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The advent of 64-slice computed tomography (CT) with high-speed scanning makes CT a 

highly attractive and powerful tool for navigating image-guided procedures. Interactive 

navigation needs scanning to be performed over extended time periods or even 

continuously. However, continuous CT is likely to expose the patient and the physician to 

potentially unsafe radiation levels. Before CT can be used appropriately for navigational 

purposes, the dose problem must be solved. Simple dose reduction is not adequate, 

because it degrades image quality. This study proposes two strategies for dose reduction; 

the first is the use of a statistical approach representing the stochastic nature of noisy 

projection data at low doses to lessen image degradation and the second, the modeling of 

local image deformations in a continuous scan. Taking advantage of modern CT scanners 

and specialized hardware, it may be possible to perform continuous CT scanning at 

acceptable radiation doses for intraoperative navigation. 
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CHAPTER 1 

Introduction and motivation 

The method of choice for many surgical procedures has shifted from traditional open 

surgery to the use of less invasive means, a transition facilitated by the introduction of 

minimally invasive techniques more than a decade ago. Such procedures are often 

performed through 3 or 4 small skin ports (keyhole-size holes) instead of the 6- to 8-inch 

incisions required for traditional surgery [1]. The results are reduced trauma to the body, 

shorter recovery times and lower costs. However, the utility of such procedures is limited 

without a clear representation of the anatomy undergoing the procedure. The ability of 

the clinician will be greatly enhanced if three-dimensional (3D) visualization of this 

anatomy is available to guide such procedures [2]. 

 

Computed tomography (CT), a widely used diagnostic technique, is known to provide a 

highly accurate volumetric representation of the anatomy, with good contrast resolution. 

A CT scanner can create instantaneous 3D representations of the internal anatomy with 

good contrast resolution. This gives CT an edge over other imaging modalities in terms 

of continuous visualization of and navigation through structures. Some minimally 

invasive procedures utilize this benefit by acquiring a preoperative CT scan for guidance. 

This approach is limited, because it does not provide updated information on 

intraoperative anatomic deformations and deformations since the time of preoperative 

CT. A continuous CT-guided approach can represent intraoperative anatomy accurately, 

but such scanning is practical only if radiation is reduced to a minimal level with a high 

image reconstruction speed. Commercially available CT scanners employ a filtered 
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backprojection (FBP) technique for image reconstruction. Although useful in many 

imaging applications, the FBP technique does not allow dose reduction without 

significantly degrading image quality. Continuous CT with FBP reconstruction, then, 

would expose both patient and practitioner to elevated levels of radiation. FBP also 

causes streak artifacts when metal is in the field of view, for example during surgery.  

 

The motivation behind this study is to utilize the benefit of 3D visualization achieved 

through CT, but at a greatly reduced radiation dose without compromising image quality. 

Iterative techniques using maximum likelihood are proven to replicate Poisson statistics 

for positron emission tomography, single-photon emission computed tomography and CT 

[3]-[8]. Although statistical reconstruction is computationally expensive, the suboptimal 

FBP approach is certainly not an acceptable one for reconstructing noisy projection data. 

This study suggests two dose reduction strategies for developing a minimally invasive 

surgical system under a continuous CT guidance and elimination of metal artifacts 

resulting from surgical tools with the use of tracking tools. Our first strategy is the 

achievability of dose reduction through replacement of FBP with a statistical approach 

using maximum likelihood expectation maximization (MLEM) for image reconstruction. 

Our second strategy is the achievability of dose reduction for continuous CT through 

reduction in the number of projections using gradient descent optimization to iteratively 

model the local intraoperative anatomic deformations. 

 

The reconstruction process is described in chapter 2 striking distinctions between two 

widely used approaches to CT reconstruction. The theory behind our dose reduction 
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strategies is outlined in chapter 3 followed by the results in chapter 4. Inferences from 

this study and some practical issues are discussed in chapter 5. Another novel method for 

dose reduction that combines the two strategies is currently under investigation and is 

presented in chapter 6. 
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CHAPTER 2 

The reconstruction process 

Inside a typical 3rd generation (3G) CT scanner is a gantry that has an x-ray tube on one 

side and arc-shaped array of detectors mounted on the opposite side. The x-ray photons 

emitted by the tube are captured by the detectors after being attenuated through the object 

under consideration to generate projection data. Image reconstruction is the process of 

determining the attenuation coefficients at all locations in the cross-section of the object 

using available projection data. Several such closely spaced cross-sections are stacked 

together to generate a volumetric representation of the object. CT is frequently used for 

diagnostic purposes. A pictorial representation of a typical 3G CT scan is demonstrated in 

Figure 1. 

