO0 O oo N
1 1 1 1 g 1 -1 110 11 Y
2 1 0 1 g o -1 110 -10 Y
3 0 0 1 g o -1 110 11 N
4 0 0 1 o o 0 20 0O -20 Y

Figure 3.18. Training-by-error’shandling of false correlations

An even greater advantage is that this training approach always eventually
learns any set of compatible patterns, no matter how imbalanced they are or whether
false correlations are present. Recall the example in Figure 3.2 of the imbalanced
pattern set that the perceptron did not learn. Figure 3.19 shows the learning process
again with training-by-error. Because the biased weights from an imbalanced input

do not keep growing after a correct pattern is obtained, the other weights are able to
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catch up when the minority pattern occurs. Aswill be shown below, this training

approach is always able to learn compatible pattern sets.

Iter- input input input Weights [0 Output Correct?
ation 0 1 2

0 1 0 1 o 1 0O 0O O 0O o0 N
1 1 0 1 o 1 1 -1 1 0O 31 Y
2 1 0 1 o 1 1 -1 1 0O 31 Y
3 1 0 1 o 1 1 -1 1 0O 31 Y
4 0 0 1 o o 1 -1 1 0O 11 N
5 1 0 1 o 1 2 0 0 O 21 Y
6 1 0 1 o 1 2 0 0 O 21 Y
7 1 0 1 o 1 2 0 0 O 21 Y
8 1 0 1 o 1 2 0 0 O 21 Y
9 0 0 1 O 0 2 0 0 0O -200 Y
10 1 0 1 o 1 2 0 0 O 21 Y
11 1 0 1 o 1 2 0 0 O 21 Y
12 1 0 1 o 1 2 0 0 O 21 Y
13 1 0 1 o 1 2 0 0 O 21 Y
14 0 0 1 o o 2 0 0 0O -20 Y

Figure 3.19. Training-by-error can learn theimbalanced pattern

The error value based training approach responds well to context switches.
The low weight values mean that weights can be more rapidly unlearned when they
need to be changed. Likewise, the low weight values make the approach less
susceptible to pattern imbalance, as the mgjority pattern is unable to heavily bias the

weights.

3.2.3. Training using correlations

3.2.3.1. Without training cutoff
An aternative training strategy was used in [Jim0Q]. No error valueis

computed from the perceptron’s prediction. Instead, the desired value is compared
with each input value. If they are equal, the corresponding weight isincremented. |f

they are not equal, the weight is decremented. The approach effectively works thus: a
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correlation is observed between each input and the target. The weights are then
adjusted for the correlation; they are made more positive on adirect correlation, and
are made more negative on an inverse correlation.

In this training approach, the perceptron weights are always changed, whether
the prediction was correct or not. Over many training iterations, a correlated weight
can potentially become very large in magnitude. An uncorrelated weight, however,
will typically oscillate around zero.

The basic advantage to training using correlationsis that new information is
aways used. Even though the perceptron may already be predicting correctly,
training nevertheless continues. Thus, in theory, the weights come to more precisely
reflect the correlation between each input and the perceptron target. Thistraining
approach effectively performs preventative training, determining which inputs are
strongly and weakly correlated even after the perceptron begins predicting correctly,
and adjusting those weights accordingly. Additionally, this approach is somewhat
simpler from an implementational standpoint, because the perceptron prediction does
not need to be remembered in order to train.

The disadvantage is that weights must constantly change, even when the
perceptron is predicting correctly. It isthus possible for a perceptron to mess up a
good set of weight values. More problematically, this approach allows some weights
to grow very large, making biasing and untraining more severe iSsues.

Thistraining approach isfairly resilient to uncorrelated weight noise. Thisis
because correlated weights are allowed to grow substantially bigger than the

uncorrelated weights. However, it is very susceptible to learning false correlations
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from heavily biased inputs. The training strategy will repeatedly increment a weight

if the input and target values are repeatedly equal, even if they are both always 1.

3.2.3.2. With training cutoff

A variation on training using correlations was used in several past works and
has each weight magnitude saturated at a cutoff value (referred to as thetain [Jim02]).
Thisthetais chosen to be big enough so that the perceptron is not susceptible to
uncorrelated weight noise, yet small enough so that the biasing and retraining
problems of large weights do not cripple the perceptron. In [Jim02], the authors
empirically decided that 1.93*inputs+14 is the optimal thetafor their perceptron
branch prediction approach.

This correlational training with training cutoff approach has both its good and
bad sides. On the plus side, it creates a compromise; allowing for preventative
training without allowing any weight to become big enough to completely bias the
perceptron. On the minus side, it does not really solve any of the problems, while
trying to force a single cutoff value on every weight. Regardless of what cutoff value
isused, it will tend to be too small for some weights, allowing correlated inputs to be
overwhelmed by uncorrelated inputs, and too large for others, allowing falsely
correlated inputs to bias the perceptron.

A future area of study could look at dynamically varying the theta for each
perceptron in a predictor (or even each weight). A detector could try to determine if
the perceptron is being overwhelmed by uncorrelated noise, and raise theta, or if

falsely correlated weights are becoming too large, and lower theta.



3.2.4. Exponential weight growth

In al previous perceptron proposals in computer architecture, the weights
have always been increased or decreased in training by a constant value (typically 1
or -1). Asan dternative approach, | propose to raise or lower the weights by
multiplying or dividing them by afactor. Thisexponential training approach, as
opposed to the previous linear training approaches, would allow weights for
correlated inputs to quickly rise above the uncorrelated weight noise, while being able
to berapidly untrained. It could be applied to either of the above two training
methods.

Exponential weight growth should be particularly useful in countering
uncorrelated weight noise. A correlated weight will grow much larger than an
uncorrelated weight in few training iterations, and will consequently be more
influential than a greater number of combined uncorrelated weights than it would be
under linear growth. Thisis shown in Figure 3.20.

A second advantage is that correlated weights can become large more rapidly
than in linear weight growth. This meansthat fewer iterations are needed to train the
perceptron.

A third advantage is that, on a context change, previously correlated large
weights can be untrained rapidly. Thisisalso beneficial for countering false
correlations in the training by error value approach, as shown in Figure 3.19. When
input 3 demonstrates that it isfalsely correlated in iteration 2, its weight is not
decreased by 1, but cut in half. It consequently becomes significantly less influential

than correlated input 2.
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Iteration Pattern Weights Output Correct?

0 0110 1 -2 8 8 0 141 Y
1 1010 0 -2 8 8 0O -20 Y
2 0010 O -2 8 8 0 21 N
3 0010 O -1 16 4 O -11/0 Y

Figure 3.20. Countering weight noise with exponential growth

On the other hand, there are a couple disadvantages. First, inputs that
demonstrate a correlation sooner become significantly larger than inputs that a
demonstrate correlation later. This can cause mispredictionsif the inputs that became
correlated sooner turn out to be less reliable (although, after the misprediction, thisis
corrected). Second, exponential growth lacks the fine resolution of linear growth. In
linear growth, an 8-bit weight can have 256 possible values, whereas in exponential
growth, leaving 1 bit over for the sign, it can have only 15 possible values (7 positive
values, 7 negative values, and zero). If the perceptron weights need to be finely
balanced, with one input being only marginally less significant that another input,
training exponential growth will fail.

Exponential growth has implementation advantages. In linear growth, a
weight must be incremented or decremented, requiring binary addition or subtraction.
In exponential growth, if the growth factor is 2, the weight need only be logically
shifted left or right, aless complex operation. The challenge, however, is how to
handle the zero case and sign reversal.

Theloss of resolution in exponential growth can have an implementation
advantage in compressing the size of the weight. Rather than having the weight

contents represent the actual weight value in two’s complement form, the weight bits
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could instead represent a power of 2 (less one weight bit for the sign). This can
greatly reduce the overall size of the perceptron, as the weight storage is the largest
hardware cost. However, this comes at the cost of requiring extra hardware and

latency to decode the weight value.

3.2.5 Comparing Training Strategies

In the following studies, the | quantitatively compare the above training
strategiesin their ability to deal with biased inputs and their susceptibility to weight
noise. Thefirst study repeats the study from section 3.1.1 with p=8 for the error-
based training strategy. Figure 3.21 shows the effect on training time, and Figure
3.22 shows the percentage that of the patterns that are learnable for both training
approaches. Thetraining timeisdightly worse for training-by-error than for training-
by-correlations. However, in training-by-error, the perceptron learns every
compatible pattern al the time, regardless of how much biasing is present! This
shows a crucial benefit of training-by-error: it is guaranteed to converge for every
compatible pattern.

Figure 3.23 repeats the test shown in Figure 3.4; it shows the percentage of the
time both training strategies do not learn random patterns as a function of the number
of patterns. Notice that training-by-error is significantly more capable of learning

random patterns that training-by-correlations.
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In the second study, | examine how well each strategy deals with uncorrelated
inputs. | determine the learning time as a function of the percentage of correlated
inputs, for each training strategy. My perceptron, implemented in C, has n inputs, of
which c inputs are correlated. In each test, the correlation direction for each of the c
inputs is chosen randomly. The perceptron is then trained on random values until it
learns. Training works as follows: arandom “correct” output value is determined.
The c inputs are given the appropriate input value relative to that correct value (a
directly correlated input would get the same value, an inversely correlated input
would get the opposite value). The remaining inputs are given arandom value. The
perceptron produces a guess and is trained according to the training strategy. The
perceptron is considered to have learned when it produces correct guesses for 10

iterations. The average training time is computed as the average of the training times
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for 1000 tests. The training time for each individual test is determined as the number
of iterations until the perceptron learns minus 10.

Figure 3.24 shows the average training time for each training strategy as a
function of correlated inputsc, for n=16. Thetraining strategies considered are:
training-by-error, training-by-error with exponential weight growth, training-by-
correlation, training-by-correlation with exponential weight growth, and training-by-
correlation with aweight growth cutoff of 1.93n+14. The susceptibility to noiseis
shown by the higher average training times when few weights are correlated. In
general, weight noise ceases to be a problem when a quarter of the inputs or more are
correlated. The study shows that training-by-correlation is slightly less susceptible to
noise than training-by-error, but only when avery small percentage of the inputs
(1/16) are correlated. Using exponential weight growth significantly improves both
strategies noise tolerance. Enforcing a cutoff on training by correlations
substantially improves its learning time, but does not appear to affect its noise

susceptibility.
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3.3. The Multibit Perceptron

3.3.1. Defining the Multibit Perceptron

Thusfar, | have only considered the branch prediction predictor model, with

single bit inputs and a single bit output. Thisworks fine for predictors that only need

to choose between two aternatives, such as a predictor making adecision, or a

predictor predicting whether a characteristic exists. However, this does not work so

well for predictors that need to choose between multiple alternatives, or predictors

that need to predict avalue. A datavalue predictor, aswill be discussed in depth in

Chapter 5, must produce either an entire data value or an index to adatavalue. In

either case, the predictor’ s output must be more than one bit.

Figure 3.25 shows a diagram of a generalized multibit perceptron. Like the

single bit perceptron, it has multiple inputs and a single output. Unlike the single bit
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perceptron, however, each of these inputs and the output consist of multiple separate
bits, the number of which is constant across the perceptron. Regardless of the
multiple bit size of the input and output, the perceptron should function equivalently
to the single bit perceptron, and detect correlations between each multibit input and

the multibit target.

Figure 3.25. A Multibit Perceptron

There are three challenges to making this multibit perceptron. The first
challengeisin determining what it even means for there to be a correlation between a

multibit input and target. The second challenge is how to devise the multibit
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perceptron so that it learns and behaves analogously to the single bit perceptron. The
third challenge is how to keep the complexity of the multibit perceptron small, so that

training time, latency, and physical size stay within reasonable limits.

3.3.1.1. Defining Multibit Correlations

In thefirst case, it is necessary to determine what a multibit correlation is.
Let’slook first at the familiar single bit correlation. Single bit correlations between
an input and the target were previously categorized as direct or inverse. A direct
correlation meansthat if the target has value 1, the input always has value 1, and if
the target has value 0O, the input always has value 0. An inverse correlation means the
opposite: if the target has value 1, the input always has value 0, and vice versa. For
all other cases, the input is deemed uncorrelated. An uncorrelated input could be one
which has the same value regardless of whether the target hasvalue 1 or 0. It could
also be an input which produces both values 0 and 1 for asingle target value.
Basically, aninput is correlated if its value infers atarget value. A particular input
value necessarily means a particular target value. Additionally, achangein input
value necessarily means a change in target value.

The key difference between the multibit and single bit cases is that a multibit
may have an arbitrary number of possible values instead of two, limited only by the
number of bits. Nevertheless, | will use the same definition. Aninput is correlated
with the target if each input value that occurs infers a particular target value. This
definition isfar broader for the multibit case than the single bit case, and needs some

clarifications.
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First, the set of input values that occur may be smaller than the set of all
possible input values. | propose to neglect those input values that do not occur from
the definition; since they never occur, it does not matter how the target responds to
them. Likewise, all target values that never occur can be neglected.

Second, unlike the single bit case, there does not necessarily have to be a one-
to-one mapping between each input value and target value for a correlated input;
instead, several different input values may each map to asingle target value. This
does not violate the rule that each input value infers an output value. However, two
or more target values may not both map to the same input value; otherwise, how can
it be determined which target value the input value infers? In short, each target value
that occurs must have a set of one or more input values, and these input value sets
cannot intersect.

Third, recall that in single bit correlations, if one input value is correlated with
one target value, the opposite value isinferred. For example, if the target produces 1
when a correlated input produces 1, the target must produce 0 when the input
produces 0. Thisis not the case with multibit correlations. In amultibit predictor, if
the target produces a 3 whenever a correlated input produces a 2, if the target is not 3,
the input cannot be 2. However, this 2-3 correlation does not infer that any particular
target value will be produced for any other input value. It also does not infer that the
target value will not produce the number 3 again for adifferent input value. The
consequence of thisisthat, unlike the single bit predictor, the multibit correlational

predictor cannot use previously observed input values to learn the correct response to

74



unobserved input values. The multibit predictor can only learn an inference between

an input value and a target value after an example of them has been observed.

3.3.1.2. Multibit Perceptron Complexity

The massive problem in designing a perceptron approach to handle multibit
correlations is the complexity of the perceptron required. In the worst case, the
storage size needed to completely learn the correlation between a single multibit input
and the target is exponential in the number of bits. This can be easily shown as
follows. Suppose that the target produces every possible value. A correlated input
would need to produce a different value for each target value. Assuming that thereis
no function producing target values from input values, the predictor would need to
store all of the value mappings. If there are b bits, 2° mappings would need to be
stored for the input.

A perceptron observes not only the presence of a correlation, but the degree of
correlation using the magnitude of aweight. For the perceptron to not only learn all
the value mappings but the reliability of each value mapping, the perceptron would
need a separate weight for each possible value mapping, or 2° weights. In the single
bit perceptron, only a single weight was needed, because one value mapping inferred
the other. However, since with multibit correlations one value mapping does not
infer another, every value mapping needs its own weight.

It is not necessarily feasible to design a perceptron with 2° weights per input.
Aswill be shown below, multibit perceptrons can still be designed with smaller
numbers of weights per input. The consequence, however, isthat the resulting

perceptron cannot be guaranteed to learn the full correlation between any input and
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the target. Much like single bit perceptrons with context-based inputs can only learn
sets of compatible input patterns, the multibit perceptron can only learn compatible

sets of value mappings between any input and the target.

3.3.2. Multibit Perceptron Topologies

The concept of amultibit perceptron hasits origins in Rosenblatt’ s book.
Rosenblatt proposed three different multibit topologies, which he called “fully
coupled”, “digoint”, and “randomly selected.” These names refer to the connections
between A units and R units. The randomly selected approach, where, on each
prediction, A units for each bit are randomly drawn from alarger pool of A units, is
probably unsuitable for most computer architecture applications. Both the fully

coupled and digoint approaches, however, are worth considering further.

3.3.2.1. TheDigoint Perceptron
The digoint perceptron approach is shown in Figure 3.26 and is model ed after

Rosenblatt’ s disjoint topology. Each target bit has its own independent single bit
perceptron, whose inputs are the corresponding bit of each input. Correlations are
learned independently for each bit. If asingle bit perceptron can be thought of as a
line, with individual weights as points along the line, this b-bit multibit perceptron
can be though of as ab-dimensional hypercube, with each multibit weight occupying
apoint in the b-dimensiona hyperspace. The dot product of the weights for each
dimension determines which sector the prediction liesin; that sector becomes the

perceptron’ s decision.
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Figure 3.26. Digoint Perceptron

The advantage of the digoint perceptron isthat for b bitsand i inputs, it
requires b*i weights, which is significantly fewer than for the fully coupled
perceptron. The disadvantage, however, isin its ability to learn value mappings.

Figure 3.27 shows the learning limitations of this type of perceptron. Suppose
that asingle input 3-bit digoint perceptron is asked to learn a value mapping 5-1
(input value 5 infers target value 1). The three single bit component perceptrons will
each learn the correlation for their respective bits to generate this mapping, and from
most to least significant will learn inverse, direct, direct. To learn a second value
mapping without conflicts, that mapping will also need to set the weightsto inverse,
direct, direct. Effectively, by learning one value mapping, the perceptron learns a set

of value mappings, the rest of which may or may not be accurate. Consequently, this
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perceptron cannot be guaranteed to learn more than one value mapping for each input
without conflicts. Since a correlation may consist of many different value mappings,

this would appear to severely limit the usefulness of the digoint perceptron approach.

21 5 —»14

4,0 3 —»1

1 0 0 1 01 —» 1 0 0
00 0 011 —» 0 0 1
Inverse TTf
direct I/
inverse

Figure 3.27. Digoint perceptron learning from corresponding bits

Such conflicts, however, do not make disjoint perceptrons useless. Although
the perceptron may not be able to learn afull correlation from asingle input, it can
learn the correlation from several correlated inputs put together. Consider the 3-input
3-hit digoint perceptron in Figure 3.26 that is learning two sets of value mappings.
The conflicts occur at different bits for different inputs. Although the perceptron
cannot learn the entire mapping from any particular input, it can learn one bit of the
mapping from one input and another bit from a second input. If the perceptron has
sufficiently many correlated inputs, it can learn any complete mapping from the

combination of the inputs.
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3.3.2.2. TheFully Coupled Perceptron
Figure 3.28 shows the fully coupled perceptron approach, modeled after

Rosenblatt’s fully coupled topology. In the fully coupled perceptron, each target bit
has aweight not just for the corresponding input bits, but for every bit of every input.
This approach has the clear disadvantage over the digjoint approach that the
perceptron requires b**i weights. The additional weights mean additional storage,
and additional potential for uncorrelated weight noise. However, with additional
weights learning correl ations between different bits, the fully coupled perceptron is
theoretically capable of learning afull correlation from fewer correlated inputs than

the digoint perceptron.

Figure 3.28. Fully-Coupled Perceptron



Figure 3.29 shows the fully coupled perceptron’s ability to learn of value
mappings between a single input and the target. While the digoint perceptron could
be guaranteed to learn only one value mapping, the fully coupled perceptron can learn
any two value mappings without conflict. It cannot, however, learn any three value
mappings without the possibility of conflict. However, even for a set of three or more
mappings, the probability of conflict with the fully coupled perceptron is less than

that of the digoint perceptron.

0 0 1 001 — 1 00
0 0 0 010 —= 0 00
direct % ff
direct /
direct

Figure 3.29. Digoint perceptron learning from any bits
3.3.2.3 Digoint and Fully Coupled Compared

In this study | compare the relative abilities of the digoint and fully coupled
perceptrons to learn a set of values. | implement a digoint perceptron and afully
coupled perceptron in C. Each perceptron has n total inputs, where nisfixed at 16.
Each input and the output have b bits. Vaues are generated so that there are v

different values occurring at each correlated input and v different target values; thus
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the perceptrons must learn v value mappings for each correlated input. The variable
in this study isc, or the total number of correlated multibit perceptron inputs. Vaues
are generated at each input as follows: If theinput is designated as correlated, v input
values are randomly generated and associated with each of the v output values.

Once the values are chosen for a given test, the perceptron istrained. Each of
the v output values are repeatedly chosen as a correct value over successive iterations,
and the corresponding input values are supplied to the ¢ correlated perceptron inputs.
The uncorrelated perceptron inputs are supplied completely random values. Up to
1000v training iterations are performed. The perceptron is considered to have learned
theinput valuesif it is correct for 2v successive iterations (it has correctly predicted
each output value in turn twice), and the test is terminated. |If after 1000v iterations it
has not produced 2v correct predictionsin arow, it is considered unable to learn the
input values. A battery of 1000 tests are performed for each value of cfrom 1ton
and an average learnability rate is determined for each c.

Figures 3.30 and 3.31 show the learnability rate as a function of c for both
multibit perceptron typeswith v =2 and 4. Asmay be expected, there is no guarantee
that the perceptron will learn an arbitrary set of input values, even when c = 16.
However, the perceptron performs significantly better when cis at least n/2 than
when cislessthan n/2. There are two reasonsfor this. Thefirstisthat alarger ¢
means a greater chance of finding aweight that is not in conflict. The second is that
the potentially correlated inputs outnumber the inputs that are not correlated, reducing

the effects of noise.
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Figure 3.30. Learning rateswith 2 values per input
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Figure 3.31. Learningrateswith 4 values per input
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Learnability itself isonly part of the equation; even if the perceptron can learn
the patternsit needsto learn them rapidly if it isto be useful in value prediction and
other applications. Figure 3.32 shows the average training time as a function of c for
v=2. Training timeis computed as the average number of training iterations required
to learn, minus 2v (since it was correct for 2v iterations, it is assumed to have aready
learned the patterns before those iterations). Test iterations in which the perceptron

never learned are excluded.
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Training iterations

Correlatad inpurts
Figure 3.32. Trainingtimeswith 2 values per input and 4 bits

3.3.2.4. A Weight for Each Value
If the number of input and target data values that could ever be predicted are
limited to asmall enough number, it is possible to design a practical perceptron that

can learn all the value mappings, and hence the full correlation, for every correlated

input. This proposed perceptron is shown in Figure 3.33 with 2 inputs, 2 bits, and 3
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values/input. Like the previous approaches, this perceptron is comprised of single bit
perceptrons for each bit of the target. Each of these single bit perceptrons have a
separate weight for each possible value of each input. The input to the weight is
simply “1” if that value is observed for the input, and “-1” otherwise (the perceptron

lacks formal S units).

AT

Figure 3.33. Weight-per-value Perceptron

The clear advantage of this perceptron approach is that it has sufficient

weights to learn all the value mappings for each correlated input, because each value



has its own weight to learn its correlation. Fewer correlated inputs are consequently
needed to produce accurate predictions, and the perceptron can rely less on weakly
correlated inputs and focus instead on the strongly correlated inputs. If asmall input
set is used, or the input set has few strongly correlated inputs, this approach islikely
to outlearn the above perceptron approaches.

The biggest drawback to this approach is the sheer number of weights, which
for i inputs and b bitsis b*2°*i weights. For small numbers of b, however, this
approach is not necessarily impractical. Although it suffers from exponential growth
with one of its parameters, it is still more space efficient than the equivalent table-
based approach, whose size must vary exponentially with i aswell. Consequently, if
b iskept small, the number of weights may still be dominated by i, with which they
grow linearly.

In the value prediction application described in Chapter 5, b must be fixed at
32. However, this approach can still be kept to a manageable sizeif it is determined
that there will be no more than v values learned for each input. If there can be more
than v values occurring, some approach must be used to select the v valuesto be
learned. With this limitation, the weights needed can be kept to a manageable b* v*i.

