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Predicting Radiologists’ Gaze with Computational

Saliency Models in Mammogram Reading
Jianxun Lou, Hanhe Lin, Philippa Young, Richard White, Zelei Yang, Susan Shelmerdine, David Marshall,

Emiliano Spezi, Marco Palombo and Hantao Liu

Abstract—Previous studies have shown that there is a strong
correlation between radiologists’ diagnoses and their gaze when
reading medical images. The extent to which gaze is attracted
by content in a visual scene can be characterised as visual
saliency. There is a potential for the use of visual saliency
in computer-aided diagnosis in radiology. However, little is
known about what methods are effective for diagnostic images,
and how these methods could be adapted to address specific
applications in diagnostic imaging. In this study, we investigate 20
state-of-the-art saliency models including 10 traditional models
and 10 deep learning-based models in predicting radiologists’
visual attention while reading 196 mammograms. We found that
deep learning-based models represent the most effective type
of methods for predicting radiologists’ gaze in mammogram
reading; and that the performance of these saliency models can
be significantly improved by transfer learning. In particular,
an enhanced model can be achieved by pre-training the model
on a large-scale natural image saliency dataset and then fine-
tuning it on the target medical image dataset. In addition, based
on a systematic selection of backbone networks and network
architectures, we proposed a parallel multi-stream encoded model
which outperforms the state-of-the-art approaches for predicting
saliency of mammograms.

Index Terms—Saliency, Radiology, Mammograms, Deep learn-
ing, Transfer learning

I. INTRODUCTION

In the human visual system (HVS), foveal vision covers a

small central part of the visual field and provides the most

detailed and informative visual signal [1]. The visual attention

mechanism drives the foveal vision to prioritise visual stimuli

to reduce the consumption of the cerebral cortex. In image per-

ception, visual saliency reflects the extent to which the content

in a visual scene attracts gaze, which is an important feature of

the HVS. Previous studies have demonstrated that radiologists’
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diagnoses are strongly related to their gaze when reading med-

ical images [2]–[4]. Being able to predict radiologists’ gaze in

the form of computational algorithms is beneficial in terms

of developing tools for assisting diagnosis [5] and artificial

intelligence (AI) models for diagnostic medical imaging [6].

In the literature, visual saliency has been exploited in vari-

ous medical diagnostic tasks and achieved promising clinical

outcomes. Banerjee et al. [7] developed a visual saliency-

based algorithm for automated brain tumor detection and

segmentation in magnetic resonance (MR) images. Bernal et

al. [8] developed a saliency model for polyp localisation in

colonoscopy videos and the model achieved similar perfor-

mance to clinicians in polyps searching. Yuan et al. [9] also

used a unified bottom-up and top-down saliency approach

to automatically detect polyp regions. In radiology practice,

one of the key factors that affects diagnostic accuracy is

fatigue [10]. Fatigue can reduce cognitive ability and atten-

tion lapses, decrease vigilance, and change gaze patterns of

radiologists [10], [11]. In the event of fatigue, the computer

generated saliency that represents the standard image reading

can be used to assist the radiologist during diagnosis to avoid

potential errors caused by fatigue. In addition, since the model

simulates the visual attention of radiologists during diagnostic

reading, the predicted visual saliency maps can be used as a

tool in training of radiology students/trainees to provide them

with guidance, feedback, and reflection [12]. It should be noted

that the saliency prediction models and many other artificial

intelligence (AI) applications in radiology have certain limita-

tions. They are built based on the observers’ annotations; and

they can follow general structures but lack the creativity e.g.,

the critical judgement of one’s own original ideas. To optimise

the integration of AI into medical imaging, research has been

undertaken to make AI models more usable and explainable,

providing complementary information/intelligence to support

radiologists’ decision-making [13]–[15]. These studies indi-

cate that automatically generating accurate saliency maps that

represent where viewers look in diagnostic images lies at the

heart of advanced methods for medical imaging. However,

there is a paucity of literature on the analysis of existing

saliency prediction methods on diagnostic images, and how

these methods could be adapted to best address specific

applications in diagnostic imaging.

Existing computational saliency models can be categorized

into two classes including traditional and deep learning-based

models. Traditional models [16]–[25] apply low-level visual

features such as colour, luminance, texture, and contrast, to

simulate the visually salient regions in the scene. Rather
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than designing handcrafted features, deep learning-based mod-

els [26]–[34] typically use deep convolutional networks to

automatically extract representations from images for saliency

prediction. Although there are various saliency prediction

algorithms in the literature, most of them focus on predicting

the so-called task-agnostic visual attention that mimics gaze

during free viewing of natural images. Different from task-

agnostic visual attention which is stimulus-driven, the task-

specific visual attention is driven by a specific visual task

and related to the viewer’s prior experience. Visual saliency

that is modelled by task-agnostic saliency features may be

modulated towards a task-specific model using task-related

factors [35]. When radiologists read medical images for a

diagnostic purpose, saliency is considered to be determined by

the combination of both task-agnostic (i.e., image content) and

task-specific (i.e., the diagnostic task and radiologists’ prior

knowledge) factors [36]. It is not fully known whether visual

saliency prediction models that are designed or trained with

task-agnostic saliency features of natural scenes still hold their

predictive capabilities for medical images, and if so, to what

extent. More importantly, it is critical to find ways to develop

effective saliency models for diagnostic imaging. Jampani et

al. [37] studied the relevance of three traditional saliency

models in chest X-ray and retinal images in the context

of abnormality detection. Wen et al. [38] investigated 16

traditional saliency models in three types of medical imaging

modalities (including chest computed tomography, chest X-

ray images, and whole-body positron emission tomography)

relative to natural scenes. These studies suggest that some

task-agnostic saliency models developed for natural images are

potentially beneficial for medical image saliency prediction.

However, there are limitations in these studies. First, the image

samples are rather limited, e.g., the dataset in [37] includes

17 chest X-rays and 48 retinal images, and the dataset in [38]

consists of only 10 images per modality. Second, the state-of-

the-art deep learning-based saliency models were not included

in these studies.

Nevertheless, deep learning-based models have achieved

promising results in many computer vision applications [39]–

[42]. There is a potential to apply transfer learning tech-

niques [43], [44], namely reusing or transfering information

from previously learned tasks of natural images for the learn-

ing of new tasks of medical images. For example, in image

diagnostics, deep learning-based models are generally first

trained on large-scale task-unrelated datasets (usually natural

image datasets, such as ImageNet [45] and PLACE [46]),

then these models are fine-tuned on small-scale medical image

datasets related to the target task [47]. In this approach, models

are expected to first learn low-level features such as lines,

luminance, and contrast in the pre-training phase, and then

learn diagnosis-related features in the fine-tuning phase. This

approach can be potentially used to learn a saliency prediction

model for diagnostic imaging. This is to train models on a

large-scale saliency dataset (originated from natural images)

before fine-tuning them on medical image datasets. Since med-

ical image datasets are usually limited in size, this approach

has the potential to significantly enhance the sample efficiency

of a learning model. However, the feasibility and effectiveness

of this approach in predicting the saliency of medical images

has not been well studied.