 

Figure 1: The geometry of a typical 3GCT scan: the x-ray tube and detectors rotate, with 
the axis of rotation running from the patient's head to toe [9]. 
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A typical 4th generation (4G) scanner consisting of a stationary ring of detectors with a 

rotating x-ray source is shown in Figure 2 [10]. 

 

Figure 2: Schematic of a 4G CT scanner. 

2.1. Conventional approach to CT reconstruction 
 
FBP, the conventional approach to CT reconstruction, uses the Fourier slice theorem to 

arrive at a closed-form deterministic solution to finding attenuation coefficients. The 

underlying assumption behind this theorem is that each projection represents an 

independent measurement of the object. The details can be found in [11]. The advantage 

of FBP is that the process of reconstruction can be started as soon as the first projection 

has been measured, speeding up the process and reducing the requirements for storage. 

FBP reconstruction produces high-quality images at high radiation doses. However, the 

image quality begins to deteriorate as the x-ray dose is reduced. Dose reduction is a 

crucial requirement for the application of CT in interventional purposes, where patients 

and practitioners will be exposed to continuous radiation over the duration of surgery. 

 



 6

2.2. Statistical approach to CT reconstruction 
 
The process of photon generation in an x-ray tube can be approximated using the Poisson 

distribution. Iterative techniques such as MLEM capture the stochastic variations in 

photon counts accurately (unlike the deterministic FBP approach) yielding more accurate 

reconstructions at much lower radiation doses. Maximum likelihood has been shown to 

have excellent theoretical properties that model the statistical nature of CT in a realistic 

manner [7]. The objective of this algorithm is to maximize the complete likelihood of the 

photons entering each pixel along the projection ray, given the number of photons 

detected by the detector at the projection, parameterized by the current estimate of pixel 

intensities. The new estimate of the pixel intensity can be approximated to a closed-form 

solution. The original MLEM algorithm is presented in brief in the next chapter. For a 

detailed description of the original algorithm, the interested reader is referred to [7]. 
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CHAPTER 3 

Dose reduction 

3.1. MLEM Algorithm 
Our algorithm has been developed based on the Lange & Carson [7] framework. The 

concept is described for parallel beam geometry and can be extended easily to the fan 

beam case. The MLEM algorithm is part of our first dose reduction strategy. 

 

The number of photons detected by scanning air provides a fair approximation to the 

number of photons generated by the x-ray source. If Wi is the number of photons leaving 

the source, all Wi photons will be detected in the absence of an attenuating object. Then, 

in the presence of an attenuating object, if Yi is the number of photons detected, by 

Beer’s law, each photon leaving the source has an equal probability of reaching the 

detector. This probability is expressed as: 

∑
= ∈
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where ijl  is the length of intersection of the ith ray with the jth pixel, jµ is the intensity 
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the ith ray. 
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The strict concavity, which suggests the existence of a maximum of this likelihood, can 

be established by the non-negative definiteness of the matrix with elements 

⎩
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..........0
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In the MLEM algorithm, a reconstruction grid of uniform intensity is used as the initial 

estimate. Iterating on the reconstruction grid, the log likelihood is maximized and the 

maximizing image estimate is used as an initial estimate for the next iteration. The closed 

form solution at the thn )1( + iteration is expressed as: 
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where ikM and ikN  are the expected number of photons entering and leaving pixel k and 

are determined using Beer’s law (Eq. 1). 

3.2. Local deformations 
 
In the context of minimally invasive surgery, if the anatomy were stationary, a 

preoperative scan would suffice. However, the anatomy is subject to change due to 

intervention and involuntary motion. Continuous (near real-time) guidance and 

navigation would require a CT scanner to be operated continually at very high frame 

acquisition rate. If the frame rate is significantly high, the imaged anatomy will have 

undergone only a slight redistribution of pixel intensities between successive frames. 

Starting with the final reconstructed image of the previous time-frame, a good estimate at 
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the current time-frame can be obtained by modeling the deformations between the current 

and the previous time-frames using available projection data for the current time-frame.  

 

A free form deformation (FFD) model of [12] using B-splines is used to model the local 

motion between successive time-frames. The underlying idea of FFDs is to deform an 

object by modifying the translation vectors of a coarse mesh of control points throughout 

the object. The resulting deformation when interpolated over the fine mesh of pixels 

yields a smooth and continuous deformation. B-splines provide a local control over 

deformation unlike thin-plate splines. The resulting FFD can be written as  

∑∑ ++=
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A large spacing of control points enables modeling of global non-rigid deformations and 

a small spacing of control points enables modeling of local non-rigid deformations. 
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3.3. Gradient descent optimization 
 
In a gradient descent minimization algorithm, steps are taken iteratively in the current 

direction of the negative gradient of the cost function )( tf Φ . 

