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Naeem Ramzan, Muhammad Ali Imran, Qammer H. Abbasi

Abstracit— This paper presents a study on contactless localization
for activity recognition based on radio-frequency sensing. The
focus of this study is on the quantitative analysis of the collected
data, which is in the form of channel state information (CSl). The
proposed method utilizes a software-defined radio (SDR) system
in combination with an ensemble learning technique to localize
and identify daily living activities such as leaning, sitting, standing
and walking. Specifically, SDR device, Universal Software Radio
Peripheral (USRP) models X300/X310 are utilized to collect data on
the aforementioned activities. The data is collected from an empty
space and a participant performing daily living activities in different
territories. The acquired data is labelled based on the region, zone

and performed activity. The CSI data is subsequently preprocessed and fed into an ensemble-based machlne learning
algorithm for classification. Furthermore, the stability analysis of the proposed method is performed to evaluate its
reliability and robustness. The performance of the algorithm is evaluated using various metrics, including a confusion
matrix, accuracy, cross-validation score and training time [1], [2]. The results demonstrate that the proposed ensemble-
based approach achieves a high accuracy of up to 90% in activity recognition, highlighting the effectiveness of the
proposed method in contactless localization for activity recognition.

Index Terms— USRP, indoor localization, radio-frequency sensing, software-defined radio, human activity recognition,

ensemble learning

[. INTRODUCTION

The Tactile Internet (TI) is an innovative network archi-
tecture that provides real-time, reliable communication with
high bandwidth and low latency [3], [4]. By providing remote
control and real-time monitoring of objects and systems, the TI
has the potential to revolutionise sectors as diverse as educa-
tion, gaming, transportation and healthcare [5]. In the health-
care sector, radio sensing has experienced a trend towards
achieving reliable detection even for small limb movements.
High data rates, higher carrier frequencies, increased system
capacity, scalable hardware systems and the ability to focus
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energy radiation in an area of interest such as beamforming,
are all capabilities of radio-based communication systems [6].
This paper focuses on indoor localization-based on software-
defined radio (SDR) systems. The objective of an indoor
localization system is to estimate the position of an object in an
indoor space [7]. To determine the position of an object and for
several other applications, technologies such as Bluetooth, Wi-
Fi, infrared, ultra-wide-band (UWB) RADAR, radio-frequency
(RF) sensing, cameras and wearables can be used [8], [9].

Indoor localization has been a significant topic in recent
years owing to its wide applicability in a variety of fields, in-
cluding indoor navigation, catastrophe prediction, surveillance,
intelligent traffic systems and smart healthcare [10]. In health-
care monitoring technology, accurate indoor localization and
tracking systems are becoming essential. As a consequence
of breakthroughs in illness detection and treatment, the life
expectancy of the senior population is rising. Consequently,
hospitalisation capacity is quickly diminishing. According to
United Nations estimates, by 2050, the elderly population will
grow by more than two billion [11]. This highlights the need
to employ non-invasive technology like SDR in elderly care
homes and centres.

Indoor localization can be affected by noise, signal distor-
tion and obstructions like furniture that is something to take
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Fig. 1: Block diagram of SDR-enabled localization setup for
diverse human activity recognition.

into consideration in the scenario of indoor localization [12].
With the development of advanced wireless communication
systems, computational power and various sensing approaches,
significant advancements in the area of indoor localization
have been made. Context-aware systems [13], wearable tech-
nology [14] and contactless approaches are a few of the meth-
ods that are effectively utilized to identify human activities in
an indoor setting [15]. It has been shown that it is possible
to identify human activities without invading the privacy of
the user by employing a device that the user is wearing to
detect behaviours. A context-aware system employs sensors
for monitoring such as microphones, cameras, sensors etc [16].
The drawback of these systems is that it is inconceivable to
identify activity once the user leaves the surveillance zone.
Video surveillance systems are the most common instance of
context-aware technology. However, camera-based technology
has the drawback of potentially negatively affecting patient
privacy concerns [17].