The main contributions of this paper are detailed as follows:

1) We conduct an exhaustive comparative study towards a

plausible modelling paradigm for mammogram saliency

prediction. We study 20 saliency models developed for

natural images, including 10 traditional models and 10

deep learning-based models, in the context of screening

mammography.

2) We investigate the use of transfer learning for medical

image saliency prediction, conducting experiments to fine-

tune deep learning-based saliency models on a mammo-

gram saliency dataset, and to pre-train saliency models on

a large-scale natural image saliency dataset for predicting

mammogram saliency.

3) By harnessing a systematic analysis of different network

structures and pre-training strategies, we develop a parallel

multi-stream encoded model that gives superior perfor-

mance on predicting saliency of mammograms.

II. MATERIALS AND METHODS

A. Eye-tracking mammography dataset

Our study is based on a large-scale mammography eye

movement dataset [48]. The original image set consists of 196

mediolateral oblique (MLO) view mammogram images that

were extracted from 98 anonymous cases from the University

Hospitals KU Leuven in Belgium, each with one MLO view

of the left breast and one MLO view of the right breast.

An eye-tracking experiment was conducted in a mammog-

raphy reading room at Breast Test Wales (BTW), a centre

participating in the National Health Service Breast Screening

Programme (NHSBSP), Cardiff, United Kingdom. The details

of the experiment, including the procedure of collecting and

processing the eye movement data, can be found in [49]. The

eye-tracking data contains the gaze positions of 10 radiologists

during the three seconds (corresponding to the viewing time

in real practice) of reading these mammograms.

As illustrated in Fig. 1, fixations collected via eye-tracking

are graphically represented by a binary fixation map for

each mammogram image, where the locations of fixations

are rendered as white (grayscale value of 255) pixels and

un-fixated areas as black (grayscale value of 0) pixels. To

construct a saliency map, each fixation location is expanded

by a greyscale patch that is modelled as a Gaussian distribu-

tion [48]. The width of the Gaussian distribution represents 2

degrees of visual angle to simulate the size of the fovea [50].

Essentially, the salient regions (i.e., regions with higher density

of fixations) represent the locations where human observers

focus their gaze with a higher frequency.

B. Computational saliency models

In computer vision, the so-called saliency models are devel-

oped with the aim to automatically predict where people look

in images. The output of these models is a computed saliency

map – a topographic representation indicating conspicuousness

of scene locations [51]. As mentioned in Section I, there are
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Fig. 1. Two examples of mammogram images and their corresponding binary
fixation maps and saliency maps in the mammogram eye-tracking dataset.
These two mammogram images are respectively the MLO view mammogram
images of the right (top) and left (bottom) breasts from one anonymous
case. The fixation maps show the fixation locations. The saliency maps are
generated by giving rise to each fixation location a greyscale patch with a
Gaussian distribution to simulate the size of the fovea.

a number of saliency models proposed in the literature. In

this study, 10 traditional and 10 deep learning-based saliency

models are selected, all of which have demonstrated state-of-

the-art performance on the MIT300 [52], [53] (one of the most

widely used natural image saliency benchmarks) and have

made code of models publicly available by their authors. A

brief introduction of the chosen saliency models can be found

in Table I. We classify saliency models using deep neural

networks as “deep learning-based models”, and saliency mod-

els that mainly rely on extracting lower-level features (such

as intensity, colour, and orientation) as “traditional models.”

In addition, according to previous studies [54], traditional

models can be further categorised depending on the feature

extraction mechanisms. For example, IttiKoch, GBVS, and

Judd can be classified as cognitive models; GBVS belongs

to graphical models; RARE2012, QSS, and signatureSal are

spectral analysis models; Torralba and FES can be classified as

Bayesian models; RARE2012 and Torralba are texture-based

models; CovSal, FES, and LDS are statistics-based models.

It should be noted that some models fall into more than one

category. But they can be grouped into one general class, i.e.,

traditional models, as opposed to the approach of using deep

neural networks.

C. Saliency evaluation metrics

The performance of saliency models is quantified by how

well they can predict the ground truth gaze, rendered from

human fixations via eye-tracking. To be able to quantitatively

measure a saliency model’s performance and compare different

models, two forms of representation of the ground truth gaze

are required: (1) fixation map; and (2) saliency map, as

illustrated in Fig. 1.

A number of saliency evaluation metrics have been pro-

posed [55]. There are six popular metrics, including Pearson’s

(or linear) correlation coefficient (CC), histogram intersection

or similarity (SIM), Kullback-Leibler divergence (KLD), nor-

malized scanpath saliency (NSS) and two variants of area un-

der a curve (AUC) including Judd’s AUC (AUC J) and shuf-

fled AUC (sAUC). These evaluation metrics capture different

properties in saliency data, therefore produce different saliency

model rankings. The study in [55] concluded that “specific

tasks and applications may call for a different choice of met-

rics”. Therefore, it is important to select appropriate evaluation

metrics for a given application. In general, the above metrics

can be classified into location-based and distribution-based

metrics [56]. Location-based metrics evaluate “predicted”

saliency maps by using “human” fixation maps as the ground

truth, including NSS, AUC J, and sAUC. Distribution-based

metrics evaluate “predicted” saliency maps by using “human”

saliency maps as the ground truth, including CC, SIM, and

KLD. In our study, we target the regions of radiologists’

visual interest and their relative importance, distribution-based

metrics (i.e., CC, SIM, and KLD) are appropriate. In addition,

the study in [55] suggests that, under normal assumptions,

CC metric provides the fairest comparison between saliency

models; SIM metric is a better fit when evaluating the relative

importance of different image regions. In summary, CC and

SIM metrics are most appropriate for our study and we

therefore used them in our experiments.

A brief introduction to these evaluation metrics is given as

follows, where P and S are the predicted and ground truth

saliency maps respectively.

• CC is a statistical method to measure the correlation of two

variables. It evaluates the accuracy of saliency prediction

by:

CC(P, S) =
cov(P, S)

σ(P) · σ(S)
, (1)

where cov(·) is the covariance and σ(·) is standard devia-

tion. The value range of CC is between −1 and 1, and the

closer the absolute value of CC is to 1, the more accurate

is the predicted saliency.

• SIM measures the similarity between the predicted and the

ground truth saliency maps by interpreting them as two 2-D

histograms, Pi and Si. SIM can be calculated by:

SIM(P, S) =
∑

i

min(Pi, Si), (2)

where i is the index of the horizontal axis of a histogram

of the pixel intensity values;
∑

i Pi =
∑

i Si = 1; and, the

value range of SIM is between 0 and 1, and the higher the

SIM value, the more similar are the two saliency maps so

the more accurate is the predicted saliency.

