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In this Thesis, we focus on problems in surveillance video analysis and propose 

advanced metadata modeling techniques to address them. First, we explore the 

problem of constructing a snapshot summary of people in a video sequence. We 

propose an algorithm based on the eigen-analysis of faces and present an evaluation 

of the method. Second, we present an algorithm to learn occlusion points in a scene 

using long observations of moving objects, provide an implementation and evaluate 

its performance. Third, to address the problem of availability and storage of 

surveillance videos, we propose a novel methodology to simulate video metadata. 

The technique is completely automated and can generate metadata for any scenario 

with minimal user interaction. Finally, a threat detection model using activity analysis 

and trajectory data of moving objects is proposed and implemented. The collection of 

tools presented in this Thesis provides a basis for higher level video analysis 

algorithms. 
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Chapter 1: Introduction 

In recent years there has been a great deal of interest in developing robust algorithms 

for the automated analysis of surveillance video and enhancing current security 

systems. A typical state of the art video surveillance system consists of a network of 

security cameras, which either capture and record video or feed it to a central location 

for recording and monitoring by security personnel. The recorded video is often used 

for forensic purposes and is typically indexed by time and location so that it can be 

retrieved and played back. For real time video, however, it may be physically 

impossible for operators to watch all video feeds at the same time. Such videos may 

have no activity for long periods of time, making it difficult for a human to pay 

attention continuously. During lapses important details can be missed. However, if we 

can limit the human activity to key decision points and remove them from monitoring 

aspects of the system, efficiency can be improved. The goal is to automate the task of 

analyzing the video and making intelligent hypotheses to prompt the security 

personnel when abnormal events occur.  A key challenge for surveillance systems is 

therefore not just recording and archiving video, but in making intelligent use of tools 

that will allow an operator to access the video in real time in response to a specific 

need. 

 

Although the ultimate goal of surveillance video systems is to automatically detect 

various activities and alert the security personnel, current technology is far from 

adequate. We are a long way from being able to detect a car theft from a parking lot 

or a bank robbery being committed. The activity may appear normal (someone gets in 
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a car and drives away) or the scene can be too complex (for example, successfully 

tracking a person running in a crowded place).  

 

There is also a class of problems where the goal is not necessarily to identify an 

activity when it is occurring, but rather to gather information as rapidly and reliably 

as possible, so that it can be used for forensic examination. For instance, consider an 

event like theft occurring in a parking lot. The security officer would like to use the 

recorded surveillance videos to identify what happened and the exact time instance 

when the theft occurred. He would then want to track those people to see where they 

came from or where they went, identify their vehicle in the parking lot or identify 

others they have been talking with. Unfortunately the current video recording systems 

provide little more than playback and time indexing of the stored video.  

 

In this thesis we focus on providing a set of techniques that can be used to build tools 

to allow operators to control and manipulate video in meaningful ways such as 

outlined above. A key component of developing these capabilities is being able to 

manage the metadata provided by the low-level vision processes in a useful manner. 

Since doing video analysis on the fly is not practical, it is helpful to provide a 

structure where this metadata can be efficiently indexed and retrieved.  

 

The thesis builds upon the work done previously at the University of Maryland on 

developing applications involving analysis, storage and retrieval of video containing 

moving people and vehicles. The existing framework consisted of a robust codebook 
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based background subtraction module in the form of an API [1], modules for tracking 

of objects segmented from the background and annotation of objects with MPEG-7 

descriptors including color, shape and motion for incorporation to higher level 

retrieval systems [2, 3]. These modules are used as the basic tools upon which the 

work in this thesis is based. 

 

In this work, we first explore the problem of determining an optimal view (i.e. a 

snapshot) of a person from a video sequence. In scenarios such as theft, the long 

duration surveillance videos need to be scanned quickly to extract maximum 

information possible for further investigation. Since human operators are very good at 

identifying people from snapshots, we explore the problem of automatically 

determining an optimal view of a person from an extended video. A measure of 

quality of the snapshot includes the ability to discern the face, proximity to the 

camera and a lack of occlusion. Given such a capability, the surveillance system 

could rapidly build a set of candidate suspects for the operator to view and allow 

them to choose suspects to follow.   

 

Learning semantics of the video scene over long periods of time is another active area 

of research. Work has previously appeared in the literature on generating semantic 

models of scenes, learning entry/exit points, gathering points, routes and junctions 

[4]. In this thesis we learn static occlusion points in the scene using moving 

foreground blobs. The motivation is to determine locations of doors, desks and other 

stationary objects that occlude moving objects and to generate structural information 



 

 4 
 

about the scene. Occlusion analysis can be useful for tracking of moving objects. It is 

known that tracking under occlusions is a difficult problem and various techniques 

have been presented. We present a mathematical model to locate static occlusions 

using overlap of the contours of foreground blobs obtained by robust background 

subtraction.  

 

Another challenge in processing surveillance video is obtaining appropriate video 

sequences for development of surveillance algorithms. In addition to physical storage 

and memory constraints, there are legal issues in monitoring public areas like airports, 

train stations or people in indoor environment like offices or shopping malls. 

Although these areas need strong security systems, recording video for experimental 

purposes is prohibited in such places. Furthermore, recent trends toward statistical 

techniques require extensive training data. By noting that in most cases we need to 

store the metadata and not the actual video, we propose to address this problem by 

“simulating” certain video metadata for a given scene. We can then extract useful 

metadata features from the simulated data for low-level vision algorithm analysis 

rather than extracting the metadata from real video sequences. In this thesis we 

develop a tool to automatically generate metadata for surveillance scenarios with 

minimal user interaction. 

 

Activity recognition and abnormal behavior detection in videos is also an active area 

of research in surveillance video analysis. The primary task of surveillance system is 

to assist the operator in preventing a security breach. Hence learning abnormal 
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behavior patterns that constitute “threat” will be immensely useful in preventing such 

situations. We consider the problem of modeling trajectory patterns that correspond to 

a “threat” relative to a pre-specified “target”. Some examples of behaviors that 

constitute threat are - a person entering a restricted area, performing activities like 

running, loitering and fast approaching a specified target.  We describe a model to 

compute the threat level at each trajectory point of the moving foreground object and 

present the progression of threat level to the operator visually. Thus our threat level 

scoring engine analyzes the trajectory and gives real time scoring based on the 

learned model. Visual alarm notification is generated when a threshold is reached.  

 

The following summarizes our contributions: 

1. An enhanced snapshot selection algorithm based on eigen-analysis of faces has 

been proposed and implemented. This algorithm has been tested on various video 

sequences and an evaluation of the results against manually labeled ground truths 

is presented. 

2. A method to learn occlusions in a scene based on long observations has been 

proposed, implemented and evaluated. 

3. A methodology to simulate the metadata for surveillance videos is proposed and 

implemented. The proposed technique is completely automated and can be used to 

generate metadata for any scenario with minimal user interaction. 

4. A threat detection model using activity map analysis through long observations is 

proposed and implemented. We present the results for several scenarios. 
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The remainder of this thesis is organized in five chapters. In Chapter 2, we provide a 

literature review of techniques related to snapshot selection in videos and present our 

eigen-analysis based snapshot metadata extraction algorithm in detail. In Chapter 3 

we discuss occlusion modeling using long observations in surveillance videos. A 

mathematical model, its implementation and results are described for various video 

sequences. Chapter 4 proposes a novel methodology to automatically simulate video 

metadata for a given surveillance scenario. The proposed technique is illustrated for 

an office and shopping mall scenario. The utility of this tool is demonstrated by using 

the simulated metadata for entry/exit zone modeling and route learning algorithms. In 

Chapter 5, a threat metadata model is described and results are presented for a 

shopping mall scenario. In Chapter 6, we summarize the accomplishments. 
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Chapter 2: Enhanced Snapshot Selection 
 

Consider a scenario where a crime has been committed; the available video footage 

needs to be scanned quickly and information about the possible suspects needs to be 

collected as soon as possible. Since neither the perpetrator, nor the exact time when 

the crime was committed may be known, manual playback of a very long video 

sequence to locate the possible suspects may be required. We propose to automate 

this scanning process by extracting snapshots of people from the video sequence.  

 

This problem is similar to the problem of key frame extraction from video with the 

added constraint of selecting visible faces. Recent approaches to extract key frames 

can be found in [5-8]. However, the objective of these algorithms is to pick key 

frames that capture the summary of the video. These authors present a video summary 

in the context of search, retrieval and browsing. Key frame extraction from the point 

of view of surveillance has also been studied in the literature. A multicamera 

surveillance strategy for non-overlapping cameras has been proposed by Porikli [9] 

where video sequences are generated for each tracked object instead of storing videos 

from each camera separately. Latecki et. al. have studied the problem of detecting 

changes in surveillance videos, including the appearance/disappearance of objects and 

changes in velocity and direction of moving objects using the trajectory data [10]. 

However, none of these address the problem of identifying snapshots of the people 

present. Human operators can be very accurate in identifying people and vehicles 

from snapshots. We explore the problem of determining the best discernable view of 
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a person from an extended video to produce a summary consisting of snapshots of 

people present. These snapshots will be presented to the operator for viewing. A 

measure of quality of the frame includes the ability to discern a face, size and absence 

of occlusion. Given such a capability, the system could rapidly build a set of 

candidate suspects for the operator to view and allow them to choose suspects to 

follow. 

 

The first step in determining the best view of a person is to detect a face in the 

moving foreground objects. A measure of “faceness” of the blob is then used to 

decide the appropriateness of the image for snapshoting. (For example, a frontal face 

view would be more appropriate as a snapshot than a profile of the face.) In the 

following sections we describe the approach used for frontal face detection and 

ranking of frames as snapshots.  

