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Cyber-Attacks in Industrial Control Systems: A Security
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Numerous sophisticated and nation-state attacks on Industrial Control Systems (ICSs) have increased in recent
years, exemplified by Stuxnet and Ukrainian Power Grid. Measures to be taken post-incident are crucial to
reduce damage, restore control, and identify attack actors involved. By monitoring Indicators of Compromise
(IOCs), the incident responder can detect malicious activity triggers and respond quickly to a similar intrusion
at an earlier stage. However, in order to implement IOCs in critical infrastructures, we need to understand
their contexts and requirements. Unfortunately, there is no survey paper in the literature on IOC in the ICS
environment and only limited information is provided in research articles. In this paper, we describe different
standards for IOC representation and discuss the associated challenges that restrict security investigators
from developing IOCs in the industrial sectors. We also discuss the potential IOCs against cyber-attacks in
ICS systems. Furthermore, we conduct a critical analysis of existing works and available tools in this space.
We evaluate the effectiveness of identified IOCs’ by mapping these indicators to the most frequently targeted
attacks in the ICS environment. Finally we highlight the lessons to be learnt from the literature and the future
problems in the domain along with the approaches that might be taken.

CCS Concepts: · Security and privacy→ Intrusion detection systems.
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1 Introduction

The term "Industrial Control System" (ICS) refers to a variety of control systems and associated
components commonly used to automate industrial processes [138]. Real-time data acquisition,
system and process monitoring, and automated control and management of industrial processes
are key responsibilities of ICSs. Depending on the industry (e.g., oil and gas, transportation, water,
energy, etc.), each ICS works differently and is designed to manage tasks electronically with
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high efficiency [137]. Traditionally, ICSs have been operated in an isolated environment without
interaction with the rest of the world [37]. However, amidst increasing automation and the advent
of the Internet of Things, technology has taken an increasingly prominent role in the convergence
of Information Technology (IT) and Operational Technology (OT). This integration is digital
transformation-driven, and it maximises the value of operational data and reliability [152].
According to a recent survey [108], 45% of the participants admitted cyber incidents over the

last 12 months, indicating a clear need to improve the detection and response capabilities. The
cyber-attacks on ICSs are widely investigated by governments and researchers. For many years, the
ICSs that control our critical infrastructures have been targeted by malicious cyber actors [66, 103].
In 2010, Stuxnet was among the most sophisticated malware at the time [66]. The malware was
designed to attack Iran’s uranium enrichment facility but has since evolved and spread to other
manufacturing and energy-generating facilities. The attack was aimed at Programmable Logic
Controllers (PLCs), which are used to automate system processes, resulting in damaged nuclear
centrifuges. Another unprecedented event occurred in 2015 when almost 8.0000 people experienced
a power outage for up to six hours [109]. BlackEnergy attacked the control centre of the power
grid, causing a power outage. Supervisory Control and Data Acquisition (SCADA) system failed
to operate, and the power had to be restarted manually, causing a delay in restoration efforts.
Although SCADA systems are generally designed to be reliable and fail-safe, the number of cyber
threats over the last decade demonstrates that their initial design and subsequent development did
not adequately account for the dangers of a coordinated attack.

Following a cyber attack, the actions taken are critical to minimise damage, regain control, and
identify the cause and those responsible. The Indicator of Compromise (IOC) is one of the security
tools used to identify potentially malicious activities [63]. Security analysts collect and analyse
artefacts observed from the network or system logs to detect the occurrence of an incident. The
increase in data sources and data types in ICSs due to expansion and development has resulted in
difficulties in digital forensic analysis and incident response. Unfortunately, currently there are no
IOCs specific to ICS infrastructures. In this paper, we are motivated to provide a comprehensive
overview of post-incident analysis in ICS with a focus on IOCs. To date, few analyses have been
conducted on forensic challenges and different types of Threat Intelligence (TI). The existing survey
by Awad et al. [16] reveals the proposed forensic approaches and techniques applied to SCADA
systems. Another literature by Touns and Helmi [142] provides an overview of technical TI, trends,
and standards. A systematic review on cyber incidents against ICS is presented in [27]. The survey
includes a detailed and chronological analysis of the cyber events that have affected ICS systems
since Stuxnet in August 2009 through May 2021. However, the work specifically considers the
evolutionary progression of the means of determining cyber threat risks. Unlike other literature to
date, our survey differs from the previous literature and systematic reviews mentioned above in
several ways. Most of the surveys evaluated TI issues and forensic capabilities tailored to SCADA
systems. In contrast, we extensively discuss how IOCs can play a vital role against cyber attacks in
the OT domain. We took a much broader viewpoint when analysing indicators compared to some
of the previous surveys, as they lack actionable indicators that fit with the nature of ICS systems.
Furthermore, we present the state-of-the-art in the existing identification and extraction approaches
of IOCs and highlight research gaps. Finally and most importantly, our potential indicators are
identified based on past case studies and realistic incidents by identifying the characteristics,
techniques, and behaviours that adversaries have conducted. The following is a summary of our
contribution to this work:

(1) As a novel contribution to the literature, we identified potential IOCs that can help incident
responders detect compromise in ICS along with the challenges faced by the incident
response team in the absence of a clear understanding of IOCs in ICS systems.
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(2) We evaluated the current state of the art in terms of understanding the existing standards
for IOCs formatting, techniques, and tools in order to discover existing research gaps. We
recognise that limited studies have explored IOCs associated with the OT domain in the
ICS system.

(3) We also discussed key issues and future directions for implementing IOCs in ICS environ-
ments.

The outline for the rest of this paper is as follows: Section 2 provides a glimpse of the ICS
architecture and the security requirements that must be considered from a forensic perspective.
Section 3 discusses the challenges associated with developing IOCs in the ICS environment. In
addition, we present a list of potential IOCs discovered through previous related works and an
observational study with industry experts [12]. The existing frameworks and methodologies along
with existing tools are discussed in Section 4. In Section 5, we identify the current issues and future
directions for interested researchers. Finally, Section 6 provides the conclusion of this paper.

2 Industrial Systems & Infrastructures

In this section, we briefly introduce the ICS architecture. Our intention is not to survey the ICS,
but to present some fundamental information (e.g., how the ICS network is different from the
traditional information network, what are the specific security requirements that must be considered
for the ICS systems, and potential attack scenarios related to the ICS network) that will aid in the
comprehension of historical developments and the present-day trajectory of critical infrastructures
development. To simplify the concept of the ICS system more clearly, we would illustrate the
typical ICS architecture in Figure 1 (and briefly explained this in Section 2.2). We will refer to
this architecture when reviewing some of the cyber-attacks and map the attack activities to the
architectural layers.
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Fig. 1. Overview of the ICS Architecture

2.1 IT vs. ICS Scenarios and Requirements

In general, there is little similarity between ICS and traditional IT systems and processes, especially
at the supervisory layer. However, the OT requirements differ from the conventional information
network. Whilst ICSs are designed for performance and not intended to protect against cyber
attacks or malicious use, the number of security incidents over the past decade shows that their
initial architecture and subsequent evolution did not adequately consider the risks of a coordinated
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attack [103]. On the contrary, the IT network was designed with security in mind, which means
that data confidentiality comes first, followed by integrity and availability [16]. Therefore, security
is viewed differently in enclosed ICSs as safety, that is, avoiding equipment failure or ensuring
human life safety. With the interoperability between ICS and the Internet now, safety and security
requirements have become an urgent necessity. Table 1 summarises the security requirements of
IT and ICS. IT and OT may appear to be similar, but they are not. IT and OT are set up, used, and
controlled independently, although they frequently converge. Because what works for one may be
harmful to the other, the security procedures for IT and OT are also distinct. Understanding these
requirements is critical to keeping these systems secure and avoiding conflict when considering
security for both the IT and the OT domains.

Table 1. Comparison of Security and Characteristics Between Typical IT and ICS

Category IT ICS

Security Goals’ Priority [86] · Confidentiality · Availability

Performance [117] · Depending on the application, the operation time delay and occasional

failures can be acceptable.

· There is a high restriction on operation time and failures.

· Real-time operations and any delay cause serious damage.

Computing Resources [157]
· There is an abundance of computing resources to support the ability to

run security programmes.

· Many systems are built to support certain industrial processes and may

lack sufficient computing and storage resources to implement additional

security capabilities.

Operations logic [67] · The business logic changes according to the business requirements. · ICS systems often follow a fixed business logic to achieve specific tasks.

Life-cycle /dynamism [138] · Usually 3-5 years, within vendor support periods.

· Maintenance monthly.

· Legacy systems, much longer than vendor support periods.

· Maintenance during plant downtime.

Change Management [138] · Security patches are applied regularly on a schedule. · ICS components need to operate constantly and cannot always be

patched promptly.

Communication Protocols [145] · Most protocols have authentication and encryption capabilities. · Proprietary protocols with poor security mechanisms.

2.2 System Model

As depicted in Figure 1, the typical architecture of ICS can be divided into three zones: the en-
terprise zone, the supervisory zone, and the cell/area zone. The enterprise zone mainly consists
of business systems such as Enterprise Resource Planning (ERP) and Management Information
Systems (MIS). The enterprise zone relies on the operational data from the supervisory zone to
support decision-making. The supervisory zone typically concerns monitoring and management
systems for industrial processes and includes a database for real-time data and some operator
and engineer workstations. This zone manages dispersed assets that depend on a central data
acquisition program [145]. Different types of devices are found in the cell/area zone, such as sensors,
actuators, and I/O devices. This zone receives supervisory commands from remote stations, which
are commonly used to direct local operations.