)(1 ttt f
t

Φ∇−Φ=Φ Φ+ α , (7) 

where α  is a positive step-size parameter, tΦ  is a set of translations of the mesh of 

control points ( )Tnn yx ,2,11,1 ,...,, φφφ  in the x- and y-direction at the tht iteration, gradient 
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t

Φ∇Φ  denotes a vector of partial derivatives 
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( )T. denotes transpose. 

 

A Radon transform is always unique when sufficient samples of it are available. In two 

dimensions, if a sufficient set of Radon transform samples is known, then the Radon 

transform is adequately specified and the cross-section function comprising the pixel 

intensities can be determined by inverting the Radon transform [13]. Hence the cost 

function chosen for optimization is the sum of squared differences between scanner-

projection data of the deformed image and the Radon transform of the image estimate. 

(Note that the projection data is the radon transform of the actual deformed image).  

 

A good initial estimate of the image is provided by the final reconstructed image from the 

previous time-frame. The initial deformation vector tΦ  for the coarse mesh of control 

points is set to 0 . The vector tΦ  is updated using Eq. 7 in the current direction of the 

negative gradient of the cost function, thus improving its estimate iteratively. A smooth 
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continuous deformation is obtained from the vector tΦ  through B-spline interpolation 

(Eq. 5 and 6). The image, used in the calculation of the cost function, is updated through 

bilinear interpolation of the previous image estimate using the current deformation 

vector.  

 

The step-size,α , is varied iteratively to avoid convergence to a local optimum solution. 

A good starting estimate for the step-size was empirically found to be 0.01. If the current 

value of cost function is better (less) than the previous value, the image is updated and 

step-size is increased by a factor of 10 for the next iteration. A small step-size leads to a 

slower convergence. So, to accelerate convergence, the step-size is adaptively changed 

depending on how well the current step-size performs. If the current value of cost 

function is worse than the previous one, the step size is reduced by half until a better 

estimate is obtained. The process is repeated until the terminating condition occurs. A 

terminating condition is said to have reached if the cost function changes by less than 0.5 

for 5 successive iterations, or if the number of iterations exceeds 200, whichever occurs 

first. To ensure convergence to global minimum, annealing techniques need to be 

investigated. 
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CHAPTER 4 

Results 

The reconstruction algorithms were applied to simulated data from the digital Shepp-

Logan phantom and to real projection data from an abdominal phantom representing real 

anatomy. The reconstruction quality was assessed using power signal-to-noise ratio 

(PSNR) calculated as: 

),(
)12(log10

2

10 BAMSE
PSNR

bitdepth −
= , and                                     (8) 
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= =

−
= ,                                          (9) 

Where M x N represents the number of pixels in image A and B, Aij represents the 

intensity of (i,j)th pixel of A and Bij represents the intensity of (i,j)th pixel of B. 

4.1. MLEM reconstruction of Shepp-Logan phantom 
 
A 512 x 512 digital Shepp-Logan phantom was generated in MATLAB and projection 

data was simulated using Beer’s law (Eq. 1). Expectation of noise in low-dose sinograms 

was estimated by fitting a Poisson distribution to the difference between sinograms of 

images obtained from the low-dose simulator at 200 mAs and at lower doses. This 

Poisson noise was scaled to the dynamic range of phantom and added to the simulated 

projections for the digital phantom to generate noisy data resembling low-dose (low tube 

current) projections, with the assumption that sinogram noise follows Poisson 

distribution. Reconstructions using the MLEM algorithm yielded better results in terms of 
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the PSNR values with the original phantom as the reference image than did 

corresponding reconstructions using FBP. 

 

The digital phantom used in our study is shown in Figure 3. Reconstructions at 11mAs 

using FBP and MLEM are shown in Figure 4(a) for a visual comparison. To test the 

reproducibility of our results, reconstructions at 15mAs using the same 2 methods are 

shown in Figure 4(b). At each of these doses, MLEM led to higher contrast resolution, 

mimicking that of the original image. PSNRs for these two algorithms at a range of dose 

levels are summarized in Table 1. A quantitative comparison of the reconstruction 

qualities achieved through FBP and MLEM is delineated by means of a plot in Figure 5. 

The comparison shows that MLEM outperforms FBP at any given dose level. Note that a 

tube current setting of 11mAs is the lowest achievable dose on a Siemens dose simulator. 

