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ABSTRACT The aim of this article is to implement the Generalized Modified Adomian Decomposition

Method to compute the semi-numerical solution of the linear system of intuitionistic fuzzy initial value

problems. Here, we consider the initial values as generalized trapezoidal intuitionistic fuzzy numbers.

The technique is applied to brine tanks problem and coupled mass spring systems.Theoretically, different

approaches to solving a system of generalized trapezoidal intuitionistic fuzzy differential equations are

discussed in this study under the presumption that the coefficients of the system of the differential equations

are associated to generalized trapezoidal intuitionistic fuzzy numbers. The approximate results are compared

with exact solutions which shows good efficiency. The corresponding graphs at different levels of uncertainty

show the example’s numerical outcomes. The graphical representations further demonstrate the effectiveness

and accuracy of the proposed method in comparison to existing semi-numerical methods in the literature.

INDEX TERMS Fuzzy set, fuzzy number, generalized trapezoidal intuitionistic fuzzy number, system of

fuzzy differential equation, analytical technique, engineering applications.

I. INTRODUCTION

System of differential equation plays a significant role

in modeling and studying many naturally occurring phe-

nomenon such as population models, economic models, fric-

tion model, bacteria culture model, predator-prey model,

weight loss and oil production model, bank account and

drug concentration problem, human immunodeficiency virus

(HIV) model. In classical set theory, the variables or param-

eters are taken as crisp numbers. But in actual case, these

variables or parameters are usually uncertain or vague.

So, these variables may be considered as a fuzzy num-

bers. In other words, to overcome uncertainty we use

The associate editor coordinating the review of this manuscript and

approving it for publication was Longzhi Yang .

fuzzy numbers. So the system of differential equations are

converted to system of fuzzy differential equations (SFDE).

The concept of fuzzy set theory was firstly introduced by

Zadeh in 1965, as the extension of classical set theory [1].

The concept of fuzzy set theory has been applied to vari-

ous fields of science and engineering to handle vagueness

and uncertainty. In 1987, Kandel and Byatt [2] introduced

the fuzzy differential equations. The fuzzy differential equa-

tions have been applied in numerous daily life problems [3],

[4], [5]. Vasavi et al. [6] discussed fuzzy differential for

cooling problems. Devi and Ganesan used fuzzy differ-

ential equations in modelling electric circuit problem [7].

Ahmad et al. [8] studied a mathematical method to

find the solution of fuzzy integro differential equations.

Sadeghi et al. [9] studied the system of fuzzy differential

equation. Buckley et al find the solution of system of first
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order linear fuzzy differential equations by extension princi-

ple [10]. Hashemi et al. find the series solution of SFDE [11].

In 1986, Atanassov [12] introduced an extension of fuzzy

set theory known as intuitionistic fuzzy set. The intuitionistic

fuzzy set [13] not only provides the information about mem-

bership values but also the non-membership values respec-

tively, and so that the sum of both values is less than one.

Intuitionistic fuzzy differential equations are being studied

widely and being used in various fields of Physics, Chem-

istry, Biology as well as among other fields of science and

engineering. Melliani and Chadli obtained the approximate

and numerical solutions of intuitionistic fuzzy differential

equations with linear differential operators [14], [15].

Gulzar et al. worked on fuzzy algebra [16], [17], [18].

Akin and Bayeg [19], [20] studied a method to find general

solution of second order intuitionistic fuzzy differential equa-

tion and to solve the system of intuitionistic fuzzy differential

equations with intuitionistic fuzzy initial values. Mondal and

Roy [21], [22], [23] studied the generalized intuitionistic

fuzzy Laplace transform method and to solve the system of

differential equations with initial value as triangular intuition-

istic fuzzy number. Saw et al introduced a method for solving

system of linear intuitionistic fuzzy equations [24].

The Adomian Decomposition Method (ADM) which is a

semi analytical method was first presented by Adomian in

1980’s [25], [26]. This method is very efficient in finding

the solutions of differential equations, algebraic equations as

well as integral equations. In this article, we will propose

the Generalized Modified Adomian Decomposition Method

(GMADM) to find the solutions of the system of linear

intuitionistic fuzzy differential equations with initial values

as generalized trapezoidal intuitionistic fuzzy number. This

modification was proposed by Wazwaz [27]. He presented

a reliable modification to the ADM. In this modification

Wazwaz divides the original function into two parts, one part

assigned to the initial term of the series and the other to the

second term. This modification results in a different series

being generated. The efficiency of this method depends only

on the choice of the parts into which the original function is

to be divided.

First order system of fuzzy differential equations is impor-

tant among all the fuzzy differential equations. There are

many approaches to solve the SFDEs. Buckley and Feur-

ing [28] solving the linear system of first order ordinary

differential equations with fuzzy initial conditions by exten-

sion principle using triangular fuzzy number. The geometric

approach is developed by Gasilova et al. [29] and series solu-

tion is developed byHashemi et al. [30].Mondal andRoy [31]

studied strong and weak solution of first order homoge-

neous intuitionistic fuzzy differential equation, subsequently

and studied system of differential equation in literature.

Melliani, et al. [32] discussed the existence and uniqueness

of the solution of the intuitionistic fuzzy differential equation

and its system using the analytical technique. Therefore,

finding an efficient and accurate algorithm for investigating

FIE has been one the hot areas of research in recent time.

To achieve these goals, various methods and procedures were

used to handle differentia equations, using triangular fuzzy

number, for details, see [9], [33].

In this study, motivated by the aforementioned work,

we solve the system of differential equations using a

GMADMand amore generalized fuzzy system of differential

equations, namely a trapezoidal intuitionistic fuzzy system of

intuitionistic differential equations.

The main contributions of this research work are summa-

rized below.

• GMADM is used to solve a system of differential equa-

tions using initial conditions as a Generalized trape-

zoidal intuitionistic fuzzy number.

• In order to solve a system of fuzzy intuitionistic differ-

ential equations that have not before been explored, the

computational complexity of the suggested GMADM is

discussed.

• Applications of system of Generalized trapezoidal intu-

itionistic fuzzy differential equations in mechanical

engineering are taken into consideration in a General-

ized trapezoidal intuitionistic fuzzy environment.

• Computational tools are used to evaluate the effec-

tiveness and applicability of the suggested analytical

scheme.

This paper is organized as follows: In section II, we recall

some basic definitions which we will use in further sec-

tions. In sections III, we introduced our proposed method.

In section IV, the efficiency of this method has been illus-

trated by applications. In the last section, we give conclusions.

II. PRELIMINARIES

In this section, the fundamental definitions of fuzzy set and

intuitionistic fuzzy set are presented.

Definition 1 [34]: Let
◦
U be the largest set under consider-

ation then
⋆
𭟋 be a subset of

◦
U is said to be a fuzzy set if it is

defined as:

µ ⋆
𭟋
(û) =

◦
U −→ [0, 1],

defines the degree of membership of an element û ϵ
◦
U to the

set
⋆
𭟋 which is a subset of

◦
U .

Definition 2 [34]: α-cut of a fuzzy set
⋆
𭟋 is a crisp set

⋆
𭟋α

which is defined as:

⋆
𭟋α = {(û p µ ⋆

𭟋
(û) ≥ α : û ϵ

◦
U}.

Definition 3 [23]: If
⋆
𭟋 is a fuzzy set then height of a

fuzzy set is denoted by h(
⋆
𭟋) and is defined as the largest

membership function obtained by any element in that set i.e.,

h(
⋆
𭟋) = supµ

⋆
𭟋(û).

33206 VOLUME 11, 2023
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Definition 4 [19]: Let
◦
U be a nonempty finite set of real

numbers, then an intuitionistic fuzzy set
⋆

I on
◦
U is:

⋆

I = {(û, µ⋆

I
(û), υ⋆

I
(û)) : û ϵ

◦
U},

where the functions,

µ⋆

I
(û) =

◦
U −→ [0, 1],

υ⋆

I
(û) =

◦
U −→ [0, 1],

define the degree of membership and degree of non-

membership respectively, of an element û ϵ
◦
U to the set

⋆

I

which is a subset of
◦
U , and for every û ϵ

◦
U , the

0 ≤ µ⋆

I
(û) + υ⋆

I
(û) ≤ 1,

condition must be satisfied.

Definition 5 [23]: An intuitionistic fuzzy set
⋆

I is said to

be normal if there exists an û0 ϵ
◦
U , such that µ⋆

I
(û0) = 1 so

υ⋆

I
(û0) = 0.

Definition 6 [23]: An intuitionistic fuzzy set
⋆

I is said to

be convex set for the membership function if it satisfy the

following condition:

µ⋆

I
(û)(ηû+ (1 − η)ŝ) ≥ min(µ⋆

I
(û), µ⋆

I
(ŝ));

∀û, ŝ ϵ
◦
U , η ϵ[0, 1].

Definition 7 [23]: An intuitionistic fuzzy set
⋆

I is said to be

concave set for the non-membership function if it satisfy the

following condition:

υ⋆

I
(û)(ηû+ (1 − η)ŝ) ≥ max(υ⋆

I
(û), υ⋆

I
(ŝ));

∀û, ŝ ϵ
◦
U , η ϵ[0, 1].

A. GENERALIZED INTUITIONISTIC FUZZY NUMBER

Definition 8 [35]: A generalized intuitionistic fuzzy

number

⋆

T = <(
⋆
s1,

⋆
s2,

⋆
s3,

⋆
s4; νA); (

⋆
t1,

⋆
t2,

⋆
t3,

⋆
t4; νB) >

is said to be generalized trapezoidal intuitionistic fuzzy num-

ber (GTIFN) (as shown in Figure 1) if its membership and

non-membership functions are defined as follows:

µ ⋆

T
(û) =



























νA(
û− ⋆

s1
⋆
s2−

⋆
s1
),

⋆
s1 ≤ û ≤ ⋆

s2,

νA,
⋆
s2 ≤ û ≤ ⋆

s3,

νA(
⋆
s4−û
⋆
s4−

⋆
s3
),

⋆
s3 ≤ û ≤ ⋆

s4,

0, otherwise,

. . .