Technically speaking, the ICS lives in the areas marked Supervisory and Cell Zones. The devices
in these zones work in sync to monitor and control the key processes involved in equipment
management. Such devices are often distributed over a large geographic area. For example, a Remote
Terminal Unit (RTU) is an electronic device with a microprocessor that links a physical system to a
master system, which is generally a PLC, Master Terminal Unit (MTU), or SCADA. Similar to the
RTU, the PLC has more connectivity and can handle distant modules. Furthermore, the Human-
Machine Interface (HMI) is a critical component of ICS because it enables the user to perceive
how the system works and take appropriate decisions. To facilitate power automation capabilities,
Intelligent Electronic Devices (IEDs) are designed to perform all functions of communication,
metering, power monitoring, and control. However, some ICS components, such as PLCs and RTUs,
are primarily built for functionality and are limited by their processing capabilities. Thus, such
devices lack many authentication and security measures.
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2.3 Potential Attack Scenarios

While the technical developments in ICS environments have greatly improved our lives, they
present a more fierce and unlimited alternative medium for cyber attacks. Due to the vulnerabilities
associated with ICS systems, hackers and cybercriminals are becoming increasingly attracted to
compromising the development of such systems. In contrast to traditional cyber attacks, which
typically come with no physical harm to the victims, cyber threats on industrial systems can
physically threaten humans and, in the worst-case scenario, put their lives on the edge. Therefore,
various cyber threats have emerged that must be addressed to provide a secure and well-developed
control system. This section will highlight the most common and potential cyber threats to ICS
systems [26, 59]. All attacks here were chosen according to three criteria: (i) varying levels of cyber
and engineering complexity, (ii) increasing degrees of undesired physical consequences, and (iii)
detailed and explored attack scenarios published by governments, organisations, and scientific
papers.

2.3.1 ICS Focused Malware: Cyber threats against CPS have existed for decades and showed
the potential impact of malware on ICS. A prime example is the Stuxnet attack, which was the first
highly complex malware [50]. Following the Stuxnet attack, Duqu [21], Flame [98], and Triton [44]
are just a few examples of malware that has targeted ICS systems. Malware attacks can infect
the targeted system in various ways, such as exploiting system vulnerabilities or targeted spear-
phishing [8]. Adversaries often develop malicious software to compromise the CPS in order to
steal/leak data, destroy devices, or cause all-out mayhem in control systems [156].

2.3.2 Replay Attack: The Man-in-the-Middle (MITM) attacker will capture messages between
industrial components and transmit them to target nodes, such as HMI or PLC, after an intentional
delay [67]. To illustrate, Modbus protocol frames lack a timestamp feature. As a result, PLCs and
HMIs are unable to distinguish whether a response was returned for a recent request frame or
an older one. The response in the frame may reflect an outdated state of the physical parameters,
but the HMI will process the received frame and the falsified measurements will be displayed on
the SCADA monitor [119]. Similarly, the PLC will process the control command and trigger the
actuators. As a consequence of this manipulation, the industrial process will be hampered, leading
to instability of the system.

2.3.3 Eavesdropping Attack: ICS monitors and sends control commands from a control centre
to sensors and actuators using proprietary protocols such as Modbus and DNP3. These protocols
lack encryption, which exposes the traffic to eavesdropping attacks [71]. In the case of this attack,
an intruder can gather control system network information and steal operational data to achieve
the ultimate goal. In addition, such an attack could also be the first step in complex attacks. This is
because APT attackers try to maintain a prolonged presence in the compromised system [9].

2.3.4 Distributed Denial of Service Attack: Because of the security vulnerabilities in ICS
systems, adversaries can gain access to the network and control system, causing them tomalfunction
and perhaps causing catastrophic damage. While Distributed Denial of Service (DDoS) attacks are
eventually noticed by victims and are often less dangerous than other attacks, they can become
more dangerous in some cases for industrial systems [158]. For example, in the event of preventing
the circuit breaker from opening in an urgent occasion or disabling the Emergency Shut Down
(ESD) systems that prevent unsafe operations, such as in oil and gas facilities, DDoS attacks can
lead to major disasters. In this scenario, such attacks ensure that the control centre loses the ability
to shut down critical processes to avoid risk.
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2.3.5 Command InjectionAttack: In a command injection attack, false control and configuration
commands are injected into the control system. Control systems are monitored by human operators,
who occasionally intervene with supervisory control actions. Adversaries may attempt to inject
false supervisory control actions into the network of a control system [97]. For instance, RTUs
and IEDs are typically programmed to automatically monitor and control physical processes at
a remote location [123]. These devices contain the control logic and registers that store critical
control parameters such as set point limits and process control. Altering legitimate commands to
cause the pump or actuators to perform inappropriately could lead to unsafe operations.

2.3.6 False Data Injection Attack (FDIA): FDIA compromises the integrity of data (sensor
values, meter readings, etc.) in a way to mislead the decision-making process of the control
system [4]. FDIA can be random or targeted. In a random-attack scenario, the attacker injects bad
data into random measurement sensors to reflect an erroneous state of the system. The control
centre can detect random attacks, although inadequately due to measurement noise [101]. On the
other hand, the targeted attacks aim to inject predefined data into specified state variables [24].
Such attacks, if inserted stealthily into certain measurement sensors, are undetectable to the system
operator because they bypass bad data detection systems, even in the absence of measurement
noise [82].

2.3.7 Physical Access to Remote Site: Numerous cyber incidents involving physical access have
been reported as in the case of the Tehama-Colusa Canal [65] and the Maroochy Shire attack [1].
Since SCADA systems span a large geographical area and may be in remote places, attackers have
plenty of time to gain physical access to the SCADA subsystems [49]. An example is that the
attackers may cut the padlock on the wire fence around that remote station, and then they may
enter the remote site [59]. The attackers then locate the storage shed of the control equipment
and force the door to gain entry to the shed. The Adversary will try to find the rack in the small
site and plug the laptop into Ethernet to gain access. In this case, the attackers may erase the hard
drive, and interruption to the electricity movement can occur, which can be a significant threat to
the ICS. In the context of IOC, most of the indicators for this class of attack would be physical.

2.3.8 Supply-Chain Attack: Adversaries target organisations using an increasingly prevalent
and successful form of attack (e.g., third-party compromise). The goal of this attack is to exploit the
trust relationships between an organisation and vendors of certain software [7]. In control systems,
components such as distributed control systems, PLCs, and RTUs have a supply chain. Such com-
ponents have vulnerabilities and need patches over their lifetime. In this scenario, the adversaries
obtain the most recent versions of the vendor’s software and examine them. Subsequently, they
inject a malicious script into the software and repackage the security update on the compromised
website, typically to install a backdoor in the targeted control system [59]. In 2014, the Dragonfly
campaign against power grids compromised legitimate third-party websites and planted malicious
payloads on the vendor’s software [136].

2.3.9 ICS Insider: The ICS insider is an individual who intentionallymisuses legitimate credentials
to negatively affect the control system to execute commands with devastating consequences.
Publicly reported incidents [1, 65] show that such cyber events were carried out by insiders. The
insider can be an employee, former employee, contractor, business partner, or vendor. For example,
a disgruntled employee plans to affect the production of the water plant by changing the valve
state and draining the water tank. The control logic of the system determines the amount of water
to be drained. While the PLC keeps sending pumping commands to actuators, the water level will
drop to the lowest level, resulting in the depletion of resources. This incident class can cause a
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water supply shortage and increase production costs. The problem with this type of cyber attack is
that it is difficult to detect, especially when using traditional approaches [121, 159].

2.3.10 Malicious Outsourcing: Most critical infrastructures opt for outsourcing support. Sub-
sequently, an external party with a team of professionals can maintain the vendor component
devices. For instance, in a power generation plant, vendors routinely manage the steam turbine. In
this attack, a disgruntled employee uses their legitimate access to the ICS components to perform
a minor reconfiguration of the ICS system by injecting malicious code. This will have severe
consequences. For outsourced control system management, the central technician can understand
the physical process and the control system behaviour for configuring the severe consequences of
such an attack [155]. In the smart grid scenario, this attack may target the historian of the power
plant, which may lead to manipulation of the synchrophasor data.

2.4 The Necessity of Developing IOC

Since the number of security threats and breaches steadily grows, every industry tries to safeguard
its systems and data. Because industries rely on the integration of ICS with the Internet, the
threat landscape evolves, and critical operation security risks increase. Although the fidelity of
behavioural-based detection is highest for defenders, indicator-based detection enables industries to
gain insights into the rapidly evolving ICS threat landscape, ensuring early detection and effective
prevention of attacks. However, relying on pre-compiled and static indicators to detect Advanced
Persistent Threats (APTs) will have little impact on a more extensive hostile operation carried out
by a determined and sophisticated threat. Once the correlation and effort required for the attacker
to bypass the defenders’ hurdles are realised, the necessity of detecting threat actors’ TTPs rather
than static IOCs becomes apparent. In a dynamic environment such as ICS, combining traditional
techniques with a more dynamic and intense behavioural analysis of APTs, a more comprehensive
profile of threats can be built, reducing the risk of being compromised.

3 Indicator of Compromise (IOC)

Defenders must be aware not only of threat actors and types of attacks, but also of the data
associated with these cyber attacks, known as IOCs. IOCs are forensic artefacts whose existence in
a system is an indicator that something is inappropriate in the system [63]. For security analysts,
performing a routine and deep forensic analysis on a large number of systems is prohibitively
costly. IOCs serve as valuable objects to reduce the complexity of an investigation [114]. IOCs
related to a cyber attack are collected to determine whether such artefacts achieve the desired
degree of confidence in a given environment. In general, IOCs are classified into three categories
[69]: atomic, computed, and behavioural, a few examples of which are given in Table 2.

·Atomic Indicators: are small data elements that indicate an adversary’s activity; they cannot be
divided into small portions without losing their forensic value. Atomic indicators can independently
detect whether a system or a network has been compromised.

·Computed Indicators: are similar to atomic indicators, but they involve computation. They are
extracted from the information gathered during an incident. One typical example of this indicator
is the hash value of a malicious file [35].