D. Experiment setup

For model comparison, the parameters and settings of all

traditional models were set to be the defaults provided by

the original code. This group of traditional models is referred

to as the “Traditional Group”. In terms of deep learning-

based models, all models were initialised with pre-trained

weights (DVA is trained following the original publication’

instructions, the weights of other models are provided by

the original publications) on the SALICON dataset [63] but

without any fine-tuning on the mammograms. This group of

models is referred to as “DL Group”. The SALICON is a



MANUSCRIPT FOR JOURNAL 4

TABLE I
DETAILS OF 10 TRADITIONAL SALIENCY MODELS AND 10 DEEP LEARNING-BASED SALIENCY MODELS. TYPE T AND D REPRESENT TRADITIONAL

MODELS AND DEEP LEARNING-BASED MODELS, RESPECTIVELY.

Model Name Type Backbone Network Input Size (pre-training) Advanced Features

IttiKoch [16] T – 1440×1080 px Combining the colour, intensity, and orientation features at multiple spatial scales

GBVS [17] T – 1440×1080 px Constructing Markov chain for feature maps extracted from a similar approach to IttiKoch

CovSal [18] T – 1440×1080 px Calculating correlation of covariance matrices of simple local image features

FES [19] T – 1440×1080 px Using sparse sampling and kernel density estimation to measure local feature contrast

LDS [20] T – 1440×1080 px Learning discriminative subspaces to separate salient targets and distractors

RARE2012 [21] T – 1440×1080 px Applying a multi-scale rarity mechanism on the colour and orientation features of the image

Judd [22] T – 1440×1080 px Using linear support vector machine to use low-, mid-, and high-level image features

QSS [23] T – 1440×1080 px Basing on the quaternion Fourier transform and uing eigenaxes and eigenangles

Torralba [24] T – 1440×1080 px Combining bottom-up saliency, scene context, and top-down mechanisms in natural scenes

signatureSal [25] T – 1440×1080 px Basing on sparse signal analysis to separate the foreground (target objects) and background

ML-Net [26] D VGG-16 [57] 640×480 px Employing feature maps of three different layers and the prior map

DVA [27] D VGG-16 256×192 px Using three sets of different-scale feature maps and decoder networks

SAM-VGG [28] D VGG-16 320×240 px Simulating attention mechanism via a long short-term memory (LSTM)-based network

SAM-ResNet [28] D ResNet-50 [58] 320×240 px Same as SAM-VGG

MSI-Net [32] D VGG-16 320×240 px Using atrous spatial pyramid pooling (ASPP) [59] to fuse feature maps

EML-NET [29] D ResNet-50 (two-stream) 640×480 px Using a two-stream feature extraction network pre-trained on ImageNet and PLACE separately

UNISAL [30] D MobileNetV2 [60] 384×288 px Using multi-scale features by skip-connections

FastSal [33] D MobileNetV2 256×192 px A computationally efficient model. The feature concatenation version is used here.

SalGAN [34] D VGG-16 256×192 px Adopting a generative adversarial network (GAN) [61]

GazeGAN [31] D Modified U-Net 640×480 px A GAN with U-Net [62] style

large-scale natural image saliency dataset that contains 10,000

training and 5,000 validation images with human attention

behaviours recorded by mouse clicks instead of eye-tracking.

The input sizes of these deep learning-based models are

consistent with the authors’ settings in Table I.

To explore the impact of transfer learning on mammograms’

saliency prediction, all deep learning-based models were fine-

tuned on mammograms based on the pre-trained weights on

the SALICON dataset. This group of fine-tuned models is

referred to as “DLFT Group”. Note, this group of models

can also be directly fine-tuned on mammograms without

loading the pre-trained weights on the SALICON dataset so

this gives us the opportunity to verify the necessity of pre-

training on large-scale natural image saliency datasets. This

verification would reveal whether saliency information learned

from natural images would benefit learning saliency of medical

images.

The eye-tracking mammogram dataset contains 196 mam-

mograms from 98 cases. In order to obtain comprehensive and

unbiased results of model performance, the dataset was divided

into seven non-overlapping subsets and each subset contained

28 images from 14 cases, then k-fold Cross-Validation (k = 7
in our experiment) was applied to each deep learning-based

model during fine-turning. For each fine-tuning and testing

instance, one subset was kept as a test set, one as a validation

set, and the remaining five subsets were used as a training

set. The fine-tuning process for each instance was stopped

and the best model was saved when the loss values on the

corresponding validation set were consistently higher than

the recorded minimum loss in five consecutive epochs. The

report results were the mean performance of the best models

of the seven tests. During the fine-tuning phase, the default

loss function and optimizer were adopted for each model.

According to the suggestions in the literature [26]–[34] and

our empirical results (i.e., with the aim to obtain the lowest

loss value in the validation set during fine-tuning), the hyper-

parameters in each fine-tuning phase were set as follows:

1) The batch sizes for MSI-Net and GazeGAN were set to

1 due to the author’s recommendation; for all other deep

learning-based models were set to 4.

2) The initial learning rates for SAM-VGG, SAM-ResNet and

GazeGAN were set to 2 × 10−4; for ML-Net was set to

1×10−3; for EML-NET was set to 3×10−3; for MSI-Net

was set to 1× 10−5; for UNISAL was set to 5× 10−5; for

FastSal was set to 7× 10−2; for DVA was set to 2× 10−4.

3) For each model, the input image was resized by bilinear

interpolation to the input size set by the authors for pre-

training shown in Table I. In addition, as these models

required input to be an RGB image format but the mammo-

grams were grayscale images, we duplicated the grayscale

values of an mammogram over the three RGB channels to

generate the required input format to the models.

4) All models adopted default optimizers and learning rate

adjustment strategies used in their original publications to

ensure the fairness of the results.

In terms of statistical analysis, different statistical methods

were used depending on the characteristics of the data. When

the overall data from two independent samples was normally

distributed (p-value>0.05 in Shapiro-Wilk tests), independent

sample t-tests were used for statistical hypothesis testing;

otherwise, Mann-Whitney U tests were used. Moreover, the

Wilcoxon signed-rank tests were used for hypothesis testing

of paired samples.

III. COMPARATIVE STUDY OF MODEL PROPERTIES

A. Investigation of different model genres

The performance of Traditional Group, DL Group, and

DLFT Group on CC and SIM is shown in Fig. 2. It can

be seen that the DL Group achieved higher scores than the

Traditional Group in general. The models from DLTF Group

are consistently highly ranked in both metrics. Some examples

of the models’ predictions are illustrated in Fig. 3. In order to
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TABLE II
RESULTS OF THE MANN-WHITNEY U RANK TESTS FOR THE OVERALL

PERFORMANCE OF THREE GROUPS ON METRICS CC AND SIM.

Group name Group name p-value (on CC) p-value (on SIM)

Traditional DL <0.001 <0.001

Traditional DLFT <0.001 <0.001

DL DLFT <0.001 <0.001

investigate statistical differences between the performance of

three groups, the Mann-Whitney U rank tests were performed

on the results (i.e., Traditional Group versus DL Group,

Traditional Group versus DLFT group, and DL Group versus

DLFT group) on the metrics CC and SIM.

The statistical results are shown in Table II. The overall

performance of the Traditional Group is significantly lower

(p-value<0.001) than the DL group and the DLFT group.

