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Abstract
Understanding how people socially engage with robots is becoming increasingly important as these machines are deployed in
social settings. We investigated 70 participants’ situational cooperation tendencies towards a robot using prisoner’s dilemma
games, manipulating the incentives for cooperative decisions to be high or low. We predicted that people would cooperate
more often with the robot in high-incentive conditions. We also administered subjective measures to explore the relationships
between people’s cooperative decisions and their social value orientation, attitudes towards robots, and anthropomorphism
tendencies. Our results showed incentive structure did not predict human cooperation overall, but did influence cooperation
in early rounds, where participants cooperated significantly more in high-incentive conditions. Exploratory analyses further
revealed that participants played a tit-for-tat strategy against the robot (whose decisions were random), and only behaved
prosocially toward the robot when they had achieved high scores themselves. These findings highlight how people make
social decisions when their individual profit is at odds with collective profit with a robot, and advance understanding on
human–robot interactions in collaborative contexts.

Keywords Human–robot interaction · Human–robot cooperation · Prisoner’s dilemma games · Rapoport’s K-index ·
Reciprocity

1 Introduction

Social robots are becomingvaluable tools for assisting people
with daily life, as they take on new roles in healthcare, educa-
tion, and therapy [8]. However, many commercially available
social robots suffer from the criticism of not fitting users’
expectations, especially in terms of the richness or appropri-
ateness of their social responses, which in turn diminishes
people’s ability to collaborate with these machines, let alone
build long-term, enduring social relationships [28, 31]. On
one hand, robot designers and engineers are endeavouring to
build more socially-sophisticated robots, mostly by increas-
ing robots’ human-likeness in terms of physical features,
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motion, and behaviours [17, 39], 70. On the other hand,
however, others have argued that it is equally, if not more,
imperative to gain deeper understanding into the psycho-
logical mechanisms and factors that underpin and shape
the quality of human–robot interaction (HRI), which often
extend far beyond the level of human-likeness [6, 8, 11, 16,
33, 35, 67].

One important aspect of HRI that calls for further psy-
chological investigation is human–robot cooperation [59,
60, 69]. Cooperation is a pivotal theme in human social
behaviours and is key to building mutual and group inter-
ests [4, 24]. Forming amiable and cooperative relationships
with robots should also maximize the utility of robots [60].
Taking eldercare robots as an example, an ideal healthcare
robot might take care of various aspects of an elderly individ-
ual’s everyday life, such as administeringmedicine, updating
family on health status, and providing social interaction to
combat loneliness c.f. [1, 53, 54]. A common theme returned
to by these systematic reviews and meta-analyses is that
if elderly individuals do not comply with a robot’s health
instructions, engage with a robot socially, or accept a robot
as a collaborator, the robot’s utility is diminished and human
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users miss out on the potential benefits the robot can offer. As
a consequence, a clearer understanding of humans’ willing-
ness to cooperate with robots, and the possible factors that
shape such willingness, would be beneficial to maximise the
social and economic benefits socially assistive robots might
offer.

In literature examining human–human and human–robot
cooperation, prisoner’s dilemma (PD) games are often used
to explore collaborative behaviour between individuals (or
agents) [4, 66]. In a classic PD game, two players make
simultaneous decisions—to cooperate or defect—with their
individual payoff determined by both players’ decision on
any given trial. If both players choose to cooperate, they
each earn a moderate amount but not the highest rewards
(R in Fig. 1; e.g., £7 each). If only one chooses to cooperate,
the defecting player receives the most rewarding payoff (T;
e.g., £10), while the cooperating player gets the worst out-
come (S; e.g., £0). Finally, if both players choose to defect,
both receive a minimal payoff (P; e.g., £1 each). Thus, while
defection might be a profitable choice in terms of individ-
ual gain, cooperation brings about better chances of forming
cooperative social relationships and of higher mutual gain in
the longer term.

Different designs of payoff matrices in PD games sig-
nificantly influence people’s cooperative tendency [49]. To
standardise PDgame incentive structures, Rapoport [56] [56]
proposed the K-index as a measure of anticipated coopera-
tion, which is calculated as follows:

(R − P)

(T − S)

TheK-index represents the incentives for cooperation pro-
vided by a PD game’s payoff matrix [56]. A higher K-index
means more incentives for cooperation are provided by the
game context, leading to higher cooperation rates among
human players [49, 56]. The propositions of Rapoport’s K-
index are in line with several social behaviour models, such
as preferences for social efficiency [12] and the cooper-
ative equilibrium model [9]. These models, coupled with
empirical evidence from interpersonal PD games [10, 49],
suggest that people’s cooperative tendency is shaped by pay-
off structures in PD games. This stands in contrast to the
neoclassical economic theory’s prediction [63] that people
should act rationally to maximise self-gain and therefore
defect all along.

Prior work suggests that people employ similar social
behaviours in human–robot and human–human economic
games. For example, participants in previous studies were
equally cooperative with human or artificial opponents [18,
42, 69]; and have demonstrated the same reciprocal responses
to a Nao robot (a child-sized humanoid robot) as to a human
confederate [59]. Moreover, other research reports human

cooperative behaviours to be impacted by emotions displayed
by artificial agents, in line with the appraisal theory of emo-
tion [18–21]. However, the experimental set-up and designs
of these studies varied considerably, making it difficult to
assess the role played by contextual factors or draw conclu-
sions about how people behave and cooperate with artificial
agents in such economic games.

