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Robustness Meets Low-Rankness: Unified Entropy
and Tensor Learning for Multi-view Subspace

Clustering
Shuqin Wang, Yongyong Chen, Member, IEEE, Zhiping Lin, Senior Member, IEEE, Yigang Cen and Qi Cao

Abstract—In this paper, we develop the weighted error
entropy-regularized tensor learning method for multi-view sub-
space clustering (WETMSC), which integrates the noise dis-
turbance removal and subspace structure discovery into one
unified framework. Unlike most existing methods which focus
only on the affinity matrix learning for the subspace discovery by
different optimization models and simply assume that the noise
is independent and identically distributed (i.i.d.), our WETMSC
method adopts the weighted error entropy to characterize the
underlying noise by assuming that noise is independent and
piecewise identically distributed (i.p.i.d.). Meanwhile, WETMSC
constructs the self-representation tensor by storing all self-
representation matrices from the view dimension, preserving
high-order correlation of views based on the tensor nuclear norm.
To solve the proposed nonconvex optimization method, we design
a half-quadratic (HQ) additive optimization technology and
iteratively solve all subproblems under the alternating direction
method of multipliers framework. Extensive comparison studies
with state-of-the-art clustering methods on real-world datasets
and synthetic noisy datasets demonstrate the ascendancy of the
proposed WETMSC method.

Index Terms—Multi-view Subspace Clustering, Tensor Learn-
ing, Weighted Error Entropy

I. INTRODUCTION

W ITH the development of information technology, mul-
timedia data can be described by multiple views.

Resorting to the comprehensive information of multi-view
features, multi-view learning has improved multimedia data
(such as images, videos and documents) analysis performance
and has been widely used in clustering, classification etc.
[1], [2]. Multi-view clustering (MVC) [3]–[6] learns the
correlation of multiple views in an unsupervised manner to
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divide multimedia data into different clusters [7]. However,
the high-dimensional multimedia data in real-world appli-
cations increases the computational complexity. Currently,
multi-view subspace clustering (MVSC) [8]–[10] is widely
exploited by assuming that high-dimensional multimedia data
is located in several low-dimensional latent subspaces. These
low-dimensional subspaces are learned by using original mul-
timedia data as a dictionary to preserve the inherent structure
of self-representation matrices.

Subspace structure discovery and noise disturbance removal
are the two sides of a coin and they help each other in a
mutual reinforcement manner. However, most existing meth-
ods pay attention only to subspace structure discovery by
different prior-based optimization models, such as sparse prior
termed sparse subspace clustering (SSC) [11], low-rankness
termed low-rank representation (LRR) [12] or block diagonal
representation termed least squares regression (LSR) [13].
Specifically, SSC used l1 norm to constrain self-representation
matrix and error matrix by assuming that the noise is sparse
and obeys the Laplacian distribution. LRR used nuclear norm
to constrain self-representation matrix and l2,1 norm on error
matrix by assuming that the sample-specific noise is dense
and obeys the Gaussian distribution. LSR used Frobenius
norm to constrain self-representation matrix and error matrix
by assuming that the noise obeys the Gaussian distribution.
Along the above line, reference [14] based on LSR to learn
self-representation matrices separately and then obtained the
averaged affinity matrix. Zhang et al. [15] pointed out that
consistent and complementary information among multiple
views contributes differently to the described multimedia data.
To merge the different information of all views, the tensorized
MVSC methods [16]–[19] have been proposed to serve as
the advanced variants of matrix-dimensional LRR methods.
They usually constrain complementary and consistent infor-
mation by third-order tensor in a holistic manner but not
independently [20]. In addition, several technologies including
hypergraph [17], anchor graph [14], kernel trick [21], [22],
joint learning [23]–[25] have been integrated with MVSC.
However, they focus on the graph construction and thus pay
much less attention to the noise disturbance removal.

In practice, noise is often complex and may contain multiple
distributions leading to multimedia data degradation [26], [27].
Most existing MVSC methods [16], [28] simply assume that
the noise obeys a single distribution, such as Gaussian or
Laplacian, without taking the corruption of complex noise into
consideration. The l1 norm imposes the Laplacian distribution
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Fig. 1. (a) Gaussian random noise. (b) Diagonal structure noise. (c) Simulated
illumination noise.

assumption to characterize sparse noise and is sensitive to
dense noise. The mean squared error (MSE, l2 norm) and
l2,1 norm aim to eliminate the Gaussian distribution noise
but cannot handle complex dense noise and outliers. To deal
with mixed noise, the combination of G1 norm and l2,1 norm
[29], the mixture of Gaussian constraint [30] have been used.
Although the disturbances of different noise combinations
are suppressed to some extent, they still rely mostly on the
Gaussian assumption and are invalid for non-Gaussian noise
and outliers.

Different from the above research lines which either focus
only on the affinity matrix learning for the subspace discovery
or simply assume that noise obeys the Gaussian or Laplacian
distribution, we consider the noise disturbance removal and
subspace structure discovery in a holistic manner. In this
paper, we propose the weighted error entropy-regularized
tensor learning method for MVSC (WETMSC) to learn self-
representation tensor based on weighted error entropy within
the subspace clustering framework. Error entropy is an exten-
sion of the traditional metric method in information theoretic
learning (ITL), which has been successfully applied to sig-
nal processing due to its robustness to non-Gaussian noise
[31], [32]. For example, Erdogmus et al. [33] proposed the
correntropy concept, in which the correntropy-induced metric
(CIM) is applied to MVC in [34]. Correntropy is essentially
equivalent to error entropy, both of which are derived from
Rényi’s quadratic entropy. From the perspective of information
geometry, minimizing error entropy can be simply understood
as minimizing the probability distribution between the desired
and system outputs [33]. However, most existing entropy-
based methods still assume that the noise is independent and
identically distributed (i.i.d.), i.e. they treat the entries of
error term independently, ignoring their structural information.
Corresponding to ITL, the entropy of different distribution
noise should be different and thus the i.i.d. assumption is not
sufficient to fully describe the noise behavior. As shown in Fig.
1, three images are contaminated with Gaussian noise, but they
have completely different spatial distributions. The traditional
MSE or CIM describe the noise behavior under the i.i.d.
assumption, and they will obey the same value. Obviously, the
noise in Fig. 1(a) has higher randomness than that in Fig. 1(b)
and (c), so the entropy is larger. In addition, Fig. 1(b) and (c)
have non-i.i.d. structured noise. Hence, it is not realistic to be
accurately described by a single noise distribution criterion.
Specially, Fig. 1(c) simulates different illumination in face
images, which is typical and common noise. Therefore, the
weak ability of existing methods to describe complex noise in

real scenes needs to be improved. To address these challenges,
we utilize the weighted error entropy with the independent and
piecewise identically distributed (i.p.i.d.) model to encode non-
i.i.d. and i.i.d. noise in the low-rank tensor learning framework.
An overview of the proposed WETMSC is shown in Fig. 2.
The contributions of our work are summarized as follows:

• We propose the weighted error entropy-regularized tensor
learning method for MVSC (WETMSC) without the
single distribution assumption or i.i.d. assumption of the
noise, in which the weighted error entropy and low-rank
tensor learning are integrated into one unified model to
remove noise with multiple distributions and discover
subspace structure simultaneously.

• WETMSC constructs all self-representation matrices as
a third-order tensor to explore the high-order correlation
among multiple views. The weighted error entropy with
the i.p.i.d. model is robust to non-i.i.d. and i.i.d. noise
with different distributions. WETMSC transforms the
weighted error entropy function into a convex optimiza-
tion problem by using the additive form of the half-
quadratic (HQ) optimization technology.

• We develop the iterative optimization algorithm to solve
the proposed optimization method based on the alternat-
ing direction method of multipliers (ADMM). Experi-
mental results on real and synthetic noisy datasets verify
the superiority of the proposed method.

The rest of this paper is organized as follows. Section II
briefly reviews some related MVSC methods and entropy-
based methods from ITL. Section III shows some preliminaries
involved in this paper. Section IV and V describe the proposed
WETMSC model and its solution process. Section VI reports
the clustering results of extensive experiments and model
analysis. The conclusions of this paper are summarized in
Section VII.

