

Tian, J., Elhabbash, A. and Elkhatib, Y. (2022) Predicting Cloud
Performance Using Real-time VM-level Metrics. In: 24th IEEE
International Conference on High Performance Computing &
Communications (HPCC-2022), Chengdu, China, 18-21 Dec 2022, pp.
1165-1172. ISBN 9798350319934 (doi: 10.1109/HPCC-DSS-SmartCity-
DependSys57074.2022.00184)

© 2023 Copyright held by the owner/author(s). Reproduced under a Creative
Commons Attribution 4.0 International License.

For the purpose of open access, the author(s) has applied a Creative Commons
Attribution license to any Accepted Manuscript version arising.

https://eprints.gla.ac.uk/295748/

Deposited on: 3 April 2023

Enlighten – Research publications by members of the University of Glasgow
https://eprints.gla.ac.uk

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://eprints.gla.ac.uk/295748/
https://eprints.gla.ac.uk/
https://creativecommons.org/licenses/by/4.0/

Predicting Cloud Performance Using Real-time VM-level Metrics

Jihua Tian∗, Abdessalam Elhabbash∥, Yehia Elkhatib∗
∗ School of Computing Science, University of Glasgow, United Kingdom

∥ School of Computing and Communications, Lancaster University, United Kingdom

Abstract—The vast range of cloud service offerings can
easily overwhelm users and cause them to select ones that
are unsuitable for their needs. As such, the literature has
a number of proposals to predict application performance
based on a history of executing a certain application
or benchmark. However, this requires significant cost to
pre-run the application on different service levels before
identifying the most suitable one. We propose a machine
learning model that enables a cloud user to select the
optimal cloud service based on real-time execution without
the need to do an exhaustive search. We develop and test
this model using a popular benchmark suite on Microsoft
Azure, a leading cloud provider. The key insight of this
work is that fluctuations in rather than the absolute
amount of utilization levels of CPU and memory can be
strongly indicative of how well an application is executing.

Index Terms—Cloud computing, Machine Learning, Ser-
vice Level Objectives

1. Introduction

Cloud Computing is now the de facto choice for
obtaining highly available computing resources. Cloud
providers install and manage massive computing infras-
tructure in their data centers and offer their computing
resources, which can be hardware or software, to users
as services. The cloud computing market is now a
mature one with a number of high-profile providers who
offer various services including computing, storage, net-
working, hosted services, lambda functions, and much
more. The rapid flourishing of the cloud market has
resulted in a wide range of services. See, for instance,
the number of available Infrastructure as a Service
(IaaS) offerings by the major cloud provider depicted in
Fig 1. The number of Linux-based cloud instance types
increased from 134 to 198 between 2015 and 2017 [1].
In 2022, there are more than 400 types of instances
provided by Microsoft Azure1.

On the face of it, such wide range of service pro-
visions is a sign of a healthy and competitive market
sector. However, it does have its own drawbacks. First,
there is a significant risk of customers mis-selecting
instances from the wide range of available options [2],
resulting in either under-performing or over-provisioned

1. https://azure.microsoft.com/en-us/pricing/vm-selector/

Figure 1: The number of Linux-based instance types
offered by major IaaS vendors, as of January 2022.

applications. In fact, “a wrong choice can lead to
a 20 times slowdown or an increase in cost by 10
times” [3]. Second, the number of alternative choices
can be overwhelming even to the extent of avoiding IaaS
completely [2], [4]. Third, any choice could eventually
lead to vendor lock-in which can be significantly costly
in the long-term [1], [5].

Cloud offerings are notoriously difficult to differ-
entiate between [1], [4]. Typically, each cloud service
provider (CSP) commits to a Service Level Agreement
(SLA) that consists of a number of Service Level Ob-
jectives (SLOs). An SLO are commitments from a CSP
regarding quantitative aspects of their service. SLOs
include uptime, availability, throughput, etc. However,
SLOs do not easily translate to the context of a specific
customer application. In other words, it is difficult to
ascertain the performance of an application given the
SLOs of a certain provider.