Moreover, many well-known studies aiming to advance
our understanding of human cooperation with artificial
agents have been conducted using online economic games
[19–22, 34, 49]. However, a number of other studies clearly
demonstrate that people’s attitudes and responses towards
online and embodied robotic agents can differ [27, 43, 46,
61]. For example, in studies by Kwak et al. [43] and Seo
et al. [61], people showed more empathy towards embod-
ied robots than robots on-screen. Furthermore, Fraune et al.
[27] found that the ways robots interacted with other robots
in videos affected people’s perceptions of anthropomor-
phism more than the ways in which robots interacted with
humans in videos, whereas in actual physical interactions
with embodied robots, participants were more influenced by
the robots’ social styles towards humans than towards other
robots.As such, findings fromonline human–robot economic
games might not necessarily be generalisable to people’s
actual cooperative behaviours in economic games played
with embodied robots. Our present understanding of human
cooperative and competitive behaviours toward a physically
present robot remains limited (some embodied investigations
into human—robot cooperation include: [41, 59, 65]; a gap
in knowledge that is becoming increasingly important to fill
[44, 61, 67]. Therefore, in this study, we examined people’s
willingness to cooperate with a physically embodied social
robot in PD games where the incentive structures (i.e., K-
index) are manipulated as a between-subject variable and
participants’ binary game decisions (i.e., to cooperate or not
to cooperate) were measured as the dependent variable. In
line with previous research findings from interpersonal PD
games [49], we hypothesise that the proposition of K-index
still holds true in human–robot PD games, and predict that
participants who play a high K-index PD game against a
robot will make more cooperative decisions than those who
play a low K-index game, regardless of a robot opponent’s
pseudo-random game decisions (half times cooperating and
half times defecting, with a randomised order). Given that
defection is always a preferable option in terms of individual
payoff in a single PD game, people’s willingness to cooper-
ate with a robot might suggest that we confer some manner
of social status to the robot, since cooperation in this con-
text requires a mindset of focusing on collective payoff and
accepting possible betrayal from a robot.

In addition to the factor of incentive structure, other per-
sonal and social factorsmight also shapepeople’s cooperative
tendencies in PD games, such as the nature of agents (human
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Fig. 1 Payoff matrix of prisoner’s
dilemma games. R � rewards; T
� temptation; S � sucker’s
payoff; P � punishment. Designs
of payoff matrix should follow
the two rules: T > R > P > S; 2R
> T + S

vs. robot) [20, 69], attitudes towards game opponents [68],
and perceived trustworthiness of game opponents [13, 69].
In an attempt to isolate and research the effects of K-index
in the game context where contextual, personal, and social
factors might coexist, we set up two experimental conditions
where K-index was the only varied variable. However, we
acknowledge the necessity of taking other relevant factors
into consideration as these effects might interact or confound
with our main effect of interest (i.e., K-index). We therefore
identify five relevant factors based on the literature, including
reciprocity inHRI [59], presentation of game scores, people’s
negative attitudes toward robots [64], social value orientation
[52], and predisposition to anthropomorphism [58]. Explo-
ration of these factors offers to further inform the field of
social robotics of the relevant variableswhich should be taken
into consideration when developing and conducting further
investigations into the complex social dynamics that under-
pin human–robot cooperation. Moreover, these exploratory
models serve as alternative explanations of people’s cooper-
ative behaviours in human–robot PD games if K-index is not
a significant predictor (contrary to our hypothesis).

2 Methods

2.1 Open Science Statement

Prior to data collection, all manipulations, measures, and
the sample size justification and main hypotheses were pre-
registered on the Open Science Framework (OSF): https://
osf.io/res67/. Consistent with recent proposals [29], we
report all manipulations and all measures in the study. In
addition, following open science initiatives [50], the data,
stimuli, and analysis code associatedwith this study are freely
available on the Open Science Framework. By making the
data available, we enable others to pursue tests of alterna-
tive hypotheses, as well as more exploratory analyses. All
study procedures were approved by the College of Science
and Engineering Ethics Committee (University of Glasgow,
Scotland)—approval number: 300180201.

2.2 Participants

We recruited seventy participants (Mage � 23.6, SD � 3.62;
50 females), who had normal or corrected to normal vision
and no history of neurological or psychiatric disorders, from
the University of Glasgow’s psychology subject pool sys-
tem. The sample was composed of people from diverse
national backgrounds, but all currently living in theUK–– 25
(35.71%) of them report being from theUK, 8 (11.43%) from
China, 6 (8.57%) from the US, 4 (5.71%) from India, and the
other 27 (38.57%) from the rest of 20 different countries
(Table S2). The pre-registered sample size was determined
by a simulation-based power analysis for generalised mixed-
effects models, and the parameters used for simulation were
based onMoisan and colleagues’ study [49]. In order tomake
sure participants’ prior experiences with robots did not con-
found our results, we needed to confirm that the subjects in
both high and lowK-index conditions were similarly naïve to
robots. We measured their daily exposure to robots and also
to robot-relevant films or series they had seen (e.g., West-
world, Star Wars, Wall-E) [57] before taking part in the PD
games. On a scale from 1 (never) to 7 (daily), the median
of daily engagement with robots for our sample was 2, with
an interquartile range (IQR) of 2. The median number of
robot films seen by participants is 3 (IQR � 3) out of 14
films. Two Wilcoxon rank sum tests were performed to test
whether the participants in high K-index and low K-index
conditions differed in their daily engagement with robots or
in the number of films featuring robots seen. We found no
difference between the two samples’ scores for either of the
scales (daily engagement with robots: W � 730, p � 0.15;
numbers of robotic films seen:W � 759, p � 0.083), which
verified that the two samples had a similar level of prior
exposure and were generally naïve to robots. Participants’
informed consentwas obtained prior to the experiment begin-
ning, and participants were reimbursed with £6 (per hour) or
4 course credits at the end of the study.

