
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

New Algorithms for the efficient design of topology-oriented Key

Agreement Protocols in Multi-hop Ad Hoc Networks

by Maria Striki, John S. Baras, and Kyriakos Manousakis

TR 2006-13

1568998224

1

Abstract-Securing group communications in resource constrained,
infrastructure-less environments such as Mobile Ad Hoc
Networks (MANETs) has become one of the most challenging
research directions in the areas of wireless network security.
MANETs are emerging as the desired environment for an
increasing number of commercial and military applications,
addressing also an increasing number of users. Security on the
other hand, is becoming an indispensable requirement of our
modern life for all these applications. The inherent limitations of
such dynamic and resource-constraint networks impose major
difficulties in establishing a suitable secure group communications
framework. This is even more so for the operation of Key
Agreement (KA), under which all parties contribute equally to the
group key. The logical design of efficient KA protocols has been
the main focus of the related research to-date. Such a
consideration however, gives only a partial account on the
feasibility and actual performance of a KA protocol in a real
multi-hop network. This is because protocols have been evaluated
only in terms of the group key related messaging in isolation from
the underlying network functions that interact with the logical
scheme and support its correct execution (i.e. routing). In this
work, we contribute towards efficiently extending a number of
Diffie-Hellman (DH)-based group KA protocols in wireless multi-
hop ad hoc networks, and measuring their actual performance
over these networks. Towards this end, we introduce a number of
new algorithms and techniques that aim in efficiently merging the
logical design of KA protocols with the underlying routing and
topology of the network, to produce protocols that substantially
improve one or more metrics of interest. Indeed, the resulting
protocols are significantly more efficient in some or all of the
above metrics, as our analytical and simulation results indicate.

Index Terms—Key Agreement, Diffie Hellman, Approximations

I. INTRODUCTION

A MANET is a collection of wireless mobile nodes,
communicating among themselves over possibly multi-hop
paths, without the help of any infrastructure such as base

stations or access points. As the development of multicast
services such as secure conferencing, visual broadcasts,
military command and control grows, the research on security
for wireless multicasting becomes increasingly important. The
role of key management (KM) is to ensure that only valid
members have access to a valid group key at any time. It is
essential to develop a secure, robust KM scheme for group
communications in these environments. The operation of Key
Agreement (KA) is a subset of the broad KM functionality and
imposes that all participants contribute (almost) equally to the
group key establishment, by interacting among themselves in
ways designated by the specific protocol applied. Compared to

other tasks classified under KM, such as this of key
distribution, KA operates on an inherently more complicated
communication regulation mechanism. The characteristics of
MANETs constitute the major challenge for the design of
suitable KM schemes and have even more severe impact on the
operation of KA. We are dealing with dynamic, infrastructure-
less networks of limited bandwidth, unreliable channels where
topology is changing fast. Network nodes have limited
capacity, computational or transmission power. Connections
are temporary (mobility changes, battery drainage, poor
physical protection) and unreliable. These constraints turn
most of the existing protocols inefficient in MANETs. Along
with the continuous quest for the design of more efficient
schemes than the existing ones, the need for the new KA
schemes to handle successfully and tolerate network dynamics
and failures with low impact in a network with large number of
nodes is now equally important. Upon failures and disruptions,
it is often the case that a KA protocol must restart the group
key establishment process from scratch. Whenever this event
occurs (may be too often), the underlying routing is invoked
once again, a significant amount of relays become involved in
the exchange of large keying messages, and considerable delay
(reflected in the total number of rounds for the successful
termination) burdens the network. The overall performance of
the protocols degrades even more because of the indirect
impact of excessive routing on additional network layers (i.e.
QoS deteriorates due to more collisions at the MAC layer, the
bandwidth usage and the consumption of network resources
increase undesirably). In MANETs, bandwidth and power
consumption are valuable resources, and nodes cannot afford
to waste. For all these reasons, reducing the combined costs
resulting from the routing and communication exchanges
among nodes becomes essential if we want to apply more
sophisticated KA schemes on a resource-constrained MANET.
 The logical design and analysis of efficient KA protocols has
been the main focus of the related research to-date. Such a
consideration however, gives only a partial account on the
feasibility and actual performance of a KA protocol in a wire-
less multi-hop network. This happens because the evaluation
of the protocols is conducted via a logical abstraction of the
underlying physical network in such a way that some essential
inseparable otherwise operations, such as the underlying
routing, are left out. However, when evaluating the direct
adaptations of KA protocols for multi-hop wire-less networks,
the vast majority of them lose their “claimed” efficiency
properties. On the other hand, it might be the case that these
schemes naturally exploit inherent features of the physical

 Maria Striki, John S. Baras, Kyriakos Manousakis
 Institute for Systems Research Telcordia Technologies Inc.,
 University of Maryland, College Park 1 Telcordia Dr, Piscataway

MD, 20742, USA NJ, 08854, USA

New Algorithms for the efficient design of
topology-oriented Key Agreement Protocols in

Multi-hop Ad Hoc Networks

1568998224

2

network, such as topological redundancies and localization of
communications that could be improving their efficiency.
 In this work, we contribute towards efficiently extending a
number of GDH KA protocols on wireless multi-hop ad hoc
networks (i.e. GDH.1, GDH.2, ING), and measuring their
actual performance over these networks. Towards this end, we
introduce a number of new algorithms that aim in efficiently
merging the logical design of KA with the underlying routing
and topology of the network, to produce protocols that
substantially improve one or more metrics of interest. This is
achieved by extending the studied protocols from a logical to a
physical network graph and by allowing the formation of their
communication schedules with respect to the underlying
routing and topology. The original protocol versions do not
exploit members’ topological proximity in general. A pre-
agreed schedule is used, based on members’ attributes, like
their “hashed” IPs or IDs. After our extension, we see that the
routing structure of each protocol poses a different
optimization problem (usually NP-complete) for each of the
given metrics. Given that, we focus on generating efficient
approximations that significantly improve the performance of
the discussed schemes. In our previous work, we imposed that
the secure group graph is connected. In this paper, we are
addressing far more generic and realistic scenarios (networks
where the member graph is not rigorously connected, i.e. non-
member relays may be included in the path of two connected
members). Our newly introduced heuristics achieve much
better approximations of the metric functions we want to
optimize. The comparison between the new topology oriented
and the original schemes is done via simulations.
 Section 2 gives an overview of related work on KA and
section 3 describes the original schemes. Section 4 gives an
outline of both our previous and current work. We describe the
network model, assumptions and specifications made in either
case and we point out the differences. We adequately motivate
our intension to pursue new directions and extend our work on
a different setting than this adopted previously. In section 5 we
provide a detailed overview of our new algorithms and
heuristics. In section 6 we present the performance analysis of
our required auxiliary framework. In section 7 we present the
simulations set-up and our simulation results which clearly
point out the superiority of our new heuristics, and attest to the
validity of our analytical results regarding the auxiliary
framework. Finally, in section 8 we conclude the paper.

