

Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: https://orca.cardiff.ac.uk/id/eprint/158219/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Alsiri, Najla, Al-Obaidi, Saud, Asbeutah, Akram, Almandeel, Mariam and Palmer, Shea 2018. The impact of hypermobility spectrum disorders on musculoskeletal tissue stiffness: an exploration using strain elastography. Clinical Rheumatology 38 (1), pp. 85-95. 10.1007/s10067-018-4193-0 file

Publishers page: https://doi.org/10.1007/s10067-018-4193-0 <https://doi.org/10.1007/s10067-018-4193-0>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies.

See

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

information services gwasanaethau gwybodaeth

The impact of hypermobility spectrum disorders on musculoskeletal tissue stiffness: an exploration using strain elastography

Alsiri, N., Al-Obaidi, S., Asbeutah, A., Almandeel, M. & Palmer, S.

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

Alsiri, N, Al-Obaidi, S, Asbeutah, A, Almandeel, M & Palmer, S 2018, 'The impact of hypermobility spectrum disorders on musculoskeletal tissue stiffness: an exploration using strain elastography', Clinical Rheumatology, vol. 38, pp. 85-95. https://dx.doi.org/10.1007/s10067-018-4193-0

DOI 10.1007/s10067-018-4193-0 ISSN 0770-3198 ESSN 1434-9949

Publisher: Springer

The final publication is available at Springer via http://dx.doi.org/10.1007/s10067-018-4193-0

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

Title Page

2	Title: The impact of Hypermobility Spectrum Disorders on musculoskeletal tissue stiffness: An exploration
3	using strain elastography.

- 4 Concise title: The impact of Hypermobility Spectrum Disorders on musculoskeletal tissue stiffness.
- 5 Authors: Najla Alsiri^a, Ph.D, MSc, BSc (Hons), Saud Al-Obaidi^b, Ph.D, MSc, MCSP, Akram Asbeutah^b, Ph.D,
- 6 DMU, ASAR, Mariam Almandeel^a, BSc. Shea Palmer^c, Ph.D, BSc (Hons), MCSP, FHEA.
- ^a Al-Razi Orthopedic and Rehabilitation Hospital, Kuwait.
- 8 ^bKuwait University, Faculty of Allied Health Sciences, Kuwait.
- 9 ^cUniversity of the West of England, Faculty of Health and Applied Sciences, Bristol, United Kingdom.
- 10 Corresponding author: Dr. Najla Alsiri
- 11 Email: <u>dr.alsiri@outlook.com</u>
- 12 Phone number: 00965-66820032
- 13 The study received no specific grand or funding.

14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			

1 Abstract:

2 3 4 5	Introduction: Hypermobility Spectrum Disorders (HSD) are conditions associated with chronic joint pain and laxity. HSD's diagnostic approach is highly subjective, its validity is not well studied, and it does not consider many of the most commonly affected joints. Strain elastography (SEL) reflects musculoskeletal elasticity with sonographic images. The study explored the impact of HSD on musculoskeletal elasticity using SEL.
6 7 8	Method: A cross-sectional design compared 21 participants with HSD against 22 controls. SEL was used to assess the elasticity of the deltoid, biceps brachii, brachioradialis, rectus femoris, and gastrocnemius muscles, and the patellar and Achilles tendon. SEL images were analysed using Strain Index, Strain Ratio, and colour pixels.
9 10 11 12 13 14 15	Results: Mean Strain Index (standard deviation) was significantly reduced in the HSD group compared to the control group in the brachioradialis muscle; 0.43 (0.10) vs. 0.59 (0.24), patellar; 0.30 (0.10) vs. 0.44 (0.11), and Achilles tendons; 0.24 (0.06) vs. 0.49 (0.13). Brachioradialis muscle and patellar tendon's Strain Ratios were significantly lower in the HSD group compared to the control group; 6.02 (2.11) vs. 8.68 (2.67) and 5.18 (1.67) and 7.62 (1.88), respectively. The percentages (%) of red colour (soft tissues) in the SEL images were significantly increased in the HSD group compared to the control group in the biceps brachii muscle; 34.72 (7.82) vs. 26.69 (3.89), and Achilles tendon; 18.14 (13.21) vs. 5.59 (8.23) ($p \le 0.01$).
16 17	Conclusion: The elasticity of the musculoskeletal system seems to be lower in people with HSD. SEL could be a supplementary tool for diagnosing and monitoring HSD.
18	Key words:
19	Hypermobility Spectrum Disorders, strain elastography, muscle, tendon, Joint Hypermobility Syndrome, diagnosis.
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

1 Introduction:

2 'Hypermobility Spectrum Disorders' (HSD) refers to the conditions observed with chronic synovial joint 3 pain and hypermobility resulting from the connective tissues deficiency [1-2]. The term HSD was introduced in 2017 4 to highlight the wide heterogeneities within joint hypermobility-related conditions, and to replace the terms 'Joint 5 Hypermobility Syndrome' (JHS) and 'Ehlers-Danlos Syndrome Hypermobility Type' (EDS-HT) [2]. JHS and EDS-6 HT greatly overlap as they are heritable connective tissue disorders associated with symptomatic multiple joint 7 hypermobility in the absence of systemic inflammation [1-3]. EDS-HT additionally involves skin hyperextensibility 8 and smoothness, velvety skin, and recurrent joint dislocations [1-3]. HSD diagnosis is likely to capture the majority 9 of patients previously diagnosed as JHS/EDS-HT, although a discrete group of patients with more severe symptoms 10 may meet the diagnostic criteria of 'hypermobile EDS' (hEDS) [3]. The present research is specific to HSD.

Based on meta-analysis exploring joint hypermobility-related disorders, Scheper et al. (p.12) stated: *"Clinicians should be aware that within these disorders, a large variability in phenotype exist"* [4]. HSD considered the wide variability of joint hypermobility-related conditions, therefore it involves four phenotypes: 'Localized HSD': hypermobility in one or more joints but less than five joints; 'Peripheral HSD': hypermobility in hands and feet; and 'Generalized HSD': hypermobility in five or more than five joints [2]. Joint hypermobility reduces with age, therefore the 'Historical HSD' phenotype was introduced [2, 5].