However, atomic and computed indicators are rarely reused because the threat actor can easily
modify or anonymise them [104].
· Behavioural Indicators: are observable behaviours or combinations of methods that reveal

adversary activities that, in some cases, may indicate who caused the incident. In 2013, MITRE
presented ATT&CK (Adversarial Tactics, Techniques, and Common Knowledge) as a method of
describing and categorising adversarial behaviour based on real-world observations.
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Table 2. Examples of IOCs

Atomic Computed Behavioural Physical Measurements

· IP addresses
· Uniform resource locators (URLs)
· Command and control (C2) server
· Filenames
· Malware names
· Dynamic-link libraries (DLLs)
· Registry keys
· Directory Path
· Process Name
· User Account
· Text String
· Communication Protocol

· Malicious file hash
· Password hash
· X509 Certificate Hash

· Repeated attempts at social engi-
neering by email to obtain initial
access. followed by unauthorised
remote desktop connections.

· Spear phishing with malicious
files to steal credentials.

· Global State Estimation
· Power Flow
· unexpected Voltage
· Negative Sensor Measurements
· Actuator State
· Invalid Cyclic Redundancy Code
· Invalid PID Parameter
· MODBUS slave Identification (ID)
· MODBUS Function Codes
· Alter control set point·

· Physical Measurements Indicators: In the case of ICS environments, a new category can be
added, which is physical measurement indicators. Since ICS devices measure physical processes,
abnormal physical measurements can be considered IOCs.
In this section, we discuss the prevalent standards for the representation of IOCs and the

challenges to developing IOCs in industrial environments. Moreover, this section will identify
potential IOCs, which we find by studying previous works to improve detection against cyber
threats in the ICS.

3.1 IOC Formatting and Representation

Sharing threat information between organisations is a critical countermeasure to reduce risk by
improving the detection, response, and prevention of secure critical infrastructure. Benefitting
from others’ experiences can build collective resilience and reactivity to potential threats [29]. The
effectiveness of high-quality IOCs can be dramatically reduced if defenders can use them only
for the cleanup process rather than avoiding incidents [20]. In the past, organisations have used
traditional ways to share threat information, such as encrypted emails and phone calls [142]. More
recently, several efforts have been made to facilitate threat information in a standardised manner to
maintain the sharing process [51]. A list of such standards is depicted in Table 3. The information
sharing standards and formats have been classified into two main categories: (i) legacy formats and
(ii) prevalent cyber threat formats.

3.1.1 Legacy Formats

· Incident Object Description Exchange Format (IODEF):Danyliw et al. [40] defined a standard
for exchanging security information between Computer Security Incident Response Teams (CSIRTs).
The standard provides associated data in an XML schema, allowing firms to share information about
hosts, nodes, and services running on these systems; attack techniques and associated forensic
artefacts; the impact of the activity; and limited approaches for documenting workflow. IODEF-
SCI [76] extends IODEF to include additional data to enrich IODEF data and facilitate the exchange
of intelligence information.
·Open Indicator of Compromise (OpenIOC): OpenIOC has been developed by Mandiant [89] as
an open standard for sharing intelligence related to cyber security incidents. Intelligence is organised
as IOCs and produced in XML format. It was created to facilitate the comparison of indicators
logically through the use of the "AND" and "OR" operators. By leveraging logical operators, it
is possible to expand the flexibility of threat descriptions and increase threat detection rates in
contrast to the use of standard malware signatures [151]. OpenIOC includes around thirty classes
of objects that describe the technical characteristics of cyber threats, such as MD5 hashes, registry
keys, and IP addresses.
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Table 3. Summary of standards for IOC representation and formatting

Ref Scheme Automation Adoption Type of Indicators Pros & Cons

[76]

IODEF /
IODEF-
SCI

√
Extensive

· Timing, network and OS
artefacts, exploit and
vulnerability references, and
incident history.

· Pros: Facilitates collaborative efforts; allows for the exten-
sion and grouping of event data.

· Cons: Excessive granularity might make implementation
more difficult; incident data may contain sensitive infor-
mation that is difficult to share.

[89]
OpenIOC - Extensive

· IP addresses, protocol, ports,
flags, payload patterns, HTTP
requests, and response
parameters.

· Pros: Ability to extend IOC descriptions as needed.
· Cons: Working with network-based IOCs has limited sup-

port; complicated interaction with Intrusion Detection Sys-
tems (IDS); lack of adversary Tactics, Techniques, and Pro-
cedures(TTPs) description.

[96]
RID

√
Moderate · IODEF indicator.

· Pros: Provides a reasonable level of data confidentiality,
integrity, and source authentication.

· Cons: Using peer-to-peer communications that may limit
RID adoption: costs associated with security measures may
be high.

[149]
VERIS - Limited

· IP addresses, domain names,
malware hashes, attack vectors,
and victim characteristics.

· Pros: Ability to provide high-quality indicators based on
"confidence rating".

· Cons: Limited ability to include IOCs.

[73]
STIX

√
Extensive

· Domain names, user accounts,
X.509certificates, network
artefacts, filenames, file hashes,
registry keys, email messages,
email address, malware name,
and process name.

· Pros: Readability; integration of CybOx scheme; the flexibil-
ity to integrate with other schemas (e.g., OpenIOC, Snort,
and YARA.)

· Cons: Relatively recent adoption.

[80]
MAEC - Moderate

· filenames, file hashes, malware
behaviour.

· Pros: High precision in malware description that describes
how the malware operates and the actions that it performs.

· Cons: Limited to malware attributes and behaviours.

[36]
TAXII

√
Extensive

· Network flow, filenames, file
hashes, registry keys, malware
name, process name, domain
name, user account,
X.509certificates, email
messages, and email address.

· Pros: High-efficiency of TI transmission.
· Cons: Attribution of an attack is complicated.

[19]
CybOX

√
Moderate

· Operation system artefacts,
APIs, X.509 certificates, network
artefacts, filenames, file hashes,
registry key, and email
messages.

· Pros: Provides an extensive list of detailed objects; high
situational awareness capabilities.

· Cons: Lack of details and attack patterns for complex at-
tacks.

3.1.2 Prevalent and Commonly Used Formats

· Real-time Inter-network Defence (RID): While IODEF and IODEF-SCI define standards
for secure data encoding, RID enables the secure sharing of IODEF data. To facilitate the flow
of potentially sensitive information, RID includes detection, tracing, source identification, and
mitigation measures [96]. Similarly to IODEF and IODEF-SCI, RID encodes its data in XML, which
simplifies integration with other incident handling components.
· Vocabulary for Event Recording and Incident Sharing (VERIS): VERIS is a framework
developed by Verizon [149] that consists of a number of metrics that serve as a standard language
for documenting security incidents in a systematic way. The schema is built on a four-part paradigm
that may be used to describe any incident: someone (the Actor) does something (the Action) to
something (the Asset), and the item is affected as a result (the Attribute). It is similar to IODEF, but
it was designed primarily for reporting and analysis rather than information sharing [77].
· Structured Threat Information Expression (STIX): STIX is a programming language and
serialisation standard for exchanging TI. STIX data may be represented visually for analysts or
saved as JSON to make it machine-readable. Twenty STIX Domain Objects (SDOs) and descriptive
STIX Relationship Objects (SROs) may be used to describe all aspects of suspicion, compromise,
and attribution. Due to the broad use of STIX, it can be integrated with current tools and solutions
or customised to meet the demands of a given analysis [28].
· Malware Attribute Enumeration and Characterisation (MAEC): MAEC is a community-
developed structured language for attribute-based malware characterisation, such as behaviours,

ACM Trans. Cyber-Phys. Syst., Vol. XX, No. X, Article XXX. Publication date: X XXXX.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

XXX:10 Mohammed Asiri, Neetesh Saxena, Rigel Gjomemo, and Pete Burnap

artefacts, and attack patterns. The development ofMAECwas prompted by the need for a community-
accepted standard to describe malware characteristics using abstract patterns rather than reliance
on signatures. Similar to STIX, MAEC represents numerous high-level objects and interactions
between them (including STIX objects) and allows malware descriptions to be visualised. JSON
formats allow MAEC data to be fed into security solutions for automated processing [80].
· Trusted Automated Exchange of Intelligence Information (TAXII): TAXII is a simple and
scalable application layer protocol for the communication of cyber threat information. TAXII is a
protocol that allows Cyber Threat Intelligence (CTI) to be exchanged via HTTPS. TAXII allows
companies to share CTI by establishing an API that conforms to standard sharing paradigms. It
was developed particularly to facilitate the sharing of CTI represented by STIX. However, it can
also be used to exchange non-STIX data [77].
· Cyber Observable eXpression (CybOX): CybOX is a standardised language for specifying,
capturing, characterising, and communicating observable events in an operational domain. In
simple words, a variety of security use cases rely on vital information from event management and
logging, malware characterisation, intrusion detection, incident response and management, and
other security domains [18]. By creating a unified mechanism (e.g., structure and content), CybOX
enhances consistency, efficiency, interoperability, and situational awareness in all use cases.

3.2 Challenges in Developing Usable IOC

The ICS incident response readiness and the forensic process should be carried out not only after,
but also before and during an attack. The more accurate information an investigator has about an
ICS under investigation, the more forensic evidence can be retrieved [48]. Although IOCs in IT
systems have been investigated in many studies, developing IOCs to protect ICSs against cyber
threats is relatively new. Therefore, industry professionals face the challenge of identifying any
breach in their systems. In this section, we discuss the limitations and challenges faced by experts
in ICS forensics and incident response when identifying and monitoring IOCs for ICS environments.
Table 4 summarises the existing challenges with respect to five categories.

Table 4. Challenges associated with the development of IOCs in OT environments

Category Challenges

Organisational · Lack of trained staff [128, 163].

Operational · The cost of having an OT SOC is not justifiable [160].
· Uncertainty associated with cyber security investment decisions [163].

Technical

· Network traffic in ICS is plaintext and has default passwords [102].
· Insufficient logging [2, 3].
· Propriety-closed firmware [3].
· Heterogeneity of ICS components [10, 95].
· The period of data retention is short [48] [38].