2.3 Game Design

Participants played one practice game and one formal PD
game with a commercially available Cozmo robot (manu-
factured by Anki Inc.—Fig. 2). The formal game involved
20 iterated game rounds played between participants and a
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Fig. 2 The Cozmo robot used in this study

Cozmo robot. Participants would not know the total num-
ber of game rounds in advance, to prevent them intentionally
pre-planning how many times they were going to cooperate.
Cozmo is palm-sized (5 × 7.2 × 10 inches), with an LED
screen (128 × 64 resolution) as a face, which allows it to
produce variable and expressive facial expressions, such as
happiness, anger, sadness, and surprise. Along with its emo-
tionally expressive face, Cozmo also produces robotic vocal
interjections, and can be programmed to speak simple words
and phrases with a mechanical sounding voice. However, in
the current study, Cozmo’s emotionality remained neutral
across two conditions. Equipped with four motors, its fork-
lift style arm and head can move in the vertical plane, and its
steering wheels can drive in all directions. The Cozmo robot
also has a well-developed software development kit (SDK)
platform, which users can use to customise its programming
using Python language and which we used to develop our
human–robot PDgame. Cozmo robot’s flexibility and afford-
ability make it a suitable tool for HRI experimental research
[14, 16].

Before the games started, the experimenter presented a
short introductory video to participants about the PD game
rules and verbally explained the cover story of the experiment
with the following text: “In this study, we are running a robot
competition and aim to know which Cozmo is the best eco-
nomic game player (showing participants five other Cozmo
robots on the shelf). In each game round, a certain amount of
coins will be available to you and Cozmo, and both players
will make simultaneous decisions either to keep all the coins
or to share coins with the other. Your individual payoff will
depend on both of your decisions. The more coins you get
the higher possibility you’ll win a shopping voucher in the
end, and the Cozmo that wins will be used in our following
study, but if Cozmo loses the game, its memory and data will
be entirely erased.”

Fig. 3 The schematic of game screens. Panel A illustrates a high K-
index PD game (K � 0.6). Panel B illustrates a low K-index PD game
(K � 0.2)

We used the script of erasing Cozmo’s memory as its pun-
ishment for losing because prior work has demonstrated that
such a prompt is useful in eliciting people’s real concerns
and empathy towards a robot [61], and in the case of this
study, should further convince participants that the game is
meaningful to Cozmo with real consequences. Participants
were randomly assigned to either the high K-index (K �
(7–1)/(10–0) � 0.6) game or the low K-index (K � (6 −
4)/(10−0)�0.2) game (Fig. 3A,B, respectively). The exper-
imenter also answered participants’ questions and made sure
that they fully understood how to play the game before it
started.

3 Setup and Apparatus

We developed the human–robot PD game via Python 3.5.3
to examine people’s cooperative tendency in different game
contexts (technical details and programmes can be found
on the Github page: https://github.com/CozmoGame4Sobot/
Prisonner-s-Dilemma). The setup of the experiment is shown
in Fig. 4. Participants faced a screen demonstrating the pay-
off matrix, real-time outcomes, and game scores during the
game. Cozmo was placed on the right side of the screen, on
a custom-built 4.3 cm thick paper box with an overhang on
the side between the two players to prevent participants from
seeing Cozmo’s interactive cube (see below). This design
was to prevent participants from cheating, as some might
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Fig. 4 The experimental setup: A
the PD game environment from
participants’ perspective.
Participants faced a game screen
and the Cozmo robot, and made
responses via tapping two
interactive cubes, which
represented “to keep” and “to
share” decisions. B Cozmo
turning to face the screen to ‘see’
the updated game scores after it
had made a decision

try to observe Cozmo’s decision first before deciding which
cube to choose for themselves to maximise payoff. However,
the setup still allowed participants to see the whole body of
Cozmo since Cozmowould drive backwards to a point where
its entire body was visible by participants (panel B of Fig. 4),
and where it could “watch” the screen until it made a choice
for how to respond. This ensured that the robot was within
participants’ sight for all of the experiment except when it
made its choice to keep or share.

Players used interactive cubes equipped with LED lights
inside to make decisions in each game. Each participant was
given two interactive cubes, illuminated in different colours
to reflect their different choices (participants tapped the blue
cube to keep the coins and the yellow cube to share the
coins). Cozmo used only one cube to respond, in order to
prevent participants from anticipating Cozmo’s choices from
the direction it drove towards. We designed practice games
to familiarise participants with the ways of responding and
with the payoff matrices. When practising, participants were
asked only to respond to specific goals on the screen (e.g., tap
the yellow cube to get 7 coins), to avoid their gaining actual
PD game experience before the formal game started. In for-
mal PD games, we manipulated Cozmo’s game decisions to
share for 10 trials and to keep for 10 trials, with the order
of Cozmo’s ‘share’ and ‘keep’ decisions randomised across
participants. This decision structure was chosen to control
Cozmo’s behavioural competitiveness, and ensure that the
number of Cozmo’s ‘share’ and ‘keep’ decisions was con-
sistent for all participants. Both human players and Cozmo
made their responses by tapping the top of the cubes, which
were connected to a controlling laptop via WiFi, and the
players’ responses were recorded by Python log files.