17 The term HSD has been newly introduced; therefore, there is a lack of research using the new criteria. 18 However, HSD captures the previously used terms of JHS and EDS-HT. JHS had a prevalence figure of 30% of 19 patients attending a musculoskeletal triage clinic in London [6]. JHS etiology was related to abnormalities in the genes 20 encoding collagen, hormonal imbalance, or environmental factors [1, 7-8]. The symptomatic manifestation of JHS 21 varied from mild to disabling, including chronic joint pain and hypermobility, muscle weakness, proprioception 22 impairment, recurrent injuries and dislocation, fibromyalgia, and osteoarthritis [1, 9]. JHS could be associated with 23 cardiovascular deterioration, gastrointestinal disturbances, and psychological health decline [10]. The prevalence and 24 disabling impact of HSD provide a remarkable rationale for optimizing strategies for its identification and diagnosis.

25 Despite the importance of the new diagnostic approaches for HSD, they are likely to encounter various 26 limitations. Like the Brighton criteria (previously used for JHS), the HSD criteria are based on subjective questionings 27 and clinical examinations (such as the Beighton score of joint mobility) [1, 11]. Therefore, the criteria are highly 28 dependent on the examiner's skill and experience, and patient memory. Recent meta-analysis and a systematic review 29 concluded that the diagnostic criteria are inadequate, where their validity has not been well studied [4, 12]. The current 30 diagnostic approaches do not assess many of the most commonly affected joints in JHS such as the shoulder; 85.2% 31 prevalence, neck; 59.3% prevalence, pelvis and hip; 66.7% prevalence, and ankle and foot; 77.8% prevalence [13]. 32 Using the current diagnostic approach, it is easy to reach the diagnostic cut-off point of 4/9 purely with fingers and 33 thumb hypermobility [14]. Therefore, there is a need to identify new diagnostic approaches for people with HSD. 34 Diagnostic imaging advances could help people with HSD. Strain elastography (SEL) is an ultrasound-based

System designed to examine the elasticity of human structures by providing colour-coded images [15]. Administering

1 SEL for examining HSD may be valuable, as musculoskeletal structures could show significant laxity. The mutation 2 identified in the genes encoding collagen in hypermobility-related disorders could reduce the mechanical rigidity of 3 the connective tissues in the musculoskeletal system, and this laxity may be identified using SEL. Other factors could 4 lead to significant softening of the HSD musculoskeletal system, including muscular weakness, reduced muscle-5 tendon stiffness, the pain-muscular inhibition cycle, and reduced activity [1, 16-17]. Various studies have identified 6 the impact of hypermobility-related disorders on tissue stiffness including skin extensibility, impaired Achilles tendon 7 stiffness, and muscle activation and force production [16, 18-19]. Other studies found no impact of hypermobility-8 related disorders on skin extensibility, patellar tendon active stiffness and hamstring muscle energy absorption [20-9 22]. The insignificant differences could be related to type II error due to the studies' small sample sizes, which ranged 10 from eight-nine participants per group [20, 22]. People with HSD could lose the feature of joint hypermobility due to 11 the condition pathological course or aging factors, which would make the diagnosis and condition monitoring more 12 difficult. SEL could aid in providing real-time images for the elasticity degree without relying on joint hypermobility 13 feature. Identifying significant elasticity with SEL in certain muscle groups might be important for the classification

14 of HSD patients.

15 Two studies have examined the musculoskeletal elasticity in people with hypermobility-related disorders 16 using SEL. The Achilles tendon was explored in a 10 years old boy [23]. SEL images were analysed qualitatively 17 showing an increase in the green and red areas, which suggested an increase in the Achilles tendon laxity [23]. SEL 18 feasibility were studied in ten participants with JHS against ten controls [17]. Alsiri (2017) found no significant 19 differences between the two groups in gastrocnemius medius elasticity, which could be a type II error due to the small 20 sample size [17]. The current study introduces a novel exploration that aims to identify the impact of HSD on 21 musculoskeletal elasticity with SEL using a larger sample size and further anatomical sites. The study clinical 22 importance could be enhanced by exploring the relationship of musculoskeletal elasticity with joint pain. Joint pain is 23 a dominant feature and complaint, and an essential diagnostic element for HSD [1-2]. Muscles and tendons are vital 24 components in the joint stabilization system. Reduced stiffness might create deficiency in joint support which could 25 lead to microtrauma and instability, ultimately leading to joint pain [24-25]. It is hypothesized that joint pain would 26 be higher with softer musculoskeletal structures. The study objective was to examine the impact of HSD on the 27 elasticity of the musculoskeletal system.

28

29 Materials and Methods:

30 Participants:

A cross-sectional research design compared musculoskeletal elasticity of a HSD group against a control group. Kuwait Ministry of Health Ethical Committee approved the study (571/2017). Patients were recruited from an orthopedic hospital using convenience sampling [26]. Four physiotherapists assessed their patients against the HSD classification, including the Beighton score. HSD subdivisions are Localized, Peripheral, Generalized and Historical HSD [2]. The Beighton score is used to assess joint hypermobility including the fifth metacarpophalangeal joint dorsiflexion; > 90⁰, thump opposition; if reached the forearm volar aspect, elbow hyperextension; > 10⁰, and knee
 hyperextension; > 10⁰, and spinal hypermobility [27]. A Beighton score of ≥ 5/9 was used to distinguish Generalised
 HSD from other HSD categories [2-3].

4 Patients were identified from physiotherapy department referrals. All patients referred to the four 5 physiotherapists were screened against the HSD subcategories [2]. The chief researcher (NA) screened all patients 6 who attended for the outpatient orthopedic clinic. Recruitment packs were provided for identified patients. Patients 7 who were willing to participate contacted the chief researcher. The chief investigator had more than four years' 8 experience in diagnosing JHS and was trained in HSD classification. Training in the HSD classification was provided 9 to the four physiotherapists. Participants in the control group were recruited from among the staff at the Ministry of 10 Health and their relatives through advertising emails and posters. A matching-pairs design was used to ensure 11 homogeneity between the two groups in terms of gender and age. The examination lasted from June-December 2017 12 in the Radiology department. Informed consent was obtained from participants.

13 Women and men aged \geq 18 years were included in the control and HSD group. Healthy adults were excluded 14 from the control group if they had $\geq 4/9$ in the Beighton score with chronic multiple joint pain or met the criteria for 15 any of the HSD subcategories. The exclusion criteria for the two groups were upper/lower limbs' injuries during the 16 last three months; upper/lower limbs' fractures or surgery in the last year; pregnancy; one year postpartum due to 17 ligament laxity; other connective tissues disorders including Ehlers-Danlos Syndrome; and other conditions which 18 might compromise muscular strength. Participants were included in the HSD group if they met the criteria for HSD 19 [2]. Chronic multiple joint pain for longer than three months was the primary symptomatic manifestation for the HSD 20 group, and was self-reported by patients [6, 12]. The secondary symptomatic manifestations were recurrent injuries 21 and dislocations.