II. RELATED WORK

 Proposals related to secure group KA protocols abound in
the literature, and can be usually found under the broad
category of contributory schemes. Most of them correspond to
a logical consideration in terms of design, or address wire-line
networks and cannot operate as such in MANETs.
 Becker et al. [1], derived lower bounds for contributory key
generation systems for the gossip problem and proved them
realistic for Diffie-Hellman (DH) based protocols. They used
the basic DH distribution [3] extended to groups from the work
of Steiner et al. [2], where three new protocols are presented:
GDH.1-2-3. Ingemarsson et al. [4] presented another efficient
DH-based KA scheme, “ING”, logically implemented on a

ring topology. In addition, Burmester et al. [5] introduced a
new GDH protocol, denoted as BD (very efficient in terms of
round complexity). Another hybrid DH-based KA scheme is
TGDH introduced by Kim et al. [7]. It is an efficient protocol
that blends binary key trees with DH key exchanges. Becker in
[1], introduced Hypercube, that requires the minimum number
of rounds. Becker also introduced Octopus scheme as one that
requires minimum number messages and then derived the 2d-
Octopus that combined Octopus with Hypercube to a very
efficient scheme that works for arbitrary number of nodes.
Related work can be found in [6, 8, 9] as well.
 There exist some more recent proposals of KA for wireless
ad-hoc networks. Even these, do not seem to scale well or
handle successfully the network dynamics. Some of these
approaches rely on public key cryptography, which is very
expensive for resource constrained nodes, or on threshold
cryptography [14-19], which results in high communication
overhead, and does not scale well. Katz et al. [10, 11], improve
on existing KA schemes either by rendering them more
scalable or by enhancing their security against various kinds of
attacks. Still, the described algorithms are implemented on
logical graphs, or address wire-line networks. Amir et al. [12,
13], focus on robust KA, and attempt to make GDH protocols
fault-tolerant to asynchronous network events. However, their
scheme is designed for the Internet, and requires an underlying
reliable group communication service and message ordering,
so that preservation of virtual semantics is guaranteed. In [20],
it is shown that the consideration of the physical location of
members is critical for developing energy-efficient KM
schemes, and based on this observation a new energy-aware
KM scheme is proposed. In [22], additional Octopus protocols
for robust and efficient group communications in MANETs are
proposed. The primary focus of this work is the logical
evaluation of the proposed schemes, in isolation from network
functions that interact with them. In [23], we study the
extension of a number of known KA protocols over multi-hop
ad hoc networks. The investigation conducted sets the
foundations for our current study, but it is quite preliminary as
it addresses a rather specialized network environment, and
there seems to be much scope for improvement anyway.

III. ORIGINAL GDH-BASED SCHEMES (OVERVIEW)
 Even though the original versions of the logical design of the
GDH schemes we are studying are well documented in our
references [2, 3, 4, 5], we give a more detailed and simplified
description of their basic operation in this section, in order to
make it easier for the reader to follow the next sections.

Notation_1: Let B(x) = ax be the blinding (exponentiation
under base a) of value x and letϕ (x) = x mod n. We assume
that all exponentiations are modular (MEs). In this analysis,
the modular reduction ϕ (x) of a secret value x, prior to its
blinding, B(ϕ (x)), is implicitly assumed, but not reflected to
our equations, for ease of the notation. Hence, we replace the
expression (())B xϕ with B(x).

GDH1: This protocol assumes that all parties are connected
according to a logical Hamiltonian path and consists of two

1568998224

3

stages: up-flow (collecting members’ contributions) and down-
flow (allowing all members to compute the common key). In
the up-flow, each member performs 1 ME and the message
between Mi and Mi+1 contains i intermediate values. After
obtaining Kn, Mn initiates the down-flow stage. Each member
Mi performs i MEs: 1 to compute Kn and (i-1) to provide
intermediate values to lower indexed members, by raising them
to the power of its own exponent. The size of the down-flow
message decreases on each link, as a message between Mi+1
and Mi includes i intermediate values.

GDH2: In order to reduce the total number of rounds, GDH.1
is slightly varied, so that: a) in the up-flow stage each member
has to compose i intermediate values (each with i-1 exponents)
and one cardinal value with i exponents; Mn is the first member
to compute the key Kn and the last batch of intermediate values,
b) in the down-flow stage Mn broadcasts the (n-1) intermediate
values to all group members. It is assumed that all parties are
connected through a logical Hamiltonian path. The last party
on the path can reach all others using a broadcast channel.

ING: The protocol is executed on a virtual Hamiltonian ring. It
requires that all parties are connected according to a logical
ring, and completes in (n-1) rounds after a synchronous start-
up. In any round, every party raises the previously-received
intermediate key value to the power of its own random
exponent and forwards the result to the next party. After (n-1)
rounds everyone computes the same key.

IV. PREVIOUS AND CURRENT APPROACH: NETWORK MODEL,
SPECIFICATIONS AND REQUIREMENTS

In this section we provide an overview of our previous work on
this topic. We describe the network model, the requirements
and assumptions for the methods used in [23], and we well
justify our motivation for extending and evolving this work to
accommodate our new objectives and directions. Our previous
work will serve as a starting point for our current approach. We
focus on the differences in the two methodologies and discuss
our need to look for more general and efficient approximations
than those previously introduced.

Notation_2: The prefix “nt” abbreviates the extension of the
discussed KA schemes on a wireless multi-hop network with
“no topology” considerations, and the prefix “wt” (i.e. with
topology considerations) abbreviates the topologically oriented
extensions respectively.

Notation_3: Let n be the number of members in the secure
group, and m be the number of nodes in the network (size S).
Also, let D be the diameter diam(G) of the network graph G;
that is, the max number of hops between a pair of nodes in V.
Also, let R (Ni, Ni+1) = Ri,i+1 be the number of hops in the path
between two members Ni and Ni+1, where Ri,i+1≤D.

Notation_4: K is the bit size of an element in the algebraic
group used (where the decision DH problem is assumed hard).