With the use of cutting-edge satellite positioning technolo-
gies like GPS, localization in outdoor situations has been
effectively deployed, giving consumers more accurate location
services [18]. However, in indoor situations, the location

services are not precise due to weak signals and low penetra-
tion [19]. To accomplish indoor localization, researchers have
suggested some well-known technologies like radio-frequency
identification (RFID) [20], UWB [21], Bluetooth [22], Wi-Fi
[23], light [24] and audio [25]. Since many households already
have Wi-Fi infrastructures in place, this article uses RF-based
Wi-Fi sensing to avoid the need to incorporate extra sensing
technologies. Systems based on RF sensing varies in terms
of the hardware needed, operating frequencies, classification
methods, amounts of monitored activities and subjects. The
channel state information (CSI) and received signal strength
indicator (RSSI) are two methods that are now used by
tracking systems to determine RF-based activities [26].

According to studies, CSI evaluates every orthogonal fre-
quency division multiplexing (OFDM) whereas RSSI provides
coarse information. Wi-Fi-enabled CSI may be used to detect
and identify human activity by tracking radio signal amplitude
changes that occur when human activity occurs [27]. Due to
their higher attention to detail, CSI is a preferable alternative
for activity recognition and localization. To perform tracking,
localization and detection of small and large-scale activities,
researchers have utilized the CSI comparable to Wi-Fi [28].
The experiment described in this article utilizes universal
software radio peripheral (USRP) devices that employ OFDM
to create 64-frequency carriers [29].

Using two USRP devices, one serving as a transmitter and
another as a receiver, the aim of this study is to collect CSI
data from a single human subject doing actions including
leaning, sitting, standing and walking at different locations
within a single room. Figure |l illustrates a block diagram
of the proposed system in this paper. It also illustrates the
experimental space split into 3x3 territories (regions/zones) in
both the horizontal and vertical dimensions. Activities were
performed in each of the nine territories in the experimental
space. The amplitude shifts in the CSI distinguish between the
activities carried out at each site. As a result, CSI can be used
to locate an individual since various human motions at distinct
locations have an impact on radio signals differently. Once the
CSI data is acquired, it is fed into different machine learning
algorithms for the classification of activities as well as regions
and zones it occurred in. The application of machine learning
classifiers to generate predictions on CSI from the USRP
device allows for the precise identification and localization
of various activities.

The problem addressed in this paper is basically the de-
velopment of a contactless localization method for activity
recognition using RF sensing. The authors aim to overcome
the limitations of existing localization methods that require
physical contact with the individuals being monitored, which
can be invasive and impractical in certain scenarios. The
authors also emphasize the importance of quantitative analysis
in the form of CSI for the collected data, which is a critical
aspect in the proposed method. The ultimate goal of this work
is to provide a reliable and robust method for contactless
activity recognition that can be applied in various fields such
as healthcare, sports and security.
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Il. LITERATURE REVIEW

This section examines the most recent research on several
contactless sensing techniques that have been successfully
employed in the past for abnormality detection, including
particular human activities. The three most common methods
for contactless sensing are RADAR, RSSI and CSIL.

RADAR [30]: The detection of human activity can be
performed using RADAR-based monitoring that has a signifi-
cantly larger bandwidth [31]. RADAR utilises a bandwidth of
up to 1.79 GHz, while WiFi technology only uses up to 20
MHz [32]. The micro-Doppler information extraction methods
based on RADAR provide a higher spatial resolution of around
20 cm [33]. However, RADAR-based systems need specialised
hardware and cutting-edge computers [34].