As can be visually assessed from Fig. 3, most models in the

Traditional Group have inadequate performance in predicting

the saliency of mammograms. One plausible reason for the low

performance is that features in these models are specifically

designed for natural images and are not specific to mammogra-

phy. For example, Judd and Torralba compute image saliency

by detecting features such as faces or natural objects, and

it may not be feasible to extrapolate this to mammograms.

Besides, it is worth noting that LDS is the best performing tra-

ditional model on the mammogram dataset, which outperforms

most models in the DL Group. This suggests that the saliency

detection method adopted by LDS, i.e., defining discriminative

subspaces to separate salient targets and distractors, might be

beneficial for mammogram saliency detection.

With regard to deep learning-based models, models in the

DL Group are trained on the large-scale natural image saliency

dataset, i.e., SALICON, then applied to mammograms directly.

It can be seen from the examples in Fig. 3, the agreement

between the output of the DL Group’s models and ground

truth is still insufficient, although their overall performance is

better than the Traditional Group. The results lead to a similar

conclusion where saliency features for natural images are not

fully suitable for mammograms. Deep learning-based models

can be fine-tuned on the mammogram dataset by supervised

learning to obtain mammograms’ saliency-related features.

The results in Table II indicate that the overall performance of

fine-tuned deep learning models, i.e., the DLFT Group, sub-

stantially outperforms (p-value<0.001) the other two groups.

The saliency maps of the DLFT Group are more consistent

with the ground truth as illustrated in Fig. 3. There is evidence

to show that using appropriate deep learning-based models

and training them on mammogram saliency data achieve good

performance for saliency prediction on mammograms.

To have an insightful view on the usage of these mod-

els for medical imaging, it is worthwhile to investigate the

correlation in performance rankings between mammograms

and natural images. To this end, we calculated the Kendall

rank correlation coefficient (KRCC) between the performance

of these models on natural images and mammograms. Note,

the data of natural images is based on the MIT/Tuebingen

Saliency Benchmark [53]. To make a fair analysis, Torralba

Co
vS

al

sig
na

tu
re
Sa

l

Itt
iko

ch

QS
S

Ju
dd

To
rra

lb
a

FE
S

M
L-
Ne
t

GB
VS

RA
RE
20
12

SA
M
-V
GG

EM
L-
NE

T

UN
IS
AL

Sa
lG
AN

Ga
ze
GA

N

LD
S

DV
A

M
SI
-N
et

SA
M
-R
es
Ne
t

Fa
st
Sa
l

Sa
lG
AN

_F
T

Ga
ze
GA

N_
FT

M
L-
Ne
t_
FT

Fa
st
Sa
l_F
T

UN
IS
AL
_F
T

SA
M
-R
es
Ne
t_
FT

M
SI
-N
et
_F
T

SA
M
-V
GG

_F
T

EM
L-
NE

T_
FT

DV
A_
FT

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CC

0.264

0.457
0.497 0.516 0.558

0.592

0.644 0.648 0.653 0.661 0.669
0.718 0.723 0.735 0.742 0.750 0.758 0.762 0.787 0.797

0.851 0.854 0.861 0.867 0.868 0.885 0.887 0.891 0.891 0.893
Traditional Models
Deep Learning Models (without Fine-tuning)
Deep Learning Models (Fine-tuned)

(a)

Ju
dd

Co
vS

al

sig
na

tu
re
Sa

l

QS
S

Itt
iko

ch

M
L-
Ne
t

GB
VS

RA
RE
20

12

To
rra

lb
a

Sa
lG
AN FE
S

SA
M
-V
GG

UN
IS
AL DV
A

EM
L-
NE

T

M
SI
-N
et

LD
S

Fa
st
Sa
l

Ga
ze
GA

N

SA
M
-R
es
Ne
t

M
L-
Ne
t_
FT

Sa
lG
AN

_F
T

Ga
ze
GA

N_
FT

Fa
st
Sa
l_F
T

UN
IS
AL
_F
T

DV
A_
FT

SA
M
-R
es
Ne
t_
FT

M
SI
-N
et
_F
T

EM
L-
NE

T_
FT

SA
M
-V
GG

_F
T

0.3

0.4

0.5

0.6

0.7

0.8

SI
M

0.334
0.362

0.404
0.440 0.448

0.502 0.525 0.537 0.540 0.558
0.582 0.585 0.590 0.597 0.601 0.608 0.627 0.638 0.638 0.659

0.727 0.732 0.734 0.747 0.748 0.755 0.762 0.764 0.767 0.769
Traditional Models
Deep Learning Models (without Fine-tuning)
Deep Learning Models (Fine-tuned)

(b)

Fig. 2. The results of all saliency models, including 10 traditional models
(blue bars), 10 deep learning-based models (green bars), and 10 fine-tuned
(on mammograms) deep learning-based models (orange bars) on CC and SIM
are demonstrated in (a) and (b), respectively. The error bar represents a 95%
confidence interval.

and FastSal were excluded because they were not present in

the MIT/Tuebingen benchmark, and EML-NET was excluded

because its model version published on the MIT/Tuebingen

benchmark was inconsistent with the implementation in the

original publication. The comparison of rankings is shown in

Table III and Table IV. The Kendall rank correlation coef-

ficient (KRCC) between the performance on natural images

and mammograms for the Traditional Group, DL Group,

and DLFT Group on CC are 0.2778, 0.2143, and -0.2143

respectively; and on SIM are 0.3889, 0.3571, and 0.2857

respectively. A weak correlation is observed between these

groups, i.e., the correlation in model performance rankings

between mammograms and natural images does not exceed

0.5. This indicates that the performance of saliency models

on these two domains is not consistent, and that models

that perform well on natural images are not necessarily good

models for medical imaging, and vice versa. This also implies

that the selection of saliency models for medical imaging

cannot rely on the existing saliency benchmarks for natural

images. To provide a reliable reference for model selection,

existing models should be implemented and tested using

medical images.

B. Investigation of different deep learning network structures

To advance deep learning-based saliency modelling for

medical imaging, it is vital to explore what kinds of network

structures are suitable for this specific application. Now, we

investigate the impact different network structures have on
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Fig. 3. Prediction results of all models for the same mammogram’s saliency. The first and second columns on the left show the mammogram image (Stimuli)
and the corresponding saliency map (Ground Truth) respectively. The other heatmaps are the predictions of saliency models. The heatmaps in the first row is
from the traditional Group, the second row is from the DL Group, and the third row is from the DLFT Group.

TABLE III
RANKING OF THE PERFORMANCE OF TRADITIONAL SALIENCY MODELS

ON THE EYE-TRACKING MAMMOGRAM DATASET AND ON NATURAL

IMAGES (I.E., MIT300 DATASET).