[Courtesy: Baltimore Veteran Affairs Medical Center, MD] 

4.2. MLEM reconstruction of abdominal phantom 
 
An abdominal phantom was scanned using a Philips Brilliance 40-slice CT scanner at 

120 kV and tube current varying at random from 25 to 250 mAs at the following scanner-

console settings. Axial scanning was done at 2-sec cycle time with standard resolution, 

16 x 2.5 mm collimation and slice thickness of 5 mm. The number of samples per view 

was 672 with 1160 views evenly spanned on a circular orbit of 360o. Raw un-

preprocessed fan beam data were extracted using scanner software and altered to parallel 

beam data. The PSNR values suggest that the image quality of MLEM reconstruction 

degrades less precipitously than that of FBP as the dose level is reduced from 250 to 25 
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mAs. Figure 6 and Figure 7 provide visual assessments of FBP and MLEM 

reconstructions. A quantitative assessment is detailed in Table 2 and shown in Figure 8. 

 

Figure 3: A 512 x 512 digital Shepp-Logan phantom. 

 

Table 1: 

PSNR comparison between FBP and MLEM for the Shepp-Logan phantom 
 
 

 

 

 

 

 

 

Dose (mAs) 
PSNR for FBP 

(dB) 
PSNR for 

MLEM (dB) 
11 30.08 36.98 
15 31.18 37.67 
20 32.73 38.56 
25 33.09 38.83 
30 33.97 39.50 
40 34.88 39.96 
50 35.86 40.13 
70 37.00 40.67 
85 37.26 40.90 
100 37.36 40.99 
150 38.56 41.07 
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(a) FBP reconstruction at 11 mAs (left) MLEM reconstruction at 11 mAs(right). 
 

 

(b) FBP reconstruction at 15 mAs (left) MLEM reconstruction at 15 mAs (right). 
Figure 4: Visual comparison of reconstruction quality. 
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Figure 5: PSNR comparison between FBP and MLEM. 

 

Figure 6: FBP reconstruction (left) and MLEM reconstruction (right) of abdominal 
phantom at 200 mAs. 
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Figure 7: FBP reconstruction (left) and MLEM reconstruction (right) of abdominal 

phantom at 25 mAs. 
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Figure 8: PSNR comparison between FBP and MLEM for abdominal phantom. 
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Table 2: 
 PSNR comparison between FBP and MLEM for abdominal phantom 

Dose (mAs) PSNR for FBP 
(dB) 

PSNR for MLEM 
(dB) 

250 36.90 Inf 
200 36.63 39.75 
150 36.51 39.20 
100 36.46 37.85 
85 36.34 37.31 
70 36.30 36.93 
60 36.23 36.40 
50 36.19 36.37 
40 36.08 35.65 
30 35.97 34.79 
25 35.85 34.02 

4.3. Metal artifact reduction 
 
To demonstrate metal artifact reduction, a high-attenuation object was introduced in a 

512 x 512 digital Shepp-Logan phantom at pixel location (190, 295) shown in Figure 9. 

Figure 9: Digital Shepp-Logan phantom with high attenuation pixel at location 
(190,295). (highlighted for clarity). 

 

The projection data simulated using Beer’s law (Eq. 1) was reconstructed using the 

MLEM algorithm, depicted in Figure 11 (b). With the prior knowledge of the location of 
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the high-attenuation object, the MLEM algorithm was able to accurately eliminate the 

FBP algorithm-generated streak artifacts as in Figure 11(a) by disregarding the 

projections passing through the pixels occupied by the metal to compute the likelihood. 

The approach becomes practical if a priori knowledge of the location of rigid metallic 

tools and their attenuation coefficients in the field of view of the scanner is available 

using specialized commercial tracking tools (such as those marketed by Polaris). 

 

 

Figure 10: Parallel beam sinogram of the digital phantom of Figure 9 with a high- 
intensity pixel (number of projections in degrees against number of detectors). 
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(a) Streak artifacts from the metal after reconstruction using FBP (highlighted for 
clarity). 

 

 

(b) Metal artifact reduction using MLEM and tracking information. 
Figure 11: Metal artifact comparison. 
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4.4. Feasibility of a continuous CT scan (Further dose reduction)  
 

To demonstrate our second strategy of dose reduction, the digital phantom was randomly 

deformed using the FFD B-spline technique (using Eq. 5 and 6) [12] and projections were 

generated using the Radon transform. Using the undeformed image as the initial estimate 

and sum of squared differences between radon transforms as the cost function, the image 

was iteratively updated through gradient descent optimization method (Eq. 7). For the 

abdominal phantom, a randomly deformed image of the original phantom was used as the 

initial estimate and the projection data from the original phantom was used to iteratively 

converge to the original image using gradient descent optimization. 

 

The number of projections used to compute the cost function was subsequently reduced 

and convergence was achieved without compromising the image quality in terms of 

PSNR. It was observed that using only a sixth of the original number of projections (30 

instead of 180) does not affect the reconstruction quality for a digital Shepp-Logan 

phantom.  
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Figure 12: Original deformed image (left) Recovered deformed image using gradient 

descent optimization (right) (1st data set). 
 