3.1 Measures

Participants also completed several questionnaires, which
were used to explore the role of different human factors in
human–robot cooperation, and tomeasure participants’ eval-
uation of Cozmo after the PD games. First, a social value
orientation (SVO) [52] questionnaire was used to measure

people’s temperamental pro-sociality. The SVO scale has a
significant relationship with cooperative decisions in inter-
personal social dilemmas [2, 51]. Participants are asked a
series of questions regarding howmuch endowment a person
waswilling to ascribe to themselves and to an unknownother,
to evaluate the main drive of their social decisions—whether
it was self-profit, collective profit, or relative profit [52]. Sec-
ond, the negative attitudes toward robots scale (NARS) [64]
was included to understand people’s prior attitudes to robots
in HRI research. Although no study has yet directly tested
the relationship between negative attitudes and cooperative
behaviours toward robots, the general correlation between
such attitudes and people’s social behaviours toward robots
is suggestive of a possible relationship. Third, we measured
participants’ predisposition to anthropomorphism [58], to
explore whether an individual’s temperamental tendency to
humanize non-living things influenced the decision-making
process in the current game environment. We administered
these scales to take human and social factors into account
and to explore whether they exert substantial effects (which
surpass our main effect of interest) on people’s cooperative
decisions in the current game context. Undoubtedly, there are
fundamental differences between playing games with a robot
and with a human. This could potentially make it question-
able to predict human behaviours in HRI based on findings
of interpersonal PD games. However, given the findings that
people employed similar social behaviours in human–robot
and interpersonal PD games [18, 42, 59, 69], we do not pre-
dict that the artificial nature of robots or the unique features of
HRI would entirely cancel out or profoundly alter the influ-
ence of K-index.

These three scaleswere administered before the PDgames
were performed. Upon completion of these games, partici-
pants were asked to evaluate Cozmo’s game performance
and strategy. Both pre-game and post-game questionnaires
were pre-registered and administered via the FormR survey
framework [3] (https://formr.org).
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Table 1 Results of the mixed
effects logistic regression model
that examined the effects of
incentive structures on human
cooperative decisions towards a
robot

Main model

decision ~ incentive structure + (1 | subject) + (1 + incentive
structure | round)

Estimate SE z p-value Low CI High CI

Intercept −0.467 0.190 −2.46 0.014* −0.838 −0.095

Incentive structure −0.301 0.232 −1.30 0.194 −0.756 0.153

AIC 1756.8

BIC 1788.2

Log-likelihood −872.4

SE � standard error. CI � 95% confidence interval. *p < .05; **p < .01; ***p < .001
SE � standard error; CI � confidence interval

3.2 Procedure

The experiment comprised three main sections. First, partic-
ipants were given instructions and asked to provide written
informed consent. Cozmo would then introduce itself by
saying “Hello participants, I’m Cozmo.” Afterwards, par-
ticipants completed a series of PC-based questionnaires,
including prior experience with robots scale, NARS, SVO,
and the predisposition to anthropomorphism scale. Second,
participants completed one practice and one formal PD game
with Cozmo in a lab booth. Third, participants completed a
final set of questionnaires, including subjective evaluation of
Cozmo’s performance and strategies, and their demograph-
ics. Following all procedures, participants were debriefed,
paid, and thanked for their participation.

3.3 Data Analysis

All statistical analyses were carried out in R v4.0.1 [55]. We
pre-registered the use of a mixed effects logistic regression
model to examine the main research question: the extent to
which people’s decisions to cooperate with a robot would be
impacted by the different incentive structures of PD games.
Additionally, we used a multiple regression model to explore
the role of several additional factors on human players’
cooperation rates in the human–robot PD games. These fac-
tors were assessed via questionnaire and included negative
attitudes toward robots, social value orientation traits, and
predisposition to anthropomorphism. Finally, for exploratory
purposes, we employed two additional mixed effects mod-
els to investigate the impact of (1) Cozmo’s prior game
decisions; and (2) the presentation of players’ game scores
on individual human decision. Findings from the final two
exploratorymodels can offer insights for future experimental
designs on related questions and can help to identify addi-
tional factors that shape human cooperative behaviours in the
current context.

4 Results

4.1 PreregisteredMain Analysis

To investigate our main research question—whether partic-
ipants’ cooperative/non-cooperative game responses in the
iterated PD games were influenced by the incentive struc-
ture of the PD games—we adopted a mixed effects logistic
regression model as our main pre-registered analysis. We
followedBarr et al.’s suggestion [5] and startedwith themax-
imum random effects structures –– see Eq. (1) below. The
model successfully converged with a fixed effect of incen-
tive structure, subject-level random intercepts, round-level
random intercepts, and random slopes for the conditional
effects on game rounds. Results of the analysis are shown in
Table 1.

decision ∼incentive structure + (1 | subject)
+ (1 + incentive structure | round) (1)

The overall incentive structure of PD gameswas not found
to be predictive of participants’ game decisions (β �−0.301,
p� 0.194, 95%CI� [−0.756, 0.153]) across 20 game rounds
even after subject-level and round-level random noises were
controlled. This means participants in the highK-index game
did not share coins more frequently than those in the low K-
index game did, in contrast to our prediction.