RSSI [35]: Essentially dependent on variations in received
signal strength brought on by various human activities, RSSI-
based sensing can be used to monitor human activity [36].
Compared to SDR and CSI, the RSSI-based system has a lower
detecting accuracy [37]. The SDR-based method improves
detection performance while allowing for higher RSSI col-
lecting resolution. Since CSI-based systems include frequency
diversity, RSSI-based systems have lower accuracy and a
smaller coverage area [38]. The CSI out of each transmission is
evaluated using OFDM while the RSSI is captured as a single
value per packet [39]. The CSI method is therefore more stable
and provides more data when compared to RSSI. As result,
this makes CSI more adaptable in difficult situations [40].

CSI [41]: Regarding extraction of features in the recognition
of various human activities, CSI-based sensing that uses WiFi
technology has recently grown in popularity. Various research
has focused on creating CSI-based applications such as those
for spotting individuals, counting individuals in a crowd,
localizing individuals in indoor settings and recognising el-
derly activity if collapses [42]. Recent studies assert that
WiFi transmissions can distinguish between even the tiniest
movements of the human body, including those generated by
the mouth, the fingertips on a keypad and the heart rate and
respiratory rate [43]. Moreover, authors in [44] explored a
novel approach towards localization-based activity recognition
using CSI and made the dataset publicly available, which
inspired our research to conduct analysis.

[1l. SOFTWARE-DEFINED RADIO

Modern SDR employs software-based programming for the
data as well as any necessary encrypting, decryption and data
transmission coding. The Air Force Rome Labs financed the
creation of a configurable modem as an upgrade to the ICNIA
in 1987, which is when SDR design first emerged. A collection
of several single-purpose radios that were combined into one
piece of equipment under the name ICNIA. SDR was the first
component of a communication system for which hardware
was improved by software. The two major concepts that
were taken into account at the outset of SDR were the reuse
of hardware components and granting components additional
flexibility. The first notion is shown by employing Viterbi
codecs for channel coding. The second concept is shown by
baseband processing where the characteristics of the receiver

and transmitter can be changed immediately. Although this
concept was originally used to describe software, it now allows
for a great deal of flexibility in hardware components. When
numerous frequency bands were allocated worldwide for 3G,
a significant need for SDR developed [45].

SDR was used to limit the variety of baseband configura-
tions that can be used. In SDR, radio waves are modulated and
demodulated by software. The SDR does a substantial amount
of signal processing and is a digital electronic device that can
perform reconfiguration. The goal of this notion is to develop
radios that can accept and broadcast new radio protocols by
simply installing new software on them. Due to the need to
offer a range of wireless protocols that are constantly changing
in real time, SDR may be quite helpful for mobile phone
services. Utilising a superheterodyne RF front end, RF signals
are converted from and then into analogue RF signals. Using
analog-to-digital converters and digital-to-analog converters,
the digitized intermediate frequency signals are transformed
from and back into analogue signals. With SDR, fundamental
radio modem technologies can now be implemented [46].

Due to its clear advantages, the SDR is predicted to ul-
timately surpass all existing radio communication technolo-
gies. The following are some remarkable SDR features that
were previously inconceivable. The universal communication
system can adapt to its environment owing to SDR instant
configuration changes. SDR might go from being a cordless
phone to a mobile phone to a GPS receiver in the space of one
minute. SDR can easily and quickly add new functionality. The
update can be sent wirelessly. On an SDR, an individual can
talk and listen to various channels. It is possible to make radios
that have not been built before. Cognitive radios often referred
to as intelligent radios, have the ability to analyse how well
the RF spectrum has been utilised in their immediate vicinity
and configure themselves for the best performance [47].

IV. APPROACH
A. Experiment Design

The experiment described in this study was conducted in
a space measured as 5.2 by 3.8 metres at the University of
Glasgow, UK. As illustrated in Figure [2] the experiments were
carried out in a controlled space divided into 3 by 3 territories
(regions and zones) both horizontally and vertically. All of
the activities were carried out in distinct regions and zones as
per localization. The transmitter and receiver USRP devices
were positioned at a 45-degree angle in the opposite corners
of the experimental space. Different activities were performed
by a participant in the experimental space to acquire data. The
prime factors in the data acquisition phase are the performed
activities and the territories in which activities are carried out.