22 Instrumentation:

Compression SEL (Voluson E8; GE Healthcare Technologies, Milwaukee, WI, USA) was used to examine musculoskeletal structures elasticity. SEL is a clinically applicable ultrasound-based system, which measures tissues perpendicular deformation in response to mild strain induced using the examination probe [15, 28]. SEL converts the compression into strain coloured-images, where each colour refers to a certain elasticity degree. SEL follows the mechanical law of hard tissues deforming less and soft tissues deforming more when subjected to the same force [15, 28–29].

SEL reliability has been demonstrated for examining the biceps brachii muscle, plantar fascia, and the Achilles tendon [29-31]. An intra-rater reliability study was conducted for the twenty-two participants from the control group in this study, by repeating the examination twice in the same day with one-hour interval. The study showed moderate to excellent intra-rater reliability, with ICCs (type 3,1) ranging from 0.734 (95% Confidence Interval 0.279-0.903) to 0.950 (0.848-0.983), for examining the deltoid, biceps brachii, brachioradialis, rectus femoris, gastrocnemius medius muscles, and Achilles tendon. The same operator (NA), conducted the examination. NA has a doctorate in musculoskeletal physiotherapy, has received postgraduate training in musculoskeletal ultrasound and has four years'

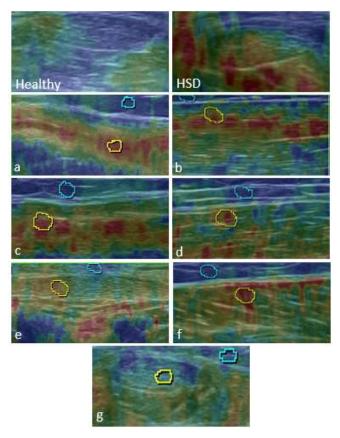
experience in performing elastography and musculoskeletal ultrasound. The piloting stage was supervised by an associate professor in radiological sciences (A.A) who has 20 years' experience in ultrasonography. It was not practical to blind the operator as she needed to confirm the eligibility criteria using the HSD classification. Images were saved using the participants' ID, and the analysis was performed blind to health status being entered to the relevant participant file. SEG's visual quality indicator was used to standardise the applied compression magnitude [28].

Joint pain intensity was measured using Visual Analogue Scales (VAS). The VAS is a pain assessment tool,
which is highly valid, reliable, and sensitive [32]. It is a 10-cm length line with two descriptors at the two anchors: no
pain, and worst possible pain. Twelve VASs were used to assess the shoulder, elbow, wrist, hip, knee, and ankle joints,
bilaterally. Pain assessment was limited to a one-week period to reduce recall error by asking: 'please rate the average
pain over the past week in each of the following joints'

12

Sample size determination:

13 Sample size calculation was based on Lee et al.'s study who used SEL with Strain Ratio to examine rotator 14 cuff tendinopathy [33]. The means (standard deviation) for grade 0; 2.92 (2.13), and grade 3; 12.3 (0.00), tendinosis 15 were used to calculate the effect size of 0.95. An appropriate sample size was estimated to be 20 at (α) 0.05, and a 16 power (1- β) of 80% [34].


17 Data colle

Data collection procedures:

18 After completing the demographic sheet and VASs, the dominant upper and lower limbs were examined. The 19 dominant side was self-declared by the participant by reporting the hand used for writing and the leg used for kicking 20 a ball [35-36]. SEL images were recorded by applying perpendicular force to the target area using the SEL transducer 21 through simultaneous compressions and decompressions (Figure 1). Five muscles were examined: deltoid, biceps 22 brachii, brachioradialis, rectus femoris and gastrocnemius medius. Additionally, the patellar and Achilles tendons 23 were tested. The Upper and Lower Boundary of the Strain Index were measured with the SEL (Figure 1). The Higher 24 Boundary of Strain Index refers to the elasticity of the target area, and the Lower Boundary of Strain Index refers to 25 subcutaneous fat elasticity. The lower the Strain Index, the softer the examined structure is, and vice versa.

- 26
- 27
- 28
- 30

- 31
- 32

2 Fig 1 Transverse strain elastography images for the Achilles tendon for a healthy participant (Healthy), and for a 3 participant with Hypermobility Spectrum Disorder (HSD). Red refers to soft tissues, green refers to intermittent 4 elasticity, and blue refers to hard tissues. The size of the image box was manually adjusted to include the area of 5 interest with adjacent subcutaneous fat as a reference. Images from (a) to (g) are for one participant with 6 Hypermobility Spectrum Disorder, where the red colour mostly dominated SEG images. The images from (a) to (g) 7 show the tracing approach used to attain the Higher and Lower Boundary of Strain Index following the manufacturer 8 guidelines. (a) deltoid muscle, (b) biceps brachii muscle, (c) brachioradialis muscle, (d) rectus femoris muscle, (e) 9 patellar tendon, (f) gastrocnemius medius muscle, and (g) Achilles tendon. Following standardized procedure, the 10 reference area selected was always superior to the area of interest but not directly above it, following the assumption 11 proposed by the European Federation of Societies for Ultrasound in Medicine and Biology that the stress is uniformly 12 distributed in SEL. Initially an area encoding red pixels within the area of interest was selected to represent the Higher 13 Boundary of Strain Index (highlighted with yellow traces). The relatively most soft area was selected in cases where 14 red pixels were not displayed, as in image (g). Then an area encoding blue pixels was selected from the subcutaneous 15 fat layer above the area of interest to represent the Lower Boundary of Strain Index (highlighted with blue traces) 16 [37]. The two areas were selected to be as adjacent as possible to each other to ensure that the two areas were 17 subjected to similar compression magnitude. Muscles and tendons are distinct structures and lack fat tissues that 18 could serve as a reference. Using subcutaneous fat as a reference is the most applicable setup for musculoskeletal 19 SEL, with comparable reliability to using alternative reference areas at other depth levels [37]. Representative 20 reference tissue may be limited and sometimes difficult to obtain with comparable size and position to the area of 21 interest, however, the size of the reference area has no significant influence on Strain Ratio [37]. The size of the two 22 traced areas in the present investigation ranged from 0.60 - 1.00 cm² and were set to be as superficial as possible 23 [37].

24

The upper limb structures were examined then the lower limb structures. As the examined structures were superficial a linear-array high frequency transducer was used (6-15 MHz) as it penetrated 4-5 cm beneath the skin. The examinations were conducted by the operator in a sitting position, and the probe was maintained at a perpendicular angle to the skin. The middle fibers of deltoid muscle were examined longitudinally in sitting, with a neutral shoulder
position and supinated forearm [38]. The biceps brachii common muscle belly (5 cm above the elbow line), and
brachioradialis muscles (5 cm below the elbow line laterally) were scanned longitudinally in supine, with a neutral
shoulder position and elbow extension and supination [39].