CC SIM

Model name mammograms / natural images mammograms / natural images

LDS 1st / 1st 1st / 1st

RARE2012 2nd / 6th 3rd / 5th

GBVS 3rd / 4th 4th / 4th

FES 4th / 3rd 2nd / 3rd

Judd 5th / 5th 9th / 8th

QSS 6th / 8th 6th / 7th

Ittikoch 7th / 9th 5th / 9th

signatureSal 8th / 7th 7th / 6th

CovSal 9th / 2nd 8th / 2nd

TABLE IV
RANKING OF THE PERFORMANCE OF FINE-TUNED AND NOT FINE-TUNED

DEEP LEARNING-BASED SALIENCY MODELS ON THE EYE-TRACKING

MAMMOGRAM DATASET AND ON NATURAL IMAGES (I.E., MIT300
DATASET).

Model name
CC (fine tuned / not fine tuned on

mammograms / natural images)

SIM (fine tuned / not fine tuned on

mammograms / natural images)

DVA 1st / 3rd / 7th 4th / 4th / 7th

SAM-VGG 2nd / 7th / 8th 1st / 6th/ 5th

MSI-Net 3rd / 2nd / 2nd 2nd / 3rd / 2nd

SAM-ResNet 4th / 1st / 4th 3rd / 1st / 4th

UNISAL 5th / 6th / 1st 5th / 5th / 1st

ML-Net 6th / 8th / 6th 8th / 8th / 8th

GazeGAN 7th / 4th / 3rd 6th / 2nd / 3rd

SalGAN 8th / 5th / 5th 7th / 7th / 6th

TABLE V
THE MEAN PERFORMANCE OF FINE-TUNED MODELS USING DIFFERENT

BACKBONES ON CC AND SIM.

Backbone name CC↑ SIM↑

MobileNetV2 0.8676 0.7473

VGG-16 0.8767 0.7490

ResNet-50 0.8882 0.7643

TABLE VI
RESULTS OF INDEPENDENT SAMPLES t-TESTS FOR FINE-TUNED MODELS

USING DIFFERENT BACKBONES.

Backbone name Backbone name p-value (on CC) p-value (on SIM)

VGG-16 ResNet-50 <0.001 <0.001

VGG-16 MobileNetV2 <0.010 >0.050

ResNet-50 MobileNetV2 <0.001 <0.001

TABLE VII
RESULTS OF THE MANN-WHITNEY U RANK TESTS FOR FINE-TUNED

MODELS USING ONE-STREAM OR TWO-STREAM BACKBONES.

Metrics Means (one-stream) EML-NET (two-stream) p-value

CC↑ 0.8732 0.8889 <0.001

SIM↑ 0.7484 0.7652 <0.001

TABLE VIII
THE RESULTS OF THE WILCOXON SIGNED-RANK TESTS ON FINE-TUNED

EML-NET USING DIFFERENT BACKBONES

Metrics One-stream (ImageNet / PLACE) Two-stream p-value

CC↑ 0.8860 / 0.8832 0.8909 <0.010 / <0.010

SIM↑ 0.7605 / 0.7579 0.7668 <0.010 / <0.010

performance. Statistical significance tests were performed on

the fine-tuned models adopting different architectures. From

the perspective of backbone networks, there are three main

types involved: VGG-16 (used by ML-Net, DVA, SAM-VGG,

MSI-Net, and SalGAN), ResNet-50 (used by SAM-ResNet

and EML-NET), and MobileNetV2 (used by UNISAL and

FastSal). The mean performance of models using different

backbones on CC and SIM is shown in Table V, and the

results of t-tests for comparing model performance are shown

in Table VI. Unlike other models using a one-stream back-

bone, EML-NET uses a two-stream backbone as the feature

extractor. The Mann-Whitney U rank tests were performed

on the performance of models using one-stream and two-

stream backbones and the results are shown in Table VII.

Furthermore, the authors of EML-NET also provide one-

stream version models for investigating the influence of one-

and two-stream backbone on saliency prediction, and their

performance on the mammograms is shown in Table VIII.

In addition, contrary to other models, there are two models

(i.e., GazeGAN and SalGAN) based on generative adversarial

network (GAN). The mean CC and SIM for models with

GAN is 0.8528 and 0.7327, and for models without GAN

is 0.8802 and 0.7544. The differences in means between CCs

and between SIMs were statistically significant (independent

samples t-tests, p-value<0.001).

Backbone networks are important in extracting image fea-

tures for saliency detection. The backbone networks in this

study include ResNet-50, VGG-16, and MobileNetV2, of

which ResNet-50 has the largest parameter scale, followed by
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VGG-16, and the parameter scale of MobileNetV2 is much

smaller than ResNet-50 and VGG-16. It is by now generally

accepted that when performing complex tasks with sufficient

computational resources and data volume, deep neural net-

works with large-scale parameters, such as ResNet-50 and

VGG-16, perform better than lightweight neural networks.

But the backbones with fewer trainable parameters, such as

MobileNetV2, can significantly save computational resources

at the cost of performance accuracy. As can be seen in

Table V, the models applying ResNet-50 as a backbone have

significantly higher performance (p-value<0.001) than models

using VGG-16 and MobileNetV2 as their backbones. Besides,

the mean performance of models using VGG-16 as backbones

is higher than models using MobileNetV2, and there is a

significant difference (p-value<0.01) in the CC metric. These

results are in line with the general observations mentioned

above, which implies that complex deep neural networks with

strong representation ability are more suitable for predicting

mammograms’ visual saliency. The only model that ranks in

the top two positions on both evaluation metrics is EML-NET,

and its main structural difference from other models is that

it uses a two-stream backbone to extract features. This two-

stream backbone is composed of two ResNet-50s in parallel,

which are loaded with parameters pre-trained on ImageNet

and PLACE datasets respectively. We trained this model on

SALICON, then fine-tuned on the mammogram dataset in our

study. We found that a two-stream backbone could acquire

more prior knowledge than a one-stream backbone to improve

the predictive power of the model, but with a increase in

the training difficulty and computational resource consumption

of the network. According to Table VII and Table VIII,

the two-stream backbone version of EML-NET is not only

better than the one-stream backbone version of its own, but

also significantly outperforms other models with a single-

stream backbone (p-value<0.001). This implies that the use

of broader or multimodal prior knowledge is beneficial for

mammograms’ saliency prediction.

Although GANs currently perform well in many image

generation tasks, models using GAN have no benefit for

the mammograms’ saliency prediction task. According to the

experimental results, GAN style models have significant lower

performance than the deep learning models without the use of

GAN. This may be due to the fact that GANs are more difficult

to train than other networks. Therefore, GANs should be used

with caution if large-scale datasets are not available in the

application domain.

C. Investigation of transfer learning methods

Transfer learning is a common approach to applying deep

learning algorithms to medical image related tasks, which

mainly consists of pre-training on datasets of unrelated tasks

and fine-tuning on target data. Collecting a large-scale saliency

dataset for medical images is nontrivial due to the limited

access to radiologists in practice; and so far, the publicly

available medical saliency datasets are too small to train a

saliency model for medical images. Therefore, our intention

is to investigate whether and to what extent the larger saliency
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Fig. 4. Performance comparison of deep learning-based models that were not
fine-tuned, fine-tuned with and without pre-trained weights on the SALICON
dataset, using metrics CC (a) and SIM (b). The green, blue and orange bars
represent models that were not fine-tuned, fine-tuned with and without the
SALICON dataset, respectively. The error bar represents a 95% confidence
interval.