 

2.1 Frontal Face Detection 

 
Numerous methods have been proposed to detect faces in a single grayscale or color 

image. Chellappa et. al. published a survey on face recognition and detection methods 

in 1995 [11] and a more recent survey on face detection alone was published by Yang  

et.al. [12] and provides the categorization as shown below (see Figure 1). 
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Figure 1: Categorization of methods for face detection [12] 
 
 

Facial feature based methods commonly extract facial features such as eyebrows, 

eyes, noses, mouths, and hair-lines using edge detectors. Based on the extracted 

features, a statistical model is built to describe their relationships and to verify the 

existence of a face. Examples of these detectors have been presented by Govindaraju 

[13], Graf et. al. [14] and Leung et. al. [15]. 
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Texture based approaches have been used by Dai and Nakano to separate faces from 

different objects [16]. In their work, color information is also incorporated with the 

face-texture model. 

 

In template matching based approaches, a standard face pattern (typically frontal) is 

manually predefined or parameterized by a function. Given an input image, the 

correlations are computed with standard patterns for the face contour, eyes, nose, and 

mouth independently. The presence of a face is determined based on the correlation 

values. This approach is inadequate for face detection since it cannot effectively deal 

with variation in scale, pose, and shape [17]. 

 

Various neural network architectures have been proposed for face detection. The 

advantage of using neural networks for face detection is the feasibility of training a 

system to capture the complex class conditional density of face patterns. However, 

one drawback is that the network architecture has to be extensively tuned (number of 

layers, number of nodes, learning rates, etc.) to get exceptional performance [17, 18]. 

 

Another approach in face detection and recognition is the eigen-space decomposition 

[19, 20]. With this method, the image under consideration is projected into a low 

dimensional feature space that is spanned by the eigenvectors of a set of test faces. 

For the detection task, the image is reconstructed and the resulting error between 

original image and the reconstructed image is computed. An image pattern is 

classified as a face if its distance to the face space is smaller than a determined 
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threshold. PCA can also be used for face recognition by comparing the resulting PCA 

coefficients (principal components) to those of images in the database. 

 

In this thesis, we use PCA based frontal face detection to build the snapshoting 

algorithm. It should be noted that any other face detector could be used in place of the 

PCA method and the approach for snapshot selection would remain the same. 

Experiments show that with the PCA based face detector, the background leads to a 

significant number of false classifications if the face region is relatively small. As 

color is the most discriminating feature of a facial region, the first step of many face 

detection algorithms is a pixel-based color segmentation to detect skin-colored 

regions.  We also include color component information to localize the skin regions in 

the image. A skin color probability image is generated by color analysis and PCA is 

performed on the new image. This helps in identifying a relatively smaller subset of 

the original image for face detection rather than searching the whole luminance image 

and reduces the false detections. 

2.2 Skin Color Detection 

The color of human skin is distinctive from the color of many other natural objects, 

hence color is a very important feature that can be used for face detection [18]. 

Analyzing skin-tone color statistics, one observes that skin colors are distributed over 

a small area in the chrominance plane and the major difference between skin tones is 

intensity. Thus, the image is first converted into a color space that provides a 

separation into a luminance channel and two chrominance components in the case of 

the YCbCr color space. The distribution of the training skin pixels in the CbCr plane 
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is given in Figure 2. The figure shows that the color of human skin pixels is confined 

to a very small region in the chrominance space. 

 
 

 Figure 2: Distribution plot for Cb, Cr Data 
 

2.2.1 Skin Color Database 

Based on the above observation, the skin color distribution CbCr plane is modeled by 

a 2D Gaussian distribution. The database shown in Figure 3 is used to build the 

Gaussian model. 

         
 

     
 

     
     

    
       
 

      Figure 3: Database of sample images for skin color 
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The database is created by cropping subimages from the different color images of 

faces.  A total 50 skin images of various size from 10x10 up to 50x50 are use for 

training. The images are manually cropped from colored face images taken from the 

CMU color face database [21]. The face database contains people with various 

complexions.  

2.2.1 Skin Color Model 

For a database of M training pixels, the Gaussian distribution is given as ),( 2
ssN Σµ  

with ),( CbCrs =µ  where,  

∑
=
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We create a skin probability image, which indicates the probability of each image 

pixel belonging t o the skin class S. Let wij = [Cb Cr]T denote the chrominance vector 

of an input pixel. Then the probability that the given pixel lies in the skin distribution 

is given by  

( ) ( )

2
1

1

||2

2
1exp

)|(

S

SijS
T

Sij

ij

ww
Swp

∑

⎥⎦
⎤

⎢⎣
⎡ −∑−−

=

−

π

µµ
           (2.4) 



 

 14 
 

 

where, µs is the mean and Σs is the covariance matrix of the distribution. 

2.2.3 Skin Detection Results 

The skin probability images obtained after processing different test images are shown 

below. In each case, the image on the left is the original image and the image on the 

right is the intensity map obtained after skin detection. Since this is a probability map, 

the brighter regions in the skin map imply greater probability of skin color being 

present. Figures 4 (a), (b) and (c) show that the skin color on the face and arms is 

correctly detected with a higher probability. However, a person wearing skin colored 

clothes may give false alarms by this method. 

 

     (a) 

 

     (b) 
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     (c) 

Figure 4: (a) to (c) Original image vs. Skin probability image 
 

2.3 Face detection using Principle Component Analysis  

PCA for face detection is based on the eigenface representation of faces. The main 

idea is to decompose face images into a small set of characteristic feature images 

called eigenfaces, which may be thought of as the principal components of the 

original images. These eigenfaces function as the orthogonal basis vectors of a linear 

subspace called “face space”. Detection is performed by projecting a new image into 

this face space and then computing its distance from face space [19, 20]. 

2.3.1 Construction of Face Space 

Suppose a face image consists of N pixels, so it can be represented by a vector  of 

dimension N. Given a training set of M face images, the average face of these M 

images is given by  

    ∑
=

Γ=Ψ
M

i iM 1

1               (2.5) 

Then each face iΓ differs from the average face  by iΦ :  

    ( )vii Ψ−Γ=Φ                (2.6) 
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A covariance matrix of the training images can be constructed as follows:  

TDDC =               (2.7) 

where [ ]MC ΦΦΦΦ= ...321 . The basis vectors of the face space, i.e., the eigenfaces, 

are then the orthogonal eigenvectors of the covariance matrix .  

Finding the eigenvectors of the N by N matrix  is computationally very expensive 

task for typical image sizes, hence, a simplified calculation has to be adopted [19]. 

Since the number of training images is usually less than the number of pixels in an 

image, there will be only M-1, instead of N, meaningful eigenvectors. Therefore, the 

eigenfaces are computed by first finding the eigenvectors, vi (i = 1 to M), of the M by 

M matrix L:  

DTDL =                    (2.8) 

Then it can be shown that ui = D.vi  is the eigenvector of C 

 

The eigenvectors are ordered in the decreasing order of eigenvalue. The eigenvector 

is rearranged into an NN ×  eigenface. These images give the eigenspace 

corresponding to the training database. 

2.3.2 Projecting an Image on the Face Space 

The new input image is first preprocessed by subtracting the mean image from it. 

( )vΨ−Γ=Φ             (2.9) 

It is then projected onto the face space by taking the dot product between the 

eigenfaces and the preprocessed image. 
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Φ= T
iuiw   for i = 1 to p, p < M         (2.10) 

where p is the reduced face space dimension used for face detection and ui is the 

normalized eigenvector. 

2.3.3 Face Detection 

The reconstructed image is obtained  

∑
=

=Φ
p

i iwiur 1
            (2.11) 

The reconstruction error is obtained by the Euclidean distance between the original 

image and the reconstructed image. 

2|||| rΦ−Φ=ε             (2.12) 

The error is referred to as “distance from face space” (DFFS). If the DFFS is greater 

than a threshold the input image is NOT a face. Otherwise it is classified as a face. 

2.3.4 Implementation and Results 

In this section we present the results obtained by the above method. A database of 86 

images was used to construct the face space (downloaded from Rice database [22]. 

This contains images of 32 individuals with two to three different face images of the 

same person (see Figure 5). The sample images from the database are each of the size 

30x25. The resulting eigenfaces for these images are shown in Figure 6. The skin 

detection algorithm was run on the input color image. For each resulting skin blob in 

the image, a sub-image was selected from the original image for face detection. The 

image was then converted into gray scale and PCA was run on the regions identified 

as skin blobs. The global minimum of all the candidate locations, whose error was 
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less than the threshold, was selected as a face region. Figures 7 through 11 show the 

results of skin detection and face detection for several test images. 

 

Figure 5: Sample face images from the database 
 

 
Figure 6: Eigenfaces generated from the above set of faces 
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Figure 7: Face detection result – Correctly detected 
 

 

Figure 8: Face detection result- Correctly detected 
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Figure 9: Face detection result- Correctly detected 

 

Figure 10: Face detection result – missed detection for a tilted face 
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Figure 11: Face detection result – false detection for a profile face 

 

2.4 Reducing false alarms 

As seen above, the face detection performs quite well for frontal faces, except for a 

few false alarms in cases like profiles. In addition, smooth blobs that sometimes 

correspond to hands or feet may produce false alarms. We filter out the hands and feet 

by doing ellipse fitting and measuring the ratio of major & minor axes.  In addition, 

any skin blobs present below the object’s centroid are typically not a face and can be 

rejected.  To eliminate the smooth blobs, the blob smoothness measure proved very 

effective. Blob smoothness measure is defined as: 

blobskin  in the pixels Total 
 odneighborho ncehigh varia with pixels of No

=γ           (2.13) 

Following figures shows the plots for variance neighborhood and the corresponding 

values for γ. The threshold for high variance is computed empirically and is set to 10. 
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It can be seen that the smooth blobs (Figure 12 (a) to (e)) have much lower value of γ 

than the frontal face blobs (Figure 12 (f) to (i)) and therefore can be rejected. 