Nevertheless, the quantity of weights for this perceptron approach must
clearly be more than the above approaches. There are two problems with this. The
first issimply the physical size and power consumption of the storage, as well as the
latency from having to add more weights together. The second problemis
uncorrelated weight noise. If many of the values for many of the inputs occur

infrequently, the noise quantity of uncorrelated weights can dominate the output.
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A second, more subtle problem, is that, for a correlated input, only a positive
input case is correlated with the target bit. Since only one value can be produced at a
time, all but one of the single-bit perceptron inputs for any input will be-1. This can
create problems because the perceptron is heavily biased negatively. A possible
solution to thisis to supply not a-1 input when a value does not occur, but a 0 input,
which cancels out the weight. Thus the weight for avalue is not trained when that
value does not occur, and the weight for a correlated value will not learn conflicts.
This approach of using a0 input value is used for the weight-per-value value

predictor in Chapter 5.

3.3.2.5. A Set of Weightsfor Each Target Value
Thelogical fourth aternative approach is to have a separate perceptron for

each output value. A single-bit perceptron is associated not with each target bit but
with each target value, and has an input for each value of eachinput. A 1 at asingle
bit input means that the value associated with that input was observed for the multibit
input, and a 1 at the target means that the target value should be taken. Clearly, this
multibit perceptron can learn all the value mappings for al the inputs, asit hasa
weight dedicated for each potential value mapping. However, there are two massive
problems with this approach.

The first problem is one of sheer size. For b bitsand i inputs, the perceptron
requires 2° 2%+ weights. Although the quantity of weights still grows linearly withii,
b must be exceedingly small for this approach to be practical to implement.

The second problem is what to do if more than one single-bit perceptron

decides that a value should be taken, or no perceptron decides to choose avalue. A
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couple approaches might be used. The threshold could be omitted from each
perceptron and the value could be chosen whose perceptron has the biggest sum.
Alternatively, a second predictor, such as a set of counters for each value, could
decide between the perceptrons. Neither of these are particularly satisfactory. The
counters really defeat the purpose of the perceptrons in the first place (why not just
use counters and omit the perceptrons?) The biggest sum approach is mildly better,
except that by eliminating the threshold function, thereis no longer a clean decision
made as to which value isright.

Finally, it is not clear that this approach provides any real gain over the
previous approach, which already had sufficient weightsto learn all possible value

mappings for each input.

3.4. Interference

Even a“perfect” perceptron, with fast learning and accurate prediction, can be
fouled up by bad input data. Interference occurs when different sources of input data,
each perhaps easily predictable by themselves, are all mapped to the same perceptron
input in some erratic, unpredictable way. Because the perceptron only observes the
scrambled interfering data, and not the original sources, it is unable to learn patterns
and produce accurate results. Interference is not a problem of the perceptrons
themselves, but aresult of how the perceptrons are implemented as a predictor. The
perceptron implementation strategy used in branch prediction, the model for
perceptron predictorsin other applications, suffers from two different forms of

interference.
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3.4.1. Aliasing

The first source of interference is caused by the per-address organization of
the predictor. Both the perceptron branch predictor and the table-based branch
predictor associate a separate predictor with each branch instruction. They
accomplish this by creating atable of perceptrons/pattern tables, and using the
address of the branch instruction to index that table and choose a particular predictor.
Unfortunately, the massive size of the predictor prohibits actually associating a
predictor/pattern table with every single address. Consequently thetable sizeis
limited, and a hash of the address, typically the lower bits of the PC, are used to
choose the entry. It isthus possible for two different branch instructions to use and
train the same predictor. This phenomenon has been well studied for table-based
predictors [Sec96] and has been examined in perceptron-based predictors as well
[JmO03, JmO05]. Itisknown asaliasing.

The most trivial way of countering aliasing is by simply increasing the size of
the predictor table, thus making it less likely that two branches would map to the
same location. The obvious negative side to this approach is the increased size of the
table, which grows exponentially in the number of PC bits that are used to index it.
The next approach is to use a more creative hash to index the table than simply using
the lower bits of the PC, the problems here being 1) finding such a hash, and 2)
implementing a hash so that it does not greatly increase the latency in indexing the
table (dividing the PC by alarge prime number, for example, is unlikely to be a
suitable hash function).

After giving up on trying to eliminate aliasing altogether, the next approach is

to live with aliasing, and try to prevent it from compromising the predictor. The

88



approach here isto keep atag bit of the upper PC bits, in order to detect aliasing.
Once aliasing is detected, the predictor might reset its pattern counters so that the
table previoudly trained for a different branch will not produce erratic results for the
interfering branch. The analogy for a perceptron would be to reset the weight bits so
that the previous branch pattern would not need to be unlearned.

Aliasing in table-based branch predictors has never been fully eliminated;
neither hasit been in previous perceptron branch prediction work. The general
strategy for coping has been to make the table big enough to reduce aliasing to
“reasonable’ levels, and then ssimply ignore the problem. Jimenez’' s work with
perceptron branch prediction determined a table size of 4096 creates negligible
aliasing degradation. Considering the quantity of research that has explored table-
based branch prediction aliasing, it isunlikely that there exists a simple, satisfactory

way of eliminating aliasing in per-address perceptron prediction.

3.4.2. History Interference

The second, somewhat |ess explored source of interference occursin the
mapping of past global branch results to perceptron inputs and specific pattern table
bits. Thisform of interference is shown in Figure 3.34. It has been previousy
assumed that each perceptron input is associated with a single past static branch
instruction. Each perceptron weight thus learns the relationship with its associated
static branch instruction and the target branch. However, the global history is
produced by shifting in dynamic branch results as they are known. Control flow
changes in the program can mean that on some instances of atarget branch, one or

more past branches may be present, and on other instances, they may not be. For
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example, suppose that on past iterations of a branch instruction, the past branch
outcomes were from branches a, b, ¢, d, e. Changesin control flow may add or
remove past branches on the next iteration, changing the sequenceto a, f, b, ¢, d. The
addition of branch f pushes all subsequent branch results to different perceptron
inputs. Thusweight 3 istrained on the result of branch c on one iteration, and branch
b on the next iteration. The effect of thisisthat the actual placement of past static
branch instructionsin the global history can change from one iteration to the next. A
perceptron input tied to a particular global history entry may in fact be monitoring
severa past branches. Although each past branch may individually be well correlated

with the target, the erratic combination of these branches need not be correlated.
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Figure 3.34. Interferencein the branch history

Before looking at how to overcome thisinterference, it isinstructive first to
examine to what degree this form of interference actually poses a problem. Three
guestions must be answered. First, do control flow changes that affect the global
history really occur frequently enough to affect accuracy? Second, even if they do,

are they harmful or benign? Third, this dissertation is not concerned so much with
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perceptron branch prediction but with other perceptron applications. Is this problem

likely to affect these other perceptron applications as well?

3.4.3. History Interference Does Happen

Does thisform of interference, with control flow changes shifting branches to
different placesin the global history on different iterations, really occur often in
branch prediction? | performed the following studies using a perceptron branch
predictor identical to Jimenez'simplemented in SimpleScalar. The first study, shown
in Figure 3.35, gives an initial quantification of interference between branchesin the
global history. It shows the percentage of the time for each input, over all static
branches, that the branch results being sourced to that input come from the same past
branch asin the previousiteration. Theresults are fairly dire: the most recent past
branch is a different instruction than in the past iteration nearly 15% of thetime. The
results show that the problem becomes significantly more severe with longer
histories. Figure 3.36 shows how many different past branches are routed to the same
predictor input, on average. The 16th input typically gets results from nearly three

different branches.
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Figure 3.35. Percentage of branch inputswith the same instruction asthe last
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Figure 3.36. Average number of branchesinterfering at each input

To design a predictor that istolerant of branch interference, it isimportant to
know not only the average number of interfering branches, but also the maximum.

Figure 3.37 shows, for a predictor with 16 inputs, the percentage of branch inputs that
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suffer from no interference, at most 2 branches interfering, at most 3 branches
interfering, and so on. As shown in the figure, over 50% of predictor inputs never

have more than 4 branches interfering with each other.
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Figure 3.37. Percentage of inputs suffering from varying inter ference amounts

What this evaluation does not address, however, is the distribution of
interference. There is a difference between two branches interfering evenly, so that
half the time the input gets the result of one branch and half the time the other, and
two branches interfering unevenly, so that one branch dominates the input. 1If
interference is highly uneven, an interference-tolerant predictor could simply treat the
more occasional branch as a nuisance and mask its results, whereasiif it is even, both
branches must be considered. This distribution is approximated by determining the
percentage of the time that the most dominating branch is seen by the input; if the
percentage for two interfering branches is 50%, the distribution is even; if it is 90%,

the distribution is highly uneven. The results, on average, are shown in Figure 3.38.

93



100.0%
90.0% -
80.0% I
70.0% -Htn—
60.0% fHiitta
50.0% HHHHHIAAMRE
40.0% ~JHHHHHHHHAHHRHHTHH] - :

30.0% JHHHHHHHHHHHHHHHHHHH - I
20.0% - HHHHHHHUHHHHHHH ! ! -
10.0% {{H{HHHHUHHHHHHHHHHHH H ! :’H
0.0%

1 1O o ™M N~ <« 1’ o oM N~ G | o
1 =< N N N O O < T <

Quantity of interfering branches

Percentage of time the most
common branch appears at the
input

Figure 3.38. Percentage of thetime that a dominating branch is seen at the input

Figure 3.38 shows that there does tend to be a dominating branch, though
clearly the nondominating branches are not negligible. Interestingly, even for inputs
where there are more than 30 conflicting branches, one branch still tends to dominate
about 20% to 40% of the time. This suggests that while large quantities of branches

may interfere, only a handful of them have any significant effect.

3.4.4. Classifying Interference

Interference need not necessarily be a bad thing. Suppose two different past
branches have the same result each iteration: both are taken, or both are not taken.
Even though they interfere, they both exhibit the same correlation. These branches
appear no different to the predictor than they would if they did not interfere. Asthese
branches both train the predictor in the same way, their interference can be considered

constructive interference.
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Alternatively, suppose two interfering past branches were both correlated with
the target, but in different directions. When one branch was taken, the other was not
taken. Asthese branchestrain the predictor opposite to each other, their interference
can be considered destructive interference. Destructive interferenceis clearly
detrimental to a predictor.

The third possibility is that a correlated branch is interfered with by a non-
correlated branch. Relative to the correlated branch, the non-correlated branch
sometimes produces one result, and sometimes the other result. Thisform of
interference can be termed neutral interference, sinceit is neither constructive nor
destructive. Neutral interference in fact must be looked at from two perspectives,
from the point of view of the correlated branch, and the point of view of the non-
correlated branch. The correlated branch sees the addition of noise. The non-

correlated branch sees the addition of bias.

3.4.5. Interference Effects

The effects of constructive, destructive, and neutral interference on perceptron
accuracy and learning rate are summarized below. For obvious reasons, constructive
interference is non-problematic in both prediction approaches, as the predictors do not
need to distinguish the interfering branches. It should also be clear why destructive
interference is a problem in perceptrons. The destructively interfering branches have
different correlations. The conflicted weight is thus trained to be both positive and
negative at the same time, resulting in cancellation and a zero weight (especialy if
the conflicting patterns occur equally often at an input). If the conflict occurs

unequally, with one branch occurring at the input more often than the other, the
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common branch will have trained alarge weight. This large weight magnitude means
that more weight is given when the rarer, conflicting branch occurs at the input,
causing amisprediction. Clearly constructive interference is benign and destructive
interference is harmful.

What happens on “neutral” interference? This interference can be considered
from two points of view; from that of a noncorrelated branch occasionally interfered
with by a correlated branch, and from that of a correlated branch occasionally
interfered with by a noncorrelated branch.

Suppose that a strongly correlated branch interferes with a noncorrelated
branch. The noncorrelated branch desires aweight value of near zero. From the
point of view of the noncorrelated branch, the interfering correlated branch causes no
immediate trouble, as the low weight value means that the perceptron disregards the
correlated branch’sinput. However, the correlated branch trains the weight value
away from zero towards the correlation. Thus the noise from the noncorrelated
branch is amplified and may affect future predictions. In this case, the correlated
branch causes little short term damage but may cause long term damage.

Suppose that a noncorrelated branch interferes with a correlated branch. The
correlated branch desires a high magnitude weight value. The noncorrelated branch
will not change this; sometimes it will increase the weight, sometimes it will decrease
the weight. Consequently it causes no long term damage. In the short term, the non-
correlated branch’s noise will be greatly amplified by the high magnitude weight and
drive the perceptron to mispredict. In this case, the uncorrelated branch causes little

long term damage but may cause short term damage.
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If the interference is balanced, with both branches interfering equally, both
problems occur. The weight istrained to alow but nonzero magnitude. The
correlated branch has some voice but may not be able to sway the perceptron as much
asit should. The noncorrelated branch is muted to some degree, but its noiseis
amplified more than it should be. Accuracy is thus reduced for two reasons: a
noncorrelated branch is amplified and can drive the perceptron to produce sporadic
results, and a correlated branch is muted and its benefits | ost.

Figure 3.39 shows the frequency of each type of interference for severd
benchmarks. The most prevalent form of interference is from uncorrelated branches
interfering with directly-correlated or inversely-correlated inputs, occurring

significantly more frequently that either constructive or truly destructive interference.
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Figure 3.39. Frequency of each type of branch interference
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3.4.6. History Interferencein the Multibit Perceptron
The above analysis deals with single-bit perceptrons. What about perceptrons

with multibit inputs and output? The problem can still occur. In this case, two past
multibit sources are both mapped to the same multibit input on different iterations.

In the single-bit perceptron, interference occurs between two single bit
sources. Since a single source can exhibit only one type of correlation (direct,
inverse, or none), these two sources can interfere only in asingle way (constructively,
destructively, or neutrally). In contrast, each individual bit of a multibit source
effectively exhibitsits own type of correlation. When two multibit sources collide,
interference occurs on each bit. Each individual bit of interference can be different,
with some interfering constructively, some destructively, and some neutrally.

The problem with multibit interference isthat it isonly benign if every single
bit interferes constructively. Consider two multibit sources, each one fully correlated
with aset of value mappings. Source 1 produces value mappings 01-11 and 10-00.
Source 2 produces mappings 01-10 and 10-01. What happens when they interfere?
Thefirst bit isinverse for both the first and second sources; they interfere
constructively. The second bit is direct for the first source but inverse for the second
source. They interfere destructively and their weights are reduced to 0. When the
interference occurs, the perceptron can only learn thefirst bit, and not the whole value
mapping. Thus while the perceptron might have learned a correlation from the single
input had there been no interference, it will need more inputs to learn the correlations
from the cancelled bits.

A multibit perceptron undergoing interference can be analyzed much the same

way as a multibit perceptron learning a correlation from a set of value mappings.
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Recall that the multibit perceptron input can only learn a set of value mapping if the
set iscompatible. Otherwise, it learns the compatible bits (those that correlate the
same way), and must learn the other bits from other perceptron inputs. Multibit
interference has the effect of increasing the set of value mappings to the union of the
sets of the interfering inputs. Thusit islesslikely that a particular bit will be
compatible. Thisbit must then be learned from another perceptron input. Thus
interference means that more correlated inputs are needed in order to learn the bits

cancelled by destructive interference.

3.4.7. Copingwith History Interference

Here | examine three methods of coping with history interference. Neither
way isreally ideal; each has reasons to recommend it and problems. In later chapters,
each method is applied to the application under test, and the effectiveness of each

method will be compared.

3.4.7.1. “Assigned Seats’

The most effective way of eliminating history interference would be to ensure
that every source is always mapped to the same perceptron input on every iteration.
To do that each source must be identified and assigned to a perceptron input. There
are at |least three issues that must be tackled: 1) identifying the sources, 2) providing a
perceptron input for each source, 3) mapping each source to itsinput.

| dentifying the sources, in branch prediction, issimple. Each past dynamic

branch has an address. This address tells which particular branch a result belongs to.
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Previously only the branch result was stored in the history register. The history
register can be easily updated to store both the branch result and the branch address.

Providing a perceptron input for each sourceislesssimple. Itisjust not clear
how many different static past branch instructions might occur in the history for a
given branch, looking at the static code. Additionally, each branch can have a
different quantity of past static branch instructionsin the same global history length.
Thus choosing a fixed quantity of perceptron inputs for each perceptron means that
some perceptrons will have too many inputs for the given history size while others
have too few.

Mapping each source to a different perceptron input is the biggest challenge.
One method could be to choose a perceptron input by hashing the branch address.
Because of latency concerns, a simple method, such as using the last bits of the
address to choose an input, must be employed. Routing the result to the input poses
another problem. This can be accomplished at the point that the branch result is
placed in the history. Instead of shifting the branch in, the branch’s place in the
history can be chosen by the last bits of the branch address. The history can then be
mapped directly to the perceptron inputs as before. This has the additional advantage
that the branch address need not be stored in the history, asit is already implicitly
stored by the branch’s placement.

Mapping creates another challenge. What happensif two branches have the
same last bits? Thisis, of course, the problem with this approach. One of the
branches would need to be discarded. | propose that the older branch (the one placed

in the history first) be discarded. There are two reasons for this. First, the history
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will be constantly updated, as every new branch result will be placed, instead of
filling up with old branches. Second, more recent branches generally correlate better
than less recent branches. Thisislikely to be true with other applications as well.

The advantage to this approach is that it guarantees that the same branch
instruction will always be sourced to the same perceptron input. There are two
problems, however. Thefirst problem iswhen two branches map to the same history
entry. It isconceivable, and even likely, that an uncorrelated branch will always
overwrite a correlated branch. This problem is simply ignored. The second problem
isthat interference can still occur when a past branch sometimes occurs and
sometimes does not occur. If abranch does not occur, an older branch’s result will
still occupy that history entry. These branches thus still interfere. Thisinterference
can be countered, to an extent, by zeroing out all entries that do not occur within the
last n dynamic branches (to a perceptron, inputs are-1 and 1, and a 0 input means to
ignore the input). The interference can still exist, if two branches occur within the
last n branches, but it removes the problem of a newer, more reliable branch
interfering with an older, less reliable branch.

Figure 3.40 shows this approach, which | term “Assigned Seats.” When a
branch result is known, the lower bits of the address (excluding any address bits that
are always zero) are used to choose a global history entry. The branch result is stored
at that entry asa-1 or 1 (requiring 2 bits per entry). On a prediction, the bits stored at

each history entry becomes the corresponding perceptron input.
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Figure 3.40. Assigned Seats

A variation on thisis*“ Assigned Seats with Cancellation.” Each entry has a
counter associated with it. The entry’s counter is set to afixed upper bound n when a
branch result is stored at that entry. When a branch result is stored at any other entry,
the counter is decreased. When the counter reaches O, the bit at that entry is changed

to 0. Thiseffectively forces the predictor to consider only the last n dynamic
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branches, and no more, and avoids interference between a recent past branch that

sometimes does not occur, and a less recent past branch.

3.4.7.2. PiecewiseLinear
An aternative approach avoids the problems with Assigned Seats. This

approach was independently devel oped both by me and by Jimenez in [Jim05], where
he called it the “Piecewise Linear Predictor.” Using Jmenez’ s terminology, the
Piecewise Linear predictor associates multiple weights with each perceptron input.
The weight is chosen by the address of the branch at that input. The effect of this
approach isto separate interfering branches, but not assign them to the same input.
Figure 3.41 shows this approach. The branch addressis stored in the history
alongside the branch result. When a prediction is made, each past branch result is
sourced to corresponding perceptron input. At the sametime, the last b bits of the
corresponding branch address choose aweight from an array of 2° weights for each

input. Later, on training, only the selected weight for each input is trained.
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Figure 3.41. Piecewise Linear Predictor
The advantage of this predictor is that no past dataislost. All n past branch
resultsin an n entry history are used by the perceptron. There are severd

disadvantages. First, each perceptron input must have several weights associated
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with it; not just one. Asweights are the biggest contributor to the size of a
perceptron, this effectively greatly increases the cost of the predictor. Second,
interference can still occur if two branch addresses have the same last bits and map to
the same weight. This can only be countered by increasing the number of weights for
each input. Third, each branchisstill potentially spread across several perceptron
inputs. Training is thus spread across multiple inputs. If abranch occurs equally at
three perceptron inputs, it will take three times as many iterationsto train the

perceptron as it would if a branch occurs only at one input.

3.4.7.3. Ignoretheproblem

If history interference is not a massive problem for a particular application, it
may be most cost and performance effective to simply ignore the problem altogether

and allow interference to occur.
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Chapter 4. Experimental Methodology

This chapter lists the ssimulation parameters and steps that are common to all the
studiesin Chapters 5 and 6. It also describes in depth my processor simulator on which

these studies are performed, what it simulates, how it works, and how it is evaluated.

4.1. The Simulator

Mysim isanew CPU simulator that | wrote explicitly for the purpose of this
dissertation research. It isa cycle-accurate, execution-driven, out-of-order simulator that
models a PISA machine. The simulator iswritten in C and runs on a Linux platform. It
issimilar to the SimpleScalar simulator in that it simulates at the same abstraction-level
and models the same type of machine with similar components and characteristics.
Additionally, the code to handle system calls and |oading the benchmark program into
simulator memory has been partially copied from the SimpleScalar. Apart from these

exceptions, and the power ssimulation add-on, Mysim consists entirely of original code.

4.1.1. Mysim overview

Mysim is capable of modeling three types of machines: a non-cycle-accurate
functional machine, a cycle-accurate in-order five-stage pipelined machine, and a cycle-
accurate out-of-order machine employing avariant of Tomasulo’s architecture. All the
simulations in this dissertation are performed only on the latter machine.

The functional simulator simply executes PISA instructions sequentially without
modeling any underlying microarchitecture. It wasimplemented first in order to verify

the more complex simulators.
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The pipeline simulator simulates a five-stage in-order pipelined PISA machine.
All instructions are executed in five stages: Fetch, Register Decode, Execution, Memory
Access, and Register Writeback. In Fetch, instruction codes are read from memory; in
Decode, register contents are read using the instruction operand bits. In Execution,
arithmetic is performed to obtain the result for arithmetic instructions, the address for
load/store instructions, or the branch decision for branch instructions. In Memory, the
virtual memory is either read or written to, and in Writeback, the execution or memory
result iswritten back to aregister. Data hazards are avoided entirely; dataforwarding is
employed from the Execution and Memory stages to the Decode stage in the event of a
hazard. Control hazards are dealt with through callsto a branch predictor.

The out-of-order ssimulator simulates a superscalar PISA machine based on the
Tomasulo agorithm [Tom67]. The architectureis shown in Figure 4.1. Instructions are
executed in six stages. Fetch, Dispatch, Issue, Execute, Writeback, and Commit. In
Fetch, instruction codes are read from memory into a dispatch queue. In Dispatch,
instruction codes are read from the dispatch queue and placed into available reservation
stations, where they wait until their operands are available. In Issue, instructions that are
ready to execute are assigned to available functional units. In Execute, the functional
units execute the instructions assigned to them. 1n Writeback, the results of completed
instructions are written to dependent instructions in reservation stations, and are removed
from the reservation stations. In Commit, the results of completed instructions are
written in order to the registers. This out-of-order ssmulator employs a set of reservation
stations to hold executing or waiting instructions, a dispatch queue to hold instructions

waiting for reservation stations, an issue queue to hold instructions waiting for functional
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units, a load/store queue to ensure in-order memory access when necessary, and are-
order buffer to hold all instructions that have not yet committed. It includes forwarding
mechanisms to pass completed data to dependent instructions, and a squashing

mechanism to remove instructions from the pipeline.
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The ssimulator also employs by default avirtual memory of unlimited size, and a
system call interface that performs actual POSIX calls based on system callsin the
benchmark programs. With appropriate command line flags, the simulator can also
simulate a 2-level instruction and data cache of variable size, abimodal branch predictor,

abranch-target buffer of variable size, and the Wattch power simulator.