Generic

· Validating quality [25, 115].
· Ensuring timeliness [163] [75].
· Handling numerous feeds [79, 144].
· Translation and integration of technical IOCs [122, 142].
· Lack of practical evaluation [2].

IOC Specific · Short lifespan of some IOCs [104, 124].

3.2.1 Organisational and Operational Challenges. Every environment is different; therefore, dif-
ferent limitations apply, including personal skills, time, resources, technologies, and the life cycle.
Operational costs may limit the development of a defensive solution [163]. For decades, ICS has
been relatively inexpensive to maintain. Hardware and software are bought once and have perpet-
ual licences. Everything followed the subscription model in the security field when suddenly the
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operational costs of maintaining a factory or plant increased. This is a challenge for asset owners
who previously paid comparatively little, especially because the likelihood of a cyber-attack is
lower than other risks, such as maintenance, equipment failure, and safety [160]. In addition, it is
not easy to detect when a PLC code has been changed. Although there would be software that can
do this, they can be expensive, which discourages smaller businesses from purchasing them.
Another challenge is the skills shortage. Small and medium-sized companies do not have the
security workload to justify a full-time expert monitoring only OT security [128] or a full-time
employee monitoring OT and IT security. This combined specialism is rare and therefore expensive.
The average total cost of a breach is $4.24, and breaches that take over 30 days to contain can cost
companies an extra $1 million, according to IBM and the Ponemon Institute [72]. For companies
expecting a breach only once every 7-8 years, the expense of implementing IOCs, hiring, and
training threat hunters compared to the cost of risk is unjustifiable. As a result, IOCs remain
unmonitored in smaller organisations.

3.2.2 Technical Challenges. When examining ICSs, incident responders need to fully comprehend
the causes and effects of an incident on their infrastructure. However, ICSs introduce significant
technical challenges to investigations. Furthermore, the critical nature of ICS devices varies sig-
nificantly from traditional IT infrastructures in terms of technical implementation, necessitating
the use of various forensic tools. In addition, industrial processes must remain online without
interruption or delay. In this situation, the live acquisition is an applicable method to extract and
analyse artefacts offline.
Knijff and R M Van Der [146] discussed the different examination stages of ICS and IT from a

forensic investigator’s perspective and highlighted the issues that investigators may face in ICS
environments, such as evidence prioritisation, preservation, and validation tools. Given the lack of
authentication measures for communication between ICS devices, investigators lack forensic data
on the system. Therefore, investigators cannot emphasise the original state of digital evidence. It
is a common practice for ICS operators to use vendor-default passwords [102]. It is challenging
to trace or detect unauthorised access to devices that use default passwords or do not require
log-in. Furthermore, the control system environments are diverse and have a variety of proprietary
firmware, which complicate the smooth extraction of artefacts [3]. Current forensic tools may not
be applicable to proprietary operating systems in the control system domain unless these tools are
compatible with those of the manufacturer. Consequently, incorporating capabilities to support
the logging and extraction of indicators may be hindered by the heterogeneity of components
and the restrictions imposed by manufacturers [10, 95]. There are unique architectural challenges
when identifying compromised devices in an ICS environment, and we briefly explain them in the
following points.
· Device Behaviour: Different types of industrial devices behave differently. Even similar devices
can act differently, depending on their tasks [17]. Such vagueness can lead to mistakenly identifying
benign devices as a compromise. Large infrastructures can often exhibit anomalous behaviour in
response to events that cannot be labelled as cyber-attacks. In a water distribution system, for
instance, anomalous pressure readings can be due to many different scenarios, such as malfunc-
tioning sensors or pumps, pipe leaks, or anomalous water consumption. Because of this, it is very
difficult to identify cyber-physical attacks from process data only.
·Unpredictability: Some devices are unpredictable. For example, in a smart grid, device operations
are influenced, to some degree, by perturbance in the operating system (OS) processes. It is therefore
challenging to distinguish legitimate processes from malicious activities.

In order to conduct an effective incident response, it is critical to collect logs of events immediately
following an incident [2]. However, legacy systems that are poorly designed with inadequate
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logging capabilities are another challenge. In the OT domain, logging mainly focuses on production
monitoring and process disturbances, not forensic data [2]. Iqbal et al. [74] affirmed that forensic
data is unavailable or insufficient in ICS devices. It thus appears that the logs do not cover all
necessary aspects of the investigation. The authors concluded that more maturity is required in
terms of log availability and its content to support post-incident analysis. The value of evidential
data stored within physical memory will be at its peak immediately following an incident [48]. Due
to the nature of volatile data, the number of usable indicators will decrease when current processes
and services are overwritten [38]. This poses another challenge when collecting relevant IOCs.

3.2.3 Generic Challenges. To implement a preventive measure such as IOC in real-time environ-
ments intended to keep the system secure, we need a deep understanding of the surrounding
challenges that affect the quality of the indicators. This subsection highlights three generic chal-
lenges that must be considered when implementing an IOC capability in the ICS domain.
· Threat Feed Overload Versus Quality: Threat observables have advanced rapidly, with approx-
imately 250 to millions of indicators per day [144] from both open and commercial sources. This
trend causes additional burdens to security analysts. Incident responders must have timely access
to relevant and actionable TI and the ability to act on that intelligence to combat cyber attacks [75].
According to a study conducted by the Ponemon Institute in 2016, 70% of security professionals
reported that TI is either too enormous and/or inadequate to provide actionable intelligence. The
completeness and timeliness of actionable cyber TI are essential requirements to counter cyber
threats in critical infrastructure. Ring et al. [115] asserted that threat information in the form of
real-time feed is expensive. Such commercial or open-source feeds are neither effective nor updated.
To address this issue, research efforts have been devoted to analysing sources based on the quality
of information they provide [25, 124].
· Translating Technical Indicators for a Process Manager: Operators of control systems must
maintain situational awareness of cyber events to resolve any concerns in a timely and effective
manner. Observing intrusion indicators, for example, helps to speed up the incident response
process and reduce the impact of attacks (e.g., business interruption, safety hazards) [46]. However,
a complete understanding of the cyber event may be challenging even with indicators [142], given
the lack of knowledge of the operators with respect to technical indicators. To illustrate, operators
who may not understand threat information but need to deal with the system under attack may
end up making operational mistakes [120]. As a result, a unique challenge would arise when using
technical indicators in order to reach a human-understandable presentation of IOCs on a dashboard.
· Limitations to Practical Evaluation: Realistic SCADA systems are required for research pur-
poses in the post-incident process to be practical and reliable [2]. Unfortunately, building real
SCADA systems for research purposes is expensive. For this reason, researchers instead use soft-
ware simulators and testbeds. However, these simulators may not always produce accurate results
compared to those that a real system would.

3.2.4 IOC Specific Challenges. In some cases, attackers may use different nodes to launch an
attack, whereas they may use the same nodes and techniques in other cases. Although IOCs
assist the incident response team to identify and detect potential threats, they focus on low-level
indicators, such as IP addresses and C2 domains, without considering attack patterns such as TTPs.
Adversaries may spoof their IPs and C2 channels to cover their traces or to avoid detection. For
example, malware hashes, such as metamorphic and polymorphic malware, are susceptible to
changes. It is common for attackers to use domain-generating algorithms to provide malware with
a new domain on demand. As an IOC, such domain names have little value [104]; therefore, these
low-level indicators have a short lifespan in terms of the detection of compromises [114]. While
some IOCs remain valid for some time, most do not even last a day [142].
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3.3 Potential IOCs Against Cyber-attacks in ICS

As we mentioned earlier, one of our goals in this survey is to identify potential IOCs for ICS
systems. Many research studies have been conducted to explore IOCs in the traditional IT network,
but this is a relatively new concept in the ICS domain. In this section, we try to transform any
potential IOC concept from the IT environment into the ICS domain. Moreover, we studied many
ICS-focused attacks and used abnormal activities that comprise a successful attack on ICS systems
as an IOC [31, 41, 44, 50, 94, 113, 131, 158]. For example, DNS amplification is a type of attack
in which the size of the response increases dramatically so that the victim’s network becomes
overwhelmed. Remarkable changes in response size are considered an indicator of a DDoS attack,
which in turn is an IOC. Some of the identified indicators, however, can explicitly identify which
part of the system is compromised, while others must be correlated with one or more IOCs to be
useful.

3.3.1 Unusual Outbound Network Traffic. IOC1

Keeping attackers away from the network has become difficult, especially when performing complex
and APT methods [63]. Patterns of suspicious traffic may be the easiest way to inform the Security
Operations Centre (SOC) that something is not right and suspicious activity must be checked. This
is because ICSs have limited external access to the Internet [23, 84]. The network traffic of the
control system zone should be checked frequently to ensure that the network flow rate is normal
and without any hitches. For instance, if the outbound traffic within the ICS network increases
significantly or is not in the typical model, there could be malicious activity.

3.3.2 Log-in Anomalies. IOC2

In some cases, frequent unsuccessful log-in attempts mean that an attacker is trying to gain access
to the ICS network. An adversary may use brute-force techniques to automate credentials guessing.
Some devices in ICS systems may use default manufacture passwords [5]. Any spike in an operator
account or device configuration access with failed attempts over a relatively short period can
indicate a possible threat.

3.3.3 Increased Volume in Historian Read. IOC3

A large amount of database reads and queries is a clear indicator that an attacker has penetrated
the system. New evidence on CrashOverride malware, reported in a Dragos report [130], includes
references to a Microsoft Windows Server 2003 host with an SQL server. A database server like this
can serve as a data historian in an ICS environment. In this case, the goal of an intruder is to take
over a "jewellery box" which refers to data exfiltration. The attacker then transfers the operational
data to cloud storage controlled through covert channels [81]. Data exfiltration results in a much
higher read volume than normal. A sudden increase in the amount of data being read can be an
indicator that an attacker has penetrated the operational database.