Hardware for data collection consists of two USRP devices
that communicate with one another when activity takes place
within the covered region. One of the PC is linked to the
USRP X300 device and another PC to the USRP X310
device through an ethernet wire. The USRPs include 120 MHz
baseband bandwidth and extended bandwidth daughterboards
slot spanning DC6 GHz. To enable wireless communication,
USRPs have VERT2450 omni-directional antennas installed.
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Fig. 3: Based on different localization, CSI samples of performed activities. (a) empty space with no activity (b) leaning activity
in Region 2 Zone 2 (R2Z2) (c) sitting activity in R2Z2 (d) standing activity in R2Z2 (e) walking activity from transmitter to
receiver in Z2 (f) walking activity from receiver to transmitter in Z2 [44].

For the two PCs connected to USRP, Linux distribution based
on Debian - Ubuntu 16.04 operating system was used.

Software package based on GNU radio is utilised to con-
figure USRPs communication. GNU radio is an open-source
software package used for digital signal processing and it of-
fers instances of OFDM signal processing that can be modified
to function with USRP hardware and enable CSI extraction.
GNU radio enables the setting of USRP characteristics such
as 64 OFDM subcarriers, 3.75 GHz frequency and gain values
of 70 dB for the transmitter and 50 dB for the receiver.

A python script based on the GNU radio flow diagram is
created and used to launch OFDM communication on the
USRPs. The output of the python coding is the acquired
CSI. First, complex numbers are used to represent the CSI.
Afterwards, by calculating the complex number’s absolute
value, the amplitude of the signals can be determined. The
amplitude of CSI is subsequently transformed into CSV files
that are employed to train the machine learning classifier.
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B. Data Acquisition and Preprocessing

During the experiment, five different classes of data are
collected using USRP devices. Four classes are based on
daily living activities that are leaning, sitting, standing and
walking. One class belongs to an empty space with no activity
happening. The data on empty space is recorded to compare
it with the CSI gained from distinct daily living activities.
The inactive activities such as leaning, sitting and standing
are performed by the participant in separate regions and zones
in the experimental space and CSI is recorded. The walking
activity CSI is recorded while the participant moves towards
the receiver from the transmitter side and vice versa. As
shown in Figure [2] the experimental space is divided into
3 by 3 blocks called regions and zones. This is executed
to localize the performed activities and subsequently verify
how the localization based on distinct regions and zones
affects the gathered data. The CSI samples obtained from the
empty space and different activities are shown in Figure 3]
On the x-axis, the number of packets is plotted. On the y-
axis, the subcarrier’s amplitude is shown where each colour
constitutes a subcarrier in the course of an activity. Each
data sample that was gathered corresponds to three seconds
of an OFDM transmission. As a consequence, the sample
size is around 1250 packets. The empty space collected data
samples are 300x1250. 1200x1250 data samples are collected
for three activities: leaning, sitting and standing. For walking,
900x1250 data samples are collected. The final dataset consists
of 4800x1250 data samples including all activities and an
empty space class. The data on different activities are classified
based on localization such as sitting activity in region 2 zone
1 is labelled as Sitting-R2Z1. The data on leaning, sitting
and standing activity are recorded in each region/zone and
are labelled accordingly while the data on walking activity are
recorded diagonally from the transmitter (R1Z1) to the receiver
(R3Z3) and conversely. Figure [2] illustrates the experimental
space along with distinct regions and zones the space is
divided into to analyze activities based on localization.