4.1.2. Mysim Core Anatomy

The core of Mysim consists of the following files: mymain.c, Mysimoutorder.c,
myinstoutorder.c, mymemory.c, Mysim.c, myinst.c, mysyscall.c, and myloader.c, as well
as supporting files myloader.h, mymemory.h, Mysim.h, Mysimoutorder.h, and
mysyscall.h. mymain.c handles launching of the simulator and the command line flags.
mymemory.c handles the ssmulator’ s virtual memory, and myloader.c loads the
benchmark program into the virtual memory. mysyscall.c handles the system calls made
by the benchmark programs. The main simulation is divided between Mysim.c (for the
functional and pipelined processors) and Mysimoutorder.c (for the superscalar processor)
on one hand, modeling the datapath, and myinst.c (functional and pipelined) and
myinstoutorder.c (superscalar) on the other hand, modeling the instruction set. This
separation makes it possible to change the instruction set of the simulator without having
to make major modifications to the simulator itself.

This section covers the workings of each of these component filesin greater

depth.

110



4.1.2.1. Starting simulation

The simulator is launched using the command line:
mysim <flags> <benchmark program> <benchmark parameters>
Simulation launching is performed primarily in mymain.c and myloader.c. mymain.c

calls additional initialization functions in mymemory.c, mycache.c, mybpred.c.

4.1.2.1.1. mymain.c

The file mymain.c contains the code to launch the smulator. 1t handles command
line flags, fatal exceptions, and prints out runtime statistics when the simulation
terminates.

Most ssimulation variables can be adjusted via command-line flags. These flags
determine the ssmulation type, size and latency of the cache, branch predictor parameters,
and the parameters of the out-of-order pipeline. A full listing of the flags occurs as
comments in mymain.c.

Three flags are intended to aid in debugging: -ti, -mk, and -di. Theflag -ti isused
to specify the total number of instructions to be executed. Simulation is terminated, and
the statistics are printed, after that many instructions are completed. In the superscalar
simulator, where more than one instruction may be committed in acycle, smulation
terminates on the cycle when that total number of instructions is reached.

The flag -di specifies a number of instructions to be executed until a debugger is
launched. The simulator runs normally until the specified number of instructionsis

reached. The simulator then prints out, per cycle, the contents of al the registers and the
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pipeline contents, and allows the user to single step the program cycle-by-cycle (by
pressing Enter). The debugger isimplemented in Mysim.c and Mysimoutorder.c.

The flag -mk takes a number n. On the completion of every nth instruction, at the
end of the cycle, the current PC contents and most recently completed instruction is
printed out. Thisflagisused for validating the simulator.

The function fatal () is called when afatal error occursin simulation. It prints out
an error message and terminates simulation without printing statistics. Fatal exceptions
are used principally in dynamic memory allocation; if the memory needs of the ssmulator
exceed the memory availableto it, afatal exception is caused. They were also used on
invalid or unimplemented system calls, and in verifying the validity of the smulator.

The function exit_routing() is called when the benchmark program ends naturally
with the appropriate system call, or the number of instructions specified in -ti is reached.
It prints out simulation statistics, including memory usage, cache miss rates, and the
number of cycles needed. It also calls statistic printout routines in the supplemental
simulator files, such as power usage, and value and branch prediction miss rates.

When the simulator is launched, mymain.c first loads in the appropriate flag
values. It then calls mymemory.c to initialize the page table and virtual memory,
mycache.c to initialize the cache (if thereis one), and mybpred.c to initialize the branch
target buffer (if one exists). myloader.c is then called to load the benchmark program
into virtual memory, and finally the appropriate function (dofuncsim(), doinordersim(), or

dooutordersim()) is called in either Mysim.c or Mysimoutorder.c to start simulation.
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4.1.2.1.2. myloader.c

myloader.c reads the benchmark program machine code into memory. It isone of
the two simulation files largely inspired by SimpleScalar, although little code was copied
verbatim. Loading occurs entirely in one function: load().

The loader first reads the sizes and starting locations of the data and stack
segments, and determines the appropriate virtual address for the stack pointer. It then
reads the benchmark code into the virtual text segment, and the global datainto the
virtual data segment. When loading has concluded, the remaining command line

parameters are written onto the virtual stack.

4.1.2.2. Simulator Support Files

4.1.2.2.1. mymemory.c

The virtual memory is handled entirely in mymemory.c. Memory isdynamically
allocated per-page as needed. A page-table tells whether a page of memory has yet been
alocated. If the benchmark program requires more memory than the physical system can
support, simulation terminates with a fatal error.

Memory is accessed per-byte with the functions memory_write() and
memory_read(). Each function initially checks the page table to check whether memory
isallocated for that page. If not, memory_addpage() is called to allocate memory. The
function then performs the write or read.

Three additional functions are included to facilitate memory access.
memory_read word() reads four bytes of memory at atime. memory_write_array and
memory_read array copies a specified quantity of bytes between the virtual memory and

an array.

113



4.1.2.2.2. mysyscall.c
POSIX calls made by benchmark programs are handled by mysyscall.c. Register

r2 is used to choose the handling routine. The handling routines for most of these calls
simply handles the call by making the appropriate actual POSIX call, and transferring the
result to the simulated registers or virtual memory, as appropriate. The exception is
system call 0x01, which is called to end the benchmark program, and terminates
simulation. The handling routines have been implemented on an as-needed basis for the
SPECINT benchmark suite. Many system calls have not been implemented because they
are not needed by any of the benchmark programs; if one of these calls are made,
simulation ends with afatal error.

The system call handling routines in mysyscall.c have been largely copied, as
needed, from the SimpleScalar simulator. The benefit of thisis that the benchmark
programs behave exactly the same running under Mysim as they do running under

SimpleScalar. Thisaidsin validating the Mysim simulator.

4.1.2.3. Functional Simulation

The functional simulator is contained in the functions functional_simulate() and
dofuncsim() in Mysim.c, and doinstruction() in myinst.c.

Function dofuncsim() initializes the ssmulator, which in this case means setting
the register contents to 0 and the PC and SP registers to the appropriate addresses.
Function functional_simulate() repeatedly reads the 8-bit PISA instruction word from
memory, calls doinstruction() to execute it, and prints out statistical information, as
needed. The bulk of the simulation is performed in doinstruction(). The instruction word

is parsed into fields, and the opcode field chooses the PISA instruction function. The
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entire function for each instruction, including memory access, register decoding and

writing, and system calls, are performed here.

4.1.2.4. In-order Pipeline Simulation

The remainder of Mysim.c and myinst.c implement the five-stage in-order
pipeline smulator. The pipelineisinitialized to empty in function doinordersim(). It
then calls the simulation loop in function inorder_simulate(). The function calls
functions to handle each of the stages, in reverse: writeback, memory, execute, decode,
and fetch. It then updates the cycle statistic counter.

Function stage fetch() loads the 8-bit instruction word into the fetch-decode
register using two memory reads. The PC is used to read memory, except when a branch
prediction flag is triggered, in which case a speculative PC isused. Thefetch is stalled,
and aNOP instruction is copied to the fetch-decode register, under two cases. First, if the
instruction at decode is aload instruction, fetch is stalled to prevent potential data hazards
(thisis determined by acall to function fetch_check loads()). Second, if the branch
predictor is disabled, fetch is stalled after a branch instruction. The fetch stage also
determines the next PC value. PC+8 is assumed; however, a call is made to dofetch() in
myinst.c to check for branches. In dofetch(), the opcode field is parsed. If theinstruction
isaconditiona branch, the branch predictor is called to speculatively determine a branch
direction; if it isany form of branch, other than “j”, the branch target buffer is read to
speculatively choose anew PC.

In stage_decode(), the register fields are parsed, the register values are read into
the decode-execute register, and data forwarding is performed as needed.

decode_data forwarding() is called to detect data hazards between the registers sourced
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by the execute and memory instructions, and the registers read by the decode instruction.
In case of adata hazard, one or more values in the decode-execute register are
overwritten. Finally, dodecode() in myinst.ciscaled. Thisfunction determinesif a
branch misprediction has been made. If so, it determines the correct target address, and
converts the fetch instruction to a stall.

In stage_execute(), acall is made to function doexecute() in myinst.c, which
performs most of the execute work. Function doexecute() performs the arithmetic or
address cal culation required using the decode-execute register, and stores the result in the
execute-memory register. Function stage memory() also smply makes acall to
domemory() in myinst.c, which performs the appropriate memory loads and stores.

Function stage_writeback() first checksif the instruction at writeback is a system
call. If so, it performs the appropriate system call with handle_syscalls() in mysyscall.c,
and calls pipeline_flush() to clear the entire pipeline. It next writes the memory-
writeback register contents to the appropriate general purpose register, and finaly gathers

statistics.

4.1.2.5. Superscalar Simulation

Because of the size of the superscalar simulator code, it islocated in separate files
from the pipeline and functional code. The superscalar simulator is contained in files
Mysimoutorder.c and myinstoutorder.c.

The superscalar smulator contains several internal storage components. A
reorder buffer holds all of the instructions that have been dispatched but have not yet
been committed. A set of reservation stations hold al instructions, one per station, which

have been dispatched but have not yet finished executing. A ready queue holds alist of
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reservation stations containing instructions that have not yet executed, but have all of
their source values and are ready to be executed. A dispatch queue holds all instructions
that have been fetched but have not yet been assigned a reservation station.

Several flags alow processor features to be modeled that do not require additional
storage components. Global flags fu_integer, fu_integer multdiv, fu_float, and
fu_float_multdiv hold the number of functional unitsthat are available (not in use) to
handle integer arithmetic, integer multiplication/division, floating point, and floating
point multiplication/division respectively. The busy flag, belonging to each reservation
station, tells the status of the instruction in that station. The contents of the flag tells
whether the instruction is waiting on the result of another instruction (3), ready to execute
and waiting on afunctional unit to become available (2), currently executing (1), or
finished executing and waiting for writeback (0). A flagis also associated with each
source register for each reservation station. If negative, the flag tells whether the operand
valueisavailable (-1) or not needed (-2). Otherwise, the flag holds the number of the
reservation station sourcing that operand.

Function dooutordersim() initializes the registers, processor components, and
starts the out-of -order smulator. The registers areinitialized in the same way asin the
functional and pipelined simulators. Since the size of the dispatch queue, ready queue,
and reorder buffer, and the number of reservation stations can be set with command line
flags, these processor components are dynamically initialized at thistime. The number of
each type of functional unit is also determined here from command line flags. When the
processor components have been constructed, the function outorder_simulate() is called

to perform the simulation.
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Function outorder _simulate loops, calling the following functionsin this order to
perform the simulation: coo_commit(), coo_writeback(), ooo_execute(), 000 _issue(),
000_dispatch, and ooo_fetch(). It then gathers cycle statistics and makes callsto the
power modeler if it isenabled.

Function ooo_fetch() reads PISA instructions from memory into the dispatch
gueue. Instructions are fetched starting from the current address in the program counter,
regardless of whether it isvalid. The number of instructions read is determined by a
parameter “fetches per cycle’, which is set by acommand line parameter. In no case are
more instructions fetched, however, than there is room for in the dispatch queue.
Fetching may also be limited by cache misses. The memory cycle latency is determined
from afunction call to cache access latency() in mycache(). If theresult is greater than
1, no fetch takes place; instead, the latency is stored in a counter which is decreased each
cycle. When the counter reaches 0, the fetch can occur.

Function ooo_dispatch() removes instructionsin order from the dispatch queue
and assigns each instruction areservation station. It islimited by the number of free
reservation stations and reorder buffer entries available. For each instruction, if thereisa
reservation station ready and the reorder buffer is not full, the instruction is assigned to
that reservation station and its busy flag set to 3 (operands not ready), and it is copied to
the bottom of the reorder buffer. If the instruction isaload or storeinstruction, itis
copied to the tail of the load/store queue to ensure that |oads and stores occur in program
order.

Next, function set_resstat_registers() is called to detect dependencies. This

function first checks, for each source register, if any instruction in another reservation
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station is sourcing that register. If so, the number of that reservation station is stored at
the decode instruction. If not, the function then checks if any instruction in the reorder
buffer, but not in areservation station, sources that register. If so, the value produced by
that instruction is forwarded to the decode instruction. If not, the function copies the
value in that register to the decode instruction.

Finally, ooo_dispatch() checksfor branches. If the instruction is a branch, one of
severa things happens. If the instruction word contains the target address (such asin a
“j” or “jalr’ instruction), the target addressis copied to the program counter, and the
dispatch queue is emptied. Otherwise, if the branch is unconditional but the target
addressis unknown (such asin a*“jr” instruction), the branch target buffer isread to
produce a speculative PC value, the dispatch queue is cleared, and aflag is set at the
reservation station to signify that all subsequent instructions are speculative. If the
branch is conditional, the branch predictor is accessed (if enabled). The branch predictor
outcome determines whether the branch target buffer isread. 1f not (branch assumed not
taken or no branch predictor is simulated), the speculative flag is raised but the dispatch
gueueis not cleared. If so (branch assumed taken), the speculative flag is raised, the
branch target buffer is read to determine the next PC, and the dispatch queue is cleared.

Function ooo_execute() handles each instruction whileit isin the reservation
station. It searches through each reservation station until it finds one that is occupied. |If
theinstruction’s busy level is 3 (not all operands are available), it checks whether any
operand is still waiting on another instruction. If not, it upgrades the busy level to 2, and

adds that instruction to the ready queue if it requires afunctional unit. If the instruction
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does not require afunctional unit, and is not amemory instruction, it is further upgraded
to busy level 1.

Next, if theinstruction has abusy level 2 (operands ready), and isaload
instruction, it is executed if it is at the front of the load/store queue, or if there are no
stores preceding it in the load/store queue. If so, itsbusy level issetto 1. The memory
cycle latency is determined using function dcache_access latency() in mycache.c, and is
put into a counter, which is decremented on each cycle.

If the instruction has abusy level 1 (executing or waiting on memory), its
“time_left” counter is decremented. When that counter reaches 0, if itisaload
instruction, the memory access is performed and the busy level issetto 0. If itisan
arithmetic instruction, the instruction is executed by calling ooo_doexecute() in
myinstoutorder.c. This function performs the instruction execution, and copies the result
to afield in the instruction’ s reservation station entry. Then the appropriate functional
unit count isincremented, to signify that the instruction’s functional unit is available
again, and the instruction’s busy level isset to 0.

If the instruction has a busy level of 0 (completed), ooo_execute() checks whether
theinstruction is a branch instruction and the speculative flag is set. If so, it checks
whether the result matches the speculative next program counter value. If not,
000_squash() is called to remove all instructions following that branch in the reorder
buffer from the pipeline, and the dispatch queue is flushed. Regardless of whether
squashing occurs, the branch predictor and branch target buffer are both trained.

Function 000 _issue() assigns functional unitsto instructionsin the ready queue.

The ready queue is searched in order. If aninstructionin it desires afunctiona unit
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whose typeis available, that instruction is removed from the ready queue, its busy level is
set to 1 (executing), and the available functional unit count of that type is decremented.

Function ooo_writeback() removes instructions whose busy level is 0 (completed)
from the reservation stations. It calls function write to_reservation_inputs() to copy the
completed value to any other reservation stations who depend on it. It then removes the
instruction from the reservation station (but not from the reorder buffer), and copiesits
result value to afield in the reorder buffer entry. If theinstruction is a store instruction,
and at the head of the load/store queue, its memory latency is determined and a counter
Set.

Function ooo_commit() writes instruction results to memory and registersin
order. It starts at the head of the reorder buffer and tries to commit as many instructions
aspossible. When it reaches an instruction that cannot be committed, the stage ends.

Aninstruction is committed if it reaches the head of the reorder buffer and is not
located in areservation station. The instruction is removed from the reorder buffer and
its value written to the appropriate register. If the instruction is a store instruction,
however, it is not removed until its memory latency counter reaches 0, only after which
its value is written to memory. If theinstruction isasystem call, ooo_squash() is called
to remove all subsequent instructions from the pipeline. Finally, ooo_commit() gathers
cycle statistics.

A supplemental function, ooo_squash() removes all instructions from the pipeline
after the reorder buffer stage given as a parameter. It removes the instructions from the
reservation stations, then from the load/store queue and ready queue, and increments the

count of any functional unit it occupies. It then clears the dispatch queue.
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4.1.3. Mysim Extensions

Mysim contains four extensions, not including the additional extensions
documented later in this dissertation. These extensions are: a cache, simulated in
mycache.c, a branch predictor and branch target buffer, simulated in mybpred.c, the
Wattch power modeler, implemented in wattch-power.c, wattch-time.c, and wattch-
power.h, and a clock frequency simulator, simulated along with the superscalar processor
in Mysimoutorder.c. These extensions, apart from the branch predictor, are used only by

the superscalar simulator.

4.1.3.1. Cache

A two layer data cache and atwo layer instruction cache, of variable size, are
modeled in mycache.c. The cacheis organized set associatively, the number of sets,
ways, and block sizes being determined through command line flags. 1t uses awriteback
policy on stores for dirty cache blocks and aleast recently used replacement policy.
While cache accesses are performed immediately upon request, the modeled cache does
have afunction to estimate the cache latency of amemory request. To model acycle
accurate cache, the processor ssmulator first requests the latency of the cache access. It
then delays the memory access for the appropriate number of cycles, as described earlier,
after which it performs the actual cache access.

The cache need not be enabled. If the cacheisdisabled, all memory accesses are
assumed to have asingle cycle latency. All memory accesses in Mysimoutorder.c are
made to functions in mycache.c, not to mymemory.c, whether the cache is enabled or not.
If the cache is disabled, the cache functions simply call the appropriate function in

mymemory.c.
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The cacheisinitialized in mymain.c by afunction call to cache _init(). This
function dynamically allocates memory for the cache. The function uses severa
parameters obtained through the command line to determine the size and structure of the
cache. Parametersill cache size, il2 cache size, di1_cache size, dl2 _cache size
determine the total number of bytes total stored in each cache layer. Parameters
il1 cache sets, i12_cache sets, di1 _cache sets, and dI2_cache sets specify the number of
sets in each cache layer; the number of ways are calculated from the size and number of
sets. Parameter cache block size specifies the number of bytesin a cache block; for
simplicity in modeling the cache, all cache layersin Mysim’s cache have the same block
size. Function cache_init() constructs several arrays for each layer: a cache array
containing the actual data, atag array holding the upper bits of the block address for each
set, avalid array holding whether each cache set contains avalid block, adirty array
telling whether each cache block has been written to by a store instruction, and a replace
array holding LRU information for each cache block. The entire cacheisinitialized to
empty (invalid).

Cache accesses by the processor simulator are performed by calling the functions
dcache read(), dcache write(), icache read(), and icache write() with a memory address.
These functions simply check whether the cache is enabled; if not, they ssmply call the
appropriate functionsin mymemory.c. If so, they call the respective functions
d_cache doread(), d_cache dowrite(), i_cache doread(), and i_cache dowrite(). Each
function works largely the same. The L1 cacheis searched for the address. If found, the
dataisreturned and the LRU bits for each block in the set is updated. If not found,

i_cache miss() or d_cache miss() is called to search the L2 cache. The LRU block is
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evicted from the L1 cache, if necessary, by calling il1 _cache evict() or
dl1_cache evict(), and is copied to the L2 cache if dirty. If thedataisfoundinthelL?2
cache, the appropriate block is copied to the L1 cache. If not, eviction occurs at the L2
cache by calling il12_cache _evict() or di2_cache evict(), if needed. A memory accessis
then performed by calling memory_read() or memory_write() functions in mymemory.c,
and the block is copied into the L2 cache and to the L1 cache. Meanwhile, statistics are
gathered on the number of cache hits, misses, and replacements for each layer.

The cycle latency for a cache accessis calculated by calling
icache access |atency() or dcache access latency() for a particular address. The
functions check whether the address is present at the L1 and L2 caches to determine
whether there will be amiss. It then uses hit and miss latency parameters specified by

command line flags to determine the cycle penalty of the memory access.

4.1.3.2. Branch Prediction

A branch target buffer and several varieties of dynamic branch predictors are
simulated in mybpred.c. The branch target buffer is organized as a direct-mapped table
indexed using the lower bits of the branch instruction address. Itisinitialized by acall to
BTB_init() before s mulation, which dynamically allocates memory for the BTB based
on acommand line parameter. Function get BTB() reads the predicted target address for
agiven branch instruction address. Function update BTB() is called after the branch
instruction is resolved; it updates the BTB with the actual target address.

The branch predictor type and size is determined through command line
parameters; it isalso initialized in function BTB_init(). Function

get_branch_prediction(), called with the branch instruction address, returns a prediction.
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Function train_branch_predictor() is called after the branch instruction is resolved; it
updates the branch predictor.

Five branch prediction strategies have been implemented, and there is an option to
disable the branch predictor (in which case the pipelined simulator smply stalls, and the
superscalar simulator assumes branch not taken). The implemented strategies are: 1)
predict the same as the last global branch, 2) predict the same as the last local branch, 3)
aways predict “don’t take”, 4) aways predict “take”, and 5) bimodal. The bimodal
branch predictor associates a two-bit saturating counter for each branch table entry which
is decremented when the branch is not taken and incremented when it is. A counter value

of 2 or 3 predicts “taken”, avalue of 0 or 1 predicts “not taken.”

4.1.3.3. Power Modeling
The Sim-Wattch power modeler has been adapted to work with the Mysim

superscalar smulator. Power modeling is performed in files wattch-power.c, wattch-
power.h, and wattch-time.c. Calls are made to the power modeler in Mysimoutorder.c.
The power modeler estimates the total dynamic energy consumption of the processor
over the course of simulation by monitoring the number of times that various pipeline
events occur.

If power monitoring is enabled, before simulation, the energy consumption of a
large variety of pipeline and cache eventsis calculated. Thistakes as a parameter, given
on the command line, the clock frequency of the processor. During simulation, whenever
apipeline event occurs for which energy consumption was calcul ated, a counter

associated with that event isincremented. At the conclusion of simulation, the counters
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are used to estimate the total energy consumption of the processor and cache, and the
energy consumed in each stage.

Because the power modeler uses the clock frequency as a parameter, the
processor’ s clock frequency can be specified on the command line. Thisfrequency is
used to determine the total simulated time to run the benchmark application. Mysim aso
supports frequency scaling. If specified as a parameter, the energy consumption is
calculated before simulation for two different clock frequencies. At runtime, the
frequency of the processor can be switched by calling function set_clock_speed(). Two
sets of event counters are kept, one for each frequency. The total energy consumption at
the end of simulation is then calculated by multiplying each set of counters by the
appropriate energy rates. Additionally, the total simulated execution time is calculated
using the amount of time spent on each frequency. This allows dynamic frequency

scaling approaches to be studied using Mysim.

4.1.4. Mysim Validation and Performance

To prove that Mysim works correctly, eight benchmarks programs were run on
both Mysim and the SimpleScalar PISA simulator. Several tests were performed to show
that the benchmarks ran the same on both processor simulators.