A. Existing Approach Setting and Results (Starting Point)

In [23], we re-evaluated the KA protocols discussed by using a
natural implementation of routing, and broadcast/unicast

operations; specifically, by executing the protocols blindly on
a real network, where multi-path routing is required for group
members to communicate, and where not all members can be
directly reached via single broadcast. We ran those protocols
on top of this framework using a communication schedule that
is based merely on arbitrary member IDs. This “nt” approach
may lead to excessive routing and produce unnecessary relay
nodes, and consequently high communication cost, as we can
also see from Table I of our relevant results. These results are
very indicative of the actual communication overhead and
rounds that will be incurred from these protocols when applied
on a multi-hop network, even if the associated logical key
generation algorithm appears to be very efficient (the original
versions of the studied KA protocols are merely the key
generation algorithms run on a logical framework).

TABLE I
PERFORMANCE OF KA PROTOCOLS WITHOUT TOPOLOGICAL ASSUMPTIONS
 Logical Lt Logical CCost nt-Lt nt-CCost

ING n-1 n(n-1) D(n-1) Dn(n-1)
GDH1 2(n-1) n(n-1) 2D(n-1) Dn(n-1)
GDH2 n (n-1)(n/2+2) Dn Dn(n-1)/2

Table 1: Performance of: (a) KA protocols over logical networks, (b) nt-
extension of KA protocols over multi-hop ad hoc networks.

 We then tried to improve the efficiency of each protocol by
exploring the potential of optimizing their combined routing
and communication costs with the use of a wt simulation of the
logical network over an arbitrary network graph G. We used a
rather restraining model of the connectivity among group
members: the secure group graph is defined as G(V,E,w),
where E∈V×V, and w is the edge weight function that maps
any edge e in G to an integer, s.t.: w: (i, j)→ Z* , e(i,
j)∈V×V . An edge between any two members (i, j) exists if
and only if the members are within each other’s radio range
(bidirectional connectivity). We impose that these members
have distance of 1-hop, or equivalently w(eij) = 1. Hence, any
direct link has weight 1, and any path that connects two
members indirectly consists only of group members. For ease
of the notation we set: G(V,E,w) = G(V,E,1) = G(V, E).
 We further assumed that each message from a member in G is
timely sent (i.e., there is no congestion) and reliably and timely
received by all neighbors. Our schemes inherit the same
security properties as those of their original ancestors. Our
main objective was to meet efficiency requirements of low
communication overhead and latency for the group key
establishment during the initial state of key generation. We
assumed that the underlying routing is capable of establishing
end to end paths, avoiding intermediate link failures. We did
not consider dynamic cases (i.e. link failure, mobility) under
which the network could be partitioned. The behavior of the
protocols at steady state (i.e. re-keying operation) was not
considered within the scope of that work.
 Under the nt communication schedule, members’ placement
and consequently the routes formed are random. Then, the
corresponding physical graph is not expected to resemble the
logical graph – hence, it is not optimal. This arbitrary factor
that emerges when we merge the key generation algorithm
“blindly” with the underlying routing is what we try to capture,
model, and quantify with our analysis. In summary, we defined

1568998224

4

and later focused on minimizing the following 6 quantities, or
performance metrics (scaled down by K):

Communication Cost (CCost):

CCost1 = (n-1)× , 1
1

n

i i
i

R +
=
∑ (1),

 CCost2 =
1

, 1
1

2
n

i i
i

i R
−

+
=

× ×∑ (2),

 CCost3 = (n-1)Bn (3),

 Latency (Lt):

 Lt1 = , 1
1

n

i i
i

R +
=
∑ , or (n-1)×max{ , 1i iR + } (4),

Lt2 = 2× , 1
1

n

i i
i

R +
=
∑ (5),

Lt3 = max_length (Bn) (6).

 Each protocol poses two different optimization problems as its
routing structure defines a specific optimization function for
each of the two metrics of latency (Lt) and combined
communication cost (CCost). Given these quantities, we
developed bounds for the two metrics of each protocol as
follows: ING: from (1) and (4), GDH.1: from (2) and (5),
GDH.2: from (2), (3), (5), and (6).
 The solutions to most of these functions can be mapped to NP-
complete problems, e.g. (1), (4), (5) are mapped to the
Traveling Salesman Problem (TSP). Thus, finding
approximations of the optimal solutions to these quantities,
result in more efficient metrics for the protocols.
 We then proposed a number of heuristics (details can be found
in [23]), most of which rely on an auxiliary framework that
includes the generation of a tree that spans all n members of
the secure group. This spanning tree (ST) has the following
property by definition of the associated network graph G: the
weight of any link that directly connects any two tree members
is 1. In this case, this ST is in fact a minimum ST (MST). This
equivalence allows us to use some approximations based on
the existence of an MST over the group members. We briefly
quote all the approximation used below:

1) Solution to (1), (4), (5): Full Walk on the MST
2) Solution to (2), (4): Extended ING ring with dilation 2
3) Solution to (2): Closest Point Heuristic
4) Solution to (3), (6): Broadcast Tree

Indeed, by using these approximations to set up a wt schedule,
the performance of the studied KA schemes was significantly
improved by at least a factor of D (or n) in most cases, in
contrast to the arbitrary execution of the nt protocol versions.

 B. Current Approach Setting, Requirements and Objectives

 The results illustrated in [23] are just the beginning of this
challenging research problem. There is still ample scope for
improvement, as long as all these solutions are just
approximations. More importantly, the model used in [23] is
very particular and does not realistically represent the general
multi-hop ad hoc network, where the path between two