3.3.4 Communication with Malicious Command and Control servers. IOC4

Command and Control (C2) is a technique that attackers use to communicate and control the ICS
system. The objective of this technique is to establish a foothold in compromised systems and
maintain persistence. C2 infrastructure may be unnecessary when performing a simple attack on
traditional environments. However, to launch complex coordinated attacks in ICS environments,
the C2 infrastructure is required [121]. For example, in 2015, Kylvoblenergo, a Ukrainian electricity
company, suffered an outage as a result of a cyber-attack. The attackers exploited macros in
Microsoft Office documents with the BlackEnergy malware and used the macro functionality to
allow the malware to communicate with the malicious C2 server. Hence, C2 communication within
the ICS network may alert a security operator that a malicious event may be taking place.
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3.3.5 Geographic Irregularities. IOC5

Irregularities in the access patterns and log-ins of a user account from an unusual location are
evidence that an attacker is trying to penetrate the network from a remote point. In a smart grid
scenario, whether access is through a privileged account or not, this is an obvious indicator when
seen from countries with which an electricity company does not do business. These irregularities in
the log-in pattern are often implemented by nation-state actors with a desire to disrupt or perform
a lateral movement [90].

3.3.6 Anomalies in Privileged User Account Activity for SCADA Applications. IOC6

Privilege escalation is a technique that adversaries use to take advantage of the compromised
account and gain a high level of privilege [13]. In the early stages of an attack, attackers can gain
access to the IT network through an unprivileged account. However, to access the ICS network, it
is necessary to elevate the privileges of the user account they have hacked. This can be achieved
by taking advantage of system vulnerabilities or security misconfigurations. For example, in the
SCADA of the power system, a network operator or a third-party vendor may perform specific
roles and have access to IEDs, such as a smart meter. If intruders can escalate permissions for these
accounts, they can manipulate readings and cause inflated bills [112]. Thus, identifying anomalies
in account activity can be considered an IOC.

3.3.7 Applications Using the Wrong Port. IOC7

Attackers often take advantage of all available resources, such as common protocols and open ports
in the ICS environment, and emulate the network pattern to avoid any detection mechanism or
suspicion. The mismatch port is classified under the C2 phase of the Cyber Kill Chain [13] when
an adversary uses common protocols to establish a C2 channel over them. For example, in the
Stuxnet attack, attackers gathered information about the compromised computer by establishing a
C2 connection on port 80 [50]. As such, if an application is seen using a non-standard port and
pretending "normalž application behaviour, this can indicate a system compromise.

3.3.8 Response Size. IOC8

The lack of authentication measures in the ICS protocols is one of the most challenging issues that
make the ICS network vulnerable to various cyber-attacks, allowing attackers to capture, modify,
and forward a response packet. A significant increase in response size is a class of DDoS attacks
that attempt to disrupt the main functions of ICSs. Attackers can inject Modbus packets with an
invalid Cyclic Redundancy Code (CRC). Although both the Modbus server and the client reject the
injected packets [97], the victim’s device becomes overwhelmed because it must check the CRC for
each packet. If the response size is abnormally sizable, it is immediately indicative of suspicious
activity.

3.3.9 Unexpected Usage of Controller Resources. IOC9

System resource usage refers to the performance of a system that uses specific resources. It helps to
detect problems by identifying resource jamming or overload. Abnormal resource usage may not
be a high-confidence indicator of malicious activity, but in an ICS environment, it can be an IOC.
For example, a PLC controls manufacturing processes, such as switches, pumps, or centrifuges,
which perform relatively the same tasks throughout their lifespan, making their CPU load or usage
predictable [100]. As such, any unexpected usage of resources within the ICS environment can
indicate a possible threat.

3.3.10 Port Scanning of Control Devices. IOC10

Port scanning is a technique used to identify which ports are available in a network. Security
operators can use this technique for troubleshooting or identifying potential vulnerabilities in a
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system. However, attackers often use it in the reconnaissance phase when trying to break into a
system. When planning to hack or compromise a control device, such as a PLC, attackers want to
find the running services and the open ports of that device. They can leverage this information
to capture device specifications through open source intelligence tools [60]. Furthermore, since
legacy systems still run in ICS environments, attackers may scan fragile devices to cause them
to misbehave [91]. From an IOC viewpoint, port scanning of control devices is a high-confidence
indicator that if seen, the likelihood of an attack is high.

3.3.11 Control Logic Modification. IOC11

To achieve specific output objectives, ICSs must follow a specific business logic. Severe damages are
likely to occur if the control logic is manipulated [67].A PLC generally consists of two elements: the
control logic and the firmware. Firmware is protected against any change by security mechanisms,
such as hash algorithms and digital signatures, whereas control logic is not protected [61], and
this exacerbates security concerns. Gaining access to the control logic provides attackers direct
access to the physical process, so they can upload the modified form of the control logic to the
PLC [54]. Changes in control are thus the best indicator of malicious activity, and operators can
use this information to know that something is not right and a check is needed.

3.3.12 Unsupported or Unusual Function Code. IOC12

Modbus and its variants are a data communication protocol that is extensively used for process
control in ICS networks. Each request includes a function code that identifies the type of request,
such as read, write, or diagnostics. If the function code is not supported by the Modbus server, it
will return an error function code and the exception code 01 [57]. A request for a function code that
is not supported by an authorised HMI or server would be indicative of a compromise. On the other
hand, ICS protocol operations can also be used to create a catalogue of devices, such as Modbus
function codes 0x11 and 0x2B [30]that query for device information. However, care should be taken
when considering that, since the device ID query is an IOC since it can be issued by operators [57].

3.3.13 Mismatch Between Control Logic and Historian. IOC13

A control system operator uses an HMI to deliver commands to PLCs, which log events as device
logs. ICS device logs may be gathered from PLCs and kept in a single location using a database
server known as a "Historian." Because PLCs are frequently dispersed across broad geographical
areas and have limited internal capacity, historians are used as a centralised server to collect and
store device logs [99]. Historians are continually fed real-time operational data that has previously
been defined within operational boundaries or setpoints; any deviations from these thresholds will
generate an alarm that may be logged. For example, the logic that is encoded is producing behaviour
that does not match the historical behaviour relating to this logic. In this situation, interference
with the logic of devices or actuators on the network is an indication of control device compromise.

Table 5. Mapping IoCs to ICS Attacks

Attack IOC1 IOC2 IOC3 IOC4 IOC5 IOC6 IOC7 IOC8 IOC9 IOC10 IOC11 IOC12 IOC13

ICS Focused Malware
√ √ √ √ √ √

Replay Attack
√ √ √ √

Eavesdropping Attack
√ √ √ √ √ √

DDoS
√ √ √ √ √ √ √ √

Command Injection Attack
√ √ √ √ √

FDIA
√ √ √ √

Physical Access to Remote Site
√ √

Supply-Chain Attack
√ √ √

ICS Insider
√ √ √ √

Malicious Outsourcing
√ √ √ √
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In summary, it might be difficult to determine if a certain security posture reliably resists a
specific attack. "Reliable defeats" is a high standard. Typically, achieving this standard is only
feasible by detailing a specific attack or an attacker’s capabilities in great detail [11]. The semantic
gap between attackers and defenders is one of the biggest issues in cybersecurity [58]. While
attackers think strategically and use different TTPs to achieve their goals, defenders must deal with
threat behaviours that give information about small steps within larger attacks [93]. IOCs are highly
specific to the environments that adversaries target. This is where frameworks such as MITRE
ATT&CK for ICS [6] come into play, which provides Blue teams with a structured framework
around which to base their indicators. Table 5 summarises the aforementioned IOCs in line with the
most potential attack scenarios on ICS. This provides a better understanding of which indicators
are more useful in different attack scenarios. Additionally, it will be useful for detecting parts of
adversary activities in an OT environment. If not at the time, then in the future.
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Fig. 2. Intrusion Stage of ICS Kill Chain with Identified IOCs

Most cyber threats to the ICS environment start from the network perimeter. As a result, these
threats share some IOCs that are related to the IT environment. To illustrate, unusual traffic originat-
ing from any ICS device may indicate exfiltration attempts of the data historian through malicious
code. Some control systems are distributed over a large geographic location [137]. However, net-
work traffic to or from locations that an industry does not have communication with should be
investigated. To defend against such attacks, the ICS network requires continuous, efficient, and
real-time monitoring to increase situational awareness [120]. Similarly, other indicators, such as
port scanning or modification of control logic, can point out that penetrated systems suffer from
reconnaissance or malicious command injection attacks. For example, the adversary may target the
ICS vendor’s website to analyse the vendor’s software or insert a bad script either in the firmware
or in the control logic. Most organisations prioritise protecting against and detecting conventional
threats. On the other hand, there is a more stealthy threat on the increase. However, stealthy attacks
are still considerably more difficult to identify and prevent than other cyber-attacks. Anomaly
Detection (AD) can be helpful in this situation where straightforward approaches fail to detect
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such threats [121]. For instance, unusual activities on privileged accounts or increased export of a
large amount of data from a database might indicate an insider ICS attack. Similarly, anomalies in
network patterns, especially from the remote station to SCADA, could give a warning of a possible
breach. Certainly, there could be legitimate reasons for being an anomaly. However, it is necessary
to raise a red flag for investigation [121]. To successfully identify if a system is compromised in
Cyber-Physical Systems (CPS), security analysts should capture IOCs at the same time from both
the cyber and physical domains of a CPS. By combining information on network traffic and physical
behaviour, analysts may be able to determine whether an anomaly is due to a cyber attack or a
malfunctioning device. Assante and Lee [13] developed a Cyber Kill Chain for the ICS system,
which contains two stages: intrusion and attack. The most common IOCs linked with an attack
will appear at the intrusion stage [129]. Our aforesaid IOCs and potential zones for collecting and
hunting such indicators are visually illustrated in Figure 2. This will elaborate how indicators
during observed attacks could be located and tagged across the cyber kill-chain. Each stage of the
cyber kill-chain model indicates an associated indicator that may be collected and observed in that
stage.