II. RELATED WORKS

MVSC methods learn representation coefficients with a
certain structure through self-representation technology. Cur-
rently, most methods explore the underlying global low-rank
property of the self-representation matrix based on LRR. For
example, Tang et al. [35] learned a joint affinity graph based
on LRR for MVSC. References [36], [37] pursued the latent
low-rank representation matrix in latent subspace by projection
matrix. To explore the correlation among multiple views,
the tensorized self-representation matrices were utilized to
preserve the high-order structure of views [15], [16], [38].
However, the LRR model follows the linear representation
assumption and may fail to discover the local geometry
structure of the views when the data is nonlinear. To address
this issue, many multi-view subspace clustering methods that
fuse LRR and other techniques have been proposed. For
example, manifold learning-based methods [39], [40] have
been proposed to explore the local structure of views by
Laplacian regularization constraint. Xie et al. [17] and Wang
et al. [41] applied the hypergraph idea in the low-rank tensor
learning framework to explore the local structure of views
through hyper-Laplace regularization. Another way to deal
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Fig. 2. Given the multimedia data with M views: {X(v)}Mv=1, WETMSC learns self-representation matrix Z(v), error term E(v) and complementary noise
S(v) under the self-representation model. First, all Z(v) are constructed as tensor Z and constrained by the nuclear norm based on t-SVD. Then, WETMSC
characterizes the error term E(v) by weighted error entropy and applies the l2,1 norm to the separated complementary noise S(v) to extract the complex
non-i.i.d. noise and the sample-specific noise. Finally, the affinity matrix is output for spectral clustering.

with nonlinear structured data is the kernel trick, which finds
a new feature space for linearly separated multi-view data
[21], [23]. However, the LRR model still faces the challenging
task of reducing computational complexity and enhancing
the block diagonal structure of the representation matrix.
To address these problems, many matrix factorization-based
MVC methods have been proposed [42]–[44]. Their aim is to
factorize multi-view data into common representations with
smaller dimension by minimizing the overall loss function for
different views. The recent works in [14], [45]–[47] proposed
anchor graphs to handle large-scale datasets. Their difference
is that methods in [14], [45] directly obtained the anchors
through the cluster center of k-means, while methods in [46],
[47] learned the public graph through the projected unified
anchors, avoiding the isolation of the fixed anchors and the
graph construction.

Although the above methods have made significant progress
in MVSC, they focus only on exploring the structure of learned
self-representative matrix or tensor. For the design of the
loss function, most clustering methods simply assume that the
noise within one view is a single distribution (e.g., Laplacian
distribution, Gaussian distribution or the sample-specific noise
obeys Gaussian distribution). They encode noise by using
several methods [29], [36], [48]–[50], such as MSE (l2 norm),
l1 norm, l2,1 norm, G1 norm and mixed Gaussian noise model.
Fan et al. [51] fused the noiseless structure among views and
samples through l2 norm. However, the above assumptions
are limited to complex datasets with non-Gaussian noise or
outliers. In addition, the MSE cannot fully exploit the high-
order information of the noise. Fortunately, the concept of
entropy was first introduced in [33] from ITL. Its followers
have proven that entropy is effective in removing non-Gaussian

noise and outliers through information metric. For example,
Wang et al. [32] introduced the minimum error entropy
for face recognition. He et al. [52] proposed the rotational-
invariant principal component analysis algorithm based on
entropy metric. The works in [53], [54] introduced correntropy
into subspace clustering models with nonlinear kernels. The
effectiveness of the above methods lies in that when the error is
relatively large, the value of CIM is close to 1 with the ability
to suppress large outliers. Although entropy-based methods are
robust to complex noise, they assume that the noise is i.i.d. and
cannot be applied to datasets with different noise distributions.
For example, the face dataset is continuously occluded, and
these noises may come from multiple distributions. Thus the
i.i.d. assumption is unreasonable. Recently, Li et al. [26]
proposed a weighted error entropy minimization to model non-
i.i.d. noise, which was successfully used for face denoising and
background modeling. Weighted error entropy is an extension
of correntropy, which constructs a weight matrix based on
the information between samples to strengthen the connection
of error samples and encodes noise through i.p.i.d. model.
Therefore, we leverage the weighted error entropy technique
to adequately capture the information of multiple views and
characterize different noise distributions to improve clustering
performance on different datasets. Specifically, compared with
matrix-based methods, WETMSC preserves more category in-
formation by exploiting high-order correlation among views by
tensorizing self-representing matrices. Compared with tensor-
based methods, WETMSC not only focuses on representing
the structural information of tensor, but also considers the
complex noise. Obviously, the WETMSC method builds on
the above methods in a simple and robust way: tensorization
and weighted error entropy minimization, while considering
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the inherent low-rank property of the self-representation matrix 
or tensor and the complex noise distribution in views.

TABLE I
SYMBOLS AND EXPLANATIONS

Symbols Explanations
X , X , x, x the tensor, matrix, sequence, vector
Xijk the element (i, j, k) of tensor X
X (i) the i-th frontal slice of tensor X
X̄ = fft(X , [], 3) the Fourier transform alone tube fiber
d(v) feature dimension of the v-th view
N , M the number of samples, views
X(v) ∈ Rd(v)×N feature matrix of the v-th view
Z(v) ∈ RN×N the self-representation matrix
Z ∈ RN×N×M the self-representation tensor
E(v) ∈ Rd(v)×N the complex non-i.i.d. noise matrix
S(v) ∈ Rd(v)×N the sample-specific complementary noise
S ∈ Rd(v)×N∗M noise matrix constructed by S(v)

∥X∥⊛ t-SVD-nuclear norm

∥X∥F =
(∑

i,j |xij |2
) 1

2 Frobenius norm

∥X∥2,1 =
∑

i

√∑
j x

2
ij l2,1 norm

∥X∥∞ = max0≤i,j≤n |xij | infinity norm

III. PRELIMINARIES

In this section, we introduce two core contents: tensor
operations and weighted error entropy. The tensor operations
involve the definition of the tensor nuclear norm. The min-
imum weighted error entropy model is an optimization for
modeling non-i.i.d and i.i.d. noise.

A. Tensor Operations

For easy understanding, we explain the meanings of com-
mon symbols in Table I. For tensor X ∈ Rn1×n2×n3 , the
tensor nuclear norm based on tensor singular value decom-
position (t-SVD) is the sum of tensor singular values in the
Fourier domain, defined as:

∥X∥⊛ =

min(n1,n2)∑
i=1

n3∑
k=1

S̄(i, i, k), (1)

where the tensor singular value S̄(i, i, k) is obtained by the
following correlation definitions.

Definition 1: (t-Product): For tensor X ∈ Rn1×n2×n3 , and
Y ∈ Rn2×n4×n3 , the t-product X ∗ Y is a tensor with size
n1 × n4 × n3.

M = X ∗ Y =: bvfold{bcirc(X )bvec(Y)}, (2)

where the the block circular matrix (bcirc), block vectorization
(bvec), block diagonal matrix (bdiag) and the corresponding
opposite operations (bvfold(bvec), bdfold(bdiag)) are as fol-
lows.

bcirc(X ) =


X (1) X (n3) · · · X (2)

X (2) X (1) · · · X (3)

...
. . . . . .

...
X (n3) X (n3−1) · · · X (1)

 ,

bvec(X ) =


X (1)

X (2)

...
X (n3)

 , bvfold(bvec(X )) = X ,

bdiag(X ) =

X
(1)

. . .
X (n3)

 , bdfold(bdiag(X )) = X .

Definition 2: (Tensor Transpose): For the tensor X with
size n1 × n2 × n3, the transpose tensor X T ∈ Rn2×n1×n3 is
obtained by transposing each frontal slices and then reversing
the order of frontal slices 2 to n3. For example, let X and its
frontal slices be X (1), X (2), X (3) and X (4), then

X T = fold



X (1)T

X (4)T

X (3)T

X (2)T


 .

Definition 3: (Identity Tensor): A tensor I with size
n1 × n1 × n3 is an identity tensor if its first frontal slice is the
n1 × n1 identity matrix and all other frontal slices are zero.

Definition 4: (Orthogonal Tensor): A tensor Q ∈
Rn1×n2×n3 is orthogonal if it satisfies

QT ∗ Q = Q ∗ QT = I, (3)

where ∗ is the t-product. QT ∈ Rn2×n1×n3 is the transpose
of tensor Q. I ∈ Rn1×n1×n3 is an identity tensor.

Definition 5: (f-Diagonal Tensor): A tensor is called f-
diagonal if each of its frontal slices is diagonal matrix.

Theorem 1: (t-SVD): Let X ∈ Rn1×n2×n3 , it can be
factored as

X = U ∗ S ∗ VT , (4)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal
tensors, S ∈ Rn1×n2×n3 denotes an f-diagonal tensor.

B. Weighted Error Entropy

The weighted error entropy is used to remove non-i.i.d.
noise. Non-i.i.d. noise distribution means that there is different
noise in different parts of the data, which can describe the
signal using multiple density functions, i.e., i.p.i.d. model. The
one dimension i.p.i.d. model has the following definition.