TABLE IX
THE MEAN PERFORMANCE OF MODELS USING DIFFERENT FINE-TUNING

STRATEGIES ON CC AND SIM.

Models CC↑ SIM↑

Not fine-tuned 0.7340 0.5975

Fine-tuned without SALICON 0.8506 0.7215

Fine-tuned with SALICON 0.8749 0.7502

dataset available for natural images could be leveraged to

predict saliency of medical images. This would provide prac-

tical solutions for medical applications. To verify the hypoth-

esis that saliency data available for natural images is useful

for learning saliency of medical images, we compare deep

learning-based models fine-tuned with and without pre-trained

weights on the natural image saliency SALICON dataset.

The results are shown in Fig. 4, where the models contained

in the DLFT Group were fine-tuned with and without the

SALICON dataset. The details of the three different training

strategies involved in Fig. 4 and Table IX are as follows:

- Not fine-tuned: The networks were initialised with the

model pre-trained on SALICON, then directly tested on the

eye-tracking mammogram dataset without any fine-tuning.

- Fine-tuned without SALICON: The backbone networks

were first initialised with parameters pre-trained on large

natural image datasets such as ImageNet and PLACE

(except for GazeGAN, which was initialised from a Gaus-

sian distribution by its authors [31]), and the downstream

networks were initialised by the default method provided

by the authors. Then the network was fine-tuned on the

eye-tracking mammogram dataset.

- Fine-tuned with SALICON: The networks were first ini-

tialised with the model pre-trained on SALICON and then

fine-tuned on the eye-tracking mammogram dataset.

The mean scores of CC and SIM are shown in Table IX.
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The results of the Wilcoxon signed-rank tests indicates that

models fine-tuned with saliency information of natural images

can significantly (p < 0.001) improve their performance for

predicting saliency of medical images.

We found that saliency information learned from a large-

scale natural image dataset, i.e., the SALICON dataset, is

beneficial for learning saliency of mammograms. According

to Fig. 4, in general, fine-tuned models with the pre-training

weights in SALICON give better performance than those with-

out SALICON. In terms of the mean performance presented in

Table IX and the Wilcoxon signed-rank tests, the models fine-

tuned on the basis of the parameters pre-trained in SALICON

significantly outperform the models that are not fine-tuned

with SALICON. These results can be attributed to the follow-

ing reasons. First, models can obtain saliency-related features

from the SALICON dataset that are otherwise difficult to learn

in a smaller-scale saliency dataset. The second reason is that

loading the pre-trained weights on SALICON can initialise

all parameters in the model, which allows the networks to be

more stable and enhance their convergence. When SALICON

weights are not loaded, the default weight initialisation method

of the considered deep learning-based models is to load the

weights trained based on large-scale natural image data sets

(such as ImageNet and PLACE datasets) for their backbone

networks (except for GazeGAN, which is initialised from a

Gaussian distribution [31]). This initialisation method does

not initialise the parameters of their downstream networks,

such as decoder networks. This default initialisation method

makes it more difficult to obtain optimal performance by

directly fine-tuning on the mammogram dataset. Based on

above analyses, pre-training models on larger-scale natural

image saliency datasets (e.g., SALICON) before fine-tuning

them on a limited-scale mammogram dataset is suggested.

It is worth noting that only MSI-Net is barely affected by

SALICON fine-tuning. Amongst all models, MSI-Net is the

only model with its encoder trained on both ImageNet and

PLACE dataset; other models’ encoder was trained on one

dataset only (i.e., either ImageNet or PLACE). Both ImageNet

and PLACE are visual recognition datasets that are not directly

relevant for saliency. This implies that if pre-training on one

visual task is sufficient, the model is readily transferred to learn

the new task of predicting saliency of mammograms. This may

explain the fact that MSI-Net does not significantly benefit

from further training on SALICON and is readily equipped

with sufficient capacity for fine-tuning on mammograms. In

addition, based on the results in Table IX and the results of the

Wilcoxon Signed-Rank tests, fine-tuning a model rather than

directly applying any existing saliency models on the mam-

mogram dataset significantly improves the model performance

(p-value<0.001).

D. Significant findings

The above systematic experiments and statistical analyses

have revealed the following findings:

• The fine-tuned deep learning-based saliency models rep-

resent one of the most effective type of methods for

predicting radiologists’ visual attention in mammography

diagnosis.

• The saliency benchmarks or model rankings developed for

natural images cannot provide a reliable reference for the

selection of models for medical image saliency prediction.

• Complex deep neural networks with strong representation

ability, e.g., ResNet-50 and two-stream backbone, are more

suitable for predicting mammograms’ visual saliency.

• The GANs should be used with caution if large-scale

datasets are not available in the application domain.

• The ability of deep learning-based saliency models to

predict radiologists’ gaze in mammogram reading can be

significantly improved by transfer learning. In particular,

model performance can be improved by pre-training the

model on a large-scale natural image saliency dataset and

then fine-tuning it on the target medical image dataset.

IV. PROPOSED PARALLEL MULTI-STREAM ENCODED

MODEL FOR SALIENCY PREDICTION OF MAMMOGRAMS

Based on our findings in Section III-D, we hereby propose

a parallel multi-stream model, using an encoder-decoder ar-

chitecture, as depicted in Fig. 5. The encoder integrates three

state-of-the-art backbone networks in parallel that considers

introducing stronger and more extended image representations

for mammogram saliency prediction, and including diversified

features from CNN- and transformer-based networks and deep

encoded high-resolution representations.

A. Model details

1) Encoding: In order to obtain strong and diversified

image representations, three parallel state-of-the-art back-

bone networks, including ConvNeXt (version of ConvNeXt-

B) [64], HRNet (HRNet-W48-C) [65], and CSwin Transformer

(CSwin-B) [66], are chosen to construct an image encoder. In

selecting these backbone models, the intention is to use well-

performing models with proven efficacy but representing dis-

tinctive modelling philosophies. ConvNeXt is a representative

pure CNN-based backbone with a classical architecture. It con-

tains advancements from well-established backbone networks;

and it provides low-resolution representations in the deep lay-

ers and high-resolution representations in the shallow layers.

HRNet connects high-to-low resolution convolution streams in

parallel as opposed to scaling down the size of the feature map

in steps (the approach taken by most classical backbones like

ConvNeXt), which results in spatially more precise learned

representations. CSwin Transformer adopts a new mechanism

for computing self-attention in the horizontal and vertical

stripes in parallel that form a cross-shaped window. It can

provide sufficient long-range information that is lacking in

ConvNeXt and HRNet. For each backbone, four sets of feature

maps with the resolutions of 1

4
, 1

8
, 1

16
, and 1

32
, respectively

are extracted for the decoder. For both ConvNext and CSwin

Transformer, these feature maps are extracted from the end

of their four feature resolution stages. For HRNet, they are

extracted from the final stage. In addition, the spatial size of

the input images of ConvNeXt and HRNet is 384×288, while

the images fed into CSwin Transformer are first zero-padded

to a spatial size of 384 × 384 to match its input requirement

and then cropped after backbone processing to align with the

spatial size of feature maps from other backbones.
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Fig. 5. The architecture of proposed parallel multi-stream encoded model. The left-hand side shows the encoders, and the right-hand side shows the details of
the decoder. The different spatial sizes of feature maps are extracted by parallel backbones (CSwin Transformer, HRNet, and ConvNeXt, from top to bottom)
and feed into the decoder. N equals the number of encoders employed; Conv m n represents convolutional layer with m×m kernel and n output channels.