Table 4.1 shows the eight benchmarks from the SPEC2000 integer suite and their
input sets. The benchmarks were compiled by the PISA gcc compiler which comesin the
SimpleScalar simpletools package. The benchmarks were run to 1 billion dynamic
instructions or conclusion, whichever came first (mcf was the only one to terminate

before 1 billion instructions).
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256.bzip2 input.graphic

176.gcc 166.i

164.gzip input.program

181.mcf inp.in

253.perlbmk -1/lib makerand.pl

300.twolf ref

255.vortex lendian.raw

175.vpr net.in arch.in place.out dum.out -place_only -init_t 5 -exit_t 0.005 -
alpha t 0.9412 -inner_num 2

Table4.1. Benchmarksand parameters

Several tests were performed to prove accuracy. The register contents at the end
of each instruction for the first 1 million instructions were saved in alog file for both
SimpleScalar and Mysim. The log files for each benchmark were compared and found
identical. The register contents and instruction word were then saved to alog file for
each 100th instruction thereafter up to 1 billion instructions for both ssimulators. These
were compared for each benchmark and found identical, except on certain benchmarks
(perlbmk) which made system calls to get the time of day. However, when the system
calls handlers were modified to aways return the same results, the register results were
found to be identical on each 100th instruction. These tests were performed under the
simulation parameters shown in Table 4.3.

Executing the benchmark program correctly does not necessarily mean that the
simulator is simulating cycle accurately. Figure 4.2 shows the IPC for Mysim and
Simplescalar 2.0 at the parametersin Table 4.3, for 500 million instructions across the

benchmarks. The average absolute differencein IPC is 4.94%.
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Figure4.2. 1PC compared for Mysim and SimpleScalar

Because Mysim is atrue execution driven simulator and is not implemented as
efficiently, it runs more slowly than SimpleScalar. Table 4.2 shows the relative
simulation time increase for 500 million instructions for Mysim over SimpleScalar, using

the parametersin Table 4.3.

bzip2 2.0
gcc 1.8
gzip 17.0
mcf 214
perlbmk 16.0
twolf 10.5
vortex 13.6
vpr 9.7

Table4.2. Relative simulation time of Mysim over Simplescalar

4.2. Simulation Methodology

In this dissertation, all quantitative results, unless otherwise specified, were

obtained using the Mysim superscalar ssmulator. Results were obtained by running the
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benchmarks and input setsin Table 4.1 to 500 million instructions or completion,
whichever comesfirst (benchmark mcf terminates at 173 million instructions, the rest run
for a complete 500 million). Unless otherwise specified, Table 4.3 show the default

simulation parameters for the processor, cache, and extensions.

Decode width 16 instructions

Reservation Stations 128

ROB Size 128

L oad/Store Queue Size 64

Functional units 4 integer add/sub, 2 integer mult/div, 2 fp add/sub, 1 fp
mult/div

Functional unit latencies | Integer add/sub: 1 cycle, all others: 10 cycles

Inst and data L 1 cache 64k, 512 sets, 64 byte block size, LRU, 1 cycle latency

Inst and data L 2 cache 1M, 8192 sets, 64 byte block size, LRU, 6 cycle latency

Branch predictor Bimodal, 1024 entries

Table4.3. Simulation parameters
4.3. Simulating Perceptrons

Perceptrons are implemented in this dissertation in files myvpred.c and
mycritical.c. Perceptrons are separately implemented for each of the value predictors and
criticality predictors, however, most of them share the same training function
train_perceptron_weight to implement the training procedures to train an individual
weight. All perceptron implementations consist of three functions. at get_function, a
train_ function, and an initialize_ function.

Theinitialize_function isrun at the beginning of simulation. It dynamically
allocates storage for the perceptron weights for each entry of the perceptron table and
initializes each weight to 0.

The get_ function is run when a prediction must be obtained, typically at fetch or

dispatch. It inputs the global history to the perceptron, performs the dot product and
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threshold, and returns adecision. The function also stores the global history in the table
entry alongside the weights so that it can be used in training.

Thetrain_function isrun as soon as the information is available to train, which is
at execution for value prediction and commit for criticality prediction. It first compares
tags to ensure that the prediction table entry isvalid. Next it obtains the prediction by
reproducing the predictioninget . Third it callstrain_perceptron_weight using the input,
pointer to the weight, prediction, and correct value. Fourth it updates the global history
by caling update global history table with the correct value. This function insertsthe
value into the history according to the anti-interference approach, either by shifting the
correct value into the history register, or by assigning it alocation in the history register
based on itsinstruction address. Finally, train_ updates accuracy statistics so that the
approach can be evaluated.

The following is the pseudocode for obtaining a prediction:

[ —

. table_entry = (PC >> 3) MOD table size

2. sum=0

3. fori=1tohistory size

4. if global_history[i] = 1 then

5. sum=sum + table[table_entry].weight[i] * 1
6. €else

7. sum=sum + table[table_entry].weight[i] * -1
8. sum = sum + table[table_entry].weight[BIAS] * 1
9. if sum > 0 then

10. returnl
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11. else

12. returnO

The following is the pseudocode for training the predictor using training-by-error:

1. table_entry = (PC >> 3) MOD table size

N

if predicted =0 AND actual =1

3. eror=1

N

. elseif predicted = 1 AND actual =0

5. eror=-1

6. else

7. eror=0

8. fori=1tohistory size

9. ifinput[i] = 1then

10. tableftable entry].weight[i] += error
11. ese

12. tableftable entry].weight[i] -= error

13. tableftable_entry].weight[BIAS] += error

The following is the pseudocode for training using training-by-correlation:
1. table entry = (PC >> 3) MOD table size

2. theta=1.93* history_size+ 14

3. for | =1tohistory size

4. if input[i] = actual then
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5. table[table_entry].weight[i] +=1

6. if table[table_entry].weight[i] > theta then

7. tableftable_entry].weight[i] = theta

8. dse

9. tableftable entry].weight[i] -=1

10. if tableftable _entry].weight[i] < -thetathen
11.  tableftable_entry].weight[i] = -theta

12. if actual = 1 then

13. tableftable entry].weight[BIAS] +=1

14. if tableftable_entry].weight[BIAS] > thetathen
15. tableftable entry].weight[BIAS] = theta

16. else

17. tableftable entry].weight[BIAS] -=1

18. if table[table_entry].weight[BIAS] < -theta then

19. tableftable entry].weight[BIAS] = -theta
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Chapter 5. Value Prediction

5.1. Introduction

In this chapter | will look at using perceptrons to improve the accuracy of data
value prediction. Value prediction was proposed nearly ten years ago as a way of
speculatively removing data dependencies in superscalar processors. A value
predictor allows instructions that are dependent on the result of along latency
instruction to execute by guessing the outcome of that instruction and feeding that
guess to dependent instructions. These dependent instructions can then execute
simultaneously with their parent. The guessis, of course, verified when the parent
instruction finishes execution. If the guessis correct, the dependent instructions are
permitted to commit; otherwise, they must be executed again.

Accurate value prediction may be counter-intuitive, considering the quantity
of different possible values that could be produced. However, prediction is possible
because data values used by programs often follow easily discernable patterns. Prior
research has demonstrated the existence of value locality, or the reuse of data values
in aprogram. In general, a given section of atypical program has a small quantity of
datavaluesthat it reuses over and over again [Lip96]. Value predictors focus on
observing patterns in this value reuse to guess the data value that will be produced by
agiven instruction.

The original work in value prediction was focused solely on predicting the
results of load instructions, particularly those that are undergoing a cache miss
[Lip96_2]. With memory latencies ever increasing, load value predictors remain

attractive. Subsequent work extended the research to predicting the results of any
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long latency instruction, such as floating point arithmetic, multiplication, and
division, which can be valuable for computation-intensive programs [Lip96]. More
recent work has extended val ue prediction research to multithreaded or
multiprocessor architectures [Mar99, Tuc05].

While data value prediction has attracted afair amount of research, it has yet
to be widely implemented in actual processors. There are two reasons that are most
likely to be responsible for this. Thefirst isthat value predictors that have been
proposed so far that are feasible to implement typically have fairly poor accuracy
rates, ranging broadly from 30 to 80%, depending on the benchmark and processor
characteristics. The second reason isthat it is difficult to reexecute dependent
instructions without high performance penalties. A highly accurate value predictor
might be able to withstand high misprediction cycle penalties, while agood
misprediction recovery method might be able to allow alow accuracy value predictor
to produce performance gains. However, the combination of these two problems
presently hinders the actual construction of value predictors.

Thereis, however, hope for value prediction. Previously proposed value
prediction strategies have typically captured only a part of the existing value locality.
Traditional table-based predictors have difficulty observing value patterns stretching
globally between instructions, without becoming too massive to be implementable.
Alternative value prediction strategies have already shown themselves to have higher
prediction accuracy rates than the table-based approaches. However, in many cases
these strategies are either themselves impractical, or capture only part of the global

value locality.
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There are severa reasons why | choose to apply perceptrons to value
prediction in this dissertation. First, perceptrons can capture global value correlations
that a table-based predictor cannot capture, allowing potentially greater prediction
accuracy. Later inthis chapter, | will explore the reasons why thisis the case.
Second, value prediction has several characteristics in common with branch
prediction that make a similar perceptron approach promising: prediction times must
be low latency, predictions are made by instruction requiring a per-address
framework, some past values correlate while others do not, and so on. Third, value
prediction requires the learning of correlations between whole data values, instead of
correlations between individual binary decisions. The perceptron model used in
branch prediction consequently cannot be directly applied to value prediction. Thusa
novel approach isrequired, giving further insights into the perceptron.

In this chapter | will present four basic perceptron approaches to value
prediction. Thefirst approach is alocal approach that makes a prediction using
information solely from previous instances of the instruction under prediction. This
approach directly replaces the previous table-based approaches. The second approach
uses global information to predict alocal value; it can only predict avalue previously
seen locally, but it uses information from other instructions to choose that value. The
third approach uses both global information and global past valuesto make a
prediction. The fourth approach is a bitwise prediction approach that does not
explicitly predict a past data value. Instead it tries to detect correlations between

individual bits of past data values to potentially predict new data values.
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5.2. Value Prediction Background

5.2.1. Groundwork and Local Predictors
The pioneering work in value prediction was done largely by Mikko Lipasti

[Lip96, Lip96_2]. These papers respectively cover the prediction of load instructions
and the prediction of all data producing instructions. The papers were not primarily
focused on producing a viable prediction framework. Rather, the papers focused on
quantifying value locality between instructions, and arguing the merits of creating a
predictor to break the data dependencies.

Sazeides and Smith authored the first highly significant follow-up work
[Saz97_2]. Thiswork examined actual value prediction strategies. The authors broke
value prediction strategies into two broad categories: context-based predictors which
predict data values that have been seen before, and arithmetic predictors which detect
mathematical sequencesin past data, applying a mathematical function to past data
values to produce potentially new data values. They proposed two very general
prediction strategies, one for each category.

The arithmetic predictor proposed was the local stride predictor. This
predictor uses the difference between the last two data values produced by a static
instruction to compute astride. This stride is then added to the last data value to
make aprediction. The stride predictor is thus able to detect monotonically
increasing or decreasing patterns over repeated instances of an instruction. It is easy
to see why such a predictor would be powerful. The typical for-loop iterator, for
example, isincremented by 1 each iteration of the loop. Consequently, each

instruction producing that iterator could be predicted by a stride predictor.
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Additionally, the stride predictor can predict that trivial but all-too-common case
where a particular instruction produces the same value on every iteration. Subsequent
major value prediction works have never explored arithmetic prediction strategies
beyond the smple stride. The reason is simple: no non-stride arithmetic pattern is
sufficiently common in typical programsto justify a more advanced arithmetic
predictor.

Of more interest in thiswork is Sazeides and Smith’s context-based predictor,
clearly inspired by the successful two-level branch predictor. Their approachis
simplein theory but less so in implementation. Their two-level context-based
predictor keeps track of the local value history: the past values produced, per-
instruction. When a prediction must be made for a given instruction, these local past
values, or some subset of them, is hashed, and the hash is used to index a pattern
table. This pattern table entry holds the last value seen for that hash, which is put
forth as the prediction. Discounting the effects of aliasing (which must be significant
for any conceivable practical implementation), the context-based predictor can learn
any repeating local value pattern.

A subsequent paper by Wang and Franklin proposed a more well-specified
value predictor [Wan97]. Itisahybrid predictor that combines a variation on the
Sazeides and Smith context-based predictor with a stride predictor. This paper is
highly significant for several reasons. Firgt, it isthefirst paper to propose a hybrid
arithmetic / context-based predictor. Second, and much more importantly, it isthe
first to propose a well-defined, reproducible, feasible context-based value prediction

strategy. Theresult isthat this predictor has been informally adopted as the de-facto
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baseline predictor in most subsequent value prediction research. Some later papers
have claimed more accurate predictors, but none have been as widely adopted for use
in research comparisons. | will go into more detail on this predictor later in the

chapter, and discussiits strengths and weaknesses.

5.2.2. Global Predictors
The chief weakness of the above prediction strategiesis that they are limited

to predicting from the local value history, and disregard the correlations that can be
made globally between the values produced by different static instructions. A few
notable works have attempted to look at global value prediction.

The first was a paper by Nakra, Gupta, and Soffa[Nak99]. Among the
contributions of thiswork was a value predictor that attempted to apply the context-
based predictor framework globally. The predictor was only meant as a theoretical
study, and the authors admitted that it is not a practical predictor.

A paper by Zhou, Flanagan, and Conte [Zho03] proposed a global stride
predictor that detected strides between the values produced by past dynamic
instructions. Despite some hardware complexity, the authors claimed that their
predictor was able to achieve high accuracy rates of between 35% and 80%,
especially when compared to the local stride predictor.

A study by Thomas and Franklin [ThoO1_2] into the reasons behind the limits
of local prediction strategies resulted in an innovative path-based predictor. The
authors used a unique index generated from the dependence history of the target

instruction to index the pattern history table. This predictor could consequently
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capture local value patterns that were previously unpredictable due to unpredictable

control flow changes.

5.2.3. Simulating Value Prediction

A weakness of much past value prediction research is the fact that few authors
actually tested their value prediction strategies on a cycle-accurate simulator.
Typicaly, value prediction results were given in terms of prediction accuracy. Thisis
due to the problems of dealing with incorrect predictions.

In theory, ignoring the redlities of the pipeline, a value predictor should have a
negligible misprediction cycle penalty [Bur02]. Suppose along-latency instruction A
is followed by dependent instructions B and C. 1n a machine without value
prediction, B and C are held up in dispatch until A completes execution. The next
cycle, B and C are forwarded A’s result and may begin executing. In amachine with
value prediction, B and C may commence execution before A’s execution is
completed. If the prediction of A’sresult was incorrect, and the machine has an
“ideal” misprediction handling mechanism, B and C can be restarted in the next
cycle. Since B and C start in the same cycle whether there was no value prediction or
an incorrect prediction was made, thereis, in theideal case, a zero cycle penalty for
mispredictions. A value predictor could be simulated without worrying about the
misprediction method by simply precomputing A, which tells whether the prediction
will be accurate. If so, B and C are started immediately, if not, they are delayed for
A’sresult.

This scenario omits the fact that even the most optimistic value predictor

would need a cycle to verify that the prediction is incorrect, squash B and C, and
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reschedule them for execution. Consequently, severa value prediction papers attempt
to estimate the performance effect of their value prediction approach by simply
restarting B and C one cycle later on amisprediction. This estimate, however,

ignores the structural problems of mispredictions, their effects on branches, and other
pipeline issues.

There are really three practical ways that have been proposed for dealing with
amisprediction: ReFetch, Relssue, and ReExecute [Cal98, Bur02]. ReFetch throws
the dependent instructions and their results out of the pipeline altogether, and fetches
them again later. Inreality, all instructions subsequent to a mispredicted instruction
must be thrown out so that order is preserved in case of branch mispredictions and
traps. ReFetchisfairly straight-forward to implement, but has a high performance
cost on mispredictions. Rel ssue puts dependent instructions back in the dispatch
gueue and ReExecute gives them afunctional unit and executes them again. These,
in theory, have lower misprediction penalties. However, they are surprisingly
difficult to implement because of the problems of dealing with CPU resources that
may be used by other instructions, preserving instruction ordering, and other
concerns. ReFetch has been simulated by authors seeking realistic performance
numbers [Cal98].

When simulating a practical misprediction-handling strategy, it is common to
have a confidence estimator associated with the value predictor. The confidence
estimator isitself a speculator and guesses whether the prediction islikely to be
correct. If the confidence estimator chooses not to predict, the dependent instructions

are forced to wait for the parent to finish execution, but no misprediction penalty is
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incurred. An accurate confidence estimator can partially make up for an expensive
misprediction handling policy. A value predictor that uses ReFetch for misprediction
recovery but lacks a confidence estimator could very well reduce performance instead
of increasing it!

Confidence estimators for value prediction have been included since the topic
was first proposed and have been extant in nearly every serious proposed predictor

[Lip96]. They have been independently studied in [Bur99].

5.3. Local context-based prediction
Why predict from the local value history in the first place? Before discussing

local value predictorsin depth, it isimportant to answer this question.

The big advantage to focusing on patternsin past local valuesto make
predictionsisthat when local datavalues are predictable, they tend to be highly
predictable. Past studies have shown that the local value history for many
instructions consist of alternating values, repeating patterns, and strides, or even
simply the same value over and over again [Saz97_2]. Consequently, thereis no need
for complicated prediction schemes; a simple predictor, reproduced for each

instruction, can have high accuracies.

5.3.1. Thetwo-level hybrid predictor

5.3.1.1. How it works
As | mentioned earlier, the value predictor proposed by Wang and Franklin

[Wan97] has become the informally official value predictor used as a baselinein

subsequent value prediction studies. Consequently, it isimportant to understand how
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that predictor works and what its strengths and weaknesses are before considering
novel value prediction approaches.

A representation of the predictor isshown in Figure 5.1. This value predictor
is made of two tables (hence its name): avalue table and a pattern table. The value
table is organized per-instruction by instruction address and holds four data values for
that instruction, chosen via aleast-recently-used replacement strategy. Each data
value has atwo-bit index. Theindices of thelast four local data values are stored
and, concatenated together, form an index to the pattern table (which consequently
contains afixed 256 entries). The pattern table consists of four up-down saturating
counters, each corresponding to one of the data valuesin the value table. The highest
counter value chooses the value to predict. If no counter value exceeds a certain
threshold, no prediction is made - this acting as aform of confidence estimation. The
predictor istrained when a correct value is known by incrementing the counter value
in the pattern table corresponding to the correct value, and decrementing the other

counters.
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Figure5.1. Table-based Value Predictor

A stride predictor is added on by storing alast value, and a stride between the
last two static values in each value table entry. The stride is accompanied by its own
confidence estimating up-down counter, which islater incremented if the strideis
correct and decremented otherwise. If the pattern table chooses not to predict, but the
stride counter chooses to predict, a stride prediction is made by adding the stride to
the last value. If neither the pattern table nor the stride chooses to predict, no value

prediction is made.

5.3.1.2. What it can and cannot do

The above value predictor has several advantages. Firgt, it isreasonably small

in size, especialy the pattern table component. Second, it is able to detect any local
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repeating pattern that repeats on every fourth value or fewer. It also has a number of
limitations. Itislocal in scope, it scales exponentially, it is susceptible to aliasing.

First and foremost, the predictor isalocal predictor. Apart from the stride,
values predicted can only be from the set of values seen in previous instances of the
target instruction. Additionally, no information is used to make the prediction other
than the value patterns produced by that instruction. The data values produced by
other instructions have no effect on how the valueis chosen. | will examine the
implications and limitations of local value prediction later.

Second, the predictor isunscalable. Dramatically so. The number of different
past data values and the length of the value history are fixed at four. If the length of
the value history isincreased by one entry to five, the pattern table’ssizeis
quadrupled to 1024 entries. Additionally, with five history entries, there is the risk
that one of the past data values cannot be indexed. If the history sizeis held at four,
but an additional past value is added, the value index size must be increased to three
bits, adding four extra bits to the pattern index, and multiplying the pattern table size
by 16 to 4096 entries (it would also increase the size of each entry, but only linearly
in this case). Raising both parametersto eight would increase the pattern table size
from 256 entries to over 16 million entries, and raising to 16 would require an
inconceivably massive pattern table of 2** entries!

Third, the predictor is susceptible to aliasing in both the value table and the
pattern table. Since the value table cannot have an entry for every conceivable
instruction, only the last several bits of the address are used to index the table and a

tag field is kept to detect aliasing and reset the instruction’s entry if aliasing occurs.
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Thisrequires that the value table be kept fairly large (about 4096 entries were cited).
More problematically, the pattern table suffers from aliasing between different
instructions producing the same value index history. Although the resulting
interference need not necessarily be destructive, the use of an LRU strategy in
determining value index has the effect of making the aliasing interference potentially

chaotic.

5.3.2. Perceptron-based local context predictors

5.3.2.1. Why perceptrons?
A perceptron predictor should have at least three major potential advantages

over the table-based predictor. First, it does not suffer from exponential growth as the
history size or the number of past valuesisincreased. It can thus track repeating
patterns of more than four values without an explosion in storage space. Second, as
discussed earlier in Chapter 3, it can exclude noise from unpredictable past values and
track asingle, repeating past value. Although the table-based predictor can
eventually detect all the possible patterns, the perceptron predictor should start
predicting correctly earlier. Third, a perceptron predictor may be able to dispense
with the second-level pattern table, thus eliminating a potential source of harmful
interference. When designing a perceptron predictor, it isimportant to ensure that it
enjoys all three advantages.

This potential benefit of a perceptron local predictor is, of course, built on
several assumption about the past local data. First, if there are no repeating patterns

of more than four values, abigger history size will make no difference. Second, if a
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past value repeats but not at regular intervals, noise exclusion will not matter. Third,
if the interference in the second-level pattern table is not harmful, or is nonexistent,

removing it will not help.

5.3.2.2. Perceptronsin the Pattern Table

In a short paper in avalue prediction workshop, Thomas and Kaeli present a
two-level perceptron value predictor directly modeled after the two-level table-based
predictor [ThoO4]. Thisis, to my knowledge, the only previously published
perceptron-based value prediction approach. The work is flawed: the ssmulation
parameters are largely undefined, it is unclear how the performance modeling was
done, and the results are unexplained and fairly implausible, for reasons | will go into
below. However, it makes a good starting point for designing a perceptron-based
local context predictor.

In this approach, the two-level predictor schemeis kept intact. In each pattern
table entry, however, the counters are replaced with a perceptron modeled directly
after the perceptron branch predictor. Only two past values are stored in the value
table, and the perceptron chooses between the two past values.

| take this approach one step further, using a multibit perceptron to choose
between four values or more, allowing the perceptron approach to capture the same
history size as the table approach. A block diagram of this predictor is shown in
Figure 5.2. Predictionswork asfollows:

Like the table-based predictor, four past values are stored for each entry.

Each valueis given atwo-bit index. A Least-Recently-Used (LRU)

replacement policy is used to choose values.
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A local value history (for now, also of size four) is stored for each entry. This
history is expressed in terms of the indices.

A perceptron is chosen from the pattern table. The pattern table isindexed by
the concatenated bits of the value history, and consequently consists of 256
entries.

The value index history bits are used as inputs to the perceptron.

The perceptron output is an index, which is used to choose one of the past
values.