4 Techniques and Tools

While few studies have explored IOCs associated with IT systems in the ICS domain, researchers
have investigated ICS security and forensics more extensively since Stuxnet was discovered in
2010. Research has generally focused on ways to define and express cyber-attacks, such as threat
modelling approaches. Other studies have examined the threat information presented in public
reports or Open-Source Cyber Threat Intelligence (OSCTI). Based on these trends, we evaluated
existing frameworks and methodologies in terms of IOC and post-incident analysis. We classify the
existing works according to their working principles and techniques: Natural Language Processing
(NLP) Technique, Machine Learning and Deep Learning Techniques, and Forensic Analysis and
Attribution Techniques. A comparison of these methodologies is presented in Table 6.

4.1 Natural Language Processing (NLP) Techniques

Besides existing threat intelligence-gathering tools and management systems (e.g., Security Incident
and Event Management (SIEM) solutions, open-source intelligence data feeds, reports, vulnerability
and malware databases), researchers have made great efforts to analyse threat intelligence sources
and extract IOCs. Liao et al. [83] proposed iACE, which employs the NLP technique to extract IOC
data efficiently and uses graph mining techniques to analyse the extracted IOC data. iACE has
extracted IOC data from 71,000 industry blogs and technical reports, with a classification accuracy
rate of about 95%. The proposed approach is far beyond what standard NLP techniques and industry
IOC tools can achieve with respect to the speed of IOC extraction. However, iACE may introduce
some false discoveries and miss some IOCs due to the limitations of the underlying tools and
abnormal ways of presentation. Sibiga [129] proposed a framework that extracts IOC data from
well-documented malware reports to provide situational awareness towards potential attacks in
the ICS network. The author uses the ICS Kill Chain to map IOCs that can be observed prior to the
Attack Stage. The collected IOCs, however, were limited to the IT vector.
Zhang et al. [161] developed the iMCircle system, which automatically obtains IOCs from the

Web using suspicious indicators with the help of open TI sources. The system takes some suspicious
indicators, such as domain names and IP addresses, as input. Then it checks the validity of those
indicators by collecting and analysing relevant public information from the Web. New indicators
from IOC-related web pages are generated and used as new inputs. However, the proposed system
relies entirely on the initial IOC inputs.
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Table 6. Comparative view of existing IOC techniques

Ref Research Idea Involved Domain Gap Pros & Cons

[83]
Automatic IOC extraction
using NLP.

IT
Inability to detect false IOCs
inserted into articles.

· Pros: High speed of IOC extraction; relation between IOCs and con-
text information is provided.

· Cons: The dependency parser loses accuracy when the sentence
becomes too long; the intelligence sources used to feed iACE are
limited to English articles; reliance on fixed-point monitoring data
sources.

[129]
Collection and extraction of
IT-related IOCs associated
with ICS attacks.

IT/ICS
Lack of IOCs associated with
ICS devices.

· Pros: Situational awareness was obtained to stop and prevent attacks
in all case studies.

[161]
Generation of IOCs from the
Web by checking suspicious
indicators.

IT
The newly generated IOCs
are not verified automati-
cally.

· Pros: Relatively easy extraction and reduced the workload of manual
judgement after compromise.

· Cons: Accuracy may vary depending on initial indicators.

[106]

Using CNN to correlate IOCs
and create the correspond-
ing rules to automate the ex-
traction process

IT (Workstation)
Lack of contextual informa-
tion.

· Pros: showed prominent results in extracting indicators of an attack
with high accuracy.

· Cons: Time-consuming and complicated to generate indicators.

[162]

Automatic extraction of
IOCs and combination of
tags to generate threat
intelligence within a specific
domain.

IT/ICS (IoT, ICS,
Education, Finance, and

government)

Susceptible to false IOCs in-
serted into public sources

· Pros: Ability to recognise unknown types of IOCs; reduces the man-
ual filtering of unrelated threat intelligence.

[33]
Automatic extraction and
generation of IOCs for web
applications.

IT (Web Application)
Identifies compromised web-
pages where attackers in-
serted their own code inline.

· Pros: Ensures better system resilience to newer and more advanced
attacks by considering active attackers; effective detection of web
IOCs that have been used by attackers but are not detected by tradi-
tional techniques.

[17]

Using the system and func-
tion call tracing techniques
to identify compromised
smart grid devices.

CPS (IEDs, PLCs, PMUs)
The suitability of the pro-
posed approach is not tested
on other CPS domains.

· Pros: Considering different types of threats acting on different types
of devices; low computational overhead.

· Cons: low accuracy when using library interposition for resource-
limited devices.

[64]
List of IOCs in a vehicular
system.

ICS(ECUs)
limited to behavioural
change indicators.

· Pros: Presents a number of efficient, high-quality IOCs.
· Cons: Some IOCs might be mistriggered.

[116]

Generation of network-
based indicators from
malware samples using a
sandbox environment.

IT
Fails to generate IOCs re-
lated to ICS networks.

· Pros: Efficient generation of IOCs by avoiding legitimate traffic.
· Cons: Limited types of IOCs are extracted.

[148]

Using traces of process calls
to extract IOCs and applying
machine learning classifiers
to classify ransomware sam-
ples.

IT (Workstation)
Observed indicators may fail
to detect ransomware gener-
ally.

· Pros: Real-time classification of ransomware variants.

[14]
Extraction of IOCs from ICS
datasets to classify network
traffic.

ICS
There is a lack of diversity
among ICS protocols.

· Pros: The extracted IOCs can be used to identify the anomalous
behaviour of the ICS network traffic.

· Cons: The extracted IOCs are limited to traditional attacks.

[104]

Employing machine learn-
ing for cyber threat attribu-
tion by extracting IOCs from
unstructured reports.

IT (Finance) -
· Pros: Fast attribution compared to other solutions.
· Cons: Identified IOCs are limited to the financial sector; low confi-

dence level of the identified attribution.

[111]
Acquiring hex dump of the
system to support the foren-
sic investigation.

ICS (PLC) -
· Pros: Standard forensic analysis can be performed to dump the sys-

tem memory.
· Cons: Lack of practical evaluation.

[154]
Acquiring the programme
code from PLCs.

ICS (PLC)
The proposed approach is
general but not tested on
other PLC models.

· Pros: Attack analysis and forensic artefact extraction are performed.

[2]
Live data acquisitionmethod
for SCADA systems.

ICS (SCADA)
No guidelines on how to ac-
quire data with low risk to
the system’s services.

· Pros: Explains challenges associated with live acquisition methods;
provides a comparison between data acquisition tools in terms of
resource consumption.

· Cons: Possibility of losing all useful data due to time constraint; lack
of practical evaluation.

[85]
Using IOCs in malware anal-
ysis and presenting indica-
tors via OpenIOC standard.

IT (Workstation)
Fails to provide the seman-
tics behind the attributes.

· Pros: Provides a simple and effective way to describe a malware
infection.

· Cons: Basic IOCs are extracted.

[70]
Utilising Conpot honeypot
to collect cyber-attacks for
ICS environments

ICS (PLC)
The collected information
cannot be used for attack at-
tribution.

· Cons: Basic IOCs are extracted.

[54]

Evaluation framework to
rank the threat and sophisti-
cation of real cyber incidents
on ICS systems.

CPS (IT/OT)
Indicators to determine tech-
niques used by adversaries
are not discussed.

· Pros: Discussing real attack behaviours observed from the real use
cases.
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4.2 Machine Learning and Deep Learning Techniques

Panwar [106] proposed a framework that automatically extracts IOCs from various public data
feeds using a Convolutional Neural Network (CNN). Similarly, another method for automatically
extracting IOCs and applying social media domain tags was proposed by Zhao et al. [162]. The
method includes a CNN to recognise cyber threat intelligence domains and correctly classify threat
data in those domains. Catakoglu et al. [33] proposed a framework to extract IOCs from web pages
using a high-interaction honeypot to tempt attackers to compromise their servers. The authors
affirmed that external components (e.g., JavaScript libraries) are indeed harmless but can be used to
identify compromised or malicious pages. This is because attackers often use these components in
the pages they alert or upload after an attack. Babunet al. [17] designed a system-level framework
capable of detecting compromised CPS smart grid devices using system and function-level call
tracing techniques. The proposed framework combines function and system call analysis to provide
detailed activity of a device from both kernel and application-level. In the event of an attack,
discrepancies between system and function calls made by a single process might also reveal the
existence of malicious activity.

Sultani and Han [64] employed anomaly-based IDSs to identify potential IOCs for the vehicular
system in consideration with the Vehicular Ad-hoc Network (VANET). For that, the authors identify
IOCs by monitoring the behavioural changes that an attack would make in a vehicular system. By
mapping the IOC to different layers in the architecture of a vehicle, the authors determined the place
where an IOC is expected to trigger. However, the identified IOCs are subject to failure due to varying
user behaviour. In terms of network-related indicators, Rudman et al. [116] developed a network-
based indicator framework to capture packets automatically. Dridex malware was evaluated in a
dynamic sandbox to collect network packets, and low-level indicators (e.g., IP addresses, suspicious
domain names, and commonly used protocols and ports) were extracted. Although these indicators
proved useful for analysing the behaviour of particular malware variants, they failed to generate
IOCs associated with ICSs. Likewise, Verma et al. [148] applied ML techniques to detect ransomware
behaviours in the Cuckoo sandbox. The study focused on IOCs, which are used to set the base
for analysing and classifying new ransomware based on their behaviour. However, the discovered
behaviours may not be adequate to identify ransomware with varying behaviours in general. Atluri
et al. [14] proposed another framework for the classification of network traffic and the extraction of
IOCs using Machine Learning (ML) models. The authors used the datasets of five different simulated
attacks from the ICS testbed to validate the proposed models empirically. Some of the collected
IOCs, however, contained overlap among the different simulated network attack traffic.
Noor et al. [104] argued that to attribute cyber threats timely and effectively, it is essential to

identify high-level IOCs that include TTPs. This can be achieved by correlating patterns of activities
or methods associated with a specific threat actor or a group of threat actors. The authors developed
an ML-based framework by leveraging adversary attack patterns. Deep Learning Neural Networks
(DLNN) showed the best results compared to the other ML models regarding the timely detection
of cyber threats. However, the framework only focuses on the financial sector, and the attribution
prediction depends on the quality of the feeds. Other studies have attempted to apply forensic
techniques to extract artefacts in SCADA environments.