2) Decoding: To eliminate the potential influence of differ-

ent channels of backbones’ outputs on the results, the outputs

from these backbones are processed by 1×1 convolution layers

to align the number of output channels. The feature maps

with the same resolution are fused by element-wise addition.

Following this, those with a resolution of less than 1

4
from

the encoders are separately concatenated and processed by a

series of convolution and upsampling operations (i.e., nearest-

neighbor interpolation) to restore the spatial dimension of the

feature maps to 1

4
resolution. Subsequently, the restored feature

maps and the maps with a resolution of 1

4
are concatenated

and processed by a series of convolution and upsampling

operations to restore the spatial dimension to the same size of

the input image and reduce the channel dimensions to generate

the final saliency map.

3) Loss function: Using the saliency evaluation metrics

to define the loss function has achieved notable success

in saliency prediction [28]–[31]. Accordingly, we adopted a

linear combination of four metrics as the loss function to

train our model, including the Normalized Scanpath Saliency

(NSS), Kullback-Leibler divergence (KLD), Linear Correla-

tion Coefficient (CC), and Similarity (SIM). Let ys, yf , and ŷ

be the ground truth saliency map, fixation map, and predicted

saliency map, our loss function is defined as:

L(ys, yf , ŷ) =λ1LNSS(y
f , ŷ) + λ2LKLD(y

s, ŷ)

+ λ3LCC(y
s, ŷ) + λ4LSIM(ys, ŷ),

(3)

where λ1, λ2, λ3, and λ4 are the weights of individual metrics.

More details of the loss function can be found at [67].

B. Experiments and results

1) Training strategies: According to the analysis in sec-

tion III-C, pre-training the model on SALICON dataset is

beneficial for predicting the visual attention of radiologists.

Therefore, the models were first pre-trained on SALICON,

and then fine-tuned and validated by the same k-fold Cross-

Validation (k = 7) strategy as detailed in section II-D on

mammogram dataset. The pre-training process contains two

stages: encoder training and decoder training. In the stage of

encoder training, each selected backbone is used as an encoder

to form an encoder-decoder network with a similar architecture

shown in Fig. 5 and trained on SALICON. Then all the trained

encoders form a parallel encoder. In the stage of deocder

training, the target network consists of a trained parallel

encoder and an untrained decoder, where the parameters of the

trained parallel encoder are all fixed, and then only the decoder

is trained on SALICON. The fine-tuning process is similar to

the pre-training process. The models with a single backbone

encoder are first loaded the parameters obtained from the

pre-training phase and fine-tuned on mammogram dataset.

Then the parallel encoder and decoder of the target network

are loaded the parameters fine-tuned on mammogram dataset

and the parameters pre-trained on SALICON respectively,

where the parameters of the parallel encoder are all fixed, and

then only the decoder is fine-tuned on mammogram dataset.

Because the models are pre-trained on SALICON dataset, the

λ1, λ2, λ3, and λ4 in loss function are set to -1, 10, -2, and -1

respectively according the previous study [67]. The learning

rate is set to 2×10−5 and 1×10−4 for pre-training phase and

fine-tuning phase respectively, which is then multiplied by 0.1

for every 2 epochs. Models are trained with a batch size of 4

for 30 epochs with a stop patience of 5 epochs.

2) Results: The results are listed in Table X. For all three

backbones, using two backbones to form a parallel encoder

(two-stream encoder) is more beneficial than using a single

backbone as an encoder for mammogram saliency predictions.

In addition, the model using all three backbones to construct a

parallel encoder (a three-stream encoder) further improves the

performance compared to models using a two-stream encoder.

By introducing parallel backbones, the model achieves the best

performance scores on CC and SIM in all saliency models.

To further validate the proposed method, the Wilcoxon

Signed-Rank tests are performed on the seven model variants

in Table X show the following results. 1) for the three

variants that adopt a single encoder, there is no statistically
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Fig. 6. Comparison of saliency maps generated by our model and the state-of-the-art models in the comparative study (see Section III). From left to right,
the columns correspond to mammogram images (Stimuli), the corresponding saliency maps (Ground Truth), and the prediction results from our model and
the state-of-the-art saliency models, respectively.

TABLE X
EXPERIMENT RESULTS: MAMMOGRAM SALIENCY PREDICTION OF SINGLE

AND PARALLEL MULTI-STREAM ENCODED MODELS WITH DIFFERENT

BACKBONES. µ AND σ REPRESENT THE MEAN AND STANDARD DEVIATION

OF k-FOLD CROSS-VALIDATION (k=7), RESPECTIVELY. BOLD FONT

INDICATES THE BEST PERFORMANCE

ConvNeXt HRNet CSwin Transformer CC↑ SIM↑

✓ – –
µ 0.9007 0.7775
σ 0.0061 0.0090

– ✓ –
µ 0.9017 0.7785
σ 0.0070 0.0094

– – ✓
µ 0.8995 0.7762
σ 0.0046 0.0085

✓ ✓ –
µ 0.9043 0.7813
σ 0.0077 0.0098

✓ – ✓
µ 0.9030 0.7802
σ 0.0060 0.0097

– ✓ ✓
µ 0.9038 0.7809
σ 0.0063 0.0095

✓ ✓ ✓
µ 0.9061 0.7830

σ 0.0070 0.0096

significant difference (i.e., p-value>0.05) in performance; 2)

for the three variants that adopt a two-stream encoder, there

is no statistically significant difference (i.e., p-value>0.05)

in performance; 3) models with a two-stream encoder have

significantly higher (i.e., p-value<0.01) performance than the

models with a single encoder (note that is used to form the

two-stream encoder); 4) the three-stream variant significantly

outperforms (i.e., p-value<0.01) all models that adopt either

a two-stream encoder or a single encoder. These results

show that the proposed method can significantly improve the

performance of predicting mammograms’ saliency.