The perceptron is later trained with the index of the actual value. If the actual
value does not exist in the local value history, the LRU value is replaced with
the actual value, and the index of that LRU value is used to train the predictor,

it being the actual value' sindex now.

Value
History
Data Values Pattern Perceptron 0
Perceptron 1
Instruction
Address
Perceptron n
l | £
/v
_ /
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log v
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Data Value

Figure5.2: The perceptrons-in-the-pattern-table (PPT) predictor
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The problems with this two-level perceptron approach should be apparent.
First, it haslargely the same scalability issues that the previous two-level approach
had. Anincrease in the number of past values stored or in the value history size
results in the same exponential increase in the pattern table size described earlier.
Second, aliasing effects aside, the perceptron is always fed the same input. Since the
concatenated value index history is used both to select the perceptron and as input to
the perceptron, each perceptron will only ever see one input value. This
unfortunately defeats the whole purpose of having a perceptron; a counter is smaller.
The perceptron’s capability as a pattern predictor is unused.

Fortunately, there are afew potential advantages to recommend this approach.
Thefirst advantage is that alarger value index history size can be considered. While
the last four value indices are still used to choose a perceptron from the pattern table,
alonger index history can be kept and used as input to the perceptron. The growth in
thiscaseislinear, as only the perceptrons’ size, not the pattern table size, is changed.
The last four values in the history can be excluded from the perceptron input as
redundant. A problem does arise if the value history includes a value that is not one
of the four past values stored. This can be worked around by including an extrabit in
each value index history entry telling whether that entry is“valid” or “invalid.” If an
index is“invalid”, azero can be fed to the corresponding perceptron bits, eliminating
that entry from consideration.

The second advantage is that, with alarger value index history size, the

perceptron might handle pattern table aliasing better than the counter approach.
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Recall that aliasing occurs when the concatenated value index history for two
different value table entries is the same. Suppose that destructive interference occurs;
adifferent index should be predicted for two different static instructions. Further
suppose that the worst case scenario occurs, and the two instructions alternate
repeatedly. An example of this occurs when two instructions are undergoing a
repetitive sequence of five values. In the counter approach, no correct prediction can
be made on the aliased history; the counters are aways choosing the wrong value.
The perceptron, however, could correlate on the fifth most recent value and
differentiate between the two instructions.

A third advantage is simply one of size. The pattern tableissmall, with 256
entries. The value table is significantly bigger, needing at |east 4096 entries to reduce
the effects of aliasing between instruction addresses. Since a perceptron requires a
non-negligible amount of storage, putting it in the smaller table makes for amore

space and power efficient predictor.

5.3.2.3. Perceptronsin theValue Table

Clearly, ssmply replacing the counters with perceptronsis not likely to create
the best perceptron-based local predictor. An alternative approach isto eliminate the
pattern table altogether and let the perceptrons detect the patterns; after all, that is
what they are intended for in the first place. Thiswould require moving a perceptron
into each value table entry. The perceptron would take as input the past data, or at
least the indices of past data, and derive the local value pattern. For now, | will
neglect the size considerations (which are not insignificant) of having a perceptron in

each value history entry, and focus on how to maximize the prediction accuracy.
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The big question iswhat to use as input to the perceptron. A first possibility
isthe actual past values themselves. On a 32 bit machine, this would require 32
perceptrons, each requiring 32 weights per history entry. Naturally, the size
requirement would be huge. But isit worth it? There are two intuitive reasons to
reject this approach. First, local value patterns do not tend to be subtle enough for
such a complicated predictor; they tend to be easily predictable or unpredictable.
Second, for reasons | explained earlier, amultibit perceptron requires alarge value
history because of the quantity of bits that must be stored. A 32 bit perceptron
requires amassive value history. Thelocal value history istypically too short for this
approach to give accurate predictions.

A second approach is to mimic the table-based approach: a small cache of past
values could be stored, an index can be associated with each value, and the value
indices could be fed to the perceptron. The most recent value index would go to the
first input, the second most recent value index would go to the second input, and so
on. Thisissimilar to the above 32 bit scenario, except now the perceptron needs
fewer bits. Alternatively, it is aso possible to associate a perceptron multibit input
with each value, and feed to the perceptron input the order that that value appeared in
the history. However, it is not clear that this gives any advantage (if all the values
periodically repeat, the perceptron inputs will be the same).

Figure 5.3 shows my proposed perceptron local value predictor. Likethe
table-based predictor, a value cache is maintained with a LRU policy, and alocal
history stores the indices of the most recent value cache entries. A multibit

perceptron input is sourced by each history entry, and the perceptron output is an
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index of avalue cache entry. To make a prediction, the perceptron is sourced with
theindicesin the local history; it makes a prediction of a cache index, and the value at
that cache becomes the prediction. To train, theindex of the actual valuein the value
cacheisused. If the actual valueisnot in the value cache, it isinserted using the

replacement policy, assigned an index, and the perceptron is trained using that index.

Data Values

Perceptron O
Perceptron 1

Instruction
Address

Perceptron n

/Iogv

Prediction
Figure 5.3. The perceptrons-in-the-value-table (PVT) predictor
This perceptron approach is clearly capable of learning repeating value
patterns, even with the simplest multibit perceptron. If, for example, thereis athree
value repeating pattern, the weights associated with the third input will all learn a
direct correlation, and become large. The other weights will observe no correlation,
and become close to zero. The perceptron will simply predict the third value in the

history.
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Will the proposed perceptron approach outperform atable approach? It
depends on the patternsin the local value history. The table approach favors short
repeating patterns, which it can learn using less storage space than the perceptron. It
can also capture value pairs, triplets, and quadruplets reliably. It hastrouble with
regularly repeating numbers that are not part of a pattern. The perceptron, however,
favors longer patterns for two reasons. First, it handles growth better than atable.
Second, the longer the pattern, the greater chance there is of finding past bitsto

correlate with for each target bit.

5.4. Global context-based prediction
As mentioned earlier, a satisfactory global context-based value predictor has

yet to be proposed. In this section, | introduce three novel perceptron-based global
value predictors and discuss why they should intuitively perform better than local

value predictors.

5.4.1. Why global?

There are three major reasons why a global value predictor can perform better
than alocal predictor. First, aglobal predictor can take advantage of value
correlations between different static instructions to make predictions. Second, a
global predictor can predict avalue that has not yet been seen in the local history, but
has been seen in the global history. Third, asthe local history is a subset of the global
history, al the prediction information that is available to alocal predictor isalso
available to aglobal predictor, provided that the global predictor considers abig

enough past history (this third reason may not be very compelling, as the global
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history may need to be huge if it isto hold sufficient local information.) | will now

look at the first two reasons in greater depth.

5.4.1.1. ValuesAvailable Globally

There are many instances in a program where a value is always produced by
an instruction that was produced by arecent past instruction. An exampleis
illustrated in Figure 5.4. The load instruction produces the value previously saved to
memory by the store instruction, which was in turn produced by the add instruction.
Thus the add and the load always produce the same resulting value, although that
value may differ from the values produced over previous iterations of the add and
load. Thisexampleis particularly valuable to value prediction, as load instructions
undergoing a cache miss produce considerable cycle savings when correctly

predicted.

add $r6, $r1, $rl

sw $r6,400

lw $r2,400

Figure5.4. Global value propagation

Figure 5.5 shows the percentage of values that have been produced before
globally, in the last 50 dynamic instructions; locally, in the last 50 instances of the
current static instruction; both; or neither (also considered are “cold” cases where an
instruction isinitsfirst instance and has no local history). Thistrandlates directly
into the potential accuracy of avalue predictor. The most common case of values,

47% on average, are available in both the local and global history. A minority of
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values, 22% on average, are unavailable in either history. Of the remaining values, a
substantial quantity, 8%, are available only in the global history. A predictor that

neglects these values cannot reach its accuracy potential.
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Figure5.5. Previous placesthe current value has been seen
5.4.1.2. Value Correlations Available Globally

Even if only local values are predicted, the choice of which local value to use
can be made using global information. For example, the local value sequence shown
for instruction 2 in Figure 5.6 is clearly unpredictable. However, suppose a static
instruction, iterating just before the target instruction, produced the val ue sequence
shown under instruction 1. Instruction 2's predictor could use the choice of values

produced by instruction 1 to indicate which local value to predict.
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[teration | Inst; Result | Inst; Result
0 1 5
1 7 4
2 7 4
3 1 5
4 7 4
5 1 5
6 1 5

Figure5.6. Global correlationsfor local values

Do such correlations actually exist in real programs? Past research strongly
supportsthis. One example of thisis Thomas' s work [ThoO1_2] where he showed
that unpredictable value sequences often occur when two easily predictable sequences
are chaotically merged by unpredictable control flow changes. An example of this
intuition is shown in Figure 5.7. Two value sequences are unpredictably merged at
instruction 4, producing alocally unpredictable sequence at instruction. Instruction
4'svalue predictor would not be able to predict from local patterns. However, only
one of the two instructions 1 or 3 will bein 4'sglobal history. If instruction 4 usesits

global history, it can determine which local value to choose.
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Iteration | Instruction

0 beq 3

1 Iw $rl, x

2 b4

3 Iw $rl, y

4 add $r1, $r1, 6

Figure5.7. Global correlations between instructions

In asecond study, | try to approximate the frequency of global value
correlations. Inthisstudy, all static instructions that produce value-predictable results
are examined. Those static instructions that produce more than two different local
values, with two of those values appearing at least five times, are considered target
instructions for this study. Static instructions that produce only one value are omitted
for being trivially predictable, and static instructions that do not produce any value at
least five times are omitted as being unpredictable with any local context-based
predictor. Furthermore, | only consider those instances of target instructions as target
instances if they produced one of the values that was seen at least five times. Other
instances are omitted, since a context-based predictor could not be trained to capture
those instances. Table 5.1 shows the percentage of static instructions that are
considered target instructions, and the percentage of dynamic instructions that are
considered target instances. Notice that few instructions meet these criteria; the
majority of instructions produce either only one value most of the time, or produce

many different values only once or afew times.
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Y%static  |Yodynamic

bzip2  [7.64% |44.75%

gcc 2.35% (28.57%

gzip  [18.86% [75.91%

mcf 14.08% |47.28%

perlbmk |0.04% |4.75%

twolf 9.05% |46.32%

vortex (1.57% (17.82%

vpr 0.83% |40.65%

Table5.1: Percentage of instructionsthat repeatedly produce the same 2 values

A true (100%) correlation exists for atarget instruction and a past instruction
if there is a one-to-one mapping between each value produced by the target
instruction during atarget instance and the value produced by that past instruction
during the same instance. That isto say, if the target instruction produces three
different values X, Y, and Z, the past instruction will produce avalue A each time the
target produces X, a different value B each time the target produces Y, and another
value C each time the target produces Z.

Sincethisisavery high standard, | also look at 90% correlations. A 90%
correlation existsif the correlation holds on 90% of the target instances. These
correlations are important to look at because 90% is an exceptionally high prediction
accuracy for avalue predictor.

Table 5.2 shows the results of this study. It shows the percentage of all target

instances that are part of atarget instruction which has a correlation within the last 50
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instructions. It aso shows how many instructions have a single value (occurring
more than five times) correlated 100% with a past value. Perfect value correlations
between past global instructions appear to be fairly rare. However, partia global

correl ations between one or some of the values tends to be more common.

100% 90% 100% on one value
bzip2 7.79% 20.78% 48.70%
gcc 5.38% 12.14% 46.72%
gzip 3.73% 12.67% [29.06%
mcf 2.95% 3.30% [24.09%

perlbmk 6.12% 8.90% [56.64%

twolf 5.60% 5.68% [36.51%

vortex 21.31% 29.98% [57.27%

vpr 2.61% 6.76% [22.32%

Table5.2. Percentage of instructions globally correlated with a past instruction
5.4.2. Perceptron Global-based L ocal

Thefirst perceptron global predictor | proposeisa“Global-Local predictor”
that uses global value correlations to choose alocal past value. It keeps arecord of
the past values produced globally by value-predictable instructions. It then uses
perceptrons to detect correlations between these past values and the values produced
locally. Although this predictor is limited to predicting only values seen before
locally, it can use global correlations to decipher patterns that could not be predicted

solely from the local value history.
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The organization of the predictor isvery similar to the PVT perceptron local
predictor mentioned earlier, and is shown in Figure 5.8. The predictor has, per
instruction address, a small value cache and a multibit perceptron. The output of the
perceptron is used to choose a value from the local value cache. Unlike the local
predictor, however, the inputs of the perceptron are fed from a global value index
history, with amultibit input for each entry in that history. The global value index
history is ssimply a shift register. When avalue is actually produced by avalue-
predictable instruction, that value' sindex, local to that instruction, is shifted into the
global value index history. Thus the global value index history does not actually
contain values, but indices to values; the index for each value being determined by its

producing instruction’ s local value cache.

Correct

Data Value
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Figure5.8. Global-L ocal Predictor
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There are two important reasons why correl ations are made with the local
value indices rather than the values themselves. The first reason is because the
predictor issmaller. If the entire value were used to correlate, each multibit input will
need a bit for each bit in the value; in this case, the input will only need a bit for each
bit in theindex. The second reason is because it makes no difference to the
perceptron. A perceptron can just as easily learn correlations between value indices
asit can between values; in fact, with fewer bitsto correlate, it can learn even better.
It isnot even a problem if two past static instructions assign the same index to two
different values, aslong as the instructions always send their values to the same
perceptron inputs each iteration (1 will discuss whether thisis agood assumption
later).

There are two mgjor design parametersto this Global-Local predictor, apart
from the multibit perceptron implementation details. Thefirst isthe global value
history size, and the second isthe local value cache size. The effect of each
parameter on the physical sizeis discussed in 5.6.4.

The global value history size determines the size of the global value index
history and the size of the perceptrons. Both sizes grow linearly with the global value
history size; a one-entry increase means that the global value index history must hold
another value index, and each perceptron will need another set of weightsto handle
another multibit input. Asdiscussed in Chapter 3, an increase in the global value
history size will have a couple positive effects on the perceptron accuracies. First,
there will be more past values to correlate with, which increases the chance of finding

good correlations in general. Second, given more correlating past values, a multibit
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perceptron is more likely to find a correlation for each bit, allowing the perceptron to
fully learn the correlation. On the other hand, more past values means more
uncorrelated past values as well, resulting in more noise.

Thelocal value cache size determines the global value index history size and
the number of perceptron weights. In this case, both sizes grow logarithmically with
the local value cache size (depending, of course, on the multibit perceptron
implementation). Additionally, the local value cache itself must increase, creating an
overall linear value cache growth with increased size. Thelocal value cache must be
big enough to hold most or al of the different values repeatedly produced by each
value-predictable static instruction. If the cache istoo small, the perceptron may not
be able to predict the correct value dueto it not having alocal entry. Thereisno
purpose in making the cache size too big, however. Once the value cache holds all of

the repeating local values, there is nothing gained by it holding anything more.

5.4.3. Perceptron Global-based Global
As asecond global approach, | make the local value cache global. | refer to

this approach as the “ Global-Global predictor.” Making the value cache global
potentially reduces the size of the overall predictor, and makesiit possible for the
predictor to predict values that have not been seen before locally.

The Global-Global predictor is depicted in Figure 5.9. The perceptrons,
global value index history, and value table all function identically to the Global-Local
predictor, with one major exception. Instead of having a value cache for each value

table entry, the predictor maintains a single value cache. The indices shifted in the
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global value index history, and the indices produced by the perceptrons, are the index

of valuesin this global value cache.

Correct
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Perceptron 1
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Perceptron n
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Figure5.9. Global-Global Predictor

There are two advantages to making the value cache global. First, individual
value table entries no longer need to hold alocal value cache. This reducesthe
overall size of the predictor, and improves the predictor’ s flexibility. Second, the
perceptron is no longer absolutely restricted to predicting local values. Thus, itis
technically possible (though not necessarily likely), that the perceptron could
correctly predict avalue that has not been seen before locally, but has been observed
globally. There are also afew disadvantages to making the value cache global. First,

since the global value cache must hold more entries than any of the local value
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caches, the number of bitsin the value indicesincrease. Second, an untrained (or
untrainable) perceptron isless likely to make lucky guesses with a global value cache
than with alocal value cache. Third, because of the larger cache size, value
replacement becomes a bigger issue. | will explore each of these advantages and

disadvantages in greater depth.

5.4.3.1. Global-Global Advantages

The first advantage of a global value cacheisthat it necessarily contains fewer
entries than the total space consumed by the local value caches. The intuition behind
thisissimple. Aswas shown earlier, many different static instructions produce the
same values, either by accident, or because avalue is passed around through several
instructions. In aprediction system consisting of local value caches, many values are
stored redundantly in several value table entries. With a global value cache, however,
no data value is stored more than once.

A related advantage to thisisflexibility. Some instructions produce alarge
quantity of different values, exhausting their local value caches. Other instructions
produce a small quantity of different values, or just asingle value, wasting their local
value cache space. If thelocal value cache size is made too small, those instructions
that produce many different values become unpredictable; if it is made too big, value
cache space iswasted. With aglobal value cache, no value storage space is wasted
on the single-value instructions, yet those instructions that produce many different
values are still predictable.

The second advantage isthat it is now possible that a perceptron could predict

avalue that has been seen globally but not locally. However, thisis unfortunately
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unlikely to happen. The reason for thisisthat the perceptrons are still organized per-
address. Because al thetraining dataislocal, a perceptron can only predict avalue

unseen locally by accident.

5.4.3.2. Global-Global Disadvantages
The biggest disadvantage in making the value cache global comes from the

increase in the number of bits needed to represent the value indices. Thisincreaseis
necessary, as the global value cache must be bigger than any individual local value
cache. However, it resultsin anincrease in size of all the perceptrons in the predictor
linear with the growth of the index size.

Thetotal size of the Global-Global predictor, given the assumptions made
earlier with the Global-Local predictor, is 8htlogv+32v+hlogv, where h is the history
size, visthe value cache size, and t is the perceptron table size. Thisis explained
further in 5.6.4. The Global-Local sizeis 32vit+8htlogvi+hlogv;, where v, isthe local
value cache size. For ah of 32, at of 4096, and av; of 32 (the default values used in
simulation) the Global-Global predictor is approximately the same size as the Global -
Local predictor when the value cache size v holds 512 entries.

A second disadvantage with a global value cache is that an untrained
perceptron isless likely to accidentally guess the correct value. Since thereissuch a
high probability that alocal value will be produced again, smply guessing any past
local value has a high chance of being correct. Inalocal predictor, a perceptron
associated with an instruction that is always producing the same value will make
correct predictions by default, since there are no alternative values to predict. A

perceptron choosing randomly from alarger global pool, however, is unlikely to
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accidentally choose alocal value at all, much less the correct value. This
disadvantage, however, is not likely to be a concern if a confidence estimator is used
with the value predictor. In general, for these perceptron approaches, it is unwise to
blindly accept the perceptron’s output until the perceptron isfully trained. Random
guesses, lucky or unlucky, are best ignored if accuracy is a concern.

A third issue is the replacement policy for the Global-Global predictor. Recall
that the Global-Local predictor and the local predictors used an LRU replacement
policy. There are two problems with using LRU with aglobal value cache. Thefirst
problem is complexity. In the previous cases, the LRU policy could be easily
implemented by associating a small counter with each value, and when accessing a
value, incrementing the counters for all the other values whose count is smaller than
the accessed value' s counter. Thisis easily implemented with 4 values, but less so
with 1024 values, ssimply because of the latencies involved.

The second problem with LRU isthat it is not necessarily the best
replacement policy for aglobal value cache. Consider, for example, afrequently-
running static instruction that produces stride sequences. Because that instruction
produces alarge quantity of different values and runs frequently, it fills up alot of
space in the global value cache. However, since stride sequences cannot be captured
with a context-based predictor, that instruction is neither predictable nor can be used
to correlate with another instructions. Its values are effectively wasted space in the
value cache. A more effective policy might be aleast-frequently-used (LFU) policy

that retains values that are produced repeatedly or in many instructions. However,
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some sort of aging mechanism would be needed to clean out old values that are no

longer being produced.

5.4.4. Perceptron Bitwise
The third perceptron approach that | propose isto eliminate the value cache

altogether and let the perceptrons directly predict the datavalues. Although thisruns
the risk of making the predictor size huge, it offers several advantages that make it
potentially the most accurate of the perceptron value predictors.

The bitwise approach is shown in Figure 5.10. A global value history holds
the actual past dynamic values. A single multibit perceptron is associated with every
instruction, and has a multibit input for each of the past values, up to a certain value

history size. The multibit perceptron output is used as the predicted value.
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Figure5.10. Bitwise Predictor
| will first address the glaring issue with this approach. The perceptrons are
large. Each perceptron input isno longer a2 or 3 bit local index, or even a9 or 10 bit

global index, but a 32 bit value. However, the predictor does not need to store any
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past values. The predictor size, with the assumptions stated before, isalittle over
AMB, aswill be derived in 5.6.4., which is dlightly bigger than the other predictors.
That stated, there are a couple advantages to this bitwise approach. First, al
the disadvantages associated with having a value cache, such as storage and a
replacement policy, are no longer aproblem. Second, without confining the
perceptron to predicting only values seen before, the perceptron could conceivably
predict new values, much like an arithmetic predictor. Later, when | simulate the
behavior of a perceptron bitwise predictor, it will be shown that the predictor actually

does occasionally predict previously unproduced values.

5.5. Value Prediction Implementation Details

Before looking at simulation results, it is necessary to describe how value
prediction is actually simulated. In fact, actually simulating value prediction brings
up some design issues unrelated to the actual value prediction method used. One of
these, how to handle misprediction recovery, was mentioned earlier. In this section |
will describe how simulation is performed, and describe two issues that arise when

implementing value prediction in simulation.

5.5.1. Simulating Value Predictors

Earlier in Chapter 4, | described my processor simulator and how it works.
The value prediction strategies mentioned above are al simulated as an add-on to the
simulator and implemented in the file myvpred.c.

Value prediction is ssmulated cycle accurately. That isto say, value

predictions are made at the point that an instruction is dispatched, subsequent data
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dependent instructions are executed with the speculative values, and mispredictions
are detected and squashed after the original instruction finishes execution using a
ReFetch strategy. The interface between the out-of-order simulator and the value
predictor isimplemented through three function calls to the value predictor:
get_value_prediction, which takes the instruction address and returns a predicted
value; get_value prediction_confidence, which takes the instruction address and
returns adecision to “use” or “don’t use” the value; and train_value_predictor, which
takes the instruction address, the predicted value, the actua value, and the confidence
decision.

The prediction simulation is performed as follows. When an instruction is
dispatched to areservation station, and data dependencies are looked up for register
renaming, if the instruction consumes a value produced by an instruction that is still
executing, for which avalue prediction has been made, that predicted valueis
forwarded to the newly dispatched instruction. Also at dispatch, if theinstructionis
an integer arithmetic instruction or aload instruction that produces a single output
value (thisincludes Iw, but excludes dlw), the value predictor is called to make a
prediction for the output value of the instruction. This predicted valueis stored in a
field in the instruction’ s reservation station. At the same time, a value prediction
confidence estimator is called, and itsresult is also stored in the instruction’s
reservation station. If the confidence estimator flags the instruction as “don’t use”, a
prediction is still made and stored for value prediction training purposes, but the

speculative value is not forwarded on to dependent instructions.
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The actual result is known at the execution stage, at the point that the
instruction’ s reservation station’ s busy flag is set to “ready for writeback.” At this
point, if avalue prediction is made, the value prediction isincorrect, and the
confidence estimator predicted “use”’, misprediction recovery is performed. All
subsequent instructions, whether dependent or not, are removed entirely from the
reservation stations, reorder buffer, and dispatch queue. The PC is set to point to the
instruction following the mispredicted instruction.