For data preprocessing, python libraries including NumPy
and Pandas are used. The CSV files can be parsed using the
Pandas library. The scikit-learn library can then be used to
evaluate the python data frames created from the converted
CSV files. In the first column, labels are applied to data frames.
Due to minimal packet mismatches during communication
between the USRP devices, NaN values are generated in the
dataset created by merging the data frames of each sample.
These NaN values are changed to the average of each row us-
ing python’s function. It should be emphasised that this method
of data cleansing does not affect the overall structure of the
data. After preprocessing the data, machine learning classifiers
based on ensemble structure are employed to classify the data.

C. Machine Learning

An ensemble machine learning classifiers, Extremely Ran-
domized Trees (ERT) [48] and Decision Tree (DT) are used to
evaluate CSI data gathered through indoor localization setup.
In the past, we have used ERT for distinct applications includ-
ing fault detection and diagnosis [49]. Several deep learning

algorithms have also been utilised for multiple purposes such
as fall detection [50], post stroke rehabilitation [51], human
gait trajectory generator [52] and human activity recognition
[53]-[55]. In this paper, the overall accuracy, cross validation
score and training time are used to assess the performance
of the algorithms. For the experimental scenarios based on
activity and locality, the accuracy of machine learning algo-
rithms is evaluated individually. To provide robust analysis, the
accuracy is assessed using the train test split method as well
as the k-fold cross validation method with k=5. K-fold cross
validation, where k is the recommended number of groups to
be created from a given dataset, is a popular technique for
assessing how well a machine learning algorithm performs.
Since the k parameter is fixed to 5 in this experiment, the
dataset is divided into five groups. Four of the five are used
as training data, while one is used as testing data. The dataset
is split into a training set of (70% and a testing set of 30%
for further analysis using the train test split technique. The
following provides a detailed description of the results of the
localization-based machine learning techniques.

V. RESULTS AND DISCUSSION

Two different ensemble learning-based algorithms ERT and
DT are put to the test to verify the efficacy of the proposed
scheme. Both of the algorithms are tree-like structures where
the final output is made based on majority voting by the tree.
DT is a single enormous tree-like structure that is used to
make a decision based on the input data. On the other hand,
ERT is an ensemble of decision trees that audits the output
of the trees and makes a decision based on majority voting.
For instance, if an ERT classifies a data sample as a standing
activity that means the majority of the trees made a decision
that specifies the data sample belongs to the standing activity.
Reason to choose ERT and DT as classifiers is to evaluate their
performances and see whether a combination of multiple trees
is better than a single large tree. Using the python scikit-learn
library, we have designed the ERT and DT algorithm. The
hyperparameters of these algorithms are fine-tuned for optimal
performance such as in the case of ERT, n_estimators = 15.
The final dataset in the form of CSV files is fed into the
algorithms and performance is accessed in terms of confusion
matrix, overall accuracy, cross validation score with k=5 and
training time of the algorithm.

Activities of leaning, sitting, standing and walking are
classified based on different regions and zones such as leaning
R1Z1, leaning R1Z2, leaning R1Z3 etc. Different test cases
as per regions and zones are created to verify the hypothesis.
An empty space class is added to each activity dataset. The
leaning, sitting and standing activity consists of 8 classes in
total plus an empty space class. The walking activity consists
of 6 classes in total plus an empty space class. Figure ] and
Figure [5 reveal classification reports in terms of a confusion
matrix for the ERT and DT, respectively. As can be noted,
an empty space class is detected with high accuracy by both
algorithms since no activity occurs which makes the CSI easy
to classify. The classifier’s performance based on different re-
gions and zones can be noted in these confusion matrices. The
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leaning, sitting and standing activity holds the same number of
classes and combinations of it using distinct regions and zones
such as R1Z1, R172, R1Z3, R27Z1, R272, R273, R3Z1, R3Z3.
The walking activity occurs diagonally in multiple regions and
zones from transmitter to receiver and receiver to transmitter,
as illustrated in Figure [2| The walking activity holds 6 prime
classes such as TxRx-R1Z1, TxRx-R2Z2, TxRx-R3Z3 and
RxTx-R3Z3, RxTx-R2Z2, RxTx-R1Z1. As can be noted in the

confusion matrix graphs, the detection accuracy is high when
activity occurs near the transmitter and receiver. This shows
that acquired CSI are more precise when activity occurs close
to the devices.