Definition 6: Given the sequence e = [e1, e2, · · · , eN ] ∈
RN , N is the number of independent samples and {Pq}Lq=1

is a nonoverlapping, sequential partition of the index vector
[1, 2, · · · , N ], defined as

Pq = [pq−1 + 1, pq−1 + 2, · · · , pq], q ∈ {1, · · · , L}, (5)

where pq < pq+1, pL = N and p0 = 0. The sequence e
is generated by an i.p.i.d. source if the subsequence of e
determined by Pq is independently generated according to a
probability density function {fq}Lq=1, which is given by

epq−1+1, epq−1+2, · · · , epq

i.i.d.∼ fq. (6)

The one dimension i.p.i.d. model can be extended to multi-
dimensional signals such as images and videos. The i.p.i.d.
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model is different from the traditional i.i.d. noise: 1) i.p.i.d. uti-
lizes multiple density functions instead of a single distribution 
to describe the noise of non-overlapping partitions, enhancing 
the ability to characterize complex signals and describe local 
structural information. 2) When L = 1, i.p.i.d. degenerates to 
traditional i.i.d., which indicates that i.p.i.d. as an extension of 
i.i.d. still retains the ability to describe purely random signals. 

The traditional error entropy comes from Rényi’s quadratic 
entropy in ITL. The second-order Rényi’s entropy of random 
sequence e generated by traditional i.i.d. is defined as:

H2(e) = − log
( ∫ ( 1

N

N∑
i=1

kσ(e− ei)
)2)

, (7)

where 1
N

N∑
i=1

kσ(e − ei) is the probability density function

estimated directly from the sample by the Parzen window
method. kσ(e − ei) = exp(− (e−ei)

2

2σ2 ) denotes the Gaussian
kernel function with the kernel size σ.

For the random sequence e generated by i.p.i.d., the second-
order Rényi’s entropy is defined as:

Ĥ2(e) = − log
(∑

q

|Pq|
N

∫ ( 1

|Pq|
∑
i∈Pq

kσ(e− ei)
)2)

. (8)

Specifically, when L = 1, Ĥ2(e) is equivalent to H2(e).
Ĥ2(e) applies the weighted average information potential over
different partitions. As {Pq}Lq=1 is usually hard to obtain, it
is difficult to compute Ĥ2(e). According to [26], assuming
that the local region of e with i.p.i.d. model satisfies i.i.d.,
the position of the sample sequence eq in each partition can
be expressed as Iq , and the corresponding local region is
ΩIq . When ΩIq coincides with {Pq}Lq=1, Ĥ2(e) is completely
estimated. However, the sample probability density function in
a very small region is difficult to estimate. To solve Ĥ2(e), the
weighting function Dis(·) (l2 norm) is introduced to calculate
the weight of each sample. The weight is determined by the
distance Dq,i = Dis(Iq, Ii) between the samples Ii from Iq
in the region ΩIq . The probability density function for ΩIq is

approximated as
N∑
i=1

c(Dq,i)kσ(e−ei), where c(·) = 1
Qe

(Dq,i)
2

2σ2

is the weighting function. Q is a normalization term to satisfy∑
Ii
c(Dq,i) = 1, σ2 = N

1000 . Then Ĥ2(e) is transformed into
the following form:

H̄2(e) = − log
1

N

(∑
Iq

∫ ( N∑
i=1

c(Dq,i)kσ(e− ei)
)2)

= − log
1

N

∑
Iq

N∑
i,j=1

c(Dq,i)c(Dq,j)k√2σ(ei − ej)

= − log
N∑

i,j=1

ωi,jkσ(ei − ej) + logN

= − logS(e) + logN.
(9)

Note that H̄2(e) is an approximation of Ĥ2(e) without using

the partitions prior {Pq}Lq=1. S(e) =
N∑

i,j=1

ωi,jkσ(ei − ej),

ωi,j =
∑
Iq

c(Dq,i)c(Dq,j). For the convenience of calculation,

in this paper, we set wi,j = e
−

(Di,j)
2

2σ2∑
i e

−
(Di,j)

2

2σ2

. According to [26],

double-summation function S(e) can be relaxed as follows:

Ŝ(e) =
N∑

i,j=1

kσ(wie), (10)

where wi = [wi,1, · · · , wi,N ]. Since H̄2(e) is a monotonic
decreasing function with respect to S(e), minimizing H̄2(e)
is equivalent to minimizing −Ŝ(e).

IV. MOTIVATION AND THE PROPOSED WETMSC
For MVC, most existing methods pursue the structure infor-

mation of self-representation matrix or tensor under the single
noise distribution assumption or i.i.d. assumption. Although
the global correlation of inter-view and intra-view have been
well studied, simple constraint on noise limits the scalability
of MVSC. It can be concluded from the diversity of existing
views that the impact of non-i.i.d. noise is inevitable in
clustering tasks. Therefore, we use the weighted error entropy
with i.p.i.d. model to measure the error according to the
correlation among samples instead of a single Gaussian or
Laplacian distribution assumption. In this section, we propose
the unified entropy and tensor learning for MVSC (WETMSC)
using the tensor nuclear norm and weighted error entropy.
The proposed WETMSC mainly clusters multimedia data with
M views and N samples: X(v) = [x

(v)
1 , x

(v)
2 , · · · , x(v)N ] ∈

Rd(v)×N . d(v) is the dimension of the v-th view. Specifically,
WETMSC expresses X(v) as X(v) = X(v)Z(v)+S(v)+E(v).
Accordingly, the proposed WETMSC model is formulated as
follows:

min
Z,S,E

−
M∑
v=1

N∑
i,j=1

kσ(w
(v)
i e(v)j ) + λ∥S∥2,1 + β∥Z∥⊛

s.t. X(v)=X(v)Z(v)+S(v) +E(v), v = 1, · · · ,M,

S=[S(1);S(2); · · · ;S(M)],

Z=Φ(Z(1), Z(2), · · · , Z(M)).

(11)

Different from the traditional methods to directly optimize
self-representation matrix Z(v), WETMSC constructs all self-
representation matrix Z(v) as a third-order tensor Z for
overall optimization, which could strengthen the high-order
correlation among all views. On the other hand, WETMSC
characterizes the error term E(v) by the weighted error entropy
rather than a single noise distribution assumption to effectively
remove complex non-i.i.d. or i.i.d. noise and their combination.
Considering the inherently dense property of noise in each
sample, WETMSC applies the l2,1 norm to the separated
complementary noise S(v) to extract the sample-specific noise.
λ and β are the trade-off parameters for low-rank and error

terms. e(v)j is the j-th column of E(v).
N∑

i,j=1

kσ(w
(v)
i e(v)j ) =

N∑
i,j=1

exp(− (w(v)
i e(v)

j )2

2σ2 ) is a nonconvex function, which can

been solved by HQ technology. HQ as an optimization method
for ITL-based methods can transform nonconvex function
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into quadratic terms that are tractable. Let ϕ(x) be a loss 
function, the HQ technology based on the additive form has 
the following expression:

ϕ(x) = min
u

{(x− u)2 + ψ(u)}, (12)

where ψ(u) denotes the dual function, and u as an auxiliary
variable is determined by the minimizer function δ(x) = x−
x ∗ exp(− x2

σ2 ).
We first construct the v-th weight matrix W (v) =

[w(v)
1 , · · · ,w(v)

N ]T , which i, j-th element is w
(v)
i,j . Then, we

transform the proposed objective function (11) into a convex
optimization problem with the HQ technology:

min
Z,S,E

M∑
v=1

N∑
j=1

∥W (v)e(v)j − u(v)
j ∥2F + ψ(u(v)

j )

+ λ∥S∥2,1 + β∥Z∥⊛
s.t. X(v)=X(v)Z(v)+S(v) +E(v), v = 1, · · · ,M,

S=[S(1);S(2); · · · ;S(M)],

Z=Φ(Z(1), Z(2), · · · , Z(M)).

(13)

Since problem (13) is a constrained optimization problem,
and both the objective function and the constraint condition
contain Z(v). We use ADMM to solve the objective function
(13).

V. OPTIMIZATION OF WETMSC

ADMM is uesd to transform objective function (13) into an
unconstrained optimization problem. To separate the original
complex problem into several easy subproblems, we introduce
one auxiliary variable H to separate variable Z and utilize
alternating minimization scheme to solve each subproblem.
The augmented Lagrangian function of Eq. (13) is:

L(Z,H, E(v), S) = λ∥S∥2,1 +
µ

2
∥Z −H+

Y2

µ
∥2F

+

M∑
v=1

N∑
j=1

∥W (v)e(v)j − u(v)
j ∥2F + β∥H∥⊛

+
M∑
v=1

(µ
2
∥X(v)−X(v)Z(v)−E(v)−S(v)+

Y
(v)
1

µ
∥2F

)
,

(14)

where {Y (v)
1 }Mv=1 and Y2 represent the Lagrange multipliers

and µ denotes the penalty parameter.
Solving auxiliary variable u: According to the HQ tech-

nology, when E(v) is fixed, the auxiliary variable u can be
updated by

u(v)
jk+1 =

N∑
i=1

(w(v)
i e(v)jk −w(v)

i e(v)jk ∗exp(−
(w(v)

i e(v)jk )2

σ2
)). (15)

Solving auxiliary variable H: We fix variable Z . The
optimization problem H is equivalent to

Hk+1 = argmin
H

∥H∥⊛ +
µk

2
∥Zk −H+

Y2k

µk
∥2F . (16)

Eq.(16) is a typical low-rank tensor approximation problem
which has a closed-form solution and can be easily solved by
the following tensor tubal-shrinkage operator [16].