5 In supine, with knee extension, the rectus femoris muscle was examined longitudinally (10 cm above the 6 knee line), and the patellar tendon was examined transversely (midpoint between the inferior pole of the patella and 7 the tibial tubercle). In prone, with knee extension and the feet in a relaxed position over the plinth edge, the 8 gastrocnemius medius muscle was examined longitudinally (at 30% of its proximal length from the popliteal fossa 9 midpoint to midpoint between the ankle malleoli). In the same position, the Achilles tendon was examined in a 10 transverse plane (mid-position between the two malleoli) [40]. Each structure was examined 2-3 times, then one image 11 was saved for analysis according to the compression magnitude sufficiency examined with SEL visual quality 12 indicator. By tracing the target area and subcutaneous fat, the SEL calculates the Higher and Lower Boundary of Strain 13 Index in real-time. The Strain Ratio was obtained from the ratio of the strain of the target area (numerator) and 14 subcutaneous fat (denominator) [41].

15 Statistical analysis:

16 Statistical Package for Social Sciences (SPSS 23, IBM Corp., Armonk, NY, USA) was used. SEL images 17 were analyzed semi-quantitatively through the Strain Index, Strain Ratio and colour pixel analysis with ImageJ; a 18 Java-based image processor (U. S. National Institute of Health, Bethesda, Maryland, USA). ImageJ counts the pixels 19 of the red, green, and blue colour with a downloaded plugin in ImageJ, then the percentages of each colour was 20 determined to compensate for differences in cross-sectional area between participants [17]. Data normal distribution 21 was checked with histograms then objectively confirmed with Shapiro-Wilk tests, therefore Independent sample t-22 tests were used. The level of p value for statistical significance was set as ≤ 0.01 . The intensity of joint pain was 23 measured and correlated with elasticity using Pearson Product Correlation Coefficient. Only pain in joints adjacent to 24 each anatomical structure were included in this analysis.

25

26 **Results:**

27 Twenty-one participants in the HSD group were compared against 22 participants in the control group. The 28 demographic characteristics are summarised in Table 1, indicating homogeneous groups in term of age, sex, height, 29 weight, and body mass index. Regarding ethnicity, the HSD group included three Asian men, one Indian man, 16 30 Asian women, and one white British woman. The control group included four Asian men, 15 Asian women, and three 31 Indian women. The HSD group included 14 participants with Generalized HSD, six participants with Localized HSD, 32 and one participant with Historical HSD [3]. Three participants in the HSD group and one participant in the control 33 group were left side dominant. Images with artefact and tracing error were excluded; one image for the rectus femoris 34 muscle from the HSD group, and two images for the deltoid, and two images for the biceps brachii muscles from the 35 control group. All the results present mean values.

- 1 The Higher Boundary of the Strain Index for the HSD group point toward reductions in all the examined 2 structures except for the biceps brachii muscle (Table 2). Three of the observations were statistically significant 3 including the brachioradialis muscle, patellar tendon, and Achilles tendon ($p \le 0.01$) (Table 2). There were no 4 significant differences between the two groups in the Lower Boundary of the Strain Index (Table 2). The Strain Ratios 5 reveal statistically significant reduction in the elasticity of the brachioradialis muscle, and the Achilles tendon in the 6 HSD group ($p \le 0.01$) (Table 2).
- 7 Colour pixel analysis shows a higher percentage of red colour in all the examined musculoskeletal structures 8 in the HSD group, yet two of the observations were statistically significant including the biceps brachii, and Achilles 9 tendon ($p \le 0.01$) (Table 3). The results of the HSD group demonstrate a reduction in the percentage of blue colour in 10 all the examined structures, however, three of the seven observations were statistically significant including the biceps 11 brachii, brachioradialis and the Achilles tendon ($p \le 0.01$) (Table 3). No significant differences were noticed between 12 the two groups in the percentages of green colour (intermittent elasticity) ($p \ge 0.01$) (Table 3).
- 13 Significant differences were found between the two groups in joint pain intensity; $p \le 0.01$ (Table 4). In the 14 HSD group, the greatest pain was reported in the knee joint bilaterally, followed by dominant hip joint, then the 15 shoulder joint bilaterally (Table 4). Moderate correlations were identified between the elasticity of the biceps brachii 16 muscle and pain intensity at the shoulder, and elbow joints, and between knee joint pain and the elasticity of the 17 patellar, and Achilles tendon; $r \ge 0.4$ (Table 5).

Table 1: Demographic characteristics: mean (standard deviation) of the HSD and control group.						
	HSD group	Control group	P value			
	n = 21	n = 22				
Age (years)	35.57 (14.89)	34.72 (7.00)	0.81			
Sex	17 women, 4 men	18 women, 4 men	0.94			
Height	161.11 (7.23)	162.63 (7.80)	0.51			
Weight	72.66 (17.91)	74.72 (15.41)	0.68			
Body Mass Index	27.99 (6.90)	28.06 (4.42)	0.96			
Beighton Score	4.71 (1.82)	0.90 (1.01)	≤0.001*			
*Indicates a statistically significant difference at $p \le 0.01$ with independent sample t-test.						

Examined area	Lower Boundary of Strain Index						Higher Boundary of Strain Index					Strain Ratio				
	HSD group	Control group	P value	Mean difference	95% CI	HSD group	Control group	P value	Mean difference	95% CI	HSD group	Control group	P value	Mean difference	95% CI	
Deltoid muscle	0.05 (0.03)	0.05 (0.01)	0.72	-0.002	-0.01, 0.01	0.44 (0.07)	0.48 (0.09)	0.24	0.03	-0.02, 0.08	11.03 (8.95)	9.48 (2.54)	0.45	1.55	-5.75, 2.65	
Biceps brachii muscle	0.06 (0.02)	0.08 (0.02)	0.05	0.01	-0.00, 0.03	0.49 (0.09)	0.45 (0.07)	0.18	-0.03	-0.09, 0.01	10.45 (10.71)	5.79 (1.19)	0.06	4.65	-9.55, 0.24	
Brachioradialis muscle	0.07 (0.02)	0.07 (0.02)	0.47	-0.006	-0.02, 0.01	0.43 (0.10)	0.59 (0.24)	0.01*	0.15	0.03, 0.27	6.02 (2.11)	8.68 (2.67)	≤0.001*	2.65	1.17, 4.14	
Rectus femoris muscle	0.09 (0.03)	0.08 (0.02)	0.33	-0.009	-0.02, 0.00	0.42 (0.09)	0.45 (0.09)	0.38	0.02	-0.03, 0.08	5.10 (1.68)	6.00 (1.94)	0.11	0.89	-0.23, 2.03	
Patellar tendon	0.06 (0.02)	0.05 (0.01)	0.72	-0.001	-0.01, 0.00	0.30 (0.10)	0.44 (0.11)	≤0.001*	0.13	0.07, 0.20	5.18 (1.67)	7.62 (1.88)	≤0.001*	2.44	1.34, 3.53	
Gastrocnemius medius muscle	0.06 (0.03)	0.06 (0.03)	0.60	0.005	-0.01, 0.02	0.48 (0.14)	0.57 (0.19)	0.11	0.08	-0.02, 0.18	10.17 (7.64)	9.70 (4.70)	0.81	0.47	-4.43, 3.48	
Achilles tendon	0.05 (0.03)	0.07 (0.02)	0.18	0.01	0.00, 0.02	0.24 (0.06)	0.49 (0.13)	≤0.001*	0.25	0.19, 0.31	6.24 (5.90)	7.56 (2.33)	0.34	1.32	-1.52, 4.16	