υ ⋆

T
(û) =































(
⋆
t2−û)+νB(û−

⋆
t1)

⋆
t2−

⋆
t1

,
⋆
t1 ≤ û ≤

⋆
t2,

νB,
⋆
t2 ≤ û ≤

⋆
t3,

(û−
⋆
t3)+νB(

⋆
t4−û)

⋆
t4−

⋆
t3

,
⋆
t3 ≤ û ≤

⋆
t4,

1, otherwise,

FIGURE 1. Generalized trapezoidal intuitionistic fuzzy number.

where
⋆
t1 ≤ ⋆

s1 ≤
⋆
t2 ≤ ⋆

s2 ≤ ⋆
s3 ≤

⋆
t3 ≤ ⋆

s4 ≤
⋆
t4, 0 ≤ νA,

νB ≤ 1 and 0 < νA + νB ≤ 1.

Definition 9 [36], [37]: (α, β)−cut set of a generalized

trapezoidal intuitionistic fuzzy number
⋆

T = <(
⋆
s1,

⋆
s2,

⋆
s3,

⋆
s4; νA);(

⋆
t1,

⋆
t2,

⋆
t3,

⋆
t4; νB)> is a crisp subset of

◦
U which is

defined as:
⋆

T (α, β)

= {(û, µ ⋆

T
(û), υ ⋆

T
(û)) : û ϵU , µ ⋆

T
(û) ≥ α, υ ⋆

T
(û) ≥ β}

= {[
⋆

T 1(α),
⋆

T 2(α)]; [
⋆

T 1(β),
⋆

T 2(β)]},

where α + β < 1, α ϵ[0, vA] and β ϵ[vB, 1].

Figure 1: Shows membership and non-membership func-

tion of generalized trapezoidal intuitionistic fuzzy number.

B. ARITHMETIC OPERATIONS ON GTIFNs

Definition 10 [37], [38]: Let
⋆

T 1 = <(
⋆
s1,

⋆
s2,

⋆
s3,

⋆
s4; νA1 );

(
⋆
t1,

⋆
t2,

⋆
t3,

⋆
t4; νA2 ) > and

⋆

T 2 = <(
⋆
u1,

⋆
u2,

⋆
u3,

⋆
u4; νB1 ); (

⋆
v1,

⋆
v2,

⋆
v3,

⋆
v4; ν ⋆

t2
) > be two GTIFNs and ϖ be a real number. Then

•
⋆

T 1 +
⋆

T 2 = <(
⋆
s1 + ⋆

u1,
⋆
s2 + ⋆

u2,
⋆
s3 + ⋆

u3,
⋆
s4

+ ⋆
u4;min{vA1 , vB1});

(
⋆
t1 + ⋆

v1,
⋆
t2 + ⋆

v2,
⋆
t3 + ⋆

v3,
⋆
t4

+ ⋆
v4;max{vA2 , vB2})>.

•
⋆

T 1 −
⋆

T 2 = <(
⋆
s1 − ⋆

u4,
⋆
s2 − ⋆

u3,
⋆
s3 − ⋆

u2,
⋆
s4

− ⋆
u1;min{vA1 , vB1});

(
⋆
t1 − ⋆

v4,
⋆
t2 − ⋆

v3,
⋆
t3 − ⋆

v2,
⋆
t4

− ⋆
v1;max{vA2 , vB2})>.

VOLUME 11, 2023 33207
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•
⋆

T 1 ×
⋆

T 2 = <(
⋆
s1

⋆
u1,

⋆
s2

⋆
u2,

⋆
s3

⋆
u3,

⋆
s4

⋆
u4;min{vA1 , vB1});

(
⋆
t1

⋆
v1,

⋆
t2

⋆
v2,

⋆
t3

⋆
v3,

⋆
t4

⋆
v4;max{vA2 , vB2})>,

where
⋆

T 1 > 0,
⋆

T 2 > 0.

•
⋆

T 1 ×
⋆

T 2 = <(
⋆
s1

⋆
u4,

⋆
s2

⋆
u3,

⋆
s3

⋆
u2,

⋆
s4

⋆
u1;min{vA1 , vB1});

(
⋆
t1

⋆
v4,

⋆
t2

⋆
v3,

⋆
t3

⋆
v2,

⋆
t4

⋆
v1;max{vA2 , vB2})>,

where
⋆

T 1 < 0,
⋆

T 2 > 0.

•
⋆

T 1 ×
⋆

T 2 = <(
⋆
s4

⋆
u4,

⋆
s3

⋆
u3,

⋆
s2

⋆
u2, a1

⋆
u1;min{vA1 , vB1});

(
⋆
t4

⋆
v4,

⋆
t3

⋆
v3,

⋆
t2

⋆
v2,

⋆
t1

⋆
v1;max{vA2 , vB2})>,

where
⋆

T 1 < 0,
⋆

T 2 < 0.

•

⋆

T 1 ÷
⋆

T 2 = <(

⋆
s1
⋆
u4

,

⋆
s2
⋆
u3

,

⋆
s3
⋆
u2

,

⋆
s4
⋆
u1

;min{vA1 , vB1});

(

⋆
t1
⋆
v4

,

⋆
t2
⋆
v3

,

⋆
t3
⋆
v2

,

⋆
t4
⋆
v4

;max{vA2 , vB2})>,

where
⋆

T 2 > 0.

•

ϖ
⋆

T 1 = <(ϖ
⋆
s1, ϖ

⋆
s2, ϖ

⋆
s3, ϖ

⋆
s4;min{vA1 , vB1});

(ϖ
⋆
t1, ϖ

⋆
t2, ϖ

⋆
t3, ϖ

⋆
t4;max{vA2 , vB2})>,

where ϖ > 0.

•

ϖ
⋆

T 1 = <(ϖ
⋆
s4, ϖ

⋆
s3, ϖ

⋆
s2, ϖ

⋆
s1;min{vA1 , vB1});

(ϖ
⋆
t4, ϖ

⋆
t3, ϖ

⋆
t4, ϖb5;max{vA2 , vB2})>,

where ϖ < 0.

III. THE GENERALIZED MODIFIED ADOMIAN

DECOMPOSITION METHOD

Let us consider the system of intuitionistic fuzzy differential

equations with linear differential operator as follows:
✠

L
⋆
x(t) +

✠

R
⋆
x(t) +

✠

R
⋆
y(t) + N (t,

⋆
x(t),

⋆
y(t)) = ⋆

g(t),
✠

L
⋆
y(t) +

✠

R
⋆
x(t) +

✠

R
⋆
y(t) + N (t,

⋆
x(t),

⋆
y(t)) =

⋆

h(t),







(1)

where
✠

L is the highest order linear differential operator,
✠

R is the remaining part of the linear differential operator,

N may be linear or nonlinear function of t ,
⋆
x(t) and

⋆
y(t),

⋆
g(t) and

⋆

h(t) are non-homogeneous terms. Here, in this case

we take N as a linear function of
⋆
x(t),

⋆
y(t) and t.Taking

(α, β)-cut of (1), we get, (2), as shown at the bottom of

the page.

From (2), we obtain the following equations:
✠

L
⋆
x1(t, α) +

✠

R
⋆
x1(t, α) +

✠

R
⋆
y1(t, α)+

N1(t,
⋆
x1(t, α),

⋆
y1(t, α)) = ⋆

g1(t, α),

✠

L
⋆
y1(t, α) +

✠

R
⋆
x1(t, α) +

✠

R
⋆
y1(t, α)+

N1(t,
⋆
x1(t, α),

⋆
y1(t, α)) =

⋆

h1(t, α).



































(3)

✠

L
⋆
x2(t, α) +

✠

R
⋆
x2(t, α) +

✠

R
⋆
y2(t, α)+

N2(t,
⋆
x2(t, α),

⋆
y2(t, α)) = ⋆

g2(t, α),

✠

L
⋆
y2(t, α) +

✠

R
⋆
x2(t, α) +

✠

R
⋆
y2(t, α)+

N2(t,
⋆
x2(t, α),

⋆
y2(t, α)) =

⋆

h2(t, α).



































(4)

✠

L
⋆
x1(t, β) +

✠

R
⋆
x1(t, β) +

✠

R
⋆
y1(t, β)+

N1(t,
⋆
x1(t, β),

⋆
y1(t, β)) = ⋆

g1(t, β),

✠

L
⋆
y1(t, β) +

✠

R
⋆
x1(t, β) +

✠

R
⋆
y1(t, β)+

N1(t,
⋆
x1(t, β),

⋆
y1(t, β)) =

⋆

h1(t, β).



































(5)

✠

L ([
⋆
x1(t, α),

⋆
x2(t, α)]; [

⋆
x1(t, β),

⋆
x2(t, β)]) +

✠

R([
⋆
x1(t, α),

⋆
x2(t, α)];

[
⋆
x1(t, β),

⋆
x2(t, β)]) +

✠

R([
⋆
y1(t, α),

⋆
y2(t, α)]; [

⋆
y1(t, β),

⋆
y2(t, β)])

+([N1(t,
⋆
x1(t, α),

⋆
y1(t, α)),N2(t,

⋆
x2(t, α),

⋆
y2(t, α))];

[N1(t,
⋆
x1(t, β),

⋆
y1(t, β)),N2(t,

⋆
x2(t, β),

⋆
y2(t, β))])

= ([
⋆
g1(t, α),

⋆
g2(t, α)]; [

⋆
g1(t, β),

⋆
g2(t, β)]),

✠

L ([
⋆
y1(t, α),

⋆
y2(t, α)]; [

⋆
y1(t, β),

⋆
y2(t, β)]) +

✠

R([
⋆
x1(t, α),

⋆
x2(t, α)];

[
⋆
x1(t, β),

⋆
x2(t, β)]) +

✠

R([
⋆
y1(t, α),

⋆
y2(t, α)]; [

⋆
y1(t, β),

⋆
y2(t, β)])

+([N1(t,
⋆
x1(t, α),

⋆
y1(t, α)),N2(t,

⋆
x2(t, α),

⋆
y2(t, α))];

[N1(t,
⋆
x1(t, β),

⋆
y1(t, β)),N2(t,

⋆
x2(t, β),

⋆
y2(t, β))])

= ([
⋆

h1(t, α),
⋆

h2(t, α)]; [
⋆

h1(t, β),
⋆

h2(t, β)]).



























































































(2)

33208 VOLUME 11, 2023



M. Shams et al.: Semi-Analytical Scheme for Solving Intuitionistic Fuzzy System

✠

L
⋆
x2(t, β) +

✠

R
⋆
x2(t, β) +

✠

R
⋆
y2(t, β)+

N1(t,
⋆
x2(t, β),

⋆
y2(t, β)) = ⋆

g2(t, β),

✠

L
⋆
y2(t, β) +

✠

R
⋆
x2(t, β) +

✠

R
⋆
y2(t, β)+

N1(t,
⋆
x2(t, β),

⋆
y2(t, β)) =

⋆

h2(t, β).



