As an illustration, consider a cloud customer who
selects an instance to deploy their application on. The
instance’s SLA states that availability is guaranteed to
be at least 99.999%. The customer needs each run of the
application to be under 0.5 seconds. The customer could
observe performance degradation, despite the CSP not
violating their SLA. In essence, SLAs define service-
specific SLOs that promise service performance levels
that are somewhat independent from the real perfor-
mance experienced by the customer application. The
latter depends on several other factors including internal
ones such as application design and implementation
decisions.

A number of works aim to aid cloud customers
by traversing or reducing the IaaS search space [1].
They support decision making prior to deployment and

https://azure.microsoft.com/en-us/pricing/vm-selector/

are based on a given application ‘silhouette’. As such,
they cannot be used to react to variance in application
execution, e.g. difference in input data. They also make
decisions based on a relatively large number of data-
points that form a generalization of the performance of
a given instance type, but they cannot react in realtime
to an under-performing instance.

In this paper, we present a novel mechanism to
automate cloud service selection based on real-time
assessment of low-level metrics (e.g., CPU and mem-
ory utilization). We achieve this by identifying metrics
that are most predictive of application performance on
certain cloud instances. The metrics can then be used
to anticipate whether or not the application SLOs will
be met and to reason about whether to continue with
the current selection of VMs or migrate to other types.
In summary, this paper makes three contributions:
• We apply statistical analysis of collected application

performance data to identify predictive metrics. To
achieve this, the proposed framework evaluates the
correlation between the collected metrics and the ob-
served SLO values, and filters out metrics to include
only those that have a strong correlation with the
specified SLOs.

• We employ regression techniques to predict applica-
tion SLO values in order to reason about the selection
of a cloud service.

• We conduct extensive evaluation of the proposed
solution to evaluate the accuracy of SLO prediction
when deploying on a certain cloud service.

2. Related work

A number of works devised means to support mak-
ing the decision of which cloud instance type to use.
This is especially judicious considering that high spec-
ification VMs do not necessarily lead to lower applica-
tion execution time [6], [7], [8], [9], [10].

Previously, several research addressed performance
predictions for programs by modeling application char-
acteristics such as architecture, inputs, and platforms or
code characteristics [10], [11], [12], [13], [14], [15]. For
example, Singh et al. [14] and Yang et al. [16] proposed
methods to create robust models to predict execution
time by capturing the interaction between software and
hardware components. Although predictions with high
accuracy have been delivered through these approaches,
each application requires in-depth analysis to build an
application-specific model of its behavior. This upfront
cost is expensive as modern application architectures
become increasingly complex, and their inherent char-
acteristics are difficult to understand and develop into
analytic models.

More recent efforts tend to focus on building ma-
chine learning models based solely on observed per-
formance. Ernest [17] trains a model for applications
with a small number of execution samples. Since its
performance model is tightly bound to the particular
structure of a given application, it does not work well

for other applications. Based on Bayesian optimization,
CherryPick [18] trains a Bayesian model to distinguish
near-optimal cloud configuration from the rest. Never-
theless, it still demands one-time or regular (e.g., daily)
cost for modeling tasks. Paris [19] uses hybrid offline
benchmarking to generate sufficient workload finger-
prints to obtain a cost-performance trade-off. Baughman
et al. [10] present similar work, predicting execution
time based on knowledge from historical non-cloud ex-
ecutions and proactive profiling experiments. However,
this approach of combining synthetically generated data
with real-world data tends to result in reduced predic-
tion accuracy [20]. MICKY [21] formulates the task of
finding the right cloud instance types as a multi-armed
bandit problem. This reduces the cost associated with
modeling while still achieving near-optimal solutions.

Overall, this body of work still requires prior exe-
cution of an application either on cloud or off-cloud
resources, and does not allow for real-time perfor-
mance analysis. The closest work to ours is Arrow [3],
which augments Bayesian optimization based on in-
stance specifications with low-level performance indica-
tors such as CPU and memory utilization. Nevertheless,
the work is still dependent on pre-existing knowledge
of how an application would execute on certain instance
types and cannot be used in real-time like ours.

3. Methodology

3.1. Research questions and hypothesis

A cloud customer who needs to select a cloud
service would reason their selection based on a number
of criteria including the computational specifications
and SLA of the the services. The specifications mainly
include the number of virtual CPUs (vCPUs), memory
and storage capacities, and data bandwidth.