members may include non-members relays too. Our objective
in our current work is to continue our investigation on more
efficient approximations, on a far more general network model
however, the specifications of which we provide next.
 We maintain the assumptions of the previous section except
for the model of the network graph, with which we essentially
delineate our methods and solutions from the previous. In our
network model we allow non-member relays as well in the
routing path between two group members. We assume a generic
Dijkstra routing protocol that finds the shortest paths between
members. Through the underlying routing, each member
obtains the routing path(s) to its closest neighbor(s). We
dynamically determine the proximity with respect to the
number of hops between two members. If no neighbors are
found in the proximity, the search diameter (TTL) is gradually
expanded until a pre-agreed number of members are found. So,
two members i, j are considered “virtually connected” if they
share at least a routing path Ri,j with length up to a pre-defined
threshold that depends on the TTL (including possibly non-
members). It holds that Ri, j≤ Th (TTL). Assuming that a direct
link between two network nodes has weight 1, the virtual link
between two virtually connected members may take any value x
≤ Th (TTL). We now allow the existence of arbitrary weights
between any two group members that are assumed connected.
Hence, the secure group connectivity graph is defined as G(V,
E, w), where E∈V×V, and w is the edge weight function that
maps any virtual edge in this graph to an integer, so that w: (i, j)
→Z*∩ [1, Th(TTL)], e(i, j)∈V×V. An edge between any two
members (i, j) exists if and only if the two associated members
share a path with size lower or equal to Th (TTL).
 We now examine if it makes sense to apply the methods
proposed in [23] to our new setting. These methods use a ST or
equally MST formed strictly by the n group members and does
not include any non-member relay. Obviously, this cannot be
the case in our current setting, after the new definition of virtual
connectivity. Constructing a ST that includes all n members of
the secure group, will inevitably include an unprecedented
number of non-member relays. Hence the size of the resulting
ST will be unknown and most likely much greater than n. The
edge weights between two virtually connected tree members
depend on the size of the minimum path shared which is most
likely greater than 1, unless there is a direct link between two
members. It is obvious now however, that in this case the ST is
not equivalent to an MST. Some of the previous techniques
require the existence on an MST, so in our new setting we still
need to compute an MST. Apart from this obvious difference,
the most discouraging factor that prevents us from applying
blindly the previous techniques to our new setting is the
following: the number of nodes included in the new ST or MST
may now be as large as the network size S. The previous
approximations assumed a full walk over a ST of strictly n
members, or a dilation of these n members by two, producing
solutions that are better or equal than twice the optimal. The
optimal in that case was n, which was indeed what we were
after. Since the size of the secure group is assumed to be much
smaller than the size of the network, the above solutions are
still acceptable for the metric functions of the protocols. In fact,
we witnessed a great improvement in the performance of the

1568998224

5

protocols with these approximations. However, in the current
setting, the same approximations would provide us with
solutions that are better or equal than twice the size of the
virtual ST, or MST with arbitrary weights, which could be the
size of the whole network in the worst case scenario. The same
is the case with the technique that uses dilation of group
members, which becomes preventive for a growing member
graph (the redundant communication and computation overhead
produced becomes too high to be acceptable). Obviously, such
solutions are far from satisfactory in our current setting and the
quest for more efficient solutions is still on. At the same time,
we seek lightweight solutions, so that the extra overhead
required for the generation of the backbone framework is
maintained as low as possible. Again, we stress the importance
of limiting the total number of relays required for the execution
of the KA protocols. The less the total number of relays, the
less the side effects of routing on the standard communication
are. Hence, this work carries on the previous study done on the
topic, and also sets the specifications and standards higher for
any contributions that will be made in the future.

V. OVERVIEW OF NEW WT-GDH KA PROTOCOLS
A. MST Generation

We generate a MST starting from any member, say A without
loss of generality, by applying a distributed version of Prim’s
algorithm. Prim’s method [25] is based on a greedy strategy,
captured by a “generic” algorithm which grows the MST one
edge at a time. The algorithm manages a set of edges H,
maintaining the following loop invariant: prior to each iteration
H is a subset of some MST. Prim’s algorithm has the property
that the edges in H always form a single tree. This strategy is
greedy since the tree is augmented at each step with an edge
that contributes the minimum amount possible to the tree’s
weight. In order to implement this algorithm as such, all
members must have global information of the link weights of
all other members, so that they all see which member in H has
the minimum link weight and allow the growing MST to
expand towards this direction. We adjust this algorithm to our
distributed environment, by having each member that joins H
report its candidate links to the root A. At each step, the root
determines the next member J to join H by examining all
unused candidate links of all members that currently belong to
H. Then the root sends a Join Flag to member J, J joins H, and
so on and so forth. It has been shown that the improved
running time of the original Prim’s algorithm is:

Lt1 = O(E + Vlog2V).

Notation_6: Let the weighted path between any member J and
the root A be denoted as RJ, A (or RJ,Rt). Also, let PKS denote
the bit size of the packet that carries a member’s candidates’
information up to the root, and let KS denote the bit size of the
Join Flag from the root to the next member that joins H. Since
KS is the size of a control packet, we safely assume that the
following inequality holds: KS<<K.
 The combined communication cost incurred to the network
from the generation of the distributed MST becomes:

CCost1(aux) = ,j A
j V

R
∈
∑ × (PKS + KS)

CCost1(aux)≈ |V|× (PKS+KS)×E(Rj,Rt)
CCost1(aux)≈ 1

2 |V|× (PKS+KS)×maxj(Rj,Rt) (1).

The associated latency or running time for the adjustment of
Prim’s algorithm becomes:
Lt2 = 2× ,j A

j V

R
∈
∑ ≈ 2× |V|× avg(Rj,Rt)

Lt2≈ 2× |V| × 1
2 × maxj (Rj, Rt) ≈ |V| × maxj (Rj, Rt).

The running time of the adjusted algorithm in total becomes:
Lt1 + Lt2 = O(E +Vlog2V) + |V| ×maxj (Rj, Rt),
Lt1 + Lt2 = O(E +V (log2V + maxj (Rj, Rt))) (2).

B. MST Manipulation

Until now, we have generated a MST starting from member A.
A full walk on this MST will provide us with a Hamiltonian
path or tour with cost CMST < 2COPT. We will investigate if we
can do better than that for GDH.1, GDH.2, and ING that are
logically deployed on a Hamiltonian path or ring respectively.
Thus, we look for heuristics that produce better results than the
closest point heuristic or the full walk on an MST with triangle
inequality. We start with the following observation: if the
generated MST was in fact a chain, then the desired
Hamiltonian path would be directly provided and would result
in the same cost as this of the MST. Hence, the more the
resulting MST resembles a single chain, the less the cost of the
resulting Hamiltonian path (not tour) is expected to be. Based
on this observation, we initiate the manipulation of the MST
with the following transformation: During the formation of
the MST the two longest distinct paths from all group
members to the root are located. The group member that marks
the end of the longest path becomes now the new root of the
transformed MST, and the associations between parents and
offspring in the existing MST are sequentially altered to
accommodate the transformed tree. This process results in
unfolding the MST to its longest path or else in “extracting”
the largest possible “path” from the MST (Fig. 1(b), 1(c)).
 Next, each member that belongs to the new ST, recursively
rearranges its offspring in the order of increasing distances
(number of hops including relays) from their tree leaves (Fig.
1(d)). It is obvious that the backbone of the tree, which is the
previously unfolded path, will be accessed last by a pre-order
tree traversal. It can be directly seen that in the case we want to
generate a Hamiltonian path from this ST tree, all members
that belong to the “unfolded” path will be visited only once.
No recursions occur on the unfolded path. Hence, the longer
the unfolded path is, the less the number of members that will
be revisited is. Consequently, this modification results in the
reduction in the routing overhead for the Hamiltonian path
formed. This is also the intuitive idea behind the use of this
heuristic for protocols GDH.1, GDH.2, and ING.
 In the case of GDH.1 and GDH.2, the benefit from having
each member in the transformed MST recursively rearrange its
offspring is even greater. For the upward stage of GDH.1-2,
the MST is traversed as indicated by the Minimum Point
Heuristic. The MST is also unfolded to its largest path, with