    

    (a) γ = 0.072727     

 

 (b) γ = 0.013095 

 

    (c) γ = 0   
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      (d) γ= 0.03125 

 

(e) γ = 0.017593   

 

     (f) γ = 0.17105 
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    (g) γ = 0.24047    

  

     (h) γ = 0.31019 

 

(i) γ = 0.13587 

Figure 12 (a) to (i): Variance neighborhood plots for various face blobs with 
corresponding blob smoothness measure γ 
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2.4 Snapshot Algorithm Evaluation 
 

2.4.1 Data Set 

The problem of snapshot selection in a video can be considered as performing skin 

color and face detection on individual frames of the video. Thus the algorithms 

previously discussed i.e. skin and face detection on images can be applied in the 

context of video by considering one frame of the video at a time. These frames are 

finally ranked in decreasing order of their face confidence measure. We consider ten 

test video sequences to evaluate the performance of the snapshoting algorithm. Each 

sequence is between 500 and 1000 frames with one or more people each. In these 

videos, a subject typically walks in the scene along a circle or back and forth from 

one end to the other. The subject looks at the camera for a few seconds while moving, 

thereby allowing frontal face to be captured in a few frames in the video. The 

remaining frames contain side or back views of the subject where the face may or 

may not be visible. The snapshot summary of such a video sequence should contain 

the frontal faces as snapshots. The sequences were manually evaluated by a group of 

20 participants who were asked to choose up to five best (subjective) frames for each 

video sequences that would qualify as snapshots (i.e. help establish the identity of the 

person in the video). The participants were asked to rank the chosen frames in 

decreasing order of their usefulness as snapshots. The frame ranks are attached 

weights from 5 (highest ranking snapshot) to 1 (lowest ranking snapshot).  For a 

given video, all frames selected by participants are included in the snapshot ground 

truth data.  By counting the number of votes each frames receives, the snapshot 

confidence measures is calculated as follows: 
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∑=
j

ji wMeasureConfidence   for all i and all j         (2.14) 

where i is the frame number in the video sequence, j is the participant number and wj 

is the weight attached to the vote by participant j for frame i. Snapshots are then 

ranked in the decreasing order of their confidence measure. To illustrate this 

procedure, we shall consider an example. Let us say the following frames are chosen 

and ranked as snapshots by a group of three participants for a video consisting of 100 

frames. 

 

Frame 

Rank 

Weight 

Factor 

Frames chosen by 

Participant 1 

(Frame #) 

Frames chosen 

by Participant 2 

(Frame #) 

Frames chosen 

by Participant 3 

(Frame #) 

1 5 10 15 10 

2 4 15 20 11 

3 3 20 10 15 

4 2 45 45 5 

5 1 12 11 20 

Table 1: Example of snapshot ground truth generation by voting  
 

Weight Factor Frame 

Number Participant 

1 

Participant 

2 

Participant 

3 

Confidence 

Measure 

5 - - 2 2 

10 5 3 5 13 

11 - 1 4 5 

12 1 - - 1 
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15 4 5 3 12 

20 3 4 1 8 

45 2 2 - 4 

Table 2: Computing confidence measure to rank snapshots in the ground truth 
summary 

 

The frames are sorted in decreasing order of the confidence measure, to generate the 

ground truth snapshot summary for the video sequence. In the above example, the 

final ground truth summary will be:  

Snapshot Rank Frame # Confidence Measure 

1 10 13 

2 15 12 

3 20 8 

4 11 5 

5 45 4 

6 5 2 

7 12 1 

Table 3: Final snapshot ground truth summary  
 

To evaluate summary obtained by the snapshot selection algorithm, the algorithm was 

applied to each sequence and the DDFS values were monitored. The candidate 

images were then ranked in the decreasing order of DFFS and these snapshot results 

were compared with the ground truth data.  Figure 13 shows a summary of the steps 

involved in snapshot algorithm. 
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Figure 13: Steps involved in Snapshot algorithm  

2.4.1 Metrics: Recall and Precision  

Recall is a measure of how many frames in the ground truth are matched by the 

candidate snapshot summary [23].  A reference frame is matched if there exists at 

least one frame in the candidate summary that is similar to the reference frame 

according to some preset criterion.  Recall is computed as: 

Recall = Nref_m / Nref                (2.15) 

where Nref is the total number of frames in the reference summary and Nref_m is the 

total number of reference frames being matched.  

 

Precision is a measure of how many frames in the candidate snapshot summary match 

the frames in the reference summary. Intuitively, it gives an indication of how precise 

the candidate summary is. 

The cumulative average precision (AP) is defined as:    

∑
=

=
i

k
ikpiAP

1
/)()(             (2.16) 

where p(k) is the precision at frame k given by: 

Precision = Ncan_m / Ncan            (2.17) 

 
Background 

Subtraction 
 
Skin 
detection 

 
Face 
detection 

Candidate 
I/p video 
frame Foreground 

blobs

Skin blobs to 
be examined 

DFFS 
value 
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Ncan is the total number of frames in the candidate summary and Ncan_m is the number 

of frames being matched. 

2.4.2 Results 

 

Sequence  # Snapshot Ground Truth  Snapshot algorithm results 

1 18 17 5 15 34 16 1 4 6 35 23 18 5 4 22 3 19 2 

2 9 10 27 28 26 18 30 29 11 17 29 30 9 34 31 26 10 32 28 33 27 24

3 8 7 9 10 11 4 12 11 8 7 10 

4 8 7 9 10 5 1 4 5 9 8 1 12 2 15 14 13 

5 8 10 9 11 2 4 1 6 2 3 11 10 4 5 1 

6 7 9 8 10 1 4 3 9 7 8 1 10 2 3 4 

7 11 12 9 10 1 6 5 8 11 4 3 10 2 9 12 5 1 

8 8 9 11 12 10 2 12 1 8 11 10 9 14 2 

9 9 10 11 8 12 4 13 16 17 11 10 9 16 15 7 8 14 

10 9 10 15 14 8 11 13 2 12 9 11 

 

Table 4: Comparison of Ground truths and snapshot algorithm results for the test 
sequences 

 

Sequence  # Recall (%) Precision

1 66.67 0.68 

2 80 0.827 

3 66.67 0.659 
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4 57.14 0.728 

5 62.5 0.782 

6 100 0.961 

7 75 0.661 

8 100 0.8 

9 62.5 0.679 

10 22.2 1.0 

 

Table 5: Recall and Precision results the for the test sequences 
 

Figures 14, 17 and 20 show three video sequences for snapshot algorithm testing. 

Figures 15, 18 and 21 show the DFFS plots for these sequences respectively. The 

final selected snapshots are shown in Figures 16, 19 and 22 respectively. Table 1 

shows a comparison of ground truths and snapshot algorithm results the for the test 

sequences. Recall and precision results for the snapshot algorithm are shown in Table 

2. 
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Figure 14 Test Sequence 
 

 

Figure 15: Distance from Face Space (DFFS) plot for sequence in Figure 17 
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   26      27 

  

   24      8 

 

  9 

 Figure 16: Optimal snapshots for sequence in Figure 17 
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Figure 17: Candidate frames for a test Sequence 
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Figure 18: Distance from Face Space (DFFS) plot for sequence in Figure 19 
 

 

    18     2 

 

    7     11 
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  8 

 Figure 19: Optimal snapshots for sequence in Figure 20 

 

   

   

   

 

Figure 20: Candidate frames for a test sequence 
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  Figure 21: DFFS Plot for sequence in Figure 23 

 

7      5 

 

 10     2 
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  6 

  Figure 22: Optimal snapshots for sequence in Figure 20 
 

2.4.3 Discussion 

The snapshot results in Figures 16, 19 and 22 show that the performance of the 

snapshot algorithm depends upon the accuracy of frontal face detection engine. In 

some cases false alarms in face detection can result in incorrect snapshots, for 

instance the frames where a person wears skin colored clothes may lead to false 

alarms for skin detection (Figure 22).  

 

The snapshot summary may therefore contain some outliers. However, the recall and 

precision figures indicate that in most cases the ground truth summary frames appear 

in top few frames of the snapshot summary. 

 

The algorithm can be extended to multiple camera scenarios, where tracking results 

can be used to correlate the same object across multiple cameras and their snapshots 

results can be combined.  
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Chapter 3: Occlusion Modeling 

3.1 Introduction 

One fundamental problem of automated surveillance is to track foreground objects 

reliably as they move in the scene. The tracking of an object becomes difficult when 

the object is either partially or completely occluded by structures such as walls, doors 

or desks or the object interacts with other moving objects in the scene and gets 

occluded. Several techniques have been presented to successfully track objects under 

occlusion. A typical blob based method detects occlusions by merge and split of blobs 

[24]. Haritaoglu et al. have used appearance models to handle occlusion problem. 

They combine the gray-scale texture appearance and shape information of a person 

together in a 2D dynamic template [24]. Roh et al. use an appearance model based on 

temporal color to track multiple people in the presence of occlusion. They combine 

color values with associated weights determined by the size, duration, frequency of an 

object [25]. Senior et. al. use an adaptive color based appearance model to track 

people under occlusion [26]. Greenhill et. al. model structural static occlusions in the 

scene by generating a depth map of the scene structure at each pixel from a training 

set of observations of detected moving people [27]. The depth map is used to predict 

the visibility of the object at any point in the image and improves the accuracy of 

tracking under occlusion. In addition, stereo cameras have also been used for 

automatic detection of static occlusions in a scene [28]. 

 

These techniques involve the analysis of complex appearance models and are often 

computationally intensive. We present a simple, yet efficient technique to gather 
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structural information about the “static occlusions” in the scene using long 

observations from surveillance video. The motivation for learning occlusions is to 

determine locations of doors, desks and other stationary objects that occlude the 

moving objects in the scene and generate structural information about the scene. This 

information will be useful in improving the accuracy of tracking modules. For 

instance, when the object passes by an occlusion we can adapt the appearance model 

and use only the visible part of object (which is not occluded) for tracking. Or we can 

choose to reset the appearance model and end the track at the occlusion.  

 

In this section we present a model to learn static occlusions in the scene using 

contours of foreground blobs obtained by robust background subtraction. The results 

of occlusion modeling are shown for sample video sequences and compared with the 

ground truth. 