As mentioned above, recent research results showed
that higher computational specifications does not neces-
sarily lead to improvements in application performance.
This leads us to set the following research questions:
RQ1: Is it possible to predict application performance

without relying on high-level SLO metrics (such
as availability)?

RQ2: Is it possible to predict application performance
by simply looking at basic resource utilization
metrics at the VM level?

RQ3: Is there a combination of metrics, or a composite
feature that would facilitate such prediction of
application performance?

RQ4: Could such prediction be done in real-time?
In this work, we posit the following hypothesis: The

higher the stability of a cloud VM metric the higher the
predictability of that metric of the application SLO.

This postulates that if we monitor a certain metric
of VM performance (e.g., CPU utilization) and the
performance of the application deployed on that VM,
then the rate of fluctuation of that metric indicates

whether the metric can be reliably used to predict the
performance of the application.

3.2. Cloud benchmarks

In order to investigate the validity of this hypothe-
sis, we conduct experiments to compare the values of
application SLOs (in terms of completion time) and
the fluctuation of monitored VM performance metrics
when the application is running over on different VM
types. To conduct our experiment, we employ an ap-
plication from CloudSuite [22], a popular benchmark
suite that is representative of a range of cloud applica-
tions. The selected application is the Graph Analytics
benchmark [23], a CPU-intensive application, due to the
popularity of this application profile. The benchmark
utilizes the Spark framework to perform graph analytics
on large-scale datasets. We execute it using a single-VM
setup to avoid network contention issues.

3.3. Cloud VMs

We identified the VMs listed in Table 1 as our target
infrastructures to perform the experimental comparison.
The VMs were selected based on the following criteria:
• On-demand instance types charged at an hourly rate.
• Within the same region, namely UK South.
• At least one type from each category (i.e., general

purpose, CPU-optimized, etc.).
• Equivalent specifications as much as possible; partic-

ularly, they all have the same number of virtual cores
as the application is a CPU-intensive benchmark.

Table 1: Computational specifications of the VMs used
in the experiment.

VM vCPU RAM Disk Price
Series type (GiB) (GiB) ($/hr)

General purpose
B4ms 4 16 32 0.189
A4v2 4 8 40 0.222
D4v3 4 16 100 0.232

Compute optimized F4sv2 4 8 32 0.202
F4 4 8 64 0.237

Memory optimized
E4v3 4 32 100 0.312

D12v2 4 28 200 0.469
G2 4 56 768 0.878

Storage optimized L4s 4 32 678 0.362

3.4. Data collection

As we ran benchmarks on the different VMs,
we recorded resource utilization every ten seconds
using dstat. We repeated benchmark execution on
each VM ten times with five minutes delay between
each pair of runs. All executions were performed on
the same day in order to avoid any potential ef-
fect of VM performance variation between days of
the week [7]. Our SLO (i.e., response variable) was
completion or execution time. The data is available
here: https://www.dropbox.com/sh/5w9a6yaovm9tu4s/
AADEvvKsWNwxfaeptlBNbs5ta?dl=0

4. Data Analysis

Before training regression models on the dataset,
several aspects of the collected data need to be under-
stood. Specifically, our objectives in this section are:
• Analyze the inherent characteristics of the dataset.
• Explore correlation between resource utilization in-

dicators and completion time, if any.
• Perform feature engineering to transform raw data

into features that are more beneficial for inducing a
predictive model.

4.1. Measurement of resource utilization

We explore each monitoring component to figure
out which features can effectively represent the ability
to make use of system resources.
• We calculate the mean CPU utilization across cores

(we observe balanced load across cores for all VMs
in the dataset). We focus on CPU utilization by user-
space and system processes. Other indicators (e.g.,
idle CPU) are not indicative due to lack of sufficient
variation.

• We calculate memory utilization as a percentage
of the capacity (as specified by the provider – see
Table 1).

• The amounts of network traffic sent and received
are used as absolute values, as the network capacity
is not specified by the provider.

4.2. Correlation between resource utilization
and completion time

To discover additional information from the differ-
ent executions, we explore the relationship between re-
source usage and execution time by analyzing statistical
characteristics for each system component.