1568998224

6

the offspring of every member arranged in increasing order of
distances. Along the lines of a greedy strategy, we select to fix
the backward GDH.1-2 schedule first. For that, we assign each
of the n group members with a unique sequential id from
Z*∩ [0, n-1]. That is, we perform a pre-order visit of the MST
by assigning session ids from the highest to the lowest one, as
we traverse the virtual tree. For example, the first member
encountered in our pre-order walk, say F, is assigned with id =
(n-1), the second member encountered, say L, is assigned with
id = (n-2), etc. Then, when GDH.1-2 is executed, member F
will be the last visited in the upward stage (or the first to
initiate the backward), and member L will be the predecessor
of F. By fixing the backward schedule first via a pre-order
MST traversal, we ensure that the members carrying the
longest KM material are accommodated first. Hence, we still
act along the lines of a greedy strategy. Among siblings, the
following invariant is true: the higher the newly assigned id of
a sibling, the fewer amount of hops (relays) a message
originating from this sibling will go through until the
destination is reached (successor or predecessor). The new id
assigned to a member corresponds also to the number of
elements (KM data) the member must communicate to its
successor or predecessor. Thus, among siblings, the longer the
message, the less number of relays it involves. We stress again
that we aim in improving the metrics of interest for the studied
protocols by manipulating the MST with simple, lightweight,
but effective heuristics, like the ones proposed. Below, we
briefly summarize our algorithm.

Fig 1: Manipulation of a MST: Transformation by unfolding it to the longest
path and recursive re-ordering of each member’s offspring.
Fig 1(a): Initial MST Prim. Fig 3(b): Identification of the largest path to unfold

Fig 1(c): MST unfolded to its largest path
Fig 1(d): Re-arrange offspring from smaller to largest path

1) Construct MST using distributed Prim (nodes report
candidate links to the root which determines the next link.
2) Transform MST by deploying (unfolding) its largest
path, modify all parent-offspring associations properly
3) Recursively re-arrange all offspring visited in
increasing distances from MST leaves (case of GDH.1-2)

VI. ANALYSIS OF NEW AUXILIARY FRAMEWORK
The two longest distinct paths are determined along with the
initial MST formation. The root stores information about the
two members whose distances from the root are currently the
longest, and follow two distinct paths to the root. Based on the
next candidate that joins the evolving subset H, the root
updates its related information accordingly. Thus, no extra
communication overhead or latency is incurred to the network
for this operation. After the two longest paths are determined,
the root notifies the member that will serve as the new root, say
member C. Starting now from C all members sequentially alter
their parent-offspring association accordingly. This running
time for this operation depends on the length of the new
unfolded path (UP), i.e. RUP = RC,D, as illustrated in Fig 1(c).
Then, the associated latency becomes: Lt3 = RUP (3).
The associated communication overhead becomes:
CCost2 (aux) = Weight (MST)×KS = W(MST)×KS (4).
 For the re-ordering process, each offspring recursively
notifies its parent of its distance from the related tree leaf. For
example, if member F collects the maximum distances of all
offspring from the tree leaves, it picks the maximum among
these values, adds its own link weight towards its parent, and
sends this information to its own parent, say member B. B will
collect similar information from all offspring, and so on and so
forth. Each parent stores this information and applies a sorting
algorithm to its offspring (i.e. QuickSort) to virtually reorder
them for the coming pre-order traversal. The sorting
calculations can be executed independently from the maximum
distance propagation up to the root. The overhead incurred
from this operation is the same as before:

CCost3 (aux) = W(MST)×KS (5), and Lt4 = RUP (6).

Notation_7: Let Rmax = maxi,j(Rj, i) be the longest virtual link
between any two virtually connected members.

Overall, the communication cost and latency for the generation
of the core framework becomes approximately:

CCost (aux) = CCost1(aux) + CCost2(aux) + CCost3(aux)

 CCost(aux)= | |
2
V ×maxj (Rj, Rt)× (PKS+KS)+2×W(MST)×KS ,

CCost (aux) < 1
2 |V|2×Rmax× (PKS+KS)+2|V|×Rmax×KS ,

CCost (aux) < |V|×Rmax× (1
2 |V|× (PKS +KS) + 2 KS) (7).

Lt = Lt1 + Lt2 + Lt3 + Lt4
Lt = O(E +V (log2V + maxj (Rj, Rt))) + 2×RUP .
Lt < O(E +V (log2V + |V|×Rmax)) + 2×2|V|×Rmax

Lt <O(E + |V log2V| + (|V|2 + 4|V|)×Rmax)) (8).

 We will now attempt to capture the auxiliary overhead more
accurately with our simulations and see if it agrees with our

1

B

C
D

1

B

C
D

2 A

B

C

D

2 A

B

C

D

3 C

B

A

D

3 C

B

A

D

4

D

A

C

B

4

D

A

C

B

1568998224

7

analytical results. Furthermore, through our simulations, we
will measure the exact communication overhead and latency of
the execution of studied KA protocols based on the new core
framework. We will compare these new wt protocol versions
with the previous nt-versions, again by our simulations.