 

3.2 Approach 1: Contour overlap 

3.2.1 Overview 

When an object moves into an occlusion, the contour of the object changes at all 

points except at the points that correspond to the occlusion. This means that the 

contours of a moving object overlap (generally partially) along the edges of occluding 

objects like a door or desk. For example, Figure 23 (a) shows sample frames from a 

five minute sequence recorded at 30 fps. Here, a person walks back and forth in the 

scene which consists of a door and partitioning wall of a cubicle as the occlusions. 

We perform robust codebook based background subtraction on the video frames and 
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extract the moving foreground blobs [1]. By tracing the boundary of the detected 

foreground blob, we extract its boundary contours. Figures 24 (a) and (b) show two 

contours of the person from successive frames extracted by the background 

subtraction and boundary extraction processing. In Figure 24 (c) these contours are 

shown superimposed. The right edge with maximum contour overlap corresponds to 

the cubicle partitioning wall in the scene. In the remaining portions of the contours, 

there is not a strong overlap as the person has moved.  

 

We accumulate the overlap counts for each pixel for the successive frames in the 

video sequence. The overlap between contours is determined by a binary AND 

operation on the binary contour images. The resulting boundary overlap count is 

displayed in the form of intensity map in Figure 25. As the number of observed 

frames increases (Figure 25 (a) to Figure 25 (h)) the occlusions become stronger. The 

final occlusion map is obtained by applying a Canny edge detector on Figure 25 (h) 

and is shown in Figure 25 (i). The Canny edge detector finds edges by looking for 

local maxima of the gradient of image [29]. The gradient is calculated using the 

derivative of a Gaussian filter. The Canny method uses two thresholds, to detect 

strong and weak edges, and includes the weak edges in the output only if they are 

connected to strong edges. This results is a binarized occlusion map and a comparison 

to the ground truth Figure 23 (b) shows the map overlaps with the ground truth 

occlusion boundaries wherever the foreground objects have been occluded by these 

edges. The top edge of the door has not been captured by the occlusion map as the 

boundary overlaps are weak along this edge.  
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3.2.2 Results 

    

   

   
 (a) 

 

 
    (b) 
 

Figure 23: (a) Indoor scene for occlusion analysis (b) Ground truth. Occlusion edges 
marked in red 
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 (a)      (b) 
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     (c) 

Figure 24: (a) and (b) contours of moving object for successive frames (c) contours 
from (a) and (b) shown overlapped. The right edge of the contours corresponds to an 

occlusion in the scene. 
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  (a)    (b)   (c) 

Boundary overlap map after frame 5000
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  (d)    (e)   (f) 
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Boundary overlap map after frame 8000
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  (g)          (h)   (i) 
 

Figure 25: Occlusion map after (a)1000 frames (b)2000 frames (c)3000 frames 
(d)4000 frames (e)5000 frames (f)6000 frames (g) 8000 frames (h)9000 frames (i) 

Final occlusion map by applying Canny filter. 

 

3.2.3 Enhancement 

 
Although the result in Figure 25 are as expected along the occluding edges (large 

value in the boundary overlap map), the result is very noisy. This is because we 

consider only successive frames in finding boundary overlap votes. We can remove 

the false and noisy votes by noting that in the presence of an occlusion, the overlap 

along the contours of the object will persist for several frames with the number 

depending on the speed at which the object is moving. We use this observation to 

modify the boundary overlap strategy in the following manner: 

Iboundary = {[(I1 & I2) + (I2 & I3) + (I3 & I4) + (I4 & I5) + (I5 & I6)] > τ}     (3.1) 

Iresult = Iresult + Iboundary                  (3.2) 

where & is the binary AND operation, I1 to I6 are six successive images,  Iboundary is 

the boundary overlap map for these six images, Iresult is the accumulated boundary 

overlap image i.e. occlusion map and τ is a threshold value. 

 

The results for this approach are shown in Figure 26. It can be seen that the occluding 

edges are stronger and the noise in the occlusion map has been reduced. Figure 26 (j) 
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shows the result of applying Canny edge detector on the occlusion map in Figure 26 

(i). This result is closer to the ground truth map in Figure 23 (b) than the result in 

Figure 25 (i). The occluding edges in the scene that the objects pass during learning 

are correctly identified by the algorithm. 
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  (a)        (b)       (c) 

Boundary overlap map after frame 4000
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  (d)        (e)       (f) 

Boundary overlap map after frame 7000
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  (g)        (h)       (i) 

 
  (j) 
  

Figure 26: Occlusion map after (a)1000 frames (b)2000 frames (c)3000 frames 
(d)4000 frames (e)5000 frames (f)6000 frames (g) 7000 frames (h)8000 frames 

(i)9000 frames (j) Final occlusion map by applying Canny filter 
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3.3 Approach 2: Distance Transform  

3.3.1 Overview 

Since we are interested in locations where the contours of the moving object overlap, 

we can also use a distance transform metric to determine the pixels that are close to 

each other in the successive contours. Traditionally, the result of distance transform 

applied to a binary image is a gray level image where the gray level intensity of 

points inside foreground (white) regions are calculated based on the distance to the 

closest boundary from each point [30]. In this context, we define the contour distance 

transform as the distance from a point on first contour to the nearest point on the 

second contour. This is illustrated in Figure 27. Figure 27 (a) shows two contours 

from successive frames superimposed. A blue arrow in Figure 27 (b) show the 

correspondence between a point on contour 1 and its nearest point on contour 2. 

Contour distance transform is the length of this arrow. 
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         (a)            (b)   

 
Figure 27: (a) Overlapping contours from successive frames (b) Contour distance 

transform 
 
The contour distance transform is thresholded and resulting occlusion map is 

accumulated as follows: 
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Iocclusion = {[γ(I1, I2) + γ (I2, I3) + γ (I3, I4) + γ (I4, I5) + γ (I5, I6)] < τ}       (3.3) 

Iresult = Iresult + Iocclusion                (3.4) 

where γ(I,J) is the result of contour distance transform of images I and J, I1 to I6 are 

the six successive images, Iocclusion is the occlusion map for these six images, Iresult is 

the net accumulated occlusion map, τ is a threshold value. 

3.3.2 Results 

The results for this approach are shown below. Figure 28 represents sample images 

from another indoor video sequence recorded at 30 fps (about 8 minutes). Figure 29 

shows the ground truth occlusion map where the occluding edges are marked red. The 

stronger edges in the intensity images shown in Figure 30(a) to 30(h) belong to the 

occlusions in the scene. The occlusion map appears stronger as the number of 

observed frames increases (Figure 30(a) to Figure 30(h)). The final occlusion map 

obtained by applying Canny edge detector on Figure 30(h) is shown in Figure 30(i). 
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Figure 28: Scene for occlusion analysis 
 

 
 

Figure 29: Ground truth. Occlusion edges marked in red 
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Boundary overlap map after frame 6000
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  (d)        (e)       (f) 
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Figure 30: Occlusion map for scene in Figure 28 after (a) 1000 frames (b) 3000 
frames (c) 5000 frames (d) 7000 frames (e) 10000 frames (f) 11000 frames (g) 13000 

frames (h) 15000 frames (i) Final occlusion map by applying Canny filter 
 

3.4 Discussion 

We have presented two approaches to learn occlusions in a scene. Both the methods 

are based on the observation that boundaries of a moving object overlap with the 

edges of the occlusion as the object passes the occluding edge.  By accumulating the 

overlaps we obtain an intensity map that indicates the occlusions. A Canny filter is 

used to connect the strong edges and binarize the intensity map. 

 

The results of our approach have been presented for indoor office scenarios with 

video sequences of between 5 and 8 minutes duration. The occlusion map is seen to 

grow stronger and more accurate as more and more frames are observed. We have 

evaluated the results against manually marked ground truth occluding edges. 

 

It is seen that as long as the occluding edges get passed by the moving foreground 

objects during the learning period, the final occlusion map captures the edges. 

However, in some cases the moving objects do not pass the occlusion, for instance, 

the upper edge of a door may not overlap moving object’s boundary due to its height. 
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In these cases, that edge of the occluding object will not appear in the occlusion map. 

Thus the results are sensitive to the activity in the scene during the learning period. A 

longer learning period will be required by the algorithm to ensure that all the 

occlusions in the scene are passed by the foreground objects. Moreover, depth 

information is not obtained from this method. The resulting binary map indicates 

spatial locations of occlusions, but we cannot determine the 3D structure of the 

occlusions using the intensity map. 

 

Our motivation to learn occlusions is to improve tracking results. Once occluding 

edges are determined, for example, we can use only part of the appearance model 

when labeling objects that overlap the occluding edges. Or we may decide not to label 

the object when it is partially occluded. By predicting whether the moving object is 

occluded, we can thus improve the accuracy of tracking results. 
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Chapter 4: Video Metadata Simulation 

4.1 Introduction  

  
To address various problems in surveillance video analysis like tracking [24], object 

classification [31, 32], face detection and recognition [11, 12], systems often extract 

low level features from the objects of interest (see Figure 31). This data about the 

video, called metadata is then processed further. Some algorithms that involve 

learning using long video observations (e.g. learning entry/exit or stop zones in a 

scene, or other semantics like routes, junctions etc) require large data to gain 

statistical stability [4]. Applications like data mining also operate on very large video 

repositories [33, 34].  

 

 
 

Figure 31: Examples of surveillance video analysis problems 
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The storage of large amounts of surveillance video data, however, is difficult and 

there are legal issues in monitoring public areas like airports, train stations or people 

in indoor environment like offices or shopping malls (at least in the United States !). 

Although these areas need strong security measures, recording videos for 

experimental purposes is prohibited in such places. 