It may seem like overkill to squash instructions that are not data dependent on
the mispredicted instruction. However, there are severa reasons why this greatly
simplifiesthe recovery process. Firgt, if one of the data dependent instructions affects
the control flow, all subsequent instructions, while not data dependent, are
neverthel ess executed incorrectly. Second, if a data dependent instruction is squashed
while a non-data dependent subsequent instruction is not squashed, the data
dependent instruction, upon refetch, will enter the reorder buffer after the subsequent
instruction. Third, by squashing instructions indiscriminately, it is not necessary to
keep track of the data dependency graphs and other cumbersome details, nor have to
trace the dependency graphs on amisprediction. Squashing is consequently asimple,
rapid procedure, requiring no substantial extra storage, and could be easily
constructed in an actual hardware implementation.

To improve performance, a*“ prediction_used” flag is added to each
reservation station entry, and is set only if a data dependent instruction actually uses

the predicted value. Misprediction recovery is not performed if no subsequent
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instruction consumed the specul ative value, even if the value was predicted
incorrectly. This prevents a significant number of needless squashes.

Value predictor training is also performed in the execution stage at the same
time (in the ssimulated processor, immediately afterwards). If a prediction was made,
whether or not it was actually used, the train_value_predictor function is called with
the correct and predicted values.

When the get_value_prediction and train_value_predictor functions are called,
the function uses a command line flag to choose which value prediction strategy to
use, and calls the corresponding function for the appropriate prediction strategy. The
get_value prediction_confidence function works similarly, except that at this point it
aways returns “ use prediction.”

At get_value prediction, the value prediction is made for a given instruction.
The lower bits of the instruction address, shifted right by 3 (since instructions are 8
byteslong in the PISA architecture), is used to index the value table. A predicted
value is determined from the table entry and the value index history, and is returned.

Most of the meat of the value predictor isimplemented at
train_value prediction. Using the appropriate bits of the instruction address, the
relevant value table entry is chosen. Next the upper bits of the instruction address is
compared to atag field stored in the value table entry to detect value table dliasing. If
the tag does not match the address bits, the value table entry is cleared, as described
in more detail below. The value table entry is then trained, using the value index

history, and predicted and actual values. After training, the value index history is
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updated as described below. Finally, smulation study counters that quantify

prediction accuracy and other metrics are updated appropriately.

5.5.2. Global Value History Register
Recall that nearly all the value prediction strategies mentioned above use a

value index history (or in some cases, avalue history). In most of the above
strategies, this value index history is global, meaning that there is a single shift
register used on every prediction. Thisvalueindex history register is used both when
the prediction is made and when the predictor istrained. When the predictionis
made, the value index history is used as inputs to the perceptron. At training, the
value index history register is used to provide the input values needed to train the
perceptron. At the end of training, the register itself isupdated. All the entries are
shifted over by one place, and the index of the current training value (or the value
itself) is shifted into the first entry.

A major problem with implementing this strategy simply as stated aboveis
that the value index history may be different at training from what it was at
get_prediction. If the history has changed, the inputs to the perceptron at training are
different from the perceptron inputs when the prediction was made, and the
perceptron is consequently trained incorrectly. This change in history occurs because
training is performed on a different instruction between an instruction’s dispatch and
the completion of its execution. Asvalue prediction is performed on every
instruction with a single integer output value, such history changes happen very
frequently; too frequently, in fact, for global value prediction to produce accurate

results unless this problem is addressed.
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If the number of intervening instructions being trained between get_prediction
and train_predictor were fixed, the intuitive approach would be just to train using the
value index history shifted by afixed amount. Unfortunately, in an out-of-order
processor, the number of intervening instructions can vary greatly, even between
different iterations of a static instruction.

The most straight-forward approach, consequently, is to back up the value
index history at get_prediction and use the copy at training. There are two places that
the history can be backed up. Oneisat the valuetable entry. The other isthe
instruction’ s reorder buffer entry. For smplicity, and to preserve modularity, in these
simulations the value index history copy is stored at the value table entry. However,
in an actual implementation, placing the copy at the reorder buffer entry would be
more desirable for two reasons. First, for most processor implementations, the
reorder buffer islikely to be much smaller than the value table. Second, if two
iterations of a static instruction occur in rapid succession (it isunlikely, but possible),
or if two instructions both aliased to the same value table entry occur in rapid
succession (also unlikely for large table sizes), the value index history copy could be
overwritten with another copy beforeit is used in training.

An aternative approach would be to associate a counter with each value table
entry or reorder buffer entry, and count the number of intervening trainings. The
value index history would then be shifted over by the appropriate count at training.
While the value index history would need to be somewhat longer than what is used by
the perceptronsto fill in the gaps from shifting, storage space would not need to be

consumed from storing backup copies of the history. This challenge, of course, to
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this approach, is that it would require some logic to increment the relevant counters

on each training, and a fast shifting mechanism for the value index history.

5.6. Experimental Results

The above perceptron value predictors were evaluated on the Mysim simulator
with the benchmarks and simulator setups described in 4.2, except that the number of
instructions for the local predictorsis only 100 million / benchmark. The baseline
predictor is the table-based context-based predictor described in 5.3.1. Two baselines
are evaluated: at a history size of 4, which is smaller than the perceptron predictors,
and at a history size of 8, which islarger than the perceptron predictors. Since the
smaller baseline actually performs with slightly better accuracy, it will be used as the
primary baseline in the comparisons. Both the raw accuracy of the value predictors
and the IPC are evaluated.

Performance evaluation is performed completely cycle-accurately, with a
ReFetch squashing policy employed on mispredictions. Because of the drastic
performance degradation from ReFetch squashing, the value predictor performance
for nearly al the results below is actually worse than if no value predictor is
employed. This can be observed by comparing the IPC results here to the ones
reported under the same simulator parameters in Chapter 4. Consequently, all
performance results should be considered relative to the baseline, rather than in
absolute terms. The performance of each value predictor can be substantially
improved with avery conservative confidence estimator; however, the results below
are shown without any confidence estimation in order to show the full IPC effect of

each prediction scheme.
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5.6.1. Local Value Predictors
There are two local perceptron value predictor approaches evaluated. The

PPT approach places the perceptrons in the pattern table, replacing the counters. The
PVT approach places the perceptrons in the value table, replacing the entire pattern
table. The perceptrons use the digoint multibit topology discussed in 3.3.2.1. By
default, the perceptrons are implemented with training-by-error and linear weight
growth.

The baseline predictor cannot consider more than four different past values or
alocal history of more than four without suffering from excessive size. The PPT
approach cannot consider more than four different past values, but the local history
size can be varied as aparameter. Inthe PVT approach, both the number of past
values and the local history size can be varied as parameters.

Figures 5.11 and 5.12 compare the prediction accuracy and |PC, respectively,
for the PPT over each benchmark, for varying local history sizes. In every case, the
baseline predictor outperforms the perceptron predictor. Thisisnot surprising. As
discussed earlier, these local perceptron predictors can learn little that the baseline
predictor cannot learn, and the selection of pattern table entry means that the predictor
suffers from the same pattern table aliasing problems as the baseline. Furthermore,
the PPT predictor carries the perceptron training time overhead and learning

restrictions.
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Figures 5.13 and 5.14 compare the prediction accuracy and I|PC for the PVT
predictor at different parameters. Both the past value number and history sizes are
varied, but the past value number never exceeds the history size as this could not
result in any performance improvement. The perceptron predictor outperforms the
baseline by a modest 2.47-4.76% accuracy. While this demonstrates that the
perceptron approach is superior, at least as far as performance is concerned, it has
only avery slight advantage. There are two reasons that the perceptron predictor
considering 16 times more history performs only slightly better. Thefirst isthat the
perceptron’ s learning restrictions gives it a natural disadvantage over the table-based
approach. The second reason isthat there is only a certain amount of prediction
information available in the local history at al, and the table-based predictor largely

capturesit.
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5.6.2. Global-based L ocal Predictors
Three perceptron-based global-local value predictors are evaluated, comparing

different multibit perceptron topologies. Thefirst uses a digoint topology, the second
afully coupled topology, and the third a wei ght-per-value topology as described in
3.3.2.1,3.3.2.2, and 3.3.2.4. These global-local predictors are limited to predicting
locally available data, but use global correlations and a global history to choose the
local value. The default global history size of the predictors, and the number of past
local values stored, is 32. By default, the perceptrons use training-by-error and linear
weight-growth. Aliasing is countered in the global history using the assigned-seats
method detailed in 3.4.7.1.

Figure 5.15 shows the accuracies of the three predictors across the
benchmarks, and Figure 5.16 shows the IPC performance. On average, the digoint
perceptron approach shows an absolute accuracy increase of 3.12% and arelative
performance increase of 1.59%. Dueto its unrestrained ability to learn value
correlations, the weight-per-value approach shows an even better 10.67% accuracy
increase and 4.36% relative performance increase. Interestingly, however, the fully
coupled perceptron approach, with its superior ability to learn value correlations,

suffers a cross-benchmark accuracy decrease of 6.83% and a 1.48% |PC decrease.
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There are two interesting questions that arise from the above results. First,
why do some benchmarks, such as perlbmk, buck the trend of the other benchmarks
and show a performance decrease for the global-local predictors? Second, why does
the fully coupled approach actually show a decrease, despite its higher learning
potential ?

The poor performance of perlbmk reflects the fact that local value patterns are
very easily observed in that benchmark. Because value patterns can be easily
predicted using local patterns, it is unnecessary to look for global correlations to
obtain highly accurate results. Thisis confirmed by the high performance of the PVT
predictor on this benchmark. A hybrid global-local / local-local predictor could be a
consideration if other benchmarks followed the same trend as perlbmk.

The poor performance of the fully coupled perceptron is a consequence of it
having a lower percentage of correlated weights. Recall that this approach has 32
times more weights than the digoint perceptron on the PISA architecture. Of course,
the studies in Chapter 3 showed that the quantity of weights does not matter aslong
asthe proportion of correlated weights stays constant. However, this does not
happen, as will be explained in more detail in Chapter 7. This decreased percentage
of correlated weights makes the fully coupled perceptron more susceptible to both
weight noise and false correlations, causing a substantial performance decrease in
spite of itsincreased learning ability.

The weight-per-value value predictor has significantly more weights than the
fully couple perceptron, as the fully coupled perceptron has aweight for each of 5 bits

to handle 32 past values, while the weight-per-val ue perceptron has a weight for each
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of the 32 past values. However, it does not suffer the same performance decrease.
The reason for thisis because the predictor isimplemented so that if apast valueis
not present at a particular input, a 0 appears at that input instead of al or -1, aswas
described in 3.3.2.4. The 0 value cancels out that weight, removing that weight as a
potential source of noise or imbalance. Because only one value can appear at any
particular multibit input, only one weight is active at any time for each multibit input.
Thus the weight-per-value predictor effectively has the same number of weights as
the digoint predictor.

Figure 5.17 shows the sensitivity of the digoint perceptron global-local
predictor to changesin history size. It isno surprise that the predictor performs better
with greater history sizes, asthere is both more opportunity for correlations and more
correlated inputs for the perceptron to learn the correlations. However, history size
demonstrates diminishing returns. First, correlations are more common in recent
history than in far off history, which means that the chances of finding a correlated
weight get smaller asthe history isincreased. Second, the increase in history without
an increase in the number of correlations means a decrease in the percentage of
correlated inputs as the history size grows. Thisleadsto an increase in noise and aso

correlation problems.
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5.6.3. Global Value Predictors
Two global value predictors are evaluated below. Oneis the global-based

global predictor which uses a 1024 entry global value cache. Thisideal cache size
was determined empirically; larger global value cache sizes of 2048 and 4096
performed only negligibly better, while smaller caches of 256 and 512 performed
substantially worse. Thus for an average program it can be assumed that there are
typically 1024 data values on average that are repeatedly used at any time. A LRU
replacement strategy is used to place values in the global value cache. The global-
based global predictor isimplemented as a digoint perceptron predictor with 10 bits
(for 1024 value entries). The perceptrons employ training-by-error with linear weight
growth, and the assigned-seat interference reducing strategy is employed for the

global history.
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The second global predictor is the perceptron bitwise predictor. It also used
linear weight growth, training-by-error, and assigned seat anti-interference.

Figures 5.18 and 5.19 show the accuracy and performance for the two global
value predictors. The global-global predictor shows an average accuracy increase of
7.56% and an average relative performance increase of 6.69%. The bitwise predictor

shows a 12.67% accuracy increase and 5.28% performance increase.
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Unlike the local-local and global-local predictors, and even the global-global
predictor, the bitwise predictor is capable of producing values that have not seen
beforelocaly. Thisisbecauseit can learn correlations for each bit of the value
independently of the actual value, and can consequently produce whole values bit-by-
bit from several different bit-correlated inputs. Figure 5.20 shows the percentage of
al data values that the bitwise predictor produces that are both correct and have not
been produced before in the last 50 local history entries, and the percentage of values
that are both correct and have not been produced before either in the last 50 local
history entries or the last 50 global history entries. On average, 5.0% of the bitwise
predictor’ s guesses are correct values that have not been seen before. A further 9.8%

of the predictor’ s guesses are correct values that appear in the global history but not
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thelocal history. These correctly predicted values are unobtainable with any of the

other prediction approaches.
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Figure5.20. Correctly predicted data valuesthat have not been produced before
5.6.4. Comparing Physical Size
An important factor in adopting one predictor over another isthe physical
size. Asmentioned in Chapter 2, physical sizeis primarily determined by the storage
size needed. The factors determining this size are the number of past values stored v,
the number of perceptron table entriest, and the value history size h. It is assumed
below that 32 bits are needed for each value, and 8 bits for each perceptron weight.
The baseline predictor has two components: the value table holding each
value and the pattern table holding the counters. The value table containst entries
each consisting of v values and an index history of viogy, creating atotal size of

32tv+vtlogv bits. By design, the history size h must equal v. The pattern table has
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2"°% entries, each entry containing v counters, each counter being 2 bits. The total
storage directly relating to making predictions (thus excluding tag fields and LRU
replacement bits), comes to 32tv+vtlogv+2v2"°Y hits. If v equals 4 and t equals 4096,
this requires approximately 69.9kB of storage. Were av of 8 used, the total would be
33.7MB of storage, more than any of the perceptron approaches, and av of 16 would
need a little over 73.7* 10" bytes. Consequently a baseline with av of 16 or moreis
not considered.

The perceptron in the pattern table (PPT) predictor requires the same number
of pattern table entries. Each value table entry would need an index history of hlogv
and avalue storage of 32v. Each pattern table entry needs 8hlogv storage, assuming a
digoint perceptron approach isused. Thetota storageisthus
32tv+htlogv+8hlogv2”'°?. For av of 4 and ah of 4, little over 71.6kB isneeded. Ata
vof 4and ah of 32, 114.7kB are needed.

The perceptron in the value table (PVT) predictor contains only the value
table. Each entry requires 32v past value storage plus 8hlogv weight storage (for a
digoint approach) plus viogv local storage, making atotal size of
32vt+8htlogv+vtlogv. At v=4 and h=4, thiscomesto 102kB. At v=32 and h=32, this
requires 1.26MB.

The digoint global-local approach has a value table with local past value and
perceptrons, and a global history register. Each value table entry requires 32v past
value storage plus 8htlogv perceptron weight storage. The global history register

contains h past value indices with logv bits/index, making atotal of hlogv storage.
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Thetotal thusis 32vt+8htlogv+hlogv. At v=32 and h=32, thisrequires 1.18MB of
storage.

The fully coupled global-local approach requires 8thlogviogv for the total
weight storage. At v=32 and h=32, thisrequires 3.80MB. The weight-per-value
global-local approach requires 8thviogv for the total weight storage. 21.50MB are
required.

The digoint global-global approach has avalue table entry containing only
perceptrons, a global history register, and a global value cache. Assuming the value
cache has v entries, 32v bitsis needed to storeit. The global history register requires
hlogv storage. The value table requires 8htlogv bits, making a total of
8htlogv+32v+hlogv. Using av=1024 and h=32, 1.31MB are required.

The bitwise approach requires a perceptron width of 32 bits. No past values
are stored. The global history register requires 32h bits of storage. The value table
requires 32*8ht storage. Thetotal thusis 32h+256ht. For h=32, thisrequires

4.19MB of storage.

5.6.5. Comparing Training Procedures

The above predictors were all trained using training-by-error. Figure 5.21
shows the results for the digoint global-local predictor when using training-by-
correlations and training-by-error with exponential weight growth. In Chapter 3 it
was shown that training-by-correlations and exponential weight growth both
improved the prediction learning rate. However, as can be seen, exponential weight
growth causes a4.51% accuracy decrease on average, and training-by-correlation

causes a 4.82% accuracy decrease.
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Figure5.21. Global-L ocal accuraciesfor different training procedures

Clearly, training-by-correlations is an inferior training policy to training-by-
error for performing value prediction. Thisis surprising, considering the excellent
performance of that policy in perceptron branch prediction.

Figure 5.22 shows how the PV T predictor, with a history size of 4 and 4 past
values responds to the two training approaches. For this predictor, training-by-
correlation performs with a 0.3% higher accuracy than training-by-error. Recall that
the recent local value history tendsto be very well correlated. Aswill be shown in
Chapter 7, the global value history is poorly correlated. Earlier in Chapter 3, |
showed that training-by-correlation performs poorly if the input data is both poorly
correlated and imbalance. This limitation of training-by-correlation explain why the

approach performs well with PVT and poorly with Global-Local.
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5.6.6. Interference

Recall that global predictors can suffer from interference in the global history
table. The above approaches used the “ Assigned Seats’ interference reduction policy.
Figure 5.23 shows the effect of the different interference reduction approaches on the
digoint global-local perceptron. No interference reduction, assigned seats, and
piecewise linear are all considered. For the piecewise approach, 32 different
instructions are handled at each input (thisis clearly more than are needed, but 32 is
chosen to show the potential). On average, assigned seats performs 0.92% better than
no interference reduction, and piecewise performs 3.28% better than no interference

reduction.
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Figure5.23. Prediction accuraciesfor different interference reduction methods
Since piecewise clearly performs the best, is it the answer to interference
reduction? Not if storage cost isaconsideration. The additional storage cost
associated with assigned seats is marginal; the global history table also needs to store
theinstruction addresses. For a 32 entry table, this requires 5 bits of storage/ entry,
or an additional 20 bytes. Piecewise linear requires not only the instruction addresses
be stored, but also additional weights for each of the possible different instructions
that could appear at each input. In the above example, the entire physical sizeis
effectively multiplied by 32, with the piecewise predictor consuming over 37MB of

space.
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Chapter 6: Critical Instruction Prediction

In recent years there has been growing interest in predicting whether
individual instructions lie on the dataflow critical path. In superscalar processors
with sufficiently many functional units, the data dependencies between instructions
effectively determine the order in which instructions are executed. These data
dependencies create a dataflow graph through the code, with the latencies of
instructions forming the graph edges. The critical path is the longest route through
this dataflow graph. A critical instruction is one that lies on this critical path. The
essential characteristic of acritical instruction is that an incremental speedup in that
instruction creates a speedup overall [Tun01]. Speeding up anoncritical instruction,
on the other hand, has no effect on the overall execution time of the program.

Identifying critical instructions in advance is very useful in making other
speculation techniques more effective. Since speeding up anoncritical instruction
does not produce any benefit, resources are best allocated to speeding up only critical
instructions. An example of thisisvalue prediction. Since value prediction carries
high misprediction penalties, there is no point in taking arisk by making avalue
prediction for a noncritical instruction. Performing value prediction only on critical
instructions means that the value predictor will have the same performance increase
asit would otherwise, in theory, while reducing the number of mispredictions
[Tun01]. By the same token, noncritical instructions can be deemphasized without
performance cost. An example of thisis energy savings. A noncritical instruction
can be executed by a slower but more energy efficient functional unit without

degrading the overall CPU performance [Gov95]. This saves energy by executing
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those instructions more slowly, but does not cost time as those instructions are not on
the critical path.

A caveat, however, with thisisthat a critical instruction can be sped up only
so far until it ceases to be on the critical path and a noncritical instruction becomes
critical [Tun02]. Likewise, anoncritical instruction can be slowed down only so far
until it becomes critical and starts affecting performance. Focusing all the resources
on critical instructions while completely neglecting noncritical instructions will only
produce so much performance improvement.

An even larger problem, however, isin identifying whether an instruction is
critical in advance. The criticality of an instruction needs to be known before the
instruction is executed so that the CPU can respond appropriately. However, not only
isitimpossible to definitely say whether an instruction is critical in advance, it is not
even possible to know whether any arbitrary past instruction was critical without
running the entire program [Tun01]. Thisis because the entire dataflow graph for the
program needs to be known to know with certainty what the critical pathis. When
the program is only partially executed, part of the dataflow graph is still unknown.
This makes criticality prediction different from other forms of speculation. In branch
prediction, for example, the correct result is known after the branch instruction is
executed, and the predictor can be trained with an exact result. In criticality,
however, the correct result for a particular instruction is never known. Obtaining
training data for the criticality predictor isaproblemin itself.

Aswill be described in more depth below, a table-based criticality predictor

has been proposed and has been shown to be reasonably accurate in spite of the above
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problem. However, the table-based approach is limited in scope and suffersfor it. In
this chapter | describe how a perceptron can be used to predict instruction criticality

and propose severa perceptron-based criticality predictor approaches.

6.1. Past Work

6.1.1. Predicting Critical Behavior

The first significant work in predicting whether instructions lie on the critical
path was performed by Tune, Calder, and Tullsen [Tun01]. The authors recognize
that determining whether an instruction is critical at runtime is not easily possible.
Instead, they predict whether an instruction was critical by whether it exhibits
behavior that islikely to mean that it iscritical. The authors propose several
behaviors that would make instructions likely to be critical that are easily measurable
after an instruction completes. If an instruction exhibits any one of these behaviors, it
isconsidered critical. However, the criticality of an instruction is known only after
the instruction is executing, when it is too late to take advantage of its criticality. The
authors consequently propose a table-based prediction methodology, shown in Figure
6.1. The PC ishashed to associate an up-down saturating counter with each static
instruction. An instruction’s counter isincremented if it exhibits critical behavior,
and decremented if it doesnot. To make acriticality prediction, the counter valueis
compared to athreshold; if it exceeds the threshold it is predicted critical, otherwise it
is predicted noncritical. Intheir tests, they decided that incrementing by 8,
decrementing by 1, amaximum value of 16, and a threshold value of 8 isagood

approach. Thelarge increment is used because using the criticality information to
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change the way the CPU executes can result in critical instructions acting
noncritically. Incrementing by 8 means that an instruction once found critical will be
considered critical for the next 8 iterations.

The authors propose five criteriato indicate criticality, of which four were
found to be reasonably accurate. Criterion QOLD ismet if the instruction isthe
oldest instruction in the CPU that cannot run because it is dependent on an executing
instruction. QOLDDEP is met for any instructions that cause another instruction to
meet QOLD. ALOLD ismet if theinstruction isthe oldest executing instruction in
the machine. QCONS s met if the instruction has the most consumer instructions of
any instruction currently executing. If an instruction has met any of these four
criteria by the time it completes execution (it can often meet more than one), it is

considered critical; if it never met any of the criteria, it is considered noncritical.