Hk+1 = C M
2µk

(F) = U ∗ C M
2µk

(S) ∗ VT , (17)

where F = Zk + Y2k

µk
= U ∗ S ∗ VT , C M

2µk

(S) = S ∗
diag{max(S̄(j)(i, i) − M

2µk
, 0)}, S̄ = fft(S, [], 3) and j =

1, 2, · · · , N .
Solving regularization term Z: We first fix variabl H,

then solve the regularization term Z view-by-view since the
following two terms are regularized Frobenius-norm. The
subproblem of the v-th view of Z is shown as follows:

Z
(v)
k+1 = argmin

Z(v)

µk

2
∥Z(v) −H

(v)
k+1 +

Y
(v)
2k

µk
∥2F

+
µk

2
∥X(v) −X(v)Z(v)−E(v)

k −S(v)
k +

Y
(v)
1k

µk
∥2F .

(18)

Since Z(v) is constrained by two Frobenius norms, we
obtain the optimal solution of Z(v) by solving the derivative
with respect to Z(v) as follows

Z
(v)
k+1=

(
I+X(v)TX(v)

)−1

×
(
X(v)TX(v)−X(v)TE

(v)
k

−X(v)T S
(v)
k +X(v)T Y

(v)
1k

µk
+H

(v)
k+1 −

Y
(v)
2k

µk

)
,

(19)

where I denotes the identity matrix with proper size. The term(
I+X(v)TX(v)

)−1

could be precomputed before iteration to
reduce the computational cost of the proposed algorithm to
some extent.

Solving the error matrix E(v): When fixing variables u(v)

and Z , the error matrix E(v) from Eq. (14) has the following
formula:

E
(v)
k+1 = argmin

E(v)

M∑
v=1

N∑
i=1

∥W (v)e(v)jk+1 − u(v)
jk+1∥

2
F

+
µk

2
∥E(v)−B(v)

k ∥2F ,
(20)

where B(v)
k = X(v)−X(v)Z

(v)
k+1−S

(v)
k +

Y
(v)
1k

µk
. Similar to Eq.

(18), the problem (20) can be solved by setting the derivative
of Eq. (20) to zero and the closed-form solution is

e(v)jk+1 = (2W (v)TW (v)+µI)−1(2W (v)T u(v)
jk+1+µb

(v)
jk ). (21)

Solving error matrix S: Similar to the strategy of the above
subproblem, the variables Z and E(v) are first fixed, and the
formula for S is as follows:

Sk+1 = argmin
S

λ

µk
∥S∥2,1 +

1

2
∥S −Dk∥2F , (22)

where Dk = [D
(1)
k ;D

(2)
k ; · · · ;D(M)

k ] is constructed by D(v)
k =

X(v)−X(v)Z
(v)
k+1−E

(v)
k+1+

Y
(v)
1k

µ1k
. The j-th column of optimal

solution S∗ can be obtained by

Sk+1(:, j)=

{∥Dk(:,j)∥2− λ
µk

∥Dk(:,j)∥2
Dk(:, j),

λ
µk
<∥Dk(:, j)∥2;

0, otherwise.
(23)
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At last, we update the Lagrange multipliers Y1, Y2 and 
penalty parameter µ by

Y
(v)
1k+1=Y

(v)
1k +µk(X

(v)−X(v)Z
(v)
k+1−E

(v)
k+1−S

(v)
k+1); (24)

Y2k+1 = Y2k + µk(Zk+1 −Hk+1); (25)
µk+1 = min{ρ ∗ µk, µmax}, (26)

where ρ is used to accelerate the convergence speed. Al-
gorithm 1 shows the computational process of the proposed
WETMSC.

Algorithm 1 : WETMSC for MVSC

Require: multi-view features {X(v), v = 1, 2, · · · ,M}; pa-
rameter λ, β, k; u, H, Z, E, S, Y1, Y2 initialized to 0;
µ = 10−5, ρ = 2, tol = 10−7;

1: while not converged do
2: Update Ht+1 by Eq. (17);
3: for v = 1 to M do
4: Update u(v)

k+1 by Eq. (15);
5: Update Z(v)

k+1 by Eq. (19);
6: Update E(v)

k+1 by Eq. (21);
7: Update S(v)

k+1 by Eq. (23);
8: Update Y (v)

1k+1 by Eq. (24);
9: end for

10: Update Y2k+1 and ρk+1 by Eqs. (25) and (26);
11: Check the convergence conditions:

max

{
∥X(v) −X(v)Z(v) − E(v) − S(v)∥∞,
∥Z −H∥∞

}
≤

tol
12: end while
Ensure: Z(v)

k+1.

Complexity analysis: The weight W in this paper can be
pre-calculated, so the complexity of the proposed WETMSC
algorithm comes from the calculation of variables u(v), H, Z ,
E(v) and S. Each step of solving u(v)

j , Z(v), E(v) and S(v)

involves matrix multiplication and matrix inverse calculation,
and the total computational complexity is about O(N3). The
most important computation is singular value decomposition,
fast Fourier transform (FFT) and inverse FFT of the tensor
H. To reduce the computational complexity, we rotate the
N ×N ×M tensor H into an N ×M ×N tensor during the
computation. Then, the computational complexity of tensor H
is about O(2N2Mlog(N)) + O(N2M2). In addition, after
obtaining the coefficient matrix Z(v) , we can calculate the

affinity matrix C = 1
M

M∑
v=1

(|Z(v)|+ |Z(v)T |) and input it into

the spectral clustering algorithm to obtain the final clustering
result whose computational complexity is usually O(N3).
In summary, the whole computational complexity of our
WETMSC algorithm is about O(2kN2Mlog(N)) + O(N3),
where k is the number of iterations.

VI. EXPERIMENT

A. Dataset and Experimental Setup

We investigate the clustering performance of the proposed
WETMSC on six real-world datasets including text and image

TABLE II
STATISTICS OF SIX REAL-WORLD MULTI-VIEW DATASETS

Datasets View Dimension (d) Samples Categories
BBCSport 2 3183/3203 544 5
UCI-3views 3 240/76/6 2000 10
MSRC-V1 5 24/576/512/256/254 210 7
MITIndoor 4 4096/3600/1770/1240 5360 67
Scene-15 3 1800/1180/1240 4485 15
Caltech101 4 2048/4800/3540/1240 8677 101

Fig. 3. Some samples of (a) UCI-3views, (b) MSRC-V1, (c) Scene15 and
(d) MITIndoor datasets.

datasets. BBCSport1 is a News article dataset from BBC
website with 2 views. UCI-3views2 is a handwritten digit
dataset from the UC Irvine machine learning repository, in-
cluding 3 types of features: 240d Fourier coefficients, 76d
pixel averages and 6d morphological. MSRC-V1 dataset
contains images of trees, cars, buildings, faces, etc.. There
are 5 types of features including 24d colour moment, 576d
histogram of oriented gradients, 512d GIST, 254d CENTRIST
feature and 256d local binary pattern. MITIndoor is a scene
dataset, including 4 types of features (4096d PHOW, 3600d
LBP, 1770d CENTRIST and 1240d deep features). Scene-153

dataset contains scene images of outdoor and indoor, including
3 types of features (1800d PHOW, 1180d PRI-CoLBP and
1240 CENTRIST). Caltech101 dataset contains object images
with 4 types of features. The details of the six datasets are
summarized in Table II and some samples are shown in Fig.
3.