Keys: The Higher Boundary of Strain Index refers to the elasticity of the area of interest, and the Lower Boundary of Strain Index refers to the elasticity of the subcutaneous fat tissues. The lower the Strain Index, the softer the examined structure because the Strain Ratio has been calculated from the ratio of the area of interest; numerator, and adjacent subcutaneous fat; denominator. *Indicates a statistically significant difference at $p \le 0.01$ with independent sample t-test. CI refers to confidence interval.

-

Table 3: Comparison of the elasticity of the musculoskeletal structures of the Hypermobility Spectrum Disorders (HSD) group against a control group analysed with
ImageJ by measuring the percentages of the colour pixels: mean (standard deviation).

Examined area	Percentage of red colour pixel						Percentage of green colour pixel				Percentage of blue colour pixel				
	HSD group	Control group	P value	Mean difference	95% CI	HSD group	Control group	P value	Mean difference	95% CI	HSD group	Control group	P value	Mean difference	95% CI
Deltoid muscle	34.04 (6.70)	28.62 (7.86)	0.02	-5.42	-10.08, -0.75	41.80 (8.06)	40.28 (3.88)	0.46	-1.52	-5.64, 2.60	24.13 (11.18)	31.07 (8.44)	0.03	6.93	0.54, 13.33
Biceps brachii muscle	34.72 (7.82)	26.69 (3.89)	≤0.001*	-8.02	-11.96, -4.08	44.05 (3.56)	43.78 (3.50)	0.80	-0.27	-2.50, 1.96	21.20 (5.99)	29.39 (4.77)	≤0.001*	8.19	4.75, 11.62
Brachioradialis muscle	34.54 (10.20)	28.22 (9.88)	0.04	-6.31	-12.50, -0.12	44.69 (4.20)	42.46 (6.08)	0.17	-2.23	-5.46, 1.00	20.75 (7.43)	29.29 (11.62)	≤0.001*	8.54	2.50, 14.58
Rectus femoris muscle	37.73 (11.41)	29.58 (10.38)	0.02	-8.14	-15.03, -1.25	41.95 (6.09)	43.73 (5.69)	0.33	1.78	-1.94, 5.50	20.29 (7.39)	26.66 (10.80)	0.03	6.36	0.48, 12.24
Patellar tendon	27.69 (16.97)	20.31 (13.05)	0.11	-7.38	-16.68, 1.91	42.94 (11.31)	43.41 (8.12)	0.87	0.47	-5.56, 6.52	29.34 (18.29)	36.25 (16.63)	0.20	6.90	-3.85, 17.66
Gastrocnemius medius muscle	34.28 (9.17)	30.38 (8.60)	0.15	-3.89	-9.37, 1.57	45.87 (4.48)	46.50 (3.81)	0.62	0.62	-1.93, 3.18	19.82 (7.88)	23.10 (7.54)	0.17	3.27	-1.47, 8.02
Achilles tendon	18.14 (13.21)	5.59 (8.23)	≤0.001*	-12.54	-19.29, -5.79	43.60 (12.29)	37.56 (19.54)	0.23	-6.04	-16.15, 4.06	38.23 (17.35)	56.82 (22.81)	≤0.001*	18.58	6.06, 31.11
	Keys: The red colour refers to soft structures, the green colour refers to structures with intermittent elasticity and the blue colour refers to hard structures. *Indicates a statistically significant difference at $p \le 0.01$ with an independent sample t-test. CI refers to confidence interval.														

	HSD group	Control group	P value	Mean	95% CI
	(n = 21)	(n = 22)		difference	
Dominant shoulder pain	3.25 (3.56)	0.25 (0.81)	≤0.001*	-2.99	-4.57, -1.42
Non-dominant shoulder pain	3.02 (3.16)	0.05 (0.27)	≤0.001*	-2.91	-4.25, -1.58
Dominant elbow pain	2.97 (3.08)	0.13 (0.63)	≤0.001*	-2.06	-3.44, -0.67
Non-dominant elbow pain	1.56 (3.06)	0.00 (0.00)	≤0.001*	-1.56	-2.88, -0.24
Dominant wrist pain	2.59 (3.02)	0.00 (0.00)	≤0.001*	-2.59	-3.89, -1.29
Non-dominant wrist pain	2.09 (2.67)	0.00 (0.00)	≤0.001*	-2.09	-3.24, -0.93
Dominant hip pain	3.95 (4.13)	0.27 (1.04)	≤0.001*	-3.67	-5.51, -1.84
Non-dominant hip pain	2.58 (3.30)	0.00 (0.00)	≤0.001*	-2.58	-4.00, -1.15
Dominant knee pain	4.08 (3.70)	0.15 (0.56)	≤0.001*	-3.92	-5.53, -2.31
Non-dominant knee pain	4.25 (3.57)	0.41 (1.33)	≤0.001*	-3.83	-5.48, -2.19
Dominant ankle pain	2.80 (3.45)	0.00 (0.00	≤0.001*	-2.80	-4.28, -1.31
Non-dominant ankle pain	2.37 (3.52)	0.00 (0.00)	≤0.001*	-2.37	-3.88, -0.85
*Indicates a statistically signific	cant difference at	$p \leq 0.01$ with an in	dependent sa	mple t-test.	