4.3 Forensic Analysis and Attribution Techniques

Acquiring forensic data from PLCs was investigated by other researchers. Radvanovsky et al. [111]
have indicated that hexadecimal dumps from PLC memory are the most important data to obtain
when conducting a forensic investigation. To assess changes to the file system, the file system can
be checked for known malware signatures and compared to expected file signatures. However, the
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authors have not discussed any practical methods for extracting hexadecimal dumps from PLCs. Wu
et al. [154] stated that obtaining the program codes of PLCs can be used to identify the attacker’s
intention using the debugging tool. The researchers have proven that modification of the memory
address of the PLC can be considered an IOC. However, the logger tool increases traffic overhead
when reading values over a network. Ahmed et al. [2] presented an overview of the SCADA forensic
processes and proposed a method for live data acquisition. This method involves extracting volatile
and non-volatile information. Despite the importance of live data acquisition for investigators,
however, real-time systems may overwrite useful volatile data and increase the risk of disruption
of critical processes. Moreover, much work has focused on developing live acquisition frameworks
to collect IOC data using agents [79, 140]. However, these frameworks are still theoretical and
untested. Although some of these frameworks only work at the supervisory layer, others dig deeper
into device-level methods.

Lock et al. [85] demonstrate the benefits of using the OpenIOC framework as a standard syntax to
describe the findings of malware analysis. The researchers emphasise the importance of reporting
results in a consistent and well-structured manner that both humans and machines easily under-
stand. Thus, it becomes possible to automate some processes involved in detecting, preventing,
and reporting malware infections. However, their experiment showed low-level IOCs due to the
limitation of the OpenIOC framework. Hyun [70] used Conpot honeypot to discover and collect
IOCs for the ICS environment. She simulated an electric plant using Siemens PLC S7-200. The
honeypot collected data from supported protocols such as HTTP, EtherNet/IP, Modbus over TCP,
s7Comm, SNMP, BACnet, and IPM. However, since Conpot logs basic traffic flow, the extracted
indicators were atomic.

Cyber threat attribution based on adversarial patterns found in CTI reports is a topic of ongoing
interest [104]. Firoozjaei et al. [54] proposed a framework to evaluate the threat level of ICS
cyber incidents. The proposed methodology uses the MITRE ATT&CK matrix to identify detailed
techniques that were used for each cyber-attack. The authors analysed sophisticated cyber-attacks
that include case studies to rank the incident’s sophistication and the hazards of the consequences
of its attack against the OT system.

4.4 Existing tools

Beyond these methodologies and frameworks, we provide a glimpse into the state-of-the-art forensic
and post-incident tools available for ICS applications. In addition, we shed light on areas lacking
tools to handle data acquisition and anomalies. To begin, we start with tools at the network level
that cover network communications and protocols such as Modbus and DNP3.

4.4.1 Network-Based Tools

· TCPdum: TCPdump is very similar to Wireshark, but it is a command-line utility. TCPdump
is used to analyse network traffic by intercepting and displaying packets that are being sent
across a network. TCPdump, on the other hand, will capture high-level information, including a
network protocol, source IP, source port, destination IP, destination port, and timestamps [62].

· Network Tap: For control system networks, it is possible to employ monitoring nodes for
network traffic capture to monitor control system devices such as PLCs [55]. Network taps are
an example of monitoring tools that can be utilised to inspect traffic over a network by splitting
or copying packets for forensic analysis. Network taps can be connected to a SCADA network
with great care and when it is safe to do so, such as during maintenance periods or operation
downtime [47]. This will prevent any disruption to real-time processes.
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· Port Mirroring: Port mirroring, or Switch Port Analysers (SPAN), are alternative traceback
tools in network forensics. When port mirroring is deployed on a network switch, a copy of
network packets seen on the specified port will be sent to an inspection device that is itself
connected to the port mirror. In ICS domains, latency is not allowed, and such tools can help
incident responders use that port to analyse and extract artefacts without affecting the network
flow.

· Sulley Fuzzer: Devarajan et al.[43] developed a tool that involves fuzzy detection for protocol
anomalies, unauthorised communication, unauthorised command execution, and possible de-
nial of service attacks in prevalent SCADA protocols such as Modbus, ICCP, and DNP3. This
tool observes the network and methodically monitors the SCADA network communications,
maintaining logs to categorise and detect faults.

· GE-RANUC-Controller: Denton et al. [42] conducted a reverse-engineering approach on the
GE-SRTP network protocol, a proprietary protocol developed and used by General Electric. Based
on the protocol analysis, the authors were able to implement a tool that allows direct network-
based communication with the GE Fanuc Series 90-30 PLC. As a result, forensic analysts can
directly access the memory registry and check whether a compromise has occurred. However,
the developed tool supports only the specified protocol.

4.4.2 Host-Based Tools

Although network-based forensic approaches in the IT domain cover a wide range of potential
endpoint compromise methods, they are by no means exhaustive [16]. Similarly, ICS systems
cannot rely only on network-level analysis tools. The fact is that the network never has all of the
relevant information, and there are many techniques for ensuring that no traces are left in the
network layer. As a result, several efforts have been made to develop forensic capabilities at the
host level for ICS domains.

· Cuckoo Sandbox: Cuckoo Sandbox [105], an automatic malware analysis system to analyse
and execute a malware sample inside an isolated environment. It takes a suspicious file as input
and performs a dynamic malware analysis on it, then generates detailed results outlining how
such a file behaves in the specific environment [116]. Therefore, forensic analysts can extract
IOCs from the generated file.

· PLC Tool: Data collection from PLCs is based on a number of factors, such as whether the
PLC must remain active or can be turned off [47]. The first case may introduce serious issues.
This is because any interference could have devastating repercussions for a live PLC process. In
such instances, the dedicated software to programme and configure the PLC can be leveraged to
extract and record values from the memory addresses [154] (e.g., using Siemens TIA Portal Step
7 to maintain data in Siemens S7 PLCs and Schneider Electric’s SoMachine for Modicon PLCs).
In contrast, there has been a lack of dedicated forensic tools for embedded devices [2]. However,
some tools are starting to emerge for retrieving data from PLCs, such as PLCLogger and PLC-
ANALYZER pro. PLCLogger is an open-source tool developed for acquiring and analysing recorded
data fromPLCs and any device that usesModbus-TCP orModbus-UDP protocols. PLC-ANALYZER
pro provides similar functionalities; however, it is limited to Siemens SIMATIC devices. McMinn
et al.[92] asserted that PLCs are vulnerable due to their lack of firmware auditing capabilities. The
authors developed a verification tool to improve the security of the PLC firmware by capturing
serial data during firmware uploads and comparing it with the baseline version. Furthermore,
the tool does not require any modification to the SCADA system, and firmware analysis can be
performed without the presence of the PLC. Another tool, Cutter, was designed by Senthivel et
al. [127] to determine whether or not a PLC was compromised. The tool can also extract forensic
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artefacts (e.g., updates to programmable logic and crucial configuration information) from the
Programmable Controller Communication Commands (PCCC) protocol and show them in a
human-readable format. Nonetheless, this tool only performs forensic analysis on PCCC. Some
IOC detection tools are relatively complete and have been practically tested [68]. These tools
are produced by well-recognised providers with vast experience in the security domain. Table 7
provides a quick summary snapshot of the tools as mapped to ICS zones.

Table 7. Available and applicable IOCs tools to IT and ICS Zones

IOC Detection Software License

Ref Tools Enterprise Control Centre Zone Local HMI LAN Zone Field Device Zone Commercial Freeware

[15] ABB Cyber Security Benchmark
√ √ √ √

[39] AlienVault OSSIM
√ √ √

[134] CheckPoint Software - SandBlast
√ √

[45] Dragos
√ √ √ √

[56] EyeInspect
√ √ √ √

[52] FireEye IOC Editor
√ √ √

[53] FireEye IOC Finder
√ √ √

[88] FireEye IOC Writer
√ √ √

[126] McAfee
√ √ √ √ √

[125] MSi Sentinel and MSi 1
√ √ √ √

[141] Nessus
√ √ √ √

[110] Radiflow-Industrial Threat Detection (iSID)
√ √ √

[133] Snort
√ √ √ √

[143] Tripwire
√ √ √ √

[34] Verve Security Center
√ √ √ √

[107] YARA
√ √ √ √ √

As we discussed in this section, while the present emphasis on IOC sharing and blacklisting
helps protect against specific attacks, it is inherently backwards-looking and fails to account for
the necessary variance in ICS attack tools based on victim environments. With the increasing
sophistication of threats on critical infrastructure and ICS systems, threat analysts must employ
digital forensics in ever-more-complex ways [16]. To protect against this emerging pattern of
coordinated attacks, firms must prioritise not only threat data collection and sharing throughout
their industry sector but also their own threat analysis and incident response [115].

5 Open Problems and Future Directions

This section presents two key aspects: open problems and future directions related to IOCs in the
ICS systems.

5.1 Adequate and Practical Techniques for an ICS compromise

Description: Based on the survey in previous sections, we indicate that tremendous efforts by
security researchers have been focused on the central server of the SCADA system [55]. Additionally,
themajority of existing frameworks and approaches addressed the challenges using freely traditional
forensic tools and techniques. Moreover, these approaches suffer from being unreliable and not
being practically evaluated [154].