For descriptive statistics, we calculated cooperation rates
by dividing the number of cooperative decisions participants
made by the number of total game rounds they performed.
The mean cooperation rate of participants playing in the high
K-index condition was 0.40, while that of participants in
the low K-index condition was 0.34. We also visualised the
binary game data (see Fig. 5) to assess the distribution of
the participants’ decisions (in the two conditions—high and
low K-index) across 20 game rounds. The tendency differ-
ence between these two conditions was salient especially at
the start of games (Fig. 5). When playing the high K-index
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Fig. 5 Distribution of game
decisions (sharing coded as 1;
keeping coded as 0) across 20
game rounds. A nonparametric
smoothed curve was added to
provide a clearer view of the
cooperative trends. Cooperative
decisions were notably more
frequent in the high K-index
condition than in the low
K-index condition, especially in
the first few game rounds

game, participants began with a high tendency to cooper-
ate, but this tendency declined rapidly after the first 5 game
rounds. Conversely, the curve in the low K-index condition
remained relatively flat throughout the 20 rounds.

We calculated the average cooperation rates (N of sub-
jects who shared/N of total subjects) per game round and per
K-index condition, and further observed that the coopera-
tion tendency declined and fluctuated across both conditions
(Fig. 6 and Table S1). In the first game round, 80% of people
in the high K-index game chose to share coins with Cozmo,
but only 57.1% of participants in the low K-index condition
did so. Similarly, cooperation rates in both game conditions
dropped after the first few rounds and fluctuated till the end.

4.2 Exploratory Analyses

4.2.1 Cooperative Tendencies in the First Game Round

In light of the stark contrast between the two groups of partic-
ipants’ starting responses, we examined statistically whether
the participants in the high and low K-index conditions had
different cooperation tendencies in the first game round. Such
an analysis can be meaningful because it extracts the possi-
ble impact of incentive structure on cooperative intentions
from other potentially influencing factors, such as quality
of HRI, the random order of Cozmo’s decisions, and all the
relevant experiences during the game. In this analysis, we
treated decisions made by participants in their first game as
one-shot PD games and used a logistic regression model,
which revealed that participants’ first-game decisions were
significantly affected by the game structure (β � −1.10, p
� 0.043); participants shared coins (cooperated) more often

in the high K-index game than did those in the low K-index
game. Odds ratio calculations also suggested that the odds
of cooperation in condition one (high K-index, 28/20 � 1.4)
was three times more likely than that in condition two (low
K-index, 7/15 � 0.47).

4.2.2 Reciprocity in HRI

Reciprocity is an important theme in human social behaviour
and plays a major role in the decision-making process of
cooperation [4, 24, 59, 66]. Evidence shows that people can
behave reciprocally toward social robots in certain contexts
[59]. We were therefore also interested to know whether our
participant samples responded reciprocally to Cozmo’ game
decisions (i.e., chose to share coins after Cozmo shared or
chose to keep coins after Cozmo kept) in our specific experi-
mental context. To probe this possibility, every gamedecision
made by participants was paired with Cozmo’s decision from
the previous round, and the data were examined by a mixed
effects logistic regression model. Again, we started with a
maximal model in terms of random structures [5]. We then
reduced the complexity of random structures to arrive at a
model that converged by removing random slopes for incen-
tive structure (given that the focus of this analysis is more on
Cozmo’s decisions). The final model is provided in Eq. (2),
which included Cozmo’s decision and incentive structure as
the fixed effects and controlled subject-level and round-level
random effects.

decision ∼ Cozmo′s decision ∗ incentive structure

+
(
1 + Cozmo′s decision | subject) + (1 | round)

(2)

123



798 International Journal of Social Robotics (2023) 15:791–805

Fig. 6 Changes of cooperation
rates (N of subjects who
shared/N of total subjects) across
20 game rounds. A higher
percentage of participants in high
K-index game chose to cooperate
(compared to those in the
low-K-index condition), but
people in both conditions showed
decrease and fluctuation in
cooperation rates after the initial
rounds

Table 2 Results of exploratory analysis 1: mixed effects logistic regression model that examines reciprocity in human–robot interactions

Exploratory model 1

decision ~ Cozmo’s decision*incentive structure + (1 + Cozmo’s decision |
subject) + (1 | round)

Estimate SE z p-value Low CI High CI

intercept −0.850 0.195 −4.36 0.000*** −1.230 −0.468

Cozmo’s decision 0.516 0.256 2.00 0.046* 0.010 1.020

incentive structure 0.011 0.272 0.04 0.968 −0.522 0.544

Cozmo’s decision* incentive structure −0.609 0.367 −1.66 0.097 −1.330 0.110

AIC 1624.5

BIC 1666.0

Log-likelihood −804.3

SE standard error; CI 95% confidence interval. *p < .05; **p < .01; ***p < .001

The results of exploratory model 1 are presented in Table
2. This analysis yielded a significant fixed effect of Cozmo’s
decision (β � 0.516, p � 0.046, 95%CI � [0.010, 1.020]),
suggesting that participants weremore likely to share coins if
Cozmo shared in the previous round, and more likely to keep
if Cozmo did so previously. However, neither the incentive
structure (p � 0.544) nor the interaction between Cozmo’s
decision and the incentive structure (p� 0.110) were predic-
tive of the participants’ game decisions.