In all experimental settings, the parameters of the com-
parison methods are set according to the corresponding lit-
erature. The regularization parameters of SSC and LRR
are chosen from [0.01, 10]. The regularization parameter
of RMSC is set from the interval [0.005, 0.01, 0.05, 0.1].
For DiMSC, two parameters are set in [0.01, 0.03] and
[20 : 20 : 180], respectively. For LT-MSC, the trade-
off parameter is selected from 0.01 to 100. The param-
eter of GMC is set to 1 as the initial value, which is
tuned automatically in the clustering process. For LMSC,
the parameter is tuned from [0.001, 0.01, 0.1, 1, 10, 100, 1000].
For MLAN, one parameter is set to a random number be-
tween 1 and 30. The trade-off parameter of tSVDMSC is
set within the range [0.1, 2]. The parameter of ETLMSC
is selected from the range of [0.0008, 0.01]. For LRTG,
two parameters are empirically selected from the sets of
[0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 50, 100] and [5, 15], respec-

1http://mlg.ucd.ie/datasets/segment.html
2http://archive.ics.uci.edu/ml/datasets/Multiple+Features
3http://www-cvr.ai.uiuc.edu/ponce grp/data/
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TABLE III
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON BBCSport, UCI-3views, MSRC-V1 DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall
SSC [11] 0.627±0.003 0.534±0.008 0.364±0.007 0.565±0.005 0.427±0.004 0.834±0.004
LRR [12] 0.836±0.001 0.698±0.002 0.705±0.001 0.776±0.001 0.768±0.001 0.784±0.001

RMSC [48] 0.826±0.001 0.666±0.001 0.637±0.001 0.719±0.001 0.766±0.001 0.677±0.001
DiMSC [49] 0.922±0.000 0.785±0.000 0.813±0.000 0.858±0.000 0.846±0.000 0.872±0.000
LT-MSC [15] 0.460±0.046 0.222±0.028 0.167±0.043 0.428±0.014 0.328±0.028 0.629±0.053

GMC [55] 0.807±0.000 0.760±0.000 0.722±0.000 0.794±0.000 0.727±0.000 0.875±0.000
LMSC [36] 0.847±0.003 0.739±0.001 0.749±0.001 0.810±0.001 0.799±0.001 0.822±0.001
MLAN [56] 0.721±0.000 0.779±0.000 0.591±0.000 0.714±0.000 0.567±0.000 0.962±0.000

tSVDMSC [16] 0.879±0.000 0.765±0.000 0.784±0.000 0.834±0.000 0.863±0.000 0.807±0.000
ETLMSC [28] 0.959±0.086 0.972±0.058 0.949±0.107 0.961±0.081 0.963±0.078 0.960±0.085

LRTG [57] 0.943±0.005 0.869±0.009 0.840±0.012 0.879±0.010 0.866±0.006 0.892±0.014
GNLTA [18] 0.980±0.064 0.986±0.043 0.973±0.086 0.979±0.065 0.979±0.067 0.980±0.064

ERMC-AGR [45] 0.576±0.072 0.382±0.129 0.300±0.136 0.465±0.101 0.475±0.116 0.457±0.091
RLMSC [51] 0.822±0.000 0.723±0.000 0.687±0.000 0.758±0.000 0.796±0.000 0.724±0.000

BBCSport

WETMSC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
SSC [11] 0.815±0.011 0.840±0.001 0.770±0.005 0.794±0.004 0.747±0.010 0.848±0.004
LRR [12] 0.871±0.001 0.768±0.002 0.736±0.002 0.763±0.002 0.759±0.002 0.767±0.002

RMSC [48] 0.915±0.024 0.822±0.008 0.789±0.014 0.811±0.012 0.797±0.017 0.826±0.006
DiMSC [49] 0.703±0.010 0.772±0.006 0.652±0.006 0.695±0.006 0.673±0.005 0.718±0.007
LT-MSC [15] 0.803±0.001 0.775±0.001 0.725±0.001 0.753±0.001 0.739±0.001 0.767±0.001

GMC [55] 0.736±0.000 0.815±0.000 0.678±0.000 0.713±0.000 0.644±0.000 0.799±0.000
LMSC [36] 0.893±0.000 0.815±0.000 0.783±0.000 0.805±0.000 0.798±0.000 0.812±0.000
MLAN [56] 0.874±0.000 0.910±0.000 0.847±0.000 0.864±0.000 0.797±0.000 0.943±0.000

tSVDMSC [16] 0.955±0.000 0.932±0.000 0.924±0.000 0.932±0.000 0.930±0.000 0.934±0.000
ETLMSC [28] 0.958±0.078 0.977±0.028 0.953±0.069 0.958±0.062 0.940±0.088 0.980±0.029

LRTG [57] 0.981±0.000 0.953±0.000 0.957±0.000 0.961±0.000 0.961±0.000 0.962±0.000
GNLTA [18] 0.981±0.036 0.979±0.012 0.972±0.036 0.975±0.032 0.968±0.052 0.983±0.008

ERMC-AGR [45] 0.746±0.063 0.675±0.035 0.582±0.060 0.625±0.053 0.607±0.065 0.645±0.040
RLMSC [51] 0.754±0.000 0.759±0.000 0.608±0.000 0.648±0.000 0.637±0.000 0.659±0.000

UCI-3views

WETMSC 0.996±0.000 0.989±0.000 0.991±0.000 0.992±0.000 0.992±0.000 0.992±0.000
SSC [11] 0.791±0.007 0.750±0.005 0.651±0.006 0.701±0.005 0.670±0.008 0.736±0.003
LRR [12] 0.695±0.000 0.590±0.000 0.491±0.000 0.562±0.000 0.560±0.000 0.564±0.000

RMSC [48] 0.761±0.054 0.673±0.032 0.587±0.041 0.646±0.035 0.633±0.041 0.660±0.031
DiMSC [49] 0.759±0.009 0.622±0.015 0.548±0.015 0.611±0.013 0.606±0.013 0.616±0.012
LT-MSC [15] 0.831±0.003 0.743±0.004 0.665±0.004 0.712±0.004 0.699±0.004 0.725±0.003

GMC [55] 0.748±0.000 0.771±0.000 0.640±0.000 0.697±0.000 0.612±0.000 0.809±0.000
LMSC [36] 0.770±0.022 0.679±0.025 0.596±0.028 0.654±0.024 0.635±0.025 0.673±0.023
MLAN [56] 0.859±0.003 0.751±0.003 0.709±0.004 0.750±0.003 0.727±0.004 0.776±0.002

tSVDMSC [16] 0.991±0.000 0.982±0.000 0.978±0.000 0.981 ±0.000 0.980±0.000 0.982±0.000
ETLMSC [28] 0.872±0.082 0.805±0.053 0.764±0.083 0.797±0.071 0.784±0.082 0.812±0.059

LRTG [57] 0.895±0.000 0.829±0.000 0.775±0.000 0.807±0.000 0.794±0.000 0.821±0.000
GNLTA [18] 0.894±0.089 0.880±0.053 0.829±0.092 0.854±0.078 0.836±0.095 0.873±0.060

ERMC-AGR [45] 0.663±0.073 0.578±0.065 0.472±0.084 0.549±0.072 0.523±0.065 0.577±0.080
RLMSC [51] 0.719±0.000 0.660±0.000 0.508±0.000 0.578±0.000 0.567±0.000 0.590±0.000

MSRC-V1

WETMSC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

tively. For GNLTA, two parameters are tuned from interval
[0.001, 0.1] and [1.1, 2]. The ranges of the two parameters
in RLMSC are [1, 100] and [0.01, 0.5], respectively. For the
proposed WETMSC method, the value range of parameters λ
and β are [0.01 : 0.01 : 0.1], [0.1 : 0.1 : 1], respectively. All
comparison methods in this paper use the k-means clustering
algorithm on the affinity matrix, where the clusters number
is the categories number of datasets. Considering the effect of
randomness of k-means, we repeat 10 times k-means clustering
for each dataset and report the average clustering results with.
Clustering performance is quantitatively evaluated under the
six general clustering metrics, including Accuracy (ACC),
normalized mutual information (NMI), adjusted rand index
(AR), F-score, Precision, and Recall. All experiments are
performed on desktop computer with 3.19 GHz CPU, 32 GB
RAM and MATLAB 2018b (64-bit).

B. Comparison with State-of-the-art Methods

To verify the effectiveness of the proposed WETMSC
method, we compare it with 2 single-view clustering methods
and 12 MVC methods, including 5 tensor-based clustering
methods. Specifically, sparse representation clustering (SSC)
[11] is used for each view independently to generate a
sparse self-representation matrix and reports the best per-
formance; Low-rank representation clustering (LRR) [12] is
used for each view independently to generate a low-rank
self-representation matrix and reports the best performance;
Robust multi-view spectral clustering (RMSC) [48] recovers a
shared low-rank transition probability matrix by Markov chain
method. Diversity-induced clustering (DiMSC) [49] explores
the complementarity of views by diversity term; Graph learn-
ing clustering (GMC) [55] fuses data graph matrices of all
views to generate a unified graph matrix; Latent subspace
clustering (LMSC) [36] learns latent low-rank representation
by mapping the original space into a low-dimensional latent
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TABLE IV
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON MITIndoor-67, Scene-15, Caltech101 DATASETS.