 
 
By noting that in most cases we need to store the metadata and not the full video, we 

propose to address this problem by “simulating” the video metadata for the given 

scene. We can then extract useful features from the simulated data for data mining 

rather than extracting the metadata from real video sequences. Simulated metadata 

will approximate the real data depending on the quality of simulations. The advantage 

of such an approach is that there is a reduced necessity to capture or store video 

sequences. Although the simulated metadata can be used as a test bench for 

evaluating the performance of a vision algorithm, the results may vary when the 

algorithm is tested with real surveillance videos. Care should be taken to incorporate 

all possible cases that occur in the given surveillance scenario in the simulation. 

 

A similar approach has been used by Qureshi and Terzopoulos [35] in testing their 

surveillance system for wide field of view (FOV) and pan-tilt-zoom (PTZ cameras). 

The authors proposed a Virtual Vision approach to designing surveillance systems 

using a virtual train station environment populated by virtual pedestrians that perform 

various activities [35, 36]. The system in [37] is designed for New York Penn Station 

scenario where the objective is to schedule an array of FOV and PTZ cameras in such 
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a manner that each pedestrian is in the field of view of at least one camera during 

their stay in a designated area. To test the camera-scheduling algorithm, the authors 

use a virtual 3D model of Penn Station populated by virtual pedestrians to emulate the 

video streams generated by real surveillance cameras. 

 

Our approach to simulate the video data is different from the 3D animation method 

used by Qureshi and Terzopolous. We propose using a real scene image captured by a 

single camera, simulation moving foreground blobs and superimposing these blobs on 

the scene image. Our methodology involves defining normal and abnormal patterns of 

people’s movements in a scene with minimal user interaction. The proposed tool can 

then simulate random trajectories of moving objects based on the given patterns. We 

explain the proposed technique in detail in the next sections. 

 

4.2 Approach 
 
In a given scenario, the objects normally move along specific paths. For instance in a 

traffic scene, the moving objects (vehicles) take specific paths and in specific 

directions depending on which side of the road they are moving. At a traffic 

intersection, the trajectory followed by a vehicle lies within a predictable path.  

Similarly, consider another example of an office scenario, shown in Figure 32. Figure 

32 (a) shows the original scene to be monitored by a surveillance camera. Figures 32 

(b) to (g) show different possible paths (shown by green lines) that people can take as 

they move in the scene. To simulate metadata for such a scenario, a realistic 

assumption about moving objects will be that they chose one of these paths randomly 
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and move either in the forward or the backward direction. Thus we need a mechanism 

to simulate trajectories randomly for a given path.  

 
 

       
 (a)    (b)    (c) 

     
 (d)    (e)      (f) 

 

 
 (g) 
 
Figure 32: (a) Original scene, (b) to (g) possible trajectory paths for the given scene 
 
 

4.2.1 Simulating object trajectories 

 
To do this we select one of the n possible paths randomly (Figure 33(a)). The first 

step to simulate a random trajectory along this path is to pick a starting point X for 

the trajectory. Since objects are generally more likely to stay in the center of a path 

than the edges of the path, this is done according to a Gaussian distribution between 

the two end points (A and B) of the path boundary (Figure 33 (b)). Gaussian 
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distribution achieves a higher frequency of objects moving along the center of the 

path than the path edges. The Gaussian distribution is given by  

( )
⎟⎟
⎠
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⎝

⎛ −
− 2

2

2
exp

2
1

σ
µ

πσ
x                (4.1) 

Where mean µ is taken to be the center of the line segment AB and standard deviation 

σ is chosen such that 6σ is approximately equal to length (AB) (see Figure 33(b)). A 

point generated according to this distribution is translated to an image point by simple 

arithmetic. The two path boundaries (shown blue and red in Figure 33(c)) are sampled 

into equal number of points and these points are joined by line segments as shown in 

Figure 33(d). Based on the ratio that the starting point X makes along line segment 

AB, the remaining points of the trajectory are selected on the other line segments 

(Figure 33(d)). Since in practice, the trajectories of moving objects extracted by 

vision algorithms are jittery (not smooth), we add Gaussian noise to perturb the 

trajectory points.  The resulting trajectory obtained by this algorithm is shown in 

Figure 33(f). It should be noted that if we select the other end of the path, then we 

obtain a trajectory for the object moving in reverse direction. Thus we can configure 

direction of motion (forward or backward) by selecting an appropriate end of the 

path. We have not considered the more complex cases like lane changes or an object 

stopping and turning around. It is, however, certainly possible to simulate these 

special cases. For instance, to model stop zones a trajectory point can be repeated for 

a number of times when the object lies in a manually specified stop zone. A slowing 

object can be simulated by increasing the duration between time stamps of trajectory 

points as the object approaches a stop zone. For a lane change, trajectory points need 

to be interpolated between the current trajectory point and nearest point in the new 
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lane. However, we have not considered these special cases in the example 

simulations.  

 
 

            
   (a)      (b) 

 
          (c)      (d) 

 
  (e)      (f) 
 

Figure 33 (a) Path image for a scene (b) Selecting start point using Gaussian 
distribution (c) Path boundaries (d) Sampled path boundaries (e) Trajectory points 

obtained by a Gaussian distribution (f) Final Trajectory 
 
Using this technique it is possible to automatically generate a set of trajectories for 

the given scenario by choosing one of the n possible paths randomly and generating a 

random trajectory for that path. Figure 34 (a) shows 100 random trajectories 
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generated for a particular path in the office scenario of Figure 32. Different paths in a 

scene can in general have different usage frequencies. We assign probabilities to the 

different paths, so that some paths are more frequently used than others. Figures 34 

(b) and (c) show simulations of 100 random trajectories by selecting random paths 

with equal probabilities and unequal probabilities respectively. It should be noted that 

the advantage of this simulation is that it is completely automatic and very fast. Also, 

we can apply this technique to any scenario.  

 

   
   (a)     (b) 

 

 
       (c) 
 

Figure 34 (a) Simulated random trajectories for path 3 in given scene (b) 100 
trajectories, all paths are equiprobable (c) 100 trajectories with probabilities assigned 
to paths, Blue: 50%, White – 20%, Yellow and Cyan – 10%, Red and Magenta – 5% 

 
 
The configuration parameters for the trajectory simulation are the number of paths, 

the probability of path usage and speed of moving objects for a path. Change in speed 

of the moving object is easily achieved by varying the number of points in which path 
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boundaries are sampled. For higher speed, the number of sample points is lower, so 

that the blob moves a larger distance between two points on a trajectory. Thus we can 

have different zones in the scene where objects move with different speeds, e.g. 

pedestrians and vehicles. 

4.2.2 Simulating moving foreground objects 

Existing approaches in the literature use virtual environments to model a scene and 

3D animated objects to model the moving objects [36, 37]. A virtual reality 3D 

environment is typically stored in VRML or X3D file formats and is not compatible 

with common video file formats like AVI or MPEG. For this reason, virtual reality 

models cannot be used to simulate moving foreground objects for a video sequence. 

Moreover, virtual reality models do not look realistic. 

 

Our aim in simulating foreground objects is to provide a way of viewing the video 

sequence associated with a given metadata file. This will enable a visualization of the 

video sequence corresponding to given metadata or start and end time stamps. We 

propose an approach different from virtual reality to simulate moving objects given a 

scene. By using robust background subtraction algorithm, we extract foreground 

objects in a scene from sample video sequences (Figure 36). Next, we simulate the 

foreground object moving along the random trajectories by taking these blobs and 

superimposing them on the trajectories with suitable scaling (Figure 35 and 37). For 

instance, in a sequence where people are walking, a set of foreground blobs 

corresponding to the portion in which the person is walking are selected and scaled 

appropriately to fit the new scene image. We create a database of 60 blobs of a 
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walking human consisting of views from different angles. These consist of front, back 

and sideways views of moving humans. During the simulation, appropriate sets of 

blobs are selected based on the path chosen and the location of the blob in the image. 

 

Figure 35: Simulating the foreground blob 
 

 
 

Figure 36: Examples of blob libraries extracted by background subtraction ([38]) 
 

    
Figure 37: Example of simulated scene of a person walking  
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Ideally speaking the camera can  have countless viewpoints and we need a larger 

database to cover all possible orientations of the blobs. However, current simulations 

include only four viewpoints front, back, left and right. 

 

 

Figure 38: Scaling the blob based on its location 
 

To accurately superimpose the blob at a trajectory point, we need to scale it 

appropriately. We assume the blob’s expected height is known at the two ends of a 

path. At any intermediate point on a trajectory we linearly interpolate between these 

two heights to get the new scaling factor (Figure 38). Different paths can be 

programmed to have different speeds.  

4.2.3 Metadata simulation 

Different types of data is simulated using these moving foreground blobs 

• Object’s center of gravity 

• Blob binary mask 

• Object size 

• Object velocity 
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• Object acceleration 

• Object type (e.g. car, person etc) 

To simulate surveillance scenario metadata we assume that an alarm is triggered by 

one of the many possible sources (motion detection, access control, manual recording, 

schedule recording etc.). The user specifies the timestamps between which the 

simulated metadata needs to be generated. The tool then generates random alarms 

every t minutes and associated with each alarm, a random trajectory using above 

technique is generated. Thus we simulate a hierarchy of metadata including alarm 

level metadata (Alarm type, timestamp, camera ID), Video level metadata (Video ID, 

Video file location, timestamp), Frame level metadata (Frame ID, video ID, fps, 

video resolution), and Blob level metadata (Blob ID, Blob size, centroid, speed, color, 

object type, binary mask). We provide a tool to automatically generate this metadata 

for the specified timestamps and write the simulated metadata into a text file. 