4.2.1. CPU utilization. Overall, there is a weak in-
versely proportional relationship between memory ca-
pacity of a VM and the completion time (Fig 2). Ob-
served exceptions are A4v2 and E4v3, which are only
able to use two of the available vCPUs. We also notice
more uncertainty with these instance types as indicated
by a large number of outliers (represented by circles)
in each distribution. By contrast, instance types that are
able to make use of all four vCPUs behave more stably
with fewer outliers. An initial takeaway here is that such
fluctuations in processor performance may be used to
signify completion time, where a higher frequency of
fluctuation corresponds to longer execution duration.

4.2.2. Memory utilization. In contrast, memory uti-
lization exhibits a much weaker correlation with com-
pletion time (Fig 2). We notice similar completion
times on VMs of dissimilar memory usage patterns. For
example, D12v2 and F4 exhibit similar execution times,
but the memory utilization of the latter is significantly
higher. On the other hand, A4v2 and F4 have the same

https://www.dropbox.com/sh/5w9a6yaovm9tu4s/AADEvvKsWNwxfaeptlBNbs5ta?dl=0
https://www.dropbox.com/sh/5w9a6yaovm9tu4s/AADEvvKsWNwxfaeptlBNbs5ta?dl=0

Figure 2: Percentage utilization levels of CPU (top) and
memory (bottom), against completion times in run 1.

RAM capacity and similar memory utilization, but the
execution time of the former is more than double as
that of the latter.

Moreover, relying on outliers to predict completion
times does not seem promising: e.g., although B4ms
and D4v3 completed their tasks in short times, there
are a number of outliers in memory utilization. The rea-
son why memory-related factors are not predictive for
application performance is worth discussing. Memory
utilization never really goes beyond 35%, even for low-
spec instances such as A4v2 and F4. As such, memory
is relatively underutilized and it would be difficult to
detect additional information from monitoring memory
usage.

4.2.3. Network usage. Although it is difficult to sum-
marize the correlation between the fluctuation in net-
work traffic and completion time, we observe that in-
stances with lower execution times normally maintain
greater traffic sizes, particularly sent data as is evident
in Fig 3.

4.3. Median and frequency of fluctuation

Based on the analysis above, we can extract some
indicators of performance to guide our prediction. For
CPU utilization, we can extract the two features of the
frequency of fluctuation and the median value, then add
these new predictors to the dataset to create a more
accurate model. The median value can be retrieved and
computed directly, while some techniques need to be
adopted to detect the points that fluctuate markedly.

Figure 3: Averaged traffic usage in different instance

These outlier points are generally defined as points that
remarkably deviate from their expected value; therefore,
in a given time series, we can declare a point at time t
as an outlier if the distance to its expected value exceeds
a predefined threshold τ :∣∣∣xt −

−
xt

∣∣∣ > τ (1)

where xt is the observed data point, and
−
xt is its

expected value [24]. A simple approach to estimate
the expected value based on basic statistics is the
Median Absolute Deviation (MAD) [25]; once xt is
assumed, outlier points can be determined directly using
Equation 1. Generally, the sensitivity of the algorithm
is controlled by the threshold value: the greater the
τ , the more possible a point is considered as a local
fluctuation. Fig 4 illustrates distinctive detection results
for instance type A4v2 as the threshold value varies.
As the threshold increases, the algorithm focuses more
on capturing significantly varied points while ignoring
those that are only slightly deviant.

In order to compare such fluctuations across dif-
ferent time series, frequency is considered as a metric
to describe the number of occurrences of an anomaly
during a unit of time. Since our data was measured
once every ten seconds, we can calculate the number
of fluctuations per minute using:

F reqfluct = 6 ∗ nfluct/nexecut (2)

where nfluct is the number of outliers and nexecut is
the total number of records.

4.4. Features after engineering

Based on the above analysis of system usage indi-
cators, we select the following 11 features:

• CPU user utilization
• CPU system utilization
• CPU core numbers
• CPU fluctuation fre-

quency
• CPU user median
• Memory utilization

• Memory capacity
• Network sent average
• Network received total
• Network sent total
• Network received aver-

age

Figure 4: Outlier detection with different threshold values.

4.5. Dataset split

The last step of data pre-processing is the split of the
dataset into training and testing sets. Since the original
data was gathered from the tool which performed mon-
itoring tasks on 10 different days and has already been
stored in the corresponding runs, we can simply split
the dataset according to run numbers. In this project,
we take output from 9 runs as the training set, and the
tenth run to be the test set.