 Table 4: The intensity of joint pain measured using Visual Analogue Scales for the upper and lower limb joints for the Hypermobility Spectrum disorder group and the control group; mean (standard deviation)

Table 5: Correlation between the elasticity of the musculoskeletal sy					
Index (HSI), percentage of red and		gher boundary of the Stram			
Examined structure	Related	d joint			
Deltoid muscle	Should	er pain			
HIS	-0.2	278			
Red pixels	0.2	23			
Blue pixels	-0.2	221			
Biceps brachii muscle	Shoulder pain	Elbow pain			
HIS	-0.009	0.138			
Red pixels	0.459*	0.507*			
Blue pixels	-0.537*	-0.499*			
Brachioradialis muscle	Elbow pain	Wrist pain			
HIS	-0.105	-0.249			
Red pixels	0.075	0.086			
Blue pixels	-0.207	-0.212			
Rectus femoris muscle	Hip pain	Knee pain			
HIS	-0.211	-0.202			
Red pixels	0.320	0.335			
Blue pixels	-0.316	-0.325			
Patellar tendon	Knee pain				
HIS	-0.4	78*			
Red Pixels	0.1	28			
Blue Pixels	-0.0	008			
Gastrocnemius medius muscle	Knee pain	Ankle pain			
HIS	-0.206	-0.228			
Red pixels	0.352	0.320			
Blue pixels	-0.322	-0.259			
Achilles tendon	Knee pain	Ankle pain			
HIS	-0.420*	-0.345			
Red pixels	0.451*	0.356			
Blue pixels	-0.440*	-0.293			
Keys: $r = 0.00-0.19$ indicates very we					
0.40-0.59 indicates moderate correla					
1.0 indicates very strong correlation	. * refers to statistically signif	ficant correlation.			

1 Discussion:

2 The impact of HSD on the elasticity of the musculoskeletal system was identified. SEL images were analysed 3 semi-quantitatively using the Strain Index, Strain Ratio, and colour pixel analysis. All analysis methods led to similar 4 results of increased musculoskeletal elasticity in the HSD group. The results of the Higher Boundary of Strain Index 5 point toward increased softening of the examined structures. Three of the observations were statistically significant, 6 including the brachioradialis muscle, patellar and Achilles tendon. The deltoid, rectus femoris and gastrocnemius 7 medius muscles showed increased elasticity in the HSD group, but the changes have not reached statistical 8 significance. In contrast, the Higher Boundary of Strain Index for the biceps brachii muscle was higher in the HSD 9 group, indicating a stiffer biceps brachii muscle when compared to the control group, yet this observation has not 10 reached statistical significance. Alternatively, the biceps brachii muscle could be stiffer in people with HSD as a 11 compensatory mechanism adopted to control elbow hypermobility. The biceps brachii muscle is essential for daily 12 activities, which could increase the muscular tone. The Strain Ratio also demonstrated statistically significant 13 reductions in the elasticity of the brachioradialis muscle and patellar tendon in the HSD group. Similarly, colour pixel 14 analysis showed greater elasticity and lesser stiffness in the musculoskeletal structures of the HSD group. Three 15 observations were statistically significant including the biceps brachii and brachioradialis muscles, and the Achilles 16 tendon. The deltoid, rectus femoris, gastrocnemius medius muscles and the patellar tendon also showed increased 17 elasticity and reduced stiffness in the HSD group. Colour pixel analysis for the biceps brachii, which showed increased 18 elasticity, contradicting the Strain Index and Strain Ratio. However, the sample size was based on large effect size of 19 0.95, which might indicate that the observed differences need to be confirmed with larger sample size study.

20 Two studies explored musculoskeletal elasticity in hypermobility-related disorders using SEL [17, 23]. 21 Kocyigit et al. (2015) examined a boy with generalised joint laxity and qualitatively analysed the SEL image of the 22 Achilles tendon [23]. An increase in the red (soft tissues), and green (intermittent elasticity) colours were reported 23 [23], supporting the current study, where the SEL images of the HSD group showed a statistically significant increase 24 in the red colour and reduction in the blue colour (hard tissues) [23]. The green colour was also increased in the HSD 25 group, but this observation was not statistically significant. A comparison with Kocyigit et al.'s (2015) study might 26 not be appropriate as it is a case report of one boy, whereas the current study focused on adults. A feasibility study 27 also aimed to explore the gastrocnemius medius muscle elasticity in ten adults with JHS compared to ten controls, and 28 colour pixels were used for analysis [17]. Alsiri (2017) and the current study found no significant differences between 29 the two groups in gastrocnemius medius elasticity [17]. This could be related to type II error, as the descriptive 30 statistics of the current study showed 4% higher gastrocnemius muscle elasticity and 4% lower gastrocnemius medius muscle hardness in the HSD group relative to the control group. The descriptive statistics of the smaller sample size 31 32 of 10 participants per group [17] identified 1.51% higher gastrocnemius muscle elasticity, and no difference in muscle 33 hardness in the JHS group. A larger sample size study could confirm the observed differences.

Previous studies on non-hypermobility related conditions have found changes in the elasticity of certain
 musculoskeletal structures with SEL. 57% softening was identified in symptomatic Achilles tendinopathy [42].
 Another study found hardening in the symptomatic Achilles tendon [43]. However, with inflammatory myositis,

1 reduced elasticity was found in most of the cases in the thigh, leg, and arm muscles [44]. Future studies should compare HSD against other musculoskeletal system pathologies to examine the ability of the SEL to distinguish HSD.

2

3 Various reasons could explain the significant increase in musculoskeletal structures' elasticity in people with 4 HSD. Collagen is a dominant constituent of the musculotendinous tissues, enhancing its support system and 5 mechanical rigidity. Previous studies on hypermobility-related disorders identified mutation in the genes encoding 6 collagen, and deficiency in the collagen modification enzymes [7]. Collagen deficiency could explain the significant 7 reduction in musculoskeletal structures' elasticity. Hypermobility-related disorders are significantly associated with 8 muscle weakness [17], and weak muscles might reduce the resting muscular elasticity. The current study found a 9 moderate correlation between joint pain and musculoskeletal elasticity, indicating that joint pain is associated with 10 softer structures. The significant increase in musculoskeletal elasticity in people with HSD indicates a degree of failure 11 in their joint dynamic support system, leading to instability, microtrauma and pain. Alternatively, pain could lead to 12 muscle weakness and motor inhibition [45], which could cause the significant reduction in musculoskeletal elasticity. 13 The cause-effect relationship between pain and musculoskeletal elasticity needs to be explored in future studies.