VII. WT-GDH VS. ORIGINAL NT-GDH SIMULATION RESULTS

A. Simulations Set-Up

We have conducted simulations in order to compare the routing
cost of wt-(GDH.1, GDH.2, and ING) vs. their original versions
over ad hoc multi-hop networks. We use different graphs to
generate the secure subgroups and analyze the performance of
the various algorithms. Our network graph represents a single
cluster area where a single group is deployed. A number of
nodes from this graph are randomly selected as group members.
The group leader is randomly selected. At the end of the group
“registration” period, the sponsor piggybacks the list of the
legitimate members into the routing packets. We assume a
generic Dijkstra routing protocol that finds the shortest paths
between members. Through the underlying routing, each
member obtains the routing path(s) to its closest neighbor(s).
We dynamically determine the proximity with respect to the
number of hops between two members. If no neighbors are
found in the proximity, the search diameter (TTL) is gradually
expanded until a pre-agreed number of members are found.
 We further assume that while the backbone framework is
being formed, the relative placement of members and
consequently the proximity lists do not change significantly.
Such a change could result in a different “optimal” solution,
and the one currently generated would become outdated and
probably suboptimal. However, our algorithm is fairly fast. So,
it is not too optimistic to assume that the topological changes
that occur do not “offset” our solution much from the target
solution. Of course, it is expected that the higher the mobility
of nodes, the worse the performance of our algorithm is. Even
though the wt-versions are more sensitive to mobility than the
original schemes, they still reduce significantly CCost and Lt,
even if the generated schedule is not currently optimal. On the
other hand, the backbone framework can be periodically
reconfigured, in order to capture all dynamic changes and
reflect them to the wt protocol executions. The frequency of
this reconfiguration depends on the dynamics of the network
(i.e. nodes’ mobility profiles, rate under which the network
topology changes due to mobility, disruptions, battery
drainage, etc.), and on the available network resources. It also
depends on our own specifications and requirements for the
performance of the schemes. For example, the auxiliary
framework may be recalculated whenever the performance of a
given protocol degrades to the median of the best execution
(the first one after the auxiliary framework reconfiguration)
and of the average execution of the original nt scheme.
 For our evaluation, we generated various random graphs for a
given input of the number of nodes n and the number of
members m. For the same graph and the same input, we have
varied the subgroup configuration, i.e., we have selected the n
members in a random manner. For each graph of input <n, m>
and for each subgroup configuration, we have evaluated the
three metrics of interest (CCost, RCost, Lt) of the wt-versions

vs. the nt-versions (original), and we have averaged the results
for all random graphs with the same inputs <n, m>. We have
tested the following cluster-subgroup scenarios:
Cluster Size: [100,…, 600], Subgroup Size: [8,…64].

B. Simulation Results:

 We illustrate in the following graphs some indicative results
on the communication and routing overhead produced by the
studied protocols and their new wt versions, measured in terms
of the total number of hops required for the protocols to
successfully terminate. The KM messaging is very heavy for
the network nodes, so our aim is to reduce the overall number
of bits (or packets) required and relieve as many nodes as
possible from “relaying” large keying data. This is indeed the
case with the new versions: they achieve significant savings in
terms of routing and consequently communication cost.

The following graphs reflect a number of important metrics
that justify the value of our new wt-algorithms: (a) the
combined communication overhead (CCost) of the wt-versions
vs. the existing ones under various scenarios of secure group
and network size, (b) the routing overhead (RCost) of the wt-
versions vs. the existing ones under various scenarios of secure
group and network size, and (c) the communication and
computation overhead required for the generation of the
auxiliary framework (CCost(aux), CompCost(aux)), under
various scenarios of secure group and network size. The
graphs in cases (a) and (b) are all scaled by a factor K, while
those in (c) represent actual values of the auxiliary framework.

The routing and communication overhead is significantly
reduced in all the scenarios captured by our simulations.
Indeed, the new schemes results in significant savings in terms
of routing (and consequently communication) overhead, and in
many cases the associated ratio is:

RCOMM = (_ , ,)
(, ,)

CCost ING Opt n S
CCost ING n S ≈ 1

2 .

We illustrate the above with an indicative arithmetic example:
for a subgroup of size 32, and a network of size 200, the
averaged relays produced (RCost or equivalently CCost) are
1215 for ING_Opt, and 2595 for ING, and hence RCOMM < 1

2 .

Furthermore, we are able to verify that the communication and
computation costs resulting from the auxiliary framework of the
wt-versions match our analytical results. Indeed, let us for
example recall the analytical formula we derived for estimating
the CCost (aux) metric:

CCost (aux) < |V|×Rmax× (1
2 |V|× (PKS +KS) + 2 KS) (7).

Assuming that the maximum number of neighbors for each
member is 10-12 (verified from our simulations as well), and
having set KS = 8, we select PKS = 8×12 = 96 (bit size of
control packet×maximum number of neighbors) Also, we
select Rmax = 8, and obtain the following expression for (7):

CCost (aux) < 8|V |× (52|V |+16).

By evaluating this expression for a subgroup of 32 members we
obtain: CCost (aux, V=32) < 430,080 bits. Indeed our results
verify that this upper bound holds, since some indicative values
of CCost that we obtain for group size n and network size S are

1568998224

8

the following: CCost (aux, n=32, S=200) = 336977 bits, CCost
(aux, n=32, S=300) = 395881 bits, CCost (aux, n=32, S=400) =
256436 bits. The same is the case with the rest of the group
sizes we have included in our simulations. We should also
observe that CCost (aux) increases as the network size grows,
until the network reaches some threshold value. Then, the
corresponding metric starts decreasing. The reasoning behind
this behavior is the following: two members are considered
“connected” until the hop distance between them (TTL) reaches
a certain threshold. After this threshold is exceeded, the
members are considered disconnected. As the network size
increases, the density of subgroup members decreases, and
naturally the “neighbors” of each member decrease, as
expected. The less the neighbors of each node are, the lower
CCost(aux) and CompCost(aux) quantities become.

 In addition, we also verify that the metrics associated with
the auxiliary framework are kept reasonably low and add little
to the overall overhead produced by the execution of the wt-
versions, even under a growing secure group and/or network
size. On the other hand, the control messages used for the
generation of the framework have size KS<<K. Acceptable bit
lengths for K are above 2048 bits so that a KM protocol can be
considered computationally secure to-date. We illustrate the
above with an indicative arithmetic example: We have found
that avg (CCost (ING_Opt, n=32, S=300) = 3925, avg (CCost
(ING, n=32, S = 300) = 5976, and avg (CCost (aux, ING, n =
32, S = 300) = 395881. It can be seen that the larger the
constant K becomes, the bigger the difference in the overhead
of ING_Opt vs. ING becomes. However, even if we assume
that the bit size of K is as small as 1024 bits, we obtain the
following results: CCost (ING_Opt + aux) = 3925×1024 +
395,881 = 4,019,200 + 395,881 = 4,415,081 bits, while CCost
(ING) = 5976×1024 = 6,619,424. Obviously, the difference in
the overall overhead (including the auxiliary overhead for the
case of wt-ING) is considerable, even under this worst case
scenario (small K, highest observed CCost(aux)). The
difference in the overall overhead becomes even more
impressive if GDH.1 is considered. We emphasize again that a
new framework needs not be computed every time a wt-KA
protocol is executed. We can re-compute the framework
periodically. Hence, the impact of the framework overhead on
the overall cost of our algorithms is even lower in practice.