5. Implementation

In this section, we introduce the models adopted for
the prediction task and the means by which they were
developed.

5.1. Regression models

Although the response variable (i.e., completion
time of a certain job executed by an application) is
a fixed value over one specific project, we decide to
employ regression methods to predict this target label.
This is because such an attribute does not belong to any
category we can pre-define. Meanwhile, it could be re-
garded as a continuous variable as we are concatenating
tables when generating training and test sets.

5.1.1. Linear Regression. is a relatively simple model
of the relationship between response variables and pre-
dictors. Generally, the simplest scenario of linear regres-
sion only involves one independent and one dependent
variable. As there are multiple independent variables
in our dataset, we use multi-variable linear regression
to attempt to capture the correlations between these
parameters and the response variable.

5.1.2. Support Vector Regression (SVR). models per-
form well in solving regression problems with a small
sample, non-linear and highly-dimensional datasets
[26]. Instead of trying to find a hyperplane that separates
two classes in a classification problem that maximizes
the width of the margin, SVR aims to look for decision
boundaries that can fit as many data points between
them and the hyperplane. Meanwhile, different kernels
(such as RBF, Gaussian, and Polynomial) enable SVR
to address non-linearly separable data, which is partic-
ularly helpful to our multidimensional dataset.

5.1.3. Decision Trees (DT). can work as either classifi-
cation or regression model in a tree structure, breaking
down a dataset into smaller and smaller subsets while
simultaneously developing an associated precision tree.
Its non-leaf nodes and branches represent truth and
falsity values for a statement of a feature, and leaf
nodes indicate decisions on the numerical response

variables. An advantage of DT is that it can measure
both categorical and numerical variables.

5.2. Procedure and implementation

We implemented the entire data processing pipeline
in Python, using the libraries NumPy, Pandas and
Scikit-Learn. The first two libraries are used to
conduct data analysis and preparation, while the third
is equipped with various classical machine learning
algorithms (including regression models) as well as
evaluation metrics.

In this project, the regression models learn the
mapping from system resource usage (variables we
measured in the previous section) to completion time
for each record in the training set, then completion
time of data in the testing set can be predicted based
on that knowledge. However, in order to get robust
models that can precisely predict the target values, we
will investigate the impact of the threshold of outlier
detection by setting different values and comparing their
performance across all models and all instance types.
We look for an optimal value that performs best in the
prediction task. During this process, cross-validation
will be adopted as a crucial technique to assess the
goodness of the models on the training set whilst avoid-
ing overfitting. After that, evaluation methods will be
introduced to check the effectiveness of the models on
the testing set.

The procedure is outlined as follows:
1) Split the training set into 9 folds by the number of

runs.
2) Choose a threshold value from range 1-5, with an

interval of 0.5.
3) Select a fold as the validation set (in turn) and

others as the training set used to fit in the regression
model, then compute the Mean Squared Error (MSE)
between the prediction result and true value on the
validation set.

4) Repeat step 3 and average the MSE for all iterations.
5) Compare the performance of the model with different

settings of threshold across all instance types and
choose the optimal one.

6) Repeat the steps above by applying three regression
algorithms – namely, Linear Regression, SVR, and
DT – and investigate whether they are able to achieve
consistent conclusions in threshold selection. It is
worth noting that for SVR, our exploration evaluates
the above metrics on three different kernels so, in
effect, we compare the performance of five different
models.

7) Evaluate the effectiveness of different models on the
testing set.

6. Evaluation Results

This section conducts sensitivity analysis and illus-
trates the experiment results, especially the outcomes of
different threshold values and comparison of accuracy

between the models we selected over the testing set.
After that, we will discuss the best-performing models
based on evaluation criteria as well as whether their
predictive ability is influenced by instance types.