QOLD QOLDDEP ALOLD QCONS
Counters Counters Counters Counters
Instruction
Address ,
Prediction

Figure 6.1. Table-based criticality predictor
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This prediction approach has some significant disadvantages but one
important advantage. The first disadvantage is that the predictor is not trained on
whether an instruction was actually critical, but on whether it exhibited behavior
likely to mean that it was critical. The second disadvantage is more significant for
this dissertation. The predictor only uses local information, the criticality of past
iterations of the static instructions, in predicting criticality. It does not use the
criticality of other global instructions. While this would not be a problem if the
criticality of a static instruction does not change, the authors found that it does; in
thelir studies, they found that 23% of instructions tend to change their criticality over
100 iterations [Tun02]. These instructions would be imperfectly predictable with
their local approach.

The big advantage to this criticality prediction approach isits simplicity.
Unlike the next approach described below, a criticality estimate can be obtained for
every instruction. Consequently, when making predictions, there is substantial

information available.

6.1.2. Predicting Criticality More Precisely
An aternative approach by Fields, Rubin, and Bodik tries to measure

criticality more exactly with atoken-passing algorithm [FieO1]. A token bit is added
to each ROB entry so as to be associated with every active instruction. The token bit
isnormally O unless the instruction possesses the token. To determine whether an
instruction i iscritical, atoken iscreated at i. Thistoken is passed to an instruction |
if j’slast operand to arrive came fromi. This models the longest edge in a dataflow

graph. If the token is not passed on and dies, this meansthat i isnot critical. If itis, it
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does not necessarily mean that i is critical; however, as time goes on and the token
continues to live, it becomes more and more likely that i is critical. The authors
propose that i be considered critical if the token survives for 500 dynamic instructions
plus every instruction in the ROB. Prediction isthen performed as above. The
criticality of an instruction is used to increment a counter associated with the static
instruction. If the counter exceeds athreshold, it is predicted critical the next time
around.

The key advantage to this approach isthat it solves the problem of the above
approach. Rather than measure whether an instruction behaves like a critical
instruction, it actually measures whether it isacritical instruction. The noncriticality
of aninstruction is known exactly. The criticality of an instruction, while not known
with absolute certainty, is known significantly more accurately than it isin the above
approach.

This approach unfortunately has two problems. First, an instruction is not
known to be critical until many cycles afterwards. This can mean that the static
instruction could reoccur several times before its criticality is known. Second, only
one instruction can be evaluated for criticality at atime. The authors stretch this by
having 8 separate tokens, allowing 8 instructions to be evaluated at once. However,
since evaluating an instruction requires an extra bit added to each ROB entry, to say
nothing of the token passing hardware, it isimpractical to measure whether every
instruction is critical. The token-passing approach is consequently best used when

the CPU wants to predict the criticality of only asmall percentage of the instructions.
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A subsequent work by Fields, Bodik, and Hill [Fie02] gave a more accurate
analysis of the criticality of an instruction. In their work, they proposed a mechanism
for measuring an instruction’s slack, or the number of cycles a noncritical instruction
can be delayed before it becomes critical and starts affecting performance. Their
work significantly builds upon the previous work for two reasons: 1) they determine
the degree to which an instruction is critical, and 2) they determine whether an
instruction is actually critical or not, rather than whether the instruction exhibits
critical behavior. While highly accurate and useful, their approach has two issues.
First, it builds upon their token-passing algorithm with all its limitations. Second,
their approach for evaluating slack requires that instructions be delayed in order to
measure their effect on performance. Delaying every instruction would hurt the CPU
performance; consequently they recommend measuring slack only on a static
instruction’ sfirst iteration. Their algorithm consequently cannot account for changes

in astatic instruction’s criticality from one iteration to the next.

6.1.3. Perceptron Criticality
The objective of the work detailed in this chapter is to build a perceptron-

based criticality predictor that outperforms the Tune, Calder, and Tullsen predictor.
Their prediction strategy had two important weaknesses. The first, which was
mentioned above, isthat it trains on criteriawhich may or may not accurately indicate
criticality, rather than training on whether an instruction is actually on the critical
path. The second isthat when predicting an instruction’s criticality, their predictor
only looked at the local information, or the criticality of past iterations of that

instruction, rather than the global information from the criticality of surrounding
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instructions. As the authors themselves found that the criticality of many static
instructions change from one iteration to the next, this scope limitation to training on
local information only limits the prediction accuracy. A perceptron predictor,
however, is not limited to local information, and should conceptually be more
accurate.

It isimportant to point out why this perceptron work is building upon the
weaker criticality predicting approach and not the more accurate approach by Fields
et al. Asmentioned previously, the more accurate approach has two core problems.
First, the token-passing approach cannot feasibly be applied to every instruction.
This means that criticality can only really be determined for selected important
instructions. Whether thisis a problem or not is determined by the application; if the
application needs to know the criticality of only a handful of instructions, thisnot a
liability. However, if an application needs to know the criticality of every instruction,
this approach isuseless. Additionally, it isunsuitable for aglobal predictor, which
relies on criticality information coming from many different instructions. Second,
because the token-passing approach can only be applied to selected instructions, the
authorsonly use it on the first iteration of a selected instruction. Thus changesin the
criticality of that instruction from one iteration to the next are completely ignored.
While the criticality of the first instance of the instruction is determined more or less
exactly, the criticality of subsequent instances are not known. Third, the token-
passing algorithm requires hundreds of cycles of evaluation per-instruction in order to
be reasonably accurate. The criticality decision is not known until long after the

instruction commits. If an instruction frequently reiterates, many iterations could go
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by before the criticality of that instruction is known. This makes dynamic prediction
lessuseful. In contrast, the approach by Tune et a, while less accurate, can be
reasonably applied to every instance of every instruction, and produces a result
immediately after the instruction commits. For a predictor that needs to know the
criticality of practically every dynamic instruction, it is a much more practical

approach.

6.2. Analysis

6.2.1. Evaluating Criticality

It is essential to know the accuracy of a predictor in order to evaluateit. A
criticality predictor being trained on critical instruction behaviors could be very good
at predicting the behaviors, while not predicting criticality very well at all.
Fortunately, although the criticality of an instruction cannot be known at runtime, it
can be accurately determined at program completion. Recall that by its definition, a
reduction in latency of acritical instruction means areduction in overall program
time. If thelatency of a particular dynamic instruction is reduced, the program is run,
and the overall program latency is also reduced, the instruction is known to be
critical. If not, the instruction was by definition not on the critical path. While this
information is uselessin training a dynamic predictor, it isuseful in determining, in
retrospect, whether that predictor was accurate.

By how much should the latency of an instruction be reduced? Recall the

effect of slack: acritical instruction can be only sped up so much before a noncritical
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instruction becomes critical. Consequently, critical instructions should not be sped
more than the smallest possible increment, or one cycle.

A criticality predictor can thus, at least in theory, be evaluated fairly smply.
Every time that it guesses an instruction is critical, that instruction’s latency is
reduced by one cycle. The program is run twice; once with criticality prediction and
once without. The quantity of instructions sped times one cycle each gives the
overall predicted criticality. The decrease in the number of cycles between the
program run without criticality prediction and the one with criticality prediction tells
how much of that predicted criticality was genuinely critical. Dividing this by the
predicted criticality tells the overall accuracy of the predictor for that program.

From a practical standpoint, it is not necessarily easy to reduce an
instruction’ s latency in simulation, especially for instructions that require only one
cycle to execute. One way to deal with thisisto increase every instruction’s
execution latency by one cycle across the board. From a graph theoretic point of
view, thiswill have no effect on the critical path [Fie0l]. Instructions predicted
critical are simply sped back to their original latencies. Thisisequivaent to

increasing the latencies of all instructions predicted noncritical by one cycle each.

6.2.2. TheCritical Behavior Criteria
The perceptron criticality predictors that | will propose use the four critical

behavior criteria defined by Tune, Calder, and Tullsen to train the predictor: QOLD,
QOLDDEP, ALOLD, and QCONS. There are severa assumptions that must be
made about these criteria. First, they are assumed to be reasonably accurate

indicators of instruction criticality. Second, it is assumed that these criteria must be
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predicted; they cannot be instantly known when the instruction is fetched. Third, it
must be possible to determine when an instruction commits whether it met any of the
criteriaor not. Fourth, it isassumed that an instruction could meet a criterion on one
iteration and not on another; otherwise, criticality would only need to be evaluated
once for each static instruction. Fifth, it is assumed that there are correlations
between the criticality of nearby global instructions. If these assumptions are not
valid, thereislittle point in creating a global predictor to predict these criteria.

From an intuitive standpoint, it is easy to see why an instruction that meets
any of the criteriaislikely to be critical. A QOLD instruction, one that becomes the
oldest instruction still waiting on a dependency, has the longest latency outgoing
edges on the dependency graph of all not-yet-executing instructions. While the
longest edges on a graph need not necessarily lie on the critical path, chances are that
they do. If aQOLD instruction is critical, so must be at least one of the instructions
that sourced it. A QOLDDEP instruction, or a still-active instruction that sources a
QOLD instruction, must lie on the critical path if the QOLD instruction is critical,
because it isthe instruction that the QOLD instruction is waiting on to execute. An
ALOLD instruction, the oldest still-executing instruction, is likely to be critical for
the same reason that the QOLD instruction is likely to be critical, asit has the longest
latency outgoing edges of any instruction in the processor. ALOLD also captures
those instructions with long execution latencies, such as floating point instructions
and some loads and stores, which QOLD does not capture. The case for a QCONS

instruction, the instruction with the largest number of directly consuming instructions,
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is somewhat weaker, but from an intuitive standpoint the more outgoing edges an
instruction has, the more likely it is that one of those edges lies on the critical path.

The second and third assumptions are clearly true by just looking at the
criteria. An instruction can be evaluated as to whether it meets each criterion before
the instruction completes writeback. QOLD is known before the instruction issues to
afunctional unit, ALOLD and QCONS are known while an instruction is executing,
QOLDDEP is known before an instruction finishes execution. It cannot be
determined conclusively at fetch, however, whether an instruction meets any of these
criteria. QOLD and ALOLD depend on how quickly preceding instructions execute;
these instruction may not even yet be executing. QOLDDEP cannot be known until a
subsequent instruction meets QOLD. While QCONS may be guessed at looking
ahead at the code, it is not known for certain which instructions will follow because
of control flow uncertainty. Thus each criterion must be predicted.

The actual correlation between each criterion and criticality is evaluated in
Table 6.1 as averaged across al eight benchmarks. An extracycle is added to the
normal execution latency of every instruction. If aninstruction is marked with the
appropriate criterion before or while it is executing, its execution latency is reduced
by one cycle. Inthe ANY case, instructions marked with any criterion are sped up by
acycle. The table shows the percentage of instructions marked with each criterion.
Because QOLDDEP, ALOLD, and QCONS may be identified in the last cycle of
execution, some marked instructions cannot be sped up in time. The percentage of
instructions that were marked but not evaluated are also shown in the table; this

shows the level of uncertainty in the evaluation of these criteria
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Two additional runs are performed for each benchmark. The first run runs
each instruction at normal latency. This, IPCone, is considered the IPC when every
instruction is treated as critical and sped up. The second run runs each instruction
with an extracycle latency. This, IPCy, is considered the IPC when no instruction is
treated as critical. Using these two IPCs, the expected IPC is determined for each
criterion when each instruction marked for that criterion is sped up one cycle. In
theory, if a criterion perfectly indicates the criticality of an instruction, the percentage
of instructions marked by that instruction, times one cycle saved for each instruction,
should equal the percentage increasein IPC. The expected relative IPC is calculated
as Yomarked * (IPCone-| PCa1) / IPCy). The actual relative IPC is what was actually
observed when every marked instruction is sped up by one cycle, divided by IPCy;.

The error is the absolute difference between them.

%should
have been
%marked|marked Expected IPC |Actual IPC |[Error

AOLD 8.78% 15.47% 104.31%| 111.31% 7.00%
QCONS 18.49% 3.24% 104.94%| 106.62% 2.68%
QOLD 39.93% 0.00% 110.28%| 118.87% 8.58%
QOLDDEP| 16.01% 4.63% 105.16%| 111.02% 6.35%
Any 54.69% 3.47% 114.27%| 125.69%| 11.42%

Table6.1. Correlation of each criterion with actual criticality

6.2.3. Global Correlations

Clearly if many instructions change whether they meet criteriafrom one
iteration to the next, the local history is not an ideal source for predicting criticality.
The alternative isthe global history. The question now is whether there are

correlations between whether nearby global instructions meet each criterion.
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Is there an intuitive reason to believe that the criteria-meeting of one
instruction correlates with the criteriasmeeting of alater instruction? This depends on
why an instruction meets a criterion once and does not meet it later. QOLD depends
on the execution order of prior instructions. Changesin this order occurs largely
from control flow changes. QOLDDEP depends on QOLD, so it changes for the
same reasons. ALOLD depends on the execution ordering of prior instructions and
on the latency of the instruction itself. The primary case of an instruction’s execution
latency changing is a memory instruction undergoing a cache miss. Changesin
QCONS depends on which instruction follow; this changes on control flow.

Intuitively a program could have two or more alternative critical paths through
a section of static code which change due to control flow. The order in which later
instructions are executed depend largely on the order in which earlier instructions are
executed. If the criteria are good indicators of criticality, whether an earlier
instruction is marked for a criterion should be a good indication of whether alater

instruction should be marked.

6.3. Perceptron Predictor Configurations
My basic perceptron criticality predictor is organized per-address like the

perceptron branch predictor. A table of perceptronsis addressed by the lower bits of
the instruction address. A global history, with four bits per past instruction, tells
whether each past global instruction met each criterion. A single output tells whether
the instruction isto be predicted as critical.

It is expected that predictions will need to be made before the most recent past

global instructions are marked. Additionally, some past instructions may have a
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marking available on some criteria but not others (for example, QOLD is known
before ALOLD). Consequently, the global history includes four more bits telling, for
each criterion, whether information is yet available for that instruction.

What differs between my perceptron approaches is how the different criteria
are used. Below | propose three perceptron predictors. The first approach uses
separate perceptrons to predict each individual criterion and combines the results.
The second approach has a single perceptron that combines the criteria at the input.

The third approach has a single perceptron with an input for each criterion.

6.3.1. A Perceptron For Each Criterion (PEC)
Figure 6.2 shows the first predictor approach. Each table entry has four

separate perceptrons: one for each criterion. Each perceptron is sourced only by its
respective criterion; thus the QOLD perceptron would have as each of itsinputs
whether each past global instruction was marked as QOLD. An instruction is marked
ascritical if the quantity of perceptrons producing an output of 1 meets or exceeds a
fixed threshold. For simplicity, athreshold of 1 is assumed unless otherwise stated,;
an instruction is predicted critical if any perceptron predicts acriterion. There are
two possible training strategies. In PEC_EACH, training is performed by criterion.
Each perceptron is trained based on the presence of its own criterion. In PEC_OR,
the actual result of whether any criterion was met (the OR of the observed criteria) is

used to train every perceptron.
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Perceptron n

QCONS
Perceptron n
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Figure 6.2: Perceptron for each criterion (PEC) criticality predictor

This approach is the closest perceptron analogue to the Tune et a’ s counter-
based approach. It assumes that the four criteria correlate differently from each other,
so that it is best to have separate predictors for each one. This has a particular
advantage in biasing. Because the criteria appear with different frequency, each
needs its own bias to balance the predictor. Having a separate bias weight for each
criterion means that the predictor is likely to be better tuned for that criterion.

The key downside to this approach is that some of the criteria occur on
significantly fewer than 50% of the instructions. Having a perceptron for each

criterion means that the quantity of negative inputs will greatly exceed the quantity of
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positive inputs, making for an imbalanced predictor. A second problem isthat by
giving each criterion its own perceptron, no perceptron can learn correlations between

criteria.

6.3.2. A Single Perceptron (SP)

An aternative approach, which compensates for the balancing problem, isto
combine the criteria at the input rather than the output. This configuration is shown
in Figure 6.3. In this approach, a single perceptron determines whether the
instruction is predicted critical or not. Each input to the perceptron is sourced by a
single past instruction. If the quantity of criteria marked at that past instruction
exceeds a fixed threshold (1 is assumed), a1 is sourced to that input; otherwise, -1 is
sourced. This approach is more balanced because the probability of any input being 1
ismuch closer to 50%. It also consumes under one-fourth of the storage space of the

above approach.
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Figure 6.3. Single perceptron (SP) criticality predictor

A drawback to this approach is that the perceptron is unable to capture the
correlation of any individual criterion. If one of the criteriais alessreliable global
correlator than the other criteria, that criterion could cause the perceptron to
mispredict.

A second drawback is that the perceptron cannot be trained on the presence of
individual criteria; it must be trained on the OR of the criteria, or whether the quantity
of criteria present exceeds a fixed threshold. This means that the perceptron could be
dominated by a single criterion such as QOLD and would be less capable of

observing the others.
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6.3.3. Single Perceptron, Input for Each Criterion (SPC)
A third approach is shown in Figure 6.4. Each table entry contains only one

perceptron. However, the perceptron has four inputs for each history entry. Each of
the four inputs is sourced by whether the corresponding past instruction was marked

for each of the four criteria

Correct Correct Correct  Correct
QOL QOLDDEP ALOLD QCONS

J

HEEJNEE SN
YYY VY Y oYYy yyw
Perceptron 0
Perceptron 1

Instruction
Address

—>

Perceptron n

Figure 6.4. Single perceptron input for each criterion (SPC) criticality predictor

The advantage to this approach is that, rather than using a fixed threshold for
criteria quantity, the perceptron is able to figure that out itself. It can furthermore
determine that a particular criterion is a more important indicator on one instruction,
while another criterion is more important indicator on another. The disadvantage,
besidesits size, isthat it suffers from the balancing issue of the first approach, yet has
only one bias weight.

Like PEC, there are two training variations on this approach. Thefirstisto
train each weight using the OR of the criterialike the predictor in 6.2.2 (SPC_OR).
The second isto train each weight using a separate error value based on its own

criterion, likein 6.2.1 (SPC_EACH).
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6.3.4. Training

A magjor challenge to perceptron criticality predictionisin training. In branch
prediction, the prediction of whether the branch is taken or not has no effect on
whether the branch is actually taken. The prediction does not affect the actual branch,
only subsequent instructions. However, criticality prediction is actually intended to
affect the instruction being predicted. If the prediction is made without changing how
the instruction is executed, the instruction can be later identified as meeting a
criterion, and the perceptron can be trained as normal. However, what happensiif the
latency for that instruction is reduced by a cycle? Theinstruction will most likely not
be marked for acriticality criterion. The perceptron will be trained that the
instruction was not critical, while in fact the instruction would have most likely been
marked for a criterion had it not been perturbed.

In their approach, Tune et al deal with this by incrementing their local counter
by 8 on a criterion being marked, while decrementing by 1 on no marking. Since the
instruction could only be marked when it was predicted noncritical because of the
perturbation, this effectively meant that their predictor was trained once every 8
iterations.

A similar approach can be used for the perceptron approaches. Rather than
training on every iteration, training is performed only on specific training iterations.
On every training iteration, a perceptron prediction is obtained but not used. The

instruction is treated as noncritical, and the perceptron is trained using its prediction.
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On other iterations, the perceptron prediction is used in practice but not used in
training.

A challenge in this approach is determining when to train the perceptron.
Perceptrons cannot be expected to learn a correlation after one iteration;
consequently, on training, several training iterations would need to occur
sequentially. Since the criticality predictor will be useless during these iterations,
they cannot occur too often. However, they need to occur sufficiently often that the
perceptron can adapt to changes.

A second approach could mimic the counter approach by using two different
error values. If the perceptron predicts noncritical but the actual result is marked, a
large error value, such as 8, isused to train. However, if the perceptron predicts

critical but the actual result is noncritical, asmaller error value of 1 is used to train.

6.4. Experimental Results

6.4.1. Simulation

The criticality prediction islargely implemented in mycritical.c, with some
components implemented in mysimoutorder.c.

Criticality information on an instruction is stored as additional fieldsin the
instruction’s ROB entry. Each criterion has two ROB entries: whether the criterion is
currently set, which is used to determine whether other criteria must be set, and
whether the criterion was ever set for that instruction, which is used in training the
predictor. Two additional fields in the ROB track the number of cycles that have

elapsed since the instruction was dispatched (cycles in_ROB), and the number of
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cyclesthat the instruction has been waiting for an instruction on which it is data
dependent to complete (cycles not_ready). Training occurs when the instruction
exitsthe CPU in the commit stage. Ciriticality predictions are performed for an
instruction at the point it is dispatched.

All eligibleinstructions are analyzed on every cycle to determine if they meet
any of the criteria. Thisanalysis occursin function update _criticality_flags() in
mycritical.c. update_criticality _flags() first steps through all the instructionsin the
ROB and increments cycles in_ROB and cycles not_ready as needed. It then steps
through each instruction and sets the QOLD flag on the instruction with the largest
cycles not_ready value. If there are multiple instructions with that value, the QOLD
flag isset on all of them. Next it steps through each instruction that is still waiting on
dependencies, and checks for each parent instruction whether the QOLD flag is set.

If so, the QOLDDEP flag is set on that instruction. Third it steps through each
instruction to find the instruction with the largest cycles in ROB value. That
instruction’s (or instructions’) ALOLD flag is set. Fourth, it steps through each
instruction, and looks for all instructions that are dependent on that instruction. The
instruction (or instructions) with the greatest number of dependent instructions hasits
QCONSflag set. Finaly, if any of the flags are set for a given instruction, the everset
flag is set on that instruction for the appropriate criterion so asto state that that
instruction was presumably once on the critical path.

For the analysisin 6.2, the cycle time of an instruction was reduced by one if
it meets a criterion, in order to determine the relationship between the criteria and

criticality. Thisisdone asfollows. An extracycle is added to the latency of each
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instruction. Thisisaccomplished by incrementing the execution latency of each
arithmetic unit and the load/store latency. If aninstruction isin the execution stage
and is currently executing (abusy value of 1), and itstime_left flagisat 1 (meaning
that it will complete execution in the next cycle), the instruction is evaluated for
meeting any of the criteria. If so, the instruction’ s time_left flag is decremented and
it completes execution on that cycle. This effectively reduces the instruction latency
by 1 for every critical instruction. If the instruction does not meet any criteria, its
time_left flag is not decremented, but it is evaluated again on the next cycle. If at this

point it does meet one or more criteria, it is marked as “ should have been marked.”

6.4.2. Basdline
The baseline against which the perceptron approach is evaluated is the Tune et

al saturating counter approach [Tun01, Tun02]. Each counter saturatesat 3 and 0. If
the counter for any criterion isat 2 or 3, the instruction is marked as critical. Training
is performed by incrementing or decrementing the counter for each criterion when it
is known whether that criterion was met.

Thisis achange from the higher saturation level used in the past work, which
was chosen so that the counter would continue to predict an instruction as critical
even though the results of the counter perturb the instruction and make it noncritical.
The change to 3 is made because, at this point, the results of the predictor are not used

to perturb the processor. 0-3 yields the most accurate results for this predictor.
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6.4.3 Accuracy Results

The first set of results compare the accuracy of the predictor to predict criteria.
The predictor is not actually used to change the behavior of the processor. This
judges the relative performances of the approaches exclusive of any particular
criticality application.