(6)

Applying the
✠

L

−1

operator on both sides of (3), (4), (5) and

(6), we get;

⋆
x1(t, α) = 91(t, α) −

✠

L

−1

(
✠

R
⋆
x1(t, α)) −

✠

L

−1

(
✠

R
⋆
y1(t, α))

−
✠

L

−1

(N1(t,
⋆
x1(t, α),

⋆
y1(t, α)) +

✠

L

−1

(
⋆
g1(t, α)),

⋆
y1(t, α) = 81(t, α) −

✠

L

−1

(
✠

R
⋆
x1(t, α)) −

✠

L

−1

(
✠

R
⋆
y1(t, α))

−
✠

L

−1

(N1(t,
⋆
y1(t, α))) +

✠

L

−1

(
⋆

h1(t, α)).











































(7)

⋆
x2(t, α) = 92(t, α) −

✠

L

−1

(
✠

R
⋆
x2(t, α)) −

✠

L

−1

(
✠

R
⋆
y2(t, α))

−
✠

L

−1

(N2(t,
✠

L

−1

(
⋆
x2(t, α)),

⋆
y2(t, α))) +

✠

L

−1

(
⋆
g2(t, α)),

⋆
y2(t, α) = 82(t, α) −

✠

L

−1

(
✠

R
⋆
x2(t, α)) −

✠

L

−1

(
✠

R
⋆
y2(t, α))

−
✠

L

−1

(N2(t,
✠

L

−1

(
⋆
x2(t, α)),

⋆
y2(t, α))) +

✠

L

−1

(
⋆

h2(t, α)),











































(8)

⋆
x1(t, β) = 91(t, β) −

✠

L

−1

(
✠

R
⋆
x1(t, β)) −

✠

L

−1

(
✠

R
⋆
y1(t, β))

−
✠

L

−1

(N1(t,
⋆
x1(t, β),

⋆
y1(t, β))) +

✠

L

−1

(
⋆
g1(t, β)),

⋆
y1(t, β) = 81(t, β) −

✠

L

−1

(
✠

R
⋆
x1(t, β)) −

✠

L

−1

(
✠

R
⋆
y1(t, β))

−
✠

L

−1

(N1(t,
⋆
x1(t, β),

⋆
y1(t, β))) +

✠

L

−1

(
⋆

h1(t, β)),











































(9)

⋆
x2(t, β) = 92(t, β) −

✠

L

−1

(
✠

R
⋆
x2(t, β)) −

✠

L

−1

(
✠

R
⋆
y2(t, β))

−
✠

L

−1

(N2(t,
⋆
x2(t, β),

⋆
y2(t, β))) +

✠

L

−1

(
⋆
g2(t, β)),

⋆
y2(t, β) = 82(t, β) −

✠

L

−1

(
✠

R
⋆
x2(t, β)) −

✠

L

−1

(
✠

R
⋆
y2(t, β))

−
✠

L

−1

(N2(t,
⋆
x2(t, β),

⋆
y2(t, β))) +

✠

L

−1

(
⋆

h2(t, β)),











































(10)

where,

9i(t, α) =
✠

L9i(t, α) = 0, i = 1, 2

8i(t, α) =
✠

L8i(t, α) = 0, i = 1, 2







9i(t, β) =
✠

L9i(t, β) = 0, i = 1, 2

8i(t, β) =
✠

L8i(t, β) = 0, i = 1, 2







the above functions are found by using the initial conditions.

Now by using the GMADM the solutions of the (7), (8), (9)

and (10 ), can be expressed in the form of an infinite series

for the unknown functions as follows:

⋆
x1(t, α) =

∞
∑

n=0

⋆
x1n (t, α),

⋆
y1(t, α) =

∞
∑

n=0

⋆
y1n (t, α),















(11)

⋆
x2(t, α) =

∞
∑

n=0

⋆
x2n (t, α),

⋆
y2(t, α) =

∞
∑

n=0

⋆
y2n (t, α),















(12)

⋆
x1(t, β) =

∞
∑

n=0

⋆
x1n (t, β),

⋆
y1(t, β) =

∞
∑

n=0

⋆
y1n (t, β),















(13)

⋆
x2(t, β) =

∞
∑

n=0

⋆
x2n (t, β),

⋆
y2(t, β) =

∞
∑

n=0

⋆
y2n (t, β),















(14)

Using (11), (12), (13) and (14), into (7), (8), (9) and (10),

we have:

∞
∑

n=0

⋆
x1n (t, α) = 91(t, α) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x1n (t, α))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y1n (t, α)) −

✠

L

−1

(N1(t,
∞
∑

n=0

⋆
x1n (t, α),

∞
∑

n=0

⋆
y1n (t, α))) +

✠

L

−1

(
⋆
g1(t, α)),

∞
∑

n=0

⋆
y1n (t, α) = 81(t, α) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x1n (t, α))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y1n (t, α)) −

✠

L

−1

(N1(t,
∞
∑

n=0

⋆
x1n (t, α),

∞
∑

n=0

⋆
y1n (t, α))) +

✠

L

−1

(
⋆

h1(t, α)),































































































(15)

∞
∑

n=0

⋆
x2n (t, α) = 92(t, α) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x2n (t, α))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y2n (t, α)) −

✠

L

−1

(N2(t,
∞
∑

n=0

⋆
x2n (t, α),

∞
∑

n=0

⋆
y2n (t, α))) +

✠

L

−1

(
⋆
g2(t, α)),

∞
∑

n=0

⋆
y2n (t, α) = 82(t, α) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x2n (t, α))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y2n (t, α)) −

✠

L

−1

(N1(t,
∞
∑

n=0

⋆
x2n (t, α),

∞
∑

n=0

⋆
y2n (t, α))) +

✠

L

−1

(
⋆

h2(t, α)),































































































(16)
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∞
∑

n=0

⋆
x1n (t, β) = 91(t, β) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x1n (t, β))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y1n (t, β)) −

✠

L

−1

(N1(t,
∞
∑

n=0

⋆
x1n (t, β),

∞
∑

n=0

⋆
y1n (t, β))) +

✠

L

−1

(
⋆
g1(t, β)),

∞
∑

n=0

⋆
y1n (t, β) = 81(t, β) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x1n (t, β))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y1n (t, β)) −

✠

L

−1

(N1(t,
∞
∑

n=0

⋆
x1n (t, β),

∞
∑

n=0

⋆
y1n (t, β))) +

✠

L

−1

(
⋆

h1(t, β)),































































































(17)

∞
∑

n=0

⋆
x2n (t, β) = 92(t, β) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x2n (t, β))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y2n (t, β)) −

✠

L

−1

(N2(t,
∞
∑

n=0

⋆
x2n (t, β),

∞
∑

n=0

⋆
y2n (t, β))) +

✠

L

−1

(
⋆
g2(t, β)),

∞
∑

n=0

⋆
y2n (t, β) = 82(t, β) −

✠

L

−1

(
✠

R
∞
∑

n=0

⋆
x2n (t, β))

−
✠

L

−1

(
✠

R
∞
∑

n=0

⋆
y2n (t, β)) −

✠

L

−1

(N1(t,
∞
∑

n=0

⋆
x2n (t, β),

∞
∑

n=0

⋆
y2n (t, β))) +

✠

L

−1

(
⋆

h2(t, β)).































































































(18)

According to the GMADM the recursive relation for the (15),

(16),( 17) and (18), is as follows:

⋆
x
10
(t, α) = 91(t, α),

⋆
y10 (t, α) = 81(t, α),

⋆
x
11
(t, α) =

✠

L

−1

(
⋆
g1(t, α)) −

✠

L

−1

(
✠

R
⋆
x10 (t, α))

−
✠

L

−1

(
✠

R
⋆
y10 (t, α)) −

✠

L

−1

(N1(t,
⋆
x10 (t, α),

⋆
y10 (t, α))),

⋆
y
11
(t, α) =

✠

L

−1

(
⋆

h1(t, α)) −
✠

L

−1

(
✠

R
⋆
x10 (t, α))

−
✠

L

−1

(
✠

R
⋆
y10 (t, α)) −

✠

L

−1

(N1(t,
⋆
x10 (t, α),

⋆
y10 (t, α))),

⋆
x
1k+1

(t, α) = −
✠

L

−1

(
✠

R
⋆
x1k (t, α)) −

✠

L

−1

(
✠

R
⋆
y1k (t, α))

−
✠

L

−1

(N1(t,
⋆
x1k (t, α),

⋆
y1k (t, α))), k ≥ 1,

⋆
y
1k+1

(t, α) = −
✠

L

−1

(
✠

R
⋆
x1k (t, α)) −

✠

L

−1

(
✠

R
⋆
y1k (t, α))

−
✠

L

−1

(N1(t,
⋆
x1k (t, α),

⋆
y1k (t, α))), k ≥ 1,















































































































































(19)

⋆
x
20
(t, α) = 92(t, α),

⋆
y20 (t, α) = 82(t, α),

⋆
x
21
(t, α) =

✠

L

−1

(
⋆
g2(t, α)) −

✠

L

−1

(
✠

R
⋆
x20 (t, α))