6.1. Threshold sensitivity analysis

We conduct sensitivity analysis to analyze the im-
pact of changing the threshold value on the log loss
in order to determine the appropriate threshold value
at which performance fluctuations of the cloud VMs
becomes effectively detectable. For this purpose, we
plot the log loss against varied values of the CPU
fluctuation threshold in Fig 5. In the cases of Linear
Regression and Decision Tree Regression we observe
that the threshold value has significant impact on the
predicted performance as the log loss between the esti-
mator and estimated value changes. This fluctuation is
more obvious when the threshold varies in the range of
0 to 2. However, as the threshold gets larger, the logs
loss value stabilizes, to a big extent, especially in the
case of linear regression. This implies that the outliers
detection algorithm is more sensitive to smaller values
of the threshold, resulting in unpredictable loss. How-
ever, for larger values of the threshold, the frequency
of outliers will no longer be significantly different.

In the case of SVR (Fig 5), the log loss does not vary
against the change in the threshold values. This suggests
that the feature of frequency of fluctuating points has
no effect on the accuracy of the model.

Based on the above observations, we set the thresh-
old value as 3.5 for detecting fluctuations which can
result in relatively minimum loss for all the models.
Another point worth noting is that the loss of B4ms
is always significantly higher than the other instances,
regardless of which model is used. This means that the
application performance of this instance is difficult to
predict, an interesting observation that motivates further
investigation (see next subsection).

6.2. Model evaluation

To evaluate the accuracy of the models, we need
to compare and check their prediction performances on
the testing set. MSE and R2 score are the evaluation
metrics used in the experiments. The MSE measures
the difference between the predicted value and expected
output. The R2 score measures the proportion of vari-
ability in the response variable that is explainable by
the predictors [7], [15]. Table 2 illustrates a general
overview of the prediction results of the models. The
MSE values for both SVR models are considerably
higher than that of the linear model, while MSE for DT
fit is smaller than the linear method. Regarding other
regression tests, the R2 statistic always ranges between
0 and 1, which indicates the proportion of variability.
The low R2 values for SVR regressions indicate that
this model fails to explain variability in terms of re-
sponse variables. By contrast, more than 89% and 96%

Figure 5: Sensitivity analysis of the CPU fluctuation threshold.

Table 2: MSE and R2 scores for the different models.

Model MSE R2

Linear Regression 44495.62 0.89
Decision Tree Regression 28579.28 0.96
Support Vector Regression (Kernel RBF) 583180.85 -50
Support Vector Regression (Kernel poly-
nomial)

692471.04 -50.72

of data variability in the prediction of completion time
are captured by Linear and DT respectively.

The prediction ability of the models can be visually
checked by plotting the predicted and actual execution
time from the testing set. In Fig 6, the blue lines indicate
the real execution times of the different instances on the
testing set, and the other lines represent the predicted
values of the corresponding models. As we discussed
earlier, the predictive ability of SVR is rather poor, es-
pecially for the model with a polynomial kernel, which
can barely predict the response variable. In contrast,
linear regression has a relatively good fit, although
the predicted completion time on a particular instance
varies slightly. The predicted values of DT are close
to the true values, i.e., it outperformed both linear and
SVR models.

6.2.1. Effectiveness of models on different instances.
As mentioned above, in the cases of instance B4ms,
the losses between prediction and actual responses are
extremely high. This is also reflected in Fig 6, where
the second blue line represents the actual execution time
of B4ms, by which we can observe predictions of all
models are relatively far away from the truth. Thus, to
evaluate whether the predictive performance will vary

Figure 6: Predicted vs. real response on the testing set

Table 3: MSE of the DT and linear regression models.

Instance Decision Tree Linear Regression
A4v2 400 10.50
B4ms 122500 1903121
D4v3 900 30.09
D12v2 100 1.24
E4v3 2500 78.31
F4 0 18.69
F4sv2 100 29.47
G2 100 6.73
L4s 400 6.39

due to the instance type. Instead of fitting models with
the whole data of the training set, each time we use data
of different instances to train the regression model and
assess the goodness of the model on respective testing
data. To simplify, we select linear and DT regression in
this step as the SVR did not fit the data well in previous
results.

As is evident from Table 3, despite some variations,
both models can effectively predict the application exe-
cution time except B4ms, with linear regression having
an overall better performance. It also illustrates that the
extremely large error of linear regression on B4ms is the
reason for its worse predictive ability than the DT on the
whole testing set. By referencing information provided
by Azure, different from other VM instances which are
configured with certain processors, B4ms sometimes
need to burst to significantly higher CPU performance
when the demand rises. Such variation in performance
is likely the reason why the response values for this
type of instance are not accurately predictable.