 

4.3 Interface 
 
The metadata simulation methodology is shown in Figure 39. We have implemented 

the proposed methodology in MATLAB. To use the interface, the base trajectories are 

created manually. These are simple to create and require minimal effort. They should 

encapsulate all possible regions where different objects can appear. Table 3 shows the 

configuration parameters that the user needs to specify to run the metadata simulation 

tool. The simulated metadata is written into text files.  
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       Select path      Simulate track       Simulate object  
 

          
 
 

 
Figure 39: Metadata simulation methodology 

 
 
 
No. Parameter Use 
1 START_CLOCK Starting clock time:  

[year month date hr min sec] 

2 DATA_COLLECTION_DURATION Duration in hrs for generating the data 

3 ALARM_WAIT_TIME One alarm is generated every 
ALARM_WAIT_TIME minutes 

4 NUM_TRACK_IMAGES Number of images available used to 
simulate different paths 

5 PATH_SPEED 1 - slow, 2 - medium, 3 - fast 
6 PERTURB_FLAG 0 - smooth track, 1- noisy track  
7 DEFAULT_CAMERA_ID Camera id number  
8 DEFAULT_FPS Frames per second value 
9 DEFAULT_VIDEO_LOC Location of the default camera video 

file 
10 CAMERA_DEFAULT_IMAGE Location and filename of the image to 

be used for the scene 
11 IMAGEFILE_PATH Path to the intermediate image files 
12 BLOB_PATH Path to the black and white blob image 

files 
13 PROBABILISTIC_TRACKS 1 - assign probability to paths 

0 - use equal probability of occurrence 
for all paths 

 Table 6: Configuration Parameters for Metadata Simulation   
 

Metadata 
extraction 
engine  

 
Metadata 

file 
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The tool is completely automated, given the scene and manually defined paths and no 

storage of video sequences required.  

 

We can use the tool to generate metadata for different “scenarios”. The simulated 

metadata can be used to test other low level vision algorithms, which would otherwise 

require collection of a large amount of video data. We give a few examples of using 

the simulated metadata to test vision algorithms in the next sections.  

 

Using this tool it is also possible to generate large video metadata for “mining”. The 

performance evaluation of different query and visualization tools of a mining system 

can be done using a simulated metadata set.  

4.4 Application 1: Activity Map Visualization  

We present a tool in this section that can be used to visualize the trajectory metadata 

generated by the simulation tool described in the previous sections. Viewing a large 

amount of recorded data in a meaningful way is a challenging problem for 

surveillance systems. One approach is to generate a summary of recorded sequences 

and determine which areas in the scene have more frequent activity (e.g. busy aisles 

in a supermarket) and which have limited or no activity (e.g. restricted access areas). 

Such a summary of the recorded video sequences can be visualized by the activity 

map of the scene. An activity is a 2D histogram of moving foreground objects 

superimposed on the original scene image. It is an intensity plot where brighter 

regions indicate higher level of activity and darker regions indicates less active areas. 

The activity map obtained from multiple cameras could generate summary 
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information for an observed site.  We propose an activity map generation tool that 

will allow user to monitor the site usage summary across different time intervals. 

User can specify the following parameters: 

a) Camera ID 

b) Time interval 

c) Time resolution 

The system builds a density matrix by using the Video Content Meta Data to generate 

a matrix. This matrix has 3 dimensions, X,Y coordinates in the field of view of 

camera, and time intervals.  

4.4.1 Density Matrix Generation 

The Density Matrix represents the probability of detecting an object at the particular 

location (in the field of view of camera) at the particular time interval. 

 
Figure 40: Density Matrix 

 
For example, DM(X1,Y1,T2) gives the probability of object detection at location 

(X1,Y1) between T2begin and T2end.  The resulting density matrix is superimposed 
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on camera default image based on the selected time point. This allows user to see the 

activity map for different times.  

Figure 41 depicts the execution flow of density matrix generation operation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41: Density Matrix Generation Flow 
 
The user provides the start time (Ts), end time (Te), camera identifier (Cid), and time 

resolution (Tres) parameters from GUI and starts the operation.  

Generate Data Points operation uses the given criteria and the data files to generate 

data points. Each data point is represented by a tuple. The X and Y denote the 

location and Tidx denotes the time interval. There are (Te-Ts)/Tres+1 number of time 

intervals. Generate Density Matrix operation generates the 3D matrix data from the 

given data points. 
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The following algorithm generates the Density Matrix from given N center of blob 

data points. 

 
GenerateDM(p[N],DM[][][]) 
{ 

i=0; 
// accumulate the counts 
while (i<N) { 
   DM(p[i].tidx,p[i].x,p[i].y)++; 
   i++; 
} 
// Normalize 
for i=0 to Tidx { 
 for j=xmin to xmax { 
    for k=ymin to ymax { 

           DM(i,j,k)/=N; 
    } 

       } 
      } 
      return; 
} 

 
 
The other possible approach is to generate the Density Matrix using the entire blob 

mask as the given N data points.  

 
GenerateDM(p[N],DM[][][]) 
{ 

i=0; 
total=0; 
// accumulate the counts 
while (i<N) { 

    for each detected pixel (dp) in binary mask of p { 
       DM(p[i].tidx,p[i].dp[j].x,p[i].dp[j].y)++; 
       total++;  
     i++; 
   } 
      } 

// Normalize 
for i=0 to Tidx { 
   for j=xmin to xmax { 

         for k=ymin to ymax {  
             DM(i,j,k)/=total 
         } 
    } 
    } 

      return; 
} 
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4.4.2 Generating Activity Map  

 
 

 
 
 
 
 
 
 
 

 

 
 

Figure 42: Activity Map Image Generation Flow 
 
Figure 42 depicts the flow for generating Activity Map for a given time slice by using 

the density matrix and default camera image. Figure 43 shows the GUI for creating 

activity map.  

 
 

Figure 43: Example GUI for Activity Map Generation 
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The user can specify the following parameters as input to the GUI (Table 4): 

Field Type Description 

Start Date YYYY-MMM-DD HH-MM Start Date 
End Date YYYY-MMM-DD HH-MM End Date 
Camera CHAR16 Camera Identifier 
Time Resolution INT32 Minutes 
Generate Button Starts the activity map 

generation process 
Display Act Map Button Display the generated 

activity map 
Activity Map 
Method 

Radio Button 1. Use blob center: the 
center of the blob is used 
to generate the 2D 
activity map. 
2. Use blob mask : select 
the entire blob to 
generate the activity map 
histogram 
 

Display Video Button Display the simulated 
video 

 
                                   Table 7: GUI input parameters 
 

4.4.3 Advantages and Usage of Activity Map 

The activity map can be used 

a) in retail store applications for identifying frequently visited areas in the store, 

b) to model the normal detection probabilities of observed site for different time 

intervals 

c) to detect abnormal patterns that occur in low detection probability zones. 

d) to view probability of detection for different types of objects in the scene e.g. 

people, vehicles etc (assuming the video metadata contains result of an object 

type classification module) 
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4.5 Application 2: Entry/Exit zone modeling and route learning 

In this section we demonstrate the use of metadata simulation tool discussed in 

section 4 to generate test data for other vision algorithms namely entry/exit zone 

modeling. The entry/exit zone modeling algorithm is based on trajectory clustering 

from Makris and Ellis [4]. The metadata used by this algorithm is a set of trajectories 

gathered over a period of time.  

 

Here we simulate the trajectories for a given scenario using our tool and demonstrate 

the working of trajectory clustering algorithm to learn entry/exit zones. 

4.5.1 Algorithm and results 

To cluster trajectories, we use the algorithm from Makris and Ellis [4], which learns 

entry/exit zones in the scene for trajectory clustering.  

 

To learn entry/exit zones, only the start and end points of trajectories are required. 

The standard Expectation-Maximization (EM) algorithm is used to cluster these 

points. The EM algorithm gives parameters of a mixture of Gaussian distributions 

that best represent the clusters.  

 

As EM is a supervised algorithm, it requires the number of clusters to be known 

beforehand. However, number of entry/exit zones in a surveillance scene is generally 

not known. So we start with a larger number of clusters and then eliminate some 

clusters based on their density of observation. Also, small clusters that are close 

enough to each other are merged into one cluster.  
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  (a)       (b)  
 

     
(c)         (d)  

 
Figure 44: (a) Unlabeled trajectories (b) Start and end points (c) Clustered entry/exit 

zones using EM    (d) Trajectories classified into learned routes 
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Once the entry/exit zones are identified, defining the possible paths in the scene is a 

straightforward combinatorial task. We can then assign labels to the trajectories and 

classify them into routes. Figure 44 shows the results of this algorithm for metadata 

simulated by the tool described in Section 4.2 and 4.3. Figure 44 (a) displays a plot of 

simulated trajectories read from the metadata file. Figure 44(b) shows the start and 

end points of these trajectories. The result of EM clustering is shown in Figure 44(c) 

where the four entry /exit zones are correctly clustered. These in turn imply presence 

of three possible routes in the scene. Figure 44(d) displays the trajectories classified 

into learnt routes. 

 

4.6 Discussion 

In this chapter we have presented a solution to address the problem of availability and 

storage of surveillance video data. By observing that in most computer vision 

algorithms, we need low-level metadata for processing, we propose simulation of the 

video metadata for a given scenario instead of using real video sequences. Once the 

normal and abnormal paths in the scene are defined, our tool simulates random 

trajectories of moving objects. A set of foreground blob libraries for different types of 

objects are created and stored beforehand. These are used to simulate the blob 

metadata as the object moves along the trajectory. By varying the configuration 

parameters, we simulate objects moving at various speeds along different paths in the 

scene. The advantage of this technique is that it can be applied to any scenario. Only 

one image of the scenario is required and there is a reduced need to record or store the 

video sequences for metadata extraction. 



 

 72 
 

 

We have illustrated the technique for an office scenario. Also, we have shown two 

example applications of the metadata simulation tool - the activity map visualization 

tool and the entry/exit zone modeling and route-learning algorithm. For both these 

applications, the metadata simulation tool is used to generate the trajectories. 

 

Although the metadata simulation technique can be very useful, the current version 

has some limitations. We currently support simulation of trajectories of a single 

object at a given timestamp. The algorithm needs to be enhanced to include multiple 

trajectories at the same time. This will be required for simulating more complex 

scenarios.  