A visual comparison (Figure 12, Figure 16 and Figure 20) shows that the optimized 

image matches the original deformed image. The difference images (Figure 13, Figure 17 

and Figure 21) provide a better visual assessment of the algorithm. Further, a quantitative 

assessment of the algorithm was studied through the convergence of the cost function 

plots of Figure 14, Figure 18 and Figure 22. The PSNR values of Figure 15, Figure 19 

and Figure 23 as a function of the number of iterations are monotonously increasing. 
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Figure 13: Difference image of the original deformed image and its initial estimate (left), 

Difference image of the original deformed image and its estimate after convergence 
(right) (for Figure 12) 

 

Figure 14: Cost function as a function of the number of iterations for Figure 12.  
(Note the convergence of the cost function). 
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Figure 15: PSNR as a function of number of iterations for Figure 12.  
(Note the improvement of image quality in terms of PSNR as the number of iterations 

increases). 

 
 

Figure 16: Original deformed image (left) Recovered deformed image using gradient 
descent optimization (right) (2nd data set). 
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Figure 17: Difference image of the original deformed image and its initial estimate (left), 
Difference image of the original deformed image and its estimate after convergence 

(right) (for Figure 16) 
 

 

Figure 18: Cost function as a function of the number of iterations for Figure 16. 
(Note the convergence of the cost function). 
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Figure 19: PSNR as a function of number of iterations for Figure 16.  
(Note the improvement of image quality in terms of PSNR as the number of iterations 

increases). 
 

 
Figure 20: Original deformed image (left) Recovered deformed image using gradient 

descent optimization (right) (for abdominal phantom). 
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Figure 21: Difference image of the original deformed image and its initial estimate (left), 

Difference image of the original deformed image and its estimate after convergence 
(right) (for Figure 20). 

 

 

Figure 22: Cost function as a function of the number of iterations for Figure 20. 
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Figure 23: PSNR as a function of number of iterations for Figure 20. 
 

The cost function, for a reduced subset of projections (evenly spaced over 180o), was 

minimized using gradient descent optimization. The number of projections used for the 

computation of the cost function was minimized from 180 to 30 for the digital phantom 

and from 1160 to 29 for the abdominal phantom. Visual assessments of the deformation 

recovery are provided in Figure 24 and Figure 25. The PSNR comparison (Figure 28) 

shows that the image quality remains virtually unchanged with the use of partial 

projections (from 180 down to 30). The quality degrades with further reduction of 

projections. The cost function (Figure 26 and Figure 27) also converges as the number of 

iterations increases.  
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    (a)                                                                 (b) 

     
    (c)                                                                 (d) 

     
    (e)                                                                  (f) 

Figure 24: Reduction of dose with fewer projections. Original deformed image (a), 
Reconstruction using 90 (b), 60 (c), 45 (d), 36 (e), 30 (f) projections. 
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   (a)                                                                    (b) 

                
(c) (d) 

                  
    (e)                                                                   (f) 
Figure 25: Difference image of the original deformed image with: its initial estimate (a), 

its estimate after convergence using: 90 (b), 60 (c), 45 (d), 36 (e), 30 (f) projections. 
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Figure 26: Convergence of the const function using various subsets of projections. 
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Figure 27: A zoomed-in version of Figure 26 from iteration 20. 
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Figure 28: PSNR as a function of the number of iterations for subsets of projections. 

Image quality is unchanged down to 30 projections. 
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CHAPTER 5 

Discussion 

We have demonstrated a reduction in radiation using the MLEM algorithm. The iterative 

MLEM algorithm incorporates the stochastic properties of x-ray photons while deriving a 

closed-form solution for attenuation coefficients. The image quality of MLEM was 

consistently better than that of the corresponding FBP reconstruction for all available 

doses for a digital phantom. For the abdominal phantom, the image quality degraded 

much faster for the FBP algorithm than the MLEM algorithm with a reduction in 

radiation dose. Although PSNR provides a good estimate of image quality for a digital 

phantom, it is not the best assessment measure for clinical images because of the absence 

of a standard reference for comparison. However, it shows the general trend of the quality 

of reconstruction these algorithms provide with respect to the dose value. A 

comparatively slow deterioration of image quality with decreased dose in the case of the 

MLEM algorithm could be used to study the feasibility of providing lower dose (tube 

current) settings on commercial scanners. PSNR does not correlate strongly with the 

subjective image quality ratings or observer task performance, limiting its utility in image 

quality assessment investigations [14]. Other assessment measures, such as the just 

noticeable difference (JND) [15] measure should be investigated in order to provide a 

more accurate comparison between MLEM and FBP.  