Communication cost of ING_Opt vs. ING from 100
different executios with different configuration each

1200

1500

1800

2100

2400

2700

1 10 19 28 37 46 55 64 73 82 91 10

Subgroup Size n=16, Network Size is [100, 200]

ING

INGOpt

Communication Cost of ING_Opt vs. ING w.r.t.Subgroup Size

2000

5000

8000

11000

14000

17000

20000

23000

26000

29000

32000

35000

38000

41000

44000

16 32 64

Subgroup Size n={16, ..., 32, ...64}, for network size [100, 200]

ING

ING_Opt

Fig 1: Total Communication cost (CCost) produced by ING_Opt vs. ING, for
Subgroup size n = 16, and network size S = 100, for 100 different graph
configurations. ING_Opt results in substantially superior performance for the
vast majority of different graph configurations.

Fig 2: CCost of ING_Opt vs. ING w.r.t. group size <16,…, 64>, in a network of
size <100, 200>. ING_Opt demonstrates a considerably superior performance.

ING framework Communication OH for three Subgroup Sizes, for
increasing network sizes (logarithmic scale)

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

100,200 150,300 200,400,500

Network Size S = <100...500>

ING(16)

ING(32)

ING(64)

C o m p u t a t io n C o s t o f I N G a u x . F r a m e w o r k f o r

t h r e e S u b g r o u p S iz e s , f o r v a r y in g n e t w o r k

s iz e s (lo g a r it h m ic s c a le)

1. 0 0 E+0 6

1. 0 0 E+0 7

1. 0 0 E+0 8

1. 0 0 E+0 9

10 0 , 2 0 0 15 0 , 3 0 0 2 0 0 , 4 0 0

N e t w o r k S iz e : < 1 0 0 , . . . 4 0 0 >

I NG(16)

I NG(3 2)

I NG(6 4)

Figs 3, 4: CCost(aux) (bits) [3], and CompCost(aux) (bits) [4] for ING_Opt, for
an increasing group size <16,…,64>, for three different scenarios of network
size: S1=<100,200>, S2 = < 150, 400>, S3 = <200, 500>. The corresponding
costs increase with the group size. They also increase with the network size up
to a certain threshold, as discussed.

Communication Cost of GDH.1_Opt vs. GDH.1 (bits) for various
Subgroup Configurations

1350

1550

1750

1950

2150

2350

2550

2750

2950

3150
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Subgroup Size = 16, Network Size =100, 100 runs, for 100 different configurations

GDH.1
GDH.1_Opt

C o m m u n ic a t io n C o s t o f G D H 1 _ O p t v s . G D H 1

f o r la r g e n e t w o r k s [2 0 0 , 5 0 0] , f o r a n

in c r e a s in g s u b g r o u p s iz e

1. 2 0 E +0 3

6 . 2 0 E +0 3

1. 12 E +0 4

1. 6 2 E +0 4

2 . 12 E +0 4

2 . 6 2 E +0 4

3 . 12 E +0 4

3 . 6 2 E +0 4

16 3 2 6 4

S u b g r o u p S iz e n = < 1 6 , 6 4 >

GDH1

GDH1_Opt

Figs 5, 6: CCost of GDH.1_Opt vs. GDH.1 for the following scenarios: (1) for
100 different subgroup configurations on a network of 100 nodes (100 different
runs) for a subgroup size of 16 members, (2) comparison w.r.t. the number of
members [16, 32, 64] in large network of [200,…, 500] nodes. The performance
of our algorithm is significantly superior in the vast majority of cases, and this
reflects on the average case as well. The ratio of improvement in these cases
becomes: 0.53 < RCOMM < 0.70.

Routing Cost of GDH1_Opt vs. GDH1 in large networks of
[200….400] nodes

0

100

200

300

400

500

600

700

800

900

16 32 64

Secure Group Size in network of size [200...400]

GDH1

GDH1_Opt

Communication Cost for GDH1_Opt vs. GDH1 in networks with
size [200...400]

0

5000

10000

15000

20000

25000

30000

35000

16 32 64

Size of secure group in large network of size [200...400]

GDH1

GDH1_Opt

Figs 7, 8: RCost (7) and CCost (8) of GDH.1_Opt vs. GDH.1 w.r.t. the number
of group members [16, 32, 64] in a large network of [200,…, 400] nodes.

1568998224

9

GD H 1 a u x i l i a r y f r a m e wo r k C o m m u n i c a t i o n OH ,
f o r t h r e e d i f f e r e n t g r o u p si z e s, i n t e r m s o f

n e t wo r k si z e (l o g a r i t h m i c sc a l e)

1.00E+04

1.00E+05

1.00E+06

1.00E+07

100,200 150,300 200,400

N e t wor k Si z e S: [1 0 0 , . . . , 4 0 0]

GDH1(16)

GDH1(32)

GDH1(64)

Fig 9: GDH.1_Opt framework CCost (bits), for an increasing group size <16,…,
64>, for three different scenarios of network size: S1=<100, 200>, S2 = <150,
400>, S3 = <200, 500>. The corresponding costs increase with the group size.
They also increase with the network size up to a certain threshold.

The behavior and performance of GDH.2 is similar to this of
GDH.1, and we skip the related results for lack of space.

VIII. CONCLUSION
 This paper focuses on the design and analysis of topology-
oriented versions of a number of the following DH-based KA
protocols over wire-less multi-hop ad hoc networks: GDH.1,
GDH.2, ING. We describe new methods for approximating
(and potentially optimizing) the most significant metrics of
interest associated with these protocols: the communication,
routing, and latency functions. We introduce heuristics for
generating topology-oriented communication schedules, on top
of which the discussed protocols are executed. The algorithms
introduced address generalized secure member graphs. On a
generalized secure member graph, the notion of connectivity
has been relaxed, i.e. the communication path between two
members may as well include non-member relays, as long as
the number of hops in the path is lower than a given threshold.
The algorithms introduced in our previous work [23] were
designed for fully connected secure member graphs. This
specialized model however does not effectively capture a
realistic, general multi-hop ad hoc network. Applying the
methods suggested in [23] on the generalized graphs of our
current study makes no sense in most cases or results in a
substantial deterioration of the expected performance of the
protocols. Hence, in this paper we re-designed the
communication schedules of the given protocols by either
extending our previous techniques, or proposing new ones, to
address a totally generic network. The heuristics introduced
achieve significantly better approximations of the metric
functions we want to optimize. Our comparisons of the new
topology oriented and the original KA schemes are done via
simulations. The new protocols achieve a dramatic reduction in
the communication and routing overhead.
 We believe that there is scope for even more efficient
topology oriented approaches and we consider efficient
simulations of KA protocols over multi-hop ad hoc networks as
an interesting open problem.