In summary, we found a suitable value for the
threshold used in outlier detection through cross-
validating the training set. Then, we assessed the predic-
tive performance of linear, DT, and SVR models with
the threshold value by using MSE and R2 as evaluation
metrics. Furthermore, we evaluated the performance
of linear regression and DT on each instance type
respectively, finding execution time can be effectively
predicted in the majority of VM instances except B4ms.

7. Conclusion

In this paper, we investigated the correlation be-
tween cloud application performance and resource us-
age of the hosting VM. Our findings show that the ro-
bust regression models we built using linear regression
and decision trees can be used to effectively predict

service level objectives. The model is of immediate
benefit to anyone running cloud applications, helping
them to optimize deployment in a real-time fashion by
observing basic VM-level metrics that are application-
independent.

Threats to validity. Naturally, the data we used to
train our model had its own limitations: it was collected
from a limited set of VM types from a single provider,
from a single availability zone, and from one weekday.
However, literature shows that these do not affect the
representativeness of the data. Specifically, none of the
time of day, day of week (excluding weekends), or
availability zone is a significant predictor of VM per-
formance [7], [27], except for VM startup time which
varies for some providers across availability zones [28].
In our study, we do not aim to establish any causal rela-
tionships hence threats to internal validity are minimal.
Although we comment on the correlations we observe,
we are cautious not to generalize in order to mitigate
threats to external validity.

Future work. We will expand our models by ex-
ploring data from VMs across providers. We also plan to
employ more than one application benchmark to gauge
model effectiveness for different application profiles.

Acknowledgment

This work was partly supported by the UK EPSRC
under grant number EP/R010889/2.

References

[1] A. Elhabbash, F. Samreen, J. Hadley, and Y. Elkhatib, “Cloud
brokerage: A systematic survey,” ACM Computing Surveys,
vol. 51, no. 6, pp. 119:1–119:28, Jan. 2019.

[2] C. Kilcioglu, J. M. Rao, A. Kannan, and R. P. McAfee, “Usage
patterns and the economics of the public cloud,” in International
Conference on World Wide Web, 2017, pp. 83–91.

[3] C.-J. Hsu, V. Nair, V. W. Freeh, and T. Menzies, “Arrow: Low-
level augmented bayesian optimization for finding the best cloud
vm,” in International Conference on Distributed Computing
Systems (ICDCS), 2018, pp. 660–670.

[4] Cloud Standards Coordination (Phase 2), “Cloud computing
users needs - analysis, conclusions and recommendations from
a public survey,” ETSI, Special Report 003 381 V2.1.1, 2016.
[Online]. Available: http://csc.etsi.org/phase2/UserNeeds.html

[5] R. Chard, K. Chard, K. Bubendorfer, L. Lacinski, R. Madduri,
and I. Foster, “Cost-aware cloud provisioning,” in International
Conference on e-Science. IEEE, 2015, pp. 136–144.

[6] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui,
“Exploiting hardware heterogeneity within the same instance
type of Amazon EC2,” in Conference on Hot Topics in Cloud
Computing (HotCloud). USENIX, 2012.

[7] F. Samreen, Y. Elkhatib, M. Rowe, and G. S. Blair, “Daleel:
Simplifying cloud instance selection using machine learning,”
in IEEE/IFIP Network Operations and Management Symposium
(NOMS). IEEE, 2016, pp. 557–563.

[8] K. Hwang, X. Bai, Y. Shi, M. Li, W. G. Chen, and Y. Wu,
“Cloud performance modeling with benchmark evaluation of
elastic scaling strategies,” Trans. Parallel Distrib. Syst., vol. 27,
no. 1, pp. 130–143, 2016.

[9] N. Ghrada, M. F. Zhani, and Y. Elkhatib, “Price and perfor-
mance of cloud-hosted virtual network functions: Analysis and
future challenges,” in PVE-SDN, 2018.

[10] M. Baughman, R. Chard, L. Ward, J. Pitt, K. Chard, and
I. Foster, “Profiling and predicting application performance on
the cloud,” in IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), 2018.

[11] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasser-
man, and M. Gittings, “Predictive performance and scalability
modeling of a large-scale application,” in ACM/IEEE Confer-
ence on Supercomputing (SC), 2001.