 

The second strategy for dose reduction uses a nonrigid transformation model to describe 

tissue motion in a continuous CT scan. The algorithm makes no assumption about the 

physical properties of the tissue. The experimental results have shown that the algorithm 
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was able to recover the deformed image using the complete set of the projection data. It 

has been possible to recover the deformed image using only partial subsets of the 

projection data without considerable change in image quality. Thus a reduction from 180 

to 30 projections, which amounts to a dose reduction by a factor of 6 for the digital 

phantom and a reduction from 1160 to 29 projections, which amounts to a dose reduction 

by a factor of 40 for the abdominal phantom was achieved. However, values for the 

initial estimate of the step size and the iterative scaling factor needs to be experimented 

with to determine their effects on the time for convergence. 

 

The integration of our algorithm in the clinical setting with the use of specialized tracking 

instruments and markers will successfully eliminate metal artifacts resulting from tools in 

the field of view. The use of such instruments in a clinical setting was successfully tested 

in an animal experiment as part of our Operating Room of the Future research. A new 

technique for dose reduction by modifying the MLEM algorithm is currently under 

experimentation. It is explained in the next chapter. 

 

Accurate and interactive navigation of image-guided procedures relies on high frame-rate 

intraoperative imaging and 3D visualization of the involved anatomy, such as that 

possible with 64-slice CT. Reduced dose will minimize risks associated with prolonged 

radiation exposure. The achievement of dose reduction, as presented here, establishes the 

feasibility of an innovative continuous CT-guided visualization and navigation system. 

This study provides proof-of-concept evidence for dose reduction in two dimensions 

using an approach that can be extended easily to three dimensions. 
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CHAPTER 6 

6. Scope for further investigation through the extension of MLEM  

Modified MLEM algorithm 

Our preliminary experiments conducted on the digital Shepp-Logan phantom have 

proved that the cost function of the MLEM algorithm is optimum when the applied 

deformation is equal to the actual synthetic deformation. 

Keeping the original MLEM framework, two more parameters have been added to limit 

the deformations between frames.  
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where R represents terms independent of kµ  and hence independent of the pixel 

deformations kx∆  and ky∆  in the x- and y-direction. 

a and b are the squares of the limiting bounds on the deformations. 

In order to compute the maximizing kx∆ , derivative of the likelihood is computed to zero 

Taking derivative with respect to kx∆  
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Simplifying results in 2 solutions given by 
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Substituting the value of kx∆  from above in the quadratic equation in ky∆  

yields
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Solving for ky∆ and kx∆  yields two solutions given by  
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It is hypothesized that an appropriate selection of 1w and 2w will provide a maximizing 

value for kx∆  and ky∆ . 
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Thus a closed-form solution can be found for the intraoperative anatomic deformations 

for a coarse grid of pixels overlaid on the image. A B-spline interpolation, then, over the 

entire image would yield a smooth deformed image. We propose that a successful 

implementation of the modified MLEM algorithm would result in a dose reduction 

through the reduction in number of projections for our continuous CT application, a 

feasibility of which can only be determined through experimentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39

References 

[1] Cleaveland Clinic Foundation, “Minimally Invasive Cardiovascular and Thoracic 
Surgeries”, 20 Nov. 2006, 
<http://www.clevelandclinic.org/heartcenter/pub/guide/disease/mini_invasivehs.
htm> 

[2] A. S. Shetye and R. Shekhar, "A statistical approach to high quality CT 
reconstruction at low radiation doses for real-time guidance and navigation," 
Proc. SPIE Med. Imaging, [In Press]. 

[3] J. Browne and A. R. De Pierro, "A row-action alternative to the EM algorithm 
for maximizing likelihoods in emission tomography," IEEE Trans. Med. 
Imaging, vol. 15, pp. 687-699, 1996. 

[4] B. De Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, "An iterative 
maximum-likelihood polychromatic algorithm for CT," IEEE Trans. Med. 
Imaging, vol. 20, pp. 999-1008, 2001. 

[5] I. A. Elbakri and J. A. Fessler, "Statistical image reconstruction for polyenergetic 
x-ray computed tomography," IEEE Trans. Med. Imaging, vol. 21, pp. 89-99, 
2002. 

[6] J. A. Fessler and A. O. Hero, "Penalized maximum-likelihood image 
reconstruction using space-alternating generalized EM algorithms," IEEE Trans. 
Image Proces., vol. 4, pp. 1417-1429, 1995. 

[7] K. Lange and R. Carson, "EM reconstruction algorithms for emission and 
transmission tomography," Jour. Comput. Assist. Tomogr., vol. 8, pp. 306-316, 
1984. 

[8] L. A. Shepp and Y. Vardi, "Maximum likelihood reconstruction for emission 
tomography," IEEE Trans. Med. Imaging, vol. 1, pp. 113-122, 1982. 