−
✠

L

−1

(
✠

R
⋆
y20 (t, α)) −

✠

L

−1

(N2(t,
⋆
x20 (t, α),

⋆
y20 (t, α))),

⋆
y
21
(t, α) =

✠

L

−1

(
⋆

h2(t, α)) −
✠

L

−1

(
✠

R
⋆
x20 (t, α))

−
✠

L

−1

(
✠

R
⋆
y20 (t, α)) −

✠

L

−1

(N2(t,
⋆
x20 (t, α),

⋆
y20 (t, α))),

⋆
x
2k+1

(t, α) = −
✠

L

−1

(
✠

R
⋆
x2k (t, α)) −

✠

L

−1

(
✠

R
⋆
y2k (t, α))

−
✠

L

−1

(N2(t,
⋆
x2k (t, α),

⋆
y2k (t, α))), k ≥ 1,

⋆
y
2k+1

(t, α) = −
✠

L

−1

(
✠

R
⋆
x2k (t, α)) −

✠

L

−1

(
✠

R
⋆
y2k (t, α))

−
✠

L

−1

(N2(t,
⋆
x2k (t, α),

⋆
y2k (t, α))), k ≥ 1,























































































































(20)
⋆
x
10
(t, β) = 91(t, β),

⋆
y10 (t, β) = 81(t, β),

⋆
x
11
(t, β) =

✠

L

−1

(
⋆
g1(t, β)) −

✠

L

−1

(
✠

R
⋆
x10 (t, β))

−
✠

L

−1

(
✠

R
⋆
y10 (t, β)) −

✠

L

−1

(N1(t,
⋆
x10 (t, β),

⋆
y10 (t, β))),

⋆
y
11
(t, β) =

✠

L

−1

(
⋆

h1(t, β)) −
✠

L

−1

(
✠

R
⋆
x10 (t, β))

−
✠

L

−1

(
✠

R
⋆
y10 (t, β)) −

✠

L

−1

(N1(t,
⋆
x10 (t, β),

⋆
y10 (t, β))),

⋆
x
1k+1

(t, β) = −
✠

L

−1

(
✠

R
⋆
x1k (t, β)) −

✠

L

−1

(
✠

R
⋆
y1k (t, β))

−
✠

L

−1

(N1(t,
⋆
x1k (t, β),

⋆
y1k (t, β))), k ≥ 1,

⋆
y
1k+1

(t, β) = −
✠

L

−1

(
✠

R
⋆
x1k (t, β)) −

✠

L

−1

(
✠

R
⋆
y1k (t, β))

−
✠

L

−1

(N1(t,
⋆
x1k (t, β),

⋆
y1k (t, β))), k ≥ 1,























































































































(21)
⋆
x
20
(t, β) = 92(t, β),

⋆
y20 (t, β) = 82(t, β),

⋆
x
21
(t, β) =

✠

L

−1

(
⋆
g2(t, β)) −

✠

L

−1

(
✠

R
⋆
x20 (t, β))

−
✠

L

−1

(
✠

R
⋆
y20 (t, β)) −

✠

L

−1

(N2(t,
⋆
x20 (t, β),

⋆
y20 (t, β))),

⋆
y
21
(t, β) =

✠

L

−1

(
⋆

h2(t, β)) −
✠

L

−1

(
✠

R
⋆
x20 (t, β))

−
✠

L

−1

(
✠

R
⋆
y20 (t, β)) −

✠

L

−1

(N2(t,
⋆
x20 (t, β),

⋆
y20 (t, β))),

⋆
x
2k+1

(t, β) = −
✠

L

−1

(
✠

R
⋆
x2k (t, β)) −

✠

L

−1

(
✠

R
⋆
y2k (t, β))

−
✠

L

−1

(N2(t,
⋆
x2k (t, β),

⋆
y2k (t, β))), k ≥ 1,

⋆
y
2k+1

(t, β) = −
✠

L

−1

(
✠

R
⋆
x2k (t, β)) −

✠

L

−1

(
✠

R
⋆
y2k (t, β))

−
✠

L

−1

(N2(t,
⋆
x2k (t, β),

⋆
y2k (t, β))), k ≥ 1.























































































































(22)
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The nth term approximation to the solution is defined as

follows:

ϕ1n(t, α) =
n−1
∑

i=0

⋆
x1i (t, α),

φ1n(t, α) =
n−1
∑

i=0

⋆
y1i (t, α),















ϕ2n(t, α) =
n−1
∑

i=0

⋆
x2i (t, α),

φ2n(t, α) =
n−1
∑

i=0

⋆
y2i (t, α),















ϕ1n(t, β) =
n−1
∑

i=0

⋆
x1i (t, β),

φ1n(t, β) =
n−1
∑

i=0

⋆
y1i (t, β),















ϕ2n(t, β) =
n−1
∑

i=0

⋆
x2i (t, β),

φ1n(t, β) =
n−1
∑

i=0

⋆
y1i (t, β).















Hence,


































{lim
n→∞

(φ1n(t, α)) , lim
n→∞

φ1n(t, α)} = {⋆
x
1
(t, α),

⋆
y
1
(t, α)},

{lim
n→∞

(φ2n(t, α)) , lim
n→∞

φ2n(t, α)} = {⋆
x
2
(t, α),

⋆
y2(t, α)},

{lim
n→∞

(φ1n(t, β)) , lim
n→∞

φ1n(t, β)} = {⋆
x1(t, β),

⋆
y
1
(t, β)},

{lim
n→∞

(φ2n(t, β)) , lim
n→∞

φ2n(t, β)} = {⋆
x2(t, β),

⋆
y2(t, β)}.

Raza et al. [39], Ray [40], Zo’bi et al. [41], and many oth-

ers discuss the convergence of the ADM or Decomposition

method and GMADM.

A. STABILITY OF GMADM

When the solution produced by a technique is unaffected

by small changes in the inputs and parameters and when

it is expected that changes in the parameters carried on by

impacts in equations and conditions, the method is said to

be stable. By giving examples and analyzing the stability

of the GMADM in this study, we suggested contrasting the

GMADM with other existing methods i.e., ADM and Taylor

series method (TSM).

B. APPLICATIONS

Example 1 Brine Tanks Problem [42], [43]: Two tanks A

and B are connected by pipes. Tank A contains 100 gal of

brine and tank B contains 200 gal of brine. Through one pipe

solution is pumped from first tank to the second at 30 gal/min.

Through the other solution is pumped at the rate of 10 gal/min

from the second tank to the first, and the brine in tank B flows

out at 20 gal/min. If
⋆
x (t) and

⋆
y(t) denotes the amount of salt in

tanks A and B respectively, then what will be the salt content

in each tank at any time t . It is to be noted that at time t = 0

there is <(98, 99, 100, 101, 0.7); (97, 99, 100, 102; 0.2)>

lb salt in tank A and <(50, 51, 52, 53; 0.7); (49, 51, 52,

54; 0.2)> lb in tank B.

The system of intuitionistic fuzzy differential equation

related to above problem is as follows:

d

∗
⋆
x(t, α)

dt
=

⋆
y

20
− 3

⋆
x

10
,

d
⋆
y(t, α)

dt
= 3

⋆
x

10
− 3

⋆
y

20
. (23)

with initial conditions,
{

⋆
x(0)=< (98, 99, 100, 101, 0.7); (97, 99, 100, 102; 0.2)>,

⋆
y(0)=< (50, 51, 52, 53; 0.7); (49, 51, 52, 54; 0.2)>.

(24)

By taking (α, β)-cut of (24) and (24), we obtain the follow-

ing equations:






d
⋆
x(t,α)
dt

=
⋆
y
20

− 3
⋆
x
10

,
⋆
x1(0, α) = 1.429α + 98,

d
⋆
y(t,α)
dt

= 3
⋆
x
10

− 3
⋆
y

20
,

⋆
y1(0, α) = 1.429α + 50,

(25)







d
⋆
x(t,α)
dt

=
⋆
y
20

− 3
⋆
x
10

,
⋆
x2(0, α) = −1.429α + 101,

d
⋆
y(t,α)
dt

= 3
⋆
x
10

− 3
⋆
y

20
,

⋆
y2(0, α) = −1.429α + 53,

(26)







d
⋆
x(t,β)
dt

=
⋆
y
20

− 3
⋆
x
10

,
⋆
x1(0, β) = −2.5β + 99,

d
⋆
y(t,β)
dt

= 3
⋆
x
10

− 3
⋆
y

20
,

⋆
y1(0, β) = −2.5β + 51,

(27)







d
⋆
x(t,β)
dt

=
⋆
y
20

−
⋆
x
20

,
⋆
x2(0, β) = −2.5β + 99.5,

d
⋆
y(t,β)
dt

=
⋆
x
20

−
⋆
y
20

,
⋆
y2(0, β) = 2.5β − 51.5.

(28)

Here
✠

L = d
dt
and by taking

✠

L

−1

(.) =
t
∫

0

(.) dt on both sides of

(25), (26), (27) and (28), and using the initial conditions we

obtain;


















⋆
x1(t, α) =

∫ t
0 (−0.30

⋆
x1(u, α) + 0.05

⋆
y1(u, α))du

+1.429α + 98,
⋆
y1(t, α) =

∫ t
0 (−0.150

⋆
y1(u, α) + 0.30

⋆
x1(u, α))du

+1.429α + 50,

(29)



















⋆
x2(t, α) =

∫ t
0 (−0.30

⋆
x2(u, α) + 0.05

⋆
y2(u, α))du

−1.429α + 101,
⋆
y2(t, α) =

∫ t
0 (−0.15

⋆
y2(u, α) + 0.30

⋆
x2(u, α))du

−1.429α + 53,

(30)



















⋆
x1(t, β) =

∫ t
0 (−0.30

⋆
x1(u, β) + 0.05

⋆
y1(u, β))du

+99 − 2.5β,
⋆
y1(t, β) =

∫ t
0 (−0.15

⋆
y1(u, β) + 0.30

⋆
x1(u, β))du

+51 − 2.5β,

(31)



















⋆
x2(t, β) =

∫ t
0 (−0.05

⋆
x2(u, β) + 0.05

⋆
y2(u, β))du

+2.5β + 99.5,
⋆
y2(t, β) =

∫ t
0 (−0.05

⋆
y2(u, β) + 0.05

⋆
x2(u, β))du

+0.25β + 0.65.