Other experimental frameworks and solutions are not relatively straightforward. For instance, if
the PLC is restarted, potential artefacts saved in its RAM will be lost. Van der Knijff [146] advised
that the RAM be switched to programming mode in order to preserve the possible evidence. In
this situation, specific software would have to be obtained from the vendor to switch the PLC into
programming mode. If this is not possible, the author suggests using debugging tools connected
via the Joint Action Test Group (JTAG) connection or physically removing the chips. However, this
might be a problem for SCADA system owners, who are unlikely to accept it.
Research Direction: The ATT&CK for ICS framework released by MITRE complies with OT-

specific TTPs collected from real-world observations. In this direction, our recommendations for
successful post-incident detection and analysis will be achieved when techniques for monitoring
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IOCs are tested on real ICS systems. While this is understandable - considering the logistic con-
straints of using real-world systems - we believe it is important to move forward by developing a
general practical framework to enumerate real attack scenarios and extract threat information by
leveraging intelligence provided by ATT& CK for ICS framework [147]. Consequently, this will
grasp the intruder’s perspective and bridge the semantic gap between intruders acting strategically
to achieve their objectives and defenders processing low-level events to detect attacks.

5.2 Leveraging Adversary Behaviour To Face Threat Landscape

Description: Many government bodies and threat intelligence providers focus on basic indicators
(e.g., hashes and IP addresses). However, these indicators have major limitations such as: (i) a
lack of precision in revealing the whole picture of how the attack unfolded, particularly if it is
performed over long periods; (ii) being susceptible to changes easily which result in making attacks
indistinguishable; and (iii) short lifetime of those indicators. In this context, there is currently no
reliable method to combine the advantages of IoCs and TTPs. For instance, to provide permanently
valid TTPs that offer measurable and, hence, detectable indicators. Because attacks frequently occur
as variants and are carried out differently depending on technical environments, it is difficult to
represent TTPs using complex patterns of indicators.
Research Direction: We suggest emphasising some degree of contexts such as TTPs and

observed adversary behaviours, especially when considering ICS environments. This is because
capturing an adversary’s actions from initial intrusion to ultimate effect will help defenders to
build a robust posture around the pre-requisites of the attackers’ method. Computing malware
hashes, identifying C2 nodes, and other atomic artefacts are rarely reused and easily changed,
resulting in deceptive indicators [104]. By weaponising legitimate system tools and protocols,
attackers have learnt to avoid traditional techniques, leaving most existing defensive measures
ineffective against many attacks [132]. In this direction, the Detection Maturity Level model
(DML) can be further explored to emphasise the increasing level of abstraction in detecting cyber-
attacks and characterising threat intelligence. More importantly, security guidelines must be
expanded to incorporate fundamental detection mechanisms capable of identifying fundamental
behaviours associated with existing adversary TTPs. Examples of this include detailed mapping of
user logon activity; guidance for identifying suspect process chains [132]. Overall, this enhances
the development of detection and mitigation measures that address the core TTPs used by attackers
to facilitate intrusions rather than the basic indicators, which are highly specific to the environment
that adversaries target [12].

5.3 Translation and Integration of Technical Indicators into Security Tools

Description: David Bianco [22] introduced the Pyramid of Pain, which shows the relationship
between the types of IOCs that might be used to detect the adversary’s activities and the difficulties
they will cause the adversary when denying those IOCs to them. Malicious hash values and IP
addresses are relatively easy to acquire and integrate into security tools. However, this situation
poses a challenge for security analysts because most shared intelligence is easily evaded by hostile
actors, rendering it ineffective [150]. In contrast, TTPs are the most difficult to identify and apply,
as most security tools are not well suited to take advantage of them.
Research Direction: It is important that the collected indicators must have some character-

istics, including timeliness, accuracy, relevance, coherence, and clarity. To this end, a commonly
accepted standard must be developed to share behavioural signatures between analysts using
different technologies. In this direction, little progress, such as SIGMA language, has been achieved
toward defining a machine-readable specification of behavioural IOC. However, SIGMA may not
be supported by all SIEM systems. Therefore, we suggest that more work is required to develop a
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common format that helps threat analysts to search for behavioural signatures regardless of the
technology used.

5.4 Extensible Tools

Description: Many of the modern control systems, such as HMIs, workstations, and database
historians, rely on well-known technologies to perform their functions. Most of them run on
Windows operating systems, UNIX platforms, or a combination of them. Therefore, common data
acquisition techniques can be used. However, extreme caution is required because an unintentional
change to the system can result not only in evidence corruption but also in abnormal system
operation [135]. The issue with ICS systems is that they are live systems, and due to volatile
memory, the status of the machine is recorded in the volatile memory. Consequently, volatile data
are constantly changing, making it difficult to obtain technical indicators [87]. In a live controller,
for example, variables and timers are critical artefacts in determining the variation of functions in
a system [137]. So, after the system is compromised, the tools available today will not be able to
obtain all of the evidence since part of it will be lost when the system is shut down.
Research Direction: More research work is required to establish standards and response

mechanisms with control systems vendors to build tools that support multiple devices and protocols
in the ICS domain. In Section IV, a few researchers have taken the first step toward designing
tools for specific systems. However, instead of building a new standalone tool, each new tool
development should first assess current tools and tool sets to see whether it can interface with
them and expand their capabilities [68]. For example, detecting Ladder Logic Bombs (LLBs) can be
conducted by scanning known bytes in injected logic against logic files using the YARA tool. As
the system architectures are vendor-specific and every vendor has proprietary software on their
devices, collecting potential indicators from these systems will not succeed without cooperation
with vendors.

5.5 Rapid Collection of Threat Data FromWidespread Devices

Description: Acquiring data from field devices is crucial for the investigation process to determine
whether the OT network is being compromised or not. Wu et al. [153] have indicated the importance
of acquiring artefacts from a PLC, HMI, or MUT, etc. remotely by taking advantage of traditional
network forensic tools. The authors emphasised that tools such as EnCase Enterprise, ProDiscover,
and F-Response are capable of collecting forensic data by installing them on a suspect device.
However, embedded systems are hugely widespread, and collecting data remotely from devices
with limited flash storage, such as PLCs, is still a real challenge for post-incident analysis.

Research Direction: As we mentioned previously, due to the nature of data volatility in some
devices, data collected after an incident from such devices may lose their forensic value as the length
of data retention is short [153]. This dilemma is compounded by the fact that the collection and
identification of indicators from legacy systems are slow due to the bandwidth limitations for ICS
communication protocols [32, 78]. Consequently, developing techniques for collecting indicators
from widely dispersed ICS components that accommodate proprietary or specialised control system
requirements still remains an open problem for future work. In this direction, calculating the
half-life of data for each device and prioritising devices during an incident response can ensure the
forensic value of data.

5.6 Semantic Fusion of Multi-Source Security Data

Description: Several open standards have been proposed to exchange knowledge about IOCs in an
interoperable manner, as discussed in Section 3. These standards, however, are more concerned with
exchanging IOCs than with describing how those IOCs are linked and how the attacks behave. As
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companies are not equally interested in sharing their technical indicators due to privacy concerns,
this has limited the usage of exchange standards [118]. Therefore, companies can take advantage
of publicly available knowledge in the wild instead of relying on high-level data. However, most
common security methods nowadays analyse a separate data source. The automation process of
extraction and correlation of threat activities through handling semantic fusion of multi-source
data has not been fulfilled yet.

Research Direction: From a defence perspective, fusing threat clues and attributing the attack
process can help reconstruct attacks, predict attacker behaviour, infer attacker purpose, and enhance
situational awareness. In this direction, the unified representation of heterogeneous threat data
requires heterogeneous graph representation and reasoning methods [139]. Adopting knowledge
graphs and Deep Learning techniques can improve the extraction process of attack information
from heterogeneous security data.

5.7 End-to-End Chain of attacks

Description: The deployment of information and communication technologies enables adversaries
to undertake coordinated attacks on CPS facilities in networked infrastructures from any Internet-
accessible location. To understand such behaviours, it is necessary to identify with a deep analysis
of the chain of events and relevant data that can explain how an attack occurred. The studies of CPSs
found in the literature are based on single and sequential malicious attacks, such as MITM, FDI, and
DDoS. In contrast, coordinated attacks combine social engineering techniques (e.g., spear-phishing)
with advanced exploit techniques. Therefore, the defensive tools deployed in distributed areas
will not be able to detect malicious activity at the operator’s end [123]. The research in this area
concerning IOCs has not been fully explored.
Research Direction: Complex and coordinated attacks can take advantage of sensor noise or

other physical properties of the system to evade detection. Further research into the end-to-end
chain of coordinated attacks on ICS, covering all elements of their sequences and relevant indicators,
is required to allow comprehensive attack attributions to be defined and applied. Leveraging MITRE
ATT& CK knowledge base for ICS towards gathering and classifying techniques and means used
by adversaries can help map out the overall attack steps.

6 Conclusion

In this paper, we have presented the current state of post-incident analysis using IOCs. Indicators are
the simplest approach to combine detection with threat context. When indicators are appropriately
developed, they highlight particular activity, providing defenders with the information they need
to prioritise and respond to the activity observed effectively. However, some IOCs are insufficient
when dealing with targeted attacks since those indicators are useful and relevant only to the target
environment.
Today’s ICS systems require new defensive measures as the threat landscape expands. The

ability to recover from and analyse an incident has never been more crucial. In a SCADA system,
collecting and analysing forensic data at an early stage can prevent future potentially catastrophic
attacks. To that end, we provided incident analysts with a road-map to the challenges they will
face when developing IOCs in the OT domain. Additionally, potential indicators that can deal with
cyber-attacks against the ICS network are defined. We also critically evaluated existing works and
highlighted potential research directions for a threat detection technique that leverages IOCs in
control systems. As the ICS-focused attack landscape continues to evolve, new threat vectors will
appear. We suggest security scholars focus on high-level indicators and adversary behaviour, as
those indicators are the enabling steps that allow adversaries to achieve their ultimate goals.
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