Dataset Method ACC NMI AR F-score Precision Recall
SSC [11] 0.475±0.008 0.615±0.003 0.322±0.006 0.343±0.006 0.314±0.007 0.377±0.007
LRR [12] 0.120±0.004 0.226±0.006 0.031±0.007 0.045±0.004 0.044±0.006 0.047±0.004

RMSC [48] 0.232±0.009 0.342±0.004 0.110±0.003 0.123±0.002 0.121±0.003 0.125±0.003
DiMSC [49] 0.246±0.000 0.383±0.000 0.128±0.000 0.141±0.000 0.138±0.000 0.144±0.000
LT-MSC [15] 0.431±0.002 0.546±0.004 0.280±0.008 0.290±0.002 0.279±0.006 0.306±0.005

GMC [55] 0.099±0.000 0.204±0.000 0.003±0.000 0.032±0.000 0.016±0.000 0.838±0.000
LMSC [36] 0.384±0.006 0.506±0.005 0.243±0.005 0.254±0.004 0.245±0.005 0.264±0.004
MLAN [56] 0.232±0.010 0.408±0.012 0.012±0.009 0.041±0.003 0.021±0.001 0.662±0.015

tSVDMSC [16] 0.684±0.005 0.750±0.007 0.555±0.005 0.562±0.008 0.543±0.005 0.582±0.004
ETLMSC [28] 0.775±0.000 0.899±0.000 0.729±0.000 0.733±0.000 0.709±0.000 0.758±0.000

LRTG [57] 0.404±0.008 0.522±0.005 0.244±0.006 0.255±0.005 0.243±0.007 0.269±0.004
GNLTA [18] 0.791±0.047 0.907±0.016 0.740±0.050 0.744±0.050 0.727±0.050 0.762±0.049

ERMC-AGR [45] 0.090±0.003 0.208±0.003 0.022±0.002 0.043±0.002 0.030±0.001 0.072±0.006
RLMSC [51] 0.610±0.000 0.848±0.000 0.539±0.000 0.546±0.000 0.520±0.000 0.576±0.000

MITIndoor

WETMSC 0.881±0.018 0.915±0.015 0.835±0.018 0.837±0.018 0.814±0.022 0.862±0.014
SSC [11] 0.444±0.003 0.470±0.002 0.279±0.001 0.337±0.002 0.292±0.001 0.397±0.001
LRR [12] 0.445±0.013 0.426±0.018 0.272±0.015 0.324±0.010 0.316±0.011 0.333±0.015

RMSC [48] 0.503±0.000 0.495±0.000 0.325±0.000 0.371±0.000 0.374±0.000 0.368±0.000
DiMSC [49] 0.300±0.010 0.269±0.009 0.117±0.012 0.181±0.010 0.173±0.016 0.190±0.010
LT-MSC [15] 0.574±0.009 0.571±0.011 0.424±0.010 0.465±0.007 0.452±0.003 0.479±0.008

GMC [55] 0.381±0.000 0.519±0.000 0.191±0.000 0.281±0.000 0.174±0.000 0.732±0.000
LMSC [36] 0.563±0.000 0.525±0.000 0.397±0.000 0.440 ±0.000 0.430±0.000 0.450±0.000
MLAN [56] 0.331±0.000 0.475±0.000 0.151±0.000 0.248±0.000 0.150±0.000 0.731±0.000

tSVDMSC [16] 0.812±0.007 0.858±0.007 0.771±0.003 0.788±0.001 0.743±0.006 0.839±0.003
ETLMSC [28] 0.878±0.000 0.902±0.000 0.851±0.000 0.862±0.000 0.848±0.000 0.877±0.000

LRTG [57] 0.615±0.016 0.657±0.005 0.486±0.016 0.525±0.014 0.485±0.023 0.572±0.005
GNLTA [18] 0.881±0.043 0.895±0.013 0.850±0.032 0.861±0.030 0.846±0.041 0.876±0.020

ERMC-AGR [45] 0.430±0.023 0.430±0.012 0.259±0.007 0.315±0.007 0.289±0.005 0.347±0.013
RLMSC [51] 0.551±0.000 0.730±0.000 0.477±0.000 0.513±0.000 0.516±0.000 0.511±0.000

Scene-15

WETMSC 0.904±0.011 0.929±0.007 0.891±0.009 0.899±0.008 0.887±0.011 0.911±0.006
SSC [11] 0.420±0.015 0.723±0.005 0.303±0.011 0.317±0.012 0.441±0.025 0.248±0.010
LRR [12] 0.510±0.009 0.728±0.014 0.304±0.017 0.339±0.008 0.627±0.012 0.231±0.010

RMSC [48] 0.346±0.036 0.573±0.047 0.246±0.031 0.258±0.027 0.457±0.033 0.182±0.031
DiMSC [49] 0.351±0.000 0.589±0.000 0.226±0.000 0.253±0.000 0.362±0.000 0.191±0.000
LT-MSC [15] 0.559±0.012 0.788±0.005 0.393±0.007 0.403±0.003 0.670±0.009 0.288±0.012

GMC [55] 0.331±0.000 0.544±0.000 0.031±0.000 0.081±0.000 0.044±0.000 0.470±0.000
LMSC [36] 0.566±0.012 0.818±0.004 0.383±0.010 0.392±0.010 0.710±0.014 0.271±0.008
MLAN [56] 0.579±0.024 0.748±0.020 0.222±0.015 0.265±0.015 0.173±0.009 0.560±0.016

tSVDMSC [16] 0.607±0.005 0.858±0.003 0.430±0.005 0.440±0.010 0.742±0.007 0.323±0.009
ETLMSC [28] 0.639±0.019 0.899±0.007 0.456±0.017 0.465±0.017 0.825±0.029 0.324±0.012

LRTG [57] 0.490±0.000 0.750±0.000 0.340±0.000 0.350±0.000 0.547±0.000 0.260±0.000
GNLTA [18] 0.604±0.016 0.875±0.005 0.444±0.017 0.453±0.016 0.776±0.018 0.320±0.015

ERMC-AGR [45] 0.169±0.000 0.307±0.000 0.153±0.000 0.179±0.000 0.166±0.000 0.194±0.000
RLMSC [51] 0.512±0.000 0.837±0.000 0.419±0.000 0.429±0.000 0.669±0.000 0.316±0.000

Caltech101

WETMSC 0.673±0.028 0.902±0.018 0.497±0.033 0.500±0.025 0.817±0.029 0.360±0.029

space. Adaptive neighbors clustering (MLAN) [56] adaptively
updates the graph for MVC; Anchor graph regularization
(ERMC-AGR) [45] learns the embedded anchor graph under
matrix factorization framework and introduces CIM to en-
code noise. Robust localized multi-view subspace clustering
(RLMSC) [51] learns the robust consensus representation by
fusing the noiseless structures of views. Furthermore, since
matrix-based clustering methods may not fully capture the
effective information in each view and across views, the
proposed method differs from traditional methods by perform-
ing tensor optimization through subspace learning. Therefore,
5 tensor learning methods: LT-MSC [15], tSVDMSC [16],
ETLMSC [28], LRTG [57] and GNLTA [18] are also used as
contrasting methods for more comprehensive comparison. For
noise consideration, SSC and RMSC assume that the noise
obeys Laplacian distribution. DiMSC and RLMSC assume
that the noise obeys Gaussian distribution. ERMC-AGR only

assumes that the noise is i.i.d.. The remaining comparison
methods assume that the sample-specific noise obeys Gaussian
distribution.

ACC, NMI, AR, F-score, Precision, and Recall results of
all methods are reported in Tables III and IV. The bolded
results represent the best clustering results, and the under-
lined results represent the second best results. The results
show that the proposed WETMSC outperforms all compar-
ison methods on six datasets in most cases. Specifically,
for the ACC metrics, WETMSC has an average improve-
ment of 26.85%, 15.3%, 25.7%, 58.35%, 45.95%, 20.8% over
single-view clustering methods. Compared with the matrix-
based clustering methods, WETMSC stacks self-representation
matrices into tensor for overall optimization, which avoids
the loss of relevant information among views. Obviously, the
most competitive methods tSVDMSC, ETLMSC, LRTG and
GNLTA are tensor-based MVC ones. Especially, tSVDMSC
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TABLE V
CLUSTERING RESULTS (MEAN±STANDARD DEVIATION) ON SIX DATASETS.