Furthermore, Table [I] and Table [II] exhibit performance in
terms of classification accuracy, cross validation score and
training time for the ERT and DT, respectively. For activity
leaning plus empty class, ERT attained an accuracy of up to
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TABLE I: Extremely randomized trees performance report.

Activity Class Accuracy CVS5 Score | Training Time (s)
Empty + Leaning 82% 82% 0.07
Empty + Sitting 96% 96% 0.06
Empty + Standing 97% 96% 0.07
Empty + Walking 85% 85% 0.06

[ Overall Accuracy: 90% |

TABLE II: Decision tree performance report.

Activity Class Accuracy CV5 Score | Training Time (s)
Empty + Leaning 7% 75% 0.64
Empty + Sitting 88% 87% 0.66
Empty + Standing 89% 88% 0.63
Empty + Walking 61% 69% 0.45

[ Overall Accuracy: 78% |

82% whereas DT attained an accuracy of up to 77%. For
activity sitting plus empty class, ERT attained an accuracy
of up to 96% whereas DT attained an accuracy of up to
88%. For activity standing plus empty class, ERT attained an
accuracy of up to 97% whereas DT attained an accuracy of up
to 89%. For activity walking plus empty class, ERT attained
an accuracy of up to 85% whereas DT attained an accuracy
of up to 61%. Moreover, we also compared cross validation
scores with k = 5 for both algorithms. For activity leaning,
ERT reached up to an accuracy of 82% while DT reached up
to an accuracy of 75%. For activity sitting, ERT reached up
to an accuracy of 96% while DT reached up to an accuracy
of 87%. For activity standing, ERT reached up to an accuracy
of 96% while DT reached up to an accuracy of 88%. For
activity walking, ERT reached up to an accuracy of 85% while
DT reached up to an accuracy of 69%. The overall accuracy
achieved by ERT and DT is up to 90% and 78%, respectively.

Table[l and [l also present the average training time taken by
the algorithm in seconds. Three main aspects that determine
how long it takes for an algorithm to train are the type of
data, the algorithm’s structure and the available computing
resources. A machine learning model’s training time can be
estimated using these criteria. The research in this paper relied
on simulations run on a MacBook Air equipped with an M2
chip, an 8-core CPU/GPU and a 16-core neural engine. The
training times of the investigated machine learning algorithms
were measured using data of the same numerical kind saved in
CSV files. Algorithm training time might be longer or shorter
depending on the aforementioned three variables. There is no
appreciable difference in the number of seconds required to
train an algorithm given the similarity in the number of data
points between the two cases. However, ERT required less
training time compared to DT. From the overall performance
evaluation, it is clear that an ensemble of decision trees in
the form of ERT carries out better execution than a single
large tree. This paper proposes a technique based on SDR
for localization-based detection of activities and a cutting-
edge lightweight ensemble learning approach for accurate
classification.

VI. CONCLUSION

In this study, a novel localization system utilizing RF
sensing has been proposed to detect daily living activities such
as leaning, sitting, standing and walking with high precision
in different areas of the same space. The system not only
tracks when and where an activity occurs but also identifies
which activity took place and how many individuals were
present at a specific time. The research demonstrates the
feasibility of detecting individual activities in an indoor setting
using RF sensing, which enables contactless communication
without the need for wearables or cameras. The acquired data
is classified using an ensemble-based ERT algorithm, which
achieved an overall accuracy of up to 90%. The study has
yielded interesting findings. Future research will explore the
robustness of the approach in various indoor settings such as
living rooms and kitchens. In addition, we aim to investigate
other daily living activities including bathing, cooking, eating
etc.
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