(32)
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Now by using GMADM the solution of (29), (30), (31) and

(32), can be expressed as;






























































⋆
x10 (t, α) = 1.429α + 98,
⋆
y10 (t, α) = 1.429α + 50,

⋆
x11 (t, α) = −0.357250αt − 26.90t,
⋆
y11 (t, α) = 0.214350αt + 21.90t,
⋆
x1k+1

(t, α) =
∫ t
0 (−0.30

⋆
x1k (u, α)

+0.05
⋆
y1k (u, α))du, k ≥ 1,

⋆
y1k+1

(t, α) =
∫ t
0 (−0.15

⋆
y1k (u, α)

+0.30
⋆
x1k (u, α))du, k ≥ 1.

(33)































































⋆
x20 (t, α) = −1.429α + 101,
⋆
y20 (t, α) = −1.429α + 50,

⋆
x21 (t, α) = 0.357250αt − 27.650t,

⋆
y21 (t, α) = −0.214350αt + 22.350t,

⋆
x2k+1

(t, α) =
∫ t
0 (−0.30

⋆
x2k (u, α)

+0.05
⋆
y2k (u, α))du, k ≥ 1,

⋆
y2k+1

(t, α) =
∫ t
0 (−0.15

⋆
y2k (u, α)

+0.30
⋆
x2k (u, α))du, k ≥ 1.

(34)































































⋆
x10 (t, β) = 99 − 2.5β,
⋆
y10 (t, β) = 51 − 2.5β,

⋆
x11 (t, β) = −27.150t + 0.6250βt,
⋆
y11 (t, β) = 22.050t − 0.3750βt,
⋆
x1k+1

(t, β) =
∫ t
0 (−0.30

⋆
x1k (u, β)

+0.05
⋆
y1k (u, β))du, k ≥ 1,

⋆
y1k+1

(t, β) =
∫ t
0 (−0.15

⋆
y1k (u, β)

+0.30
⋆
x1k (u, β))du, k ≥ 1.

(35)































































⋆
x20 (t, β) = 2.5β + 99.5,
⋆
y20 (t, β) = 2.5β + 51.5,

⋆
x21 (t, β) = −0.6250βt − 27.2750t,
⋆
y21 (t, β) = 0.3750βt + 22.1250t,
⋆
x2k+1

(t, β) =
∫ t
0 (−0.30

⋆
x2k (u, β)

+0.05
⋆
y2k (u, β))du, k ≥ 1,

⋆
y2k+1

(t, β) =
∫ t
0 (−0.15

⋆
y2k (u, β)

+0.30
⋆
x2k (u, β))du, k ≥ 1.

(36)

By solving (33), (34), (35) and (36), we get the approxi-

mate solution after four iterations as follows:

(
⋆
x1(t, α),

⋆
y1(t, α))

= (1.429α + 98 − 0.357250αt − 26.90t

+ 0.0589462500t2α + 4.582500000t2

− 0.007055687500αt3 − 0.5528750000t3

+ 0.0006463992188αt4 + 0.05074218750t4,

1.429α + 50 + 0.2143500000αt + 21.90000000t

− 0.06966375000αt2 − 5.677500000t2

+ 0.009377812500αt3 + 0.7421250000t3

− 0.0008808445312αt4 − 0.06929531250t4),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (−1.429α + 101 + 0.357250αt − 27.650t

− 0.05894625000αt2 + 4.706250000t2

+ 0.007055687499αt3 − 0.5676874999t3

− 0.0006463992188αt4 + 0.05209921875t4,

− 1.429α + 53 − 0.2143500000αt + 22.35000000t

+ 0.06966375000αt2 − 5.823750000t2

− 0.009377812500αt3 + 0.7618125000t3

+ 0.0008808445312αt4 − 0.07114453125t4),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (99 − 2.5β − 27.150t + 0.6250βt

+ 4.623750t2 − 0.1031250000βt2

− 0.5578125000t3 + 0.01234375000βt3

+ 0.05119453125t4 − 0.001130859375βt4

, 51 − 2.5β + 22.050t − 0.3750βt

− 5.726250000t2 + 0.1218750000βt2

+ 0.7486875000t3 − 0.01640625000βt3

− 0.06991171875t4 + 0.001541015625βt4),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (2.5β + 99.5 − 0.6250βt − 27.2750t

+ 0.1031250βt2 + 4.644375000t2

− 0.01234375000βt3 − 0.5602812500t3

+ 0.001130859375βt4 + 0.05142070312t4,

2.5β + 51.5 + 0.3750βt + 22.1250t

− 0.1218750000βt2 − 5.750625000t2

+ 0.01640625000βt3 + 0.7519687500t3

− 0.001541015625βt4 − 0.07021992188t4).

In Table 1,
⋆
x1(t, α)

⋆
, x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) repre-

sents approximate solution of the membership functions of

the Example1 for α ϵ [0, 0.7] and
⋆
x1(t, β),

⋆
x2(t, β),

⋆
y1(t, β)

and
⋆
y2(t, β) represents approximate solution of non-

membership function of the Example1 for β ϵ [0.2, 1.0].

The following is the mathematical and exact solution

to Example 1 using the classical method, as shown in

Figure 2(a,b) and Table 2:

(
⋆
x1(t, α),

⋆
y1(t, α))

= (− 1

34000
(−17 +

√
17)(92000 + 1429α

− 6000
√
17)e

1
40 (−9+

√
17)t

+ 1

34000
(17 +

√
17)(92000 + 1429α

+ 6000
√
17)e−

1
40 (9+

√
17)t ,
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TABLE 1. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 1 for t=1.

TABLE 2. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

TABLE 3. Illustrates the approximate solution iterations in column 2,
residual error in column 3, and CPU time required by the numerical
technique GMADM to determine the approximate solution of the system
of generalized fuzzy intuitionistic differential equations used in
Example 1 in column 4. Whenever the error of all methods is taken into
account, we can conclude that the GMADM has a better convergence
behavior and is more stable than the ADM and TSM, respectively.

− 1

68000
(−17 +

√
17)(92000 + 1429α

− 6000
√
17)e

1
40 (−9+

√
17)t

×
√
17 − 1

68000
(17 +

√
17)(92000

+ 1429α + 6000
√
17)e−

1
40 (9+

√
17)t

×
√
17 − 3

68000
(−17 +

√
17)(92000 + 1429α

− 6000
√
17)e

1
40 (−9+

√
17)t

+ 3

68000
(17 +

√
17)(92000 + 1429α

+ 6000
√
17)e−

1
40 (9+

√
17)t ),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (
1

66000
(−33 +

√
33)(−98000 + 1429α

+ 3000
√
33)e

1
40 (−9+

√
33)t

− 1

66000
(33 +

√
33)(−98000 + 1429α

− 3000
√
33)e−

1
40 (9+

√
33)t ,

1

132000
(−33 +

√
33)(−98000 + 1429α

+ 3000
√
33)e

1
40 (−9+

√
33)t

√
33

+ 1

132000
(33 +

√
33)(−98000 + 1429α

− 3000
√
33)e−

1
40 (9+

√
33)t

√
33

+ 1

44000
(−33 +

√
33)(−98000 + 1429α

+ 3000
√
33)e

1
40 (−9+

√
33)t

− 1

44000
(33 +

√
33)(−98000 + 1429α

− 3000
√
33)e−

1
40 (9+

√
33)t ),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (
1

132
(−33 +

√
33)(−192 + 5β + 6

√
33)e

1
40 (−9+

√
33)t

− 1

132
(33 +

√
33)(−192 + 5β − 6

√
33)e−

1
40 (9+

√
33)t ,

1

264
(−33 +

√
33)(−192 + 5β + 6

√
33)e

1
40 (−9+

√
33)t

√
33

+ 1

264
(33 +

√
33)(−192+5β−6

√
33)e−

1
40 (9+

√
33)t

√
33

+ 1

88
(−33+

√
33)(−192+5β+6

√
33)e

1
40 (−9+

√
33)t

√
33

− 1

88
(33 +

√
33)(−192 + 5β − 6

√
33)e−

1
40 (9+

√
33)t ),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (− 1

132
(−33 +

√
33)(193 + 5β − 6

√
33)e

1
40 (−9+

√
33)t

+ 1

132
(33 +

√
33)(193 + 5β + 6

√
33)e−

1
40 (9+

√
33)t ,

− 1

264
(−33 +

√
33)(193 + 5β−6

√
33)e

1
40 (−9+

√
33)t

√
33

− 1

264
(33 +

√
33)(193 + 5β+6

√
33)e−

1
40 (9+

√
33)t

√
33

− 1

88
(−33 +

√
33)(193 + 5β − 6

√
33)e

1
40 (−9+

√
33)t

+ 1

88
(33 +

√
33)(193 + 5β + 6

√
33)e−

1
40 (9+

√
33)t ).
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Table 2,
⋆
x1(t, α)

⋆
, x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) represents

exact solution of the membership functions of the Exam-

ple1 for α ϵ [0, 0.7] and
⋆
x1(t, β),

⋆
x2(t, β),

⋆
y1(t, β) and

⋆
y2(t, β)

represents exact solution of non-membership function of the

Example1 for β ϵ [0.2, 1.0].