 

The accuracy of simulated metadata depends on the set of foreground blob images i.e. 

the blob libraries. To include different poses and shapes and behavior patterns, we 

need extensive collection of these blob libraries. Another issue with this technique is 

the merging of object with the background. For the purpose of visualization, 

superimposition of the blob is acceptable, however, if the blob boundary is not 

smooth, the ‘simulation’ will be more noticeable and the scene will look less realistic. 

Blob merging will be difficult if there are sharp color and contrast differences 

between the object and background e.g. under lighting changes.  

 

As discussed, one application of simulated metadata is to test the functionality of the 

computer vision algorithms. It should be noted that results obtained by testing these 
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algorithms on real video sequences would be certainly different than those for 

simulated metadata. Additional practical problems like occlusion, lighting changes 

will arise when dealing with real videos. Our technique of using simulated metadata 

provides a quick and effective way to generate data for testing the basic functionality, 

at the cost of possible reduced accuracy of results. 



 

 74 
 

Chapter 5: Progressive Threat Detection Modeling 

5.1 Introduction 
 

Video surveillance systems that record non-stop video footage 24 hours a day can 

have prohibitively large storage requirements. Likewise, continuous monitoring 

requires an operator to be viewing the video continuously. During most of the video, 

however, there may be little or no activity in the scene. One approach to reduce the 

recording or monitoring requirements is to either record or monitor video footage 

only upon receiving an alarm. An alarm can be triggered in one of many possible 

ways – by activity (certain modern security cameras are capable of detecting motion 

in the scene), with access card control (e.g. when someone unlocks a door using 

access card and enters the monitored room), by pre-scheduling, with sensor-generated 

alarms or manually by an operator in case of emergency. Without loss of generality, 

we will assume all alarm based recording also encompasses alarm based monitoring. 

An alarm based system preserves stores video footage starting a few seconds prior to 

the trigger and a few seconds after the alarm has been turned off, for instance a 

motion based alarm will be turned off when the object has left the scene. Such 

discrete notifications reduce the storage requirement considerably and ensure that 

important data is not missed. A surveillance system that stores continuous video may 

do so for a limited amount of time and compress old video data (say anything more 

than a week ago) by storing just segments of video that correspond to alarms.  
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An interesting problem associated with the alarm-based recording is to automatically 

determine the moment at which the recording should start i.e. when to trigger the 

alarm. This decision should be based on the video content. Background subtraction 

for motion detection is one simple approach. However, it will be useful if the alarm-

triggering algorithm can also determine the level of threat the event corresponds to. 

For example, an alarm triggered by a person entering a restricted area may be higher 

threat than a motion detection alarm triggered by a person walking in a room. In this 

chapter we focus on the problem of analyzing video data to determine a threat level 

and then automatically trigger an alarm depending on the threat level. 

  

Detection of abnormal behavior can be used as a decision factor in determining threat 

level. Some examples of behaviors that may constitute a threat include - a person 

entering a restricted area; activities like running, loitering, theft, fighting, abandoning 

baggage; vandalism; or abnormal trajectories that do not confirm to a regular pattern. 

For example, a vehicle going in wrong traffic lane or a person moving in opposite 

direction of flow of the crowd. 

 

Activity recognition and abnormal behavior detection in videos has been an active 

area of research. Johnson and Hogg [39] presented a neural network based model to 

learn the probability distribution functions of object trajectories from video 

sequences. The normal trajectories are modeled by a flow vector to recognize atypical 

movements. Rao and Sastry [40] used a maximum likelihood framework to 

characterize normal activities in a scene based on motion trajectories. They tested 
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their algorithm for normal flow of traffic with abnormal events being a pedestrian 

trajectory and vehicle trajectory in opposite direction to the flow. Other examples of 

related works are detection of higher level activities. Cuntoor and Chellappa have 

developed a model to characterize high level activities by a sequence of key frames 

rather than dominant characteristics over the entire video sequence [41]. Detection of 

specific suspicious activities like abandoning a package has been studied in [42, 43]. 

 

In our approach we define the threat level using trajectory data of the moving object. 

In particular, we focus on the object’s motion trajectory relative to a “target”. We 

detect events where an object is in close proximity, or is loitering near a target, or an 

object is approaching a target. The faster the object approaches the target, the higher 

the threat level. A person running toward the target will be considered a higher threat 

than a person just walking towards the target. Similarly, a person walking away from 

the target is not a threat, whereas a person moving toward the target may be a threat. 

Thus the detection is based on distance of the object from the specified target, its 

trajectory data and the direction or rate at which the object approaches the target. We 

do not incorporate higher level behavior detection like a person abandoning an object, 

or crowd gathering near dispersing away from an object or abnormal trajectories that 

do not confirm to the regular flow.  

 

For prevention of a security breach, an intelligent systems needs to know the 

progression of threat level. Our threat level scoring engine that analyzes the trajectory 
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and gives real time scoring based on the learned model. Visual alarm notification is 

generated when a threshold is reached. 

 

5.2 Overview 
 
A simple implementation of a threat detection model would be to use the activity map 

generated by monitoring trajectory data over a period of time. The activity map gives 

a 2D histogram or probability distribution of activity in the scene. By comparing the 

new trajectory points to the probability of occurrence values from the activity map, 

we determine a threat level, assuming that the threat is only a function of the current 

position and the previous activity in that area. For example, consider the activity map 

shown in Figure 45 for a shopping mall scenario.  Figure 46 shows a trajectory of a 

burglar who breaks into the first shop on the left in the image. The trajectory drawn 

enters the shop through the glass where the mannequins are placed. The threat 

detection score engine result is shown below in Figure 47, where green color denotes 

low threat, orange medium threat and red denotes high threat level.  

 

Clearly there are other factors, such as where potential targets are located, the 

direction and speed of the threat, duration of the threat, and even properties of the 

threat (size, class, and history, for example). We extend the threat detection by 

including enhancements to the threat level modeling. The mere presence of an object 

in an area where there was no activity previously does not establish it as a threat. Our 

extensions focus the relative proximity and activities of a potential threat with respect 

to the target. 
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Figure 45: Activity map for shopping mall scenario 
 

      
        Figure 46: Sample Trajectory      Figure 47: Threat map 

 

1. We first consider the location of objects of interest in the scene (called targets). 

Threat modeling with respect to these targets will be more meaningful. This is 

very common in video analysis where the proximity of two objects has meaning 

(two people may be considered meeting if they have some relative proximity over 

some minimal amount of time).  

2. We use a decay factor to model the distance function around a potential target.  A 

decay factor can be used to dampen the computed distance to vary the threat level 

based on object’s spatial location relative to the target.   For example, a decay 
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factor may be low for a cash register, and higher for a person.  A threat does not 

need to be as close to a person to be identified a threat as they would to a cash 

register. 

3. We incorporate directionality of the moving object with respect to the target. An 

approaching object is more likely to be a threat than an object moving away from 

the target, even if they are at the same distance from the target.  

We consider speed and the duration of a potential threat in the scene.  Someone 

loitering around a target may increase the threat.  Likewise someone running to the 

object would increase it as a threat.  A potential threat simply walking by may be 

ignored. This is done by keeping track of time duration for which an object is present 

within a distance threshold of the target. 

5.3 Threat Measures 
Models for various threat measures based on above threat patterns are discussed in 

this section. The overall model is a linear combination of these factors. 

5.3.1 “Proximity Measure” using damping factor and activity map  

The proximity component of the threat is related to the distance from the target.  A 

person that is closer to the target is a higher threat. The proximity threat decreases 

with the object’s distance from the target. By observing trajectories of objects moving 

in the scene over a period of time, we can get a measure of activity in the region. An 

activity map is a 2D histogram of the given scenario generated based on trajectories 

monitored over a period of time. Larger values in the activity map imply the region is 

busier than other regions with low value of activity. The activity map value is also 

taken into consideration when calculating the threat factor. For a region where there is 
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more activity, (1.0 - Activity) value will be a small number and will have an effect of 

reducing the proximity threat. We use (1.0 - NormalizedDist), so that the proximity 

threat increases as the object gets closer to the target. 

 

ProximityThreat = (1.0 -  NormalizedDist) * DampingFactor * (1.0 -Activity)     (5.1) 

where,  

 object) andrget between ta distanceeuclidean  possible(max 
 object) andrget between ta distance (Euclidean

=DistNormalized   

 

Note that we have not converted distances to physical coordinates but knowledge of 

the scene can provide a linear conversion to world coordinates. 

 

5.3.2 “Approach Measure” using direction and speed 

 

An object that is approaching the target will be considered a greater threat than an 

object heading away from the target, independent of the distance away. If the object 

approaches the target and then moves away, the threat level should initially increase 

and then decrease. Furthermore, the rate at which the object is approaching a target 

also affects the threat level and can be measured as the component of the moving 

object’s velocity toward the target. If the object is approaching the target, this 

component is positive. For an object moving away from the target, the component 

would be negative. This information will be used to determine the threat by an 

approaching object as: 
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θcosj
dt
dyi

dt
dxreatApproachTh +=               (5.2) 

where 

(dx/dt) is the velocity component in x direction,  

(dy/dt) is the velocity component in y direction,  

θ is the angle in between direction of velocity and line joining target and the 

object. 

5.3.3 “Loiter Measure”  

An object that stays within the proximity of the target for a sufficiently long time may 

also be classified as a threat.  To detect loitering, we first determine whether the 

object is staying in a particular region for a predetermined minimum time. If yes, we 

increment the time counter to store the loitering time. To determine loitering threat 

factor, for each point on the trajectory, we compute  

 
N
NoLoiterRati r=                     (5.3) 

where, 

Nr is the number of points that are within a radius R of the current point. 

N is the LOITERING_ORDER.  This is number of past samples used to 

determine if there is loitering. 