REFERENCES
[1] K. Becker, U. Wille, “Communication Complexity of Group Key

Distribution,” Proc.5th ACM Conference on Computer & Communicatios
Security, pp. 1-6, San Francisco, CA, November 1998.

[2] M. Steiner, G. Tsudik, M. Waidner, “Diffie-Hellman Key Distribution
Extended to Groups,” 3rd ACM Conference on Computer &
Communication Security, pp. 31-37 ACM Press, 1996.

[3] W.Diffie, M.Hellman,”New directions in cryptography”, IEEE Trans. on
Information Theory, 22(1976), 644-654.

[4] I. Ingemarsson, D.Tang, C.Wong. “A Conference Key Distribution
System”, IEEE Trans. on Information Theory, 28(5): 714-720, Sept. 1982

[5] M.Burmester, Y.Desmedt. “A Secure and Efficient Conference Key
Distribution System”, Advances in Cryptology–EUROCRYPT’94,
Lecture Notes in Computer Science. Springer – Verlag, Berlin, Germany.

[6] M. Hietalahti. “Key Establishment in Ad-Hoc Networks,” M.S. Thesis,
Helsinki University of Technology, Dept. of Computer Science and
Engineering, May 2001.

[7] A.Perrig, “Efficient Collaborative Key Management Protocols for Secure
Autonomous Group Communication,” Int’l Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC’99), pp. 192-202, July 1999.

[8] N.Asokan, P. Ginzboorg, “Key-Agreement in Ad-Hoc Networks,”
Computer Communications, Vol. 23, No. 18, pp. 1627-1637, 2000.

[9] Y. Kim, A. Perrig, G. Tsudik, “Simple and Fault Tolerant Key
Agreement for Dynamic Collaborative Groups,” Proc. 7th ACM Conf. on
Computer and Communication Security (CCS 2000), pp. 235-244.

[10] J. Katz, M.Yung, “ Scalable Protocols for Authenticated Key Exchange“,
Advances in Cryptology - EUROCRYPT’03, Springer-Verlag, LNCS Vol
2729, pp. 110-125, Santa Barbara, USA.

[11] J.Katz, R.Ostrovski, A.Smith, “Round Efficiency of Multi-Party
Computation with a Dishonest Majority”, Advances in Cryptology,
EUROCRYPT’03, LNCS Vol. 3152, pp.578-595, Santa Barbara, USA.

[12] Y.Amir, Y.Kim, C.Rotaru, J.Schultz, G.Tsudik, “Exploring Robustness in
Group Key Agreement”, Proc. of the 21th IEEE Int’l Conference on
Distr. Computing Systems, pp. 399-408, Phoenix, AZ, April 16-19, 2001.

[13] Y.Amir, Y.Kim, C.Rotaru, J.Schultz, J.Stanton, G.Tsudik, “Secure Group
Comm/tion using Robust Contributory Key Agreement”., IEEE Trans. on
Parallel and Distributed Systems, Vol. 15, no. 5, pp. 468-480, May ‘04.

[14] L.Zhou, Z.Haas, “Securing Adhoc Networks,” IEEE Network Magazine,
vol. 13, no.6, pp. 24-30, Nov/Dec 1999.

[15] J.Kong, P.Zerfos, H.Luo, S.Lu, L.Zhang, “Providing Robust and
Ubiquitous Security Support for Wireless Ad-Hoc Networks,” Proc. 2001
IEEE Int’l Conf. on Network Protocols (ICNP 2001), pp. 251-260.

[16] S.Capkun, L.Buttyan, J.Hubaux, “Self-Organized Public Key
Management for MANET,” IEEE Trans. on Mobile Computing, Vol. 2,
No. 1, pp. 52-64, Jan-Mar. 2003.

[17] L.Eschenauer, V.Gligor., “A Key Management Scheme for Distributed
Sensor Networks,” Proc. 9th ACM Conference on Computer and
Communication Security (CCS’02), pp. 41-47, Nov, 2002.

[18] H.Chan, A.Perrig, D.Song, “Random Key Predistribution Schemes for
Sensor Networks,” Proc. 2003 IEEE Symposium on Security and Privacy,
pp. 197-213, May 2003.

[19] S.Yi, R.Kravets, “Key Management for Heterogeneous Ad hoc Wireless
Networks,” University of Illinois, Urbana-Champaign, CS dept.,
TR#UIUCDCS-R-2001-2241, UILU-ENG-2001-1748, July 2002.

[20] L.Lazos, R. Poovendran, “Energy-aware Secure Multicast Comm/tion in
Ad-hoc networks Using Geographic Location Information”, IEEE Int’l
Conf. of Acoustic Speech Signal Processing (ICASSP’03), pp. 201-204,
Hong Kong, China, April, 2003.

[21] S.Zhu, S.Setia, S.Xu, S.Jajodia, “GKMPAN: An Efficient Group Re-
keying Scheme for Secure Multicast in Ad-hoc Networks”, IEEE
Computer Society, MobiQuitous 2004, pp. 45-51.

[22] M.Striki, J.Baras "Efficient Scalable Key Agreement Protocols for Secure
Multicast Communication in MANETs", Collaborative Technologies
Alliance (CTA) Symposium, College Park MD, May 2003.

[23] M.Striki, J.Baras, G.DiCrescenzo, “Modeling Key Agreement Protocols
in Multi-Hop Ad Hoc Networks”, Proc. 2006 Int’l Wireless
Communications and Mobile Computing Conference (IWCMC), pp. 39-
45, Vancouver, CA, July 2006

[24] R. Gallager, P.Humblet, P.Spira. “A distributed algorithm for minimum
weight spanning trees”, ACM Transactions on Programming Languages
and systems (TOPLAS), 5(1): pp.66-77, January 1983

[25] T.Cormen, C.Leiserson, R.Rivest,”Introduction to Algorithms”, MIT
Press, McGraw Hill Book Company, March 1990

	TR_2006-13-cover.pdf
	TR-2006-13-body.pdf