4.2.3 The Influence of Presenting Real-Time Game Scores
to Participants

The designs of PD games that probe human–agent (social
robots or virtual agents) interactions differ considerably in
the literature [20–22, 34, 41, 59]. One variable among many
published studies was the revealing of real-time game scores

or not to participants during iterated PD games. In some
studies, real-time game statistics (i.e., the players’ scores
after each round has been played) were visible to partici-
pants [20, 21, 34, 41, 59], but not in other studies [22, 62]. In
the current study, we presented each player’s game scores on
the game screen to create a sense of competitiveness and to
increase the entertainment value of the game. However, little
is known about the extent to which such score presentation
drives people’s cooperative decisions in games, and to what
extent it might affect their decisions. In order to clarify this,
we ran a second exploratory mixed effects model—as shown
in Eq. (3)—using subjects’ scores and Cozmo’s scores as the
fixed effects, with subject-level, round-level, and condition-
level random effects included. The Eq. (3) represents the
model that converged after removing random slopes for sub-
ject’s score, and random slopes for Cozmo’s score from the
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maximal model.

decision ∼ Cozmo′s score ∗ subject′s score + (1 | subject)
+ (1 | round) + (1 | incentive structure condition)

(3)

The results of this second exploratory model 2 (see Table
3) revealed a significant main effect from Cozmo’s score (β
� −0.023, p� 0.009, 95%CI� [−0.041,−0.006]). In other
words, participantswere less likely tomake cooperative deci-
sions when Cozmo’s scores were higher. Additionally, the
interaction between Cozmo’s score and the participant’s own
score (β � 0.000, p � 0.001, 95%CI � [0.000, 0.000]) was
a significant predictor of a subject’s cooperative decisions,
which is visualised by the R package “effects” [26] in Fig. 7.
From this analysis, we observed that as subjects’ scores
increased incrementally, the relationship between Cozmo’s
score and the probability of making cooperative decisions
changes from a negative correlation to a positive correla-
tion. In other words, if players earned very little, they were
less likely to cooperate with or be generous to Cozmo. How-
ever, when players had a considerable endowment, they were
morewilling to share, especially if Cozmo also achieved high
scores.

4.2.4 Human Factors

Three pre-game scales—the negative attitudes toward robots
(NARS) scale [64], the social value orientation (SVO) scale
[52], and the predisposition to anthropomorphism scale
[58]—were selected to explore the relationships between
human factors and cooperative decisions in PD games, and to
inform future research into relevant human factors that shape
cooperative and competitive behaviour toward robots.

Results of a multiple regression model (F(3, 65)� 4.05, p
� 0.011, R2 � 0.119) showed that only the predisposition to
anthropomorphism scale (β � 0.01, p � 0.046) had signifi-
cant impact on theparticipants’ overall cooperation rates (i.e.,
dividing the sum of times people shared by the total game
rounds played). This result suggests that participants who
anthropomorphised Cozmo also tended to cooperate with it
more. In our further pre-registered and exploratory analyses,
we accounted for the impact of dispositional anthropomor-
phism by including subject-level random effects. Apart from
anthropomorphism scale, neither SVO (β � 0.01, p� 0.137)
nor NARS (β � −0.00, p� 0.145) were found to have a rela-
tionship with cooperation rates.

4.2.5 Subjective Evaluation of Cozmo’s Performance
and Game Strategy

After participants playedPDgames against Cozmo,we asked
them to guess Cozmo’s cooperation rate (i.e., what percent-
age of Cozmo’s decisions were cooperative — choosing to
share) and to report Cozmo’s and their own game strategies,
for the purpose of a manipulation check and exploration.
The mean cooperation rate participants guessed was 49.6%
(SD � 19.64), which suggested that generally, participants
thought Cozmo was neither too cooperative nor too compet-
itive. A two-sample t-test further validated that both groups’
estimates of Cozmo’s cooperation rates did not significantly
differ (Mhigh-K � 49.39, Mlow-K � 49.429, t(60.3) � −
0.007, p � 0.994). This was in line with our manipulation of
Cozmo’s cooperation rate—50% in each game—which was
set to control its behavioural competitiveness.

Regarding the open-ended question of whether Cozmo
adopted any strategy in games, 80% (56 out of 70) partic-
ipants said yes: 24 participants indicated that Cozmo was
reciprocal or responsive to their decisions in games; 18 par-
ticipants thought Cozmo adopted intentional strategies, such
as being cooperative at first to gain participants’ trust and then
betraying them to win the most coins, or mostly sharing so
both players could win the maximum coins. The subjective
evaluation of Cozmo’s game strategy varied tremendously
among participants, but generally showed that participants
attributed considerable intelligence and agency to Cozmo,
which was not grounded in the reality of Cozmo’s program-
ming/behaviour.