[12] G. Marin and J. Mellor-Crummey, “Cross-architecture per-
formance predictions for scientific applications using pa-
rameterized models,” in Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMET-
RICS/Performance), 2004, pp. 2–13.

[13] L. Carrington, A. Snavely, and N. Wolter, “A performance
prediction framework for scientific applications,” Future Gen-
eration Computer Systems, vol. 22, no. 3, pp. 336–346, 2006.

[14] K. Singh, E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz,
and R. Caruana, “Predicting parallel application performance via
machine learning approaches,” Concurrency and Computation:
Practice and Experience, vol. 19, no. 17, pp. 2219–2235, 2007.

[15] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman,
and R. Ricci, “Taming performance variability,” in USENIX
Symposium on Operating Systems Design and Implementation
(OSDI). Carlsbad, CA: USENIX Association, Oct. 2018,
pp. 409–425. [Online]. Available: https://www.usenix.org/
conference/osdi18/presentation/maricq

[16] L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance
prediction of parallel applications using partial execution,” in
ACM/IEEE Conference on Supercomputing (SC), 2005.

[17] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Sto-
ica, “Ernest: Efficient performance prediction for large-scale
advanced analytics,” in USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2016.

[18] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively unearthing the best cloud
configurations for big data analytics,” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2017.

[19] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith, and
R. H. Katz, “Selecting the best VM across multiple public
clouds: A data-driven performance modeling approach,” in ACM
Symposium on Cloud Computing (SoCC), 2017.

[20] F. Samreen, G. S. Blair, and Y. Elkhatib, “Transferable knowl-
edge for low-cost decision making in cloud environments,”
Transactions on Cloud Computing, vol. 10, p. 3, Jul. 2022.

[21] C.-J. Hsu, V. Nair, T. Menzies, and V. Freeh, “Micky: A cheaper
alternative for selecting cloud instances,” in International Con-
ference on Cloud Computing (CLOUD), 2018, pp. 409–416.

[22] “CloudSuite,” https://www.cloudsuite.ch/.

[23] “Graph analytics,” https://github.com/parsa-epfl/cloudsuite/
blob/master/docs/benchmarks/graph-analytics.md.

[24] A. Blázquez-Garcı́a, A. Conde, U. Mori, and J. A. Lozano, “A
review on outlier/anomaly detection in time series data,” ACM
Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–33, 2021.

[25] S. Mehrang, E. Helander, M. Pavel, A. Chieh, and I. Korhonen,
“Outlier detection in weight time series of connected scales,”
in International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 2015, pp. 1489–1496.

[26] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and computing, vol. 14, no. 3, pp. 199–
222, 2004.

[27] P. Leitner and J. Cito, “Patterns in the chaos—a study of
performance variation and predictability in public IaaS clouds,”
ACM Trans. Internet Technol., vol. 16, no. 3, Apr. 2016.

[28] J. Hao, T. Jiang, W. Wang, and I. K. Kim, “An empirical
analysis of VM startup times in public iaas clouds: An
extended report,” CoRR, vol. abs/2107.03467, 2021. [Online].
Available: https://arxiv.org/abs/2107.03467

http://csc.etsi.org/phase2/UserNeeds.html
https://www.usenix.org/conference/osdi18/presentation/maricq
https://www.usenix.org/conference/osdi18/presentation/maricq
https://www.cloudsuite.ch/
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/graph-analytics.md
https://github.com/parsa-epfl/cloudsuite/blob/master/docs/benchmarks/graph-analytics.md
https://arxiv.org/abs/2107.03467

	Introduction
	Related work
	Methodology
	Research questions and hypothesis
	Cloud benchmarks
	Cloud VMs
	Data collection

	Data Analysis
	Measurement of resource utilization
	Correlation between resource utilization and completion time
	CPU utilization
	Memory utilization
	Network usage

	Median and frequency of fluctuation
	Features after engineering
	Dataset split

	Implementation
	Regression models
	Linear Regression
	Support Vector Regression (SVR)
	Decision Trees (DT)

	Procedure and implementation

	Evaluation Results
	Threshold sensitivity analysis
	Model evaluation
	Effectiveness of models on different instances

	Conclusion
	References