Method BBCSport
ACC NMI AR F-score Precision Recall

TMSC 0.879±0.000 0.765±0.000 0.784±0.000 0.834±0.000 0.863±0.000 0.807±0.000
WETMSC-l2,1 0.993±0.000 0.973±0.000 0.983±0.000 0.987±0.000 0.991±0.000 0.983±0.000
WETMSC+l1 0.991±0.000 0.965±0.000 0.977±0.000 0.983±0.000 0.988±0.000 0.977±0.000
WETMSC+l2 0.998±0.000 0.993±0.000 0.997±0.000 0.997±0.000 0.998±0.000 0.997±0.000

WETMSC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
UCI-3views

TMSC 0.955±0.000 0.932±0.000 0.924±0.000 0.932±0.000 0.930±0.000 0.934±0.000
WETMSC-l2,1 0.991±0.000 0.979±0.000 0.981±0.000 0.982±0.000 0.982±0.000 0.983±0.000
WETMSC+l1 0.993±0.000 0.981±0.000 0.983±0.000 0.985±0.000 0.985±0.000 0.985±0.000
WETMSC+l2 0.996±0.000 0.989±0.000 0.991±0.000 0.992±0.000 0.992±0.000 0.992±0.000

WETMSC 0.996±0.000 0.989±0.000 0.991±0.000 0.992±0.000 0.992±0.000 0.992±0.000
MSRC-V1

TMSC 0.991±0.000 0.982±0.000 0.978±0.000 0.981±0.000 0.980±0.000 0.982±0.000
WETMSC-l2,1 0.992±0.000 0.982±0.000 0.979±0.000 0.981±0.000 0.980±0.000 0.982±0.000
WETMSC+l1 0.991±0.000 0.982±0.000 0.978±0.000 0.981±0.000 0.980±0.000 0.982±0.000
WETMSC+l2 0.995±0.000 0.989±0.000 0.988±0.000 0.990±0.000 0.990±0.000 0.990±0.000

WETMSC 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
MITIndoor

TMSC 0.684±0.005 0.750±0.007 0.555±0.005 0.562±0.008 0.543±0.005 0.582±0.004
WETMSC-l2,1 0.828±0.000 0.884±0.000 0.755±0.000 0.759±0.000 0.735±0.000 0.812±0.000
WETMSC+l1 0.824±0.013 0.876±0.006 0.754±0.013 0.757±0.012 0.733±0.015 0.785±0.010
WETMSC+l2 0.862±0.015 0.908±0.005 0.827±0.013 0.829±0.012 0.803±0.016 0.858±0.008

WETMSC 0.881±0.018 0.915±0.015 0.835±0.018 0.837±0.018 0.814±0.022 0.862±0.014
Scene-15

TMSC 0.812±0.007 0.858±0.007 0.771±0.003 0.788±0.001 0.743±0.006 0.839±0.003
WETMSC-l2,1 0.842±0.029 0.872±0.008 0.808±0.028 0.822±0.025 0.788±0.047 0.860±0.004
WETMSC+l1 0.842±0.030 0.885±0.007 0.812±0.030 0.825±0.027 0.787±0.048 0.870±0.008
WETMSC+l2 0.886±0.003 0.909±0.002 0.867±0.005 0.876±0.005 0.866±0.002 0.887±0.008

WETMSC 0.904±0.011 0.929±0.007 0.891±0.009 0.899±0.008 0.887±0.011 0.911±0.006
Caltech101

TMSC 0.607±0.005 0.858±0.003 0.430±0.005 0.440±0.010 0.742±0.007 0.323±0.009
WETMSC-l2,1 0.644±0.023 0.890±0.012 0.467±0.019 0.476±0.020 0.783±0.024 0.342±0.016
WETMSC+l1 0.645±0.018 0.890±0.006 0.469±0.019 0.478±0.018 0.784±0.022 0.344±0.016
WETMSC+l2 0.662±0.011 0.904±0.003 0.471±0.011 0.480±0.011 0.822±0.016 0.352±0.009

WETMSC 0.673±0.028 0.902±0.018 0.497±0.033 0.500±0.025 0.817±0.029 0.360±0.029

and ETLMSC are the extensions of LRR and RMSC from
matrix to tensor, respectively, which show better performance
than their matrix-based versions on all datasets. The above
results further confirm the absolute advantage of tensorizing
the self-representation matrices to explore its global low-
rank structure in the high-dimensional space, which not only
preserves the pairwise correlation of views, but also explores
the high-order correlation of multiple views. Compared with
tensor-based methods, WETMSC considers different noise dis-
tributions and their combinations, and introduces the weighted
error entropy to improve the noise robustness. In addition,
WETMSC also preserves the inherent structure of sample-
specific complementary noise.

To intuitively demonstrate the superior clustering perfor-
mance of the proposed WETMSC method with i.p.i.d. model,
we compare the affinity matrices of WETMSC with the 5
tensor-based methods on MSRC-V1 dataset, as shown in
Fig. 4. The results show that the affinity matrix obtained
by WETMSC has a distinct block diagonal structure (i.e.,
high intra-class similarity and low inter-class similarity). The
reason is that the proposed WETMSC robustly learns a clean
representation tensor, so that the affinity matrix can better rep-

resent the similarity between samples. Overall, the proposed
WETMSC method can better eliminate the perturbation of
noise and improve the accuracy of clustering.

C. Ablation Study and Noise Simulation

We also design 5 variants for the ablation experiments to
verify the effectiveness of the weighted error entropy and l2,1
norm in the proposed WETMSC method. The baseline is the
proposed model shown in Eq. (13) without weighted error
entropy, denoted as TMSC. The comparison methods are set as
WETMSC-l2,1 (WETMSC without l2,1 norm), WETMSC+l1
(The l2,1 norm in the WETMSC model is replaced by l1
norm), WETMSC+l2 (The l2,1 norm in the WETMSC model
is replaced by l2 norm) and WETMSC. Their corresponding
clustering results on the six datasets are recorded in Table
V. Specifically, the ACC of WETMSC-l2,1 is improved by
11.4%, 3.6%, 0.1%, 14.4%, 3%, 3.7% compared to the base-
line TMSC algorithm. The results of replacing l2,1 norm
with l1 norm show that the difference between WETMSC-
l2,1 and WETMSC+l1 is very small, which indicates that
the weighted error entropy is very robust to Laplacian noise.
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TABLE VI
CLUSTERING RESULTS (ACC/NMI) ON NOISY UCI-3VIEWS DATASET

Method RMSC DiMSC LT-MSC GMC LMSC MLAN tSVDMSC ETLMSC LRTG GNLTA WETMSC
UCI-3views+5%GM 0.810 0.446 0.921 0.749 0.775 0.867 0.956 0.939 0.976 0.952 0.995
UCI-3views+10%GM 0.750 0.480 0.904 0.689 0.691 0.841 0.952 0.869 0.971 0.880 0.990
UCI-3views+15%GM 0.729 0.465 0.893 0.676 0.717 0.830 0.948 0.855 0.962 0.864 0.985
UCI-3views+20%GM 0.711 0.453 0.872 0.656 0.665 0.818 0.943 0.854 0.958 0.845 0.983
UCI-3views+5%GS 0.808 0.494 0.800 0.952 0.851 0.874 0.956 0.913 0.981 0.965 0.996
UCI-3views+10%GS 0.816 0.510 0.792 0.952 0.849 0.873 0.954 0.913 0.980 0.928 0.995
UCI-3views+15%GS 0.806 0.529 0.787 0.748 0.824 0.877 0.954 0.895 0.979 0.930 0.994
UCI-3views+20%GS 0.788 0.486 0.784 0.748 0.843 0.873 0.954 0.885 0.978 0.935 0.993
UCI-3views+5%PS 0.832 0.480 0.921 0.749 0.777 0.874 0.957 0.924 0.977 0.928 0.994
UCI-3views+10%PS 0.788 0.433 0.909 0.702 0.760 0.839 0.952 0.923 0.967 0.864 0.992
UCI-3views+15%PS 0.772 0.464 0.898 0.670 0.712 0.837 0.951 0.885 0.960 0.874 0.989
UCI-3views+20%PS 0.719 0.399 0.880 0.623 0.661 0.835 0.945 0.870 0.953 0.900 0.982

ACC

UCI-3views+5%GM 0.727 0.354 0.850 0.827 0.730 0.899 0.901 0.964 0.942 0.968 0.986
UCI-3views+10%GM 0.680 0.376 0.817 0.766 0.651 0.892 0.892 0.925 0.931 0.941 0.974
UCI-3views+15%GM 0.650 0.348 0.793 0.749 0.636 0.892 0.887 0.920 0.912 0.934 0.964
UCI-3views+20%GM 0.626 0.343 0.766 0.720 0.631 0.875 0.878 0.941 0.905 0.926 0.958
UCI-3views+5%GS 0.733 0.381 0.772 0.830 0.809 0.910 0.903 0.958 0.953 0.976 0.988
UCI-3views+10%GS 0.739 0.427 0.770 0.830 0.801 0.909 0.902 0.958 0.951 0.965 0.987
UCI-3views+15%GS 0.731 0.422 0.769 0.824 0.800 0.915 0.902 0.951 0.949 0.964 0.984
UCI-3views+20%GS 0.722 0.415 0.769 0.824 0.801 0.910 0.902 0.948 0.947 0.963 0.983
UCI-3views+5%PS 0.737 0.390 0.855 0.831 0.721 0.910 0.889 0.963 0.945 0.958 0.983
UCI-3views+10%PS 0.696 0.359 0.829 0.778 0.699 0.890 0.889 0.954 0.926 0.945 0.977
UCI-3views+15%PS 0.657 0.369 0.803 0.735 0.645 0.888 0.887 0.935 0.911 0.938 0.970
UCI-3views+20%PS 0.617 0.319 0.776 0.716 0.576 0.892 0.879 0.929 0.897 0.930 0.956