14 The examiner was not blinded to the groups, yet expectation bias was partially controlled by conducting 15 ImageJ analysis after acquiring the images. The sample size might not be sufficient for all the variables. Specially that 16 the effect sizes observed were smaller than the effect size used for sample size calculation of 0.95. The observed effect 17 sizes in the current study ranged from 0.16 - 0.77, for the rectus femoris muscle and Achilles tendon, respectively, as 18 indicated with the Higher Boundary of Strain Index. The effect sizes ranged from 0.21 - 0.54 for the gastrocnemius 19 medius, and biceps brachii muscles, respectively, for the red colour pixels. The Strain Ratio was obtained from the 20 ratio of the target area and subcutaneous fat. However, the Strain Index of the subcutaneous fat varies between 21 participants, so it might not serve as an ideal reference. Therefore, a range has also been presented in the current study; 22 Lower and Higher Boundary of Strain Index. Some studies have used an external gel pad as a reference, which could 23 be used for future studies. Heterogeneity in the reference area elasticity might explain the large variability noticed in 24 some structures. Spinal hypermobility is one of the major features of HSD, however, the current study did not explore 25 the spinal musculoskeletal structures, and this area could be explored in future research.

26 Future research should consider inclusion of further variables to allow more advanced statistical analysis to 27 account for potential covariates and build meaningful regression models to explore the relationships between elasticity 28 and pain. The findings clinical relevance need to be further explored. For example, determining the magnitude of the 29 observe differences relative to data variability; diagnostic validity; sensitivity and specificity, and the relationships 30 with functional outcomes are all areas for exploration. There are various strengths in the study, including establishing 31 intra-rater reliability in a smaller study. A sample size calculation was used, and the methodological procedures were 32 carefully standardized. The findings' clinical importance was increased by correlating the findings with joint pain.

33 Increased musculoskeletal system elasticity in people with HSD is evident with SEL. Using three SEL image 34 analysis approaches, people with HSD showed significant reductions in the elasticity of muscular and tendinous 35 structures including the biceps brachii and brachioradialis muscles, and patellar and Achilles tendons. People with 36 HSD significantly complain of multiple joint pain which demonstrated a moderate correlation with musculoskeletal

1	elasticity. SEL could be a supplementary tool for diagnosing, monitoring and assessing the effectiveness of
2	physiotherapy, strengthening programs and other management regimes provided for people with HSD.
3	
4	Conflict of interest:
5	The authors declare no conflict of interest.
6	
7	Ethical standard:
8	The study has been approved by the Ethical Committee of Kuwait Ministry of Health (571/2017), therefore,
9	the study has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki
10	and its later amendments.
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	

1 References:

- Hakim A, Cherkas L, Grahame R, Spector T, MacGregor A (2004) The genetic epidemiology of joint
 hypermobility: a population study of females twins. Arthritis Rheum. 50(8):2640-2644.
- Castori M, Tinkle B, Levy H, Grahame R, Malfait F, Hakim A (2017) A framework for the classification of
 joint hypermobility and related conditions. Am J Med Genet C Semin Med Genet. 175(1):148-157.
- Malfait F, Francomano C, Byers P, Belmont J, et al. (2017) The 2017 international classification of the
 Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 175(1):8-26.
- 8 4. Scheper M, Juul-kristensen B, Rombaut L, Rameckers E, Verbunt J, Engelbert R (2016) Disability in adolescents and adults diagnosed with hypermobility related disorders: a meta-analysis. Arch Phys Med Rehabil. 97(12):2174-2187.
- Castori M (2012) Ehlers-Danlos syndrome, hypermobility type: an underdiagnosed hereditary connective
 tissue disorder with mucocutaneous, articular, and systematic manifestations. ISRN Dermatol.
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3512326/
- Connelly E, Hakim E, Davenport S, Simmonds J (2014) A study exploring the prevalence of Joint Hypermobility Syndrome in patients attending a Musculoskeletal Triage Clinic. Physiother Pract Res. 36 (1):43-53.
- Malfait F, Hakim A, Paepe A, Grahame R (2006) The genetic basis of the joint hypermobility syndromes.
 Rheumatology (Oxford). 45(5):502-507.
- Benko C, Boja B (2001) Growth hormone, insulin, and insulin-like growth factor-1 in hypermobility
 syndrome. J Rheumatol. 28(7):1666-1669.
- 9. Ofluoglu D, Gunduz O, Kul-Panza E, Guven Z (2006) Hypermobility in women with fibromyalgia syndrome.
 Clinic Rheumatol. 15(3):291-293.
- 10. Hakim A, Grahame R (2004) Non-musculoskeletal symptoms in joint hypermobility syndrome, indirect
 evidence for autonomic dysfunction? Rheumatology. 43(9):1194-1195 .
- 25 11. Smits-Engelsman B, Klerks M, Kirby A (2010) Beighton score: a valid measure for generalized
 26 hypermobility in children. J Pediatr. 158(11):119-123.
- 12. Juul-Kristensen B, Schmedling K, Rombaut L, Lund H, Engelbert R (2017) Measurement properties of
 clinical assessment methods for classifying generalized joint hypermobility-A systematic review. Am J Med
 Genet C Semin Med Genet. 175(1):116-147.
- Rombaut L, Malfait F, Cools A, De Paepe A, Calders P (2010) Musculoskeletal complaints, physical activity
 and health-related quality of life among patients with the Ehlers-Danlos syndrome hypermobility type.
 Disabil Rehabil. 32(16):1339-1345.
- 14. Clinch J, Deere K, Sayers A, Palmer S, Riddoch C, Tobias J, Clark E (2011) Epidemiology of generalized
 joint laxity (hypermobility) in fourteen-year-old children from the UK: a population-based evaluation.
 Arthritis Rheum. 63(9):2819-2827.