Example 2 Coupled Oscillators: Consider a mechanical

system [44], [45], [46], [47] constituting of two massesm1 =
1Kg and m2 = 1Kg that are free to slide over a friction less

horizontal surface. The masses are attached to one another,

and to two rigid walls, with the help of three springs. The

spring constants for this system are k1 = 1Nm−1, k2 =
2Nm−1 and k3 = 1Nm−1. The instantaneous state of the

system is conveniently specified by the
⋆
x(t) and

⋆
y(t) respec-

tively. Thus, the equations of motions of two masses are as

follows:






m
d2

⋆
x(t)

dt2
= −k1

⋆
x − k2(

⋆
x − ⋆

y),

m
d2

⋆
y(t)

dt2
= −k3

⋆
y− k2(

⋆
y− ⋆

x).
(37)

Using the given data, we get;







d2
⋆
x(t)

dt2
= 2

⋆
y− 3

⋆
x,

d2
⋆
y(t)

dt2
= 2

⋆
x − 3

⋆
y,

(38)

with initial conditions,























⋆
x(0) = <(2, 4, 8, 15; 0.6); (1, 4, 8, 18; 0.3)>,
⋆
x

′
(0) = <(2, 5, 8, 10; 0.6)(1, 5, 8, 12; 0.3)>,

⋆
y(0) = <(8, 9, 10, 11; 0.6)(7, 9, 10, 12; 0.3)>,
⋆
y
′
(0) = <(11, 12, 13, 14; 0.6); (10, 12, 13, 15; 0.3)>.

(39)

By taking (α, β)-cut of (38), (39), we get the following

equations:










































d2
⋆
x(t, α)

dt2
= 2

⋆
y− 3

⋆
x,

⋆
x1(0, α) = 3.33α + 2,

⋆
x

′
1 (0, α) = 5α + 2,

d2
⋆
⋆
y(t, α)

dt2
= 2

⋆
x − 3

⋆
y,

⋆
y1(0, α) = 1.67α + 8,

⋆
y
′
1 (0, α) = 1.67α + 11,

(40)






































d2
⋆
x(t, α)

dt2
= 2

⋆
y− 3

⋆
x,

⋆
x2(0, α) = 15 − 11.67α,

⋆
x

′
2 (0, α) = 10 − 3.33α,

d2
⋆
y(t, α)

dt2
= 2

⋆
x − 3

⋆
y,

⋆
y2(0, α) = −1.67α + 11,

⋆
y
′
2 (0, α) = −1.67α + 14,

(41)

FIGURE 2. Exact solution of (
⋆
x1k

,
⋆
y1k

) of generalized trapezoidal

intuitionistic fuzzy number.

FIGURE 3. Exact solution of (
⋆
x2k

,
⋆
y2k

) of generalized trapezoidal

intuitionistic fuzzy number.







































d2
⋆
x(t, β)

dt2
= 2

⋆
y− 3

⋆
x,

⋆
x1(0, β) = −4.29β + 5.29,

⋆
x

′
1 (0, β) = 6.71 − 0.85β,

d2
⋆
y(t, β)

dt2
= 2

⋆
x − 3

⋆
y,

⋆
y1(0, β) = 9 − 2.86β,

⋆
y
′
1 (0, β) = 12 − 2.86β,

(42)






































d2
⋆
x(t, β)

dt2
= 2

⋆
y− 3

⋆
x,

⋆
x2(0, β) = 3.71 + 14.29β,

⋆
x

′
1 (0, β) = 6.29 + 5.71β,

d2
⋆
y(t, β)

dt2
= 2

⋆
x − 3

⋆
y,

⋆
y2(0, β) == 9.14 + 2.86β,

⋆
y
′
1 (0, β) = 12.14 + 2.86β.

(43)

Here
✠

L = d2

dt2
and by taking

✠

L

−1

(.) =
t
∫

0

t
∫

0

(.) dtdt on

both sides of (40), (41), (42) and (40), and using the initial

conditions we obtain;


















⋆
x1(t, α) =

∫ t
0 (3

⋆
x1(u, α)(−t + u) + 2

⋆
y1(u, α)(t − u))du

+2 + 5αt + 3.33α + 2t,
⋆
y1(t, α) =

∫ t
0 (2

⋆
x1(u, α)(t − u) + 3

⋆
y1(u, α)(−t + u))du

+8 + 1.67αt + 1.67α + 11t,

(44)
Figure 2-3: Shows exact solution of the system of general-

ized trapezoidal intuitionistic fuzzy initial value problem used
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FIGURE 4. Exact solution of (
⋆
x1k

(t, α),
⋆
y1k

(t, α)) of generalized

trapezoidal intuitionistic fuzzy number.

FIGURE 5. Exact solution of (
⋆
x2k

(t, α),
⋆
y2k

(t, α)) of generalized

trapezoidal intuitionistic fuzzy number.

in example 1.



















⋆
x2(t, α) =

∫ t
0 (3

⋆
x2(u, α)(−t + u) + 2

⋆
y2(u, α)(t − u))du

+15 − 3.33αt − 11.67α + 10t,
⋆
y2(t, α) =

∫ t
0 (2

⋆
x2(u, α)(t − u) + 3

⋆
y2(u, α)(−t + u))du

+11 − 1.67αt − 1.67α + 14t,

(45)


















⋆
x1(t, β) =

∫ t
0 (3

⋆
x1(u, β)(−t + u) + 2

⋆
y1(u, β)(t − u))du

+5.29 − 0.85βt + 6.71t − 4.29β,
⋆
y1(t, β) =

∫ t
0 (2

⋆
x1(u, β)(t − u) + 3

⋆
y1(u, β)(−t + u))du

+9 − 2.86βt − 2.86β + 12t,

(46)


















⋆
x2(t, β) =

∫ t
0 (3

⋆
x2(u, β)(−t + u) + 2

⋆
y2(u, β)(t − u))du

+3.71 + 5.71βt + 6.29t + 14.29β,
⋆
y2(t, β) =

∫ t
0 (2

⋆
x2(u, β)(t − u) + 3

⋆
y2(u, β)(−t + u))du

+9.14 + 2.86βt + 12.14t + 2.86β.

(47)

Figures 3-7: Displays the membership and non-

membership functions, as well as the exact and approximate

FIGURE 6. Exact solution of (
⋆
x1k

(t, β),
⋆
y1k

(t, β)) of generalized

trapezoidal intuitionistic fuzzy number.

FIGURE 7. Exact solution of (
⋆
x2k

(t, β),
⋆
y2k

(t, β)) of generalized

trapezoidal intuitionistic fuzzy number.

solutions, for the generalized trapezoidal intuitionistic fuzzy

initial value problem used in example 2.

Now by using GMADM the solution of (44), (45), (46)

and (47), can be expressed as;











































































































⋆
x10 (t, α) = 2 + t(5α + 2) + 3.33α,

⋆
y10 (t, α) = 8 + t(1.67α + 11) + 1.67α,

⋆
x11 (t, α) = −1.943333334αt3 + 2.666666667t3

+ 5.00000000t2 − 3.325000000αt2,

⋆
y11 (t, α) = 2.498333334αt3 − 4.166666668t3

− 8.00000000t2 + 4.155000000αt2,

⋆
x1k+1

(t, α) =
∫ t

0

(3
⋆
x1k (u, α)(−t + u)

+ 2
⋆
y1k (u, α)(t − u))du, k ≥ 1,

⋆
y1k+1

(t, α) =
∫ t

0

(2
⋆
x1k (u, α)(t − u)

+ 3
⋆
y1k (u, α)(−t + u))du, k ≥ 1.

(48)
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⋆
x20 (t, α) = 15 + t(−3.33α + 10) − 11.67α,
⋆
y20 (t, α) = 11 + t(−1.67α + 14) − 1.67α,
⋆
x21 (t, α) = 1.108333334αt3 − 0.3333333334t3

− 11.50000000t2 + 15.83500000αt2,
⋆
y21 (t, α) = −1.385000000αt3 − 0.3333333334t3

+ 13.50000000t2 − 20.83500000αt2,

⋆
x2k+1

(t, α) =
∫ t

0

(3
⋆
x2k (u, α)(−t + u)

+ 2
⋆
y2k (u, α)(t − u))du, k ≥ 1,

⋆
y2k+1

(t, α) =
∫ t

0

(2
⋆
x2k (u, α)(t − u)

+ 3
⋆
y2k (u, α)(−t + u))du, k ≥ 1.

(49)






























































































⋆
x10 (t, β) = 5.29 + t(−0.85β + 6.71) − 4.29β,
⋆
y10 (t, β) = 9 + t(−2.86β + 12) − 2.86β,
⋆
x11 (t, β) = −0.528333333βt3 + 0.645000000t3

+ 1.06500000t2 + 3.575000000βt2,
⋆
y11 (t, β) = 0.863333334βt3 − 1.526666667t3

− 2.92000000t2 − 4.290000000βt2,

⋆
x1k+1

(t, β) =
∫ t

0

(2
⋆
x1k (u, β)(t − u)

+ 3
⋆
y1k (u, β)(−t + u))du, k ≥ 1,

⋆
y1k+1

(t, β) =
∫ t

0

(2
⋆
x1k (u, β)(t − u)

+ 3
⋆
y1k (u, β)(−t + u))du, k ≥ 1.

(50)






























































































⋆
x20 (t, β) = 3.71 + t(5.71β + 6.29) + 14.29β,
⋆
y20 (t, β) = 9.14 + t(2.86β + 12.14) + 2.86β,
⋆
x21 (t, β) = −1.901666667βt3 + 0.901666667t3

+ 3.57500000t2 − 18.57500000βt2,
⋆
y21 (t, β) = 2.376666667βt3 − 1.876666667t3

− 6.29000000t2 + 24.29000000βt2,

⋆
x2k+1

(t, β) =
∫ t

0

(3
⋆
x2k (u, β)(−t + u)

+ 2
⋆
y2k (u, β)(t − u))du, k ≥ 1,

⋆
y2k+1

(t, β) =
∫ t

0

(2
⋆
x2k (u, β)(t − u)

+ 3
⋆
y2k (u, β)(−t + u))du, k ≥ 1.