[9] American Physical Society, “CT scans”, 11 Dec. 2006, 
<http://www.physicscentral.com/action/2002/scans.html>. 

[10] W. A. Kalender, “Review x-ray computed tomography,” Phys. Med. Biol., vol. 
51, pp. R29-R43, 2006. 

[11] A. C. Kak and M. Slaney, Principles of computerized tomographic imaging. New 
York: IEEE press, NY, 1988. 

[12] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. 
Hawkes, "Nonrigid registration using free-form deformations: application to 
breast MR images," IEEE Trans. Med. Imaging, vol. 18, pp. 712-721, 1999. 



 40

[13] P. A. Rattey and A. G. Lindgren, "Sampling the 2-D Radon Transform," IEEE 
Trans. Acoust., Speech, Signal Proces., vol. 29, pp. 994-1002, 1981. 

[14] W. F. Good, D. Gur, J. H. Feist, F. L. Thaete, C. R. Fuhrman, C. A. Britton and 
B. S. Slasky, “Subjective and objective assessment of image quality- a 
comparison,” Jour. Digital Imaging, 7(2), pp. 77-8, 1994. 

[15] K. M. Siddiqui, J. P. Johnson, B. I. Reiner, E. L. Siegel, “Discrete cosine 
transform JPEG compression vs. 2D JPEG2000 compression: JNDmetrix visual 
discrimination model image quality analysis,” Proc. SPIE, vol. 5748, pp. 202-
207, 2005. 

[16] P. J. La Rivière and D. Billmire, "Reduction of noise-induced streak artifacts in 
x-ray computed tomography through spline-based penalized-likelihood sinogram 
smoothing," IEEE Trans. Med. Imaging, vol. 24, pp. 105-111, 2005. 

[17] P. J. La Rivière and X. Pan, "Nonparametric regression sinogram smoothing 
using a roughness-penalized poission likelihood objective function," IEEE Trans. 
Med. Imaging, vol. 19, pp. 773-786, 2000. 

[18] T. Lei and W. Sewchand, "Statistical approach to x-ray CT imaging and its 
application in image analysis," IEEE Trans. Med. Imaging, pp. 53-61, 1992. 

[19] T. Li, X. Li, J. Wang, J. Wen, H. Lu, J. Hsieh, and Z. Liang, "Nonlinear 
sinogram smoothing for low-dose x-ray CT," IEEE Trans. Nuc. Sci., vol. 51, pp. 
2505-2513, 2004. 

[20] A. Papoulis, Random variables and stochastic processes. New York: McGraw 
Hill Book company, NY, 1965. 

[21] G. Wang, T. Frei, and M. W. Vannier, "Fast iterative algorithm for metal artifact 
reduction in x-ray CT," Acad. Radiol., vol. 7, pp. 607-614, 2000. 

[22] J. Wang, T. Li, H. Lu, and Z. Liang, "Penalized weighted least-squares approach 
to sinogram noise reduction and image reconstruction for low-dose x-ray 
computed tomography," IEEE Trans. Med. Imaging, vol. 25, pp. 1272-1283, 
2006. 

[23] Z. Wei, G. Li, and L. Qi, "New nonlinear conjugate gradient formulas for large-
scale unconstrained optimization problems," Appl. Math. Comput., vol. 179, pp. 
407-430, 2006. 

[24] B. R. Whiting, "Signal statistics of x-ray CT," Proc. SPIE Med. Imaging, vol. 
4682, pp. 53-60, 2002. 

[25] A. Ziegler, T. Nielsen, and M. Grass, "Iterative reconstruction of a region of 
interest for transmission tomography," Proc. SPIE Med. Imaging, vol. 6142, pp. 
614223, 2006. 



 41

[26] G. T. Herman, Image reconstruction from projections: Springer-Verlag Berlin 
Heidelberg, New York, NY, 1979. 

[27] M. C. Joshi and K. M. Moudgalya, Optimization theory and practice:  Alpha 
Science International Ltd. UK, 1979.  

[28] A. d'Aische, M. De Craene, X. Gregoire, B. Macq, and S. K. Warfield, "Efficient 
multi-modal dense field non-rigid registration: Alignment of histological and 
section images," Med. Imaging Anal., [In Press]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  



Avanti Shetye 
Email: avshetye@gmail.com                                                                           Phone: 240-515-8469 

  

 

 
Education 

• University of Maryland, College Park, MD                  (Aug 2004-Feb 2007) 
M.S., Electrical & Computer Engineering 

• University of Mumbai, India                                        (Aug 2000-May 2004) 
B.E. (Hons.) Electrical & Electronics Engineering; Ranked 11/3000 in the 
University.  