If LoiterRatio is greater than a threshold, it means the object has been resident in the 

same region for too long and we start incrementing a counter. The Loitering factor is 

defined as the log of this count, making the loitering constant grow gradually as the 

object continues loitering. We decrement the loitering time counter if the object starts 

moving, which means the LogRatio is smaller than the chosen threshold.  
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Pseudocode 
 

LoiterRatio = Nr/N 
 

if (LoiterRatio > LOITER_RATIO_THRESHOLD) 
        // increase loitering factor by 1 
        LoiteringFactor(i) = max(LoiteringFactor) + 1; 
else 
        // reduce loitering factor by 1 
        LoiteringFactor(i) = max(max(LoiteringFactor) - 1,0); 
end 
 
LoiterFactor = log(LoiterFactor)/K, where K is a constant. 

 

5.3.4 Total Threat measure 

The net threat factor is computed as a combination of the above measures. To 

summarize, the metadata extracted to determine threat level consists of the following: 

(a) For trajectory points: 

1. Velocity 

2. Normalized distance from the target 

3. Damping factor 

4. Activity map value 

5. Direction (approaching target or moving away) 

(b) At object level 

1. Loitering time duration 

 

TotalThreatVal  = max(0, w1 * ProximityThreat + w2 * ApproachingThreat +  
      w3 * LoiterThreat)               (5.4) 

 
w1, w2, w3 are weighting factors determined empirically for different operational 
scenarios. 
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Thresholds to determine threat level are based on final threat value (Table 5): 
 

Threat Value Threat Level Event 
< T1 None (GREEN) - 
< T2 Low (YELLOW) Object loitering in proximity of 

the target 
< T3 Medium/intermediate 

(ORANGE) 
Object approaching the target 

Else High/critical (RED) Object very close to the target OR 
Object running towards the target 

 
    Table 8: Threat Level Thresholds and Corresponding Events 
 

 
The simulated trajectory data is used to generate activity map for the given scene for 

a given time duration. The input to the threat detection model is the activity map, test 

trajectory, time stamp for the test trajectory and target location and thresholds used in 

computing various threat measures i.e. loitering duration, loitering order (number of 

past samples used), proximity threshold and damping type (linear or Gaussian).  

5.4  Example scenarios: 

Without loss of generality, we present the example results for our threat modeling 

approach for simulated trajectory metadata from Chapter 4, for a shopping mall 

scenario. The metadata simulation tool discussed earlier is used to generate an 

activity map for the mall scenario. A target is specified by drawing a bounding box on 

the input image.  

 

Case 1: Object approaching target  

 Figure 48 shows the result for threat detection for an object that approaches 

the target. The trajectory is shown in (a). Resulting threat color map is shown in (b). 

The plot of total threat measure against frame number is shown in (c). Finally the 
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individual threat measures are shown in (d). The Proximity threat is seen to increase 

as the object approaches the target. The approach threat has position value as the 

object comes closer to the target, but becomes negative as the object moves away 

from the target. The loitering threat is zero throughout for this case. 

Case 2: Object passing by the target 

 Figure 49 shows the result for threat detection for an object that passes by the 

target. The trajectory is shown in (a), resulting threat color map is shown in (b). The 

plot of total threat measure against frame number is shown in (c). Finally the 

individual threat measures are shown in (d). All the individual threat measures are 

low in this case and also the final threat measure is low. Consequently, the color map 

shows all trajectory points as green. 

Case 3: Object loitering near target 

 Figure 50 shows the result for threat detection for an object that loiters near 

the target. The trajectory is shown in (a), the resulting threat color map is shown in 

(b), the plot of total threat measure against frame number is shown in (c) and finally 

the individual threat measures are shown in (d). Loitering threat factor is seen to 

increase as time passes by. The overall threat measure grows too, as expected. 

Case 4: Object loitering near target and then going away 

 Figure 51 shows the result for threat detection for an object that approaches 

the target. In this case, the result is similar to case 3 for loitering. As the object moves 

away from the target, the loitering threat factor reduces gradually, as does the overall 

threat measure. 
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    (d) 

Figure 48: Case 1 - Threat measure for an object approaching target (a) Total threat 
measure (b) Loitering measure, approaching measure and proximity measure shown 

separately 
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      (c) 
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   (d) 

Figure 49: Case 2- Object passing by target (a) Total threat measure (b) Loitering 
measure, approaching measure and proximity measure shown separately 
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   (d) 

Figure 50: Case 3 - Object loitering around the target (a) Total threat measure (b) 
Loiter threat measure, Approach threat measure and Proximity threat measure shown 

separately 
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(d) 

Figure 51: Case 4 - Object loitering and then leaving (a) Total threat measure (b) 
Loiter threat measure, Approach threat measure and Proximity threat measure shown 

separately 
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           (d) 

Figure 52: Case 5- Object running towards target (a) Total threat measure (b) 
Loitering measure, approaching measure and proximity measure shown separately 
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Case 5: Object running towards the target 

 Figure 52 shows the result for threat detection for an object that approaches 

the target. The trajectory is shown in (a). Trajectory points are spread apart more than 

the previous trajectories, indicating an object moving with greater speed. Here the 

velocity component in the direction of the target is high and as the object approaches 

the target. Hence the combined threat measure is high as expected. 

5.5 Discussion 

We have presented a threat model based on trajectory metadata of a moving object. In 

our model, we estimate threat relative to a target. Specifically, we consider threat to 

be a measure of object’s proximity to the target, approach speed and loitering factor. 

The model can be extended by detecting high level complex events like theft, a 

baggage being abandoned in public place, abnormal crowd movement like gathering 

near an object or moving away from a possibly harmful object. Current model 

incorporates a single target. The model can be enhanced to include more than one 

target.  

 

Another issue that needs to be addressed is the perspective distortion present in the 

camera-captured images.  To accurately determine the distance between two locations 

in an image, say two people, we need to get their location on the ground plane. This 

involves estimating the ground plane homography and removal of perspective 

distortion, so that distance between two points on the ground plane is accurate with a 

scaling factor. 
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Chapter 6: Summary and Future Work 

In this Thesis , problems central to the automated analysis of surveillance videos were 

explored and we proposed advanced metadata models to address them. Our goal was 

to automate the task of analyzing the surveillance video by developing intelligent 

tools to alert the operators when unusual events occur.  

 

We have explored the problem of building a snapshot of a person from a video 

sequence. Given such a capability, systems can rapidly build a set of candidate 

suspects for the operator to view and allow them to choose suspects to follow. In the 

proposed method for snapshot selection, we first perform skin detection to locate the 

possible face blobs in the objects detected by background subtraction. Then an 

eigenface based frontal face detection is performed on these skin blobs. The frames 

are finally ranked in the order of their "facedness". Snapshoting results for several 

video sequences were presented. The performance of the algorithm depends upon the 

accuracy of frontal face detection engine. As a future work, the algorithm can be 

extended to a multiple camera scenario, where tracking results and appearance 

models can be used to correlate trajectories of the same object across multiple 

cameras. The snapshot summaries from these multiple views can be combined and 

ranked. 

 

We have proposed a simple and effective technique to learn static occlusions in a 

scene using long observations from the surveillance videos. By accumulating the 

overlap of boundaries of an object across consecutive frames, we generate an 
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occlusion map for the scene. We described two methods to obtain the occlusion map 

and results are presented for indoor office scenarios. The occlusion model can be 

extended and applied to tracking algorithms to improve results. By adding depth 

information, we can also use this model to learn structural information about static 

occluding objects in a scene like doors and desks.  

  

Another contribution was an automated metadata simulation technique. There are 

legal and storage issues in obtaining video sequences for surveillance scenarios. By 

noting that most low level vision algorithms require metadata to be extracted from the 

video, we have developed a tool to directly simulate the metadata given the 

surveillance scenario. Our tool has the advantage that it requires minimal user 

interaction and is applicable to any scenario. We have illustrated our approach for an 

office scenario. To show its usefulness, we present two application of the metadata 

simulation technique – activity map analysis and learning of entry/exit zones or routes 

in the scene. As these examples show, simulated metadata can be used to test the 

functionality of computer vision algorithms. It should be noted that results obtained 

by testing these algorithms on real video sequences may be different than those for 

simulated metadata. Practical problems like occlusion and lighting changes arise 

when dealing with real videos. Our technique of using simulated metadata provides a 

quick and effective way to generate data for testing the basic functionality, at the 

possible cost of reduced accuracy of results. The technique can be enhanced in 

several ways. For instance, the current version of the tool can simulate a single 

trajectory at a given time stamp. In future, the metadata simulation tool can be 
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extended by including multiple trajectories i.e. more than one object at the same time 

stamp. This will be required for simulating complex but more realistic scenarios. 

Moreover, the accuracy of simulated metadata depends on the set of foreground blob 

images i.e. (blob libraries). To include different poses and shapes and behavior 

patterns, extensive collection of these blob libraries will be needed. Another possible 

enhancement is visualization of simulated blobs. For this smooth merging of 

foreground object with the background is required. In the current version, we have 

superimposed the simulated blob directly on the scene image. To make the animated 

video look more realistic, blob merging should handle boundary, color and contrast 

differences between the object and the background e.g. under lighting changes.  

 

Another contribution of our work was to facilitate alarm-based recording of videos 

based on a threat model. We proposed a threat level scoring engine that analyses the 

trajectory metadata of foreground objects and detects abnormal behavior. The threat 

model includes proximity of the moving object to a target, its direction of motion, a 

measure of loitering and a previously learned activity map. The scoring engine 

generates a visual notification to the operator allowing a progressive monitoring of 

threat levels. Once the threat level exceeds a predetermined threshold, alarm based 

recording can be triggered. We have shown the threat detection results for several 

different behavioral patterns of people moving in a mall. As future enhancement, we 

can use higher level activity detection like theft or abnormal crowd behavior to 

improve threat modeling. We can also convert the distances between two objects in 
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the image into world coordinates on the ground plane by using ground plane 

homography information in the scene. 

 
To summarize, we have explored the problems of snapshot selection, occlusion 

modeling, metadata simulation and progressive threat detection modeling in 

surveillance videos. These metadata modeling techniques will automate the task of 

analyzing surveillance videos and help the security operators to control and 

manipulate the videos in meaningful ways. 
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