3) Comparison with state-of-the-art methods: The state-of-

the-art visual saliency models in Section III are selected (Top-

ranked models in Fig. 2) for the performance comparison on

the mammogram dataset. The overall performance results are

reported in Table XI. It can be seen that our model achieves

the best performance on CC and SIM. In addition, two widely

used location-based saliency evaluation metrics, namely NSS

and AUC J are used, as the complement to the distribution-

TABLE XI
COMPARISON OF THE PERFORMANCE OUR MODEL AND THE

STATE-OF-THE-ART MODELS IN THE COMPARATIVE STUDY (SEE

SECTION III) ON THE MAMMOGRAM DATASET. µ AND σ REPRESENTS THE

MEAN AND STANDARD DEVIATION OF k-FOLD CROSS-VALIDATION (k=7),
RESPECTIVELY. BOLD FONT INDICATES THE BEST PERFORMANCE

Model Name CC↑ SIM↑ NSS↑ AUC J↑

SAM-ResNet [28] µ 0.8855 0.7618 2.9095 0.9417
σ 0.0100 0.0117 0.0447 0.0033

MSI-Net [32] µ 0.8871 0.7636 2.8867 0.9418
σ 0.0125 0.0152 0.0432 0.0038

SAM-VGG [28] µ 0.8908 0.7687 2.9503 0.9426
σ 0.0090 0.0123 0.0257 0.0039

EML-NET [29] µ 0.8909 0.7668 2.9876 0.9435
σ 0.0064 0.0098 0.0396 0.0030

DVA [27] µ 0.8935 0.7546 2.9212 0.9425
σ 0.0086 0.0138 0.0450 0.0036

Our Model µ 0.9061 0.7830 3.0109 0.9446

σ 0.0070 0.0096 0.0337 0.0032

based metrics. It can be seen that our model achieves the

best performance on NSS and AUC J as well. Fig. 6 shows

saliency maps generated by our models and other models for

mammograms. By visually assessing these saliency maps, it

can be seen that our model is in closer agreement with the

ground truth than other models.

V. DISCUSSION

In many clinical applications, a computational model’s

prediction accuracy is rather critical for its successful deploy-

ment in real practice. The focus of the proposed model in

Section IV is to achieve a most accurate possible saliency

prediction by using strong and diversified image representa-

tions. The increased accuracy is often achieved at the expense

of computational costs. It is worth discussing the model’s

complexity in terms of the number of parameters as well as

runtime (indicators of the computational resources required

for a deep learning-based model’s inference). This will also

direct the future research in managing the trade-off between

accuracy and complexity for specific clinical environments. A
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TABLE XII
THE NUMBER OF PARAMETERS AND RUNTIME FOR SOTA MODELS

IMPLEMENTED IN THIS STUDY AND THE PROPOSED MODEL. RUNTIME

INDICATES THE RUNTIME OF A MODEL TO PREDICT SALIENCY FOR A

SIGNLE MAMMOGRAM IMAGE.

Model name Size (M) Runtime (s)

DVA 20.60 0.05
MSI-Net 24.93 0.05
EML-NET 47.09 0.04
SAM-VGG 51.84 0.06
SAM-ResNet 70.09 0.08
Our model 240.36 0.13

comparison of the number of parameters and runtime (running

on a single NIVIDA GTX 1080 GPU) of the proposed model

with stat-of-the-art saliency models is illustrated in Table XII.

Our proposed model has a larger number of parameters and

a longer runtime compared to other models since it combines

multiple complex deep networks to form its encoder. Again, in

this study we have concentrated on developing a most accurate

model for use in clinical applications; and the proposed model

is a proof of concept, harvesting the significant findings of

the comparative study in Section. III, “complex deep neural

networks with strong representation ability are more suitable

for predicting mammograms’ visual saliency.” To this end, we

have taken the approach of combing multiple deep networks

to produce a plausible solution. Although achieving high

accuracy is a top priority than saving computational resources

for many clinical applications, it should be noted that a trade-

off between the need for computing power, inference time, and

accuracy is often considered in practical settings. The future

research includes further optimisation of the proposed model

to reduce the required computing capacity while maintaining

its accuracy.

For our proposed saliency model, the weights of the four

subloss functions are determined empirically. As per previous

visual saliency prediction studies [28], [31], [67], the actual

tuning process consists of two main steps. In the first step, a

set of initial weights of sublosses is produced with the aim

to make the impact of individual subloss functions on the

overall model result relatively consistent/equal. In the second

step, a “grid search”-like method, i.e., fine-tuning individual

weights by adjusting one weight and fixing the remaining

weights to optimise the performance on the validation set of

SALICON [31]. The goal is to find a combination of weights

that allows the model to achieve good and balanced scores on

the commonly used saliency evaluation metrics. More complex

weights determination methods e.g., automatic hyperparameter

optimisation may yield better results for specific application

scenarios. However, this is beyond the scope of this study, and

is worth further exploring in future research.

In addition to predicting the spatial fixation distribu-

tion/density as discussed in this paper, research has been

undertaken to predict human scanpaths in natural images [68]–

[72] and achieved promising results. This demonstrates the

potential for the development of scanpaths prediction models

for medical images, which is highly relevant for improving

radiologists’ diagnostic performance.

It should be noted that deep learning models are data-

driven, and the scale of datasets affects their performance [73].

With respect to medical imaging-related tasks, recent studies

have demonstrated that the performance of deep learning algo-

rithms can be improved by increasing the size of the training

dataset [74]. To the best of our knowledge, the mammogram

saliency dataset used in this study is the largest of its kind

but remains limited. We would expect that increasing the size

of the dataset would benefit the prediction power of deep

learning-based models.

VI. CONCLUSION

In this paper, we have investigated 20 state-of-the-art

saliency models in predicting the visual attention of radiol-

ogists during the reading of mammograms. We found that

the deep learning-based models developed for natural images

are effective to an extent after appropriate fine-tuning using

eye-tracking data of mammograms. However, the saliency

benchmarks or model rankings resulted from natural images

cannot provide a reliable reference for the selection of models

for medical imaging. In addition, we found that complex deep

neural networks with strong representation ability and pre-

training models on large-scale natural saliency datasets (i.e.,

SALICON) are beneficial for predicting the visual saliency of

mammograms. Following this, we have developed a saliency

model that uses parallel multi-stream encoders to predict

the saliency of the mammogram, which achieves superior

performance to the existing state-of-the-art models.

Despite saliency models have been applied to improve clini-

cal diagnosis and computer-aided diagnostic systems [75], this

work provides previously unavailable analyses and guidelines

to inform the design of better saliency models for diagnostic

imaging. Future work includes integrating our method and

model to real-world clinical settings and applications.
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[49] L. Lévêque et al., “State of the Art: Eye-Tracking Studies in Medical
Imaging,” IEEE Access, vol. 6, pp. 37 023–37 034, 2018.

[50] C. Privitera and L. Stark, “Algorithms for defining visual regions-of-
interest: comparison with eye fixations,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 22, no. 9, pp. 970–982, 2000.
[51] H. Liu and I. Heynderickx, “Visual Attention in Objective Image Quality

Assessment: Based on Eye-Tracking Data,” IEEE Trans. Circuits Syst.

Video Technol., vol. 21, no. 7, pp. 971–982, 2011.
[52] T. Judd, F. Durand, and A. Torralba, “A Benchmark of Computational

Models of Saliency to Predict Human Fixations,” MIT Computer Science
and Artificial Intelligence Lab, Cambridge, MA, USA, Tech. Rep. MIT-
CSAIL-TR-2012-001, 01 2012.
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