(51)

By solving (48), (49), (50) and (51), we get the approxi-

mate solution after four iterations as follows:
(
⋆
x1(t, α),

⋆
y1(t, α))

= (2 + 5αt + 2t + 3.33α − 1.943333334αt3

+ 2.666666667t3 + 5.00000000t2 − 3.325000000αt2

+ 0.541333334αt5 − 0.816666667t5 − 2.583333330t4

+ 1.523749999αt4 − 0.0750198413αt7

+ 0.1134920635t7

+ 0.502777777t6 − 0.295513888αt6

+ 0.00607264110αt9

− 0.00918761024t9 − 0.0523313492t8

+ 0.0307552083αt8,

8 + 1.67αt + 11t + 1.67α + 2.498333334αt3

− 4.166666668t3

− 8.00000000t2 + 4.155000000αt2 − 0.763416667αt5

+ 1.158333334t5 + 3.66666667t4 − 2.147083332αt4

+ 0.1060853175αt7−0.1605158731t7−0.711111110t6

+ 0.417874999αt6 − 0.00858799053αt9

+ 0.0129932761t9

+ 0.0740079365t8 − 0.0434942956αt8),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (15 − 3.33αt + 10t − 11.67α + 1.108333334αt3

− 0.3333333334t3 − 11.50000000t2 + 15.83500000αt2

− 0.304750000αt5 + 0.01666666662t5 + 5.12500000t4

− 7.43125000αt4 + 0.0422162699αt7

− 0.00198412699t7

− 0.993055554t7 + 1.442263887αt6

− 0.00341724537αt9

+ 0.000159832452t9 + 0.1033482144t8

− 0.150104911αt8,

11 − 1.67αt + 14t − 1.67α − 1.385000000αt3

− 0.3333333334t3 + 13.50000000t2 − 20.83500000αt2

+ 0.429416667αt5 − 0.01666666682t5 − 7.20833333t4

+ 10.48708333αt4 − 0.0596964286αt7

+ 0.00277777778t7

+ 1.404166665t6 − 2.03954167αt6+0.00483269953αt9

− 0.000225970018t9 − 0.146155754t8

+ 0.212280011αt8),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (5.29 − 85βt + 6.71t − 4.29β − 0.528333333βt3

+ 0.645000000t3 + 1.06500000t2 + 3.575000000βt2

+ 0.1655833334βt5−0.2494166672t5 − 0.752916666t4

− 1.608749999βt4 − 0.0230257937βt7

+ 0.0348630952t7

+ 0.1476249998t6 + 0.311819444βt6

+ 0.00186405974βt9

− 0.00282277888t9 − 0.0153687996t8

− 0.0324516369βt8,

9 − 2.86βt + 12t − 2.86β + 0.863333334βt3

− 1.526666667t3

33216 VOLUME 11, 2023



M. Shams et al.: Semi-Analytical Scheme for Solving Intuitionistic Fuzzy System

− 2.92000000t2 − 4.290000000βt2 − 0.2351666672βt5

+ 0.358000000t5 + 1.085000000t4 + 2.264166666βt4

+ 0.0325674603βt7 − 0.0493253968t7 − 0.208888889t6

− 0.440916666βt6 − 0.00263618827βt9

+ 0.00399206349t9

+ 0.0217351191t8 + 0.0458933532βt8),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (3.71 + 5.71βt + 6.29t + 14.29β − 1.901666667βt3

+ 0.901666667t3 + 3.57500000t2 − 18.57500000βt2

+ 0.522916667βt5 − 0.322916667t5 − 1.942083333t4

+ 8.69208333βt4−0.0724384921βt7+0.0450575397t7

+ 0.378486111t6 − 1.686819440βt6

+ 0.00586361883βt9

− 0.00364801036t9 − 0.0393960814t8

+ 0.175556795βt8,

9.14 + 2.86βt + 12.14t + 2.86β + 2.376666667βt3

− 1.876666667t3 − 6.29000000t2 + 24.29000000βt2

− 0.736833334βt5 + 0.461833333t5 + 2.764166670t4

− 12.26416666βt4 + 0.1024325397βt7

− 0.0637420635t7

− 0.535361111t6 + 2.38536111βt6

− 0.00829238317βt9

+ 0.00515911596t9 + 0.0557147819t8

− 0.248274306βt8),

In Table 3,
⋆
x1(t, α),

⋆
x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) represents

analytical solution of the membership functions of the

Example1 for α ϵ [0, 0.6] and
⋆
x1(t, β),

⋆
x2(t, β),

⋆
y1(t, β) and

⋆
y2(t, β) represents analytical solution of non-membership

function of the Example2 for β ϵ [0.3, 1.0] .

The following is the mathematical and exact solution

to Example 2 using the classical method, as shown in

Figure 4(a-d) and Table 4:

(
⋆
x1(t, α),

⋆
y1(t, α))

= ((
667

200
α + 13

2
)sin(t) + (5 + 5

2
α)cos(t)

+ 9

1000

√
5(−100 + 37α)

× sin(
√
5t)+(−3 + 83

100
α)cos(

√
5t), (

667

200
α + 13

2
)sin(t)

+ (5 + 5

2
α)cos(t) − 9

1000

√
5(−100 + 37α)sin(

√
5t)

− (−3 + 83

100
α)cos(

√
5t)),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (− 1

500

√
5(200 + 83α)sin(

√
5t) + (2 − 5α)cos(

√
5t)

+ (−5

2
α + 12)sin(t) + (13 − 667

100
α)cos(t),

1

500

√
5(200 + 83α)

× sin(
√
5t) − (2 − 5α)cos(

√
5t) + (−5

2
α + 12)sin(t)

+ (13 − 667

100
α)cos(t)),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (
1

1000

√
5(−529 + 201β)sin(

√
5t)

+ (−371

200
− 143

200
β)cos(

√
5t)

+ (−371

200
β + 1871

200
)sin(t) + (

1429

200
− 143

40
β)cos(t),

− 1

1000

√
5

× (−529 + 201β)sin(
√
5t) − (−371

200
− 143

200
β)cos(

√
5t)

+ (−371

200
β + 1871

200
)sin(t) + (

1429

200
− 143

40
β)cos(t)),

(
⋆
x2(t, β),

⋆
y2(t, β))

= ((
857

200
β + 1843

200
)sin(t) + (

257

40
+ 343

40
β)cos(t) + 3

200

√
5

× (−39 + 19β)sin(
√
5t) + (−543

200
+ 1143

200
β)cos(

√
5t),

(
857

200
β + 1843

200
)sin(t) + (

257

40
+ 343

40
β)cos(t)

− 3

200

√
5(−39 + 19β)sin(

√
5t)

− (−543

200
+ 1143

200
β)cos(

√
5t)).

In Table 4,
⋆
x1(t, α),

⋆
x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) represents

exact solution of the membership functions of the Example2

for α ϵ [0, 0.6] and
⋆
x1(t, α),

⋆
x2(t, α),

⋆
y1(t, α) and

⋆
y2(t, α) rep-

resents exact solution of non-membership function of the

Example2 for β ϵ [0.3, 1.0] .

Example 3: Consider the first order non-homogenous sys-

tem of intuitionistic fuzzy differential equation as follows:
d

⋆
x
dt

= 2
⋆
x(t) + 3

⋆
y(t) − 7,

d
⋆
y
dt

= −⋆
x(t) − 2

⋆
y(t) + 5.







(52)
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TABLE 4. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 2 for t=1.

TABLE 5. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 2 for t=1.

TABLE 6. Illustrates the approximate solution iterations in column 2,
residual error in column 3, and CPU time required by the numerical
technique GMADM to determine the approximate solution of the system
of generalized fuzzy intuitionistic differential equations used in Example
2 in column 4. Whenever the error of all methods is taken into account,
we can conclude that the GMADM has a better convergence behavior and
is more stable than the ADM and TSM, respectively.

with initial conditions

⋆
x(0) = <(2, 4, 8, 15; 0.6); (1, 4, 8, 18; 0.3)>,
⋆
y(0) = <(2, 5, 8, 10; 0.6)(1, 5, 8, 12; 0.3)>.

}

(53)

By taking (α, β)-cuts of (52) and (53), we get,

d
⋆
x1(t,α)
dt

= 2
⋆
x1(t, α) + 3

⋆
y
1
(t, α) − 7,

⋆
x1(0, α) = 3.33α + 2,

d
⋆
y1(t,α)
dt

= −⋆
x1(t, α) − 2

⋆
y
1
(t, α) + 5,

⋆
y1(0, α) = 5α + 2,























(54)

d
⋆
x2(t,α)
dt

= 2
⋆
x2(t, α) + 3

⋆
y2(t, α) − 7,

⋆
x2(0, α) = −11.67α + 15,

d
⋆
y2(t,α)
dt

= −⋆
x2(t, α) − 2

⋆
y2(t, α) + 5,

⋆
y2(0, α) = −3.33α + 10,























(55)

d
⋆
x1(t,β)
dt

= 2
⋆
x1(t, β) + 3

⋆
y
1
(t, β) − 7,

⋆
x1(0, β) = −4.29β + 5.29,

d
⋆
y1(t,β)
dt

= −⋆
x1(t, β) − 2

⋆
y
1
(t, β) + 5,

⋆
y1(0, β) = −0.85β + 6.71,























(56)

d
⋆
x2(t,β)
dt

= 2
⋆
x2(t, β) + 3

⋆
y2(t, β) − 7,

⋆
x2(0, β) = 14.29β + 3.71,

d
⋆
y2(t,β)
dt

= −⋆
x2(t, β) − 2

⋆
y2(t, β) + 5,

⋆
y2(0, β) = 5.71β + 6.29.























(57)

Here
✠

L = d
dt
and by taking

✠

L

−1

(.) =
t
∫

0

(.) dt on both sides of

(54), (55), (56) and (57), and using the initial conditions we

obtain;


















































⋆
x1(t, α) =

t
∫

0

(2
⋆
x1(u, α) + 3

⋆
y1(u, α))du

+3.33α + 2 − 7t,

⋆
y1(t, α) =

t
∫

0

(−⋆
x1(u, α) − 2

⋆
y1(u, α))

+5α + 2 + 5t,

(58)



















































⋆
x2(t, α) =

t
∫

0

(2
⋆
x2(u, α) + 3

⋆
y2(u, α))du

−11.67α + 15 − 7t,

⋆
y2(t, α) =

t
∫

0

(−⋆
x2(u, α) − 2

⋆
y2(u, α))

−3.33α + 10 + 5t,

(59)



















































⋆
x1(t, β) =

t
∫

0

(2
⋆
x1(u, β) + 3

⋆
y1(u, β))du

+5.29 − 4.29β − 7t,

⋆
y1(t, β) =

t
∫

0

(−⋆
x1(u, β) − 2

⋆
y1(u, β))

+6.71 − 0.85β + 5t,

(60)



















































⋆
x2(t, β) =

t
∫

0

(2
⋆
x2(u, β) + 3

⋆
y2(u, β))du

+14.29β + 3.71 − 7t,

⋆
y2(t, β) =

t
∫

0

(−⋆
x2(u, β) − 2

⋆
y2(u, β)) + 5.71β

+6.29 + 5t.