NMI

TABLE VII
CLUSTERING RESULTS (ACC/NMI) ON NOISY MSRC-V1 DATASET

Method RMSC DiMSC LT-MSC GMC LMSC MLAN tSVDMSC ETLMSC LRTG GNLTA WETMSC
MSRC-V1+5%MN 0.689 0.600 0.857 0.700 0.640 0.843 0.981 0.737 0.652 0.872 0.995
MSRC-V1+10%MN 0.636 0.576 0.691 0.660 0.455 0.716 0.919 0.730 0.593 0.852 0.933ACC

MSRC-V1+5%MN 0.567 0.529 0.741 0.599 0.522 0.731 0.965 0.717 0.653 0.862 0.989
MSRC-V1+10%MN 0.546 0.509 0.594 0.638 0.317 0.587 0.870 0.702 0.541 0.847 0.892NMI

MSRC-V1+50%SI 0.535 0.656 0.714 0.519 0.481 0.705 0.933 0.719 0.762 0.910 0.995
MSRC-V1+100%SI 0.508 0.599 0.704 0.476 0.328 0.619 0.914 0.672 0.761 0.861 0.990ACC

MSRC-V1+50%SI 0.435 0.616 0.630 0.493 0.437 0.588 0.885 0.671 0.718 0.878 0.989
MSRC-V1+100%SI 0.419 0.536 0.620 0.480 0.214 0.557 0.864 0.665 0.709 0.852 0.979NMI

MSRC-V1+Diagonal 0.686 0.723 0.838 0.766 0.740 0.756 0.942 0.889 0.581 0.910 0.986
MSRC-V1+Block 0.653 0.652 0.866 0.685 0.613 0.824 0.919 0.742 0.795 0.854 0.981ACC

MSRC-V1+Diagonal 0.626 0.600 0.847 0.760 0.728 0.711 0.903 0.891 0.578 0.878 0.968
MSRC-V1+Block 0.618 0.594 0.781 0.713 0.556 0.721 0.869 0.708 0.756 0.840 0.960NMI

While WETMSC+l2 is significantly improved compared with
WETMSC-l2,1, which also confirms that the assumption of
Gaussian noise does exist in real dataset. Furthermore, by com-
bining l2,1 norm and weighted error entropy, WETMSC can
achieve 12.1%, 4.1%, 0.9%, 19.7%, 9.2%, 6.6% improvement
on ACC over the baseline algorithm. The results show that
the weighted error entropy and l2,1 constraints together could
improve the clustering performance.

To demonstrate the robustness of the proposed WETMSC
method, we add 5%, 10%, 15%, 20% of Gamma noise
(GM), Gaussian noise (GS) (Fig. 1(a)) and Poisson noise (PS)
into the UCI-3views dataset to construct 12 noises datasets.
Besides, we also add 5%, 10% mixed noise (GM, GS, PS)
on the MSCR-V1 dataset. In addition, we add 50% and
100% simulated illumination noise (SI) with different mean
values, diagonal noise and block noise on MSCR-V1 dataset.
Specifically, for SI noise (Fig. 1(c)), each disjoint d(v) × 10
region on each view of MSCR-V1 is added with Gaussian
noise that obeys the i.i.d., their means and standard deviations

increases gradually at a rate of 0.05 and 0.01 from left to
right, respectively. For diagonal noise (Fig. 1(b)), each view
of MSCR-V1 is destroyed by Gaussian noise with the mean
of 0 and the standard deviation of 1 along the diagonal region.
For block noise, each view of MSCR-V1 is destroyed by
outliers generated from the uniform distribution from interval
[0, 15]. Tables VI and VII show that the results of the proposed
WETMSC method are still stable for different types of noise,
indicating that the WETMSC exhibits superior robustness to
i.i.d. and non-i.i.d. noise. However, the clustering performance
of other comparison methods based on the i.i.d. assumption
has been affected by different noise and cannot handle highly
structured non-i.i.d. noise. The above gratifying results are due
to the i.p.i.d. model introduced in the proposed method, which
randomly processes complex noises.

D. Parameter Analysis and Convergence

The proposed WETMSC method introduces two balancing
parameters: λ and β. To choose the optimal parameter values,
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Fig. 4. Structural visualization comparison of the affinity matrices of LT-
MSC, tSVDMSC, ETLMSC, LRTG, GNLTA and the proposed WETMSC on
MSRC-V1 dataset.

we first fix one parameter and adjust the other parameter in
the range [0.01 : 0.01 : 0.1], [0.1 : 0.1 : 1], respectively. The
corresponding results of different combinations of parameters
λ and β are shown in Fig. 6. It can be seen that the
proposed WETMSC achieves good performance of ACC and
NMI metrics for all parameters in a wide range of parameter
settings, which indicates that the WETMSC algorithm is
insensitive to two free parameters.

We also show the relative error and ACC with iterations
in Fig. 7, in which Error1 = 1

M

∑M
v=1 ∥X(v) −X(v)Z(v) −

E(v) − S(v)∥∞, Error2 = 1
M

∑M
v=1 ∥Z(v) − H(v)∥∞. Ob-

viously, the iteration error monotonically decreases, and the
corresponding ACC monotonically increases. After 20 itera-
tions, the iteration error is close to 0, and the ACC is optimal.
In addition, we also show the visualization results of clustering
for two different iterations (k = 5, 20). As can be seen from
Fig. 5, for a larger iteration number (k = 20), the structure
of the clustering results is more obvious with fewer abnormal
samples in each cluster than that for a smaller iteration number
(k = 5). The above phenomena clearly show that the proposed
algorithm is well convergent and usually converges within 20
iterations.

E. Running Time

Since the proposed WETMSC method combines the
weighted error entropy and tensor low-rank constraint, it
shows better performance than other MVC methods when
the data contains noise and outliers. However, WETMSC
also has limitations. In Fig. 8 (y axis being log scale), we
present the running time comparison of the proposed method

and the comparison MVSC methods. The results shown that
WETMSC operates less efficiently. The reason is that the
proposed WETMSC method needs to update the auxiliary
variable u in the solution process. As such, its computational
time is longer than that of most of other MVSC methods in
comparison based on MSE or l2,1 norm.

VII. CONCLUSIONS

This paper proposed a novel weighted error entropy reg-
ularized tensor learning method for MVSC (WETMSC).
WETMSC not only preserves the high-order correlation
among views by tensorizing the self-representation matrices
from the view dimension, but also introduces weighted error
entropy with i.p.i.d. model to encode non-i.i.d. and i.i.d.
noise, robustly filtering out complex noise. Thus, WETMSC
discovers the subspace structure and removes the complex
noise disturbance simultaneously. To optimize the proposed
objective function, we first transform the nonconvex weighted
error entropy metric into a convex optimization problem re-
sorting to the HQ technology, and finally adopt the alternating
update strategy to solve the WETMSC model. The experimen-
tal results on six real-world datasets and their noisy datasets
confirm the effectiveness of the proposed WETMSC method.
The shortcoming of the proposed WETMSC method is high
computational cost, which requires more time for multi-sample
and high-dimensional datasets. The future research will be to
investigate how to improve the computational efficiency of the
proposed method for large-scale datasets.

REFERENCES

[1] G. Jiang, J. Peng, H. Wang, Z. Mi, and X. Fu, “Tensorial multi-view
clustering via low-rank constrained high-order graph learning,” IEEE
Trans. Circuits Syst. Video Technol., 2022.

[2] A. Huang, Z. Wang, Y. Zheng, T. Zhao, and C.-W. Lin, “Embedding
regularizer learning for multi-view semi-supervised classification,” IEEE
Trans. Image Process., vol. 30, pp. 6997–7011, 2021.

[3] Y. Jia, H. Liu, J. Hou, S. Kwong, and Q. Zhang, “Multi-view spectral
clustering tailored tensor low-rank representation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 31, no. 12, pp. 4784–4797, 2021.

[4] G. Lu, Y. Jia, and J. Hou, “Semi-supervised subspace clustering via ten-
sor low-rank representation,” IEEE Trans. Circuits Syst. Video Technol.,
2022.

[5] D. Huang, C.-D. Wang, and J.-H. Lai, “Fast multi-view clustering via
ensembles: Towards scalability, superiority, and simplicity,” IEEE Trans.
Knowl. Data Eng., 2023.

[6] M.-S. Chen, L. Huang, C.-D. Wang, and D. Huang, “Multi-view
clustering in latent embedding space,” in Proc. AAAI Conf. Artif. Intell.,
vol. 34, no. 04, 2020, pp. 3513–3520.

[7] D. Huang, C.-D. Wang, J.-S. Wu, J.-H. Lai, and C.-K. Kwoh, “Ultra-
scalable spectral clustering and ensemble clustering,” IEEE Trans.
Knowl. Data Eng., vol. 32, no. 6, pp. 1212–1226, 2019.

[8] S. Huang, H. Zhang, J. Xue, and A. Pižurica, “Heterogeneous
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Fig. 5. The proposed WETMSC uses t-SNE on BBCSport, UCI-3views and MSRC-V1 datasets when the iterations k= 5 and 20. Different colors indicate
different categories in each dataset.
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