 
Research Experience 

Graduate Research Assistant                                         (Jul 2005-Feb 2007) 
Imaging Technologies Laboratory, Diagnostic Imaging, University of Maryland 
Medical System (UMMS) 
Developing a statistical algorithm for computed tomography (CT) 
reconstruction using low radiation doses for continuous scanning and 
navigation. The motivation behind this research is to utilize the benefit of 3D 
visualization achieved through CT for interventional purposes, but at an 
innocuous radiation dose and without compromising image quality. [MATLAB, 
C/C++] 
 
Researcher                                                                      (Jan 2005- Jun 2005) 
Speech Communications Laboratory, University of Maryland, College Park 
Independently researched analyzing “creakiness” in speech, one voice quality 
that can be used for speaker recognition, and submitted a 20 page report 
[MATLAB, Emacs, Xwin32] 
 

Publications 
• Avanti Shetye, Raj Shekhar, “A statistical approach to high-quality CT 

reconstruction at low radiation doses for real-time guidance and 
navigation”, Medical Imaging: Image Processing, Proc. SPIE, 2007, 
accepted for publication 

• Avanti S. Shetye & Carol y. Espy-Wilson, ”Analysis of model and creaky 
voice quality variations”, Journal of the Acoustical Society of America, 
vol. 118, pp. 1965, 2005 

 
Projects  

Medical Imaging [In MATLAB]                                                         (Fall 2005) 
• Designed & implemented iterative & non-iterative algorithms for 

reconstruction of PET, SPECT, CT 
• Implemented Segmentation algorithm for Ultrasound images 
• Implemented rigid registration algorithm for MRI, CT 
 
 



Avanti Shetye 
Email: avshetye@gmail.com                                                                           Phone: 240-515-8469 

  

 

Image & Video Compression [In MATLAB]                                (Spring 2005) 
• Implemented JPEG & JPEG2000 compression schemes using DCT, EZW 

and EBCOT in sequential, hierarchical, lossless & progressive modes 
• Extended JPEG to MPEG2 video compression with SNR, spatial & 

temporal scalability  
 
Multimedia Signal Processing                                                       (Fall 2004) 
• Addressed fundamental multimedia issues on audio processing, speech 

recognition & synthesis, and image & video processing using state-of-the-
art technologies [MATLAB, C++, IBM via voice].  

• Developed an application for making Mapquest interactive and user-
friendly while driving with voice recognition and text-to-speech conversion 
[MS Speech SDK, C++]  

 
Undergraduate level projects 
• Designed and programmed a speech recognition & robotic application 

system aimed at assisting the physically challenged with operation of 
routine devices using speech [C]                                            (Spring 2004) 

• Designed a wireless transmitter using analog and digital devices with a 
potential to transmit over 250 meters                                           (Fall 2003) 

 
Relevant Coursework 

• Information theory & coding  • Detection & Estimation theory 
• Multimedia Signal Processing • Digital Image Processing 
• Medical Imaging & Imaging 

Analysis 
• Advanced DSP & adaptive filter 

design 
• Probability & Stochastic 

Processes in Communications & 
Control 

• Modeling, Analysis, & 
optimization of Embedded 
Software 

 
Academic Achievements  

• Sir Ratan Tata Trust Scholarship for academic excellence in sophomore 
and junior years of BE                                                                   (2002-03) 

• JRD Tata Trust Scholarship in the junior year of BE                          (2003) 
• National Talent Scholarship (N.T.S.) by the National Council of 

Educational Research and Training (Was in the top 750 out of more than a 
million students all over India)                                                            (1998) 

• Third position at the city level and twenty-second position at the State 
level (among more than 10,000 students) in academic Talent Search 
examinations                                                                             (1996-1998) 

 



Avanti Shetye 
Email: avshetye@gmail.com                                                                           Phone: 240-515-8469 

  

 

Skills 
• Software languages – MATLAB, Pascal, C, C++, PHP  
• Assembly languages – 8085, 8086, 80286, 80386, 8051, Pentium 
• Operating system – MS DOS, WINDOWS 95/98/2000/NT/XP, UNIX 
• Applications – MS Office Suite, Microsoft Visio, X-windows, Emacs, Adobe 

Photoshop, HTML, Dreamweaver, SQL, Crystal Reports, Praat 
  
Other Professional Activities 

• Student Member – IEEE (The institute of Electrical and Electronics 
Engineers, Inc.)                                                                         (2005-2007) 

• Student Head of Electrical Engineering Department during the Technical 
Festival Technovanza of the senior year of BE                             (2003-04) 

• General Secretary, Electrical Engineers’ Student Association (EESA) -
organized technical activities                                                         (2001-02) 

• EESA Librarian - Conceived & created the EESA library for Electrical 
Engineers                                                                                      (2001-02) 

 
Languages – English (Fluent), French (Written language), Hindi (Fluent) 