- 15. Turan A, Tufan A, Mercan R, Teber M, Bitik B, Goker B, Haznedarouglu S (2013) Real-time
 sonoelastography of Achilles tendon in patients with ankylosing spondylitis. Skeletal Radiol. 42(8):1113 1118.
- 4 16. Rombaut L, Malfait F, De Wandele I, Mahieu N, Thijs Y, Segers P, Paepe A, Claders P (2012) Muscle5 tendon tissue properties in the hypermobility type Ehlers-Danlos syndrome. Arthritis Care Res (Hoboken).
 6 64(5):766-772.
- 7 17. Alsiri N (2017) The impact of joint hypermobility syndrome in adults: a quantitative exploration if
 8 neuromuscular impairments, activity limitations and participation restrictions. University of the West of
 9 England, Bristol, United Kingdom. <u>https://eprints.uwe.ac.uk/secure/30112/</u>
- Remvig L, Duhn P, Ullman S, Arokoski J, Jurvelin J, Safi A, Jensen F, Farholt S, Hove H, Juul-Kristensen
 B (2010) Skin signs in Ehlers-Danlos syndrome: clinical tests and para-clinical methods. Scand. J.
 Rheumatol. 39:511-517.
- Jensen B, Olesen A, Pedersen M, Kristensen J, Remvig L, Simonsen E, Juul-Kristensen B (2013) Effect of
 generalised joint hypermobility on knee function and muscle activation in children and adults. Muscles &
 Nerves. 48(5):762-769.
- Magnusson S, Julsgaard C, Aagaard P, Zacharie C, Ullman S, Kobayasi T, Kjaer M (2001) Viscoelastic
 properties and flexibility of the human muscle-tendon unit in benign joint hypermobility syndrome. J.
 Rheumatol. 28:2720-2725.
- Remvig L, Duhn P, Ullman S, Kobayasi T, Hansen B, Juul-Kristensen B, Jurvelin J, Arokoski J (2009) Skin
 extensibility and consistency in patients with Ehlers-Danlos syndrome and benign joint hypermobility
 syndrome. Scand. J. Rheumatol. 38:227-230.
- 22 22. Nielsen R, Couppe C, Jensen J, Olsen M, Heinemeier K, Malfait F, Symoens S, Paepe A, Schjerling P,
 23 Magnusson S, Remving L, Kjaer M (2014) Low tendon stiffness and abnormal ultrastructure distinguish
 24 classic Ehlers-Danlos syndrome from benign joint hypermobility syndrome in patients. The FASEB Journal.
 25 28(11):4668-4676.
- 26 23. Kocyigit F, Kuyucu E, Kocyigit A, Karabulut N (2015) Real-time sonoelastography findings of a hypermobile child: a new technique in the assessment of tendon laxity. Rheumatol Int. 35(12):2115-2117.
- 28 24. Dieppe A, Lohmander, L (2005) Pathogenesis and management of pain in osteoarthritis. Lancet. 365:965973.
- 30 25. Blalock D, Miller A, Tilley M, Wang J (2015) Joint instability and osteoarthritis. Clinical Medicine Insights:
 31 Arthritis and Musculoskeletal Disorders [online].
- 32 26. Martinez-Mesa J, Gonzalez-Chica D, Duquia R, Bonamigo R, Bastos J (2016) Sampling: how to select
 33 participants in my research? An Bras Dermatol. 19(3):326-330.
- 34 27. Beighton P, Solomon L, Soskolne C (1973) Articular mobility in an African population. Ann Rheum Dis.
 35 32:413-418.
- 28. Klauser A, Miyamoto H, Bellmann-Weiler R, Feuchtner G, Wick M, Jaschke W (2014) Sonoelastography:
 musculoskeletal applications. Radiology. 272(3):622-633.

1	29.	Wu C, Chen W, Park G, Wang T, Lew H (2012) Musculoskeletal sonoelastography: a focused review of its
2		diagnostic applications for evaluating tendons and fascia. J Med Ultrasound. 20:79-86.
3	30.	Drakonaki E, Allen G, Wilson D (2009) Real-time sonoelastography findings in healthy Achilles tendon:
4		reproducibility and pattern description. Clin Radiol. 64:1196-1202.
5	31.	Yanagisawa O, Niitsu M, Kurihara T, Fukubayashi T (2011) Evaluation of human muscle hardness after
6		dynamic exercise with ultrasound real-time tissue elastography: A feasibility study. Clin Radiol. 66(9):815-
7		819.
8	32.	Williamson A, Hoggart B (2005) Pain: a review of three commonly used pain rating scales. J Clin Nurs.
9		14(7):798-804.
10	33.	Lee S, Joo S, Kim S, Lee S, Park S, Jeong C (2016) Real-time sonoelastography in the diagnosis of rotator
11		cuff tendinopathy. J Shoulder Elbow Surg. 25(5):723-729.
12	34.	Faul F, Erdfelder E, Buchner A, Lang AG (2009). Statistical power analyzes using G*Power 3.1: Tests for
13		correlation and regression analyses. Behav Res Methods. 41:1149-1160.
14	35.	Coren S (1993) Measurement of handedness vis self-report: the relationship between brief and extended
15		inventories. Percept Mot Skills. 76(3 Pt 1):1035-1042.
16	36.	van Melick N, Meddeler B, Hoogeboom T, Nijhuis-van der Sanden M, van Cingel R (2017) How to
17		determine leg dominance: the agreement between self-reported and observed performance in healthy adults.
18		PLoS ONE. 12(12).
19	37.	Harve, R, Waage J, Gilja O, Odegaard S, Nesje L (2011) Real-time elastography: strain ratio measurements
20		are influenced by the position of the reference area. Ultraschall Med. DOI: 10.1055/s-0031-1273247.
21	38.	Backhaus M, et al. (2001) Guideline for musculoskeletal ultrasound in rheumatology. Ann Rheum Dis.
22		60:641-649.
23	39.	Chen J, O'Dell M, He W, Du L, Li P, Gao J. (2017) Ultrasound shear wave elastography in the assessment
24		of passive biceps brachii muscle stiffness: influence of sex and elbow position. Clin Imaging. 45:26-29.
25	40.	De Zordo T, Fink C, Feuchtner G, Smekal V, Reindl M, Klauser A. (2009) Real-time sonoelastography
26		findings in healthy Achilles tendon. AJR Am J Roentgenol. 193(2): W134-8.
27	41.	Schneebeli A, Del Grande F, Vincenzo G, Cescon C, Clijsen R, Biordi F, Barbero M. (2016) Real-time
28		sonoelastography using an external reference material: test-retest reliability of healthy Achilles tendons. Skel
29		Radiol. 45:1045-1052.
30	42.	De Sconfienza L, Silvestri E, Cimmino M (2010) Sonoelastography in the evaluation of painful Achilles
31		tendon in amateur athletes. Clin Exp Rheumatology. 28:373-378.
32	43.	De Zordo T, Chhem R, Smekal V et al. (2010) Real-time sonoelastography: findings in patients with
33		symptomatic achilles tendon and comparison to healthy volunteers. Ultraschall Med. 31:394-400.
34	44.	Botar-Jid C, Damian L, Dudea S, Vasilescu D, Rednic S, Badea R (2010) The contribution of ultrasonography
35		and sonoelastography in assessment of myositis. Med Ultrason. 12:120-126.

45. Le Pera D, Graven-Nielsen T, Valeriani M, Oliviero A, Lazzaro V, Tonali P, Arendt-Nielsen L (2001)
 Inhibition of motor system excitability at the cortical and spinal level by tonic muscle pain. Clin
 Neurophysiol. 112(9):1633-1641.