Three perceptron-based global criticality predictors are evaluated. The first
(SPC) isasingle perceptron with an input for each criterion. Its weights are trained
on the OR of the criteria. The second (SP) is a single perceptron with single bit input
for each past history; the OR of the criteriaat that history point isitsinput. Thethird
(PEC) has four separate perceptrons, one for each criteria, with the OR of the
perceptron outputs determining the prediction. A 256 entry global history sizeis used
as default; the effect when history sizeisvaried is shown in 6.4.6.

Figure 6.5 shows the accuracy of the three perceptron predictors relative to the
baseline. A prediction is considered accurate if any criterion was exhibited. Since
the predictions are not being used, and do not perturb the processor, the predictors are
trained on every iteration. Figure 6.6 shows the balance of the five predictors, or the
percentage of the time a predictor correctly predicted “critical” over all thetimein
predicted correctly. Thisiscompared to the percentage of time each criterion was
actually exhibited. On average, SPC_OR predicts with 6.56% better accuracy than
the baseline, SP predicts with 4.07% better accuracy, and PEC_OR with 2.87% better
accuracy.

It isinteresting to note that the SPC_EACH approach performs significantly
more poorly than the SPC_OR approach, and the PEC_EACH approach performs

dlightly more poorly. Why isthis? The actual objective of the predictor isto predict
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whether any criterion (the OR of the criteria) will occur. With the _OR approaches,

the perceptron is actually trained on thisinformation. Inthe EACH approaches, the

perceptron weights for each criterion are only trained on whether that criterion

occurs. The perceptron is thus unable to learn the relationship between the

occurrence of each criterion and the OR of the criterig; itslearning islimited. Thisis

reflected in the _EACH predictor accuracies.
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Figure 6.6. Balance of the predictor results

6.4.4. Value Prediction Application
Critical path prediction is never an end in itself; rather, it isintended to be

used to make another prediction approach more effective. One prediction approach
that can benefit greatly from criticality prediction is value prediction. As mentioned
in Chapter 5, any simple implementation of value prediction suffers from alarge
misprediction penalty. However, value prediction is only beneficial when applied to
instructions on the critical path. To produce a value prediction on a noncritical
instruction has little chance of improving performance, while subjecting the processor
to an unnecessary misprediction risk. If value predictions are performed only on

critical instructions, the performance increase from useful predictions should remain
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the same, while the misprediction rate, and the resulting performance decrease,
should drop.

To test how well the perceptron criticality predictors improve performance
when piggy-backed on another application, the criticality predictors are used to make
confidence decisions for avalue predictor. Value predictions are made, and the value
predictor trained, on every instruction. However, the value prediction is used only on
those instructions predicted critical. A simple stride predictor is used as the value
predictor approach.

If the criticality predictor’ sresults are actually used to change the
performance of the processor, the predictor changes the behavior of the instruction it
istrying to predict. Consequently the predictor should not be trained on the same
iteration that its results are being used. In these tests, the predictors results are used
on 3 out of every 4 iterations. On the fourth iteration, the results are not used, value
prediction isinhibited, and the predictor istrained. Since the perceptrons tend to
learn sufficiently quickly, only one training iteration is performed at atime.

Figure 6.7 shows the accuracy results when the predictor is used as a
confidence estimator and is trained on every fourth iteration. Figure 6.8 showsthe
IPC performance for each prediction scheme. The uninhibited stride predictor’s
performance is included for comparison. The SPC approach performs at 3.09%
higher IPC than the counter, and the PEC performs at 1.44% higher IPC. Both of
these exhibit higher accuracies than the counter on average, at 4.06% and 1.10%
higher absolute accuracies, respectively. These accuracies are comparable to the

accuracies they achieved when criticality information is not used.
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SP on the other hand achieves a 9.47% accuracy increase, but strangely
suffers a5.02% decrease in IPC. Thisis can best be explained by noticing that the
high accuracy results mainly from predicting “critical” more often correctly than from
predicting “not critical.” This means that the value predictor istold to predict much
more frequently. These additional instructions need not be correct, as criticality does
not infer correct predictions. If the value predictor is not correct on those additional
critical instructions, it will mispredict more often, and cause a performance decrease.
Since the criticality predictors do not actually produce confidence information for the

value predictor, they can cause the value predictor to mispredict more often.
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6.4.5. Physical Size
The physical size of the baseline criticality approach is determined by the

counter table size t and the bit width of the countersb. There are 4 counters per entry
and t entries, so 4tb bits are needed. If it isassumed that b=2 and t=4096, 4kB are
required.

The perceptron approaches have two additional parameters:. the history size h
and the perceptron weight width, which is assumed to be 8.

The first perceptron approach, a perceptron-for-each-criterion, requires four
perceptrons per entry, each having h weights. The global history required is h bits for
each criterion, or 4h. The storage isthus 4*8ht+4h. If h=256, the storage sizeis
4.2MB.

The second perceptron approach, a single perceptron, requires one perceptron
per entry with h weights. The global history isonly h bitstotal. The storage sizeis
thus 8ht+h, or 1.0MB for h=256.

The third perceptron approach, a single perceptron with inputs for each
criterion, requires one perceptron per entry with 4h weights. The global history is 4h

bitstotal. The storage sizeis 32ht+4h, or 4.2MB for h=256.

6.4.6. Perceptron Parameters
Figure 6.9 shows the effect of the history size on the SPC predictor. This

predictor is chosen because it already has the largest quantity of inputs for each

perceptron, and is thus the most sensitive to the negative effects of alarge history
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size. The 256 history predictor performs with 4.50% greater accuracy over the 64
history predictor, while the 512 history predictor performs with only 5.07% greater
accuracy than the 64 history predictor. This shows alarger history size does not

necessarily yield significantly better results.
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Figure 6.9. Effect of history size on prediction accuracy for SPC
The criticality approaches used above used no interference reduction. Figure
6.10 shows the accuracy comparison for the SPC predictor when the Assigned Seats

approach is used to reduce interference in the global history. The average accuracy

increaseis 2.21%.
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Figure 6.11 compares the two training strategies on the SPC. In the tests
above, training-by-error was used. The figure compares this with the training-by-
correlation approach. Likein value prediction, this training approach performs
poorly across most benchmarks, with an average accuracy decrease of 6.57% over the
baseline, and an average accuracy decrease of 13.13% over the training-by-error

approach. The reasons for this decrease are explored in the next chapter.
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Chapter 7. Conclusions

The value prediction and criticality results presented in Chapters 5 and 6 raise
many questions. Why did the digjoint global-local value predictor only perform 6%
better than the local predictor, despite its access to significantly more past history
information? Why did the training-by-correlation approach, which performed so well
for Jimenez’ s branch predictor, now perform so poorly for value prediction and
criticality prediction? Why was the fully connected multibit perceptron approach,
with its superior learning capabilities, significantly outperformed by the less capable
digoint approach? In contrast, why did the bitwise perceptron perform so well? It
turns out that all of these questions have the same answer. In this chapter | look at the
final perceptron weights and return to the earlier theoretical analyses to understand

why some approaches succeeded while others failed.

7.1. Weights

7.1.1. Training-by-error

The final perceptron weight values, at the end of simulation runs, give much
insight into how and why the perceptrons performed. The following figures show the
weight distributions for digoint global-local, which performed fairly well, fully
coupled global-local, which did not, and the SPC criticality predictor.

Figure 7.1 shows the weight distribution, averaged for each benchmark, at the
end of 100 million instructions. The weight distribution is computed as the average
percentage of each weight value within each perceptron, and is computed for each

static instruction when it is either replaced in the table or simulation ends. Thisis
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then averaged across all instructions, and then across all benchmarks, to produce the
graph. This graph shows the distribution for the digoint global-local predictor, the
fully-coupled global-local predictor. It aso shows the distribution for the digoint
global-local when trained by correlations, and when trained by error using
exponential weight growth. Figure 7.2 shows the weight distribution for the SPC

criticality predictor for both training-by-error and training-by-correlations.
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Figure 7.1. Perceptron weight distribution for the Global-L ocal predictor
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Figure 7.2. Perceptron weight distribution for the SPC criticality predictor

Notice that the weight distribution for the digjoint perceptron using training-
by-error is almost entirely close to zero. In contrast, the distribution for training-by-
correlations is spread out, with some weights becoming large. Thisis expected, as
training-by-error grows until it predicts correctly and stops, while training-by-
correlations keeps growing. The training-by-error with exponential weight growth
exhibits the same general shape as linear growth, except that it is spread out because
of the faster growth, and clumped at powers of 2, because weights cannot be non-
powers of 2.

The interesting case is that of fully coupled, which is spread out even in the

training-by-error approach. How does aweight distribution for training-by-error
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become broadly distributed? The only method is through frequent prediction errors,
which drive up the values of the weights, as weights do not change on correct results.
Thus most of the fully coupled perceptrons are having difficulty learning. This
impliesthat very few of the fully coupled single bit-inputs are conflict-free or
correlated compared to the digoint perceptron.

Finally notice that the smaller positive weights tend to be bigger than the
smaller negative weights for training-by-correlation by nearly half an order of
magnitude. Since this occurs on training-by-correlation, and not on training-by-error,
it implies that there are large quantities of false positive correlations. How do we
know this? Because when using training-by-correlations, fal se correlations cause the
falsely correlated weights to keep growing; training-by-error does not, and eventually
corrects the weights by returning them to zero. Notice how training-by-error has half
an order of magnitude more weights at zero than training-by-correlations. These
additional weights at zero represent the false correlations that training-by-correlations
made positive.

Figure 7.3 shows the average accuracies of weights at different values for the
global-local value predictor approaches. The accuracy of aweight is determined by
the percentage of the time the weight’s correlation and input matches the actual value
(independent of the accuracy of the perceptron as awhole). Notice that weightsat O

cannot have an accuracy, because a 0 weight has no correlation.
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Notice how different the accuracies are for large weights in training-by-error
and training-by-correlations. True, the very large weights in training-by-error
perform with poor accuracy, but in Figures 7.1 and 7.2 we see that they occur very
rarely. Thelarge weights that do occur are between -10 and -40 and 10 and 40.
These should be expected to perform better than the near-zero weights, and they do
for training-by-error, reaching approximately 65-75% accuracy. However, for
training-by-correlations, there is no correlation between weight magnitude and
accuracy, with al large weights performing at about 60% accuracy. Why isthis?
Because with training-by-correlation all weights exhibiting a correlation grow,
whether the correlation istrue or false due to imbalance at an input. The distribution
of weights consequently show all true or false correlated weights at the magnitude

when the static instruction stops running. These are uniform because the entire
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number of iterations of static instructions tends to be generally uniform between 1
iteration and 128 iterations. Theresult is that these false correlations are exhibiting as
much control over the output in training-by-correlations as the true correlations. A
large quantity of the patterns would appear to be unlearnable with training-by-
correlations.

The criticality resultsin Figure 7.2 sheds light on its behavior aswell. Recall
that the SPC predictor performs much better with training-by-error than by training-
by-correlation, but it is capable of handling longer history lengths (such as 512)
without the accuracy decreasing. The weight graph for SPC shows two things. First,
it tends to be better correlated than global value prediction because training-by-error’s
weights tend to largely be very small, meaning that it is not having difficulty learning.
Second, it tends to be very imbalanced, since training-by-correlation’ s positive weight
values are an entire order of magnitude higher than its negative weight values. What
doesthis show? First, sinceit is better correlated than global value prediction, noise
isless of aproblem, allowing longer history lengths to be considered. Second, since
it ishighly imbalanced, and still relatively poorly correlated, training-by-correlation

has difficulty learning patterns.

7.1.3. Implications

The following can be seen in the above weight plots:

These global applications, particularly value prediction, are poorly correlated,
because the overwhelming majority of the weights are at O for the training-by-

error, and the large weights are inaccurate for the training-by-correlations.
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They suffer from false correlations due to imbalancing, because training-by-
correlations has more positive weights than negative, while training-by-error
does not. If these were true correlations, training-by-error would also exhibit
more positive weights.

Fully coupled global-local is more poorly correlated than digjoint global-local,

otherwise training-by-error would have learned it with smaller weight

magnitudes.

Recall that poor correlation occurs when conflicts occur in most or all of the
inputs. Patterns can still be learned under these circumstance; after all, a perceptron
can theoretically learn a set of patterns from one correlated input. However, when the
majority of the inputs are conflicted, problems happen that do not occur when most of
theinputs are correlated. Two of these problems explain some of the poorer results.
First, the learning time is increased when most inputs are conflicted. Thisis because
weights need to be trained to overcome the noise. Second, training-by-correlation can
become incapable of learning compatible patterns when well over a mgjority of
weights are conflicted.

Imbalance occurs when one pattern occurs significantly more often than
another pattern. It was showed before that imbalance does not tend to affect the
perceptron training time. However, imbalance can cause training-by-correlation to be
unable to learn compatible patterns when a majority of weights are conflicted,
because it creates false correlations at some of the bits that swells the weights.

The combination of imbalance and poor correlation explains why training-by-

correlation performs poorly in value prediction and criticality. Both applications are
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in general poorly correlated, since relatively few global instructions share the same
data values. In contrast, branch prediction isawell correlated application, as a
majority of the past branches tend to exhibit a correlation with the target branch
[Jim02]. Local value prediction is likewise awell correlated application, whichis
why a simple lookup table tended to perform well. Training-by-correlation can
consequently learn all the compatible patterns in branch prediction and value
prediction, and can do so more accurately dueto its superior learning rate. However,
because global value prediction and criticality are poorly correlated, training-by-
correlation tends to be unable to learn even the compatible patterns.

Fully coupled global-local performs more poorly than digjoint global-local
because of the low perceptron learning rate due to low correlations. Why isfully
coupled more poorly correlated than digoint in this application? The answer is
because while the quantity of weightsisincreased in fully coupled, the quantity of
correlated global inputsis not increased. In value prediction, the global history only
contains a certain percentage of correlated instructions for agiven history. A fully
coupled perceptron has five times as many weights as a digoint perceptron, yet the
number of correlated past instructions does not change. Thus the percentage of
correlated inputs to the perceptron is effectively reduced to one-fifth that of digoint,
and the learning rate suffers accordingly.

Why does the bitwise perceptron perform well while having even more
weights than the fully coupled perceptron? Notice that the bitwise perceptronisin
fact comprised of 32 single-bit perceptrons. Each of these single-bit perceptrons have

only one input and one weight for each past value in the history, rather than the five
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inputs and weights of the fully coupled perceptron. Thus the bitwise perceptron has
the same percentage of correlated inputs for each of component perceptrons as the

digoint perceptron does.

7.1.4. Lessons

As mentioned above, the fundamental difference between global value
prediction and criticality on one hand and branch prediction on the other hand is the
percentage of correlated inputs. Vaue prediction and criticality tend to have alow
percentage of correlated inputs, while branch prediction has a higher percentage.
This affects the type of perceptron approach that is suitable for each application.
Branch prediction does well with training-by-correlation, as does local value
prediction. Global value prediction and global criticality do poorly with it.
Perceptron branch predictors perform significantly better with a history of 64 over a
history of 32. Vaue prediction and criticality perform only marginally better with a
history of 64, and in some casesworse. Thisis not to say that value prediction and
criticality cannot use perceptron approaches. As shown in the previous chapters, they
can with areasonable performance increase. However, they do not respond nearly as
well to perceptron approaches as does branch prediction.

The first lesson that can be learned from thisisthat it isimportant, prior to
applying perceptrons to an application, to determine if the application’ s past values
tend to be highly correlated or poorly correlated. This affects the training style, the
best multibit topology, and the optimum history size. An application with awell
correlated history should focus on maximizing its learning rate. It can therefore use

training-by-correlations, which learns faster in the face of imbalance and noise. It can
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use afully coupled multibit perceptron that can use its many weights to learn more
patterns. An application with a poorly correlated history, however, should focus on
increasing as much as possible its percentage of correlated inputs on each perceptron.
It should in general ensure that each perceptron has only one input per history entry.
And it must use training-by-error.

The second lesson isthat thereisarea limit to the useful history size. While
it istempting to suppose that a perceptron, because of its linear growth, can consider
hundreds or thousands of inputs, such adesign would yield a poor predictor. 1n most
applications, including branch and value prediction, the less recent instructions
correlate more poorly than more recent instructions. As the history size grows, the
overall percentage of correlated perceptron inputs decreases. At acertain point,
therefore, the perceptron learning rate becomes sufficiently poor that its accuracy

begins to decrease, rather than increase.

7.2. Summary

7.2.1. Perceptron Context Learning

The first contribution of this dissertation was an analysis of how perceptrons
learn context patterns when they directly replace alookup pattern table. Perceptrons
look for correlations between each bit of the pattern and the target. If a correlation
exists among the patterns for at least one bit, the perceptron can theoretically learn the
pattern set; otherwise, the patterns are in conflict, and the perceptron is not

guaranteed to learn them. However, even if the perceptron can theoretically learn the
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pattern set, it may not learn it quickly. | show that perceptron learning improves
dramatically as the number of bitsthat correlate increase.

Two weight training strategies are compared: training-by-correlation, which
adjusts each weight on every iteration according to the perceived correlation, and
training-by-error, which trains the weights only in response to a misprediction. |
show that training-by-correlation learns faster than training-by-error and responds
better to imbalance between patterns. However, training-by-correlation may never
learn a set of compatible patternsif over 50% of the pattern bits are in conflict, and
the patterns are imbalanced, with one pattern occurring much more often than
another. In contrast, training-by-error will always learn compatible patterns,

regardless of the imbalance.

7.2.2. Value Prediction
The local table-based context-based predictor [Wan97] is generally considered

one of the best practical value predictors. | propose two perceptron-based local value
predictors that are based on the table-based predictor. Thefirst, which replaces the
countersin the pattern table with perceptrons, has a 1.4% to 2.8% lower accuracy
than the table-based predictor. The second, which eliminates the second-level pattern
table, and uses the local value history to train, is capable of considering significantly
longer local histories than the table-based predictor. It performswith 2.4 to 5.6%
better accuracy, and 0.5 to 1.2% higher instructions-per-cycle.

| propose a perceptron-based predictor that uses the past global value history
to choose apast local value. | use three different perceptron topologiesto learn

multiple-bit value correlations. a digoint topology that considers correlations only
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between corresponding bits of the different inputs, a fully-coupled topology that
considers correlations between al bits of the different inputs, and a weight-per-value
topology that considers correlations between past values for each input. The global-
local predictor using disjoint perceptron achieves an average accuracy increase of
3.12% and an average relative performance increase of 1.59%, with a storage
requirement of 1.18MB. With aweight-per-value perceptron it achieves an accuracy
increase of 10.67% and a performance increase of 4.36%, but with a prohibitive
storage of 21.5MB. However, with afully-coupled perceptron it performs more
poorly, with an accuracy decrease of 6.83% and a performance decrease of 1.48%.
Thisis dueto the fully-coupled perceptron having a substantially higher percentage of
uncorrelated inputs. These are compared to the table-based predictor with a history
size of 4 and a history size of 8; the first consumes 69.9kB of storage and the second
33.7 MB of storage, however, they both perform within 0.26% of each other.

| propose a perceptron-based predictor that uses the past global value history
to choose a value from a global value cache. When implemented using a digjoint
perceptron topology, it achieves an average accuracy increase of 7.56% and a
performance increase of 6.69%, with a storage of 1.31 MB.

| finally propose a bitwise perceptron-predictor that does not save past values,
but instead |earns correlations between individual bits of each past value and the
target values. This perceptron achieves an accuracy increase of 12.67% and a
performance increase of 5.28%, while requiring a storage of 4.19MB.

Training-by-error is used as atraining strategy for each predictor. Both

training strategies are evaluated on the global-local predictor; training-by-correlation
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performs with 4.82% lower accuracy than training-by-error. Thisis due to the low
percentage of correlated inputs in global value prediction. Exponential weight growth
is also considered on the global-local predictor, but it resultsin an accuracy decrease

of 4.51%.

7.2.3. Criticality Prediction

The counter-based critical criteria predictor is the only implementable critical
path predictor that can make predictions for every instruction. The predictor is
limited, however, to considering only the local past history when making predictions.
| propose three perceptron critical criteria predictors that can use a global past history
when making predictions.

The first predictor (PEC) contains a perceptron for each criterion, and uses the
OR of the perceptrons to produce a prediction. It achieves an average accuracy
increase of 2.87% with a storage of 4.2MB. The second predictor contains asingle
perceptron, and uses the OR of criteriaat each past instruction asinput. It achieves
an accuracy increase of 4.07% with a storage of 1.0MB. The third predictor contains
asingle perceptron with an input for each criterion of each past instruction. When
trained with the OR of the criteria, it achieves an accuracy increase of 6.56%, and a
storage requirement of 4.2MB. For contrast, the counter predictor requires 4kB of
storage. The storage of the criticality predictorsis directly proportional to history
size; they can be reduced significantly if asmaller history is used than 256.

Training-by-error is used as atraining strategy for each predictor. Both
training strategies are evaluated on the single perceptron with an input for each

criterion predictor; training-by-correlation performs with 13.13% lower accuracy than
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training-by-error. Thisis due to the low percentage of correlated inputs in global

criticality prediction, and the high input pattern imbal ance.

7.2.4. History Interference

Interference between past instructions in the global history can cause the
performance of global predictorsto suffer. | consider two anti-interference measures.
Thefirst, “Assigned Seats’, uses the lower instruction address bits to assign the past
value to a specific entry in the global history register. The perceptron itself is
unchanged. In the second, “Piecewise Linear”, each perceptron has multiple weights
for each history entry. The lower instruction address bits are used to choose which
weight isused. The two anti-interference measures are compared on the global-local
value predictor. Assigned Seats performs with 0.9 to 2.2% better accuracy for both
applications while incurring negligible extra storage costs. Piecewise Linear
performs with 4% better accuracy in value prediction but at the cost of 32 times as
much storage as an implementation with no anti-interference measures. Because
Piecewise Linear results in only modest additional improvement with significant
additional hardware, Assigned Seats is generally recommended as a better anti-

interference approach unless high prediction accuracy is critical to the application.

7.3 FutureWork

While there are many potential areas of future work, | will mention four in
particular which | believe worthy of study.
The first area of future work is applying the studies from Chapter 3 to the

already existing fields of perceptron-based branch prediction, perceptron-based
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branch confidence estimation, and perceptron-based confidence estimation for value
prediction. Of particular interest is the degree of correlation in these applications.
How much noise is present from uncorrelated weights? How much imbalance is
present between patterns? How many patterns occur per perceptron input on
average? An anaysis answering these questions might be used to substantially
improve the existing implementations.

In this dissertation, critical-path prediction was used to improve the
performance of value prediction. Because of the severe misprediction penalty, value
prediction tends to nearly always perform better when fewer predictions are made,
whether they are on the critical path or not. A second future work could look at
applying criticality prediction to other applications, such as power reduction,
selecting functional units, and selectively applying performance increasing measures
such as branch prediction.

One of the limitations of the value prediction work is that a ReFetch
misprediction policy isused. In the absence of confidence estimation, ReFetch
typically performs worse than no value prediction. A third area of future work isto
implement a ReExecute policy which reduces as much as possible the misprediction
penalty. A ReExecute method with minimal additional hardware and a single cycle
penalty or lessisthe objective.

There are several future perceptron applications. One promising application is
frequency scaling on cache misses. In this application, the processor frequency is
reduced at the beginning of an L1 cache miss and sped up at the end of the miss,

saving CPU energy. The challenge is that the processor is not necessarily idle on
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every cache miss; consequently, not all cache misses should be slowed. A perceptron
could be used to predict whether the CPU will be idle on a particular cache miss, and

make the decision of whether to slow the processor.
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