5 Discussion

In the current study, we examined whether people’s willing-
ness to cooperate with a social robot is impacted by different
incentive structures of prisoner’s dilemma games, as has
been shown to be the case in when these types of games
are played between human competitors [49]. We developed
a computer-mediated human–robot PD game and examined
the frequencies of participants sharing coins (cooperating)
with a Cozmo robot in high and low K-index conditions.
We hypothesised that people in the high K-index condition
(when cooperation is a relatively more rewarding choice)
would share coins more often. Our findings suggest that the
game’s incentive structure did not exert any general influence
on people’s cooperative decisions across 20 rounds of game-
play. Instead, only in initial game rounds, participants in the
high K-index condition cooperated significantly more than
those in the low K-index condition. This unexpected result
highlights the differential responses people make to embod-
ied robots compared to the screen-mediated human agents
in Moisan et al.’s [49] study. However, the quick decay of

123



800 International Journal of Social Robotics (2023) 15:791–805

Table 3 Results of exploratory analysis 2: mixed effects logistic regression model that examines the impact of real-time game scores on cooperative
decisions

Exploratory model 2

decision ~ Cozmo’s score*subject’s score + (1 | subject) + (1 | round) + (1 | incentive
structure condition)

Estimate SE z p-value Low CI High CI

intercept 0.018 0.216 0.08 0.933 −0.406 0.442

Cozmo’s score −0.023 0.009 −2.61 0.009** −0.041 −0.006

subject’s score −0.010 0.006 −1.67 0.095 −0.022 0.002

Cozmo’s score* subject’s score 0.000 0.000 3.26 0.001** 0.000 0.000

AIC 1645.1

BIC 1681.4

Log-likelihood −815.6

SE standard error; CI 95% confidence interval. *p < .05; **p < .01; ***p < .001

Fig. 7 Interaction between
Cozmo’s and subjects’ scores on
probability of cooperation.
Although both participants’
scores and Cozmo’s scores were
continuous variables, we used
Cozmo’s score to define the
x-axis as it is a more influential
factor [26]. The figure
demonstrates that, if participants
earned low scores (e.g.,
subj_score � 0), the probability
of cooperation with Cozmo
decreased as Cozmo won more,
but if participants already had
earned high scores (e.g.,
subj_score � 96), the probability
of cooperation increased as
Cozmo earned more. Pink
vertical lines represent standard
errors of each value

cooperation rates and people’s reciprocal tendencies were
consistent with prior evidence from interpersonal economic
games showing that people are less likely to cooperate or
make public contributions after experiencing others’ unco-
operativeness [32, 37]. Future studies will need to replicate
the current findings and further explore the extent to which
the gradually diminishing effect of incentive structures is a
unique phenomenon to embodied HRI.

Exploratory analyses revealed two other influential fac-
tors underpinning participants’ cooperative decisionmaking.
First, people showed a strong tendency to respond recip-
rocally toward Cozmo—a tit-for-tat strategy—regardless

of the game condition they were assigned to. Reciprocity
is regarded as a fundamental feature of human social
behaviours [13, 25, 30] and has also been reported in stud-
ies examining interactions between humans and robots [40],
45, 59. In our experiment, not only did participants react
reciprocally toward Cozmo, but they also regarded Cozmo as
behaving reciprocally toward them, while in reality, Cozmo
carried out randomly ordered decisions. This observation ties
in to the three factor theory of anthropomorphism proposed
by Epley et al. [23]. According to this theory, when people
have limited understanding about an agent, and when they
are motivated to interact effectively with an agent to clarify
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a situation, they are more inclined to anthropomorphise the
agent and to apply rules for interacting with other humans.
This account fits our experimental context well, where play-
ers did not have extensive prior experience with robots in
general, or theCozmo robot specifically, andwere attempting
to anticipate Cozmo’s next decisions in order to win a bigger
payoff. It is thus understandable that participants tended to
overinterpret cues from Cozmo’s action and regard them as
meaningful and intentional.

Additionally, our findings show that score presentation
significantly affected participants’ game decisions, espe-
cially for the presentation of the robot opponent’s scores.
Overall, participants were less likely to share coins when
Cozmo’s scores were high. However, such impact was more
intricately shaped by participants’ own scores (Fig. 7). Par-
ticipants behaved prosocially toward the robot (i.e., were
more willing to share coins) only when they had person-
ally achieved high scores. This seemingly counter-intuitive
benevolent behaviour might be explained by two possible
scenarios: first, participants were motivated to win more
coins to beat other (human) participants’(and not Cozmo’s)
game records to win a shopping voucher, which means their
chance of winning a prize did not have a direct relationship
with the relative performance against Cozmo. This conse-
quently allowed for the possibility of a win–win situation,
in which participants were satisfied with their coin earn-
ings, and could also help Cozmo escape punishment (i.e.,
by not having its data wiped) after losing. Second, feeling
powerful and competent can increase individuals’ sense of
control and empathy toward others, which further leads peo-
ple to engage in more prosocial behaviours and activities
[7, 15, 48]. Our participants generally displayed a proso-
cial temperament, as evidenced by their SVO scores, which
might have led them to act prosocially toward Cozmo as
long as their self-interests were fulfilled. This point is also
supported by the self-reported data participants gave when
asked to identify the strategies used in games(e.g., “I tried to
keep 10 coins advantage. When I had 20 coins more than the
robot, I shared.”, “I aimed to have a certain gain by going
for safe decisions (keeping coins for myself), accumulating
some wealth, and only then I felt comfortable to take the risk
of cooperating.”).