(61)
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Now by using GMADM we get;















































































⋆
x10 (t, α) = 3.33α + 2,
⋆
y10 (t, α) = 5α + 2,
⋆
x11 (t, α) = 21.66000000αt + 3t,
⋆
y11 (t, α) = −13.33000000αt − t,

⋆
x1k+1

(t, α) =
t

∫

0

(2
⋆
x1k (u, α) + 3

⋆
y1k (u, α))du, k ≥ 1,

⋆
y1k+1

(t, α) =
t

∫

0

(−⋆
x1k (u, α) − 2

⋆
y1k (u, α))du, k ≥ 1.

(62)














































































⋆
x20 (t, α) = −11.67α + 15,
⋆
y20 (t, α) = −3.33α + 10,
⋆
x21 (t, α) = −33.33000000αt + 53t,
⋆
y21 (t, α) = 18.33000000αt − 30t,

⋆
x2k+1

(t, α) =
t

∫

0

(2
⋆
x2k (u, α) + 3

⋆
y2k (u, α))du, k ≥ 1,

⋆
y2k+1

(t, α) =
t

∫

0

(−⋆
x2k (u, α) − 2

⋆
y2k (u, α))du, k ≥ 1,

(63)














































































⋆
x10 (t, β) = 5.29 − 4.29β,
⋆
y10 (t, β) = 6.71 − 0.85β,
⋆
x11 (t, β) = 23.71000000t − 11.13000000βt,
⋆
y11 (t, β) = −13.71000000t + 5.990000000βt,

⋆
x1k+1

(t, β) =
t

∫

0

(2
⋆
x1k (u, α) + 3

⋆
y1k (u, α))du, k ≥ 1,

⋆
y1k+1

(t, β) =
t

∫

0

(−⋆
x1k (u, α) − 2

⋆
y1k (u, α))du, k ≥ 1.

(64)














































































⋆
x20 (t, β) = 3.71 + 14.29β,
⋆
y20 (t, β) = 6.29 + 5.71β,
⋆
x21 (t, β) = 19.29000000t + 45.71000000βt,
⋆
y21 (t, β) = −11.29000000t − 25.71000000βt,

⋆
x2k+1

(t, β) =
t

∫

0

(2
⋆
x2k (u, α) + 3

⋆
y2k (u, α))du, k ≥ 1,

⋆
y2k+1

(t, β) =
t

∫

0

(−⋆
x2k (u, α) − 2

⋆
y2k (u, α))du, k ≥ 1.

(65)

FIGURE 8. Exact solution of (
⋆
x1k

(t, α),
⋆
y1k

(t, α)) of generalized

trapezoidal intuitionistic fuzzy number.

FIGURE 9. Exact solution of (
⋆
x2k

(t, α),
⋆
y2k

(t, α)) of generalized

trapezoidal intuitionistic fuzzy number.

FIGURE 10. Exact solution of (
⋆
x1k

(t, β),
⋆
y1k

(t, β)) of generalized

trapezoidal intuitionistic fuzzy number.

Figures 8-11: Displays the membership and non-

membership functions, as well as the exact and approximative

solutions, for the generalised trapezoidal intuitionistic fuzzy

initial value problem used in example 3.
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FIGURE 11. Exact solution of (
⋆
x2k

(t, β),
⋆
y2k

(t, β)) of generalized

trapezoidal intuitionistic fuzzy number.

By solving the (62), (63), (64) and (65), we get the approx-

imate solution after three iteration as follows:
(
⋆
x1(t, α),

⋆
y1(t, α))

= (3.33α + 2 + 3t + 21.66000000αt + 1.500000000t2

+ 1.665000000αt2+0.5000000000t3+3.610000000αt3

+ 0.1250000000t4 + 0.1387500007αt4, 5α + 2 − t

− 13.33000000αt + 2.500000000αt2 − 0.5000000000t2

− 0.1666666666t3 − 2.221666666αt3

− 0.04166666670t4

+ 0.2083333329αt4),

(
⋆
x2(t, α),

⋆
y2(t, α))

= (−11.67α + 15 + 53t − 33.33000000αt+8.000000000t2

− 5.835000000αt2+8.833333330t3−5.554999998αt3

+ 0.6666666650t4 − 0.4862499990αt4,

− 3.33α + 10 − 30t

+ 18.33000000αt − 1.665000000αt2 + 3.50000000t2

− 5.000000000t3 + 3.055000000αt3 + 0.2916666675t4

− .1387500006αt4),

(
⋆
x1(t, β),

⋆
y1(t, β))

= (−4.29β + 5.29 + 23.71000000t − 11.13000000βt

+ 3.145000000t2 − 2.145000000βt2 + 3.951666665t3

− 1.854999999βt3 + 0.2620833332t4

− 0.1787499999βt4,

− 0.85β + 6.71 − 13.71000000t + 5.990000000βt

− 0.4250000000βt2 + 1.855000000t2 − 2.284999999t3

+ 0.9983333329βt3 + 0.1545833333t4

− 0.03541666665βt4),

(
⋆
x2(t, β),

⋆
y2(t, β))

= (14.29β + 3.71 + 19.29000000t + 45.71000000βt

+ 2.355000000t2 + 7.145000000βt2 + 3.214999999t3

+ 7.618333330βt3 + 0.1962499999t4

+ 0.5954166665βt4,

5.71β + 6.29 − 11.29000000t − 25.71000000βt

+ 2.855000000βt2 + 1.645000000t2 − 1.881666666t3

− 4.284999998βt3 + 0.1370833333t4

+ 0.2379166666βt4).

The following is the mathematical and exact solution

to Example 3 using the classical method, as shown in

Figure 4(a-d) and Table 6:

{⋆
x1(t, α) = −1833

200
αe−t + (3 + 2499

200
α)et − 1,

⋆
y1(t, α) = 1833

200
αe−t − 1

3
(3 + 2499

200
α)et + 3},

{⋆
x2(t, α) = (

69

2
− 45

2
α)et + (−37

2
+ 1083

100
α)e−t − 1,

⋆
y2(t, α) = −(−37

2
+ 1083

100
α)e−t

− 1

3
(
69

2
− 45

2
α)et + 3},

{⋆
x1(t, β) = (−871

100
+ 171

50
β)e−t + (15 − 771

100
β)et − 1,

⋆
y1(t, β) = −(−871

100
+ 171

50
β)e−t

− 1

3
(15 − 771

100
β)et } + 3,

{⋆
x2(t, β) = (12 + 30β)et + (−729

100
− 1571

100
β)e−t − 1,

⋆
y2(t, β) = −(−729

100
− 1571

100
β)e−t

− 1

3
(12 + 30β)et + 3},

IV. RESULTS AND DISCUSSION

We discuss how the computing efficiency, stability, and resid-

ual error robustness of the proposed modified technique,

GMADM, outperforms the ADM and TSM approaches.

• Tables 1 to 9 illustrate how GMADM, a recently created

approach, is more reliable and consistent than ADM

and TSM. While solving a system of fuzzy intuitionis-

tic differential equations, it is observed that GMADM

converges more quickly and accurately than ADM and

TSM.

• Tables 3, 6, and 9 clearly demonstrate that GMADM

is superior to ADM and TSM in terms of iterations,

residual error, and CPU time.

• Figures 2-11 compare the numerical simulation of our

recently modified family GMADM to a precise solution

of the generalized trapezoidal intuitionistic fuzzy initial

value problem used in Example 1-3 respectively.

• Figures 2-3, 4-11 illustrate the precise and approxi-

mate solutions for the membership and non-membership

functions of the generalized trapezoidal intuitionistic
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TABLE 7. Illustrates the approximation to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

TABLE 8. Illustrates the exact solution to the generalized trapezoidal intuitionistic fuzzy initial value problem from Example 3 for t=1.

TABLE 9. Illustrates the approximate solution iterations in column 2,
residual error in column 3, and CPU time required by the numerical
technique GMADM to determine the approximate solution of the system
of generalized fuzzy intuitionistic differential equations used in Example
3 in column 4. Whenever the error of all methods is taken into account,
we can conclude that the GMADM has a better convergence behavior and
is more stable than the ADM and TSM, respectively.

fuzzy system of initial value problems used in

example 1-3, respectively.

• The numerical results obtained in Tables 1-2,4-6,7-8,

and Figures 1-11 clearly demonstrate that the exact and

approximate solutions are matched up to 30 decimal

places using GMADM, 7 decimal places using ADM,

and 9 decimal places using TSM. The numerical simu-

lation of our methods demonstrates unequivocally how

much superior our method is to ADM and TSM.

V. CONCLUSION

In this work, Generalized Modified Adomian Decomposition

Method have been utilized for computing the approximate

solution of the linear system of generalized trapezoidal intu-

itionistic fuzzy initial value problems. We used the ini-

tial conditions as generalized trapezoidal intuitionistic fuzzy

numbers. We have applied this procedure to brine tank prob-

lems and coupled oscillators. Moreover, by comparing the

approximate results with exact solution, we have shown that

this method is more reliable. Future studies will therefore

focus on the solution of systems of higher order generalized

tripezodial intuitionistic fuzzy system of differential equa-

tions as well as a system of nonlinear first order differen-

tial equations and their application [48], [49], [50], [51],

[52], [53] in a more generalized fuzzy environment utilizing

GMADM.
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