Nevertheless, an alternative explanation could be that the
interaction between Cozmo’s and participants’ scores on
cooperation tendency was an outcome of participants’ recip-
rocal behaviours in games. Specifically, we observed that
participants, when earning low scores, were less likely to
cooperate with Cozmo, and especially when Cozmo’s score
was much higher. This was likely the case because partic-
ipants perceived that Cozmo had taken advantage of them
(i.e., participants cooperated while Cozmo defected) previ-
ously for multiple times. It is thus conceivable that people
would be unwilling to cooperate after the robot gained high

scores by being uncooperative toward them. On the other
hand, we found that participants, when already earning high
scores, were more likely to cooperate with Cozmo, and this
effect was evenmore pronouncedwhenCozmo’s scoreswere
also high. This could be explained by previous mutual coop-
eration and thereforemutual benefit (in terms of score). After
such win–win cooperative experiences, participants would
presumably keep cooperating and reciprocate Cozmo’s prior
cooperation.

6 Study Limitations

Our findings raise several questions and limitations for future
research to address. First, although the vignette of erasure of
Cozmo’smemory (adapted fromSeo et al.’s study)was found
effective in convincing participants of the real and meaning-
ful consequences happening to Cozmo if it lost games (as
evidenced by the self-reported data). We acknowledge the
possible confounding impact caused by individuals’ empa-
thetic responses and therefore adopted mixed effects models
to better control for possible subject-level random effects.
Future studies could use more structured quantitative mea-
sures to assess how meaningful each participant thinks an
economic game is to a robot or any other non-human agent,
to ensure the validity of this kind of paradigm. For example,
researchers could manipulate (e.g., increase or decrease) the
extent of punishment and rewards a robot receives during
human–robot PD games, and measure how these manip-
ulations impact participants’ perceptions and cooperative
willingness.

Secondly, previous work has highlighted the risks of gen-
eralising findings from one robotic platform to HRI overall
[35, 36, 71], underscoring the need to clarify the extent to
which different robot manifestations (in terms of size, func-
tion, sophistication, human-likeness, etc.) influence human
cooperation. The Cozmo robot we used in the study is small
and rather toy-like. Our understanding of people’s coopera-
tive tendencies when interacting with embodied robots will
benefit from additional research assessing the extent towhich
the current findings replicate with a larger range of robots.
While this limitation is not specific to the current study (and
indeed, is more or less relevant to every HRI study con-
ducted), this remains an important point if we are to build
a cumulative knowledge of how people perceive and inter-
act with robots in real-life situations [17]. Another aspect
of generalisability concern is related to the sample diver-
sity. Although our sample was comprised of 24 different
nationalities, a majority of participants came from a west-
ern cultural background. Future research could investigate
human–robot cooperation in more diverse cultural contexts
as it is important to take cultural influences into consideration
when designing and studying HRI [27, 47].
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Thirdly,wedidnot directly compare here cooperationwith
a robot to cooperation and with a human confederate, but
instead borrowed the insights from human–human interac-
tion to predict human behaviours in HRI. The main aim of
our study was to investigate the impact of situational incen-
tives on human–robot cooperation, rather than to examine
possible differential responses to robot and human competi-
tors in economic games. However, future studies might wish
to include a human confederate as well, to examine in more
detail the extent to which the effects of incentive structures
depend on the agents that people interact with. Finally, in the
current study we only examined the difference between K-
indices of 0.6 and of 0.2. Future research could include more
levels of K-indices to acquire a fuller understanding of how
our willingness to cooperate with a robot changes according
to different incentive structures of human–robot PD games.

Finally, we acknowledge that all manner of other features
about a robot’s physicality (i.e., its size, shape, human-
likeness, emotional responses) aswell as participants’ knowl-
edge or experience (i.e., robot naïve vs. expert, shallow or
deep understanding of AI, belief that the robot is behav-
ing autonomously vs. being directly controlled by a human
experimenter, etc.) clearly have the potential to shape peo-
ple’s cooperative and competitive behaviours when engaging
with robots. In the current study, we set out to isolate the
impact of incentive structures when playing an economic
game against one type of robot with one behavioural pro-
file. However, many opportunities exist for future work to
explore any number of these factors further. In fact, our team
is already exploring how a robot’s display of emotion might
shape cooperative and competitive behaviours in similar con-
texts [38].

7 Conclusion

The current study advances our understanding of
human–robot cooperation, as well as human social
behaviour in general, by providing several factors for
researchers to consider when using economic games to
exploring human–robot cooperation, including incentive
structures, reciprocity, and the presentation of game status.
Granted, in this study we are not able to provide a decisive
answer as the underlying social and psychological motives
underpinning participants’ game play decisions, but this
was not our aim at present, and such questions provide
rich opportunities for follow-up research. Our findings
underscore that researchers should be aware of the impact of
incentive structure when interpreting the results in one-shot
PD games and when comparing human–robot cooperation
rates between different game designs. Our findings also
highlight how personal factors— such as predisposition to
anthropomorphism—can shape human behaviours during

HRI and demonstrate the power of mixed effects model to
control such subject-level random effects. Together, these
findings illuminate features of human behaviour that are
likely to shape the success of human–robot collaboration. As
socially assistive robots become increasingly sophisticated
and take on more roles in our daily lives, a more informed
understanding of how people behave toward such agents, as
well as a clearer understanding of the factors that encourage
or discourage cooperation with robots, should help pave
the way for this technology to achieve its intended aim of
supporting people in social contexts.
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